
Chapter 1
State of the Art Methods for Estimating
Backscatter Coefficients

Goutam Ghoshal, Jonathan Mamou and Michael L. Oelze

Abstract Ultrasound, which is routinely used for diagnostic imaging applications,
is mainly qualitative. However, novel quantitative ultrasound techniques are being
developed for diagnosing disease, classifying tissue, and assessing and monitoring
the application of therapy. Ultrasound is a propagating wave that interacts with the
medium as a function of the spatially-dependent mechanical properties of the
medium. By analyzing the backscattered wave, various properties of the propa-
gating media can be inferred. The backscatter coefficient, which is a fundamental
material property, can be estimated from backscattered ultrasound signals and can
be further parameterized for quantifying tissue properties and classifying disease.
In this chapter, the history of estimating backscatter coefficients will be explored
and different methods and their underlying assumptions for estimating the back-
scatter coefficient will be compared.
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1.1 Introduction

Ultrasonic scattering from biological tissue is relevant to noninvasive tissue char-
acterization and medical diagnosis. Ultrasound is a propagating pressure wave at
frequencies above the audible range in a medium that scatters and reflects acoustic
energy based on the mechanical properties of different tissues. Conventional
ultrasonic B-mode images are constructed from the envelope-detected, time-domain
signals scattered from different tissue structures. In an ultrasonic B-mode image, the
frequency dependent information resulting from the scattering media is not utilized.
However, by transforming the scattered signals in the frequency domain using a
Fourier transform method before B-mode processing, the frequency dependence of
the scattered signals can be related to structural properties of the biological media.
Often statistical modeling techniques are employed to extract sub-resolution
microstructural information using ultrasound with wavelengths larger than the
length scale of heterogeneity in the scattering media. To extract microstructural
features, such as an effective scatterer size of the dominant microstructure, accurate
estimation of the backscatter coefficient (BSC) versus frequency is necessary.

The BSC is defined as the time-averaged scattered intensity in the backward
direction per unit solid angle per unit volume normalized by time-averaged inci-
dent intensity (cm-1 Sr-1). Therefore, it is a fundamental quantity of a material
from which microstructural properties, such as shape, size, organization, con-
centration and impedance mismatch between scatterers and the surrounding media,
can be estimated. BSCs can be used to estimate both microstructural and acoustical
properties of the tissues.

BSC-based quantitative ultrasound (QUS) has been successfully used to char-
acterize different aspects of tissue microstructure. Numerous researchers have
estimated the BSC from different organs and tissues such as ocular, liver, prostate,
pancreas, spleen, renal, myocardial tissue, cardiac tissues and lymph nodes
(Nicholas 1982; O’Donnell and Miller 1981; Miller et al. 1983; Lizzi et al. 1983,
1987; Fei and Shung 1985; Insana et al. 1991; Maruvada et al. 2000; Mamou et al.
2011). Topp et al. (2001) differentiated between neoplastic and healthy tissues by
studying the frequency-dependent BSC from in vivo rat mammary tumors. Kabada
et al. (1980) estimated BSCs to differentiate different excised canine tissues in the
frequency range of 1–10 MHz. They observed a higher frequency dependence of
BSC in heart (left ventricle) muscle tissue than in liver tissues. Other researchers
have used BSCs to differentiate between normal dog hearts and heart tissue from
dogs subjected to ischemic injury by coronary occlusion (O’Donnell et al. 1981).
They hypothesized that the ultrasonic scattering was sensitive to concentration of
molecular collagen and the organizational state of the structural protein. Miller
et al. (1983) estimated BSC both in vitro and in vivo and observed differences
between normal and ischemic dog myocardium.

Nicholas (1982) published BSCs from various human excised tissues over a
frequency range of 0.7–7 MHz. The author used a power law to fit the experi-
mental backscatter from excised human liver, spleen and brain (white matter).
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The author suggested two basic scattering sites in these tissues on the order of 1
mm and 20–40 lm, respectively. D’Astous and Foster (1986) found that the BSC
from tumor tissues in the female breast were virtually inseparable from those of fat
at low frequencies, but began to separate at higher frequency regimes. The BSC for
parenchyma of the breast was about an order of magnitude above those of fat and
infiltrating ductal carcinoma.

Wear et al. (1995) published estimates of BSCs from in vivo human liver and
kidney in the frequency range of 2–4 MHz. Lu et al. (1999) estimated BSC in
normal human livers and human livers with diffuse diseases in vivo. Maruvada
et al. (2000) estimated BSCs from bovine tissues in the frequency range of 10–30
MHz. The authors observed similar frequency dependence in BSCs between
kidney and liver. Recently, Ghoshal et al. (2011) observed changes in BSCs from
excised beef and rabbit livers with increasing temperature in the frequency range
of 10–28 MHz. The authors observed changes in frequency dependence and
amplitude of BSC with increasing temperature.

Fei and Shung (1985) used a broadband substitution technique to estimate the
BSC of bovine kidney. Turnbull et al. (1989) estimated the BSC in human renal
tissue and three types of renal tumors over a frequency range of 3.5–7 MHz. The
authors could not differentiate between renal cell carcinoma and normal kidney
tissue. Insana et al. (1991) estimated BSCs from dog kidneys using a higher
frequency range of 1–15 MHz. They estimated the BSC at different angles with
respect to the predominant nephron orientation and observed a frequency depen-
dence of 1.98–2.3 depending upon the angle of incidence.

Variation in BSCs was also observed from the same in vitro tissue depending
upon the histochemical fixation process. Bamber et al. (1979) demonstrated that
the BSCs were different between fixed and unfixed mammalian tissue using for-
malin, ethyl alcohol and potassium dichromate as histochemical fixing solution.
The authors suggested 4 % formalin and 5 % potassium dichromate are good for
consistently preserving the ultrasonic properties within a few percent of those of
the fresh tissues.

Many other researchers have utilized the BSC to classify tissues and charac-
terize tissue states. Table 1.1 provides a compilation of some BSC results acquired
by various researchers from various tissues and tissue states. Therefore, the
plethora of BSC applications found in the literature suggests that the accurate and
precise calculation of the BSC from ultrasonic measurements is highly important.

When correctly implemented, the estimation of the BSC is system and user
independent and the BSC is only a function of the tissue properties. To estimate
system- and user-independent BSCs it is necessary to account for attenuation and
system effects accurately. The typical steps involved in estimating the BSC are
shown in Fig. 1.1. Radio-frequency (RF) signals are acquired from a scattering
media and gated using a windowing function such as Hanning or rectangular
window. Next, the power spectrum of a gated signal is calculated using the Fourier
transform. To improve the estimate of the BSC, the power spectra from several
gated signals can be averaged providing an average power spectrum. The average
power spectrum is divided by a calibration spectrum and then compensated for
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Table 1.1 BSCs in soft tissues reported by various researchers

Tissue types BSC Reference

(rb ¼ 10�6 � af n cm-1 Sr-1)

a n Freq. (MHz)

Canine liver (excised) – 2.1 1–10 (Kabada et al. 1980)
Canine heart (excised) – 3.3 1–10
Dog myocardium (in vivo) 58 3.1 2–7 (Miller et al. 1983)
Dog kidney (in vitro) 1.9 2.2 1–15 (Insana et al. 1991)
Dog myocardium (in vitro) 25 3.1 1–15 (O’Donnell et al. 1981)
Bovine kidney (in vitro) 31 2.3 2–7 (Fei and Shung 1985; Shung

1993)
Bovine heart (in vitro) 0.3 3.5 10–30 (Maruvada et al. 2000)
Bovine kidney (in vitro) 4 2.5 10–30
Bovine liver (in vitro) 5 2.4 10–30
Human kidney (in vitro) 6.6 1.7 3.5–7 (Turnbull et al. 1989)
Human liver (excised) 270 1.2 0.7–7 (Nicholas 1982)
Human spleen (excised) 120 1.7 0.7–7
Human brain (white matter,

excised)
20 1.2 0.7–7

Human liver (in vivo) 45 1.6 2–4 (Wear et al. 1995)
Human kidney (in vivo) 23 2.1 2–4
Human epidermis (excised) 5 3.8 (Moran et al. 1995)
Human dermis (excised) 1.8 2.8

Fig. 1.1 Flowchart for
estimating the BSC
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attenuation and diffraction effects. The resulting frequency-dependent function is
known as the BSC. The main challenge to estimating the BSC is to compensate for
diffraction and attenuation effects accurately.

The ability to correctly estimate the BSC has been extensively tested across
different transducers and systems. In one study, ten laboratories participated in an
interlaboratory study to estimate BSCs from well-calibrated tissue-mimicking
phantoms using each laboratory’s respective ultrasonic systems, operators and
techniques (Madsen et al. 1999). The conclusion of the study was that considerable
differences in BSC estimates from tissue mimicking phantoms with the same
properties existed between laboratories. These differences were attributed to the
different measurement techniques adopted by each group and different methods for
calculating the BSC. A better agreement was observed in a subsequent interlab-
oratory study to compare BSCs from tissue mimicking phantoms (Wear et al.
2005). In this study, the estimated BSCs were compared with theoretical values.
The theoretical BSCs were calculated using an exact solution for the scattering
from the phantoms (micrometer-sized glass beads were the scatterers) and the
properties of the phantoms (Faran 1951).

From the apparent lack of agreement between laboratories, more extensive
studies of BSC estimation were conducted to determine the sources of error
observed between different groups when estimating the BSC. In one of the sub-
sequent studies, BSCs from tissue-mimicking phantoms, where glass beads were
used as scatterers, were conducted between two laboratories (Anderson et al.
2010). The main aim was to investigate the interlaboratory comparison of the
theoretical model (Faran 1951) to predict BSCs in the frequency range 1–12 MHz
from glass spheres embedded in a uniform agar-based background. Overall, the
results of the study demonstrated good agreement between the two laboratories
(Anderson et al. 2010). Further interlaboratory comparison of BSCs from tissue-
mimicking phantoms with glass beads as scatterers were conducted using four
different clinical array-based imaging systems (Nam et al. 2012a, b) and again
good agreement was observed.

The first interlaboratory studies demonstrated that if attenuation and diffraction
effects are not accounted for accurately, the estimate of the BSC can be biased.
However, later studies demonstrated that careful measurement techniques along
with careful BSC calculation could provide reasonable agreement between groups
suggesting that the BSC can be system and user independent. Various researchers
have developed analytical and numerical methods to accurately compensate for
attenuation and diffraction effects and to estimate the BSC. In this chapter, the
different techniques to estimate the BSC will be examined along with the per-
formance associated with each technique.
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1.2 Methods to Estimate System Independent BSCs

1.2.1 Estimating the BSC Using Single-Element Sources

Sigelmann and Reid (1973) developed the method of estimating backscatter power
from a volume of randomly distributed scatterers using a single-element planar
transducer. The authors used a substitution method where the backscattered signal
from a sample and planar rigid reflector are compared to estimate the volumetric
backscattering cross-section. A few years later, Bamber et al. (1979) used a
cylindrical tissue sample positioned with its long axis normal to the sound prop-
agation path and recorded the backscattered signal at different angles using a
planar transducer that acted both as a source and receiver. The expression for
estimating the backscatter cross-section from the cylindrical tissue sample is given
by (Sigelmann and Reid 1973; Bamber et al. 1979)

rbðxÞ ¼
4an

Xe�4ar½eacs � e�acs�
WS

WR
ð1:1Þ

where a is the frequency-dependent attenuation coefficient, r is the radius of the
tissue cylinder, c is the speed of sound in the tissue, s is the duration of the time
gate, X is the solid angle subtended by the transducer face at the center of the
specimen, WS and WR are the measured power scattered from the tissue and
the total power returned by a plane reflector and n is the reflection coefficient of the
plane reflector.

In a later study, Nicholas et al. (1982) used the substitution method to derive the
BSC given by

rbðxÞ ¼
Wr

Wi

2gR2

b2A

k0

k

� �2 2a
e�2az1 ½1� eacs�

ð1:2Þ

where Wr is the total power received at the transducer face due to scattering, Wi is
the total power received from a planar reflector, g is the intensity reflection
coefficient for the reference interface, b is the intensity transmission coefficient for
the water/tissue interface, s is the gate duration, c is the sound speed in the tissue,
R is the distance from the transducer face to the gated volume, and z1 is the
distance from the surface of the tissue to the beginning of the gated region.

D’Astous and Foster (1986) used a plane wave approximation at the focus to
develop the method of computing BSCs for focused transducers. According to
their calculation, the BSC may be written as

rbðxÞ ¼
Rq

2pð1� cos hTÞz
jS0ðxÞj2

jS00ðxÞj
2 ð1:3Þ

where Rq is the intensity reflectance of the water quartz interface, hT is the half
angle of the transducer subtended at its focus, S0ðxÞ is the energy spectrum of the
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gated, attenuation corrected signal, S00ðxÞ is the Fourier transform of the reference
echo signal measured using a planar surface, and Dz is the axial length of the range
gated volume.

Ueda and Ozawa (1985), derived the reference power spectrum using the
boundary integral wave equation under the first order Born approximation. An
approximate closed form solution for estimating the BSC assuming a Gaussian
profile for the transducer radiation pattern was proposed and developed by the
authors and is given by

rG
b ðxÞ ¼ 1:9964

ðGp=2Þ2

1þ ðGp=2Þ
c2R2

1

A0Dz
jSðxÞj2 ð1:4Þ

where x is the frequency, A0 is the aperture area of the transducer, Dz is the axial
length of the range gated volume, R1 is the on-axis distance between the transducer
and the proximal surface of the gated volume, c is the pressure reflection coeffi-
cient of the planar reflector, Gp ¼ kr2=2R1 is the pressure focusing gain of the
transducer (Chen et al. 1993, 1994), and a is the radius of the transducer. The
power spectrum is defined by

jSðxÞj2 ¼ hjSmðxÞj2i
jS0ðxÞj2

e�4ðam�a0ÞðR1þDz=2Þ ð1:5Þ

where SmðxÞ is the Fourier transform of the sample echo signal, S0ðxÞ is the
Fourier transform of the reference echo signal measured using a planar surface,

and hjSmðxÞj2i is the average of the power spectrum of several adjacent, gated
scan lines smðtÞ. The attenuation coefficients for the sample and the reference
media are denoted by am and a0, respectively. The authors also derived the BSC
for a circular piston transducer given by

rbðxÞ ¼
Lðka; kR1Þ

0:919

� �
1:9964

ðGp=2Þ2

1þ ðGp=2Þ
c2R2

1

A0Dz
jSðxÞj2 ð1:6Þ

where Lðka; kR1Þ is a frequency-dependent correction factor, which can be cal-
culated numerically for respective transducer characteristics (Ueda and Ozawa
1985).

Insana and co-workers (Insana et al. 1990; Insana and Hall 1990) used a vol-
umetric integral wave equation derived under the first order Born approximation to
estimate the power spectrum of both weakly scattering random media and the
planar reflector. The BSC can be estimated using

rbðxÞ ¼ 0:3625
c2R2

1

A0Dz
jSðxÞj2: ð1:7Þ

Equation (1.7) was derived assuming a Hanning window to gate the RF data.
Lavarello et al. (2011) noted an inconsistency in the derivation given by Insana
et al. (1990) by a factor of 16. In particular, the source function corresponding to a
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planar reflector was defined as cðr0Þ ¼ c0hðz0 � zcÞ (Insana et al. 1990, Eq. (32))
with hðz0 � zcÞ a step function located at the center of the gate and c0 defined to be
the planar reflection coefficient by the authors. However, if j0 ¼ j0ð1þ djÞ and
q0 ¼ q0ð1þ dqÞ and under the weak scattering assumption (i.e., dj; dq\\1) used
by the authors (Insana et al. 1990), then c0 ¼ 4c. Therefore, c0 is equal to four times
the pressure reflection coefficient of the planar reflector and not to c as stated in
Insana et al (1990). As a result, the expression in Eq. (1.7) is off by a factor of 16.
Therefore, Eq. (1.7) should be corrected by multiplying it by 16 (Lavarello et al.
2011).

Chen et al. determined the reference power spectrum using the mirror image
method assuming a perfectly reflecting plate and derived the BSC using (Chen
et al. 1994, 1997)

rbðxÞ ¼ 2:17
c2R2

1

A0Dz
je�jGp J0ðGpÞ þ jJ1ðGpÞ

� �
� 1j

� 	
jSðxÞj2 ð1:8Þ

where Jmð:Þ is the mth order Bessel function and jSðxÞj2 is given in Eq. (1.5).
These different formulations for calculating the BSC were constructed for

single-element transducers. The variations in these different formulations can
explain some of the variations observed in BSC estimates in interlaboratory
comparisons of BSCs from tissue-mimicking phantoms. Additional methods for
calculating BSCs from ultrasonic arrays required different normalization
procedures.

1.2.2 Estimating the BSC Using Arrays

Insana and co-workers developed a method to estimate BSCs using array transducers
by analyzing the transducer beam directivity function for linear, two-dimensional
and annular-array transducers (Insana et al. 1994). The BSC is given by

rbðxÞ ¼
2

3L

kR

A

� �2 Wðf Þ
BHð0; 0Þ

ð1:9Þ

where L is the range gate length, R is the focal length, A is the active area of the
transducer, W is the normalized power density spectrum and BH is the autocor-
relation function for beam directivity. The authors provided the analytical
expressions for beam directivity functions and BSC for linear, two-dimensional
and annular-array transducers.

Yao et al. (1990) derived the BSC from a sample by comparing the echo data
acquired from the sample with the data from a well-characterized reference sample
whose BSCs and attenuation coefficients were known, i.e., the reference phantom
technique. The BSC using the reference phantom technique is given by
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rbðxÞ ¼ rR
b ðxÞe�4zðaRðxÞ�aSðxÞÞ jSSðxÞj2

jSRðxÞj2
ð1:10Þ

where z is the depth, rS
bðxÞ and aSðxÞ are the backscatter and attenuation coef-

ficients of the sample, respectively. Similarly, rR
b ðxÞ and aRðxÞ are the backscatter

and attenuation coefficients of the reference sample, respectively. The frequency
domain signal from the sample and the reference sample are denoted by SSðxÞ and
SRðxÞ, respectively. This technique is applicable for any transducer geometry such
as single-element focused/unfocused and array systems. The method assumes that
the speed of sound is approximately similar both in the sample and in the reference
sample.

The various methods to estimate BSCs from backscatter measurements are
listed in Table 1.2. This table provides a list of the different diffraction related
corrections associated with the BSC estimation.

1.2.3 Attenuation Correction

Attenuation correction is one of the major steps to estimate BSCs accurately as
shown in Fig. 1.1. Typically, the frequency-dependent attenuation modifies the
shape of the power spectrum which will lead to poor estimation of the BSC. Using
Eq. (1.5), the normalized power spectrum is written as

Table 1.2 Equations for calculating the BSC developed by different authors

References BSC (rbðxÞ) Remarks

(Sigelmann and Reid 1973;
Bamber et al. 1979)

4an
Xe�4ar ½eacs�e�acs�

Single-elemenet transducer

(Nicholas 1982) Wr
Wi

2gR2

b2A
k0
k

� �2 2a
e�2az1 ½1�eacs�

Substitution technique

(D’Astous and Foster 1986) Rq

2pð1�cos hT Þz
jS0ðxÞj2

jS00ðxÞj
2

Single-element focused
transducer

(Ueda and Ozawa 1985) 1:9964 ðGp=2Þ2
1þðGp=2Þ

c2R2
1

A0Dz jSðxÞj
2 Single-element focused

transducer, Gaussian
beam

Lðka;kR1Þ
0:919


 �
1:9964 ðGp=2Þ2

1þðGp=2Þ
c2R2

1
A0Dz jSðxÞj

2 Circular focused transducer

(Insana et al. 1990; Insana
and Hall 1990)

0:3625 c2R2
1

A0Dz jSðxÞj
2 Single-element focused

circular piston transducer
(Chen et al. 1994, 1997) 2:17 c2R2

1
A0Dz jSðxÞj

2 Single-element focused
piston transducer

� je�jGp J0ðGpÞ þ jJ1ðGpÞ
� �

� 1j
� 	

(Insana et al. 1994) 2
3L

kR
A

� 
2 Wðf Þ
BH ð0;0Þ

Array transducer

(Yao et al. 1990) rR
b ðxÞe�4zðaRðxÞ�aSðxÞÞ jSSðxÞj2

jSRðxÞj2
For any source/receiver

characteristics

1 State of the Art Methods for Estimating Backscatter Coefficients 11



jSðf Þj2 ¼ jSmðf Þj2

jS0ðf Þj2
Aðf Þ ð1:11Þ

where Aðf Þ is the frequency-dependent attenuation correction function. Extensive
research has been conducted to develop attenuation correction functions. Point
attenuation correction can be used for short-gated segments and low attenuation
coefficients given by Oelze and O’Brien (2002)

APCðf Þ ¼ e4aT ðf ÞzTþ2aðf ÞL ð1:12Þ

where zT is the distance between the source and the gated region, L is the length of
the gated region, and aTðf Þ, aðf Þ are the frequency-dependent attenuation coeffi-
cients in Np/cm for the intervening medium and over the gated region, respec-
tively. Specifically, the first term accounts for the round-trip frequency-dependent
attenuation losses between the gated region and the source, and the second term
account for the attenuation within the gated region. The attenuation over the gated
region is assumed to be constant. The point correction term also works well when
using a Hanning or Hamming window to gate the RF signal.

O’Donnell and Miller (1981) used similar approximations of small gate length
and low attenuation (aL [ 1) to derive an attenuation correction function given by

AOMðf Þ ¼ e4aT ðf ÞzT
4aðf ÞL

1� e�4aðf ÞL

� �
: ð1:13Þ

The above attenuation correction function is derived using a rectangular gating
function. The authors chose a short gate length such that the beam function was
approximately the same over the length of the gate for each frequency analyzed.
The term in the square bracket accounts for frequency-dependent attenuation
losses over the gated region.

Oelze and O’Brien (2002) derived another attenuation correction function by
averaging the power spectra after integrating an attenuation function over the
entire gate. The Oelze and O’Brien attenuation correction function is given by

AOOðf Þ ¼ e4aT ðf ÞzT
2aðf ÞL

1� e�2aðf ÞL

� �2

: ð1:14Þ

The authors (Oelze and O’Brien 2002) demonstrated better performance than the
O’Donnell and Miller (1981) model for aL\1 to estimate the normalized back-
scatter power spectrum. The authors also derived the attenuation correction
function for a Hanning window given by Oelze and O’Brien (2002)

AHan
OO ðf Þ ¼ AOOðf Þ 1þ 2aðf ÞL

2p

� �2
" #2

: ð1:15Þ

Bigelow and O’Brien (2004) derived attenuation correction functions by coupling
the windowing function, beam pattern and attenuation coefficients. The authors
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used a single order Gaussian function to model the transducer beam pattern in the
focal region. The attenuation correction function is given by

AOBðf Þ ¼ e4aT ðf ÞzT

ZL=2

�L=2

dz gwinðzÞe
�4 z2

w2
z
þ4aðf Þz

2
64

3
75
�1

ð1:16Þ

where gwin is the windowing function and wz is the width of the Gaussian beam in
the focal region.

Attenuation correction is one of the major components in estimating BSCs
accurately. The frequency-dependent attenuation correction for some of the
methods explained above are shown in Fig. 1.2a, b using L ¼ 1 cm, zT ¼ 0:5 cm.
The comparison between different methods for low (aT ¼ a ¼ 0:2 dB/cm/MHz)
and high (aT ¼ a ¼ 1:0 dB/cm/MHz) attenuation coefficients is shown in
Fig. 1.2a, b, respectively. The results clearly show that all the methods agree with
each other for low attenuation values and start deviating as the attenuation coef-
ficient in the sample increases. Specifically, the Oelze and O’Brien attenuation
correction function lies in between the point attenuation and the O’Donnell and
Miller attenuation correction function. Therefore, some attenuation correction
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Fig. 1.2 Frequency dependent attenuation correction functions for (a) low attenuating and
(b) high attenuating tissues
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functions may over- or under-compensate while normalizing the power spectrum
to estimate the BSC. A table of the different attenuation correction techniques that
have been developed are provided in Table 1.3.

Researchers have also developed techniques to simultaneously estimate BSC
and attenuation slopes using a least squares method (Nam et al. 2011). The authors
used a power law model for BSCs and developed a three-parameter model to
incorporate backscatter and attenuation coefficients. A least squares technique was
employed to estimate backscatter and attenuation coefficients simultaneously. By
simultaneously estimating the BSC and attenuation, there was no need to com-
pensate for attenuation effects. The authors used a glass bead phantom to compare
theoretical and experimental results.

1.3 Accuracy of Methods to Estimate BSCs

Given the availability of several methods for BSC estimation, it becomes of high
importance to evaluate the feasibility of obtaining accurate and consistent BSC
estimates. Some of the analytical models developed by various researchers are
explained briefly in this chapter. Over the years, authors have developed models to
predict BSCs accurately based on their experimental configurations. Lavarello
et al. (2011) recently provided a comparison using three different techniques
(Insana et al. 1990; Chen et al. 1997; Ueda and Ozawa 1985) shown in Eqs. (1.7),
(1.8) and (1.4), respectively, to estimate BSCs from two well-characterized glass
bead phantoms using multiple transducers with a wide range of focal properties
and frequency bandwidths.

The basic difference between the three formulations for calculating BSCs are in
the terms used to correct for diffraction effects. If these diffraction effect terms
are isolated, then comparisons of their relative contributions can be conducted.

Table 1.3 Attenuation correction functions

References Attenuation correction function (Aðf Þ) Remarks

(Oelze and
O’Brien
2002)

e4aT ðf ÞzTþ2aðf ÞL Point attenuation correction

(O’Donnell and
Miller 1981)

e4aT ðf ÞzT 4aðf ÞL
1�e�4aðf ÞL

h i
Small gate length and low attenuation

(Oelze and
O’Brien
2002)

AOOðf Þ ¼ e4aT ðf ÞzT�2aðf ÞL

L
2aðf ÞL

1�e�2aðf ÞL

h i2 For small (aL\1) and large (aL [ 1)
attenuation coefficients

AOOðf Þ 1þ 2aðf ÞL
2p


 �2
� �2 Hanning window

(Bigelow and
O’Brien
2004)

e4aT ðf ÞzT

ZL=2

�L=2

dz gwinðzÞe
�4 z2

w2
z
þ4aðf Þz

2
64

3
75
�1 Coupled window function, beam

pattern and attenuation coefficient
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The frequency-dependent functions that are proportional to diffraction correction
for each of the three formulations are given by

D1ðGpÞ ¼ 1

D2ðGpÞ ¼ e�jGp J0ðGpÞ þ jJ1ðGpÞ
� �

� 1
�� ��2

DG
3 ðGpÞ ¼ 0:92

ðGp=2Þ2

1þ ðGp=2Þ2

D3ðka; kR1Þ ¼
1

0:92
DG

3 ðGpÞLðka; kR1Þ

ð1:17Þ

where D1;D2;DG
3 ;D3 can be derived from Eqs. (1.7), (1.8), (1.4) and (1.6),

respectively. The pressure focusing gain is given by Gp ¼ kr2=2R1. The authors
investigated the frequency dependence of three different calibration techniques as
shown in Fig. 1.3. At low Gp it can be observed that all the frequency dependent
calibrations terms are similar except D1 (Insana et al. 1990) which does not have
the frequency dependence.

Interestingly, all the frequency dependent calibration curves asymptotically
agree with D1 at high Gp. Specifically, the curve corresponding to DG

3 had good
agreement with D2 and D3 for low Gp values and with D1 for large Gp values as
shown in Fig. 1.3. The curves corresponding to D2;D3 and DG

3 agreed with D1 to
within 1 dB for Gp [ 25, Gp [ 25, and Gp [ 5, respectively. The authors dem-
onstrated that different estimation methods introduced varying frequency-depen-
dent effects to BSC curves, which could have noticeable effects when estimating
other parameters from the BSC such as correlation length and scattering strength.

Estimates of the BSC from the two phantoms using: (1) the different transducers
to cover a large frequency range, (2) a large range of Gp values, and (3) the three
methods (with the Insana et al. 1990 method corrected) are plotted in Fig. 1.4. Two
agar phantoms with glass bead inclusions, labeled as ‘‘41 lm phantom,’’ contained
47 glass spheres/mm3 ranging in diameter from 36 to 48 lm, and a second
phantom labeled as ‘‘150–180 lm phantom,’’ contained 20 g/l of glass spheres
(approximately 3.2 glass spheres/mm3) ranging in diameter from 144 to 204 lm

Fig. 1.3 Comparison of the
frequency-dependent
calibration terms to estimate
system independent BSCs.
[Figure taken from Lavarello
et al. (2011)]
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were used for the experiments. All techniques gave similar overall BSC trends;
however, there were differences in terms of the magnitude and slight differences in
the frequency dependence of the BSC curves using the different methods. These
differences were found to provide different estimates of scatterer size, but most
estimates of scatterer size based on the BSC curves were within the range of sizes
present in the phantoms as long as the ka range (acoustic wavenumber times the
scatterer radius) was above 0.5.

In summary, the authors investigated several BSC normalization methods
experimentally in order to isolate and determine potential differences in BSC.
From experimental results, it was found that significant BSC amplitude differences
may be observed depending on the normalization method used, which has a direct
effect on scattering strength estimates. The differences in BSC frequency depen-
dence introduced by all methods may result in noticeable variations in effective
scatterer size estimates, especially when considering transducers with low Gp

values and imaging targets with low ka products. The choice of normalization
method may explain much of the variations reported in earlier inter-laboratory
comparisons of BSC estimation (Madsen et al. 1999; Wear et al. 2005) and the
results suggest that trying to use transducers with a larger Gp value when esti-
mating BSCs will provide the most accurate and consistent results.

1.4 Conclusion

The ultrasonic BSC is a fundamental system-independent material quantity that
can be used to characterize tissues, and monitor and assess therapies. Researchers
have used BSCs to characterize different organs/tissues of the body and published

(a) (b)

Fig. 1.4 BSC estimates from a (a) 41 lm diameter and (b) a 150–180 lm diameter glass bead
phantom normalized using the three methods with the theoretical BSC for the respective
phantoms. The BSCs are denoted as g1�(Insana et al. 1990), g2�(Chen et al. 1997), g3�(Ueda
and Ozawa 1985), gG

3�(Ueda and Ozawa 1985) assuming a Gaussian beam, and gth�Farans
model. [Figure taken from (Lavarello et al. 2011)]
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results from various mammalian tissues are available for reference for both in vitro
and in vivo experimental configurations. For spectral-based QUS techniques to be
successful, the BSC is one of the major parameters that needs to be estimated
accurately. This is due to the fact that the BSC can be used to infer microstructural
parameters such as correlation length and scattering strength. Often, correlation
length can be related to cell size, as various researchers have hypothesized cells
may be a dominant source of scattering in specific tissues. The scattering strength
can be related to the acoustical properties of the tissue.

Due to the importance of estimating system- and user-independent BSCs
accurately, numerous studies have been conducted to compensate for system
effects and attenuation effects. Depending on the application, particular methods to
estimate the BSC may be more appropriate based on experimental configuration
and tissue types. We hypothesize that coupling attenuation and diffraction effects
in an integral form (Bigelow and O’Brien 2004) can be used to estimate BSCs
accurately. The method developed by Chen et al. (1997) is a robust method and
used widely to estimate the BSC for focused single-element transducer systems.
The reference phantom technique (Yao et al. 1990) is a very powerful technique
because modeling of the diffraction pattern of the beam is not required, but the
sound speed in the unknown and the reference sample need to be similar for the
method to be most effective. The reference phantom technique can be used for
both single-element and array transducer systems. The evidence of vast experi-
mental and theoretical investigations conducted to estimate BSCs to infer tissue
properties suggests that the BSC can be used for diagnostic and therapeutic
applications.
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