
Chapter 12
Distributed Optimization for MPC
of Linear Dynamic Networks

E. Camponogara

Abstract This chapter presents existing models and distributed optimization
algorithms for model predictive control (MPC) of linear dynamic networks (LDNs).
The models consist of networks of subsystems with deterministic and uncertain
dynamics subject to local and coupling constraints on the control and output signals.
The distributed optimization algorithms are based on gradient-projection, subgra-
dient, interior-point, and dual strategies that depend on the nature of the couplings
and constraints of the underlying networks. The focus will be on a class of LDNs in
which the dynamics of the subsystems are influenced by the control signals of the
upstream subsystems with constraints on state and control variables. A distributed
gradient-based algorithm is presented for implementing an interior-point method
distributively with a network of agents, one for each subsystem.

12.1 Introduction

Dynamic networks are systems of subsystems that can model large, geographically
distributed systems such as urban traffic networks, sewage systems, and petrochem-
ical plants. A dynamic network (DN) consists of a graph whose nodes represent
dynamic subsystems, each characterized by a local state that evolves dynamically
depending on its control signals and the signals from other subsystems. When the dif-
ferential equations governing the dynamics of the subsystems are linear the network
is called linear dynamic network (LDN).

In [3] a distributed model predictive control (DMPC) framework was developed
for operating LDNs in which the dynamics of the subsystems depend on their local
control signals and state, but only on the control inputs of the upstream subsystems
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while being subject to constraints on local controls. This work was extended by
accounting for uncertainties in the dynamic models and by proposing a distributed
subgradient optimization algorithm for implementing DMPC [4]. In [5] constraints
on the state variables are admitted which induce algebraic couplings between sub-
systems in addition to the dynamic interconnections. Distributed algorithms based
on the dual strategy [10] and the interior-point method [5] have been proposed in the
literature for handling such algebraic couplings. The focus of this chapter is on the
latter strategy.

A number of other distributed optimization strategies have also appeared in the
literature. In [11] the solution of optimization problems within a distributed model
predictive control framework is addressed, whereby Lagrangian duality is applied to
handle coupling variables among neighboring agents. In [14] a cooperation-based
iterative process was developed for optimization and control of linear systems with
constrains on local control signals. In [15] distributed primal-dual subgradient algo-
rithms are developed for general convex optimization with multi-agent systems,
considering global objectives and constraints.

This chapter is organized as follows. Section 12.2 introduces three classes of linear
dynamic networks with focus on LDNs with coupling state constraints. Section 12.3
presents a distributed optimization algorithm for solving quadratic programs that
arise from the model predictive control (MPC) of LDNs with state constraints.
Section 12.4 briefly discusses some applications of distributed MPC on LDNs.

12.2 Linear Dynamic Networks

A dynamic network consists of a directed graph with nodes modeling dynamic sub-
systems and arcs representing the direct influence between the subsystems. Dynamic
networks can serve as models for geographically distributed systems such as urban
traffic networks, electric power systems, and water pipelines. The structure of a DN
is represented by a coupling graph G = (N , E) with N = {1, . . . , n} being the set
of nodes and E ⊆ N × N being the set of arcs.

Each node i ∈ N is characterized by a local state vector xi of dimension nxi

and a local control-input vector ui of dimension nui . The state xi of subsystem i
evolves dynamically depending on the local state and controls and also on the state
and controls of its input neighborhood I(i) = { j : ( j, i) ∈ E} ∪ {i}.

To illustrate these concepts consider the small urban traffic network and the corre-
sponding coupling graph depicted in Fig. 12.1. In this dynamic system the subsystems
correspond to intersections, the state of an intersection consists of the number of vehi-
cles in the roads leading to it, and the control signals are the green times assigned to
each stage which is assumed to be one for each state for simplicity. For instance, the
state of subsystem 3 is x3 = [x3,1 x3,4]T and its control vector is u3 = [u3,1 u3,4]T.
The input neighborhood of this subsystem is I(3) = {1, 3, 4}. In such traffic systems,
the discharge of queues at the upstream subsystems becomes the arrival of vehicles
in the roads that correspond to the state of subsystem 3.
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(a)

(b)

Fig. 12.1 Dynamic network of an urban traffic system. a Urban traffic system with 8 intersections.
b Graph of the linear dynamic network

The potential to represent actual systems and the complexity of the control strategy
will depend greatly on the nature of the differential equations governing the dynamics
of the nodes, which in general are given by:

xi (k + 1) = Fi (xI
i (k), uI

i (k)). (12.1)

where xI
i = [xT

j : j ∈ I(i)]T and uI
i = [uT

j : j ∈ I(i)]T are vectors collecting
all of the states and control inputs influencing the state of subsystem i , respectively.
Previous works have developed optimization and control frameworks assuming spe-
cialized structures for the dynamic equation (12.1) and constraints. Frameworks for
three general classes of dynamic networks are presented below.

1. Dynamic dependency on upstream control signals, subject to constraints on local
control signals
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A first work on dynamic networks was inspired by the store-and-forward mod-
eling of urban traffic flow [9]. Traffic flow can be modeled with linear dynamic
equations depending on the control signals from the input neighborhood and
local state, being expressed for a subsystem i ∈ N as:

xi (k + 1) = Ai xi (k) +
∑

j∈I(i)

Bi, j u j (k) (12.2)

where Ai ∈ R
nxi ×nxi and Bi, j ∈ R

nxi ×nu j are matrices of suitable dimensions.
For the particular case of traffic flow modeling with store-and-forward, the matrix
Ai is the identity while the Bi, j matrices model the discharges from and arrivals in
the vehicle queues defining the state of intersection i . Considering intersection
3 the store-and-forward approach defines these matrices in terms of physical
characteristics of the traffic network as:

B3,1 = T3

[
ρ3,1,∅1 · S1,∅1

C1
ρ3,1,∅2 · S1,∅2

C1
ρ3,1,∅3 · S1,∅3

C1

0 0 0

]
,

B3,3 = T3

[
− S3,1

C3
0

0 − S3,4
C3

]
,

B3,4 = T3

[
0 0

ρ3,4,∅1 · S4,∅1
C4

ρ3,4,∅2 · S4,∅2
C4

]

where T3 is the sample time (in seconds), Si, j is the saturation flow on the
link/road from intersection j to i (in vehicles per second), ρm,i, j is the rate at
which vehicles from link j to i enter link i to m, and Ci (in seconds) is the cycle
time of junction i with a cycle being composed by a cyclic sequence of stages
which are specific traffic light configurations.
This class of systems is referred to as linear dynamic networks (LDNs) in view
of the nature of linear dynamics. The controls of any subsystem i can be subject
to linear constraints in the form:

Di ui (k) ≤ di , (12.3a)

Ei ui (k) = ei . (12.3b)

In the case of the traffic system these constraints are used to force the green times
to add up to cycle time and impose bounds on these control signals.
A distributed MPC framework based on gradient projection [1] was developed
for controlling the LDN with a network of agents, one for each subsystem, which
minimizes a quadratic cost function on states and control inputs:



12 Distributed Optimization for MPC of Linear Dynamic Networks 197

J = min
∑

i∈N

Np∑

k=1

1

2
xi (k)TQi xi (k) +

∑

i∈N

Nc−1∑

k=0

1

2
ui (k)TRi ui (k). (12.4)

Following a synchronization protocol that allows only uncoupled agents to iterate
simultaneously, the gradient-projection algorithm was shown to converge to an
optimal solution to the quadratic program of centralized MPC [3].

2 Dynamic dependency on upstream control signals with uncertainty, subject to
constraints on local control signals
The previous class of LDNs was recently generalized to consider uncertainty on
the dynamic equations:

xi (k + 1) = Ai (k)xi (k) +
∑

j∈I(i)

Bi, j (k)u j (k) (12.5)

where (Ai (k), Bi, j (k) : j ∈ I(i)) ∈ �i with �i being a set of possible dynamic
realizations of subsystem i . For an urban traffic network, �i can model uncertain-
ties related to the conversion rates and traffic patterns. The LDN is also subject
to linear constraints of the form of Eq. (12.3) imposed on the control signals.
A robust MPC strategy would hedge against the worst-case scenario by optimiz-
ing the objective:

J = min
∑

i∈N
max

⎧
⎨

⎩

Np∑

k=1

1

2
xi (k|ωωω)TQi xi (k|ωωω)

+
Nc−1∑

k=0

1

2
ui (k)TRi ui (k) : ωωω ∈ �i (Np)

}
(12.6)

where �i (Np) is the set of all possible dynamic trajectories for subsystem i
during a horizon of length Np, ωωω is a particular trajectory, and xi (k|ωωω) is the
predicted state at time tk assuming a dynamic trajectory ωωω.
Because the objective function to be minimized in (12.6) is nondifferentiable,
derivative-based approaches such as gradient projection could not be directly
applied. Thus a distributed subgradient algorithm was developed for solving the
optimization problem with a network of distributed agents [4]. The algorithm and
synchronization protocol are similar to the ones developed for the differentiable
case, differing in the iterative process followed by the agents which implement
projections onto the feasible space of iterates produced by taking steps along the
subgradient. This distributed algorithm was also shown to produce a sequence
of iterates converging to the optimum.

3. Dynamic dependency on upstream states and control signals, subject to con-
straints on local states and control signals
The above LDN models were extended to allow constraints on state variables.
These constraints introduce hard couplings among the subsystems and the control
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agents, thereby rendering distributed MPC more challenging. The gradient and
subgradient projection strategies will fail to converge to the optimal solution in
the presence of such constraints. In this generalized class of LDNs the state of
a subsystem i depends on the state of its upstream subsystem, leading to the
following dynamic equation:

xi (k + 1) =
∑

j∈I(i)

(
Ai, j x j (k) + Bi, j u j (k)

)
. (12.7)

Each subsystem i is also subject to constraints on state and control variables:

Ci xi (k) ≤ ci , (12.8a)

Di ui (k) ≤ di , (12.8b)

Ei ui (k) = ei . (12.8c)

In the application to urban traffic networks the constraint (12.8a) can be used to limit
the number of vehicles in each road link, while the remaining ones enforce bounds
on the green-time signals and cycle time.

Because xi is now a function of xI
i , the state constraint (12.8a) is directly affected

by all the agents that belong to the input neighborhood of subsystem i . The objec-
tive function for this LDN is identical to objective (12.4). In [5], a distributed MPC
framework was proposed to control such LDNs whereby a network of agents imple-
ments an interior-point method, solving a sequence of unconstrained approximation
problems with a distributed gradient-descent algorithm.

From now on the focus of this chapter is on this class of LDNs for being a gener-
alization of the others. Actually, the nondifferentiable objective function (12.6) can
be represented by a system of inequalities and thereby handled by a straightforward
extension of the inequalities (12.8). The following section presents a distributed opti-
mization framework for solving the MPC optimization problem with a network of
agents, thereby implementing a distributed MPC strategy for this class of LDNs.

12.3 Distributed Optimization Framework

This section presents a distributed optimization algorithm for the class of LDNs in
which constraints are imposed on the state of the subsystems. To keep the presentation
simple but without losing generality, the states are assumed to be independent of the
state of the upstream subsystems, namely:

xi (k + 1) = Ai xi (k) +
∑

j∈I(i)

Bi, j u j (k). (12.9)
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Given the state of subsystem i at time tk and the future control signals from the
input neighborhood, the state at time tk+l can be anticipated as

xi (k + l) = Al
i xi (k) +

l∑

t=1

∑

j∈I(i)

Al−1
i Bi, j u j (k + l − t). (12.10)

This means that the future states of subsystem i depend on the input neighborhood
regardless of the length of the prediction horizon. However, the predictions for the
state of subsystem i will depend on subsystems that are farther away from the input
neighborhood, extending outwards as the prediction horizon increases, when the
subsystem state evolves according to Eq. (12.7) rather (12.9). For further details the
reader can refer to [5].

The concern here is on the distributed solution at time tk of the following MPC
optimization problem for linear dynamic networks:

P(k) : min
∑

i∈N

k+Np∑

l=k+1

1

2
xi (l)

TQi xi (l) +
∑

i∈N

k+Nc−1∑

l=k

ui (l)
TRi ui (l) (12.11a)

s.t. : for i ∈ N , l = k, . . . , k + Np − 1 :
xi (l + 1) = Ai xi (l) +

∑

j∈I(i)

Bi, j u j (l), (12.11b)

Ci xi (l + 1) ≤ ci , (12.11c)

Di ui (l) ≤ di , (12.11d)

Ei ui (l) = ei (12.11e)

where the prediction and control horizons have the same length for convenience of
mathematical development, i.e. Np = Nc. The MPC strategy solves P(k) at each
sample time tk , implementing only the control signals ui (k) for the time interval
[tk, tk+1]. Then the horizon is rolled forward at the next sample time, P(k + 1) is
instantiated from time tk+1 until tk+Np+1, and the process is repeated.

Let ũi (k) = [ui (k + l)T : l = 0, . . . , Nc − 1]T be the vector with the control
predictions for subsystem i . Using Eq. (12.10) to express subsystem states as a func-
tion of control signals, the MPC optimization problem can be recast in terms of the
control signals and the current state as follows:

P(k) : min
1

2

∑

i∈N

∑

j∈I(i)

∑

l∈I(i)

ũ j (k)TH̃i, j,l ũl(k)

+
∑

i∈N

∑

j∈I(i)

g̃i, j (k)Tũ j (k) +
∑

i∈N
c̃i (k) (12.12a)

s.t. : for all i ∈ N :
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C̃i

⎛

⎝Ãi xi (k) +
∑

j∈I(i)

B̃i, j ũ j (k)

⎞

⎠ ≤ c̃i , (12.12b)

D̃i ũi (k) ≤ d̃i , (12.12c)

Ẽi ũi (k) = ẽi . (12.12d)

where H̃i, j,l , Ãi , and B̃i, j are constant matrices, g̃i, j (k) is a constant vector, and
c̃i (k) is a constant obtained from the structure of the LDN and problem P(k) defined
in Eq. (12.11). The terms g̃i, j (k) and c̃i (k) are functions of k because they depend
on the initial state xi (k) of the subsystems. Detailed procedures for computing these
parameters are found in [3, 5]. Further, C̃i , D̃i , and Ẽi are block diagonal matrices
whose blocks are Ci , Di , and Ei respectively, and c̃i , d̃i , and ẽi are vectors with
stacked copies of ci , di , and ei respectively.

Problem P(k) is further simplified by explicitly removing the linear dependen-
cies induced by Eq. (12.12d). Let ũ†

i be any solution for the system of linear equa-
tions (12.12d) and let �(Ẽi ) be a basis for the null space of Ẽi . Then, replacing ũi (k)

with ũ†
i + �(Ẽi )̂ui (k) produces the following equivalent form of the problem:

P(k) : min
1

2

∑

i∈N

∑

j∈I(i)

∑

l∈I(i)

û j (k)TĤi, j,l ûl(k)

+
∑

i∈N

∑

j∈I(i)

ĝi, j (k)Tû j (k) +
∑

i∈N
ĉi (k) (12.13a)

s.t. : for all i ∈ N :
∑

j∈I(i)

B̂i, j û j (k) ≤ ĉi (k), (12.13b)

D̂i ûi (k) ≤ d̂i . (12.13c)

where the matrices Ĥi, j,l , B̂i, j , and D̂i , vectors ĝi, j (k), ĉi (k), and d̂i , and constants
ĉi (k) are easily obtained. In particular, Ĥi, j,l = �(Ẽi )

TH̃i, j,l�(Ẽi ). The design of
algorithms will be simplified by casting P(k) in the form:

P(k) : min f (̂u(k)) (12.14a)

s.t. : hi (̂u(k)) ≤ 0, i ∈ H, (12.14b)

where û(k) = [̂ui (k)T : i ∈ N ]T is the vector with the control variables, f :
R

n̂ → R defines the objective, and hi : R
n̂ → R, i ∈ H, define the constraints

given by (12.13b)–(12.13c) with n̂ being the dimension of û. Actually, f (̂u) =
1
2 û(k)TĤû(k) + ĝTû(k) + ĉ for suitable Ĥ, ĝ, and ĉ, and hi = âT

i û(k) − b̂i for
suitable âi and b̂i , i ∈ H. Notice that Ĥ � 0. The feasible set is � = {̂u(k) :
hi (̂u(k)) ≤ 0, i ∈ H}, whereas the interior of the feasible set is �̄ = {̂u(k) :
hi (̂u(k)) < 0, i ∈ H}.
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12.3.1 Distributed Modeling

The distributed solution of P(k) starts with the decomposition into a set {Pi (k) : i ∈
N } of subproblems, {Pi (k)} for short. The proposed decomposition is carried out
based on the following definitions of relationships of agent i with agents controlling
other subsystems:

• O(i) = { j : i ∈ I( j)} is the output neighborhood which consists of the subsys-
tems that are affected by the decisions at subsystem i ;

• C(i) = { j : ∃ l 
= i, j, such that i, j ∈ I(l)} \ (I(i) ∪ O(i)) is the indirect
neighborhood which encompasses the subsystems j that do not influence nor are
influenced by subsystem i , but both affect some other subsystem l;

• N (i) = (I(i) ∪ O(i) ∪ C(i)) \ {i} is the neighborhood which comprises the
subsystems that are coupled with subsystem i .

In the linear network of Fig. 12.2, subsystem 4 has I(4) = {4}, O(4) = {3, 4, 5},
C(4) = {1}, and N (4) = {1, 3, 5}.

A decomposition {Pi (k)} is said to be perfect if each Pi (k) is obtained from
P(k) by dropping from the objective all of the terms, and discarding all of the con-
straints, that do not depend on ûi (k). Models and algorithms for obtaining approx-
imate decompositions are found in [6]. For a perfect decomposition, agent i’s view
of the dynamic network is divided in:

• local variables: the variables ûi (k) whose values are set by agent i ;
• neighborhood variables: the vector ŵi (k) = (̂u j (k) : j ∈ N (i)) of variables set

by the agents in the neighborhood;
• remote variables: the vector r̂i (k) = (̂u j (k) : j 
∈ N (i)∪{i}) with all of the other

variables.

Perfect decomposition allows for the decision variables of any agent i to be arranged
as û(k) = [̂ui (k)T ŵi (k)T r̂i (k)T]T and for subproblem Pi (k) to be cast in the form:

Pi (k, ŵi (k)) : min
ûi (k)

fi (̂ui (k), ŵi (k)) = 1

2
ûi (k)TĤi ûi (k) + ĝi (k)Tûi (k) + ĉi (k)

(12.15a)

s.t. :
∑

l∈I( j)

B̂ j,l ûl(k) ≤ ĉ j (k), j ∈ O(i), (12.15b)

D̂i ûi (k) ≤ d̂i , (12.15c)

where:

ĝi (k) =
∑

j∈O(i)

ĝ j,i (k) + 1

2

∑

j∈O(i)

∑

l∈I( j)\{i}
(ĤT

j,l,i + Ĥ j,i,l )̂ul(k), (12.16a)

Ĥi =
∑

j∈O(i)

Ĥ j,i,i . (12.16b)
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The development of a distributed algorithm for solving {Pi (k)} is simplified by
recasting Pi (k) in the following form:

Pi (k, ŵi (k)) : min
ûi (k)

fi (̂ui (k), ŵi (k)) (12.17a)

s.t. : h j (̂ui (k), ŵi (k)) ≤ 0, j ∈ Hi , (12.17b)

where Hi = { j ∈ H : h j is a function of ûi (k)}. Notice that h j does not depend
on r̂i (k) under a perfect problem decomposition for all j ∈ Hi . Further, h j is not a
function of ûi (k) for all j ∈ H \ Hi .

12.3.2 Distributed Algorithm

Iterative strategies in which an agent i reacts with a solution û(k+1)
i for Pi (k, ŵ(k)

i ) to

the decisions of its neighbors at iteration p, ŵ(k)
i , may lead to undesirable behavior

due to the coupling constraints given by Eq. (12.11c), as illustrated below.
Let h(k, ·) = [h1 · · · h p]T denote the vector function with all of the constraints in

P(k). Then, � = {̂u(k) : h(k, û(k)) ≤ 0} is the feasible set. A vector û(k)� ∈ � is a
fixed point for the subproblem set {Pi (k)} if and only if ûi (k)� is an optimal solution
to Pi (k, ŵi (k)�) for each i ∈ N . Without constraints coupling the subsystems,
û(k)� is a fixed point for {Pi (k)} if and only if û(k)� satisfies first-order optimality
conditions for P(k), which in turn imply that û(k)� is globally optimal for P(k) due
to convexity [3]. The solving process of {Pi (k)} can be thought of as a dynamic game
with agents reacting to one another’s decisions so as to improve their payoff [7].

However, the equivalence between a fixed point of {Pi (k)} and an optimal solution
to P(k) does not hold in the presence of coupling constraints. As an illustration,
consider the quadratic program:

P : min f (u1, u2) = 1

2
u2

1 − u1u2 + u2
2 − 4u2

s.t. : − u1 + 2u2 ≤ 2, 1 ≤ u1 ≤ 7, u2 ≥ 1

2
.

The solution of Pi over the decision variable ui while holding u(i mod 2)+1 fixed is
a process defined by the reaction function ri of the agents as follows:

r1(u2) = arg min
u1

{1

2
u2

1 − u1u2 : −u1 + 2u2 ≤ 2, 1 ≤ u1 ≤ 7}

r2(u1) = arg min
u2

{u2
2 − u1u2 − 4u2 : −u1 + 2u2 ≤ 2, u2 ≥ 1

2
}

Starting from an initial point u(0) the iterative process following the serial protocol
yields a sequence of iterates {u(p)} defined by:
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u
1

u 2

UNCONSTRAINED OPTIMAL

OPTIMAL
FIXED POINTS

AGENT TRAJECTORY

CENTRAL PATH

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Fig. 12.2 Illustration of iterative processes based on the reactive functions and the interior-point
method (extracted from [5]).

u(p)
1 =

{
r1(u

(p−1)
2 ) if p is odd

u(p−1)
1 if p is even

u(p)
2 =

{
u(p−1)

2 if p is odd

r2(u
(p−1)
1 ) if p is even

Figure 12.2 shows the contour curves of f , the feasible region, and the set of fixed
points. The trajectory u(p) = [u(p)

1 u(p)
2 ]T traced by the agents when they start from

[u(0)
1 u(0)

2 ]T = [3 1]T is also shown, which converges to the fixed point u = [2 2]T.
Actually, all the points in the line segment {(u1, (2 + u1)/2) : 2 ≤ u1 ≤ 7} are fixed
points for P1(u2) and P2(u1). The figure also depicts the trajectory followed by
agents that implement an interior-point strategy converging to the optimal solution
u� = [4 3]T. This trajectory is known as central path.

The algorithmic solution presented here relies on an interior-point method to
approximate problem P(k) given in Eq. (12.14) with an unconstrained problem to
which gradient descent is applied [2]. The approximation accounts for the constraints
with a logarithmic barrier function:

φ(̂u(k)) = −
∑

i∈H
log(−hi (̂u(k))) (12.18)

which is real-valued within the interior set �̄ but tends to infinity as the solution û(k)

is drawn towards the boundary of any constraint.
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Algorithm 12.1 Barrier method for solving P(k)

1: Input: strictly feasible û(k)s, initial ε(k)(0), decrease rate μ < 1, tolerance τ ;
2: Initialize: l := −1;
3: Repeat

a. l := l + 1;
b. Centering step: obtain û(k)(l) by solving P(k, ε(k)(l)) with initial solution û(k)s;
c. If ε(k)(l) > τ/|H| then

i. û(k)s := û(k)(l);
ii. ε(k)(l+1) := με(k)(l);

4: Until ε(k)(l) ≤ τ/|H|;
5: Output: û(k)(l);

The approximation problem is called centering problem being defined as:

P(k, ε) : min
û(k) ∈ dom θ

θ(̂u(k)) = f (̂u(k)) + εφ(̂u(k)) (12.19)

where dom θ = �̄ and the parameter ε > 0 sets the accuracy of the approximation.
The barrier method solves P(k, ε(k)(l)) for a decreasing sequence {ε(k)(l)}∞l=0. The
solution û(k, ε(k)(l)) to the centering problem P(k, ε(k)(l)) is drawn towards the
optimal solution û(k)� to P(k) as ε(k)(l) tends to 0. The barrier method is described
in Algorithm 12.1.

A strictly feasible solution û(k)s can be obtained by solving the auxiliary convex
program [2]:

P(k)s : min
∑

i∈H
si (12.20a)

s.t. : hi (̂u(k)s) ≤ si , i ∈ H, (12.20b)

si ≥ 0, i ∈ H. (12.20c)

The distributed optimization strategy aims at solving the centering problem
P(k, ε) with the agent network. The agent of a subsystem i will sense the local
state variables xi and decide upon the control signals ui . Communication among
agents will ensure a perfect decomposition of the centering problem whereby each
agent i solves, given the neighborhood variables ŵi (k), the centering subproblem:

Pi (k, ε, ŵi (k)) : min
ûi (k) ∈ dom θi

θi (̂ui (k)) = fi (̂ui (k), ŵi (k)) + εφi (̂ui (k), ŵi (k))

(12.21)
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where:

φi (̂ui (k), ŵi (k)) = −
∑

j∈Hi

log(−h j (̂ui (k), ŵi (k))) (12.22)

is the logarithmic barrier for the constraints depending on ûi . Assuming fixed neigh-
borhood variables any converging algorithm could be applied by agent i to solve
Pi (k, ε, ŵi (k)). Instead, a simple gradient-descent strategy is suggested to yield the
optimal solution to P(k, ε) provided that the agents coordinate their iterations. This
descent strategy does not require any agent i to optimally solve Pi (k, ε, ŵi (k)), only
a sufficient decrease on the objective is needed.

Given (̂ui (k)(l,p), ŵi (k)(l,p)), agent i yields the next iterate ûi (k)(l,p+1) by taking
a step si (k)(l,p) > 0 in the gradient descent direction −∇θi (̂ui (k)(l,p)):

ûi (k)(l,p+1) = ûi (k)(l,p) − si (k)(l,p)∇θi (̂ui (k)(l,p)). (12.23)

The iterations of the barrier method given by counter l are called outer iterations,
whereas the iterations of the distributed gradient-descent method given by counter
p are called inner iterations. Notice that for each outer iteration l there is a series of
inner iterations l being denoted by (l, p). The distributed descent strategy is detailed
in Algorithm 12.2 which is followed by the agent network to solve {Pi (k, ε(k)(l))}
in place of P(k, ε(k)(l)). The algorithm requires that at least one agent of maximum
descent works in each iteration, with the set of agents of maximum descent being:

N (k)(l,p) = {i ∈ N : ‖∇θi (̂ui (k)(l,p))‖ = max
j∈N

‖∇θ j (̂u j (k)(l,p))‖}.

The use of Newton’s direction −∇2θi (̂ui (k)(l,p))−1∇θi (̂ui (k)(l,p)), multiple
backtracking iterations, and off-the-shelf solvers are discussed in [5]. The distributed
identification of a set V(k)(l,p) containing at least one agent of maximum descent
can be performed by defining an agent cycle A = 〈A0,A1, . . . ,AK−1〉 such that
∪K−1

k=0 Ak = N , and i and j are nonneighbors for all i, j ∈ Ak .
Then, a message-exchange protocol can be implemented to follow the sequence

〈A0,A1, . . . ,AK−1,A0,A1, . . . ,AK−1, . . .〉, skipping sets until findingV(k)(l,p) =
At such that At ∩ N (k)(l,p) 
= ∅. In essence, each agent i ∈ Al would send a mes-
sage with a token to all the agents in A(l+1) mod K , which would be blocked waiting
for the tokens.

Distributed detection of global convergence can be achieved by keeping track
of the number of past iterations that all of the preceding agents have converged
with respect to their problems. Besides state and control information, each agent
i receives from a neighbor j ∈ N (i) a parameter t j such that: t j = 0 if agent j
changed its control decisions in the latest iteration; otherwise t j = min{tl : l ∈
N ( j)} + 1. So, if agent j changes its decisions, it will define t j = 0 and pass this
value to its neighbors when they request its state and control variables, otherwise
t j = min{tl : l ∈ N ( j)} + 1. If in any iteration (l, p), an agent i ∈ V(k)(l,p) detects
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Algorithm 12.2 Distributed gradient descent algorithm for solving P(k, ε(k)(l))

1: Input: strictly feasible û(k)(l), barrier parameter ε(k)(l), backtracking parameters α ∈ (0, 1/2) and
β ∈ (0, 1), and tolerance τ ;

2: Initialize: p := 0; û(k)(l,0) := û(k)(l);
3: While ‖∇θ(̂u(k)(l,p))‖ > τ do

a. Let V(k)(l,p) ⊆ N be a subset of non-neighboring agents such that V(k)(l,p) ∩ N (k)(l,p) 
= ∅;
b. For each i ∈ V(k)(l,p) in parallel do

i. Obtain ŵi (k)(l,p) from the neighborhood N (i) ;
ii. si (k)(l,p) := 1;

iii. While θi (̂ui (k)(l,p)−si (k)(l,p)∇θi (̂ui (k)(l,p)))>θi (̂ui (k)(l,p))−αsi (k)(l,p)‖∇θi (̂ui (k)(l,p))‖2

do

si (k)(l,p) := βsi (k)(l,p);
iv. ûi (k)(l,p+1) := ûi (k)(l,p) − si (k)(l,p)∇θi (̂ui (k)(l,p));

c. For each i ∈ N \ V(k)(l,p) in parallel do

ûi (k)(l,p+1) := ûi (k)(l,p);

d. p := p + 1;

4: Output: û(k)(l,p);

that min{tl : l ∈ N (i)} ≥ K , then global convergence has been achieved assuming
that the LDN is a connected graph. This agent i can broadcast a message to all the
others or let them detect convergence on their own.

12.3.3 Theoretical Results

In [5], it was shown that the iterates {̂u(k)(l,p)}∞p=0 produced by the distributed

gradient-descent algorithm converge to the solution û(k)(l) to the centering problem
P(k, ε(k)(l)). The convergence is a consequence of the assumptions stated below
which are satisfied by Algorithm 12.2.

Assumption 12.1 (Synchronous Work) If agent i updates its variables in iteration
p, then:

1. agent i uses ŵi (k) = ŵi (k)(l,p) and follows the descent method to obtain an
approximate solution ûi (k)(l,p+1) to Pi (k, ε(k)(l), ŵi (k));

2. ûi (k)(l,p) is not an optimal solution to Pi (k, ε(k)(l), ŵi (k)) since otherwise the
agent does not yield any improvement; and

3. each neighbor of agent i does not iterate, meaning that û j (k)(l,p+1) = û j (k)(l,p)

for all j ∈ N (i).

Notice that condition 1 of the Assumption 12.1 is met by the algorithm since
the agents i ∈ V(k)(l,p) request ŵi (k)(l,p) from their neighbors, condition 2 can be
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satisfied by agents that are not locally optimal, and condition 3 is satisfied by the
agents i ∈ N \ V(k)(l,p) which do not iterate.

Assumption 12.2 (Continuous and Maximum Work) If û(k)(l,p) is not optimal to
P(k, ε(k)(l)) at outer iteration l, then any agent i(k, l, p) ∈ N (k)(l,p) performs
a backtracking line search, starting at ûi(k,l,p)(k)(l,p), to produce its next solution
ûi(k,l,p)(k)(l,p+1).

This assumption is ensured by Algorithm 12.2 at the step that defines the set
V(k)(l,p) of the agents that iterate.

Assumption 12.3 The objective function θ(̂u(k)) of the centering problem P(k, ε)
is strongly convex.

With strong convexity of θ(̂u(k)) the convergence of Algorithm 12.2 is established
as stated below. Actually the rate of convergence can be determined in terms of bounds
induced by strong convexity.

Theorem 12.1 Under Assumptions 12.1, 12.2, and 12.3, the distributed gradient-
descent algorithm yields a sequence {̂u(k)(l,p)}∞p=0 of iterates converging to the

optimal solution û(k)(l) to the centering problem P(k, ε(k)(l)) using exact or back-
tracking line search.

12.4 Applications

Although distributed MPC has been applied to operate and control several distributed
dynamic systems, here a reference is made only to the ones closely related to the
control of linear dynamic networks. In [8] the green-time control of urban traffic
networks was modeled as the MPC of an LDN with constraints on the control signals.
Distributed optimization was carried out using a gradient-projection strategy. In [5]
this work was extended to incorporate road capacity by introducing constraints on
state variables. A simulation study was performed in the network of the city of
Macaé (north of Rio de Janeiro) consisting of 15 junctions and 28 road links [13].
The quadratic programs for MPC were solved using the interior-point strategy and
the distributed gradient-descent algorithm. In [12] the dynamic models for LDNs
were expressed using transfer functions and the constraints were imposed on the
control inputs and output signals. The resulting distributed transfer-function MPC
approach was applied to the control of a distillation column.
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