
Chapter 17
Mixed-Integer Programming Techniques
in Distributed MPC Problems

I. Prodan, F. Stoican, S. Olaru, C. Stoica and S.-I. Niculescu

Abstract This chapter proposes a distributed approach for the resolution of a multi-
agent problem under collision and obstacle avoidance conditions. Using hyperplane
arrangements and mixed integer programming, we provide an efficient description
of the feasible region verifying the avoidance constraints. We exploit geometric
properties of hyperplane arrangements and adapt this description to the distributed
scheme in order to provide an efficient Model Predictive Control (MPC) solution.
Furthermore, we prove constraint validation for a hierarchical ordering of the agents.

17.1 Introduction

Distributed control usually means a decomposition of a large scale system into a set
of several smaller subsystems (“neighborhoods”). The rationale of this approach is
to provide subsystems which have fewer decision variables and are affected by fewer
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constraints (thus making the optimization problems easier to solve). This design
requirement means that we aim for subsystems which are loosely inter-coupled, i.e.,
a given subsystem is affected by only a few other subsystems [11].

A classical area in which distributed control can be applied is the control of multi-
agent systems [1]. Here, the subsystems affect each other mainly through obstacle and
collision avoidance requirements. The primary challenge in applying these require-
ments is that they model a non-convex feasible region, i.e., the agent state trajectory
has to avoid a convex region representing an obstacle (static constraints) or another
agent (dynamic constraints—leading to a parametrization of the set of constraints
with respect to the current state).

An extensively used method for formulating this type of problems is represented
by Mixed-Integer Programming (MIP) [2] which provides the advantage of explicitly
including non-convex constraints and discrete decisions in the optimization problem.
These techniques have proven their usefulness in various applications. Among them,
we cite [8] for task assignment with coordinated control of multiple agents, subject
to dynamics and collision avoidance constraints, and [12] for fault detection and
isolation.

A sensitive aspect of MIP techniques is the computational complexity which can
increase exponentially with the number of binary variables used in the problem
formulation. There are some works where the original decision problems are refor-
mulated in a simplified MIP form [14], but the complexity still remains significant.
Other works try to reduce the number of binary variables, e.g., through a logarithmic
formulation, as recalled in [13]. A similar technique with geometric insights into the
description of the feasible region is discussed in [9] and provides a notable improve-
ment of the overall MIP formulation. The main improvement is the use of hyperplane
arrangements which give a formal way of describing the usually non-connected and
non-convex feasible region.

With all these improvements considered, the problem at hand is still difficult to
solve, even more so when a Model Predictive Control (MPC) scheme is applied
(both the dimension of the solution space and the difficulty of describing the feasible
region become larger with an increase in the length of the prediction horizon). MPC
and, naturally, Distributed Model Predictive Control (DMPC) can be used to tackle
this problem and the present chapter aims to offer a MIP solution in the context of
predictive control. Here we propose to present a two-pronged approach. On one side,
we consider the geometric description of the feasible region and on the other side we
introduce a distributed MPC approach, upon the principles in [11]. In both cases we
exploit the topology of the problem: we consider neighborhoods which partition the
agents into groups and give a MIP description of the feasible region in which they
stand. With an adequate communication between the resulting groups of agents, we
are able to respect performance and stability constraints while in the same time we
greatly reduce the computational load.

The rest of the chapter is organized as follows. The preliminaries are given in
Sect. 17.2. Improvements in the geometric representation are shown in Sect. 17.3
and a hierarchical distributed MPC is discussed in Sect. 17.4. The conclusions are
drawn in Sect. 17.5.
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The following notation will be used throughout the paper. The closure of a
set S, cl(S), is the intersection of all closed sets containing S. The collection
of all possible combinations of N binary variables will be noted {0, 1}N :=
{(b1, . . . , bN ) : bi ∈ {0, 1} ,∀i = 1 : N }. For a scalar x ∈ R, we denote by �x� the
upper integer part. A finite intersection of inequalities which describes a non-empty
region is called a polyhedral set. A polytope is a bounded polyhedral set. Minkowski’s
addition of two sets X and Y is defined as X ⊕ Y = {

x + y : x ∈ X , y ∈ Y}
. We

write R � 0 to denote that R is a positive definite matrix and Q � 0 a positive
semidefinite matrix.

17.2 Preliminaries and Prerequisites

In this section, we recall results from [9] and the appropriate framework which permit
to describe a non-convex and non compact feasible region using the MIP formalism.
In the second part, we use this codification to construct a typical centralized optimiza-
tion problem for a multi-agent system [8]. Lastly, we shed light on the shortcomings
afflicting this construction (most importantly the numerical difficulties) and provide
a sketch of the approaches we consider in the rest of the chapter for improving the
solution.

17.2.1 Mixed Integer Representation of a Non-Convex
Feasible Region

Let us consider a collection of N > 0 hyperplanes

Hi =
{

x ∈ R
n : hi x = ki

}
, i = 1 : N , (17.1)

with (hi , ki ) ∈ R
1×n × R, each of them partitioning the space R

n into two disjoint
regions (up to their common boundary—the hyperplane Hi ):

R+(Hi ) =
{

x ∈ R
n : hi x ≤ ki

}
, R−(Hi ) =

{
x ∈ R

n : −hi x ≤ −ki
}
.

(17.2)
Assuming their intersection non-empty and bounded, we define the polytopic set
P ⊂ R

n through its implicit half-space description1:

P =
⋂

i=1:N
R+(Hi ), (17.3)

1 We have made the simplifying convention that all the half-spaces appearing in (17.3) are of form
R+(·).
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Fig. 17.1 Exemplification of
mixed integer codification

and its complement as:

CX (P) = cl(X \ P) =
⋃

i=1:N
R+(Hi ). (17.4)

In order to obtain a manageable formulation for (17.4), one has to use mixed integer
techniques with the aim of defining a polyhedra in the extended space of state and
auxiliary binary variables of the form:

−hi x ≤ −ki + Mαi , i = 1 : N (17.5a)
∑

i=1:N
αi ≤ N − 1, (17.5b)

with a positive scalar M chosen appropriately (that is, significantly larger than the
rest of the variables in the right hand side of the inequalities).2

Remark 17.1 Inequality (17.5a) becomes active when its associated binary variable
αi is “0” and redundant when the binary variable is “1” (due to term M , the right
hand side is much larger than the left hand side and variable “x” can have any value).
E.g., region R−(Hi ) can be obtained from (17.5a)–(17.5b) by projecting along:

αi := (1, . . . , 1, 0︸︷︷︸
i

, 1, . . . , 1). (17.6)

Condition (17.5b) forces at least one binary variable “0” and thus, makes at least one
inequality active. �

Illustrative Example

Consider the following illustrative example depicted in Fig. 17.1, where the com-
plement of the triangle P = R+(H1) ∩ R+(H2) ∩ R+(H3) represents the feasible
region.

2 Sometimes this construction is called in the literature the “big M” formulation.
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In formulation (17.5a)–(17.5b) there corresponds a unique binary variable to each
inequality. Then, by choosing adequate combinations of binary variables, each re-
gion R−(Hi ) can be recovered from the extended formulation (17.5a)–(17.5b). For
example, by taking (α1,α2,α3) ← (1, 0, 1) we can recover region R−(H2), as
depicted in Fig. 17.1.

17.2.2 Mixed Integer Representation of a Non-Convex and
Non-Connected Feasible Region

The results shown in Sect. 17.2.1 have several limitations. Firstly, the feasible region
is the complement of a polytope and thus has a restricted feasibility and secondly,
the used MIP formulation requires a large number of binary variables (one for each
inequality). Here we address both these shortcomings by considering the feasible
region as the complement of a union of bounded polyhedral sets and by employing
a logarithmic formulation for the MIP description.

Let us define a non-convex and possibly non compact feasible region as the com-
plement of a union of bounded polyhedral sets P = ⋃

l
Pl , with Pl = ⋂

i∈Kl

R+ (Hi )

where Kl denotes the set of indices of the hyperplanes defining polytope Pl :

CX (P) = cl(X \ P). (17.7)

We denote the collection of hyperplanes which define P as H and their number as
N �

∑

l
|Kl |. The reduced notation C(P) is used whenever X ⊆ R

n is presumed

known or is considered to be the entire space R
n .

To describe (17.7) we introduce the next combinatorial notion.

Definition 17.1 (Hyperplane arrangements—[15]) A collection of hyperplanes
H = {Hi }i=1:N will partition the space into a union of disjoint cells Al defined as
follows:

A(H) =
⋃

l=1,...,γ(N )

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N⋂

i=1

Rσl (i)(Hi )

︸ ︷︷ ︸
Al

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(17.8)

whereσl ∈ {−,+}N denotes feasible combinations of regions (17.2) that are obtained
for the hyperplanes in H. �

We note that there exists a subset
{B j

}
of feasible cells from (17.8) which de-

scribes region (17.7):
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CX (P) =
⋃

j=1,...,γb(N )

B j , with B j ∈
{Ai ∈ A(H) : Ai

⋂P = ∅} (17.9)

where γb(N ) ≤ γ(N ) denotes the number of cells B j .
Recall that any of the cells of (17.9) is described by a unique sign tuple (B j ↔ σ j ).

As such, we obtain that the cells are disjoint and cover the entire feasible space (17.7).
For our purposes we are satisfied with any collection of regions not necessarily
disjoint which covers the feasible space.

We can formally represent the problem by requiring that (17.7) is described by a
union of regions {Ck}k=1:γc(N ) (where γc(N ) denotes the number of cells),

CX (P) =
⋃

k=1,...,γc(N )

Ck, (17.10)

which verifies the next conditions:

• the new polyhedra are formed as unions of the old polyhedra (i.e., for any k there
exists a set Ik which selects indices from 1 : γb(N ) such that Ck = ⋃

j∈Ik

B j );

• the union is minimal, i.e., the number γc(N ) of regions is minimal.

Existing merging algorithms are usually computationally expensive but here we
can simplify the problem by noting that the sign tuples σl describe an adjacency
graph since any two cells whose sign tuples differ at only one position are neighbors
and that the union of any two adjacent cells is a polyhedron. In particular, in [9], it is
shown that boolean algebra methods can be applied for the generation of the merged
cells.

We can now state the mixed integer formulation of the non-convex region (17.10)
which allows to express it as a polyhedra in the extended space X × {0, 1}q of state
and auxiliary binary variables as follows:

...

σk(i1)hi1 x ≤ σk(i1)ki1 + Mαk(λ)
...

σk(is)his x ≤ σk(is)kis + Mαk(λ)

⎫
⎪⎬

⎪⎭
Ck

...

(17.11)

with functions αl(·) with binary arguments which link (17.10) with (17.11). The
sequence 1 ≤ i1 < i2 · · · < is ≤ N denotes the hyperplanes appearing in the
definition of cell Ck .

In order to provide an explicit representation of the binary part of (17.11) we
recall a slightly modified form of Proposition 3.1 from [9].

Proposition 17.1 For each cell Ck we associate a unique combination of binary
variables λk ∈ {0, 1}q where q = �log2γ

c(N )�. Then, we can construct the functions
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αk : {0, 1}q → {0} ∪ [1,∞) such that they are affine in λ and verify the relations:

αk(λ) =
{≥0, for λ = λk

≥ 1, for λ �= λk (17.12)

and are defined as follows:

αk(λ) =
q∑

i=0

(
λk

i + (1− 2λk
i ) · λi

)
. (17.13)

Index ‘i’ denotes the i th variable and λk
i its value for the tuple λk , associated to cell

Ck. A similar construction can be found in [13]. �

Sketch of proof. See the proof of Proposition 3.1 of [9].

Remark 17.2 The validation of (17.12) for functions (17.13) assures that projecting
(17.11) along the direction λ = λk results in the space R

n in the cell Ck (since
only αk(λ

k) will be zero). Note also that the converse is false: if a binary variable
is “1”, the corresponding inequality degenerates such that it covers any point x ∈
R

n (this represents the limit case for M → ∞). The last issue means that all the
combinations of binary variables not associated with cells from (17.10) need to be
made infeasible by additional inequalities. See Corollary 3.1 and Proposition 3.2 of
[9] for constructive details. �

Illustrative Example

Consider the following illustrative example depicted in Fig. 17.2, where the com-
plement of the union of two triangles (P = P1 ∪ P2) represents the feasible re-
gion. We take H = {Hi }i=1:4 the collection of N = 4 hyperplanes (given as in
(17.1)) which define P1 and P2 as follows: P1 = R+(H1) ∩ R+(H2) ∩ R+(H3),
P2 = R−(H1) ∩ R−(H2) ∩ R+(H4).

We observe that we have 11 cells obtained as in the arrangement (17.8). From
them, a total of 9, B1, . . . ,B9, describe the non-convex region (17.7). To each of
them corresponds a unique tuple of signs, e.g., B1 ↔ (−,−,−,−) means that B1
is the result of intersecting half-spaces R−(H1), R−(H2), R−(H3) and R−(H4).

Applying the merging methods of [9] we obtain 4 overlapping regions: C1 =
B1 ∪ B2 ∪ B3 ∪ B4, C2 = B4 ∪ B5 ∪ B6, C3 = B6 ∪ B7 ∪ B8 ∪ B1 and C4 =
B8 ∪ B9 ∪ B1 ∪ B2, depicted in Fig. 17.2 through the dotted lines. Consequently, we
note that q = 2 binary variables suffice in coding these regions. As for (17.11) and
(17.13), we are now able to describe cells {Ci } in the MIP formalism attaching to
each of the regions a tuple in lexicographical order as seen in the left side of Fig. 17.2.

Note that, in addition to reducing the number of regions from 9 to 4, we also have
reduced the number of hyperplanes appearing in the region’s half-space represen-
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Fig. 17.2 Exemplification of hyperplane arrangement and cell merging

tation. In this particular case no tuple remains unallocated and thus, no additional
constraints need to be added (see Remark 17.2).

17.2.3 Numerical Issues

Although functional, the representation of a feasible region defined as in Sect. 17.2.1
does not scale favorably with increases in space dimension and number of hyper-
planes. More precisely, the number of feasible cells of an arrangement of form (17.8),
denoted as γ(N ), is bounded by Buck’s formula (see for more details [9]):

γ(N ) ≤
d∑

i=0

(
N

i

)
(17.14)

with equality satisfied if the hyperplanes are in general position and X = R
n (in

relation with the space dimension—d and the number of hyperplanes—N ).
The increase in the number of cells makes their enumeration more difficult and

increases (even after applying merging algorithms) the number of necessary binary
variables. Therein lies the second issue which plagues the centralized formulation:
the mixed programming algorithms increase in worst case situations exponentially
with respect to the number of binary auxiliary variables and the computation becomes
fragile for high dimensions.

To alleviate these issues, we propose two enhancements:

• to reduce the complexity of the problem and the dimension of the space in which
the problem is solved, we consider a distributed MPC approach. We partition
the agent collection into neighborhoods and compute the solutions locally while
using information provided by the other neighborhoods. The stability of the overall
formation and a reasonable performance of the agents also needs to be verified;
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• to reduce the complexity of the feasible region representation we decompose only
the “visible” part of the feasible region (i.e., the region which is reachable along
the prediction horizon of the agents from a given neighborhood).

In the forthcoming sections we will detail these improvements and show that the
computational load is reduced significantly while the performance of the scheme
remains within acceptable bounds.

17.3 Feasible Region Decomposition Improvements

Consider a set of Na linear systems which model the behavior of individual agents.
Let us define:

i � {1, . . . , Na}, (17.15)

as the collection of all agents indices. In the following, a basic multi-agent problem
is considered. Besides normal constraints upon input/output magnitude and rate of
variance, we need to consider collision and obstacle avoidance constraints. Let us for
the moment ignore the dynamics governing the agents trajectory and discuss only
the non-convex constraints coming from the obstacle and collision avoidance. To this
end, let xi ∈ R

d be the state and Si the invariant with respect to time safety region
(see [7]) associated with the i th agent. The collection of fixed obstacles is described
through a union of polyhedra {O}o∈Io

with Io � {1, . . . , No} and where No denotes
the number of polyhedra Oo.

This allows us to write the collision/obstacle avoidance conditions as follows:

({xi } ⊕ Si ) ∩
({x j } ⊕ S j

) = ∅, i, j ∈ i, i �= j, (17.16a)

({xi } ⊕ Si ) ∩Oo = ∅, i ∈ I, o ∈ Io. (17.16b)

Concatenating the variables xi into the extended variable x �
[
xT

1 . . . xT
Na

]T
and

using the fact that [({a} ⊕ A) ∩ ({b} ⊕ B) = ∅] ↔ [a − b /∈ B ⊕ {−A}] we reach
the equivalent formulation

(
Pi − Pj

)
x /∈ ({−Si } ⊕ S j

)
, i, j ∈ i, i �= j (17.17a)

Pi x /∈ ({−Si } ⊕Oo) , i = 1 : Na, o ∈ Io, (17.17b)

where matrix Pi � [0 . . . I︸︷︷︸
i

. . . 0] “extends” the state xi into the extended state

x (i.e., x(k)i = Pi x(k)). Clearly, conditions (17.17) describe a non-convex region of
form (17.7) which ultimately results in a description of form (17.10). We abuse the
notation and thereafter we use the same notation for describing region (17.17):
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x /∈ P, C(P) =
⋃

k=1,...,γc(N )

Ck . (17.18)

The above construction corresponds to a centralized approach where all the agents are
considered simultaneously. In contrast, the distributed approach partitions the set of
agent indices into subsets (“neighborhoods”) and solves a series of local optimization
problems.

For further use, we introduce the following definition of a neighborhood of agents.

Definition 17.2 Let N �
⋃

i
Ni be the collection of neighborhoods Ni ⊆ i which

are considered to be disjoint (for any i �= j , Ni ∩N j = ∅) and to cover i (for any
i ∈ i there exists j such that i ∈ N j ), with i defined as in (17.15). �

For each optimization involving the agents of a given neighborhood, the feasible
region can be obtained from conditions (17.17) by selecting only the constraints
involving the agents of the current neighborhood and taking the other agents as
additional obstacles. This approach has the drawback of necessitating a continuous
recalculation of decomposition (17.10). An alternative solution which uses the previ-
ously calculated C(P) to compute the feasible region corresponding to Ni is proposed
in the following statement.

Proposition 17.2 Let the variable xNi �
[
xT

i1
xT

i2
. . .

]T
denote the agents of the

neighborhood Ni and xi\Ni denote the remaining agents. With the notation of (17.17)
and considering that xi\Ni ∈ Xi\Ni we have that the feasible region characterizing
xNi is defined as:

C(P)|Xi\Ni
=

⋃

k=1,...,γc(N )

Ck |Xi\Ni
, (17.19)

with

Ck |Xi\Ni
�

{
xNi :

[
xNi

xi\Ni

]
∈ Ck, ∀xi\Ni ∈ Xi\Ni

}
. (17.20)

�

Proof The proof is constructive. By intersecting every cell Ck with R
n·|Ni | ×Xi\Ni

and then projecting along the xNi subspace we obtain the restrictions Ck |Xi\Ni
of the

from (17.20), allowing us to conclude the proof. �

17.4 Distributed MPC Optimization Problem

A number of commonly found situations in the control related to multi-agent sys-
tems imply a cost function that has to be minimized, while in the same time, the
agent avoids collision with obstacles and other agents. To solve this problem, there
exists various methods in the literature. Arguably, they can be gathered in methods
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which penalize through the cost function as the violation of the constraints (e.g. Po-
tential Field Method [5] and Navigation Functions [10], and methods which impose
hard constraints which cannot be broken. The latter group usually employs receding
horizon techniques as they naturally take into account constraints.

We start by describing in Sect. 17.4.1 the centralized optimization problem and
make use of it in Sect. 17.4.2 to construct and analyze a particular distributed ap-
proach.

17.4.1 Centralized Multi-Agent Problem

Let us recall the Na agents considered in Sect. 17.3 and provide for them the LTI
dynamics:

x(k + 1)i = Ai x(k)i + Bi u(k)i , i ∈ i, (17.21)

where x(k)i ∈ R
n and u(k)i ∈ R

m represent the i th agent state and input, respec-
tively, at time3 k. The matrices Ai ∈ R

n×n and Bi ∈ R
n×m describe the dynamics

and the pair (Ai , Bi ) is controllable.
Furthermore, let us consider the centralized optimization problem formulation.

We take a cost function V (x, u) : RNa ·n × R
Na ·m → R which aims at maintaining

a formation, following a reference path or simply to gather the agents towards the
origin and the constraints defined as in (17.18). The centralized optimization problem
using a finite receding horizon technique is formulated as follows:

u∗ = arg min
u(k|k),...,u(k+Np−1)|k)

Np−1∑

l=0

V (x(k + l|k), u(k + l|k)) (17.22a)

s.t.: x(k + l + 1|k) = Ax(k + l|k)+ Bu(k + l|k), l = 0 : Np − 1, (17.22b)

x(k + l|k) ∈ C(P), l = 1 : Np. (17.22c)

The optimization problem (17.22) requires the minimization of the cost function over
a finite prediction horizon Np. From the optimal sequence of inputs u(k)∗, . . . , u(k+
Np − 1|k)∗ the first control input, u(k)∗, is selected and applied to the centralized
system, thus closing the loop.

Remark 17.3 The problem can be further simplified by noting that the agents’ dy-
namics are usually subject to operational constraints (e.g., magnitude or rate of
variation constraints) which limit their actual range. This means that we need to
consider in the description of C(P) only these cells (17.20) which are intersecting
the reachable set of the agents. The simplification of the scheme can be significant,

3 Whenever the time instant is clear we abuse the notation and denote the current state, x(k)i , as
xi . The same simplified notation is applied to the input.



286 I. Prodan et al.

e.g., if no obstacle is in the “line of sight” of the agents and the agents themselves
are far away from each other, then the resulting feasible domain will be convex. �

17.4.2 Distributed Multi-Agent Problem

As detailed in the introduction, the distributed approach has obvious computational
benefits. Consequently, we reformulate problem (17.22) into a distributed form. For
the agents of neighborhood Ni , the local optimization problem becomes:

u∗Ni
= arg min

uNi (k|k),...,uNi (k+Np−1|k)

Np−1∑

l=0

Vi\Ni (xNi (k + l|k), uNi (k + l|k))

(17.23a)

s.t.: xNi (k + l + 1|k) = ANi xNi (k + l|k)+ BNi uNi (k + l|k), l = 0 : Np − 1,

(17.23b)

xNi (k + l|k) ∈ C(P)|Xi\Ni
. (17.23c)

The use of indexing “Ni ” in (17.23) is to be understood as in Preposition 17.2, e.g.,
ANi denotes the concatenation (block-diagonal in this case) of state matrices A j

where the indices j are found in the neighborhood Ni .
The local cost function Vi\Ni (xNi , uNi ) : R|Ni |·n × R

|Ni |·m → R is defined as

Vi\Ni (xNi , uNi ) = min
ui\Ni ∈Ui\Ni
xi\Ni ∈Xi\Ni

V (x, u), (17.24)

where Ui\Ni denotes the values taken by the inputs ui\Ni (similarly with the definition
of set Xi\Ni ).

Remark 17.4 The use of operator “min” assumes a cooperative approach (the agents
exterior to the current neighborhood will try to accommodate the inputs/states sug-
gested by the optimization problem). If replacing with the “max” operator we assume
instead an adversarial or indifferent approach where the worst combination of in-
puts/states of the exterior agents has to be taken into account. �

Both the cost function (17.23a) and the feasible domain (17.23b)–(17.23c) depend
explicitly upon the values found in the sets Ui\Ni and Xi\Ni which characterize
the behavior (input and state) of the agents exterior to the current neighborhood.
Consequently, the content of these sets can accommodate a large span of distributed
control strategies. If no information is forthcoming from the exterior, then these sets
are defined using reachable analysis, thus resulting in a decentralized control. At the
other extreme, when the exact state of the exterior agents is communicated we have
a distributed cooperative approach.
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Usually, distributed approaches necessitate several iterations in-between consecu-
tive discretization steps. That is, at discretization step k for a state x(k)i we may have
p̄ iterations with the intermediate values x p

i where p = 0 : p̄ and x0
i ← x(k) and

x(k + 1)i ← x p̄
i . The computations stop after some predefined number of iterations

or when a consensus is reached.
Here we propose a hierarchical implementation which avoids by construction

consensus verification and requires only one iteration. To this end we consider a
hierarchical ordering of the neighborhoods.4 For neighborhood Ni , the remaining
indices, represented by i \ Ni , are partitioned into N−i and N+i which denote the
neighborhoods with lower, respectively higher, priority. Then, the sets Ui\Ni and
Xi\Ni are constructed as follows:

Ui\Ni =
⎛

⎜
⎝

⋃

j∈N−i
{u0

j }
⎞

⎟
⎠ ∪

⎛

⎜
⎝

⋃

j∈N+i
{u1

j }
⎞

⎟
⎠ , (17.25a)

Xi\Ni =
⎛

⎜
⎝

⋃

j∈N−i
{x0

j }
⎞

⎟
⎠ ∪

⎛

⎜
⎝

⋃

j∈N+i
{x1

j }
⎞

⎟
⎠ , (17.25b)

where superscript “0” and “1” denote the current iteration for a certain variable (e.g.,
u0

j means that the state is not yet updated and the initial value u(k) j will be used,

whereas u1
j means that we use the updated value, the one which will define the next

discretization step, u(k + 1) j ).
Under the aforementioned constructive assumptions we state the following lemma

dealing with constraints verification.

Lemma 17.1 Let the agents be in a feasible agent formation at discretization step
k:

x(k) ∈ C(P). (17.26)

By applying optimization problems (17.23) with sets (17.25) for each of the neigh-
borhoods Ni which partition i, we preserve the formation feasibility at the next
discretization step k + 1:

x(k + 1) ∈ C(P). (17.27)

�

Proof The proof is inductive. Consider neighborhood Ni and its attached optimiza-
tion problem (17.23). Due to the construction of sets Ui\Ni and Xi\Ni as in (17.25),
the optimization problem “sees” the agents of higher order in their updated posi-
tions and the ones of lower order in their initial positions. Then, the resulting control

4 Note that in the hierarchical implementation the neighborhoods are disjoint, see also the definition
of neighborhoods Ni in Sect. 17.3.
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uNi (k+1) will lead to a state xNi (k+1) which respects the new states of the higher
order agents (since they are explicitly included in the constraint set) and the un-
updated states of the lower-order agents. On the other hand, the lower-order agents
will not break the constraints involving agents with index in Ni because from their
point of view, this neighborhood has a superior position in the hierarchy.

The presence of the constraints associated to the lower order agents guarantees the
feasibility of x(k + 1). At the i th optimization problem, the initial state of the lower
order agents is respected, thus, if no movement is possible for them, they can at lest
keep the same state. This final argument completes the global recursive feasibility
proof of the control scheme. �

Remark 17.5 As mentioned in the proof of Lemma 17.1 we consider for lower order
agents the un-updated state and thus we guarantee the existence of a solution (at
worse, the lower order agent will be able to keep the same state5). This approach can
be generalized by assuming not a single point, but rather all the points that can be
reached by those agents. In other words, this means that agents situated lower in the
hierarchy could be “pushed-around” within acceptable bounds. �

Remark 17.6 Note that the partitioning between neighborhoods needs not to be
time invariant. If we consider that the neighborhoods have a geometric meaning
(i.e., take the indices of agents which are physically close) it may be necessary
to change their content at every (few) discretization steps. In this sense, we note
the k-means clustering algorithms, which permit partitioning a collection of agents
into a predefined number of groupings and partitions the state space into Voronoi
cells [3]. �

To clarify the exposition we provide in Algorithm 17.1 a sketch of the distributed
control problem.

17.4.3 Illustrative Example

For illustrative purposes let us consider the following example. Consider 3 agents,
each one of them its own neighborhood: Ni = {i}, i = 1 : 3. We order these
neighborhoods lexicographically, that is, N1 < N2 < N3 in the hierarchical point
of view and apply the optimization procedure (17.23). For clarity of the exposition
we keep a one-step MPC problem (i.e., Np = 1), such that only one step-ahead has
to be considered in the constraints.

In Fig. 17.3 we consider the 3 agents and show their evolution. Note that the
first and last frames represent the current (k) and next discretization step (k + 1)
respectively and that the 3 intermediate frames represent the single iteration executed
in-between the discretization steps. Further, we detail the execution of this iteration.

5 Not necessarily true when the dynamics describe systems which have a minimal velocity—
unmanned aerial vehicles (UAVs) for example.
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Algorithm 17.1 Distributed MPC scheme
Require: obstacles {Oo}, safety regions Si , neighborhoods N, initial inputs and states Ui\Ni , Xi\Ni ,

agent dynamics (Ai , Bi ) and global cost function V (·, ·)
1: describe P based on collision and obstacle avoidance conditions (17.17) and extract the collection

of hyperplanes H

2: obtain the cell arrangement as in (17.8) for H

3: obtain the feasible cells (17.9) and merge them in representation (17.10)
4: for k = 1, 2, . . . do
5: for each Ni ∈ N do
6: for neighborhood Ni calculate Ui\Ni and Xi\Ni as in (17.25)
7: construct the feasible region C(P)|Xi\Ni

as in Proposition 17.2
8: write C(P)|Xi\Ni

in MI formulation as in (17.11) with Proposition 17.1
9: solve optimization problem (17.23)
10: end for
11: k = k + 1
12: end for

Fig. 17.3 Exemplification of the hierarchical distributed approach

In the second frame, we solve optimization (17.23) for N1. Since this neighborhood
is the highest in the ordering (N+1 = ∅ and N−1 = {2, 3}) all the other agents are
kept in their initial position and agent 1 positions itself as depicted by the dashed
red contour. At the next frame, the third, we solve the optimization problem for N2
to which correspond N+2 = {1} and N−2 = {3}. In this case, N+2 is not empty
and thus the agent’s 1 updated state is used and agent 3 has its initial state. It can
be seen that agent 2 finds a better state which respects both the updated and the
initial constraints. The same procedure is repeated at the next frame for N3 to which
correspond N+3 = {1, 2} and N−3 = ∅. In the last frame it can be seen that each of
the agents has changed its position and that the constraints were respected.

17.5 Conclusions

In this chapter we revisited a technique which transforms a non-convex and possi-
bly non-connected region into a polyhedra in an augmented space (state and auxil-
iary binary variables) through the use of hyperplane arrangements. This enables the
geometric description of the feasible regions and use them for describing a typical
multi-agent collision and obstacle avoidance problem. Furthermore, the agents can
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be portioned into neighborhoods and a distributed Model Predictive problem can
be solved through a hierarchical ordering of the neighborhoods in order to guaran-
tee constraint validation and avoid consensus seeking. “Proof of concept” illustra-
tions are provided. The interested reader is encouraged to seek further details on
the mathematical concepts related to hyperplane arrangements in [6] and Mixed In-
teger Programming (MIP) based Model Predictive Control (MPC) in [4]. For the
distributed MPC version, the implementation of these concepts leads to challenging
open questions, as for example how to make use of reachable set calculation for MIP
enhancement or how to efficiently decompose the feasible regions.
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