
Chapter 10
Rate Analysis of Inexact Dual Fast Gradient
Method for Distributed MPC

I. Necoara

Abstract In this chapter we propose a dual decomposition method based on inexact
dual gradient information and constraint tightening for solving distributed model
predictive control (MPC) problems for network systems with state-input constraints.
The coupling constraints are tightened and moved in the cost using the Lagrange
multipliers. The dual problem is solved by a fast gradient method based on approx-
imate gradients for which we prove sublinear rate of convergence. We also provide
estimates on the primal and dual suboptimality of the generated approximate primal
and dual solutions and we show that primal feasibility is ensured by our method. Our
analysis relies on the Lipschitz property of the dual MPC function and inexact dual
gradients. We obtain a distributed control strategy that has the following features:
state and input constraints are satisfied, stability of the plant is guaranteed, whilst the
number of iterations for the suboptimal solution can be precisely determined.

10.1 Introduction

Different problems from control and estimation can be addressed within the frame-
work of network systems [11]. In particular, model predictive control (MPC) has
become a popular advanced control technology implemented in network systems
due to its ability to handle hard input and state constraints. Network systems are
complex and large in dimension, whose structure may be hierarchical, multistage or
dynamical and they have multiple decision-makers.

Decomposition methods represent a very powerful tool for solving distributed con-
trol and estimation problems in network systems. The basic idea of these methods
is to decompose the original large optimization problem into smaller subproblems.
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Decomposition methods can be divided in two main classes: primal decomposition
and dual decomposition methods. In primal decomposition the optimization prob-
lem is solved using the original formulation and variables and the complicating
constraints are handled via methods such as feasible directions, Gauss-Jacobi type
and others [3, 6, 10, 11, 20]. In dual decomposition the original problem is rewritten
using Lagrangian relaxation for the complicating constraints and the dual problem
is solved with a Newton or (sub)gradient algorithm [1, 2, 5, 11, 12, 14, 18]. Dual
decomposition methods based on subgradient iteration and averaging, that produce
primal solutions in the limit, can be found in [7, 9]. Converge rate analysis for the
dual subgradient method has been studied e.g. in [13], where the authors provide
estimates of order O(1/

√
k) for the approximate solutions and for feasibility viola-

tion. Thus, an important drawback of the dual decomposition methods consists of the
fact that feasibility of the primal variables can be ensured only at optimality, which
is usually impossible to attain in practice. However, in many applications, e.g. from
control and estimation, the constraints can represent different requirements due to
physical limitations of actuators, safety limits and operating conditions of the con-
trolled plant. Therefore, any control or estimation scheme must ensure feasibility.
Thus, we are interested in developing dual optimization algorithms which satisfy the
requirement of feasibility.

One way to ensure feasibility of the primal variables in distributed MPC is through
constraint tightening [5, 8, 17], or through distributed implementations of some clas-
sical methods, such as the method of feasible directions, Gauss-Jacobi type and others
[3, 6, 20]. In [5] a dual distributed algorithm based on constraint tightening is pre-
sented for solving MPC problems for systems with coupled dynamics. The authors
prove the convergence of the algorithm using the analysis of the dual subgradient
method from [13], which has very slow convergence. In [8] the authors propose a
decentralized MPC algorithm that uses the constraint tightening technique to achieve
robustness while guaranteeing robust feasibility of the entire system. In [20] a coop-
erative based distributed MPC algorithm is proposed that converges to the centralized
solution. In [3] a distributed algorithm based on the method of feasible directions
is proposed that also converges to the centralized solution and guarantees primal
feasibility. While most of the work cited above focuses on a primal approach, our
work develops dual methods that ensure constraint feasibility, tackles more complex
constraints and provides better estimates on suboptimality.

The main contribution in this chapter is to provide a novel distributed algorithm
based on dual decomposition and constraint tightening for solving constrained MPC
problems in network systems. The algorithm has better convergence rates than the
algorithms in [5, 13] due to the fact that we exploit the Lipschitz property of the
gradient of the dual MPC function. Further, we solve the inner problems only up
to a certain accuracy by means of a parallel coordinate descent method that has
linear rate of convergence. Even if we use inexact information of the gradient of the
dual tightened function, after a finite number of iterations we are able to provide
a primal feasible solution for our original MPC problem using averaging. We also
derive estimates on dual and primal suboptimality of the generated approximate
solutions for our MPC problem. Finally, we obtain a distributed MPC scheme that
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has the following features: state and input constraints are satisfied, stability of the
plant is guaranteed, whilst the number of iterations for the suboptimal solution can
be precisely determined.

The chapter is organized as follows. In Sect. 10.2 we introduce the MPC problem
for network systems with state-input constraints. In Sect. 10.3 we develop an inexact
dual fast gradient scheme for solving a tightened MPC problem and analyze its
convergence. Section 10.4 shows how we can perform distributed computations in
the MPC scheme. Its efficiency is demonstrated on a four-tank plant in Sect. 10.5.

Notation: For u, v ∈ R
n we denote the standard Euclidean inner product 〈u, v〉 =∑n

i=1 uivi , the Euclidean norm ‖u‖ = √〈u, u〉 and the projection onto R
n+ as [u]+.

10.2 Distributed MPC for Network Systems

Many applications from control and estimation theory can be posed in the framework
of optimization problem (10.6), e.g. the MPC problem for interconnected subsystems.
We consider network systems which are comprised of M interconnected subsystems,
whose dynamics are defined as:

xi (k + 1) =
∑

j∈N i

Ai j x j (k)+ Bi j u j (k), (10.1)

where xi (k) ∈ R
nxi and ui (k) ∈ R

nui represent the state and the input of i th sub-
system at time k, Ai j ∈ R

nxi×nx j and Bi j ∈ R
nxi×nu j and N i denotes the neighbors

of the i th subsystem including i . In a particular case frequently found in literature
[12, 20] the influence between neighboring subsystems is given only in terms of
inputs:

xi (k + 1) = Aii xi (k)+
∑

j∈N i

Bi j u j (k). (10.2)

We also impose local state and input constraints:

xi (k) ∈ Xi , ui (k) ∈ Ui ∀i = 1, · · · , M , k ≥ 0, (10.3)

where Xi ⊆ R
nxi and Ui ⊆ R

nui are simple convex sets. For the systems (10.1)
or (10.2) and a prediction horizon of length Np, we consider a convex cost function

composed of a stage and a final cost for each subsystem i :
∑Np−1

l=0 �i (xi (l), ui (l))+
�f

i (xi (Np)). The centralized MPC problem for (10.1) for a given initial state x is
formulated as:
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J ∗(x) = min
xi (l)∈Xi , ui (l)∈Ui

M∑

i=1

Np−1∑

l=0

�i (xi (l), ui (l))+ �f
i (xi (Np)) (10.4)

s.t: xi (l + 1) =
∑

j∈N i

Ai j x j (l)+ Bi j u j (l), xi (0) = xi , xi (Np) ∈ X f
i ∀i,

where X f
i are terminal sets chosen under some appropriate conditions to ensure

stability of the MPC scheme (see e.g. [19]). For the input trajectory of subsystem i and
the overall input trajectory we use the notation (here ni = Npnui and n =∑M

i=1 ni ):

ui =
[
uT

i (0) · · · uT
i (Np − 1)

]T ∈ R
ni , u =

[
uT

1 · · · uT
M

]T ∈ R
n .

By eliminating the states from dynamics (10.1) and assuming that Xi and X f
i are

polyhedral sets for all i , problem (10.4) can be expressed as a large-scale convex
problem:

J ∗(x) = min
u1∈U1,··· ,uM∈UM

{J (x, u1, · · · , uM ) : Gu+ Ex + g ≤ 0} (10.5)

where the convex sets Ui are the Cartesian product of the sets Ui for Np times and
the inequalities Gu + Ex + g ≤ 0 are obtained by eliminating the states from the
constraints xi (l) ∈ Xi and xi (Np) ∈ X f

i for all l and i .

10.3 Solving the Dual MPC Problem Using an Inexact Fast
Gradient Method and Tightened Constraints

In this section we present briefly an optimization algorithm for solving distributively
the MPC problem (10.5). For brevity, we remove the dependence of the cost and
constraints in (10.5) on the initial state x and consider the smooth convex problem:

F∗ = min
u∈U
{F(u) : Gu+ g ≤ 0} , (10.6)

where F :Rn→R is a convex function, U ⊆ R
n is a convex set and G ∈ R

m×n, g ∈
R

m . We assume that projection on the set defined by the coupling constraints
(called also complicating constraints) Gu+ g ≤ 0 is hard to compute, but the
local constraints are in the form of a Cartesian product U = U1 × · · · × UM , with
Ui ⊆ R

ni being simple sets, i.e. the projection on these sets can be computed effi-
ciently (e.g. box sets or entire space R

ni ). We define the partition of identity matrix:
In = [E1 · · · EM ] ∈ R

n×n , where Ei ∈ R
n×ni for all i = 1, · · · , M . Thus, u can be

represented as: u = ∑M
i=1 Ei ui . We define the partial gradient of F at u, denoted

∇i F(u) ∈ R
ni , as: ∇i F(u) = (Ei )T∇F(u) for all i . For simplicity we use the short

notation: h(u) = Gu+ g. The following assumptions are considered in this paper:
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Assumption 10.1 (i) Function F is σF-strongly convex w.r.t ‖ · ‖.
(i i) The gradient of F is coordinate-wise Lipschitz continuous with constants

Li > 0, i.e: ‖∇i F(u+ Ei di )−∇i F(u)‖ ≤ Li ‖di‖ for all u ∈ R
n, di ∈ R

ni .

Assumption 10.2 Slater constraint qualification holds for (10.6), i.e. there exists
vector ũ ∈ U such that Gũ+ g < 0.

In dual decomposition, instead of minimizing the primal function F(u), one has
to maximize the dual function d(λ) = minu∈U L(u,λ), where L(u,λ) = F(u) +
〈λ, h(u)〉 denotes the partial Lagrangian w.r.t. the complicating constraints h(u) ≤ 0.
Since we assume the set U to be simple, any gradient or Newton based projection
method for solving the inner subproblems, for a given λ, has cheap iterations. More-
over, based on Assumption 10.1 (i) the dual function d(λ) has Lipschitz continuous
gradient with constant Ld = ‖G‖2/σF (see e.g. [15]). As a consequence of Assump-
tion 10.2, we also have that strong duality holds.

10.3.1 Tightening the Coupling Constraints

In many applications, e.g. the MPC problem from Sect. 10.2, the constraints may
represent different requirements on physical limitations of actuators, safety limits
and operating conditions of the controlled plant. Thus, ensuring the feasibility of
the primal variables in (10.6), i.e. u ∈ U and Gu + g ≤ 0, becomes a prerequisite.
However, dual decomposition methods can ensure these requirements only at opti-
mality, which is usually impossible to attain in practice. Therefore, in our approach,
instead of solving the original problem (10.6), we propose a first order optimization
algorithm based on dual decomposition for a tightened problem (see also [5] for a
similar approach where the tightened dual problem is solved using a subgradient
algorithm). We introduce the following tightened problem associated with original
problem (10.6):

F∗εc
= min

u∈U
{F(u) : Gu+ g + εce ≤ 0} , (10.7)

where e denotes the vector with all entries 1 and

0 ≤ εc < min{−(Gũ+ g)1, · · · ,−(Gũ + g)m}, (10.8)

where ũ is a Slater vector for (10.6) as in Assumption 10.2. Note that for this choice of
εc, we have that ũ is also a Slater vector for problem (10.7), so that Assumption 10.2
remains valid for this problem. Our goal is to solve the optimization problem (10.7)
using dual decomposition. In order to update the dual variables we use an inexact
dual fast gradient method. An important feature of our algorithm consists of the fact
that even if we use inexact information of the gradient of the dual function, we are
still able to compute a sequence of primal variables which, after a certain number of
outer iterations, become feasible and εout-optimal for our original problem (10.6).
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Recall that we use the short notation h(u) = Gu+g. We assume that projection on
Ui is simple but the projection on the set defined by the tightened coupling constraints
h(u)+ εce ≤ 0 is hard to compute. Therefore, we remove the tightened constraints
in the cost via Lagrange multipliers and define the dual function:

dεc(λ) = min
u∈U

Lεc(u,λ), (10.9)

where Lεc(u,λ) = F(u)+〈λ, h(u)+ εce〉. Further, the gradient of the dual function
dεc(λ) is Lipschitz continuous, with the same constant Ld as for the original dual
function for (10.6), and is given by [2, 15]: ∇dεc(λ) = h(u(λ)) + εce, where u(λ)

is the optimal solution of the inner problem:

u(λ) = arg min
u∈U

Lεc(u,λ). (10.10)

Under strong duality we have for the outer problem:

F∗εc
= max

λ≥0
dεc(λ). (10.11)

Remark 10.1 If Assumption 10.2 holds for (10.7) and F∗εc
is finite, then from [2] it

follows that the set of optimal Lagrange multipliers for the inequalities h(u)+ e ≤
0 is bounded. Therefore, problem (10.11) can be written equivalently as: F∗εc

=
maxλ∈Q dεc(λ), where

Q = {λ ∈ R
m : λ ≥ 0, ‖λ‖ ≤ R}, (10.12)

for some R > 0 such that λ∗ ∈ Q, where λ∗ denotes an optimal solution of (10.11).
�

Since we cannot usually solve the inner optimization problem (10.10) exactly, but
with some accuracy εin and obtaining an approximate solution ū(λ), we do not have
available an exact gradient of the dual function in λ, but only an approximation:

∇̄dεc(λ) = h(ū(λ))+ εce.

If we assume that ū(λ) is computed such that the following εin-optimality holds:

ū(λ) ∈ U, Lεc(ū(λ),λ)− Lεc(u(λ),λ) ≤ εin/2, (10.13)

then next lemma gives bounds for the dual function dεc(λ) (see Sect. 3.1 in [4]):

Lemma 10.1 [4] Let Assumptions 10.1 and 10.2 hold and for a given λ let ū(λ) be
computed as in (10.13). Then, the following inequalities are valid for all λ̃ ∈ R

m+:
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Algorithm 10.1 (IDFG)(λ0)

Given λ0 ∈ R
m+, for p ≥ 0 compute:

1: ūp ≈ arg min
u∈U

Lεc (u,λp) such that (10.13) holds

2: μp =
[
λp + 1

Ld
∇̄dεc (λ

p)
]+

and η p =
[
λ0 + 1

Ld

∑p
s=0

s+1
2 ∇̄dεc (λ

s)
]+

3: λp+1 = p+1
p+3 μp + 2

p+3 η p .

0 ≥ dεc(λ̃)− [Lεc(ū(λ),λ)+ 〈∇̄dεc(λ), λ̃− λ〉] ≥ −Ld‖λ̃− λ‖2 − εin. (10.14)

Our goal is to solve the dual problem (10.11) using a fast gradient scheme with
accuracy εout. We obtain such accuracy εout after pout iterations and after which
we construct a primal estimate ûpout . We want to guarantee for this estimate primal
feasibility and primal suboptimality of order εout for problem (10.6):

ûpout ∈ U, Gûpout + g ≤ 0 and F(ûpout)− F∗ ≤ O(εout).

10.3.2 Inexact Dual Fast Gradient Method for Solving
Outer Problem

In this section we discuss an inexact dual fast gradient scheme for updating λ. The
algorithm was proposed by Nesterov [15] and applied further in [12] for solving
dual problems with exact gradient information. The scheme defines three sequences
(λp,μp, η p)p≥0 for the dual variables, see Algorithm 10.1.

Based on Theorem 1 in [4], which is an extension of the results in [12, 15] to the
inexact case, we have the following result:

Lemma 10.2 [4, 12] If Assumptions 10.1 and 10.2 hold and sequences (ūp,λp,μp,

η p)p≥0 are generated by Algorithm 10.1, then for all p ≥ 0 we have:

(p+1)(p+2)

4
dεc(μ

p)≥max
λ≥0
−Ld‖λ−λ0‖2+

p∑

s=0

s+1

2

[
Lεc(ū

s,λs)+〈∇̄dεc(λ
s),λ−λs〉]

− (p + 1)(p + 2)(p + 3)

12
εin ∀λ ∈ R

m+. (10.15)

The next theorem provides estimates on the dual suboptimality of the generated
approximate dual solutions of (IDFG):

Theorem 10.1 Let Assumptions 10.1 and 10.2 hold and the sequences (ūp,λp,μp,

η p)p≥0 be generated by Algorithm 10.1 with λ0 = 0. Then, an estimate on dual
suboptimality for the original problem (10.6) is given by:
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F∗ − dεc(μ
p) ≤ 4Ld R2

(p + 1)2 +
p + 3

3
εin. (10.16)

Proof Using the first inequality from (10.14) in (10.15) we get:

(p + 1)(p + 2)

4
dεc(μ

p) ≥− Ld‖λ∗‖2 +
p∑

s=0

s + 1

2
dεc(λ

∗)− (p + 1)(p + 2)(p + 3)

12
εin.

Dividing now both sides of the previous inequality by (p+1)(p+2)
4 , using (10.12),

rearranging the terms and taking into account that dεc(λ
∗) = F∗εc

≥ F∗ and (p+1)2 ≤
(p+1)(p+2) we obtain (10.16). �

We are interested now in finding estimates on primal suboptimality and primal
infeasibility for our original problem (10.6). For this purpose we define the following
average sequence for the primal variables:

ūp =
p∑

s=0

2(s + 1)

(p + 1)(p + 2)
ūs . (10.17)

The next theorems give estimates on primal suboptimality and infeasibility, whose
proofs can be found in Appendix (Sect. 10.7).

Theorem 10.2 Assume the conditions from Theorem 10.1 hold and let ūp be given
by (10.17). Then, the following estimate on primal suboptimality for (10.6) can be
derived:

F(ūp)− F∗ ≤ √m Rεc + p + 3

3
εin. (10.18)

Theorem 10.3 Under the assumptions of Theorem 10.2, an estimate for primal

infeasibility is given by: if we define v(p, εin) =
8Ld R

(

1+
√

1+ (p+1)2(p+3)

12Ld R2 εin

)

(p+1)2 , then

‖[Gūp + g + εce]+‖ ≤ v(p, εin). (10.19)

Assume now that we fix the outer accuracy εout to a desired value such that:

εout ≤ 2
√

m R min
j=1,··· ,m{−(Gũ+ g) j },

where ũ is a Slater vector for (10.6) (see Assumption 10.2). We are now interested
in finding the number of outer iterations pout and a relation between εout, εin and εc
such that primal feasibility holds and primal suboptimality will be less than εout:

ûpout ∈ U, Gûpout + g ≤ 0 and F(ûpout)− F∗≤εout. (10.20)
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From (10.18), we can take for example:

εc = εout

2
√

m R
and εin = 3εout

2(pout + 3)
. (10.21)

Using Theorem 10.2 we see that for this choice of εc and εin we ensure the second
condition in (10.20), i.e. εout-optimality for original problem (10.6). To get primal
feasibility we impose the condition v(pout, εin) ≤ εc, from which we obtain e.g.

(pout + 1)2 ≥ 16
√

mLd R2

εout
and thus we can take:

pout =
⎢
⎢
⎢
⎣4R

√√
mLd

εout

⎥
⎥
⎥
⎦ .

It follows immediately that for this choice of εc, εin and pout the approximate
primal solution produced for our original problem (10.6) is feasible (i.e. ûpout ∈ U
and Gûpout + g ≤ 0) and εout-optimal (i.e. F(ûpout) − F∗ ≤ εout) and thus (10.20)
holds.

Note that all the results derived in this section hold also for λ0 �= 0, but in this
case the formulas are more cumbersome. Further, our results hold also in the case
when we solve the inner problems exactly, i.e. εin = 0 in (10.13), or when U = R

n ,
i.e. the inner problems are unconstrained.

10.3.3 Parallel Coordinate Descent Method for Solving
Inner Problem

In this section, due to space limitations, we present briefly a block-coordinate descent
algorithm which permits solving in parallel, for a fixed λp, the inner problem (10.9)
approximately: min

u1∈U1,··· ,uM∈UM
Lεc(u,λp). Based on Assumption 10.1 it follows that

Lεc(u,λ) = F(u)+ 〈λ, Gu+ g+ εce〉 is strongly convex and with coordinate-wise
Lipschitz continuous gradient in the first variable. Since the algorithm can be applied
to a larger class of problems, which also includes our problem (10.9), we consider
the more general problem:

f ∗ = min
u1∈U1,··· , uM∈U1

f (u), (10.22)

where f is convex and satisfies Assumption 10.1 (i.e. it is σF-strongly convex and has
Li -coordinate-wise Lipschitz continuous gradient) and Ui ⊆ R

ni are simple, convex
sets (e.g. box sets, entire space R

ni , etc). There exist many parallel algorithms in the
literature for solving the optimization problem (10.22): e.g. Jacobi-type algorithms
[2, 20]. However, the rate of convergence for these algorithms is guaranteed under
more conservative assumptions than the ones required for the parallel coordinate
descent method proposed in this section (see [10] for more details).
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Algorithm 10.2 (PCD)(u0)

Given u0, for q ≥ 0 do:
1: compute in parallel vi (uq ) for i = 1, . . . , M
2: update: uq+1 =∑M

i=1
1
M w+i (uq ).

Let us define the constrained coordinate update for our inner algorithm:

vi (u) = arg min
vi∈Ui
〈∇i f (u), vi − ui 〉 + Li

2
‖vi − ui‖2

w+i (u) = u+ Ei (vi (u)− ui ) ∀i = 1, · · · , M.

Algorithm 10.2 shows our Parallel Coordinate Descent Method, resembling the
method in [20] but with a simpler iteration and guaranteed rate of convergence and
which can also be viewed as a parallel version of the block-coordinate descent method
from [16].

We can easily show that Algorithm 10.2 decreases the objective function at each
iteration: f (uq+1) ≤ f (uq) for all q ≥ 0 (see [10] for more properties of this
algorithm). Note that if the sets Ui are simple (e.g. boxes) the projection on Ui can
be easy (for boxes in O (ni ) operations) and if f has cheap coordinate derivatives
(e.g. quadratic function with sparse Hessian), then the cost of computing ∇i f (u)

is less than O(n · ni ). Thus, for quadratic problems the worst case complexity per
iteration of our method is O(n2). Note that the complexity per iteration of the method
from [20] is at least O(n2+∑M

i=1 n3
i ), provided that the local quadratic subproblems

are solved with an interior point solver. The next theorem provides the convergence
rate of Algorithm 10.2:

Theorem 10.4 [10] If function f has Li -coordinate-wise Lipschitz continuous gra-
dient and is also σF-strongly convex, then the Algorithm 10.2 has linear rate of
convergence.

10.4 A Distributed MPC Scheme Based on Local Information

In this section we discuss some technical aspects for the implementation of our inex-
act dual decomposition method in the case of MPC problem (10.4) and its equivalent
form (10.5) presented in Sect. 10.2. Usually, in the linear MPC framework, the local
stage and final cost are taken of the following quadratic form:

�i (xi , ui ) = ‖xi‖2Qi
+ ‖ui‖2Ri

, �f
i (xi ) = ‖xi‖2Pi

,

where ‖x‖2Pi
= xT Pi x , the matrix Qi , Pi ∈ R

nxi×nxi are positive semidefinite,

whilst matrices Ri ∈ R
nui×nui are positive definite. We also assume that the local
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constraints sets Ui , Xi and the terminal sets X f
i are polyhedral. In this particular case,

the objective function in (10.5) is quadratically strongly convex, having the form:

F(u) = J (x, u) = 0.5 uT Qu+ (Wx + w)T u,

where Q is positive definite due to the assumption that all Ri are positive definite.
Since we assume that the sets Ui , Xi and Xf are polyhedral, then after eliminating
the dynamics (10.1) or (10.2) all the complicating constraints are gathered in:

h(u) = Gu+ Ex + g ≤ 0.

If the projection on the set Ui is difficult we also move the input constraints in
the complicating constraints defined above. In this case Ui = R

ni . Otherwise (i.e.
the local sets Ui are simple, e.g. boxes or the entire space R

nui ) the convex sets

Ui = ∏Np
l=1 Ui . Usually, for the dynamics (10.1) the corresponding matrices Q

and G obtained after eliminating the states are dense and despite the fact that both
Algorithms 10.1 and 10.2 can perform parallel computations (i.e. each subsystem
needs to solve small local problems) we need all to all communication between
subsystems. However, for the dynamics (10.2) the corresponding matrices Q and G
are sparse and in this case in our Algorithms 10.1 and 10.2 we can perform distributed
computations (i.e. the subsystems solve small local problems in parallel and they need
to communicate only with their neighbors). Indeed, if the dynamics of the system
are given by (10.2), then xi (l) = Al

ii xi (0) +∑l
s=1

∑
j∈N i As−1

i i Bi j u j (l − s) and
thus the matrices Q and G have a sparse structure (see e.g. [3, 20]). In particular, the
complicating constraints have the following structure: for matrix G the (i, j) block
matrices of G, denoted Gi j , are zero for all j /∈ N i for a given subsystem i , while the
matrix E is block diagonal. Further, if we define the neighborhood subsystems of a
certain subsystem i as N̂ i = N i∪{l : l ∈ N j , j ∈ N̄ i }, where N̄ i = { j : i ∈ N j },
then the matrix Q has all the block matrices Qi j = 0 for all j /∈ N̂ i and the matrix
W has all the block matrices Wi j = 0 for all j /∈ N̄ i , for any given subsystem i .
Thus, the i th block components of both ∇̄dεc and∇Lεc(u,λ) can be computed using
local information:

∇̄i dεc(λ) =
∑

j∈N i

Gi j u j + Ei i xi + gi + εce, (10.23)

∇i Lεc(u,λ) =
∑

j∈N̂ i

Qi j u j +
∑

j∈N̄ i

(
Wi j x j +GT

i jλ j

)
+ wi . (10.24)

Note that in the Algorithm 10.2 the only parameters that we need to compute are
the Lipschitz constants Li . However, in the MPC problem Li does not depend on the
initial state x and can be computed locally by each subsystem as: Li = λmax(Qi i ).
From the previous discussion it follows immediately that the iterations of Algorithm
10.2 can be performed in parallel using distributed computations (see (10.24)).
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Algorithm 10.3 Distributed MPC scheme (x,λ0, u0)

Given x and accuracy εout choose λ0 ∈ R
p
+ and u0 ∈ U.

Write MPC problem (10.4) into optimization problem (10.5).

1: Outer Iteration: for 0 ≤ p ≤ pout do
Inner iteration: given u0

i ∀i and λp , for q ≥ 0 repeat

• Each subsystem i computes in parallel ∇i Lεc (u
q ,λp) as in (10.24)

• Each subsystem i updates in parallel uq+1
i using Algorithm 10.2 and q ← q + 1.

• Until ūq = [uq
1 , · · ·uq

M ] ≈ arg min
u∈U

Lεc (u,λk) such that (10.13) holds

• Define u0 = ūq and compute ûp as in (10.17)

2: Each subsystem i computes in parallel ∇̄i dεc (λ
p) as in (10.23).

3: Each subsystem i computes in parallel (μ
p
i , η

p
i ,λ

p+1
i ) using Algorithm 10.1, p← p + 1.

Since the Algorithm 10.1 uses only first order information, we can observe that
once ∇̄i dεc(λ) has been computed distributively, as proved in (10.23), all the compu-
tations for updating (λp,μp, η p) can be done in parallel distributively, due to the fact
that we have to do only vector operations. However, in the scheme 10.1 all subsys-

tems need to know the global Lipschitz constant Ld = ‖G‖2σF
= ‖G‖2

λmin(Q)
that cannot

be computed distributively. In practice, a good upper bound on ‖G‖2
λmin(Q)

is sufficient.
Note that we do not need to compute a Slater vector ũ for (10.4) as long as the MPC
problem is well possed and the desired accuracy εout is sufficiently small such that
εout ≤ 2

√
m R min j=1,··· ,m{−(Gũ+Ex + g) j } for all x in some region of attraction

X Np . In Algorithm 10.1 another global constant that has to be computed offline is an
upper bound on the norm of the optimal multiplier, Rd, for any x ∈ X Np . Note that
practical ways to compute an upper bound Rd can be found in [13, 18]. Once the
desired accuracy was chosen and an upper bound Rd was computed offline, then we
can take εc = εout

2
√

m R
, as proven in previous sections.

From previous discussion we can conclude that the sequences
(
ûp,λp,μp, η p

)
p≥0

generated by the Algorithms 10.1 and 10.2 can be computed in parallel and their
updates can be performed distributively using local information, provided that
dynamics (10.2) are considered and that good approximations for Ld and Rd can
be computed offline. Closed loop stability for our MPC scheme as given as Algo-
rithm 10.3 can be ensured by choosing the terminal costs �f

i and the terminal sets X f
i

for all i appropriately [19].

10.5 Numerical Example

To demonstrate the applicability of the new algorithms we consider the MPC problem
for a 4-tank process, whose objective is to control the level of water in each tank.
We obtain a continuous state-space model by linearizing the nonlinear model (see
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e.g. [1]) at an operating point given by he
i , γe

1, γe
2 (where he

1 = 0.19 m, he
2 = 0.13 m,

he
3 = 0.23 m, he

4 = 0.09 m denote the water levels and γe
1 = 0.58, γe

2 = 0.54
represent the valve ratios) and the maximum inflows from the pumps qmax

1 = 0.39
m3/h, qmax

2 = 0.39 m3/h, with the deviation variables xi = hi − he
i , u1 = γ1 − γe

1,
u2 = γ2 − γe

2:

dx

dt
=

⎡

⎢
⎢
⎢
⎣

− 1
τ1

0 0 1
τ4

0 − 1
τ2

1
τ3

0
0 0 − 1

τ3
0

0 0 0 − 1
τ4

⎤

⎥
⎥
⎥
⎦

x +

⎡

⎢
⎢
⎢
⎢
⎣

qmax
1
S 0

0
qmax

2
S−qmax

1
S 0

0
−qmax

2
S

⎤

⎥
⎥
⎥
⎥
⎦

u,

where the state vector x ∈ R
4, the input vector u ∈ R

2, τi = S
ai

√
2hi

e
g denotes the

time constant for tank i and S = 0.02, ai = 5.8·10−5. Using zero-order hold method
with a sampling time of T = 5s we obtain the discrete time model of type (10.2):

x1(k + 1) = A11x1(k)+ B11u1(k)+ B12u2(k),

x2(k + 1) = A22x2(k)+ B22u2(k)+ B21u1(k),

with the partition x1 ← [x1 x4]T and x2 ← [x2 x3]T . For the input constraints we
consider the practical constraint of the ratios of the three way valves for our plant,
i.e u ∈ [0.3, 0.8] − γe. We also consider state constraints 0 ≤ x ≤ 0.31 − he. For
the stage cost we have taken the weighting matrices to be Qi = I2 and Ri = 0.1.
Since the matrices Aii are stable, in order to ensure stability of the MPC scheme we
can compute matrices Pi for the final costs as the solutions of the discrete Lyapunov
equations [19]: AT

ii Pi Aii − Pi + Qi = 0.
For a prediction horizon N = 20 and starting from h0 = 0.3m, the simulated

closed-loop trajectories for the levels using Algorithm 10.1 are displayed in Fig. 10.1.
Note that the closed-loop system is driven to the equilibrium point he.
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Fig. 10.1 Trajectories of the states (levels) for the four tanks
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Fig. 10.2 Primal suboptimality and infeasibility for Algorithm 10.1

In Fig. 10.2 we represent the primal suboptimality and infeasibility for the MPC
optimization problem solved at step k = 10 using Algorithm 10.1. We fix εout = 0.01.
The continuous line corresponds to εin and εc computed according to Sect. 10.3.2,
while the dotted line corresponds to εin = 10εout. We can observe that Algorithm
10.1 is sensitive due to error accumulations.

10.6 Conclusions

Motivated by MPC problems for network systems, we have proposed a dual based
method for solving constrained MPC problems in network systems. We moved the
coupling constraints in the cost using duality theory and introduced a tightened
version of the dual MPC problem. We solved the inner subproblems only up to a
certain accuracy by means of a parallel coordinate descent method for which we have
linear convergence. For solving the outer problems we developed an inexact dual fast
gradient scheme. We proved primal feasibility for our original MPC problem and
derived upper bounds on dual and primal suboptimality. We also discussed some
implementation issues of the new algorithms for distributed MPC and tested them
on a practical example.

For future research we intend to apply these newly developed algorithms to other
practical problems and implement them in a distributed setting using MPI.

10.7 Appendix

Proof of Theorem 2: Using (10.15) and (10.17) and the convexity of F and h together
with the fact that Q ⊆ R

m+, we obtain:
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F(ûp)− dεc(μ
p) ≤ −max

λ∈Q
− 4Ld

(p + 1)2 ‖λ‖2 + 〈λ, h(ûp)+ εce〉 + p + 3

3
εin.

Since maxλ∈Q − 4Ld
(p+1)2 ‖λ‖2 + 〈λ, h(ûp) + εce〉 ≥ 0 and taking into account that

dεc(μ
p) ≤ F∗εc

, we have: F(ûp)− F∗εc
≤ p+3

3 εin. We can write further:

F∗εc
= max

λ∈Q
dεc(λ) = max

λ∈Q
min
u∈U

F(u)+ 〈λ, h(u)+ εce〉
≤ max

λ∈Q
min
u∈U

F(u)+ 〈λ, h(u)〉 +max
λ∈Q
〈λ, εce〉 = F∗ + √m Rεc,

which combined with the previous inequality proves (10.18). �
Proof of Theorem 3: Recall that h(u) = Gu+ g. Using (10.15) and convexity of F
and h, we have:

max
λ≥0
− 4Ld

(p + 1)2 ‖λ‖2 + 〈λ, h(ûp)+ εce〉 ≤ p + 3

3
εin + dεc(μ

p)− F(ûp).

For the second term of the right hand-side we have:

dεc(μ
p)−F(ûp) ≤ dεc(λ

∗)− F(ûp) = min
u∈U

F(u)+〈λ∗, h(u)+ εce〉−F(ûp)

≤ F(ûp)+ 〈λ∗, h(ûp)+ εce〉 − F(ûp) =〈λ∗, h(ûp)+εce〉≤‖λ∗‖‖[h(ûp)+εce]+‖,

where in the last inequality we used that 〈λ, y〉 ≤ ‖λ‖‖[y]+‖ for any y ∈ R
m and

λ ≥ 0. Using now the fact that:

max
λ≥0
− 4Ld

(p + 1)2 ‖λ‖2 + 〈λ, h(ûp)+ εce〉 = (p + 1)2

16Ld
‖[h(ûp)+ εce]+‖2

and introducing the notation α = h(ûp) + εce, we obtain the following second

order inequality in ‖[α]+‖: (p+1)2

16Ld
‖[α]+‖2−‖λ∗‖‖[α]+‖− p+3

3 εin ≤ 0. Therefore,
‖[α]+‖must be less or equal than the largest root of the corresponding second-order
equation, from which, together with (10.12), we get the result. �
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