
Chapter 4
Attenuation Compensation
and Estimation

Timothy A. Bigelow and Yassin Labyed

Abstract Estimating the losses of ultrasound signal energy with propagation depth
as a function of frequency is essential for quantifying tissue properties. Specifically,
ultrasound attenuation is used to correct for spectral distortion prior to estimating
quantitative ultrasound parameters to assess the tissue. Ultrasound attenuation can
also be used independently to characterize the tissue. In this chapter, we review the
primary algorithms for estimating both the local attenuation within a region of
interest as well as the total attenuation between a region of interest and an ultra-
sound source. The strengths and weaknesses of each algorithm are also discussed.

Keywords Attenuation � Local attenuation � Total attenuation � Spectral differ-
ence method � Spectral-log difference method � Hybrid method � Spectral-fit
method � Multiple filter method

4.1 Introduction

When attempting to characterize tissue based on the frequency spectrum of
backscattered ultrasound echoes, it is critically important to correctly compensate
for attenuation. Because both scattering and attenuation impact the frequency
spectrum, the effects of attenuation must be removed before the scattering prop-
erties can be extracted for diagnostic purposes. For the purpose of tissue charac-
terization, there are two different attenuation parameters to be considered. First,
there is the local attenuation. The local attenuation is the attenuation within a
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region of interest and is used primarily to quantify the tissue properties of that
region. It can also be used to improve the accuracy of scatterer property estimates,
e.g., scatterer size and acoustic concentration, as will be discussed in more detail
later in this chapter. The second and most important type of attenuation is the
total attenuation. The total attenuation is the effective attenuation along the
propagation path from the source thru the intervening tissue layers to the region of
interest. Figure 4.1 shows an image of the different regions corresponding to the
local and total attenuation. It is more difficult to obtain accurate estimates of the
backscatter coefficient and corresponding scatterer property estimates derived
from the backscatter coefficient without an accurate estimate for the total atten-
uation. In this chapter, we will review how the attenuation impacts the back-
scattered power spectrum as well as summarize the basic algorithms that have
been developed to estimate both total and local attenuation.

4.2 Impact of Attenuation on Backscattered Power
Spectrum

Before discussing the various algorithms that have been developed to estimate the
total and local attenuation, we will briefly review how these attenuation parameters
relate to the backscattered power spectrum. The backscattered power spectrum
from a region of interest in an unknown sample is given by Bigelow (2004) and
Bigelow and O’Brien (2004a, b)

Ss fð Þ / f 4 H fð Þj j4 Vinc fð Þj j2exp �4atot fð ÞzTð Þ
�Mc � Fc f ; aeff

� �
D f ; alocð Þ

� �
ð4:1Þ

Fig. 4.1 Illustration of tissue when performing ultrasound tissue characterization
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In this equation, f is frequency, H( f) is the dimensionless filtering characteristics
of the ultrasound source, |Vinc( f)| is the power spectrum of the voltage pulse applied
to the ultrasound source, and zT is the distance from the ultrasound source to the
beginning of the region of interest in the tissue. The term atot fð Þ is the total
attenuation along the propagation path, as was described previously, and is given by

atot fð Þ ¼
XN�1

j¼1

aj fð ÞDzj

zT

 !

ð4:2Þ

where aj is the attenuation in each of the intervening tissue layers of thickness Dzj:

Also, Fc f ; aeff

� �
is the form factor which captures the frequency dependence of

the scattering while Mc is the acoustic concentration (Insana et al. 1990). Typical
form factors for tissue and tissue-mimicking phantoms include the Gaussian form
factor, the fluid-filled sphere form factor, and the spherical-shell form factor.

Fc Gaussian f ; aeff

� �
¼ exp �0:827 k � aeff

� �� �

Fc Sphere f ; aeff

� �
¼

j1 2k � aeff

� �

2=3ð Þk � aeff

� �2

Fc Shell f ; aeff

� �
¼ jo 2k � aeff

� �� �2

ð4:3Þ

The development of more complicated form factors to accurately model tissue is
the subject of current study (Oelze and O’Brien 2006).

The remaining term from Eq. (4.1), D f ; alocð Þ takes into account both the
diffraction of the acoustic waves (i.e., focusing) and the local attenuation, aloc fð Þ
of the tissue in the region of interest and is given by

D f ; alocð Þ ¼ exp �4aloc fð Þzoð Þ

�
ZL=2

�L=2

gwin szð Þ exp �4aloc fð Þszð ÞDfocus f ; szð Þ
� �

dsz
ð4:4Þ

where the variable of integration, sz, increases as we move away from the source.
In this equation, gwin is the windowing function used to gate the backscattered
echoes when selecting an analysis region. Common windowing functions include
rectangular, Hamming, and Hanning windows. Also, L is the length of the win-
dowing function expressed as a distance and zo is the distance from the beginning
of the region of interest (ROI) to the center of the current windowed analysis
region within the ROI. We distinguish here between the larger ROI, or the region
over which the attenuation estimate is obtained, and the smaller windowed anal-
ysis region, or the region where the power spectrum is estimated. The attenuation
estimation algorithms require finding multiple power spectra from different anal-
ysis regions within the ROI in order to find the attenuation of the ROI. The
windowed analysis region is illustrated in Fig. 4.2.
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The term within the integral Dfocus f ; szð Þ takes into account focusing and is
given by

Dfocus f ; szð Þ ¼
exp

�2 zTþzo�Ftransmitð Þþszð Þ2

wz transmit fð Þð Þ2
� 	

� exp
�2 zTþzo�Frcvð Þþszð Þ2

wz rcv fð Þð Þ2
� 	

2

4

3

5 ð4:5Þ

assuming the beam profile on transmit and receive can be approximated by
a Gaussian function; an approximation that is reasonable for most sources (Barber
1991; Bigelow 2004; Bigelow and O’Brien 2004a, b). In this equation, Ftransmit and
Frcv are the distance from the aperture plane to the transmit and receive foci
respectively. Also, wz transmit fð Þ and wz rcv fð Þ are the effective Gaussian depths of
focus for the transmit and receive foci, respectively. For a spherically focused
source, wz is approximately equal to 6.01k(f#)2 where k is the wavelength and f# is
the f-number for the source.

From Eq. (4.4), it is clear that the impact of local attenuation on the back-
scattered power spectrum is coupled with the diffraction of the acoustic field via
the integral expression. This coupling can make the assessment of backscatter
more challenging. As a result, various investigators have attempted to isolate the
local attenuation and focusing effects on the spectrum so that each can be corrected
independently. The most common approach, termed point compensation,
assumes that the size of the windowing function is so small that gwin can be
approximated by an impulse function (Oelze and O’Brien 2002; Bigelow 2004;
Bigelow and O’Brien 2004a, b). Under this approximation, Eq. (4.4) becomes

D f ; alocð Þ ¼ exp �4aloc fð Þzoð Þ
exp

�2 zTþzo�Ftransmitð Þ2

wz transmit fð Þð Þ2
� 	

� exp
�2 zTþzo�Frcvð Þ2

wz rcv fð Þð Þ2
� 	

2

4

3

5 ð4:6Þ

where the local attenuation term and diffraction terms have been decoupled.

Fig. 4.2 Illustration showing
coordinates when defining
variables in backscattered
power spectrum
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Another approach to decouple the local attenuation and diffraction is to use an
approximate value for the local attenuation within the integral (Bigelow and
O’Brien 2006). This approach is used in all tissue characterization methods that
divide the power spectrum from the sample by the power spectrum from a ref-
erence phantom as will be discussed in more detail later in the chapter. Under this
approximation Eq. (4.4) becomes

D f ; alocð Þ ¼ exp �4aloc fð Þzoð Þ

�
ZL=2

�L=2

gwin szð Þ exp �4aapproximate fð Þsz

� �
Dfocus f ; szð Þ

� �
dsz

ð4:7Þ

The optimal choice for aapproximate fð Þ was shown to be given by

aapproximate fð Þ ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

high fð Þ þ a2
low fð Þ

2

s

ð4:8Þ

where ahigh fð Þ and alow fð Þ are the largest and smallest attenuation values expected
in the tissue region (Bigelow and O’Brien 2006).

4.3 Local Attenuation Estimation Algorithms

Now that we have reviewed how local and total attenuation impacts the back-
scattered power spectrum, we can review some of the algorithms used to estimate
the attenuation within a region of interest. While this local attenuation can be used
to improve the estimate of the scattering properties for the tissue, it is typically
used independently to characterize the tissue for diagnostic purposes. We will
focus on four of the most common local attenuation estimation algorithms.

4.3.1 Spectral Shift Algorithm for Local Attenuation
Estimation

One of the most common algorithms for estimating the attenuation within a region
of interest is the spectral-shift algorithm. This algorithm uses the down shift in
center frequency of the power spectrum versus propagation depth to estimate the
attenuation slope, a0; where the local attenuation is assumed to have the form
aloc fð Þ ¼ a0 f þ bb (Narayana and Ophir 1983a, b; Oosterveld et al. 1991;
Baldeweck et al. 1993, 1994, 1995; Girault et al. 1998; Kim and Varghese 2007).
This algorithm has been implemented in both the frequency and the time domain,
where the time-domain implementation requires utilizing an autoregressive
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approach (Baldeweck et al. 1993, 1994, 1995; Girault et al. 1998). We will derive
the algorithm in the frequency domain because focusing has not been accounted
for in the autoregressive approach.

The spectral shift algorithm begins by assuming that the backscattered power
spectrum can be approximated by a Gaussian function. As a result, Eq. (4.1) can be
written as

Ss fð Þ / exp � f � foð Þ2

2r2
x

 !

D f ; alocð Þ: ð4:9Þ

Traditionally, the spectral-shift algorithm has been implemented assuming
weakly-focused sources where diffraction effects in the ROI can be neglected. In
addition, small windows are typically used resulting in the assumption that point
compensation is valid. Hence, Eq. (4.9) can be written as

Ss fð Þ / exp � f � foð Þ2

2r2
x

 !

exp �4ao � fzoð Þ: ð4:10Þ

However, multiplying the Gaussian function by the decaying exponential is just
a Gaussian transformation resulting in a new Gaussian function.

Ss fð Þ / exp �
f � ~fo zoð Þ
� �2

2r2
x

 !

ð4:11Þ

where

~fo zoð Þ ¼ fo � 4r2
xao � zo: ð4:12Þ

Therefore, the attenuation slope can be found by selecting multiple windows
within a ROI (i.e., different zo). The power spectrum for each window is then
calculated and fit by a Gaussian function to find the center frequency, ~fo; and
bandwidth, r2

x: The attenuation slope can then be calculated from the change in
center frequency with depth,

ao ¼ �
1

4r2
x

o~fo
ozo

: ð4:13Þ

Importance of Finding the Usable Frequency Range: When fitting a
function to a spectrum it is critically important to perform the fit only with
values from the spectrum that are not dominated by noise. Therefore, the first
step in any frequency domain algorithm is to first find the usable frequency
range from the power spectrum. One can do this from either a visible
inspection of the spectrum or using a computer program that identifies the
noise floor for the spectral data and always operates above this noise floor.
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Hint on Finding Center Frequency and Bandwidth: When finding the
center frequency and bandwidth from a fit to a Gaussian function, we have
found that a more accurate fit can be obtained by performing the fit in the log
domain. Therefore, we find the values of ~fo and r2

x that minimize the
function in Eq. (4.14).

mse ¼ mean
f

log e
� f�~foð Þ2

2r2
x

� 	 !

� log
Ss fð Þ

max
f

Ss fð Þð Þ

� �

�mean
f

log e
� f�~foð Þ2

2r2
x

� 	 !

� log
Ss fð Þ

max
f

Ss fð Þð Þ

� � !

0

BBBBB@

1

CCCCCA

22

666664

3

777775
: ð4:14Þ

The expression derived in Eq. (4.13) is valid only when diffraction effects can
be neglected (Bigelow et al. 2008; Kim and Varghese 2008). Otherwise, a cor-
rection needs to be applied as indicated in Fig. 4.3 taken from Bigelow et al.
(2008).

From this figure, it is clear that without focusing compensation, ROIs before the
focus underestimate the attenuation slope while ROIs beyond the focus overesti-
mate the attenuation slope. When the windowed regions is close to the focus, we
use the following correction

Fig. 4.3 Error in attenuation
estimate both with and without
focusing compensation for a
simulated 33 MHz spherically
focused transducer intended to
assess cervical ripening in rats
taken from Bigelow et al.
(2008). The source had a focal
length 9 mm and zo = 0 in this
figure corresponds to the focus
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exp
2 zT þ zo � Ftransmitð Þ2

wz transmit fð Þð Þ2

 !

� exp
2 zT þ zo � Frcvð Þ2

wz rcv fð Þð Þ2

 !" #

ð4:15Þ

before finding the center frequency. This correction is based on the assumption
that the beam can be approximated by a Gaussian function in the focal region
(Bigelow et al. 2008).

4.3.2 Spectral Difference Method for Local Attenuation
Estimation

Another common algorithm for estimating the local attenuation from an ROI is the
spectral difference method (Parker and Waag 1983; Parker et al. 1988; Yao et al.
1990). The spectral difference method is sometimes referred to as the reference-
phantom method because it uses a well-characterized reference phantom to correct
for diffraction effects. In the spectral difference method, multiple overlapping
windows are positioned throughout the ROI as shown in Fig. 4.4. An overlap of
50 % between adjacent windows is common; however, other overlap values have
been used. Power spectra from corresponding windows in a reference phantom are
also acquired.

Importance of Sound Speed: It is important to use a tissue-mimicking
phantom with a sound speed similar to the expected sound speed of the tissue
so that the diffraction properties are similar when estimating the attenuation.

After obtaining the power spectrum from each window for the sample and the
reference, the power spectra are divided to give

Fig. 4.4 Illustration of
windowed regions within
ROI when implementing the
spectral difference algorithm
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Ss fð Þ
Sref fð Þ /

exp �4atot fð ÞzTð Þ �McFc fð ÞD f ; alocð Þ
exp �4aref fð ÞzT

� �
�Mc ref Fc ref fð ÞD f ; aref

� �

" #

ð4:16Þ

where aref fð Þ is the attenuation of the reference phantom and Fc ref fð Þ is the form
factor describing the frequency dependence of the scattering from the phantom.
Using the approximation in Eqs. (4.7) and (4.16) simplifies to

Ss fð Þ
Sref fð Þ /

exp �4 atot fð Þ � aref fð Þ
� �

zT

� �

exp �4 aloc fð Þ � aref fð Þ
� �

zo

� � McFc fð Þ
Mc ref Fc ref fð Þ

" #

: ð4:17Þ

Taking the natural logarithm of the above relation gives,

S fð Þ ¼ ln
Ss fð Þ

Sref fð Þ

� �
¼ 4 aref fð Þ � aloc fð Þ
� �

zo þ C fð Þ ð4:18Þ

where C( f) is a function of frequency that depends on the scattering properties and
total attenuation of the sample and reference phantoms. C( f) does not depend on zo

provided the ROI is homogeneous. The attenuation of the sample is calculated
from the change in S fð Þ with zo, i.e.,

aloc fð Þ ¼ aref fð Þ � 1
4
oS fð Þ
ozo

: ð4:19Þ

Importance of Homogeneous Region: The spectral difference method
cannot be used to estimate the attenuation when the scattering properties
change within the ROI as this would make C( f) also a function of zo (Labyed
and Bigelow 2011).

4.3.3 Spectral Log Difference Method for Local Attenuation
Estimation

A slightly modified form of the spectral-difference method is the spectral-log-
difference method (Kuc and Schwartz 1979; Kuc 1980, 1984; Insana et al. 1983).
This method is slightly less dependent on changes in the scattering properties of
the medium (Labyed and Bigelow 2011). The method begins by finding the
backscattered power spectrum from two windowed regions within an ROI; one at
the proximal edge of the ROI, zop, and one at the distal edge of the ROI, zod, as
shown in Fig. 4.5. Once again the power spectra from the windowed regions of the
sample are divided by corresponding spectra from a reference phantom yielding
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Sp fð Þ ¼ ln
Ss f ; zop

� �

Sref f ; zop

� �

 !

¼ 4 aref fð Þ � aloc fð Þ
� �

zop þ C f ; zop

� �
ð4:20Þ

Sd fð Þ ¼ ln
Ss f ; zodð Þ

Sref f ; zodð Þ

� �
¼ 4 aref fð Þ � aloc fð Þ
� �

zod þ C f ; zodð Þ ð4:21Þ

where the subscript p refers to the proximal windowed region and the subscript
d refers to the distal windowed region. Subtracting Eqs. (4.20) and (4.21) yields

SD fð Þ ¼ Sp fð Þ � Sd fð Þ ¼ 4 aref fð Þ � aloc fð Þ
� �

zop � zod

� �

þC f ; zop

� �
� C f ; zodð Þ

� �
: ð4:22Þ

Also, if we assume that the frequency dependence of the scattering does not
change within the ROI for the sample (only possibly the acoustic concentration),
then

C f ; zop

� �
� C f ; zodð Þ ffi CD zop; zod

� �
ð4:23Þ

which is independent of frequency (Labyed and Bigelow 2011). Therefore, the
local attenuation within the ROI can be estimated by finding

SD fð Þ
4 zod � zop

� �þ aref fð Þ
" #

¼ aloc fð Þ þ
CD zop; zod

� �

4 zod � zop

� � ð4:24Þ

and then performing a fit as a function of frequency to eliminate the CD term. The
most common approach is to assume a frequency dependence of aloc fð Þ ¼
a0f þ bb; and then perform a linear fit as a function of frequency to determine a0:

ROI Size needed for Spectral Log Difference Method: A good rule of
thumb is to have (zod - zop) [ 15 pulse lengths and at least 15 independent
echoes when using a linear approximation for the attenuation with the
spectral-log-difference method. Smaller values tend to produce large vari-
ance of the estimates. However, these values are also dependent on the
frequency range available for obtaining the estimates.

Fig. 4.5 Illustration of
windowed regions within
ROI when implementing the
spectral log difference
algorithm
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4.3.4 Hybrid Method for Local Attenuation Estimation

A third method for estimating the attenuation within an ROI is the hybrid method
(Kim and Varghese 2008). The hybrid method has very similar performance to the
spectral log-difference method (Labyed and Bigelow 2011). The hybrid method
once again begins by calculating the power spectra for multiple windowed regions
within an ROI and a corresponding reference phantom. The sample and reference
power spectra are then divided yielding

Ss f ; zoð Þ
Sref f ; zoð Þ /

exp �4 atot fð Þ � aref fð Þ
� �

zT

� �

exp �4 aloc fð Þ � aref fð Þ
� �

zo

� � Mc zoð ÞFc fð Þ
Mc ref zoð ÞFc ref fð Þ

" #

ð4:25Þ

where once again we have assumed that the frequency dependence of the scat-
tering does not change within the ROI. Note that a change in the acoustic con-
centration Mc zoð Þ within the ROI does not impact the attenuation estimate. The
power-spectra ratio for each window is then multiplied by a Gaussian function and
corrected for the attenuation of the reference phantom to yield

GRS f ; zoð Þ ¼ exp � f � fcð Þ2

2r2
c

 !
Ss f ; zoð Þ

Sref f ; zoð Þ exp �4aref fð Þzo

� �

/
exp � f � fcð Þ2

2r2
c

 !

exp �4 atot fð Þ � aref fð Þ
� �

zT

� �

exp �4aloc fð Þzoð Þ Mc zoð ÞFc fð Þ
Mc ref zoð ÞFc ref fð Þ

2

66664

3

77775

ð4:26Þ

which is approximately equal to

GRS f ; zoð Þ / exp �
f � ~fc

� �2

2~r2
c

 !

exp �4aloc fð Þzoð Þ
" #

ð4:27Þ

because of the frequency dependence of total attenuation and scattering. If we
assume that the attenuation within the ROI has the form aloc fð Þ ¼ a0f þ bb; then
Eq. (4.27) becomes

GRS f ; zoð Þ / e
� f�~fcð Þ2

2~r2
c e�4aofzo / exp �

f � ~f 0c zoð Þ
� �2

2~r2
c

 !

ð4:28Þ

where

~f 0c zoð Þ ¼ ~fc � 4~r2
cao � zo: ð4:29Þ
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Therefore, the attenuation slope can be calculated as

ao ¼ �
1

4~r2
c

o~f 0c
ozo

: ð4:30Þ

Selection of fc and ~rc for Hybrid Method: fc is often chosen as the fre-
quency where the spectral peak of GRS( f, zo) is approximately in the middle
of the usable frequency range. Similarly, ~rc is chosen as the bandwidth of
the received echoes from the ROI.

4.3.5 Comparison of Spectral Difference, Spectral
Log-Difference, and Hybrid Methods for Local
Attenuation Estimation

Before concluding our discussion of local attenuation estimation, we will briefly
compare the performance of the three algorithms that utilize a reference phantom
as was originally reported in Labyed and Bigelow (2011). These algorithms were
selected for comparison because they are the easiest to implement when using
modern ultrasound clinical array transducers. We use computer simulations to
evaluate the dependence of the algorithms on the number of independent echoes
and the number of pulse lengths utilized to obtain the estimates. The simulations
utilized a 10 MHz source with a 5 cm focal length and a 50 % -3-dB bandwidth.
We assume that the local attenuation has the form aloc fð Þ ¼ a0 f : Figure 4.6
shows the variance of the estimates as a function of ROI size.

From this figure, it is clear that for any given ROI size, the spectral-difference
method has the lowest variance. However, the spectral-difference method is also
significantly impacted by any heterogeneities in the tissue (Kim and Varghese
2008; Labyed and Bigelow 2011). The spectral-log difference method and the
hybrid method have comparable performance both in terms of variance (Fig. 4.6)
and in terms of their robustness to tissue heterogeneity (Labyed and Bigelow
2011). Neither the spectral log-difference nor the hybrid method are impacted by
changes in acoustic concentration within the ROI. However, a bias will be
introduced when there is a change in the frequency dependence of the scattering. If
we assume that the change in frequency dependence results from a variation in the
effective scatterer diameter, then the bias is approximately given by

Error Np=cm�MHzð Þ ffi
16:32 fmid a2

eff zp

� �
� a2

eff zdð Þ
� 	

c2 zp � zd

� � ð4:31Þ

where fmid is the middle frequency of the usable frequency range.
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4.4 Total Attenuation Estimation Algorithms

When performing ultrasound tissue characterization, it is critically important to
correct for the frequency dependence of the attenuation along the propagation
path. Therefore, in this section we will summarize the two types of algorithms that
have been proposed for this purpose. Both of these algorithms assume that the
total attenuation for the sample has a linear frequency dependence give by
atot fð Þ ¼ as f : A third approach, which will not be discussed in detail, would be to
use estimates of local attenuation in each of the intervening tissue layers and then
sum the estimates to calculate the total attenuation from Eq. (4.2) directly. While
this third approach works for some applications with clearly identifiable and rel-
atively thick layers, it tends to have problems when the intervening tissue layers
are more complex.

4.4.1 Multiple Filter Algorithm for Total Attenuation
Estimation

The first type of algorithm that will be discussed is the multiple-filter algorithm.
This algorithm requires either applying multiple Gaussian filters to the backscat-
tered waveforms or using multiple transmit frequencies that span the bandwidth of
the transducer (Bigelow 2008, 2010a, b; Labyed and Bigelow 2010). Because most
modern tissue characterization applications utilize a clinical array transducer, we
will focus our discussion on the use of multiple filters. We use echoes from a
reference phantom to correct for diffraction effects.

Fig. 4.6 The standard
deviation (STD) in the percent
error of the attenuation
coefficient estimates that were
obtained using the spectral
difference method from the
homogeneous sample, versus
the number of pulse lengths
and the number of echoes per
ROI for the (a) spectral
difference algorithm, (b) the
spectral-log difference
algorithm, and (c) the hybrid
algorithm
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The algorithm begins with finding the power spectra from a single windowed
region in the tissue sample and from the corresponding region in a well-charac-
terized reference phantom. After correcting for the attenuation in the reference
phantom, the ratio of the spectra is given by

Ss fð Þ
Sref fð Þ e

�aref fð ÞzT / exp �4as fzTð Þ Fc fð Þ
Fc ref fð Þ ð4:32Þ

where we can assume that the window is located at zo = 0 without loss of gen-
erality. We then assume that the frequency dependence of the scattering is
approximately given by Fc fð Þ / exp �Af nð Þ where n is approximately equal to 2.
While this is clearly true for the Gaussian form factor, it is also true over a limited
kaeff range for other common form factors as shown in Fig. 4.7 taken from
Bigelow (2010a, b).

In this figure, the fits for each form factor are given by

Fc Sphere f ; aeff

� �
ffi exp �1:11 kaeff

� �2:167
� 	

Fc Shell f ; aeff

� �
ffi exp �2 kaeff

� �1:914
� 	

;
ð4:33Þ

and the fit was performed for kaeff from 0 to 1.2 because kaeff values less than 1.2
are of the greatest interest when quantifying the tissue microstructure.

If we then multiply Eq. (4.32) by a series of Gaussian filters, we can show that

Ss fð Þ
Sref fð Þ e

�aref fð ÞzT exp � f � fcð Þ2

2r2
c

 !

ffi C1 exp �
f � ~fc
� �2

2r2
c

 !

ð4:34Þ

Fig. 4.7 Form factor with fit
of the form exp �Af nð Þ for
(a) fluid filled sphere and
(b) spherical shell taken from
Bigelow (2010a, b)
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where

~fc ffi 1� 2~r2
c As � Arð Þ

� �
fc þ 4~r2

czTas

~r2
c ¼

r2
c

1� 2r2
c As � Arð Þ

ð4:35Þ

using a derivation similar to that performed for the hybrid method discussed
previously. Therefore, for each filter applied, we can find

n fcð Þ ¼
fc � ~fc
� �

4~r2
czT

ffi As � Arð Þ
2zT

fc � as: ð4:36Þ

The intercept of n fcð Þ with respect to fc will give the slope of the frequency
dependence for the total attenuation.

One of the challenges when using the multiple-filter method is determining the
optimal number of filters. In an early work, the use of four filters was examined
(Bigelow 2010a, b; Labyed and Bigelow 2010). For the first three filters, the center
frequency of each filter was calculated as

fc1 ¼ fmin þ
fmax � fmin

4

fc2 ¼ fc1 þ
fmax � fmin

4

fc3 ¼ fc2 þ
fmax � fmin

4

ð4:37Þ

where fmin and fmax were the smallest and largest frequencies of the usable fre-
quency range, respectively. The usable frequency range is the range of frequencies
in the power spectrum for which the power spectrum exceeds some level (for
example -20 dB) based on the noise level of the received echoes. Once these
center frequencies were set, the bandwidths were determined by finding the per-
cent bandwidth such that fmin corresponded to the -10 to -15 dB bandwidth for
the filter as calculated from

r2
c1 ¼

10 fc1 � fminð Þ2

2 ln 10ð Þ �BWdBð Þ

 !

ð4:38Þ

where BWdB is the desired bandwidth (i.e. -10 or -15 dB) for the first filter that
would correspond with fmin. The bandwidths of the other three filters were then
selected to have the same -3-dB percent bandwidth as the first filter. The
remaining 4th filter was then selected to span the entire usable frequency range of
the backscattered echoes.

Recently, a statistical analysis study was performed on the multiple-filter
algorithm to derive an expression for the standard deviation of the total attenuation
estimate as a function of ROI size, bandwidth, and number of Gaussian filters
(Labyed 2010). The focus was on the variance of the estimates as this is the
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limiting criterion when estimating the total attenuation (Bigelow and O’Brien
2005a, b; Bigelow et al. 2005; Bigelow 2008, 2010a, b; Labyed and Bigelow
2010). While it is trivial to get the attenuation correct on average, it is much more
challenging to obtain precise estimates especially when the ROI is small. The
statistical analysis used non-overlapping (independent) filters to simplify the
mathematics and found that the variance in the total attenuation estimate was
proportional to

varðasÞ /
Ns þ Nrð Þ

NsNr

1

PK

j¼1

PM

i¼1
fi � fc jð Þð Þ2

� �( )

�

PK

j¼1

PM

i¼1

fi�fc jð Þð Þ2
� �

fc jð Þ

 �2

PK

j¼1

PM

i¼1

fi�fc jð Þð Þ2
� �

fc jð Þ2
 �

ð4:39Þ

where fi are the individual frequency components of the spectrum, fc(j) is the
center frequency of the jth Gaussian filter when a total of K filters are used, and Ns

and Nr are the number of independent echoes used to estimate the power spectra of
the sample and reference, respectively.

Precision of Total Attenuation Estimation Algorithms: The precision of
the total attenuation estimation algorithms is strongly influenced by the
bandwidth of the source and the number of independent echoes used to
obtain the estimate. There is also some dependence on the size of the
windowed region used to estimate the power spectrum as this can influence
the accuracy of the power spectra estimate.

The results of the statistical analysis also revealed that the optimal number of
non-overlapping filters is equal to two. In addition, the standard deviation of the
total attenuation estimate decreases with increasing ROI size, i.e., with increasing
number of independent echo lines used to compute the power spectra, and
increasing time window length used to gate the echo lines. Note that the total
attenuation is estimated from the power spectrum that is obtained by averaging the
power spectra of the windows within the ROI. Therefore, using a large number of
echo lines improves the estimate of the power spectrum, and hence improves the
estimate of the total attenuation.

The results of the statistical analysis were validated using numerical simula-
tions. Backscattered signals were simulated for a sample and a reference that had
attenuation coefficients of 0.7 and 0.5 dB/cm-MHz, respectively. The sample
scatterers had a Gaussian Form Factor with a 20 lm effective radius, while the
reference had spherical shell scatterers with 10 lm radii. Both the sample and the
reference had a scattering density of 100 mm-3, corresponding to approximately
10 scatterers per resolution cell, which is adequate for fully developed speckle.
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Figure 4.8 shows plots of the theoretical and calculated standard deviation of
the total attenuation estimate from the simulated backscattered signals as a
function of the number of non-overlapping filters. It is clear that using two
independent Gaussian filters yields the smallest standard deviation in the estimate
of the total attenuation. As shown in Fig. 4.9, the STD in the total attenuation
estimate decreased with increasing number of independent echoes.

Fig. 4.8 Plots of the
theoretical and calculated
standard deviation of the total
attenuation estimate from the
simulated backscattered
signals, obtained with the
multiple-filter method using
an ROI length of 10 pulse
lengths and an ROI width of
60 independent echo lines,
with respect to the number of
non-overlapping filters

Fig. 4.9 Plots of the
theoretical and calculated
standard deviation of the total
attenuation estimate from the
simulated backscattered
signals, obtained using the
multiple filter method with
two Gaussian filters and an
ROI length (time window
size) of 10 pulse lengths with
respect to the number of
independent of echoes per
ROI
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4.4.2 Spectral Fit Algorithm for Total Attenuation
Estimation

The second type of algorithm used for obtaining the frequency-dependent attenu-
ation along the propagation path involves estimating the frequency dependence of
the backscatter and the attenuation simultaneously. Initially, the tissue was assumed
to satisfy a Gaussian form factor Fc Gaussian f ; aeff

� �
¼ exp �0:827 k � aeff

� �� �� �

and a fit was performed to estimate both as and aeff (Bigelow and O’Brien 2005a, b;
Bigelow et al. 2005). Other authors have extended the algorithm to allow for a more
general form for the backscatter BSC fð Þ ¼ bf nð Þ and then perform a fit for b, n, and
as (Nam et al. 2011). However, we will focus on the original spectral fit algorithm
where only two parameters were estimated.

The spectral fit algorithm begins by dividing the spectra from the windowed
region of the sample by the spectra from the windowed region of a known ref-
erence. Initially, a planar target was used as a reference, but a reference phantom
has also been used. Our derivation here will assume a reference phantom is used.
After dividing the spectra, the result is multiplied by the attenuation and back-
scatter terms for the reference as given by

Sfit fð Þ ¼ Ss fð Þ
Sref fð Þ e

�aref fð ÞzT BSCref fð Þ / exp �4as fzTð ÞFc fð Þ: ð4:40Þ

Assuming a Gaussian form factor for Fc fð Þ; the natural log of Eq. (4.40) will
yield

� ln Sfit fð Þ
� �

¼ 0:827
2p
c

aeff

� �2

f 2 þ 4as fzT þ Constant ð4:41Þ

where a simple polynomial fit will yield both the total attenuation slope, as, and the
effective scatterer radius, aeff.

When implementing the spectral fit algorithm, more accurate and precise
estimates are obtained as the frequency range (Df = fmax-fmin) used to obtain the
attenuation estimate increases, similar to the case for the multiple filter method
(Labyed 2010). Figure 4.10 shows average error and the deviation as a function of
frequency range for attenuation values of 0, 0.3, 0.5, and 1 dB/cm-MHz with aeff of
5–105, 5–75, 5–85, and 5–150 lm, respectively taken from Bigelow and O’Brien
(2005a, b). Also, shown are the results for a 25 lm aeff and attenuation values
varying from 0 to 1 dB/cm-MHz. The results were obtained using a 3 mm
Hamming window (*13.5 pulse lengths) and 25 independent echoes. Regardless
of the scattering and attenuation properties of the sample, a consistent variance is
achieved provided the same Df is used to obtain the estimates. Figure 4.10 also
reiterates that when finding the total attenuation, achieving good accuracy is much
easier than achieving small variance.
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Methods to Improve Usable Frequency Range: Because the total attenu-
ation estimation algorithms are highly dependent on bandwidth. One way of
increasing the bandwidth is to use higher frequency transducers. Using
higher frequency transducers however, limits the penetration depth into
tissue. Recently, methods that are based on coded excitation and pulse
compression have been shown to improve the bandwidth and penetration
depth (Oelze 2007). Surface micro-machined capacitive ultrasonic trans-
ducers are new designs that demonstrated a big improvement in the band-
width (Ladabaum et al. 1998; Ergun et al. 2003). Some ultrasound clinical
systems, however, allow the transducer to be excited at three different center
frequencies. This feature can be used to increase the usable frequency range
in the power spectrum of the backscattered signal.

4.4.3 Comparison of Spectral Fit Algorithm and Multiple
Filter Algorithm

As described in Sect. 4.4.1, the optimal number of filters for the multiple-filter
method is two. However, that result was only valid when the Gaussian filters were
non-overlapping. Therefore, it is important to test whether using overlapping filters
can improve the attenuation estimates. A comparison of the performance between
the multiple-filter method and the spectral-fit method is also important to consider.

Fig. 4.10 Plots of the a accuracy and b precison for a range of attenuations and scatterer sizes
taken from Bigelow and O’Brien (2005a, b) estimated from simulated backscattered signals
illustrating the importance of the frequency bandwidth when estimating the total attenuation
using the spectral fit algorithm
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In this section, we compare the bias, STD, and mean squared error (MSE) of the
total attenuation estimates obtained with the spectral-fit method, the multiple-filter
method that uses two non-overlapping filters, and the multiple-filter method that
uses four overlapping filters as described in (see Sect. 4.4.1). We use the numerical
simulations described in Sect. 4.4.1 to perform these tests. Figure 4.11 shows the
results as a function of number of independent echoes in the sample while
Fig. 4.12 gives the results as a function of number of pulse lengths used to estimate
the backscattered power spectrum. The results indicate that the variance strongly
depends on the number of echoes with only a weak dependence on the number of
pulse lengths. However, a slight bias is introduced for smaller pulse lengths that is
not observed when the number of independent echoes tends towards zero.

Fig. 4.11 Plots of the a bias, b STD, and c MSE of the estimate as, which was obtained using the
multiple filter method with two independent Gaussian filters, the multiple filter method with four
overlapping Gaussian filters, and the spectral-fit method, with respect to the number of
independent of echoes per ROI for an ROI length of 10 pulse lengths
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ROI Size needed for Total Attenuation Algorithms: A good rule of thumb
is to have a windowed region of at least 10 pulse lengths and at least 25 to 35
independent echoes. However, these values are also dependent on the fre-
quency range available for obtaining the estimates.

Based on the two figures below, the MSE is comparable for both the spectral fit
method and the multiple filter method with two independent Gaussian filters.
However, the spectral fit method provides a slightly smaller STD and a slightly
larger bias compared to the two independent filter method. The figures also show
in the multiple filter method, that using three overlapping Gaussian filters and a
fourth filter that spans the entire usable frequency range gives better results than
using only two independent Gaussian filters. This latter result demonstrates that

Fig. 4.12 Plots of the a bias, b STD, and c MSE of the estimate as, which was obtained using the
multiple filter method with two independent Gaussian filters, the multiple filter method with four
overlapping Gaussian filters, and the spectral-fit method, with respect the number of pulse lengths
per ROI for an ROI that has 50 independent echo lines
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the multiple filter method could potentially be improved to yield smaller errors in
the attenuation estimates by using two overlapping filters.
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