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Preface

In the 1970s, Holasek, Gans, Purnell, and Sokollu expressed the notion that the
frequency content of medical-ultrasound echo signals might be exploited to
characterize soft tissue; they developed a method of color-encoding of B-scan
images to depict spectral content of RF echo signals and termed the method
‘‘spectra color.’’ By characterize, they essentially meant to distinguish one type of
soft tissue from another, for example, to distinguish a cancerous lesion from a
benign one, to track changes in tissue over time, or to monitor the progression or
regression of disease. Unfortunately, the available analog technology of that era
made testing, validating, and implementing this concept practically impossible.
However, the notion of characterizing soft tissue based on features that could be
extracted from echo signals caught the imagination of many other investigators,
and several innovative efforts were launched in attempts to extract information
from echo signals in a quantitative manner for the purpose of characterizing tissue
with the then-available, essentially analog technology.

Those early efforts tended to concentrate on a single, echo-signal feature, such
as attenuation, and to associate differences in estimates of the value of that feature
with differences in tissue type or status. At about the same time, a young
researcher named Frederic (‘‘Fred’’) Lizzi was assigned by his managers in the
Laboratories Division of Riverside Research to a project analyzing patterns of
surface waves in the ocean. This project was intended to identify patterns or
perturbations that could be used to detect underwater objects. While it was a
stimulating and interesting project, it gave Fred considerable insight into signal
analysis, Fourier methods, and power spectra.

Just about the time that Fred was wrapping up his project, Riverside Research
was approached by an ophthalmologist from the Columbia Presbyterian Hospital
named D. Jackson (‘‘Jack’’) Coleman to see whether the technology Riverside had
developed for fabricating piezoelectric transducers for acousto-optic modulators
could be applied to ultrasonic imaging of the eye. It was indeed applicable; and
Riverside Research built the first clinical, 10-MHz eye scanner for Jack. Fred
became heavily involved in that effort, which led to more than 30 years of col-
laborative research between Fred and Jack.
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Their collaboration began with studies to evaluate the safety aspects of using
ultrasound at frequencies that were an order of magnitude higher than frequencies
then used for clinical ultrasound scanning. Those studies established thresholds for
damage induced by focused ultrasound in the eye using cow eyes ex vivo and
rabbit eyes in vivo, and firmly established that diagnostic levels being used at 10
MHz were quite safe, and the damage thresholds also established a foundation for
using focused ultrasound for therapeutic purposes.

Once safety was adequately established, Fred and Jack used the newly devel-
oped ophthalmic system to investigate the feasibility of using spectrum analysis of
ultrasound echo signals for soft-tissue characterization. Their early work employed
a manually dithered 10-MHz transducer that swept over an elevated region of the
retina to determine whether the ‘‘bump’’ visible to the ophthalmologist was caused
by underlying fluid or solid soft tissue. If the cause of the bump was solid tissue,
then an analog spectrum analyzer generated the average logarithmic power
spectrum of the dithered echo signals. A paper recorder traced the spectrum, which
was then manually entered into a large central computer. To take transducer and
electronic-system contributions to the spectrum into account, the logarithmic
power spectrum of echo signals obtained from the surface of a ‘‘perfect’’ reflec-
tor—an optically flat glass plate normal to the incident ultrasound beam at the
center of the transducer focal region—also was generated, manually digitized, and
subtracted from the logarithmic power spectrum of the tissue echo signals. The
result was termed the ‘‘normalized’’ or ‘‘calibrated’’ logarithmic power spectrum
of the tissue echo signals, and a linear-regression approximation to the normalized
spectrum produced associated slope, intercept, and midband spectral-parameter
values, and the method we now term quantitative ultrasound or ‘‘QUS’’ was born.

The ensuing years saw considerable refinement by Fred and others, beginning
with the initial exploitation of digital technology, for example, using Biomation
analog-to-digital converters struggling to digitize linearly amplified echo signals at
a sampling rate of 50 MS/s with 6-bit resolution and using DEC PDP-11/60 and
similar minicomputers for signal processing and imaging. Employing the newly
emerging digital technology, Fred and Jack established that linear combinations of
slope and intercept values could distinguish among different histological types of
primary choroidal metastatic melanomas. This basic empirical approach was
applied with increasing technological capability over many succeeding years by
Fred and his collaborators to characterization of liver and kidney tissue and dif-
ferentiation of diffuse liver diseases. My collaborators and I subsequently applied
this approach to characterization of intravascular thrombi and plaque, to imaging
of prostate cancer, and to detection of metastases in lymph nodes.

In the meantime, in 1983, Fred and his co-workers published a theoretical
framework for spectrum analysis of ultrasound echo signals from soft tissue that
took into account the properties of the beam profile, the nature of the gating
function, and the three-dimensional impedance distributions of the tissue scatter-
ers. The underlying assumptions of the framework were that scattering is weak and
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consistent with the Born approximation, and that the ultrasound field is reasonably
uniform, ideally, at or beyond the focal zone. If these approximations applied, then
the theory related the spectral slope value to an effective scatterer size (once
attenuation was taken into account) and the spectral intercept value to effective
scatterer size and the product of scatterer number concentration and relative
acoustic impedance squared, i.e., the so-called ‘‘acoustic concentration.’’ Of
course, once size was estimated from the attenuation-compensated slope value,
acoustic concentration could be estimated readily. Using this theory, Fred was able
to show that the size estimate derived from the backscattered signals of intraocular
tumors correlated nicely with their primary or metastatic nature. And QUS finally
had a theoretical foundation underlying its slowly progressing, but very encour-
aging, empirical results.

Although Fred’s theoretical framework assumed scatterers that were spheres
with a distinct surface or that had a radially symmetric spatial autocorrelation
function that could be expressed as an exponential or a logarithmic function, his
theory estimated scatterer properties based only on the straight-line parameters,
i.e., on the slope, intercept, and midband values. In 1990, Michal Insana and
Timothy Hall advanced the theory of ultrasound scattering in soft tissue by going
beyond the simple linear approximation to the empirical spectrum and introducing
a form factor into the theory that permitted better fitting the observed spectrum to
an assumed scatterer model, most typically an exponential model. With this
improvement, QUS began to make progress in many additional laboratories. First,
at the University of Illinois under the mentorship of William (‘‘Bill’’) O’Brien,
Michael Oelze and Timothy Bigelow expanded the underlying theory and applied
it to tumor models in animals. Jonathan Mamou continued in that vein by inferring
3D distributions of acoustic impedance from tumor histology to further validate
the theory underlying QUS. Gregory Czarnota and Michael Kolios and students
they have mentored applied QUS theory to cell pellets in order to identify the
actual histological scatterers, and concluded that cell nuclei were the best candi-
dates for that role. And so the momentum for QUS built further through the turn of
the century.

Today, QUS is being applied to a wide range of topics, including detection and
imaging of cancers in the prostate, detection of metastases in lymph nodes,
assessment of apoptosis and necrosis in treated tissue, and monitoring of therapy.
QUS also is expanding to include estimates other than those derived from power
spectra. For example, Tadashi Yamaguchi utilizes statistical estimates derived
from the envelope of the backscattered signals to distinguish among types of liver
tissue, and envelope-statistics estimates are now being applied to other soft tissues
as well, for example, to lymph nodes by Jonathan Mamou and his colleagues.
Destrempes and his colleagues are advancing the theoretical framework of enve-
lope-statistics models in QUS, and Yoshifumi Saijo is relating QUS estimates to
acoustic microscopy features. Roberto Lavarello and Michael Andre are incor-
porating QUS in their theoretical and applied studies of ultrasound tomography,
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and Eric Strohm and his colleagues are investigating individual cells using
acoustic microscopy at very high frequencies. Hence, the term QUS applies to a
broad field that has matured in many ways while it continues to grow and advance
in others. The chapters of this book have been contributed by current and historical
leaders in QUS, and they cover the field comprehensively; however, they provide
only a snapshot showing where rapidly evolving QUS stands today, barely one
decade into the twenty-first century.

New York, NY, USA Ernest J. Feleppa
Lizzi Center for Biomedical Engineering

Riverside Research
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Introduction

Diagnostic Ultrasound

Diagnostic ultrasound has gained wide acceptance for a comprehensive range of
medical applications. It is routinely used for gynecological applications, cardiac
applications, and also a wide range of internal imaging applications (e.g., kidneys,
abdominal, etc.). The ability of current ultrasound technology to easily form
images in real-time with a small portable machine has significantly contributed to
this trend. Furthermore, ultrasound remains one of the most inexpensive medical
imaging modalities, is easy-to-use, and uses non-ionizing radiation. Therefore,
because of these characteristics, ultrasound will continue to play a prominent role
in medical practice worldwide.

Typical clinical ultrasound machines employ linear- or phased-array probes with
center frequencies ranging from 1 to 10 MHz to form conventional (i.e., B-mode)
images. These images have spatial resolution on the order of a wavelength (i.e.,
around 0.15–1.5 mm). The contrast mechanism in these images is the change in
acoustic properties (speed of sound and density) of the different soft tissues
encountered by the propagating ultrasound waves. The ability of these images to
display morphology has gained wide acceptance in gynecology, cardiology,
oncology, and others. It is often said that because of their ‘‘grainy’’ nature, or
speckle noise, conventional B-mode images are not as ‘‘nice’’ or easy to interpret as
medical images obtained from other modalities (e.g., X-ray computed tomography
and magnetic resonance).

In addition, conventional B-mode images lack functional information and
quantitative information is limited because images are highly dependent on
machine settings. Although some quantitative studies are conducted from B-mode
images (e.g., cyst size measurements, limb measurements during pregnancies, etc.)
and some functional information can be inferred from Doppler methods which can
map blood flow (e.g., echocardiography), current ultrasound imaging techniques
lag far behind functional and quantitative information provided by magnetic
resonance imaging and X-ray computed tomography.

In the past two decades, immense progress in technology has yielded a
significant improvement in transducer technology, ultrasound image quality, and
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image-formation algorithms and provided a basis for the development of more-
complex imaging modes, like blood-flow imaging, contrast-agent-enhanced
ultrasound, and, of course, quantitative ultrasound (QUS). For example, most
QUS techniques rely on the availability of the raw unprocessed radio-frequency
(RF) ultrasound backscattered signals. In the past, scanners would only deliver
video images, which were obtained after envelope detection and post-processing
operations such as time-gain compensation and log compression. These ultrasound
images were inherently user-dependent and also were devoid of the frequency-
dependent information originally contained in the raw (unprocessed) RF data. The
next generation of clinical ultrasound scanners allowed access to the envelope-
detected signals which were obtained after analog quadrature demodulation of the
raw RF signals. By demodulation, significantly lower frequency content of the
signals could be used and less expensive (i.e., slower) circuitry and electronics
could be used. Currently, more and more ultrasound scanners have the necessary
hardware to obtain and digitize the raw RF data, although the ‘‘research mode’’
which permits access to the data often needs to be unlocked by the manufacturer.
The availability of these research modes will permit novel QUS techniques to be
implemented on clinical devices and these new techniques to be exploited for
improving diagnostic ultrasound.

Quantitative Ultrasound in Soft Tissues

The general research field of QUS in soft tissues deals with the development of
measurements methods which can yield quantitative tissue properties that are
independent of instrumentation and the operator. These QUS estimates can be used
to form new parametric images (i.e., QUS images), where QUS estimates may be
color-coded and overlaid above the conventional B-mode image. Therefore, QUS
image contrast is entirely dictated by the underlying tissue properties, which may be
different from the sound speed and density, and consequently, the interpretation of
QUS images can be made in a much richer sense than conventional B-mode images.

At the simplest level, and at any scale, soft tissue can be understood as being
formed by tissue components having shapes, spatial organization, and mechanical
properties unique to tissue type and state encountered. The hope of QUS is to
specifically estimate some of these properties by using appropriate models and the
well-established theory of how ultrasound interacts with soft tissues. The
ultrasound frequency chosen for a particular application drives the sensitivity of
QUS to a specific scale of tissue structures, typically smaller than the wavelength.
Consequently, higher frequency permits the interrogation of smaller tissue
components. The field of QUS was born from these simple concepts, but
challenges were quick to emerge when dealing with soft tissues because they
present a natural complexity.

Over three decades ago, initial QUS studies developed the theories on how to
process ultrasound signals to remove system dependence and obtain QUS estimates

xii Introduction



describing soft tissue extensively. For QUS methods based on the backscatter
coefficient, the most noteworthy studies were the theoretical frameworks developed
by Lizzi et al. (1983, 1987) and Insana et al. (1990). These works not only provided
a strong theoretical foundation, but they also presented encouraging experimental
results.

Following these foundational studies, a wide range of QUS methods were
developed to perform noninvasive tissue characterization. Initial basic studies have
been performed in blood (Yu and Cloutier 2007; Franceschini et al. 2011),
individual cells (Baddour et al. 2005), cell pellets (Oelze and Zachary 2006), and
well-calibrated tissue-mimicking scattering phantoms (Madsen et al. 1999; Wear
et al.). Preclinical and clinical studies were performed in characterizing prostate
cancer (Feleppa et al. 2002), ocular tumors (Coleman and Lizzi 1983; Coleman
et al. 1985, 1995), liver diseases (King et al. 1985), thrombi (Sigel et al. 1990),
plaques (Lee et al. 1998; Noritomi et al. 1997a, b), cardiac abnormalities (Lizzi
et al. 1997), and lymph nodes (Mamou et al. 2010, 2011).

Concurrently, other QUS studies were performed which relied on measurement
approaches not directly related to the backscatter coefficients. Among these studies
include using scanning acoustic microscopy, inverse and forward scattering models
of ultrasound tomography, and also envelope-statistics modeling and quantification.
These QUS methods are all addressed in this book. A remaining important QUS field
is ultrasound elastography, where ultrasound signals are processed to obtain QUS
estimates of tissue stiffness. Elastography techniques rely on perturbing the tissue
(e.g., deformation) and measuring how tissue responds to these perturbations.
Therefore, QUS techniques can be divided into techniques based on estimating
unperturbed properties of tissues and on measuring properties from perturbed tissues.
This book will focus on the former QUS techniques where signals from unperturbed
tissues are quantified and related to tissue properties. Several works on elastography
methods in ultrasound are available in the literature for the interested reader.

This Book

This book is organized into four major themes of active QUS research. The first
theme deals with QUS studies based on the quantification of the ultrasound
backscatter coefficient and is strongly emphasized in this book. The backscatter
coefficient is essentially a function of frequency and tissue properties which
indicate with a high degree of detail how a medium reflects sounds. In this first
theme, Chap. 1 of the book reviews the state-of-the-art methods for estimating the
backscatter coefficients experimentally. This chapter is intended for readers who
do not have a background in ultrasound scattering theory and provides an
important literature review of the progress in the field. Chapter 2 provides a
historic review of QUS successes and provides an important overview of early
attempts and also details the most successful studies to date. This chapter is
intended for readers who do not have a background in QUS.
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Chapter 3 deals with the important issue of QUS estimate statistics. QUS
estimates are in nature stochastic and for estimates to be meaningful they must be
estimated from a region-of-interest (ROI) of the ultrasound data. The chapter
provides an excellent review of the methods used to choose the appropriate sample
size, and also proposes ideas on how to reduce the sample size without compro-
mising the QUS estimates. The sample sizes necessary to obtain good QUS esti-
mates ultimately drive QUS image spatial resolution. Therefore, a tradeoff exists
between spatial resolution and accuracy and precision of QUS estimates. This
chapter is also insightful on how QUS estimates should be interpreted.

Chapter 4 reviews the different methods available to estimate and compensate
for attenuation in the context of QUS. Ultrasound attenuation is frequency-
dependent, and therefore, inappropriate compensation can drastically change the
shape of the backscatter coefficient and yield erroneous QUS estimates. In addi-
tion, local attenuation within the soft tissue sample can in itself be used as a QUS
estimate to provide quantitative information about tissue.

Chapters 5–8 cover four successful recent biomedical applications of QUS in
soft tissues. These chapters represent the culmination of three decades of research
and provide an encouraging view of what the future of QUS methods could be.
Chapters 5 and 6 present preclinical QUS studies to assess individual cells and red
blood cells. Comparatively, Chaps. 7 and 8 present clinical studies in oncology
dealing with the detection of cancer in the prostate and lymph nodes. Both clinical
studies presented extremely encouraging results.

Chapter 9, the final chapter of the first theme of the book, presents an innovative
and modern QUS topic. It deals with QUS methods to monitor the real-time
application of therapy and to detect the early response of tumors to therapy. An
ongoing clinical challenge is the proper monitoring of the therapy, sparing healthy
tissues and early detection of therapeutic response. This chapter investigates how
QUS estimates could potentially be used to benefit this research theme.

The second theme of the book is interested in QUS methods which rely on
envelope statistics. These methods are fundamentally different from backscatter
coefficient-based methods because they do not require the raw RF data. Mathe-
matical models can be used to describe ultrasound scattering phenomenon in terms
of envelope statistics. Tissue properties and QUS estimates can then be obtained
by fitting these models to specified statistics estimated within ROIs. Chapter 10
provides a comprehensive review of these mathematical models and also presents
algorithms to estimate model parameters. This chapter also clearly describes how
in the realm of ultrasound scattering these QUS estimates can be related to
physical parameters pertaining to soft tissue organization and microstructure.
Chapter 11 presents an elegant clinical application of QUS based on envelope
statistics. Methods are presented which quantify the differences between a sample
tissue ROI and a Rayleigh-distributed ROI. Rayleigh statistics are expected from a
medium containing numerous randomly located sub-resolution identical scatterers.
In this chapter these methods were successfully applied to the characterization of
liver fibrosis.
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The third theme of the book focuses on acoustic microscopy studies which
estimate quantitative tissue properties. Chapter 12 presents our view of a wide
range of acoustic microscopy methods to estimate several acoustic properties of
soft tissues (i.e., speed of sound, density, attenuation, etc.) using high and very-
high frequency transducers. Acoustic microscopy relies on 2D scanning of a thin
tissue sample or the surface of a thicker sample. These QUS images typically have
very-high spatial resolutions (i.e., 1–10 lm) and provide very comprehensive
information about soft tissues. Chapter 13 presents recent acoustic microscopy
studies conducted on individual cells using transducers with center frequencies up
to 1 GHz. The QUS images obtained are high quality in detail and spatial reso-
lution and provide acoustic properties of cells which cannot be obtained by any
other method.

The fourth theme of the book presents QUS approaches using ultrasound
tomography techniques. Ultrasound tomography methods are inherently complex
due to the diffraction, refraction, and attenuation of the ultrasound waves. In recent
years, better forward and inverse scattering models have been developed, and
techniques have reached a certain maturity with the help of more powerful and
efficient computers and reconstruction algorithms. Chapter 14 reviews the state-of-
the-art methods and proposes a comprehensive view of the literature on the topic,
from the initial theoretical studies to the currently applied studies. Finally,
Chap. 15 presents one of the most promising biomedical applications of ultrasound
tomography, the QUS imaging of breast-cancer patients.

Jonathan Mamou
Michael L. Oelze
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Chapter 1
State of the Art Methods for Estimating
Backscatter Coefficients

Goutam Ghoshal, Jonathan Mamou and Michael L. Oelze

Abstract Ultrasound, which is routinely used for diagnostic imaging applications,
is mainly qualitative. However, novel quantitative ultrasound techniques are being
developed for diagnosing disease, classifying tissue, and assessing and monitoring
the application of therapy. Ultrasound is a propagating wave that interacts with the
medium as a function of the spatially-dependent mechanical properties of the
medium. By analyzing the backscattered wave, various properties of the propa-
gating media can be inferred. The backscatter coefficient, which is a fundamental
material property, can be estimated from backscattered ultrasound signals and can
be further parameterized for quantifying tissue properties and classifying disease.
In this chapter, the history of estimating backscatter coefficients will be explored
and different methods and their underlying assumptions for estimating the back-
scatter coefficient will be compared.
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1.1 Introduction

Ultrasonic scattering from biological tissue is relevant to noninvasive tissue char-
acterization and medical diagnosis. Ultrasound is a propagating pressure wave at
frequencies above the audible range in a medium that scatters and reflects acoustic
energy based on the mechanical properties of different tissues. Conventional
ultrasonic B-mode images are constructed from the envelope-detected, time-domain
signals scattered from different tissue structures. In an ultrasonic B-mode image, the
frequency dependent information resulting from the scattering media is not utilized.
However, by transforming the scattered signals in the frequency domain using a
Fourier transform method before B-mode processing, the frequency dependence of
the scattered signals can be related to structural properties of the biological media.
Often statistical modeling techniques are employed to extract sub-resolution
microstructural information using ultrasound with wavelengths larger than the
length scale of heterogeneity in the scattering media. To extract microstructural
features, such as an effective scatterer size of the dominant microstructure, accurate
estimation of the backscatter coefficient (BSC) versus frequency is necessary.

The BSC is defined as the time-averaged scattered intensity in the backward
direction per unit solid angle per unit volume normalized by time-averaged inci-
dent intensity (cm-1 Sr-1). Therefore, it is a fundamental quantity of a material
from which microstructural properties, such as shape, size, organization, con-
centration and impedance mismatch between scatterers and the surrounding media,
can be estimated. BSCs can be used to estimate both microstructural and acoustical
properties of the tissues.

BSC-based quantitative ultrasound (QUS) has been successfully used to char-
acterize different aspects of tissue microstructure. Numerous researchers have
estimated the BSC from different organs and tissues such as ocular, liver, prostate,
pancreas, spleen, renal, myocardial tissue, cardiac tissues and lymph nodes
(Nicholas 1982; O’Donnell and Miller 1981; Miller et al. 1983; Lizzi et al. 1983,
1987; Fei and Shung 1985; Insana et al. 1991; Maruvada et al. 2000; Mamou et al.
2011). Topp et al. (2001) differentiated between neoplastic and healthy tissues by
studying the frequency-dependent BSC from in vivo rat mammary tumors. Kabada
et al. (1980) estimated BSCs to differentiate different excised canine tissues in the
frequency range of 1–10 MHz. They observed a higher frequency dependence of
BSC in heart (left ventricle) muscle tissue than in liver tissues. Other researchers
have used BSCs to differentiate between normal dog hearts and heart tissue from
dogs subjected to ischemic injury by coronary occlusion (O’Donnell et al. 1981).
They hypothesized that the ultrasonic scattering was sensitive to concentration of
molecular collagen and the organizational state of the structural protein. Miller
et al. (1983) estimated BSC both in vitro and in vivo and observed differences
between normal and ischemic dog myocardium.

Nicholas (1982) published BSCs from various human excised tissues over a
frequency range of 0.7–7 MHz. The author used a power law to fit the experi-
mental backscatter from excised human liver, spleen and brain (white matter).
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The author suggested two basic scattering sites in these tissues on the order of 1
mm and 20–40 lm, respectively. D’Astous and Foster (1986) found that the BSC
from tumor tissues in the female breast were virtually inseparable from those of fat
at low frequencies, but began to separate at higher frequency regimes. The BSC for
parenchyma of the breast was about an order of magnitude above those of fat and
infiltrating ductal carcinoma.

Wear et al. (1995) published estimates of BSCs from in vivo human liver and
kidney in the frequency range of 2–4 MHz. Lu et al. (1999) estimated BSC in
normal human livers and human livers with diffuse diseases in vivo. Maruvada
et al. (2000) estimated BSCs from bovine tissues in the frequency range of 10–30
MHz. The authors observed similar frequency dependence in BSCs between
kidney and liver. Recently, Ghoshal et al. (2011) observed changes in BSCs from
excised beef and rabbit livers with increasing temperature in the frequency range
of 10–28 MHz. The authors observed changes in frequency dependence and
amplitude of BSC with increasing temperature.

Fei and Shung (1985) used a broadband substitution technique to estimate the
BSC of bovine kidney. Turnbull et al. (1989) estimated the BSC in human renal
tissue and three types of renal tumors over a frequency range of 3.5–7 MHz. The
authors could not differentiate between renal cell carcinoma and normal kidney
tissue. Insana et al. (1991) estimated BSCs from dog kidneys using a higher
frequency range of 1–15 MHz. They estimated the BSC at different angles with
respect to the predominant nephron orientation and observed a frequency depen-
dence of 1.98–2.3 depending upon the angle of incidence.

Variation in BSCs was also observed from the same in vitro tissue depending
upon the histochemical fixation process. Bamber et al. (1979) demonstrated that
the BSCs were different between fixed and unfixed mammalian tissue using for-
malin, ethyl alcohol and potassium dichromate as histochemical fixing solution.
The authors suggested 4 % formalin and 5 % potassium dichromate are good for
consistently preserving the ultrasonic properties within a few percent of those of
the fresh tissues.

Many other researchers have utilized the BSC to classify tissues and charac-
terize tissue states. Table 1.1 provides a compilation of some BSC results acquired
by various researchers from various tissues and tissue states. Therefore, the
plethora of BSC applications found in the literature suggests that the accurate and
precise calculation of the BSC from ultrasonic measurements is highly important.

When correctly implemented, the estimation of the BSC is system and user
independent and the BSC is only a function of the tissue properties. To estimate
system- and user-independent BSCs it is necessary to account for attenuation and
system effects accurately. The typical steps involved in estimating the BSC are
shown in Fig. 1.1. Radio-frequency (RF) signals are acquired from a scattering
media and gated using a windowing function such as Hanning or rectangular
window. Next, the power spectrum of a gated signal is calculated using the Fourier
transform. To improve the estimate of the BSC, the power spectra from several
gated signals can be averaged providing an average power spectrum. The average
power spectrum is divided by a calibration spectrum and then compensated for
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Table 1.1 BSCs in soft tissues reported by various researchers

Tissue types BSC Reference

(rb ¼ 10�6 � af n cm-1 Sr-1)

a n Freq. (MHz)

Canine liver (excised) – 2.1 1–10 (Kabada et al. 1980)
Canine heart (excised) – 3.3 1–10
Dog myocardium (in vivo) 58 3.1 2–7 (Miller et al. 1983)
Dog kidney (in vitro) 1.9 2.2 1–15 (Insana et al. 1991)
Dog myocardium (in vitro) 25 3.1 1–15 (O’Donnell et al. 1981)
Bovine kidney (in vitro) 31 2.3 2–7 (Fei and Shung 1985; Shung

1993)
Bovine heart (in vitro) 0.3 3.5 10–30 (Maruvada et al. 2000)
Bovine kidney (in vitro) 4 2.5 10–30
Bovine liver (in vitro) 5 2.4 10–30
Human kidney (in vitro) 6.6 1.7 3.5–7 (Turnbull et al. 1989)
Human liver (excised) 270 1.2 0.7–7 (Nicholas 1982)
Human spleen (excised) 120 1.7 0.7–7
Human brain (white matter,

excised)
20 1.2 0.7–7

Human liver (in vivo) 45 1.6 2–4 (Wear et al. 1995)
Human kidney (in vivo) 23 2.1 2–4
Human epidermis (excised) 5 3.8 (Moran et al. 1995)
Human dermis (excised) 1.8 2.8

Fig. 1.1 Flowchart for
estimating the BSC
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attenuation and diffraction effects. The resulting frequency-dependent function is
known as the BSC. The main challenge to estimating the BSC is to compensate for
diffraction and attenuation effects accurately.

The ability to correctly estimate the BSC has been extensively tested across
different transducers and systems. In one study, ten laboratories participated in an
interlaboratory study to estimate BSCs from well-calibrated tissue-mimicking
phantoms using each laboratory’s respective ultrasonic systems, operators and
techniques (Madsen et al. 1999). The conclusion of the study was that considerable
differences in BSC estimates from tissue mimicking phantoms with the same
properties existed between laboratories. These differences were attributed to the
different measurement techniques adopted by each group and different methods for
calculating the BSC. A better agreement was observed in a subsequent interlab-
oratory study to compare BSCs from tissue mimicking phantoms (Wear et al.
2005). In this study, the estimated BSCs were compared with theoretical values.
The theoretical BSCs were calculated using an exact solution for the scattering
from the phantoms (micrometer-sized glass beads were the scatterers) and the
properties of the phantoms (Faran 1951).

From the apparent lack of agreement between laboratories, more extensive
studies of BSC estimation were conducted to determine the sources of error
observed between different groups when estimating the BSC. In one of the sub-
sequent studies, BSCs from tissue-mimicking phantoms, where glass beads were
used as scatterers, were conducted between two laboratories (Anderson et al.
2010). The main aim was to investigate the interlaboratory comparison of the
theoretical model (Faran 1951) to predict BSCs in the frequency range 1–12 MHz
from glass spheres embedded in a uniform agar-based background. Overall, the
results of the study demonstrated good agreement between the two laboratories
(Anderson et al. 2010). Further interlaboratory comparison of BSCs from tissue-
mimicking phantoms with glass beads as scatterers were conducted using four
different clinical array-based imaging systems (Nam et al. 2012a, b) and again
good agreement was observed.

The first interlaboratory studies demonstrated that if attenuation and diffraction
effects are not accounted for accurately, the estimate of the BSC can be biased.
However, later studies demonstrated that careful measurement techniques along
with careful BSC calculation could provide reasonable agreement between groups
suggesting that the BSC can be system and user independent. Various researchers
have developed analytical and numerical methods to accurately compensate for
attenuation and diffraction effects and to estimate the BSC. In this chapter, the
different techniques to estimate the BSC will be examined along with the per-
formance associated with each technique.
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1.2 Methods to Estimate System Independent BSCs

1.2.1 Estimating the BSC Using Single-Element Sources

Sigelmann and Reid (1973) developed the method of estimating backscatter power
from a volume of randomly distributed scatterers using a single-element planar
transducer. The authors used a substitution method where the backscattered signal
from a sample and planar rigid reflector are compared to estimate the volumetric
backscattering cross-section. A few years later, Bamber et al. (1979) used a
cylindrical tissue sample positioned with its long axis normal to the sound prop-
agation path and recorded the backscattered signal at different angles using a
planar transducer that acted both as a source and receiver. The expression for
estimating the backscatter cross-section from the cylindrical tissue sample is given
by (Sigelmann and Reid 1973; Bamber et al. 1979)

rbðxÞ ¼
4an

Xe�4ar½eacs � e�acs�
WS

WR
ð1:1Þ

where a is the frequency-dependent attenuation coefficient, r is the radius of the
tissue cylinder, c is the speed of sound in the tissue, s is the duration of the time
gate, X is the solid angle subtended by the transducer face at the center of the
specimen, WS and WR are the measured power scattered from the tissue and
the total power returned by a plane reflector and n is the reflection coefficient of the
plane reflector.

In a later study, Nicholas et al. (1982) used the substitution method to derive the
BSC given by

rbðxÞ ¼
Wr

Wi

2gR2

b2A

k0

k

� �2 2a
e�2az1 ½1� eacs�

ð1:2Þ

where Wr is the total power received at the transducer face due to scattering, Wi is
the total power received from a planar reflector, g is the intensity reflection
coefficient for the reference interface, b is the intensity transmission coefficient for
the water/tissue interface, s is the gate duration, c is the sound speed in the tissue,
R is the distance from the transducer face to the gated volume, and z1 is the
distance from the surface of the tissue to the beginning of the gated region.

D’Astous and Foster (1986) used a plane wave approximation at the focus to
develop the method of computing BSCs for focused transducers. According to
their calculation, the BSC may be written as

rbðxÞ ¼
Rq

2pð1� cos hTÞz
jS0ðxÞj2

jS00ðxÞj
2 ð1:3Þ

where Rq is the intensity reflectance of the water quartz interface, hT is the half
angle of the transducer subtended at its focus, S0ðxÞ is the energy spectrum of the
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gated, attenuation corrected signal, S00ðxÞ is the Fourier transform of the reference
echo signal measured using a planar surface, and Dz is the axial length of the range
gated volume.

Ueda and Ozawa (1985), derived the reference power spectrum using the
boundary integral wave equation under the first order Born approximation. An
approximate closed form solution for estimating the BSC assuming a Gaussian
profile for the transducer radiation pattern was proposed and developed by the
authors and is given by

rG
b ðxÞ ¼ 1:9964

ðGp=2Þ2

1þ ðGp=2Þ
c2R2

1

A0Dz
jSðxÞj2 ð1:4Þ

where x is the frequency, A0 is the aperture area of the transducer, Dz is the axial
length of the range gated volume, R1 is the on-axis distance between the transducer
and the proximal surface of the gated volume, c is the pressure reflection coeffi-
cient of the planar reflector, Gp ¼ kr2=2R1 is the pressure focusing gain of the
transducer (Chen et al. 1993, 1994), and a is the radius of the transducer. The
power spectrum is defined by

jSðxÞj2 ¼ hjSmðxÞj2i
jS0ðxÞj2

e�4ðam�a0ÞðR1þDz=2Þ ð1:5Þ

where SmðxÞ is the Fourier transform of the sample echo signal, S0ðxÞ is the
Fourier transform of the reference echo signal measured using a planar surface,

and hjSmðxÞj2i is the average of the power spectrum of several adjacent, gated
scan lines smðtÞ. The attenuation coefficients for the sample and the reference
media are denoted by am and a0, respectively. The authors also derived the BSC
for a circular piston transducer given by

rbðxÞ ¼
Lðka; kR1Þ

0:919

� �
1:9964

ðGp=2Þ2

1þ ðGp=2Þ
c2R2

1

A0Dz
jSðxÞj2 ð1:6Þ

where Lðka; kR1Þ is a frequency-dependent correction factor, which can be cal-
culated numerically for respective transducer characteristics (Ueda and Ozawa
1985).

Insana and co-workers (Insana et al. 1990; Insana and Hall 1990) used a vol-
umetric integral wave equation derived under the first order Born approximation to
estimate the power spectrum of both weakly scattering random media and the
planar reflector. The BSC can be estimated using

rbðxÞ ¼ 0:3625
c2R2

1

A0Dz
jSðxÞj2: ð1:7Þ

Equation (1.7) was derived assuming a Hanning window to gate the RF data.
Lavarello et al. (2011) noted an inconsistency in the derivation given by Insana
et al. (1990) by a factor of 16. In particular, the source function corresponding to a
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planar reflector was defined as cðr0Þ ¼ c0hðz0 � zcÞ (Insana et al. 1990, Eq. (32))
with hðz0 � zcÞ a step function located at the center of the gate and c0 defined to be
the planar reflection coefficient by the authors. However, if j0 ¼ j0ð1þ djÞ and
q0 ¼ q0ð1þ dqÞ and under the weak scattering assumption (i.e., dj; dq\\1) used
by the authors (Insana et al. 1990), then c0 ¼ 4c. Therefore, c0 is equal to four times
the pressure reflection coefficient of the planar reflector and not to c as stated in
Insana et al (1990). As a result, the expression in Eq. (1.7) is off by a factor of 16.
Therefore, Eq. (1.7) should be corrected by multiplying it by 16 (Lavarello et al.
2011).

Chen et al. determined the reference power spectrum using the mirror image
method assuming a perfectly reflecting plate and derived the BSC using (Chen
et al. 1994, 1997)

rbðxÞ ¼ 2:17
c2R2

1

A0Dz
je�jGp J0ðGpÞ þ jJ1ðGpÞ

� �
� 1j

� 	
jSðxÞj2 ð1:8Þ

where Jmð:Þ is the mth order Bessel function and jSðxÞj2 is given in Eq. (1.5).
These different formulations for calculating the BSC were constructed for

single-element transducers. The variations in these different formulations can
explain some of the variations observed in BSC estimates in interlaboratory
comparisons of BSCs from tissue-mimicking phantoms. Additional methods for
calculating BSCs from ultrasonic arrays required different normalization
procedures.

1.2.2 Estimating the BSC Using Arrays

Insana and co-workers developed a method to estimate BSCs using array transducers
by analyzing the transducer beam directivity function for linear, two-dimensional
and annular-array transducers (Insana et al. 1994). The BSC is given by

rbðxÞ ¼
2

3L

kR

A

� �2 Wðf Þ
BHð0; 0Þ

ð1:9Þ

where L is the range gate length, R is the focal length, A is the active area of the
transducer, W is the normalized power density spectrum and BH is the autocor-
relation function for beam directivity. The authors provided the analytical
expressions for beam directivity functions and BSC for linear, two-dimensional
and annular-array transducers.

Yao et al. (1990) derived the BSC from a sample by comparing the echo data
acquired from the sample with the data from a well-characterized reference sample
whose BSCs and attenuation coefficients were known, i.e., the reference phantom
technique. The BSC using the reference phantom technique is given by
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rbðxÞ ¼ rR
b ðxÞe�4zðaRðxÞ�aSðxÞÞ jSSðxÞj2

jSRðxÞj2
ð1:10Þ

where z is the depth, rS
bðxÞ and aSðxÞ are the backscatter and attenuation coef-

ficients of the sample, respectively. Similarly, rR
b ðxÞ and aRðxÞ are the backscatter

and attenuation coefficients of the reference sample, respectively. The frequency
domain signal from the sample and the reference sample are denoted by SSðxÞ and
SRðxÞ, respectively. This technique is applicable for any transducer geometry such
as single-element focused/unfocused and array systems. The method assumes that
the speed of sound is approximately similar both in the sample and in the reference
sample.

The various methods to estimate BSCs from backscatter measurements are
listed in Table 1.2. This table provides a list of the different diffraction related
corrections associated with the BSC estimation.

1.2.3 Attenuation Correction

Attenuation correction is one of the major steps to estimate BSCs accurately as
shown in Fig. 1.1. Typically, the frequency-dependent attenuation modifies the
shape of the power spectrum which will lead to poor estimation of the BSC. Using
Eq. (1.5), the normalized power spectrum is written as

Table 1.2 Equations for calculating the BSC developed by different authors

References BSC (rbðxÞ) Remarks

(Sigelmann and Reid 1973;
Bamber et al. 1979)

4an
Xe�4ar ½eacs�e�acs�

Single-elemenet transducer

(Nicholas 1982) Wr
Wi

2gR2

b2A
k0
k

� �2 2a
e�2az1 ½1�eacs�

Substitution technique

(D’Astous and Foster 1986) Rq

2pð1�cos hT Þz
jS0ðxÞj2

jS00ðxÞj
2

Single-element focused
transducer

(Ueda and Ozawa 1985) 1:9964 ðGp=2Þ2
1þðGp=2Þ

c2R2
1

A0Dz jSðxÞj
2 Single-element focused

transducer, Gaussian
beam

Lðka;kR1Þ
0:919


 �
1:9964 ðGp=2Þ2

1þðGp=2Þ
c2R2

1
A0Dz jSðxÞj

2 Circular focused transducer

(Insana et al. 1990; Insana
and Hall 1990)

0:3625 c2R2
1

A0Dz jSðxÞj
2 Single-element focused

circular piston transducer
(Chen et al. 1994, 1997) 2:17 c2R2

1
A0Dz jSðxÞj

2 Single-element focused
piston transducer

� je�jGp J0ðGpÞ þ jJ1ðGpÞ
� �

� 1j
� 	

(Insana et al. 1994) 2
3L

kR
A

� 2 Wðf Þ
BH ð0;0Þ

Array transducer

(Yao et al. 1990) rR
b ðxÞe�4zðaRðxÞ�aSðxÞÞ jSSðxÞj2

jSRðxÞj2
For any source/receiver

characteristics
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jSðf Þj2 ¼ jSmðf Þj2

jS0ðf Þj2
Aðf Þ ð1:11Þ

where Aðf Þ is the frequency-dependent attenuation correction function. Extensive
research has been conducted to develop attenuation correction functions. Point
attenuation correction can be used for short-gated segments and low attenuation
coefficients given by Oelze and O’Brien (2002)

APCðf Þ ¼ e4aT ðf ÞzTþ2aðf ÞL ð1:12Þ

where zT is the distance between the source and the gated region, L is the length of
the gated region, and aTðf Þ, aðf Þ are the frequency-dependent attenuation coeffi-
cients in Np/cm for the intervening medium and over the gated region, respec-
tively. Specifically, the first term accounts for the round-trip frequency-dependent
attenuation losses between the gated region and the source, and the second term
account for the attenuation within the gated region. The attenuation over the gated
region is assumed to be constant. The point correction term also works well when
using a Hanning or Hamming window to gate the RF signal.

O’Donnell and Miller (1981) used similar approximations of small gate length
and low attenuation (aL [ 1) to derive an attenuation correction function given by

AOMðf Þ ¼ e4aT ðf ÞzT
4aðf ÞL

1� e�4aðf ÞL

� �
: ð1:13Þ

The above attenuation correction function is derived using a rectangular gating
function. The authors chose a short gate length such that the beam function was
approximately the same over the length of the gate for each frequency analyzed.
The term in the square bracket accounts for frequency-dependent attenuation
losses over the gated region.

Oelze and O’Brien (2002) derived another attenuation correction function by
averaging the power spectra after integrating an attenuation function over the
entire gate. The Oelze and O’Brien attenuation correction function is given by

AOOðf Þ ¼ e4aT ðf ÞzT
2aðf ÞL

1� e�2aðf ÞL

� �2

: ð1:14Þ

The authors (Oelze and O’Brien 2002) demonstrated better performance than the
O’Donnell and Miller (1981) model for aL\1 to estimate the normalized back-
scatter power spectrum. The authors also derived the attenuation correction
function for a Hanning window given by Oelze and O’Brien (2002)

AHan
OO ðf Þ ¼ AOOðf Þ 1þ 2aðf ÞL

2p

� �2
" #2

: ð1:15Þ

Bigelow and O’Brien (2004) derived attenuation correction functions by coupling
the windowing function, beam pattern and attenuation coefficients. The authors

12 G. Ghoshal et al.



used a single order Gaussian function to model the transducer beam pattern in the
focal region. The attenuation correction function is given by

AOBðf Þ ¼ e4aT ðf ÞzT

ZL=2

�L=2

dz gwinðzÞe
�4 z2

w2
z
þ4aðf Þz

2
64

3
75
�1

ð1:16Þ

where gwin is the windowing function and wz is the width of the Gaussian beam in
the focal region.

Attenuation correction is one of the major components in estimating BSCs
accurately. The frequency-dependent attenuation correction for some of the
methods explained above are shown in Fig. 1.2a, b using L ¼ 1 cm, zT ¼ 0:5 cm.
The comparison between different methods for low (aT ¼ a ¼ 0:2 dB/cm/MHz)
and high (aT ¼ a ¼ 1:0 dB/cm/MHz) attenuation coefficients is shown in
Fig. 1.2a, b, respectively. The results clearly show that all the methods agree with
each other for low attenuation values and start deviating as the attenuation coef-
ficient in the sample increases. Specifically, the Oelze and O’Brien attenuation
correction function lies in between the point attenuation and the O’Donnell and
Miller attenuation correction function. Therefore, some attenuation correction
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Fig. 1.2 Frequency dependent attenuation correction functions for (a) low attenuating and
(b) high attenuating tissues
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functions may over- or under-compensate while normalizing the power spectrum
to estimate the BSC. A table of the different attenuation correction techniques that
have been developed are provided in Table 1.3.

Researchers have also developed techniques to simultaneously estimate BSC
and attenuation slopes using a least squares method (Nam et al. 2011). The authors
used a power law model for BSCs and developed a three-parameter model to
incorporate backscatter and attenuation coefficients. A least squares technique was
employed to estimate backscatter and attenuation coefficients simultaneously. By
simultaneously estimating the BSC and attenuation, there was no need to com-
pensate for attenuation effects. The authors used a glass bead phantom to compare
theoretical and experimental results.

1.3 Accuracy of Methods to Estimate BSCs

Given the availability of several methods for BSC estimation, it becomes of high
importance to evaluate the feasibility of obtaining accurate and consistent BSC
estimates. Some of the analytical models developed by various researchers are
explained briefly in this chapter. Over the years, authors have developed models to
predict BSCs accurately based on their experimental configurations. Lavarello
et al. (2011) recently provided a comparison using three different techniques
(Insana et al. 1990; Chen et al. 1997; Ueda and Ozawa 1985) shown in Eqs. (1.7),
(1.8) and (1.4), respectively, to estimate BSCs from two well-characterized glass
bead phantoms using multiple transducers with a wide range of focal properties
and frequency bandwidths.

The basic difference between the three formulations for calculating BSCs are in
the terms used to correct for diffraction effects. If these diffraction effect terms
are isolated, then comparisons of their relative contributions can be conducted.

Table 1.3 Attenuation correction functions

References Attenuation correction function (Aðf Þ) Remarks

(Oelze and
O’Brien
2002)

e4aT ðf ÞzTþ2aðf ÞL Point attenuation correction

(O’Donnell and
Miller 1981)

e4aT ðf ÞzT 4aðf ÞL
1�e�4aðf ÞL

h i
Small gate length and low attenuation

(Oelze and
O’Brien
2002)

AOOðf Þ ¼ e4aT ðf ÞzT�2aðf ÞL

L
2aðf ÞL

1�e�2aðf ÞL

h i2 For small (aL\1) and large (aL [ 1)
attenuation coefficients

AOOðf Þ 1þ 2aðf ÞL
2p


 �2
� �2 Hanning window

(Bigelow and
O’Brien
2004)

e4aT ðf ÞzT

ZL=2

�L=2

dz gwinðzÞe
�4 z2

w2
z
þ4aðf Þz

2
64

3
75
�1 Coupled window function, beam

pattern and attenuation coefficient
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The frequency-dependent functions that are proportional to diffraction correction
for each of the three formulations are given by

D1ðGpÞ ¼ 1

D2ðGpÞ ¼ e�jGp J0ðGpÞ þ jJ1ðGpÞ
� �

� 1
�� ��2

DG
3 ðGpÞ ¼ 0:92

ðGp=2Þ2

1þ ðGp=2Þ2

D3ðka; kR1Þ ¼
1

0:92
DG

3 ðGpÞLðka; kR1Þ

ð1:17Þ

where D1;D2;DG
3 ;D3 can be derived from Eqs. (1.7), (1.8), (1.4) and (1.6),

respectively. The pressure focusing gain is given by Gp ¼ kr2=2R1. The authors
investigated the frequency dependence of three different calibration techniques as
shown in Fig. 1.3. At low Gp it can be observed that all the frequency dependent
calibrations terms are similar except D1 (Insana et al. 1990) which does not have
the frequency dependence.

Interestingly, all the frequency dependent calibration curves asymptotically
agree with D1 at high Gp. Specifically, the curve corresponding to DG

3 had good
agreement with D2 and D3 for low Gp values and with D1 for large Gp values as
shown in Fig. 1.3. The curves corresponding to D2;D3 and DG

3 agreed with D1 to
within 1 dB for Gp [ 25, Gp [ 25, and Gp [ 5, respectively. The authors dem-
onstrated that different estimation methods introduced varying frequency-depen-
dent effects to BSC curves, which could have noticeable effects when estimating
other parameters from the BSC such as correlation length and scattering strength.

Estimates of the BSC from the two phantoms using: (1) the different transducers
to cover a large frequency range, (2) a large range of Gp values, and (3) the three
methods (with the Insana et al. 1990 method corrected) are plotted in Fig. 1.4. Two
agar phantoms with glass bead inclusions, labeled as ‘‘41 lm phantom,’’ contained
47 glass spheres/mm3 ranging in diameter from 36 to 48 lm, and a second
phantom labeled as ‘‘150–180 lm phantom,’’ contained 20 g/l of glass spheres
(approximately 3.2 glass spheres/mm3) ranging in diameter from 144 to 204 lm

Fig. 1.3 Comparison of the
frequency-dependent
calibration terms to estimate
system independent BSCs.
[Figure taken from Lavarello
et al. (2011)]
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were used for the experiments. All techniques gave similar overall BSC trends;
however, there were differences in terms of the magnitude and slight differences in
the frequency dependence of the BSC curves using the different methods. These
differences were found to provide different estimates of scatterer size, but most
estimates of scatterer size based on the BSC curves were within the range of sizes
present in the phantoms as long as the ka range (acoustic wavenumber times the
scatterer radius) was above 0.5.

In summary, the authors investigated several BSC normalization methods
experimentally in order to isolate and determine potential differences in BSC.
From experimental results, it was found that significant BSC amplitude differences
may be observed depending on the normalization method used, which has a direct
effect on scattering strength estimates. The differences in BSC frequency depen-
dence introduced by all methods may result in noticeable variations in effective
scatterer size estimates, especially when considering transducers with low Gp

values and imaging targets with low ka products. The choice of normalization
method may explain much of the variations reported in earlier inter-laboratory
comparisons of BSC estimation (Madsen et al. 1999; Wear et al. 2005) and the
results suggest that trying to use transducers with a larger Gp value when esti-
mating BSCs will provide the most accurate and consistent results.

1.4 Conclusion

The ultrasonic BSC is a fundamental system-independent material quantity that
can be used to characterize tissues, and monitor and assess therapies. Researchers
have used BSCs to characterize different organs/tissues of the body and published

(a) (b)

Fig. 1.4 BSC estimates from a (a) 41 lm diameter and (b) a 150–180 lm diameter glass bead
phantom normalized using the three methods with the theoretical BSC for the respective
phantoms. The BSCs are denoted as g1�(Insana et al. 1990), g2�(Chen et al. 1997), g3�(Ueda
and Ozawa 1985), gG

3�(Ueda and Ozawa 1985) assuming a Gaussian beam, and gth�Farans
model. [Figure taken from (Lavarello et al. 2011)]
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results from various mammalian tissues are available for reference for both in vitro
and in vivo experimental configurations. For spectral-based QUS techniques to be
successful, the BSC is one of the major parameters that needs to be estimated
accurately. This is due to the fact that the BSC can be used to infer microstructural
parameters such as correlation length and scattering strength. Often, correlation
length can be related to cell size, as various researchers have hypothesized cells
may be a dominant source of scattering in specific tissues. The scattering strength
can be related to the acoustical properties of the tissue.

Due to the importance of estimating system- and user-independent BSCs
accurately, numerous studies have been conducted to compensate for system
effects and attenuation effects. Depending on the application, particular methods to
estimate the BSC may be more appropriate based on experimental configuration
and tissue types. We hypothesize that coupling attenuation and diffraction effects
in an integral form (Bigelow and O’Brien 2004) can be used to estimate BSCs
accurately. The method developed by Chen et al. (1997) is a robust method and
used widely to estimate the BSC for focused single-element transducer systems.
The reference phantom technique (Yao et al. 1990) is a very powerful technique
because modeling of the diffraction pattern of the beam is not required, but the
sound speed in the unknown and the reference sample need to be similar for the
method to be most effective. The reference phantom technique can be used for
both single-element and array transducer systems. The evidence of vast experi-
mental and theoretical investigations conducted to estimate BSCs to infer tissue
properties suggests that the BSC can be used for diagnostic and therapeutic
applications.
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Chapter 2
Quantitative Ultrasound History
and Successes

Goutam Ghoshal, Michael L. Oelze and William D. O’Brien Jr.

Abstract Ultrasound has been used for imaging and diagnostics for more than
50 years. During that time, the number of medical applications for ultrasonic
imaging has increased dramatically. These increases in applicability have come
with improved device technology, improved understanding of ultrasound inter-
action with tissues, and improved processing techniques. Over the past three
decades, quantitative ultrasound (QUS) techniques have been explored to further
improve medical diagnostics and monitor/assess therapeutic responses. The
acceptance of QUS techniques has been slower in common medical practice than
conventional ultrasonic imaging techniques like B-mode or Doppler. This is due
mainly to a lack of technological capabilities to make use of these unique and
beneficial imaging modes. However, with modern ultrasonic imaging devices,
QUS techniques have found a new acceptance and are poised to make significant
contributions to diagnostic medicine. In this chapter, we will examine the history
of QUS techniques and their evolution over time along with significant contri-
butions and successes that have been demonstrated over the years.
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2.1 Introduction

The earliest history of the science of sound has been recorded by Hunt (1978) in
his manuscript that was completed following his untimely death. Another inter-
esting and readable history of acoustics was prepared by Lindsey (1966). Hunt
recounts the period from antiquity to the age of Newton, and Lindsey brings us
mostly to the age of Rayleigh with special emphasis on Rayleigh’s impact on
modern acoustics. Sir Isaac Newton put forth the first serious theory regarding
sound being a wave in his 1687 Principia Mathematica (Newton 1687). Modern
acoustics as we know it today was first formulated in the classic 1877 work The
Theory of Sound by Lord Rayleigh (Rayleigh 1945).

The development of diagnostic ultrasound applications dates back to the 1930s
(Gohr and Wedekind 1940). The Dussik brothers developed a through-transmis-
sion differential attenuation method to image the brain (Dussik 1942, 1948, 1949;
Dussik et al. 1947), although their technique was never widely developed for
clinical application. Shortly thereafter, Firestone’s patent (1942) for flaw detection
in metals, and his later demonstration, is considered the first modern pulse-echo
ultrasound technique for flaw detection (Firestone 1945, 1946; Firestone and
Frederick 1946), and the basis for pulse-echo imaging in medicine. The devel-
opment of diagnostic ultrasound instrumentation as we know it today was initiated
around the time of the end of the Second World War; a time when fast electronic
circuitry was becoming available as a result of the wartime RADAR and SONAR
efforts, both of which utilized the pulse-echo principle. In the late 1940s and early
1950s, it was demonstrated that tissue interfaces could be detected in ultrasound
echoes (Howry 1952), that tissue structure could be differentiated (cancer from
benign) in ultrasound echoes (Wild 1950; Wild et al. 1950; French et al. 1950;
Wild and Neal 1951), and that gall stones could be detected in ultrasound echoes
(Ludwig and Struthers 1950), all of these being A-mode applications. Later,
Howry and Bliss (1952) and Wild and Reid (1952a, b) independently built and
successfully demonstrated the earliest B-mode, bistable, ultrasound scanners.

By the early to mid 1950s, the basic ideas of producing and acquiring reflected
ultrasound echoes using either water path or direct contact methods, and dis-
playing them in either A-mode or B-mode formats had been identified. These early
investigators made their observations and findings public through presentations
and publications which no doubt stimulated others to pursue pulse-echo system
improvements and/or diagnostic imaging applications in, for example, echoen-
cephalography (Leksell 1955; Gordon 1958; Tanaka et al. 1960), ophthalmology
(Mundt and Hughes 1956; Baum and Greenwood 1958a, b), echocardiography
(Elder and Hertz 1954; Elder and Gustafson 1957), obstetrics and gynecology
(Donald and Brown 1961; Donald 1974), breast (Hayashi et al. 1962), direct-
contact two-dimensional ultrasonic scanner (Donald 1964; Holmes et al. 1965),
ultrasonic scanner with two articulated arms (Wells 1966; Filipczynski et al. 1966)
and dynamic focusing (Reid and Wild 1957). However, progress was modest and
the bistable images were often challenging for diagnostic interpretation in the late
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1950s and 1960s. It was a time when most of the progress was being made in the
university and/or hospital settings by true pioneers.

The 15-year period between the early 1970s and mid 1980s witnessed the greatest
expansion of diagnostic ultrasound imaging capabilities, starting with bistable,
static and ending with grey-scale, real-time capabilities. One of the major ultrasonic
image quality advances was the introduction of the grey scale (Kossoff and Garrett
1972; Kossoff et al. 1974). Another major advance was the ability to display images
in real time, wherein there were a number of approaches including the mechanical
scanner (Griffith and Henry 1974), the linear array (Bom 1973; Bom et al. 1973), the
phased array (Somer 1968; von Ramm and Thurston 1972; Thurston and von Ramm
1974), and the water-path scanner (Carpenter and Kossoff 1977). Scan converter
developments played an important role with the implementation of both grey-scale
and real-time capabilities (Fry et al. 1968; Yokio and Ito 1972).

2.2 Attenuation and Propagation Speed

Along with advances in ultrasound scanner technology came a deeper under-
standing of the wave propagation properties of tissues, which would define image
contrast mechanisms and the fundamental limits of penetration depth and frame
rate. One of the earliest reports of ultrasonic propagation properties in tissue was
the observation of a nearly linear dependence of the attenuation coefficient on
frequency (Pohlman 1939), later verified by Heuter (1948). Hueter also observed
that attenuation in muscle tissue was anisotropic due to structural features of
striated muscle. The first significant reports of propagation speed and impedance in
high-water-content tissues observed that these values did not vary greatly from
those of water, and that anisotropic structural features did not significantly affect
these parameters (Ludwig 1950).

Researchers had investigated the relationship between macromolecular com-
ponents of tissue and ultrasound wave propagation to understand ultrasonic
absorption in biological tissues. Carstensen et al. (1953) discovered that the
absorption and sound speed in blood were due to the amount of protein content of
the blood, whether the protein is in solution or contained within cells. Another
investigation indicated that a small fraction of the absorption arose due to the
cellular organization of the blood (Carstensen and Schwan 1959). Schwan (1959)
suggested that the macromolecular components may be responsible for the fre-
quency dependence of acoustical properties in biological media. Pauly and
Schwan (1971) showed that approximately two-thirds of the absorption in liver
occurred at the macromolecular level, with the remaining one-third being attrib-
uted to macroscopic structures in the frequency range of 1–10 MHz. The authors
showed that the ultrasonic absorption also depends on pH and protein denaturation.
The authors observed specific absorption in liver tissue as 0.027 dB/cm per gram
of solid component in 100 cm3 at 1 MHz. Interestingly, the specific absorption in
ground, homogenate, sediment, supernatant and nuclei all derived from liver were
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0.023, 0.020, 0.027, 0.011 and 0.040 dB/cm per gram solid component in 100 cm3

at 1 MHz, respectively. Therefore, destruction of the solid tissue resulted only in a
moderate change in absorption, indicating that the absorption may be due to the
macromolecules rather than the structure of the solid tissue.

Researchers observed variations in absorption by approximately an order of
magnitude from one type of substance to another (Pauly and Schwan 1971; Smith
and Schwan 1971). Smith and Schwan (1971) measured acoustic absorption of
liver cell nuclei and observed that sound absorption per weight percentage of
protein content varied from one type of protein to another. In a review article,
Wells (1975) suggested that absorption and dispersion in biological materials were
due to relaxation processes distributed over a range of frequencies. O’Brien and
Dunn (1971, 1972b) suggested that the relaxation processes may be due to solvent-
solute interactions and disturbances in H-bonding equilibria. Other researchers
investigated the interaction between macromolecules in suspension of erythrocytes
(Kremkau et al. 1973). The authors suggested that electrostatic interaction may be
important in the sound absorption process. They observed increases in absorption
with increasing organization or interaction of biological systems due to chemical
and structural relaxations (Kremkau et al. 1973).

Kremkau and Cowgill (1984) measured absorption of several sugars, polysac-
charides, amino acids and proteins to determine the importance of molecular
weights in biomacromolecular absorption. The authors observed that absorption
increases with increasing molecular weight only in the approximate molecular
weight range of 500–1,500 daltons. Their results showed that proteins have higher
absorption than solutions of amino acids of which they are made, which may be
due to higher order structural characteristics present in proteins. In another study,
Kremkau and Cowgill (1985) concluded that absorption in globular proteins is
insensitive to structural characteristics while in linear proteins it depends upon the
amount of a�helix content. They suggested that the tertiary structure in the
globular protein reduces absorption due to inhibited solvent interactions.

It was established that proteins are largely responsible for absorption in tissues. To
understand the underlying mechanism, researchers studied the solutions of this
chemical species, of their components and of somewhat related chemical species.
O’Brien and Dunn (1972a) investigated propagation of ultrasound through solutions
of biological polymers as the first step to understand ultrasonic propagation through
tissue microstructure. Specifically, researchers have investigated the absorption in
various chemical species such as amino acids, polypeptides, proteins, carbohydrates,
bases, nucleotides and nucleosides, nucleic acids and lipids (Dunn and O’Brien 1978).

It was hypothesized that biological tissues act as a composite material whose
ultrasonic propagation is mainly governed by the acoustic properties of collagen and
globular proteins (Goss et al. 1980a). Pohlhammer and O’Brien (1980) compared
ultrasonic attenuation and speed to the concentration of water, collagen, proteins,
and fat, given in wet weight percent. Their study concluded that ultrasonic propa-
gation properties of tissue are, indeed, functions of the constituent’s concentrations.
Water is the most abundant tissue constituent, making up as much as 70–80 % of
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many tissues. The water concentration is nonuniformly distributed throughout the
body such that adipose tissue and blood are about 10 and 83 % water, respectively.
The ultrasonic absorption in water at 37 �C is given by Pinkerton (1949)

a ¼ 15:7� 10�17f 2; ð2:1Þ

where f is the frequency in Hz, and a is the absorption coefficient in Np/cm. The
ultrasonic attenuation coefficients in tissues were characterized according to their
water concentration given by Goss (1978)

a ¼ 9� 10�12fW�0:74; ð2:2Þ

where W is the water concentration. Using a least squares linear regression, a
power function relationship between the ultrasonic attenuation in the 1–10 MHz
range and the wet weight percentage of collagen in a tissue was developed
(O’Brien 1977a). To the first approximation this yielded

a ¼ 0:11C0:51; ð2:3Þ

where C is the wet weight percentage of collagen. Similarly, the authors derived
the relationship between ultrasonic speed and collagen concentration given by

v ¼ 1588þ 32 ln C; ð2:4Þ

where v is the speed in m/s (O’Brien 1977a).
Collagen plays an important role in the acoustical properties of tissues due to its

high tensile strength and it exhibits a wide range of acoustical properties from those
of the other common tissue constituents (Pohlhammer and O’Brien 1980). Collag-
enous fibers exhibit a static elastic modulus approximately 1,000 times higher than
other tissues (Fields and Dunn 1973). Because ultrasonic speed is proportional to the
square of the elastic modulus, the ultrasonic speed would be significantly greater
than other tissue constituents. Due to a higher elastic modulus, collagen is hypoth-
esized to be responsible for much reflection and scattering of ultrasound. Fields and
Dunn (1973) suggested that collagen is largely responsible for the echographic
visualizability of soft tissues. Other investigators have shown in excised, unfixed
breast tissue that fat yields the lowest attenuation and lowest velocity compared to all
other surrounding tissue (Greenleaf et al. 1975, 1976). They observed that normal
parenchymal breast tissue exhibited relatively high attenuation and moderately high
velocity, infiltrating medullary carcinoma exhibited an attenuation between fat and
normal breast tissue and high velocity, and connective tissue associated with muscle
boundaries of a scirrhous carcinoma clearly exhibited the highest attenuation and
velocity. These results clearly infer a relationship between increasing structural
protein concentration and increasing ultrasonic speed and attenuation.

Several studies of the relationship between attenuation and collagen concen-
tration in infarcted tissues have been conducted. A quantitative study of the
attenuation in normal and infarcted canine myocardium, which was made around
two months after the infarct and over the frequency range of 2–10 MHz, indicated
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that attenuation increased in the infarcted tissue (Yuhas et al. 1976; Mimbs et al.
1977). O’Brien (1977b) observed that the attenuation in most soft tissue appears to
be an increasing function of the collagen content. In another study, O’Donnell et al.
(1979) observed a direct correlation between attenuation and collagen concentra-
tion. The authors measured frequency-dependent attenuation in the frequency range
of 2–11 MHz with respect to collagen content in hearts from normal dogs and in
hearts from dogs subjected to ischemic injury by coronary occlusion. The authors
detected elevated attenuation in regions of myocardial infarction. The results
clearly suggest a correlation between increases in attenuation and increases in
collagen in infarcted tissue. Other investigators measured ultrasonic attenuation and
sound speed in four different types of tissue elements present in acute myocardial
infarction using an acoustic microscope in the frequency range 100–200 MHz
(Saijo et al. 1997). The authors measured very low attenuation and sound speed of
degenerated myocardium compared with normal myocardium. Furthermore,
attenuation and sound speed were very high in fibrotic tissue. From the results, it
was suggested that the ultrasonic properties of acute myocardial infarction were due
to density, intra- and intercellular structure and bulk elasticity of the tissue element.

O’Brien et al. (1981) characterized cutaneous wound tissue using a 100-MHz
scanning laser acoustic microscope. Results of this study indicated that there was
an increase in sound speed and attenuation with an increase in the age of the scar
tissue. The authors suggested that the increase in the acoustical parameters was
caused by both increases in collagen concentration and the changes in nature of the
collagen. In another study, researchers documented the normal progression of
wound maturation in a canine model using tensile strength measurements, light
microscopy, collagen biochemistry and acoustical properties (Olerud et al. 1987).
The authors observed a strong correlation between ultrasound speed and attenu-
ation with tissue collagen content [r ¼ 0:80 and r ¼ 0:56, respectively
ðp\0:001Þ]. They also found that ultrasonic speed and attenuation were inversely
correlated with tissue water content [r ¼ �0:57 and r ¼ �0:73, respectively
ðp\0:001Þ]. The tensile strength was also correlated significantly with ultrasonic
speed and attenuation [r ¼ 0:90 and r ¼ 0:58, respectively ðp\0:001Þ].

Fat or lipid is a tissue which is almost water free. Generally, at least 10 % of the
body weight of the normal mammal is due to lipid. The attenuation in fat is similar
to most soft tissue except collagen-high tissues. Ultrasonic speed in fat is approx-
imately 50–100 m/s less than most other tissues, and there is evidence to suggest
that sound speed in subcutaneous fat, in particular, is as much as 300–600 m/s lower
(O’Brien et al. 1981). Hammes and Roberts (1970), in a study undertaken to
examine membrane models, observed excess attenuation only in the presence of the
phospholipids in the frequency range of 10–165 MHz at a temperature of 25 �C.
The authors postulated four main classes of mechanisms by which ultrasonic energy
interacts with phospholipids dispersions: (1) liposomal aggregation, (2) breaking
the reforming liposomes, (3) intraliposomal conformational changes and (4) lipo-
some hydration sphere equilibria. Greenleaf and co-workers showed that in excised,
unfixed specimens, fat yields the lowest attenuation and lowest sound speed of any
of the breast tissues (Greenleaf et al. 1975, 1976). Kossoff et al. (1973) found that
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the speed of sound in post-menopausal fatty breast tissue was 7 % lower than that in
pre-menopausal breast tissue, with the difference being attributed to a proliferation
of fat that occurs as the glandular tissue deteriorates during and following meno-
pause. Thus, these authors suggested that it was possible to distinguish between
different states of the breast as well as to identify various benign and malignant
conditions by measuring the ultrasonic speed through the tissue.

In fatty liver, fat invades the hepatocytes causing them to balloon which are
distributed throughout the organ. Pohlhammer and O’Brien (1980) hypothesized
that due to lower ultrasonic speed of fat, these droplets may cause a significant
amount of scattering, thereby causing an increase in attenuation with increases in
fat content in the liver. Bamber et al. (1981) observed increased attenuation and
backscattering with increasing fat content in livers. The authors observed
decreased speed of sound with increasing fat content (Bamber and Hill 1981).
Other investigators studied the effects of increasing fat in a rat liver on ultrasonic
propagation properties using a scanning laser acoustic microscope at 100 MHz
(O’Brien et al. 1988). The authors observed that as hepatic lipid increased,
ultrasonic attenuation at 100 MHz increased temporally from a normal range of
12–14 dB/mm to a maximum of 54 dB/mm and ultrasonic speed decreased from a
normal rage of 1,553–1,584 m/s to a minimum of 1,507 m/s. Thus, quantitative
ultrasound (QUS) techniques have been used to quantify properties of the liver in
both in vitro and in vivo studies (Bamber and Hill 1981; Fei and Shung 1985;
Wear et al. 1995). Researchers have examined the use of attenuation and back-
scatter coefficients to monitor the stages of the liver remodeling in mice (Guimond
et al. 2007; Gaitini et al. 2004). Lu and co-workers demonstrated that the back-
scatter coefficient and attenuation in patients with diffuse liver disease were higher
than in patients with healthy livers (Lu et al. 1999). Suzuki and co-workers
observed that the ultrasonic attenuation depends on fatty infiltration of the liver
and to a lesser extent on fibrosis (Suzuki et al. 1992).

Another method or ultrasound imaging mode that has been developed to image
and quantify sound speed and attenuation is ultrasound computed tomography. The
concept of ultrasound time-of-flight computed tomography was first introduced by
Greenleaf et al. (1974, 1975). Glover (1977) constructed a two-dimensional
velocity distribution in tomographic slices transaxial to the breast from trans-
mission time-of-flight projections with an objective to detect malignant and benign
lesions. Dines and Kak (1979) constructed ultrasound attenuation tomograms from
formalin-fixed dog heart using various attenuation estimation algorithms. Carson
et al. (1981) observed that carcinoma tissues appeared as a bright circular mass of
sound speed 1,531 m/s compared to fatty background sound speed of 1,445 m/s in
a sound speed tomogram. Greenleaf and Bahn (1981) observed low velocity of
1,400–1,450 m/s in the subcutaneous zone compared to 1,500–1,520 m/s in cysts.
They observed that extremely fibrous or schirrous carcinomas tended to have high
sound speeds of 1,530 m/s (Greenleaf and Bahn 1981).

Several commercial ultrasound tomography imaging systems are available
today (Jeong et al. 2005; Duric et al. 2005; Johnson et al. 2007; Li et al. 2008).
Researchers have used a spectral target detection method based on a constrained
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energy minimization technique to construct attenuation tomograms and developed
a High Resolution Ultrasonic Transmission Tomography (HUTT) system (Jeong
et al. 2005). Researchers at the Karmanos Cancer Institute developed a Comput-
erized Ultrasound Risk Evaluation (CURE) device to record reflected, transmitted
and diffracted ultrasound signals from the breast to construct sound speed and
attenuation tomograms (Duric et al. 2005, 2007). The CURE device operates at a
center frequency of 1.5 MHz with 256 transducer elements with a minimum
detectable sound speed of 5 m/s. The device has a spatial resolution of 4 mm in
sound speed and attenuation tomograms (Duric et al. 2007). The CURE device
estimated the sound speeds of fatty and glandular tissues as 1; 409� 17 m/s and
1; 472� 37 m/s , respectively and 75 % of masses[1 cm in size were detected by
a combination of reflection and transmission images (Duric et al. 2007). Li et al.
(2008) used bent-ray time-of-flight ultrasound tomography to reconstruct sound
speed and complex energy ratio to construct attenuation tomograms. Johnson and
co-workers used inverse scattering algorithms assuming propagation in fluid media
to construct sound speed and attenuation tomograms (Johnson et al. 2007). Unlike
previous approaches to ultrasound tomography, the inverse scattering techniques
accounted for diffraction, refraction, and multiple scattering effects.

Several researchers have provided comprehensive compilations of available
data for the acoustical properties of tissues such as sound speed and attenuation
(Goldman and Hueter 1956; Chivers and Parry 1978; Goss et al. 1978, 1980b).
The experimental results presented by numerous researchers suggest that ultra-
sound absorption depends on the macromolecular constituents of tissues.
According to the research conducted by numerous researchers, ultrasonic
absorption is attributed mainly to the relaxation processes. Nevertheless, more
research is necessary to explicitly understand the variation of sound speed and
attenuation with tissue properties.

2.3 Quantitative Backscattered Ultrasound Analyses

Conventional B-mode images are derived from backscattered radio frequency (RF)
echo signals. The RF echoes are created by reflections from interfaces between
acoustically different regions (macrostructure) and by coherent and incoherent
scattering from tissue microstructures. Those echo signals contain frequency-
dependent information about the smaller scale tissue structures (\ wavelength).
B-mode image processing hides the frequency-dependent information available in
the RF echoes. Conventional B-mode images display large-scale structures
([ wavelength) but, to display and quantify smaller-scale structures, the fre-
quency-dependent information must be utilized.

Frequency-dependent scattering from small structures (� wavelength) has been
used to extract information about properties of different materials in addition to its
investigation in medical imaging. Laser scattering has been used to examine glass
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and polymer structures (Miyazaki 1974), and neutron scattering has been used to
measure molecular bond lengths (Egelstaff et al. 1975). In acoustics, low-fre-
quency sound (\1 kHz) has been used to measure the size and distribution of
turbulence in the atmosphere (Wilson et al. 1999).

The RF echoes backscattered from biological tissues contain information about
the microstructural properties of the tissues. Preliminary attempts to relate QUS
scatterer property estimates to tissue microstructure identified from optical
microscope images of the same tissues has met with success. The backscattered
signal is a superposition of wavelets scattered from numerous small structures
confined within the volume of insonified tissue. The frequency-dependent back-
scattered signal depends on the average tissue properties (size, shape, number,
compressibility, density) of the scatterers within the insonified region relative to
the compressibility and density of the medium surrounding the scatterers. The
backscattered signal is, therefore, modeled as that resulting from a statistical
distribution of scatterers.

The goal of QUS is to estimate parameters, such as effective scatterer diameter
(ESD), effective acoustic concentration (EAC), number density and attenuation,
from backscattered data from tissues, and associate these parameter values with
specific tissue structures. QUS images of scatterer parameters, like ESD and EAC,
have been constructed for test phantoms (Insana and Hall 1990) and tissues (Insana
et al. 1993). The most simple models that can be used to parameterize the back-
scattered power spectrum are fitting a line to the spectra and estimating the spectral
slope, mid-band fit and spectral intercept (Lizzi et al. 1983). However, the back-
scattered power spectrum, if modeled correctly, can lead to better QUS estimates
of specific scatterer properties.

The ESD, EAC, and number density are values that can be related to micro-
scopic optical histological evaluation. Relating ultrasound backscatter measure-
ments to optical microscope images has been conducted for a variety of tissues
(Waag et al. 1983). Specifically, estimates of ESD have been related to the average
size of cellular structures in murine models of mammary carcinoma and subcu-
taneous sarcomas as estimated from their optical microscope images (Oelze et al.
2004). Volume representations from histological sections of scattering tissues can
be constructed that are hypothesized to be able to identify the size and distribution
of possible scattering sources. The significance of the approach is threefold: (1)
QUS estimates can be compared with optical histology findings (validation of the
model truth), (2) better models then can be constructed based on comparisons with
optical histology and (3) improvement in modeling based on optical histology can
increase ability of QUS to diagnose disease.

There have been notable QUS successes. Acoustic scattering theories for bio-
logical tissues assume that the tissues can be modeled as either discretely or
continuously varying distributions of mass density and bulk compressibility
(Insana and Brown 1993). Scattering occurs when an acoustic wave propagates
across a region that has local variations in density and/or compressibility. Scat-
tering from simple shapes (spheres and cylinders) has been solved analytically
including the effects of shear (Faran 1951). If the scatterers size is comparable to
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or smaller than the wavelength and the relative impedance mismatch between
scatterer and background is small, then scattering may be modeled using the Born
approximation by a spatial autocorrelation function (SAF) (Insana and Hall 1990;
Lizzi et al. 1987; Chen 1994).

QUS backscattering techniques have been successfully used to characterize
different aspects of tissue microstructures. Noteworthy are the pioneering works
that demonstrated theoretically and experimentally the ability to ultrasonically
quantify ocular, liver, prostate, renal and cardiac tissues (Miller et al. 1983; Lizzi
et al. 1983; Insana et al. 1991).

Feleppa et al. (1986) found that the ESD in ocular tumors was a strong indicator
of malignancy. Larger scatterer sizes were observed in malignant tumors when
compared with surrounding normal tissues. EAC was also integral to diagnosti-
cally distinguishing between ambiguous cases (Lizzi et al. 1987). Feleppa et al.
(1996) and Balaji et al. (2002) also demonstrated that QUS parameters provided
greater diagnostic accuracy in prostate-cancer detection and lesion localization
than all other noninvasive techniques combined.

QUS scattering studies in renal tissues found that changes in the scattering
strength (EAC) were responsible for the anisotropy of backscatter and not changes
in ESD (Insana et al. 1991) and was, thus, an important parameter for character-
izing the anisotropy of backscatter in tissues. The glomeruli (� 200 lm) and
afferent and efferent arterioles (� 50 lm) were identified as the principal struc-
tures responsible for scattering. ESD and sound speed were the most stable QUS
parameters for characterizing the tissues. These early studies were the basis of
investigations into the ability of QUS images using the scatterer properties to
detect changes in renal microanatomy (Insana et al. 1992, 1993, 1995; Garra et al.
1994; Hall et al. 1996). QUS imaging techniques were demonstrated to be capable
of differentiating among conditions that caused increased cortical echogenicity and
structural changes like glomerular hypertrophy, and QUS measurements agreed
well with measurements of those structures in biopsy samples.

For almost 30 years, Coleman and colleagues (Coleman and Lizzi 1983;
Coleman et al. 1987, 1990, 1991, 2004; Silverman et al 2001, 2003) strived to
develop QUS techniques to diagnose/classify primary malignant melanoma of the
choriod and ciliary body to preserve vision without increasing the risk to the
patient’s life. Earlier, they showed that backscatter properties were correlated with
survival in patients with uveal malignant melanoma (Coleman et al 1990, 1991).
More recently (Coleman et al. 2004), they successfully demonstrated that QUS
parameters of extravascular matrix patterns (EMP) correlated with histologic EMP
patterns to discriminate between lethal and less lethal tumors.

Also, for almost 30 years, cardiac studies investigating the cyclic variation in
integrated backscatter (Miller et al. 1983; Tamirisa et al. 2001) have demonstrated
that this was a useful measure of cardiac function and viability. This work suc-
cessfully identified the extracellular matrix (Hall et al. 2000) and myocytes
(Landini and Santarelli 1995; Recchia et al. 1995) to be the dominant sources of
scattering in the heart.
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In addition, QUS frequency-dependent backscatter from tissues has been used
to enhance B-mode images (Feleppa et al. 1997; Lizzi et al. 1997; Golub et al.
1993; Zagzebski et al. 1993; Topp et al. 2001). Different tissue regions with dif-
ferent scattering properties had their respective, possibly unique, slope and
intercept parameters extracted from the scattered power spectrum. Enhanced
images were formed by colored pixels in an image corresponding to the local slope
and intercept parameters of the power spectrum (Feleppa et al. 1997; Lizzi et al.
1997). The goal of these studies was to use the enhanced QUS images to differ-
entiate between diseased and healthy tissues.

Estimating the number of scatterers per unit volume has also been investigated
using a variety of approaches. Wear et al. (1997), Dumane and Shankar (2001) and
Shankar (2000) have shown that when the number density of scatterers was small
(\ 2/ resolution cell), the number of scatterers could be estimated using back-
scattered envelope statistics. Using fractional order moments of the backscattered
envelope (Dutt and Greenleaf 1995), number density could be estimated for
scatterer number densities up to 10/resolution cell. The estimates of scatterer
number density and EAC could then be used to extract the relative impedance
difference between the scatterers and background.

Another example of successful QUS is the work of Donohue and colleagues
(Gefen et al. 2003; Varghese and Donohue 1993; Huang et al. 2000) using the
generalized spectrum to classify breast tumors. Their results demonstrated that
computer-generated features of the RF echo data operated with a true-positive
fraction of 100 % and a false-positive fraction of 32 % suggesting the potential for
avoiding biopsy of benign breast lesions.

Numerous investigators have pursued QUS breast-imaging techniques with
promising results. D’Astous and Foster (1986) found that the attenuation coeffi-
cient and its frequency dependence were different for infiltrating ductal cancer
(IDC), parenchyma, and fat (3–8 MHz) and those differences increased (due to
higher frequency dependence of scattering in IDC) with increasing frequency.
They also found that the backscatter coefficient (BSC) for fat and IDC was about
the same but was beginning to separate near the upper frequency limit. The BSC
for parenchyma was about an order of magnitude above those of fat and IDC, and
also exhibited higher frequency dependence. They also found that a two-parameter
analysis (attenuation and BSC) was sufficient to separate the three distinct tissue
types they studied.

Landini et al. (1987) measured relative backscatter and found similar results to
those reported by D’Astous and Foster. A significant difference was that Landini
et al. separated fatty tissues into subcategories of fatty and fibro-fatty and found
that the backscatter for fatty tissue was between that of scirrhosis carcinoma and
medullary carcinoma (4–14 MHz). More significantly, they estimated the corre-
lation functions for five breast-tissue types (the four above plus fibrosis) and found
distinct correlation functions (analogous to the ESDs) for each tissue type.

Mortensen et al. (1996) used a feature set consisting of sound speed, attenuation
and backscatter parameters to classify in vitro breast-tissue samples as either
normal, benign, or malignant with a variety of classifiers. Their best performance,
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obtained using an artificial neural network, achieved a diagnostic accuracy of
about 93 % even though their data acquisition system did not provide image
guidance for ROI selection and operated at relatively low frequencies (3–8 MHz).
Their diagnostic accuracy far exceeded the 0.729 found by Stavros et al. (1995) for
standard clinical sonography.

Insana et al. (1995) used QUS techniques to follow renal vascular changes in
anesthetized dogs during local intra-arterial infusion of a potent vasoconstrictor,
endothelin-1 (ET-l). The authors analyzed the backscatter spectra in the frequency
range of 5–15 MHz to estimate scatterer size. They observed changes in scatterer
size with changes in renal hemodynamics, and increase in attenuation with
increasing ET-1 concentration. The authors verified the changes in hemodynamics
using Doppler techniques. Insana used a transverse isotropic correlation function
to predict backscattering from kidney microstructure (Insana 1995). The author
suggested that by analyzing different frequency regimes of the backscatter,
structure of different sizes, number densities and scattering strength could be
characterized.

Mamou and co-workers used high-frequency ultrasound to estimate different
QUS parameters for detecting cancer in excised lymph nodes (Mamou et al. 2011).
The authors estimated ESD, EAC, intercept and slope by analyzing the backscatter
coefficient from lymph nodes. They used Nakagami and homodyned-K distribu-
tions to estimate another four parameters by analyzing the statistics of the enve-
lope of the backscatter signal. The authors obtained a specificity and sensitivity of
95 % by combining ESD and envelope parameters to detect small metastatic foci
in dissected lymph nodes.

Recently, cell pellets made of Chinese hamster ovary (CHO) cells were used to
understand ultrasound wave propagation in biological media (Teisseire et al.
2010). An analytical scattering model was used to predict the sound speed in
nucleus and cytoplasm as 1,802 m/s and 1,952 m/s, respectively, at a low number
density of 1:3� 106 cells/mL. They used a concentric sphere scattering model to
predict the scattering in nucleus and cytoplasm. In a subsequent study, Han et al.
(2011) estimated the attenuation in CHO cell pellets at low concentration as
0:021f 1:6 dB/cm using a power law fit in the frequency range of 20–100 MHz. The
authors observed different attenuation slopes as the concentration of cells
increased in the cell pellets. With better attenuation compensation and improved
data-processing strategies and scattering models from those used by Teisseire et al.
(2010), Han et al. (2011) estimated the sound speed in nucleus and cytoplasm
around 1,600 m/s and 1,550 m/s, respectively, at the lower number densities in
CHO cell pellets.

QUS techniques relying on normalized backscattered power spectra have been
used to assess apoptosis and necrosis of tumors undergoing both thermal therapy
and chemotherapy (Czarnota et al. 1999; Kolios et al. 2002; Banihashemi et al.
2008; Vlad et al. 2009). Czarnota and coworkers used high-frequency (40 MHz)
ultrasound to quantify the changes in the backscatter amplitude from cells in vitro
undergoing apoptosis due to anticancer agents, apoptosis in tissues ex vivo and
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apoptosis in tumors in live animals (Czarnota et al. 1999). They observed large
changes in backscatter amplitude from regions of cell death compared to sur-
rounding viable tissues. Kolios et al. (2002) estimated spectral slope and midband
fit parameters from backscattered power spectra to monitor apoptosis in in vitro
and in vivo experiments due to chemotherapy. The authors observed increases in
spectral slope and midband fit with respect to time after drug exposure.
Banihashemi et al. (2008) also observed increases in backscattered power with
respect to time after application of photodynamic therapy. The authors correlated
the QUS parameters to apoptosis and histologic variations in cell nuclear size and
observed changes in spectral slope with respect to changes in nuclear size. Sim-
ilarly, Vlad et al. (2009) observed changes in backscatter spectral parameters due
to changes in cellular microstructure with application of radiotherapy. These
results clearly suggest that QUS imaging can be used to monitor therapy response.

All of the above work aimed at quantifying backscattered signals through
system-independent techniques to quantify the backcattered power. Other inves-
tigators have implemented different approaches to QUS that do not provide sys-
tem-independent results. For example, Garra et al. (1993) digitized the video
output of an ultrasound scanner and analyzed the statistics of the B-mode image
texture. Although their patient population was small, they only used 5 and
7.5 MHz transducers, and had comparatively poor-quality data, they were able to
correctly identify 78 % of the fibroadenomas, 73 % of the cysts, and 91 % of the
fibrocystic nodules while maintaining 100 % sensitivity for cancer. Using similar
data acquisition, image texture parameters and an artificial neural network, Chen
et al. (1999) obtained a diagnostic accuracy of 95 % and with the sensitivity set at
98 %, they achieved a specificity of 93 %, positive predictive value of 89 % and
negative predictive value of 99 %. Although very encouraging, these results are
nonetheless system dependent. Nevertheless, their success demonstrates that
measures of texture statistics (including co-occurrence matrix, run length, etc.)
have merit for differentiating among breast diseases

The obvious step to translate QUS imaging to the clinics is to test the feasibility of
estimated parameters to be reproducible across different transducers and systems.
Several studies have been conducted to compare QUS parameters by different
systems and users from the same sample. Ten laboratories participated in an inter-
laboratory study to estimate backscatter coefficients from tissue–mimicking phan-
toms using individual laboratory’s systems, operators and techniques (Madsen et al.
1999). The study found considerable differences in backscatter coefficient estimates
between laboratories, which may be related to the accuracy of the techniques used by
each group. A better agreement was observed in a subsequent interlaboratory study
to compare backscatter coefficients from tissue–mimicking phantoms (Wear et al.
2005). In this study, the estimated backscatter coefficients were compared with
theoretical values. Another interlaboratory study of backscatter coefficients from
tissue–mimicking phantoms, where glass beads were used as scatterers, was con-
ducted between two laboratories (Anderson et al. 2010). The main aim was to
investigate the interlaboratory comparison of Faran’s theoretical model (Faran
1951) to predict backscatter coefficients in the frequency range 1–12 MHz from
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glass spheres embedded in a uniform agar-based background. The results of the
study demonstrated good agreement between the two laboratories and the theoretical
model except for one of the tissue–mimicking phantoms (Anderson et al. 2010).
Further interlaboratory comparison of backscatter coefficients from tissue-mim-
icking phantoms with glass beads as scatterers were conducted using four different
clinical array-based imaging systems (Nam et al. 2012a, b). Another interlaboratory
study was conducted to develop tissue-mimicking phantoms with weak scatterers
and compare theoretical prediction of backscatter coefficient with experimental
results in the frequency range of 1–13 MHz (King et al. 2010). The study concluded
with good agreement between the two laboratory experimental results and theo-
retical predictions of backscatter coefficients. The scattering properties of these
weakly scattering phantoms represent biological tissue better than glass bead
phantoms (King et al. 2010). Good agreement was found between the laboratories
and theoretical predictions demonstrating that these QUS parameters based on the
backscatter coefficients from different scattering media are reproducible and can be
system and operator independent.

Interlaboratory studies to estimate the backscatter coefficient from in vivo
spontaneous rat mammary tumors (fibroadenoma and carcinoma) acquired by
different research groups using three clinical array systems and a single-element
laboratory scanner system were conducted (Wirtzfeld et al. 2010). The results
were encouraging from this first in vivo study to compare QUS parameter esti-
mates by different laboratories and systems scanning the same tumor in vivo.
Better agreement in backscatter coefficients was observed from in vivo sponta-
neous rat mammary tumors in the second joint study by the same group of lab-
oratories (Wirtzfeld et al. 2013). In this study the researchers used functional
ANOVA to compare the frequency dependence of the backscatter coefficients
across different systems (Wirtzfeld et al. 2013).

The successes, outlined above, in applying QUS techniques to improve diag-
nosis have not yet led to broad application. Part of the reason is that the techniques
were either too computationally intensive for existing hardware, or not extensive
enough to be robust for everyday clinical use. Furthermore, correcting effects of
attenuation have been problematic to date. However, recent progress has been
made in developing algorithms to accurately predict the attenuation in tissues.
Therefore, the main roadblocks to clinical implementation have been largely
overcome in recent years. The success to date places QUS techniques on the cusp
of broad clinical applicability.

2.4 Conclusion

The QUS technology and successes outlined in this chapter will form a new
imaging capability that will be used as an optional mode to augment standard
B-mode imaging, analogous to the use of ultrasound-based flow estimation. The
successes outlined in this chapter demonstrate that the QUS techniques can
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provide new sources of contrast for improved image diagnostics. We do not expect
that QUS will solve all of the limitations of current imaging modalities. However,
the new information provided through QUS will likely improve performance of
diagnostic ultrasound. We anticipate that QUS information will be part of a
multimode analysis that augments B-mode imaging, (e.g., spectral Doppler, color-
flow imaging, elasticity imaging, etc.). Just as modalities such as MRI can acquire
image information based on different tissue properties, we believe that ultrasound
machines will provide useful diagnostic information when QUS parameters are
displayed to augment the time-honored B-mode image. Transducer technology,
beamforming flexibility, and information-processing capacity are now emerging
that will enable the development of this new generation of machines. The history
of successes for QUS to detect, quantify and diagnose a host of different diseases
and tissue conditions suggests that QUS techniques have an important role to fill in
ultrasound medical diagnostics. Interlaboratory studies have demonstrated that
these techniques can be system and user independent. Therefore, future clinical
machines will likely include different QUS imaging modes.
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Chapter 3
Statistics of Scatterer Property Estimates

Michael L. Oelze

Abstract Quantitative ultrasound (QUS) techniques are based on providing
parameter estimates from ultrasound backscattered signals that can be related to
different properties of the tissue. Parameter estimates based on analyzing the
spectrum of the ultrasound backscattered signal or the amplitude distribution of the
envelope require a certain number of samples to produce meaningful estimates in
terms of bias and variance of estimates. For example, calculation of the period-
ogram is used to approximate the true backscattered power spectrum of the
ultrasound signal. Typically, the larger the samples size the better the periodogram
represents the backscattered power spectrum and the better the bias and variance
of QUS estimates. Analysis of the statistics of parameter estimation for spectral-
based parameters and envelope statistics will allow the tradeoff between sample
size and estimate bias and variance to be quantified. This chapter discusses the
statistics of QUS property estimation, the effects of estimate bias and variance on
the resolution of QUS parameter imaging, and techniques to reduce the variance of
different QUS property estimates.

Keywords Statistics � Spatial resolution � Estimate bias � Estimate variance

3.1 Introduction

Quantitative ultrasound (QUS) techniques have been employed to provide
additional diagnostic information from ultrasound backscattered signals beyond
conventional B-mode imaging. QUS techniques include estimation of spectral
features of the backscattered ultrasound, estimation of the ultrasonic attenuation
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and sound speed, parameterizing the statistics of the envelope of backscattered
ultrasound, ultrasound elastography, ultrasound microscopy, and ultrasound
computed tomography. Quantitative parameters derived from the ultrasonic signals
can provide new sources of image contrast, can improve the sensitivity of ultra-
sound to detect disease and monitor therapy, can improve the specificity of
ultrasound, and can be correlated to underlying tissue microstructure.

While a variety of parameter estimates can be obtained using different QUS
techniques, their usefulness ultimately depends upon the statistical properties of
the estimates (Lizzi 1997a). Good accuracy and precision of the estimator are vital
to classifying a tissue based on a set of estimated features or parameters. For
example, assume that two parameters A and B are proposed to classify a tissue as
either diseased or normal. If a group of subjects with known diagnoses are
examined using the technique, a feature analysis plot can be constructed to
demonstrate the ability of the parameters to uniquely classify the tissue. Figure 3.1
shows three feature plots of parameter A versus parameter B for a fictional sample
set. In Fig. 3.1a, the two groups (tissue 1 and tissue 2) have different mean values
but large overlap between estimates because of the large variance of the estimates.
Therefore, the two parameters would not make a good classifier based on the
degree of overlap and the large variance of the estimates (low precision). In
Fig. 3.1b, the variance of the estimates for both tissue 1 and tissue 2 are greatly
reduced due to a better estimator; the mean values of the parameters are different
for the two tissue types (but approximately the same as in Fig. 3.1a). Therefore,
the two parameters would result in a better classifier because the degree of overlap
is minimal between the two groups of tissues. In the final scenario, Fig. 3.1c, the
variances of the estimates are still small (same as in Fig. 3.1b), but the mean
values of the parameters for both groups of tissues are close to each other.
Therefore, while the spread of the estimates is low, the amount of overlap in
parameters between the different tissues is high leading to a poor classifier.

The ability to uniquely classify tissues from QUS parameters depends on the
variance and mean values of the estimated parameters. The mean value of the
estimates depends on the tissue properties but also on the model being used to
deduce estimates, the number of samples of data used to provide an estimate, the

Fig. 3.1 a Feature analysis plot with estimates of high variance and large differences in mean
values, b feature analysis plot with low variance of estimates and large differences in mean values
and c feature analysis plot of estimates with low variance but low separation in the mean values
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signal-to-noise ratio (SNR) and the estimator. Biases in estimates can occur if the
model used to provide the estimates is incorrect, if the estimator is flawed or too
little data exists. The variance of estimates can depend on the biological variability
of different subjects, on faulty modeling of signals, on a low number of samples in
the data, and on SNR. Even if the optimal estimator is utilized for a specific set of
parameters, if the biological contrast is too low and the biological variability is too
high, the ability to classify a tissue based on the set of parameters will be poor.

The biological variability and biological contrast are inherent properties of the
entity being imaged and, therefore, reducing biological variability and improving
the biological contrast may not be possible. However, the variance and bias of
parameter estimates also depend on factors related to the measurement and esti-
mation process. Different techniques can be utilized to improve the bias and
variance of estimates and thereby improve the ability of parameters to classify
tissues. In addition, fundamental tradeoffs exist between the spatial resolution of
parameter maps and the bias and variance of estimates. In this chapter, a frame-
work for describing the statistical properties of QUS estimates (spectral-based
parameters and envelope statistics) will be provided based on several studies
available in the literature and techniques to improve the statistical attributes of
these estimates will be examined.

3.2 Description of Statistics of Spectral-Based QUS
Parameters

3.2.1 Spectral-Based Estimation Techniques

Several foundational studies have been published in assessing the statistical
attributes of different spectral-based estimates in ultrasonic tissue classification
(Huisman 1996; Chaturvedi 1996; Lizzi 1997a, b; Oelze 2002, 2004a, b; Gerig
2003; Lizzi 2006). In general, spectral-based imaging requires the estimation of
the power spectrum of the backscattered signal. Because an infinite number of
signal samples cannot be obtained, the power spectrum is estimated through the
periodogram. If the ultrasound backscattered signal is represented by r tð Þ with a
finite number of samples, then the periodogram is given by

R fð Þj j2¼ FT r tð Þf gj j2 ð3:1Þ

where FT represents the Fourier transform of a finite sampled time signal and f rep-
resents the frequency. Assuming a stationary signal, as the number of samples
increases the better the periodogram represents the true power spectrum of the signal.

The estimate of the power spectrum can be modeled as a function of system-
dependent features and sample-dependent features,

r tð Þ ¼ h tð Þ � d t; zð Þ � s t; zð Þ � a t; zð Þ ð3:2Þ
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where h tð Þ is the pulse-echo impulse response of the transducer, d t; zð Þ represents
the spatially-dependent diffraction pattern of the transducer, s t; zð Þ is the spatially-
dependent scattering function of the tissue sample, a t; zð Þ is spatially-dependent
attenuation function that encompasses losses in the tissue medium, z represents the
distance from the transducer and * represents the convolution. In the power
spectral domain the signal is represented by

R fð Þj j2¼ H fð Þj j2 D f ; zð Þj j2 S f ; zð Þj j2 A f ; zð Þj j2: ð3:3Þ

To acquire tissue-dependent parameters, the system-dependent parameters must
be taken into account through a calibration spectrum and calculation of the nor-
malized power spectrum. To account for the volume scattering effects, the back-
scatter coefficient (BSC) can be calculated from the normalized spectrum. The
BSC is the basis for many spectral-based QUS parameters and is a unique char-
acteristic of the tissue itself. The BSC is defined as

rbsc fð Þ ¼ R2
1

V

Isc fð Þh i
Iinc fð Þ / W fð Þ ð3:4Þ

where R1 is the distance to the scattering volume of interest, V is the scattering
volume defined by the beam width and range gate length, Isc fð Þ and Iinc fð Þ are the
scattered and incident intensity fields, respectively, and W fð Þ is the normalized
power spectrum. Therefore, the BSC is both operator and system independent. In
regions where the scattering is uniform, the BSC can be parameterized to yield
estimates of the scatterer properties, which can then provide a geometrical inter-
pretation of the underlying tissue microstructure.

3.2.2 Statistics of the BSC and Attenuation Estimation

Several authors have examined the statistical properties of estimating attenuation
and the backscatter coefficient from ultrasound backscattered signals (Yao 1991;
Huisman 1996). From Eq. (3.3), Huisman and Thijssen defined the attenuation
function as

A f ; zð Þ ¼ 10�0:05a fð Þz ð3:5Þ

where a fð Þ is the attenuation coefficient [dB/cm]. By assuming that the attenuation
coefficient could be approximated by a linear model, then

a fð Þ ¼ a0 þ a1 f � fcð Þ; ð3:6Þ

where a0 is the attenuation intercept [dB/cm] at the center frequency fc, and a1 is
the attenuation slope [dB/cm/MHz]. They also modeled the scattering function of
the tissue as
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S f ; zð Þj j2¼ 100:05b fð Þ ð3:7Þ

where b fð Þwas defined as a backscatter function [dB] and also described by a line as

b fð Þ ¼ b0 þ b1 f � fcð Þ ð3:8Þ

with b0 defined as the backscatter intercept [dB] at the center frequency fc, and b1

defined as the backscatter slope [dB/MHz].
To examine the statistics of estimating these two functions, a log converted

averaged periodogram of the data was first calculated after correcting for the
transducer effects and is given by

WL fð Þ ¼ 20 log
R tð Þj j2

H tð Þj j2 D t; zð Þj j2

" #
¼ 20 log S t; zð Þj j2 A t; zð Þj j2

h i

WL fð Þ ¼ 2â fð Þzþ b̂ fð Þ þ e ð3:9Þ

where the
V

indicates the estimated variable and e represents zero mean Gaussian
noise. The averaged periodogram was estimated by averaging the periodograms
estimated from independent adjacent scan lines.

Averaging the periodogram over a longer signal and from several independent
samples will provide a better estimate of the true power spectrum related to the
sample. In a practical sense, this is accomplished with the ultrasound backscattered
data by windowing a segment of the signal and averaging the estimated power
spectra from several independent windowed scan lines. Scan lines are considered
to provide independent samples when they are at least a beamwidth apart.
Assuming that the scan lines are parallel and separated by a beamwidth, then the
averaged periodogram comes from a data block. Figure 3.2 shows an image of a
data block used for the estimate of the normalized power spectrum. The nor-
malized power spectrum estimate can then be associated with a backscatter
function and parameterized. The parameter estimates can be correlated to a

Fig. 3.2 Diagram of a data
block used to provide a
localized estimate of the BSC
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specific sample region corresponding to the data block locations. A map or image
of the parameter estimates can then be constructed based on spatially correlating
parameter estimates with the data block locations.

If the tissue is modeled as a collection of nearly identical scatterers with random
spatial locations, then the echo envelope and amplitude spectrum can be modeled
using a Rayleigh probability distribution function (pdf). For a Rayleigh pdf, the
standard deviation of the echo amplitude at a frequency f can be represented by
(Papoulis 1991)

rf � lf =1:91 ð3:10Þ

where lf is the mean of the echo amplitude at frequency f. The standard deviation
of the echo amplitude at a frequency f can be decreased by averaging amplitude
spectra (periodograms). Assuming a large number of periodograms are averaged,
then the standard deviation decreases as

rf � lf =1:91=
ffiffiffiffi
N
p

ð3:11Þ

where N is the number of independent periodograms used in the average. Relating
this back to Eq. (3.9), where the estimate of the power spectrum was log converted,
gives

rWL fð Þ � 8:686rf =lf ¼
4:54ffiffiffiffi

N
p : ð3:12Þ

From this estimate of the standard deviation of the log averaged and normalized
periodogram, Huisman and Thijssen determined that

râ fð Þ �
ffiffiffi
3
p

rWL fð Þ

DzN3=2
’ 7:86

DzN2
ð3:13Þ

and

rb̂ fð Þ �
9:08

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3dþ 3d2 � 3þ 6d

2N

r
ð3:14Þ

where Dz represents the length of the gated region (assuming a rectangular win-
dowing function) and d is defined as the relative distance to the range gate ½d ¼
z1= DzNð Þ� and z1 is the distance to the start of the range gate. The analysis assumes
that the backscatter function estimate is corrected for attenuation losses based on
the attenuation estimate. Therefore, the variance of the backscatter function esti-
mate increases as the depth location of the sampled data increases due to depen-
dence of the attenuation estimate on depth, z.

The results of the analysis by Yao et al. (1991) and Huisman and Thijssen
(1996) predict several statistical attributes of spectral-based estimation of attenu-
ation and backscatter functions. First, the standard deviation of the attenuation
estimate is inversely proportional to the number squared of independent
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periodograms used in the average and the length of the range gate used in the
estimate. Therefore, there exists a tradeoff between the number of independent
samples acquired from the data and the precision of the estimate. If parametric
image maps are constructed from data blocks, then the spatial resolution of the
parametric images depends on the size of the data blocks. From the Huisman and
Thijssen analysis, the variance of the attenuation estimate can be reduced by
increasing the range gate length and the number of independent periodograms in
the average. However, a much larger reduction in variance is obtained by using a
larger number of independent periodograms in the average than by increasing the
length of the windowed segment. Second, the analysis predicts that the variance of
an estimate of the BSC will decrease in proportion to the number of independent
periodograms that are averaged. To a lesser degree, increasing the range gate
length can also reduce the variance of an estimate of the BSC.

3.2.3 Statistics of Parameter Estimation

Once a BSC has been calculated and corrected for attenuation effects, the BSC as a
function of frequency can be parameterized. To parameterize the BSC, models of
scattering from the underlying tissue must be adopted. In the simplest case, the
BSC or normalized power spectrum can be parameterized as a straight line and
estimates of the spectral slope (SS), spectral intercept (SI), and midband fit (MBF)
can be obtained (Lizzi 1997a, b). Only two of these parameters combined yield
independent information. In more complex models, the scatterers can be modeled
as spheres, cylinders or other more complex structures (Insana 1995). From more
complex models, estimates of the effective scatterer diameter (ESD) and effective
acoustic concentration (EAC) have been adopted (Lizzi 1987; Insana 1990a, b;
Oelze 2002).

In the analysis of the statistics of spectral-based parameters (SS, SI, and MBF),
Lizzi et al. (1997a, b) first examined the statistics of the power spectrum esti-
mation, using a similar approach to Yao et al. (1991) and Huisman and Thijssen
(1996), to produce estimates of the variance of the spectral-based parameters.
Because the spectral-based estimates were calculated by using a standard, linear-
regression technique, standard procedures could be used to calculate the variances
(standard deviations) of the different parameters. The standard deviations of the
MBF and SS were derived and given by

rMBF ¼
rdB Nð Þffiffiffiffiffi

M
p ð3:15Þ

and

rSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
M M2 � 1ð Þ

s
rdB Nð Þ

Df
ð3:16Þ

3 Statistics of Scatterer Property Estimates 49



where Df is the correlation bandwidth and is approximately equal to the inverse of

the gate length � 1=L

� �
, M is equal to the number of independent frequency

samples in the analysis bandwidth � B=Df

� �
, B is the analysis bandwidth, N rep-

resents the number of independent spectra averaged from N independent scan
lines, and rdB Nð Þ is the standard deviation of the averaged power spectrum esti-
mate in a dB scale and given by Lizzi et al. (1997a) as,

rdB Nð Þ � 4:34ffiffiffiffi
N
p : ð3:17Þ

From the estimates of the standard deviations for the MBF and SS, the standard
deviation of the SI was also calculated,

rSI ¼ r2
MBF þ f 2

c r2
SS

� �1=2 ð3:18Þ

where fc is the center frequency of the analysis bandwidth.
From these results it could be concluded that statistical traits observed for the

parameter estimates were similar to statistical traits for estimates of the BSC.
Increasing the number of independent scan lines in the periodogram average
resulted in improved standard deviation of estimates. From the analysis it was also
concluded that for a given bandwidth, a longer window would result in smaller
standard deviation of the estimates and a larger analysis bandwidth would result in
improved standard deviation.

In a later study, Lizzi et al. (2006) examined the role of the windowing function
used to calculate the MBF, SS, and SI parameters. For a window length of L, the
spectral resolution of the Hanning window will be much less than the spectral
resolution provided by the rectangular window. Provided the biases produced by
the window function are small, then the standard deviation of the spectral-based
estimates will be smaller for the rectangular function compared to a tapered
window function. For example, rMBF and rSS are approximately 1.4 times larger
for a Hamming window function compared to a rectangular windowing function
(Lizzi 2006).

More complex models have also been examined for the ability to classify
tissues and the statistical features of these estimates have also been examined
(Chaturvedi 1996; Oelze 2002; Gerig 2003). For example, Chaturvedi and Insana
(1996) calculated the statistical attributes of estimating the ESD using a spherical
Gaussian model. In that work, they compared predicted error from measurements
with the method-independent lower bound on estimation error found from the
Cramer-Rao inequality.

The ESD was estimated from the backscattered power spectrum by utilizing a
form factor model (Insana 1990b). The backscattered power spectrum (corrected
for attenuation) is related to the form factor by

R fð Þj j2¼ Cf 4 H fð Þj j2F f ;ESDð Þ ð3:19Þ
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where C is a frequency-independent constant and F f ;ESDð Þ is the form factor
which is a function of the frequency and ESD. The ESD was estimated by min-
imizing the mean-square difference between the theoretical form factor for the
tissue scatterer size and the measured form factor, F̂, described by the equation

dESD ¼ arg min
ESD

v2 ð3:20Þ

where

v2 ¼
XM
i¼1

1

var F̂ fið Þ
F̂ fið Þ � exp �3:04 f 2

i ESD2
� �	 


ð3:21Þ

and M is the number of points included in the analysis bandwidth. By taking the
derivative of Eq. (3.21) with respect to ESD and setting it equal to zero, Eq. (3.20)
can be solved,

XM
i¼1

f 2
i

var F̂ fið Þ
exp �3:04 f 2

i ESD2
� �

F̂ fið Þ � exp �3:04 f 2
i ESD2

� �	 

¼ 0: ð3:22Þ

The estimate of ESD is the value of ESD that satisfies Eq. (3.22). When the ratio of
ka *1 (the acoustic wavenumber times the effective scatterer radius), then the
form factor is a smooth function of frequency and is sensitive to small changes in
scatterer size (Insana 1990a). For this ka regime, Chaturvedi (1996) showed that

var dESD �
XM
i¼1

var F̂ fið Þ
oESD

oF̂ fið Þ

� �2
( )

: ð3:23Þ

To evaluate this variance, an expression for the derivative of the ESD with respect
to F̂ was derived by differentiating Eq. (3.22) with respect to F̂ fið Þ. When the gated
signal is large, the variance of the ESD can be estimated as

var dESD � C

ESD2

XM
i¼1

f 4
i

q fið Þ

 �( )�1

ð3:24Þ

with

q fið Þ ¼ 1þ sin 2pfiKDtð Þ
K sin 2pfiDtð Þ

� �2
" #

ð3:25Þ

where Dt is the sampling rate of the time signal and K is the number of points in
the time signal. The significance of Eq. (3.24) is that the variance of the estimate is
inversely proportional to the size of the ESD (within the range that ka *1).
Therefore, larger values of ESD will result in smaller variance of the estimate for a
given bandwidth and variance will be smaller for larger bandwidth.
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Extending the analysis conducted by Chaturvedi and Insana (1996), Oelze et al.
(2002) calculated the variance of an ESD estimate for a novel estimator using
linear regression of a log reduced power spectrum. Using the best-fit line approach,
the variance of the estimator was calculated as

var dESD � 2:09� 10�2

ESD2

XM
i¼1

f 4
i �Mf 2

2
h i( )�1

: ð3:26Þ

As before, larger ESD resulted in smaller variances and smaller variances were
also associated with estimates conducted at high center frequencies and over a
larger bandwidth.

This work was further extended to include measurement variances inherent in
using a reference phantom method for normalization of the backscattered power
spectrum (Yao 1991; Gerig 2003). When using a reference phantom technique to
estimate the BSC, the variance in the estimate of the power spectrum from the
reference phantom must also be taken into account. In the reference phantom
method, the sample BSC is estimated by calculating the power spectrum from a
sample and normalizing by the BSC calculated for a reference phantom,

dBSCs fð Þ ¼ Ss fð Þ
Sr fð Þ

BSCr fð Þe4z as fð Þ�ar fð Þ½ � ð3:27Þ

where S fð Þ represents the power spectrum averaged from independent gated rf
signals from a scattering medium, z is the depth of the range-gated segment used
for spectral estimation, a represents an attenuation coefficient (Np/m), and the
subscripts s and r represent the sample and reference medium, respectively. In
general, neglecting windowing functions the variance of a spectrum is given by
(Chaturvedi 1996),

var Ŝ fð Þ
� �

� S fð Þ2 ð3:28Þ

where S fð Þ is an arbitrary power spectrum. From this result and Eq. (3.27), Gerig
et al. (2003) calculated that the estimated variance of a BSC estimate using the
reference phantom is given by,

var dBSCs fð Þ
h i

� Ns þ Nr

NsNr

� �
BSC2

s fð Þ ð3:29Þ

where Ns and Nr represent the number of sample and reference waveforms used to
calculate the spectral averages, respectively. From this result, the variance of the
BSC estimate from a sample using the reference phantom technique is reduced
when using a large number of waveforms in the average of the reference phantom
spectra. Using a similar procedure as in Oelze et al. (2002), the variance of the
estimate of the ESD using a reference phantom technique was derived, giving
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var dESD � C

ESD2

Ns þ Nr

NsNr

� � Xfmax

i¼fmin

f 2
i � f 2

Pfmax

j¼fmin

f 2
j � f 2

� �2

2
6664

3
7775

2

ð3:30Þ

where the summation is over the analysis bandwidth. These results provide similar
variance estimates as found by Chaturvedi and Insana (1996) and Oelze et al.
(2002) in terms of being inversely proportional to the ESD squared and dependent
on the bandwidth. However, in the reference phantom technique, increasing the
number of spectra used in the average spectra from the reference results in a
reduction in variance of the ESD estimate. Therefore, in using a reference phantom
technique, it is advantageous to average as many spectra from independent scan
segments from the reference phantom as possible to reduce the variance of
spectral-based estimates like the ESD. This is not a problem because typically one
is not concerned with spatial resolution in a reference phantom, i.e., a data block
from the reference phantom can be as large as the dimensions of the phantom to
provide a very good estimate of the power spectrum because the phantom ideally
has uniform scattering properties throughout. Furthermore, additional scan lines
for averaging can be obtained by moving the probe in the elevational direction.

3.2.4 Simulation and Experimental Validation

Simulation studies and studies with physical phantoms have also been conducted
to examine the tradeoffs between bias and variance of spectral-based estimates and
the size of the data blocks used to produce an estimate. From Fig. 3.2 the data
block size is defined axially by a range gate length and laterally by the number of
scan lines used in the spectral estimate times the separation between the scan lines.
In QUS imaging, each data block corresponds to a pixel in an image and can be
color-coded corresponding to a particular estimate value. An example of a QUS
image using the ESD is shown in Fig. 3.3. The image depicts a B-mode image of a
mouse sarcoma tumor followed by a QUS image superimposed on the B-mode
image. The spatial resolution of the QUS image is much worse than the spatial
resolution of the B-mode image. This loss in spatial resolution is necessitated by
the requirement to obtain enough samples to get a good periodogram estimate to
have low bias and variance of the resulting spectral estimates. Different structures
of the tumor can be visualized by choosing data blocks and therefore pixels as
small as possible but large enough to retain good variance and bias of estimates. If
the data block size is larger, the bias and variance tend to be smaller as long as the
data block encompasses uniform scattering properties. However, as the data block
size becomes larger, the greater the likelihood that the data block may encompass
tissue regions with distinct scattering properties. This will tend to increase the bias
and variance of subsequent estimates for that data block. Therefore, it is important
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to make the data blocks as small as possible to retain good spatial resolution and
the ability to clearly distinguish different tissue regions from one another in an
image. But at the same time sufficient data samples are required for good bias and
variance. Too small of a data block size will result in increased bias and variance
of estimates and subsequent QUS images will tend to have large streaks or noisy
characteristics.

Simulation and experimental studies were conducted to examine the specific
tradeoffs between estimate bias and variance and the spatial resolution of QUS
imaging (using the ESD) in media with uniform scattering properties (Oelze
2004b). A resolution cell of an ultrasonic imaging system (B-mode) is defined by
the pulse length times the cross-sectional area of a beam. In the simulation and
experimental studies (Oelze 2004b), data block sizes were defined laterally by the
number of beamwidths and axially by the number of pulse lengths. Because the
estimate variance has been shown to be dependent on the bandwidth and the pulse
length is proportional to the bandwidth, for statistical considerations the axial
resolution should be defined in terms of the number of pulse lengths. Therefore,
the data block could be defined in terms of the number of resolution cells of the
ultrasonic imaging system. The spatial resolution of a B-mode image is given by
one resolution cell volume.

In the simulations, estimates of the power law of the ultrasonic backscattered
signal from a collection of point scatterers at a number density of 64 mm-3 were
obtained using various data block sizes. A point scatterer will scatter sound as f 4

(Faran 1951). Estimates of the power law from simulated data were obtained
versus the data block size. The percent error in the estimate (bias) and the standard
deviation (variance) as a percent of the estimate mean were plotted versus different
data block sizes. Figure 3.4 shows the graphs of the errors in the estimates of the
power law versus the data block size.

From these simulations studies several things can be observed and concluded.
First, as predicted by theory, the bias and variance of the estimates is increased as
the data block size is decreased. Second, a similar bias and variance can be

Fig. 3.3 (left) Ultrasound B-mode image of a subcutaneous sarcoma tumor and (right) QUS
image of the tumor using an ESD map superimposed on the B-mode image
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obtained for a range of data block sizes, i.e., a minimum data block size is required
in terms of the number of resolution cells needed to get good bias and variance of
estimates. Therefore, the data block does not need to be a perfect square but can be
rectangular in shape or even circular. Third, at a minimum, to get low bias and
variance of estimates (better than 10 %), the axial length must be at least five to six

Fig. 3.4 (top) Percent error in the estimate of the power law dependence of the backscattered
signal versus data block size and (bottom) standard deviation as a percent of the mean value of the
estimate versus data block size. Black represents error values above 10 %. Figures taken from
(Oelze 2004b)
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pulse lengths long and the lateral size must be three beamwidths wide. Based on
these simulations, if the smallest possible data block is desired while still retaining
within 5 % accuracy and precision, a data block size of 15 pulse lengths by five
beamwidths was suggested (Oelze 2004b).

Experiments with physical phantoms containing glass bead scatterers were also
conducted to examine the tradeoffs between data block size and the statistics of
scatterer property estimates (Oelze 2004b). The phantoms contained glass bead
scatterers with diameters ranging from 45 to 53 lm, sound speed in the phantom
was approximately 1540 m/s and the attenuation coefficient of the phantom was
approximately 0.5 dB/MHz/cm. The phantom was scanned with a single-element
weakly-focused transducer (f/4) with a center frequency of 10 MHz and a -6-dB
bandwidth of 6.5 MHz. Parallel scan lines from the phantoms were taken at
intervals of less than a quarter beamwidth separation. From the backscattered
ultrasound scan lines, the averaged spectra were acquired from data blocks and the
ESD was estimated from the averaged spectra using the theory of Faran (1951).
Figure 3.5 shows the graphs of the error plots versus different data block sizes. The
results correlate well with simulation results presented in Fig. 3.4. Therefore, the
experiments support the conclusion that there exists a tradeoff inherent between
data block size and bias and variance of spectral-based estimates.

3.3 Description of Statistics of Envelope Statistics
Parameters

A number of models for the statistics of the envelope of acoustic and optical
signals have been proposed over the past few decades with applications to sea
echo, medical ultrasound, and laser scattering (Dutt 1994; Hruska 2009a). Some of
these distributions include the Rayleigh distribution, the Rician distribution, the K
distribution, the homodyned K distribution, and the Nakagami distribution. A
comprehensive review of the different distributions that have been applied for
ultrasonic tissue characterization has been published, (e.g., Destrempes 2010).

Work has been conducted to quantify the bias and variance of estimates of the
envelope statistics. Specifically, Dutt and Greenleaf examined the bias and vari-
ance of estimates for the parameters of the K distribution when using fractional
order moments (Dutt 1995). They concluded that the use of fractional order
moments reduced the variance of estimates derived from the K distribution
resulting in an extended tradeoff between the number of samples needed for the
estimate and the estimate performance in terms of bias and variance.

Hruska and Oelze (2009b) developed a novel estimator for the homodyned K
distribution based on using fractional order moments to estimate the k and l
parameters. The k parameter describes the ratio of coherent to incoherent energy in
the signal. If a medium has a significant specular scatterer or the medium has
periodic structure, the k parameter is larger. If the medium is full of diffuse
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scatterers with random spatial locations, the k parameter is smaller. The l
parameter quantifies the number of scatterers per resolution cell. If the volume of a
resolution cell is known or can be approximated, then the number density of
scatterers can be estimated. When the number of scatterers per resolution cell
approaches 10, the sensitivity of the l parameter decreases rapidly, i.e., it is

Fig. 3.5 (top) Percent error in the estimate of the power law dependence of the backscattered
signal versus data block size and (bottom) standard deviation as a percent of the mean value of the
estimate versus data block size. Figures taken from Oelze (2004b)
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difficult to distinguish 10 scatterers per resolution cell from 100 scatterers per
resolution cell. This is because when there are many scatterers per resolution cell,
the pdf begins to look more and more like the Rayleigh distribution and the shape
of the distribution depends less and less on the number density of scatterers (Weng
1991). The Rayleigh distribution is a limiting case of fully developed speckle
where only the magnitude of the backscattered energy can be extracted from the
envelope statistics. Therefore, reliable estimation of the l parameter is restricted to
cases where the number density is sufficiently low.

To examine the sensitivity and bias of an estimate of the l parameter based on
the homodyned K distribution, simulations were conducted. In the simulations,
software phantoms were constructed with scatterers placed spatially at random
with number densities corresponding to 1.0–10 scatterers per resolution cell of a
simulated ultrasonic source. For each scatterer number density, 10 independent
phantoms were constructed to examine the bias and variance of the l parameter
estimate. Figure 3.6 shows a graph of the actual scatterers per resolution cell
versus the estimated number of scatterers per resolution cell. From the figure it can
be observed that lower values of the l parameter result in lower standard devia-
tions of the estimate whereas the higher the value of the l parameter the larger the
standard deviation of the estimate. Therefore, the results indicate that the precision
of the estimate of the l parameter is highly dependent on the actual value of the l
parameter. As the estimate of the l parameter becomes large, the validity of that
estimate becomes suspect. From Fig. 3.6, the bias of the estimate is also observed
to increase as the l parameter increases. For example, when the number of scat-
terers per resolution cell is 10, the estimator provides a l parameter estimate of
7.2. The trend is that as the number of scatterers per resolution cell continues to
increase, the bias will also continue to increase. Therefore, if an estimate above 10
scatterers per resolution cell occurs, the confidence in that estimate is not high.
When conducting characterization of a tissue using the l parameter, estimates
above the 10 threshold should be used with caution as they may not reliably
describe underlying tissue structure.

The size of the sample required to obtain good estimates of the k and l
parameters from the homodyned K distribution using the technique developed by

Fig. 3.6 Estimate bias of the
l parameter via simulation.
The solid line represents the
estimated parameter and the
dashed line represents the
actual value. The error bars
represent mean estimates
from 10 samples. Figure
taken from Hruska (2009a)
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Hruska and Oelze (2009b) was also examined. Like the spectral-based estimates,
estimates of the k and l parameters are associated with a data block with lateral
dimensions related to the number of scan lines separated by a beamwidth and
axially by the range gate used to segment the data. All else being equal, when a
larger data block is used, a greater number of envelope samples are available for
estimation.

As a first step towards examining the effects of sample size on estimate bias and
variation, independent and identically distributed samples of the homodyned K
distribution were generated. Because the samples are statistically independent and
follow the desired distribution exactly, this analysis should establish a best-case
theoretical limit. Sets of samples were generated for a variety of model parameters:
l ranging from 1.0 to 10 and k ranging from 0.25 to 1.0. For each sample size and
pair of parameter values, 50 independent estimation trials were performed. The
absolute relative bias and the normalized standard deviation of the parameter
estimates were calculated. The absolute relative bias is defined as

Bx̂ ¼
�̂x� x

x

����
���� ð3:31Þ

where x represents the parameter being estimated. Likewise, the normalized
standard deviation is defined as

SDx̂ ¼
ffiffiffiffiffiffiffiffiffiffiffi
var x̂½ �

p
x

: ð3:32Þ

For each sample size, the average absolute relative bias was computed by
averaging together the absolute relative bias obtained from the 50 trials for each
set of parameter values. The average normalized standard deviation was obtained
similarly. The absolute relative bias (given by the absolute value) was used instead
of the relative bias to allow meaningful averaging of the biases from different
trials. The results, plotted in Fig. 3.7, follow expectations, i.e., as the sample size
increases, the bias and variance of the parameter estimates decrease.

Like the spectral-based parameters, QUS images utilizing the k and l param-
eters from the homodyned K distribution can be constructed. The data blocks used
to provide an estimate can also be associated with pixel colors and superimposed
on B-mode images to create a mapping of the parameters. Because the data blocks
require a number of samples to obtain adequate bias and variance of the estimates,
the spatial resolution of QUS images utilizing the envelope statistics are also less
than for ultrasonic B-mode imaging. The same tradeoffs associated with the
spectral-based imaging also apply for the envelope statistics. The same data blocks
used for spectral-based imaging can be used for imaging with the k and l
parameters from the homodyned K distribution with similar bias and variance of
estimates. Figure 3.8 shows an example of a QUS image of a mammary tumor in a
rat utilizing the k parameter.
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3.4 Methods to Improve the Scatterer Property Statistics

Several processing methods can be used to improve the spectral-based estimates in
terms of bias and variance and extend the tradeoff between spatial resolution of an
image and quality of the estimates. These different techniques include com-
pounding (i.e., averaging of spectra or estimates from independent realizations)
and windowing techniques. Additional filtering techniques may be available to
improve either the bias (Oelze 2002, 2004a) or variance of estimates, but these
filtering techniques will not be discussed here.

Fig. 3.7 Average absolute relative bias and average normalized SD of estimated model
parameters versus sample size

Fig. 3.8 Parametric image of
k parameter enhancing a
B-mode image of a rodent
tumor (MAT II-B)
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3.4.1 Discrete Model Analysis

To understand how compounding and windowing techniques can result in
improvements in the statistical attributes of spectral-based estimates, a discrete
model of scattering will be used. In the discrete model of scattering, the signal is
assumed to arise from many discrete, sub-resolvable and nearly identical scatterers
with random spatial locations. This scenario is represented by Fig. 3.9. The
scattering from these sub-resolution scatterers gives rise to a complex interference
pattern, i.e., speckle that can be observed in B-mode images.

The signal from the collection of scatterers can then be represented by

r tð Þ ¼ p tð Þ � s0 tð Þ � a tð Þ; ð3:33Þ

where r tð Þ is the received signal, p tð Þ is the pulse-echo impulse response but also
incorporates the system-dependent effects (i.e., the transmit voltage level, dif-
fraction effects, etc.), a tð Þ is a function that accounts for the frequency-dependent
attenuation of the signal and

s0 tð Þ ¼ s t þ t1ð Þ þ s t þ t2ð Þ þ � � � þ s t þ tNð Þ ð3:34Þ

relates the scatter function in time domain for N scatterers located at different
temporal locations (depths in the tissue). Essentially, pulses are arriving at dif-
ferent times because scatterers are located at different distances from the trans-
ducer and their arrival pulses sum together coherently at the transducer surface.
The scattered pulses will sum to make the backscattered time train. Equivalently,

r tð Þ ¼ p tð Þ � s t � t1ð Þ þ s t � t2ð Þ þ � � � þ s t � tNð Þ½ � � a tð Þ: ð3:35Þ

Taking the Fourier transform of the above relation gives

R fð Þ ¼ P fð ÞS0 fð ÞA fð Þ ð3:36Þ

or

R fð Þ ¼ P fð ÞA fð ÞS fð Þ e�j2pft1 þ e�j2pft2 þ � � � þ e�j2pftN
� �

: ð3:37Þ

An estimate of the power spectrum can be obtained by taking the magnitude
squared of the above relation,

R fð Þj j2 ¼ P fð Þj j2 A fð Þj j2 S0 fð Þj j2: ð3:38Þ

Fig. 3.9 Graphic depiction
of discrete but sub-resolvable
scatterers and the scattered
ultrasound pulse

3 Statistics of Scatterer Property Estimates 61



By considering each scatterer contribution individually, this can be further
reduced to

R fð Þj j2 ¼ P fð Þj j2 A fð Þj j2 S fð Þj j2 N þ 2
XN

n [ m¼1

cos 2pf tn � tm½ �ð Þ
" #

R fð Þj j2 ¼ G fð Þj j2 N þ 2
XN

n [ m¼1

cos 2pf tn � tm½ �ð Þ
" #

:

ð3:39Þ

The first term on the right is called the incoherent scattering term and depends only
on the scattering function and the number of scatterers contributing to the power
spectrum estimate. The first term does not depend on the spatial locations of the
scatterers. The second term is called the coherent scattering term and depends on
the scattering function and the spatial locations of the scatterers. For large numbers
of randomly spaced scatterers, the second term acts as noise to the incoherent
spectrum when trying to parameterize the BSC. The noise increases bias and
variance of scatterer property estimates. It is the second term that is reduced in its
contribution to the BSC estimate by compounding and windowing techniques,
which will lead to improvements in the bias and variance of estimates.

3.4.2 Spectral Smoothing with Compounding

In the case of compounding, the power spectrum, given by R fð Þj j2, is estimated by
averaging the spectra from several independent samples. Assume that M different
spectra were obtained from M independent scan line segments having the same
scattering properties but with different scatterer location realizations. This could be
represented by the set of equations

R fð Þj j21¼ G fð Þj j2 N þ 2
XN

n [ m¼1

cos 2pf tn � tm½ �ð Þ
" #

R fð Þj j22¼ G fð Þj j2 N þ 2
XN

o [ p¼1

cos 2pf to � tp
� �� �" #

..

.

R fð Þj j2M ¼ G fð Þj j2 N þ 2
XN

q [ r¼1

cos 2pf tq � tr
� �� �" #

:

If these spectra are then compounded together, the resulting spectrum is
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R fð Þj j2 ¼ G fð Þj j2 N þ 1
M

2
XN

n [ m¼1

cos 2pf tn � tm½ �ð Þ þ � � � þ 2
XN

q [ r¼1

cos 2pf tq � tr

� �� �( )" #
:

ð3:40Þ

In this case, the number of coherent terms has been increased by a factor of
M but the magnitude of the coherent terms has also been decreased by a factor of
M. This results in a much smaller contribution of the coherent ‘‘noise’’ to the
estimation of the incoherent part of the spectrum and will result in a marked
improvement in the variance of the spectral-based estimates.

Compounding to improve spectral-based estimates can be accomplished through
several mechanisms: spatial compounding, angular compounding (Gerig 2004), and
deformational compounding (Herd 2011). In spatial compounding, the spectra from
independent scan lines are used to reduce the variance of the estimate at the tradeoff
of spatial resolution. Independent scan lines are separated by at least a beamwidth.

Angular compounding can be used to improve the variance of spectral estimates
without the loss in spatial resolution if scattering is isotropic. Angular com-
pounding works by acquiring several estimates from a single region of space
where each estimate is obtained by interrogating the region from a different ‘‘look’’
angle. The different look angles cause the orientation of the scatterers with respect
to each other and the transducer to be different leading to different coherent terms
at each angle. Figure 3.10 shows a scenario where the scatterers examined from
two different angles result in two different signal realizations. If scattering is
isotropic with angle, the effect of the orientation change is that the coherent terms
from Eq. (3.39) will be different for each angular look angle providing independent
spectra that can then be averaged provided the angle of separation is large enough.
If the scattering is anisotropic with scattering, then different ‘‘look’’ angles will
result in different coherent and incoherent scattering terms. If the angles of ori-
entation for the measurements are too close together, the spectra will not be
completely independent and the averaging will produce less reduction in the
coherent spectrum. Because the spectra come from the same spatial location, no
significant loss in spatial resolution will be observed compared with spatial

Fig. 3.10 Signal received by
looking at a set of scatterers
from two different angular
orientations
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compounding for QUS. Figure 3.11 shows an example of angular compounding
for QUS and the improvements in variance of the estimates without the loss of
spatial resolution of the QUS image. The compounded image has a center region
with different scattering properties than the outer region. In the first image, the
variance of the estimates is too noisy to clearly make out the central region. After
angular compounding, the QUS image is much less noisy and the contrast of the
center target is clear and more observable.

Finally, deformational compounding works by compressing the tissue and then
taking a new measurement from the same location in space (Herd 2011). Because
the scatterers have shifted in location from one another and with respect to the
transducer due to compression of the tissue, the spectra from each measurement at
each deformation will have different coherent spectra realizations. Averaging the
spectra at each compression results in the reduction in magnitude of the coherent
part of the spectrum. Like the angular compounding, the spatial resolution can be
preserved with the reduction in the coherent part of the spectrum. However, if the
deformation is not enough, the spectra from the different compressions will not be
completely independent.

3.4.3 Spectral Smoothing with Windowing Methods

Another method for smoothing the estimate of the BSC, which can result in
improvements in the variance of spectral-based parameter estimates from the BSC,
are windowing methods such as the Welch’s method or multi-taper methods (Wu
2010). To understand how the windowing methods reduce the variance of the BSC
estimate, consider a medium with only four identical scatterers spaced at random
spatial locations and the corresponding time signal produced by these scatterers

Fig. 3.11 ESD estimates from a simulated phantom consisting of two cylindrical regions using
data block sizes of 1.2 mm by 1.2 mm. The ESD estimates were obtained using data from one
(left) and 64 (right) angles of view with 360� coverage. Figure taken from Lavarello (2008)
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(Fig. 3.12a). If a rectangular window is used to segment the time signal including
all of the scatterers, then the power spectrum of the signal can be represented by

R fð Þj j2 ¼ G fð Þj j2
4þ 2 cos 2pf t1 � t2½ �ð Þ þ 2 cos 2pf t1 � t3½ �ð Þ þ 2 cos 2pf t1 � t4½ �ð Þ
þ 2 cos 2pf t2 � t3½ �ð Þ þ 2 cos 2pf t2 � t4½ �ð Þ þ 2 cos 2pf t3 � t4½ �ð Þ

" #
:

ð3:41Þ

Instead of using a simple single rectangular window to segment the data,
another technique developed by Welch calculates the power spectrum from a
length of signal by creating sub-windows to further segment the data (Welch
1967). The spectra from the sub-windows are then averaged together to smooth the
average spectrum estimate and reduce the variance of parameter estimates based
on the average spectrum. The Welch’s method reduces the variance of the spec-
trum estimate by reducing the number of coherent terms included in the estimate.
Consider the case where the signal from the four scatterers shown in Fig. 3.12b is
segmented by two non-overlapping rectangular windows. By summing together
the two spectra from the sub-windows, the corresponding power spectrum estimate
is given by

R fð Þj j2 ¼ G fð Þj j2 4þ 2 cos 2pf t1 � t2½ �ð Þ þ 2 cos 2pf t3 � t4½ �ð Þ½ �: ð3:42Þ

Comparing Eq. (3.42) with Eq. (3.41), it can be observed that the number of
coherent terms in the Welch’s technique is greatly reduced. Specifically, the cross
terms between the two gates that are present in Eq. (3.41) are not present in the
Welch’s method. The Welch’s technique breaks the coherence of the scattering
terms in the power spectrum between the sub-windows. Therefore, the number of
coherent terms contributing to the estimate of the power spectrum is greatly reduced.
In this example, non-overlapping rectangular windows were used; however, typi-
cally in the Welch’s technique overlapping Hanning windows (50 % overlap) are
used providing a good reduction in the variance of BSC and parameter estimates.

A similar method that can be used to reduce the variance of the power spectrum
estimate is the multi-taper method (Thomson 2001). Consider again the four
scatterers with random spatial locations except that now the resulting signal is
windowed using two different window segments as shown in Fig. 3.13. The first
window is a simple rectangular window and can be thought of as two rectangular

Fig. 3.12 a) Signal from four scatterers using a simple rectangular gate and b) using a Welch’s
technique with rectangular window functions
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windows of the same length connected together. The second window can be
thought of as two rectangular windows of the same length connected together
except the second one is multiplied by -1. The first window can be represented by
[1, 1] and the second by [1, -1]. If a power spectrum is calculated using each of
these windowed signals, then it can be described mathematically by

R fð Þj j2½1;1� ¼ G fð Þj j2
4þ 2 cos 2pf t1 � t2½ �ð Þ þ 2 cos 2pf t1 � t3½ �ð Þ þ 2 cos 2pf t1 � t4½ �ð Þ
þ 2 cos 2pf t2 � t3½ �ð Þ þ 2 cos 2pf t2 � t4½ �ð Þ þ 2 cos 2pf t3 � t4½ �ð Þ

" #

ð3:43Þ

and

R fð Þj j2½1;�1� ¼ G fð Þj j2
4þ 2 cos 2pf t1 � t2½ �ð Þ � 2 cos 2pf t1 � t3½ �ð Þ � 2 cos 2pf t1 � t4½ �ð Þ
� 2 cos 2pf t2 � t3½ �ð Þ � 2 cos 2pf t2 � t4½ �ð Þ þ 2 cos 2pf t3 � t4½ �ð Þ

" #
:

ð3:44Þ

Averaging the power spectra from the two windows yields the same result as
Eq. (3.42), the Welch’s technique result. Therefore, the multi-taper method reduces
the variance of the power spectrum estimate by also reducing the number of
coherent terms contributing to the power spectrum estimate. This reduction in terms
will improve the variance of parameter estimates based on the averaged power
spectrum.

In the illustration provided here, the windowing functions used were not
tapered. The technique is called the multi-taper method because typically a set of
tapered window functions with positive and negative lobes are used to produce the
power spectrum estimate. The best known set of tapers used for signal processing
is the Slepian sequences or the discrete prolate spheroidal segments (DPSS)
(Slepain 1978). A graph of these window functions is shown in Fig. 3.14. These
windows comprise an orthonormal set of window functions. Each window

Fig. 3.13 Illustration of two
window functions used to
segment the scattered signal.
The top figure corresponds to
a simple rectangular window
and the bottom figure
corresponds to a window of
the same length but with the
first half given by +1 and the
second half given by -1
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function is used to obtain a power spectrum estimate. These spectra are then
averaged together to provide a smoothed power spectrum or BSC.

Different windowing techniques can be used to smooth the estimate of the
power spectrum, which results in a reduction of the variance of the estimate of the
power spectrum. These windowing techniques improve the estimate by reducing
the number of coherent spectrum terms that contribute to the estimate of the power
spectrum. Specifically, these techniques reduce the number of coherent terms by
breaking the coherence between scatterers. If the sub-windows used to produce the
power spectrum estimates are too small, then bias is introduced into the power
spectrum estimate. Therefore, there is a limitation in the number and size of the
sub-windows that can be used in these windowing methods.

In terms of reducing the variance of estimates, compounding techniques pro-
vide a larger reduction in variance compared to the windowing techniques.
However, by combining these two techniques, significant reduction in estimate
variance can be produced.

3.5 Conclusions

The statistics of QUS techniques involving spectral-based estimates and envelope
statistics estimates were examined. The bias and variance of both spectral-based
estimates and the estimates from the envelope statistics depend on the size of the
data blocks used to make the estimate, i.e., number of samples of the signal used to
make the estimate. Several authors have suggested data block sizes for QUS
imaging to balance the spatial resolution versus estimate bias and variance. For
example, Oelze (2004b) suggested that to keep bias and standard deviation below
10 %, a data block size of 10 pulse lengths by five beamwidths should be used.
This corresponds to a data block size that is 50 resolution cells in size meaning that

Fig. 3.14 First four Slepian
sequences
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the spatial resolution of the resulting QUS image is approximately 50 times worse
than a corresponding B-mode image. Wu and Zagzebski (2010) suggested a data
block size with approximately 10 scan lines contributing to the estimate and an
axial length corresponding to 10 wavelengths of the center frequency of the in-
sonifying pulse (or approximately 30–70 resolution cells). Therefore, as a rule of
thumb with basic processing procedures, sample sizes should be around 50 reso-
lution cell sizes to provide a good tradeoff between spatial resolution of QUS
estimates and good statistical features of the estimate.

ESD estimates were also analyzed and found to depend on the actual ESD size,
i.e., a larger ESD size corresponds to a lower variance of the ESD estimate.
Furthermore, a larger bandwidth results in a decrease in the variance of ESD
estimate. However, the bandwidth consideration is included in the idea of choosing
a sample size that is a large number of resolution cells. The bandwidth in pulsed
sources is inversely proportional to the pulse length and, therefore, the resolution
cell size. The larger the bandwidth the smaller the resolution cell size.

Additional compounding and windowing techniques can further reduce the
variance of power spectrum estimates and spectral-based estimates such as the
ESD. By applying angular compounding techniques, the tradeoff between spatial
resolution and good statistical features for the estimates will be extended, i.e., a
sample size could be smaller than 50 resolution cells. Using a Welch’s approach or
a multi-taper method may also reduce variance of estimates at the cost of some
bias introduced. If reducing estimate variance is more important than reducing
estimate bias, which may be the case when trying to discriminate tissues with
parameters have small mean differences, then choosing small Welch windows or a
larger number of tapers may improve the variance without increasing the spatial
resolution associated with the QUS estimate.
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Chapter 4
Attenuation Compensation
and Estimation

Timothy A. Bigelow and Yassin Labyed

Abstract Estimating the losses of ultrasound signal energy with propagation depth
as a function of frequency is essential for quantifying tissue properties. Specifically,
ultrasound attenuation is used to correct for spectral distortion prior to estimating
quantitative ultrasound parameters to assess the tissue. Ultrasound attenuation can
also be used independently to characterize the tissue. In this chapter, we review the
primary algorithms for estimating both the local attenuation within a region of
interest as well as the total attenuation between a region of interest and an ultra-
sound source. The strengths and weaknesses of each algorithm are also discussed.

Keywords Attenuation � Local attenuation � Total attenuation � Spectral differ-
ence method � Spectral-log difference method � Hybrid method � Spectral-fit
method � Multiple filter method

4.1 Introduction

When attempting to characterize tissue based on the frequency spectrum of
backscattered ultrasound echoes, it is critically important to correctly compensate
for attenuation. Because both scattering and attenuation impact the frequency
spectrum, the effects of attenuation must be removed before the scattering prop-
erties can be extracted for diagnostic purposes. For the purpose of tissue charac-
terization, there are two different attenuation parameters to be considered. First,
there is the local attenuation. The local attenuation is the attenuation within a
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region of interest and is used primarily to quantify the tissue properties of that
region. It can also be used to improve the accuracy of scatterer property estimates,
e.g., scatterer size and acoustic concentration, as will be discussed in more detail
later in this chapter. The second and most important type of attenuation is the
total attenuation. The total attenuation is the effective attenuation along the
propagation path from the source thru the intervening tissue layers to the region of
interest. Figure 4.1 shows an image of the different regions corresponding to the
local and total attenuation. It is more difficult to obtain accurate estimates of the
backscatter coefficient and corresponding scatterer property estimates derived
from the backscatter coefficient without an accurate estimate for the total atten-
uation. In this chapter, we will review how the attenuation impacts the back-
scattered power spectrum as well as summarize the basic algorithms that have
been developed to estimate both total and local attenuation.

4.2 Impact of Attenuation on Backscattered Power
Spectrum

Before discussing the various algorithms that have been developed to estimate the
total and local attenuation, we will briefly review how these attenuation parameters
relate to the backscattered power spectrum. The backscattered power spectrum
from a region of interest in an unknown sample is given by Bigelow (2004) and
Bigelow and O’Brien (2004a, b)

Ss fð Þ / f 4 H fð Þj j4 Vinc fð Þj j2exp �4atot fð ÞzTð Þ
�Mc � Fc f ; aeff

� �
D f ; alocð Þ

� �
ð4:1Þ

Fig. 4.1 Illustration of tissue when performing ultrasound tissue characterization
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In this equation, f is frequency, H( f) is the dimensionless filtering characteristics
of the ultrasound source, |Vinc( f)| is the power spectrum of the voltage pulse applied
to the ultrasound source, and zT is the distance from the ultrasound source to the
beginning of the region of interest in the tissue. The term atot fð Þ is the total
attenuation along the propagation path, as was described previously, and is given by

atot fð Þ ¼
XN�1

j¼1

aj fð ÞDzj

zT

 !
ð4:2Þ

where aj is the attenuation in each of the intervening tissue layers of thickness Dzj:

Also, Fc f ; aeff

� �
is the form factor which captures the frequency dependence of

the scattering while Mc is the acoustic concentration (Insana et al. 1990). Typical
form factors for tissue and tissue-mimicking phantoms include the Gaussian form
factor, the fluid-filled sphere form factor, and the spherical-shell form factor.

Fc Gaussian f ; aeff

� �
¼ exp �0:827 k � aeff

� �� �

Fc Sphere f ; aeff

� �
¼

j1 2k � aeff

� �
2=3ð Þk � aeff

� �2

Fc Shell f ; aeff

� �
¼ jo 2k � aeff

� �� �2
ð4:3Þ

The development of more complicated form factors to accurately model tissue is
the subject of current study (Oelze and O’Brien 2006).

The remaining term from Eq. (4.1), D f ; alocð Þ takes into account both the
diffraction of the acoustic waves (i.e., focusing) and the local attenuation, aloc fð Þ
of the tissue in the region of interest and is given by

D f ; alocð Þ ¼ exp �4aloc fð Þzoð Þ

�
ZL=2

�L=2

gwin szð Þ exp �4aloc fð Þszð ÞDfocus f ; szð Þ
� �

dsz
ð4:4Þ

where the variable of integration, sz, increases as we move away from the source.
In this equation, gwin is the windowing function used to gate the backscattered
echoes when selecting an analysis region. Common windowing functions include
rectangular, Hamming, and Hanning windows. Also, L is the length of the win-
dowing function expressed as a distance and zo is the distance from the beginning
of the region of interest (ROI) to the center of the current windowed analysis
region within the ROI. We distinguish here between the larger ROI, or the region
over which the attenuation estimate is obtained, and the smaller windowed anal-
ysis region, or the region where the power spectrum is estimated. The attenuation
estimation algorithms require finding multiple power spectra from different anal-
ysis regions within the ROI in order to find the attenuation of the ROI. The
windowed analysis region is illustrated in Fig. 4.2.
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The term within the integral Dfocus f ; szð Þ takes into account focusing and is
given by

Dfocus f ; szð Þ ¼
exp

�2 zTþzo�Ftransmitð Þþszð Þ2

wz transmit fð Þð Þ2
� 	

� exp
�2 zTþzo�Frcvð Þþszð Þ2

wz rcv fð Þð Þ2
� 	

2
4

3
5 ð4:5Þ

assuming the beam profile on transmit and receive can be approximated by
a Gaussian function; an approximation that is reasonable for most sources (Barber
1991; Bigelow 2004; Bigelow and O’Brien 2004a, b). In this equation, Ftransmit and
Frcv are the distance from the aperture plane to the transmit and receive foci
respectively. Also, wz transmit fð Þ and wz rcv fð Þ are the effective Gaussian depths of
focus for the transmit and receive foci, respectively. For a spherically focused
source, wz is approximately equal to 6.01k(f#)2 where k is the wavelength and f# is
the f-number for the source.

From Eq. (4.4), it is clear that the impact of local attenuation on the back-
scattered power spectrum is coupled with the diffraction of the acoustic field via
the integral expression. This coupling can make the assessment of backscatter
more challenging. As a result, various investigators have attempted to isolate the
local attenuation and focusing effects on the spectrum so that each can be corrected
independently. The most common approach, termed point compensation,
assumes that the size of the windowing function is so small that gwin can be
approximated by an impulse function (Oelze and O’Brien 2002; Bigelow 2004;
Bigelow and O’Brien 2004a, b). Under this approximation, Eq. (4.4) becomes

D f ; alocð Þ ¼ exp �4aloc fð Þzoð Þ
exp

�2 zTþzo�Ftransmitð Þ2

wz transmit fð Þð Þ2
� 	

� exp
�2 zTþzo�Frcvð Þ2

wz rcv fð Þð Þ2
� 	

2
4

3
5 ð4:6Þ

where the local attenuation term and diffraction terms have been decoupled.

Fig. 4.2 Illustration showing
coordinates when defining
variables in backscattered
power spectrum

74 T. A. Bigelow and Y. Labyed



Another approach to decouple the local attenuation and diffraction is to use an
approximate value for the local attenuation within the integral (Bigelow and
O’Brien 2006). This approach is used in all tissue characterization methods that
divide the power spectrum from the sample by the power spectrum from a ref-
erence phantom as will be discussed in more detail later in the chapter. Under this
approximation Eq. (4.4) becomes

D f ; alocð Þ ¼ exp �4aloc fð Þzoð Þ

�
ZL=2

�L=2

gwin szð Þ exp �4aapproximate fð Þsz

� �
Dfocus f ; szð Þ

� �
dsz

ð4:7Þ

The optimal choice for aapproximate fð Þ was shown to be given by

aapproximate fð Þ ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

high fð Þ þ a2
low fð Þ

2

s
ð4:8Þ

where ahigh fð Þ and alow fð Þ are the largest and smallest attenuation values expected
in the tissue region (Bigelow and O’Brien 2006).

4.3 Local Attenuation Estimation Algorithms

Now that we have reviewed how local and total attenuation impacts the back-
scattered power spectrum, we can review some of the algorithms used to estimate
the attenuation within a region of interest. While this local attenuation can be used
to improve the estimate of the scattering properties for the tissue, it is typically
used independently to characterize the tissue for diagnostic purposes. We will
focus on four of the most common local attenuation estimation algorithms.

4.3.1 Spectral Shift Algorithm for Local Attenuation
Estimation

One of the most common algorithms for estimating the attenuation within a region
of interest is the spectral-shift algorithm. This algorithm uses the down shift in
center frequency of the power spectrum versus propagation depth to estimate the
attenuation slope, a0; where the local attenuation is assumed to have the form
aloc fð Þ ¼ a0 f þ bb (Narayana and Ophir 1983a, b; Oosterveld et al. 1991;
Baldeweck et al. 1993, 1994, 1995; Girault et al. 1998; Kim and Varghese 2007).
This algorithm has been implemented in both the frequency and the time domain,
where the time-domain implementation requires utilizing an autoregressive
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approach (Baldeweck et al. 1993, 1994, 1995; Girault et al. 1998). We will derive
the algorithm in the frequency domain because focusing has not been accounted
for in the autoregressive approach.

The spectral shift algorithm begins by assuming that the backscattered power
spectrum can be approximated by a Gaussian function. As a result, Eq. (4.1) can be
written as

Ss fð Þ / exp � f � foð Þ2

2r2
x

 !
D f ; alocð Þ: ð4:9Þ

Traditionally, the spectral-shift algorithm has been implemented assuming
weakly-focused sources where diffraction effects in the ROI can be neglected. In
addition, small windows are typically used resulting in the assumption that point
compensation is valid. Hence, Eq. (4.9) can be written as

Ss fð Þ / exp � f � foð Þ2

2r2
x

 !
exp �4ao � fzoð Þ: ð4:10Þ

However, multiplying the Gaussian function by the decaying exponential is just
a Gaussian transformation resulting in a new Gaussian function.

Ss fð Þ / exp �
f � ~fo zoð Þ
� �2

2r2
x

 !
ð4:11Þ

where

~fo zoð Þ ¼ fo � 4r2
xao � zo: ð4:12Þ

Therefore, the attenuation slope can be found by selecting multiple windows
within a ROI (i.e., different zo). The power spectrum for each window is then
calculated and fit by a Gaussian function to find the center frequency, ~fo; and
bandwidth, r2

x: The attenuation slope can then be calculated from the change in
center frequency with depth,

ao ¼ �
1

4r2
x

o~fo
ozo

: ð4:13Þ

Importance of Finding the Usable Frequency Range: When fitting a
function to a spectrum it is critically important to perform the fit only with
values from the spectrum that are not dominated by noise. Therefore, the first
step in any frequency domain algorithm is to first find the usable frequency
range from the power spectrum. One can do this from either a visible
inspection of the spectrum or using a computer program that identifies the
noise floor for the spectral data and always operates above this noise floor.
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Hint on Finding Center Frequency and Bandwidth: When finding the
center frequency and bandwidth from a fit to a Gaussian function, we have
found that a more accurate fit can be obtained by performing the fit in the log
domain. Therefore, we find the values of ~fo and r2

x that minimize the
function in Eq. (4.14).

mse ¼ mean
f

log e
� f�~foð Þ2

2r2
x

� 	 !
� log

Ss fð Þ
max

f
Ss fð Þð Þ

� �

�mean
f

log e
� f�~foð Þ2

2r2
x

� 	 !
� log

Ss fð Þ
max

f
Ss fð Þð Þ

� � !

0
BBBBB@

1
CCCCCA

22
666664

3
777775
: ð4:14Þ

The expression derived in Eq. (4.13) is valid only when diffraction effects can
be neglected (Bigelow et al. 2008; Kim and Varghese 2008). Otherwise, a cor-
rection needs to be applied as indicated in Fig. 4.3 taken from Bigelow et al.
(2008).

From this figure, it is clear that without focusing compensation, ROIs before the
focus underestimate the attenuation slope while ROIs beyond the focus overesti-
mate the attenuation slope. When the windowed regions is close to the focus, we
use the following correction

Fig. 4.3 Error in attenuation
estimate both with and without
focusing compensation for a
simulated 33 MHz spherically
focused transducer intended to
assess cervical ripening in rats
taken from Bigelow et al.
(2008). The source had a focal
length 9 mm and zo = 0 in this
figure corresponds to the focus
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exp
2 zT þ zo � Ftransmitð Þ2

wz transmit fð Þð Þ2

 !
� exp

2 zT þ zo � Frcvð Þ2

wz rcv fð Þð Þ2

 !" #
ð4:15Þ

before finding the center frequency. This correction is based on the assumption
that the beam can be approximated by a Gaussian function in the focal region
(Bigelow et al. 2008).

4.3.2 Spectral Difference Method for Local Attenuation
Estimation

Another common algorithm for estimating the local attenuation from an ROI is the
spectral difference method (Parker and Waag 1983; Parker et al. 1988; Yao et al.
1990). The spectral difference method is sometimes referred to as the reference-
phantom method because it uses a well-characterized reference phantom to correct
for diffraction effects. In the spectral difference method, multiple overlapping
windows are positioned throughout the ROI as shown in Fig. 4.4. An overlap of
50 % between adjacent windows is common; however, other overlap values have
been used. Power spectra from corresponding windows in a reference phantom are
also acquired.

Importance of Sound Speed: It is important to use a tissue-mimicking
phantom with a sound speed similar to the expected sound speed of the tissue
so that the diffraction properties are similar when estimating the attenuation.

After obtaining the power spectrum from each window for the sample and the
reference, the power spectra are divided to give

Fig. 4.4 Illustration of
windowed regions within
ROI when implementing the
spectral difference algorithm
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Ss fð Þ
Sref fð Þ /

exp �4atot fð ÞzTð Þ �McFc fð ÞD f ; alocð Þ
exp �4aref fð ÞzT

� �
�Mc ref Fc ref fð ÞD f ; aref

� �
" #

ð4:16Þ

where aref fð Þ is the attenuation of the reference phantom and Fc ref fð Þ is the form
factor describing the frequency dependence of the scattering from the phantom.
Using the approximation in Eqs. (4.7) and (4.16) simplifies to

Ss fð Þ
Sref fð Þ /

exp �4 atot fð Þ � aref fð Þ
� �

zT

� �
exp �4 aloc fð Þ � aref fð Þ

� �
zo

� � McFc fð Þ
Mc ref Fc ref fð Þ

" #
: ð4:17Þ

Taking the natural logarithm of the above relation gives,

S fð Þ ¼ ln
Ss fð Þ

Sref fð Þ

� �
¼ 4 aref fð Þ � aloc fð Þ
� �

zo þ C fð Þ ð4:18Þ

where C( f) is a function of frequency that depends on the scattering properties and
total attenuation of the sample and reference phantoms. C( f) does not depend on zo

provided the ROI is homogeneous. The attenuation of the sample is calculated
from the change in S fð Þ with zo, i.e.,

aloc fð Þ ¼ aref fð Þ � 1
4
oS fð Þ
ozo

: ð4:19Þ

Importance of Homogeneous Region: The spectral difference method
cannot be used to estimate the attenuation when the scattering properties
change within the ROI as this would make C( f) also a function of zo (Labyed
and Bigelow 2011).

4.3.3 Spectral Log Difference Method for Local Attenuation
Estimation

A slightly modified form of the spectral-difference method is the spectral-log-
difference method (Kuc and Schwartz 1979; Kuc 1980, 1984; Insana et al. 1983).
This method is slightly less dependent on changes in the scattering properties of
the medium (Labyed and Bigelow 2011). The method begins by finding the
backscattered power spectrum from two windowed regions within an ROI; one at
the proximal edge of the ROI, zop, and one at the distal edge of the ROI, zod, as
shown in Fig. 4.5. Once again the power spectra from the windowed regions of the
sample are divided by corresponding spectra from a reference phantom yielding
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Sp fð Þ ¼ ln
Ss f ; zop

� �
Sref f ; zop

� �
 !

¼ 4 aref fð Þ � aloc fð Þ
� �

zop þ C f ; zop

� �
ð4:20Þ

Sd fð Þ ¼ ln
Ss f ; zodð Þ

Sref f ; zodð Þ

� �
¼ 4 aref fð Þ � aloc fð Þ
� �

zod þ C f ; zodð Þ ð4:21Þ

where the subscript p refers to the proximal windowed region and the subscript
d refers to the distal windowed region. Subtracting Eqs. (4.20) and (4.21) yields

SD fð Þ ¼ Sp fð Þ � Sd fð Þ ¼ 4 aref fð Þ � aloc fð Þ
� �

zop � zod

� �
þC f ; zop

� �
� C f ; zodð Þ

� �
: ð4:22Þ

Also, if we assume that the frequency dependence of the scattering does not
change within the ROI for the sample (only possibly the acoustic concentration),
then

C f ; zop

� �
� C f ; zodð Þ ffi CD zop; zod

� �
ð4:23Þ

which is independent of frequency (Labyed and Bigelow 2011). Therefore, the
local attenuation within the ROI can be estimated by finding

SD fð Þ
4 zod � zop

� �þ aref fð Þ
" #

¼ aloc fð Þ þ
CD zop; zod

� �
4 zod � zop

� � ð4:24Þ

and then performing a fit as a function of frequency to eliminate the CD term. The
most common approach is to assume a frequency dependence of aloc fð Þ ¼
a0f þ bb; and then perform a linear fit as a function of frequency to determine a0:

ROI Size needed for Spectral Log Difference Method: A good rule of
thumb is to have (zod - zop) [ 15 pulse lengths and at least 15 independent
echoes when using a linear approximation for the attenuation with the
spectral-log-difference method. Smaller values tend to produce large vari-
ance of the estimates. However, these values are also dependent on the
frequency range available for obtaining the estimates.

Fig. 4.5 Illustration of
windowed regions within
ROI when implementing the
spectral log difference
algorithm
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4.3.4 Hybrid Method for Local Attenuation Estimation

A third method for estimating the attenuation within an ROI is the hybrid method
(Kim and Varghese 2008). The hybrid method has very similar performance to the
spectral log-difference method (Labyed and Bigelow 2011). The hybrid method
once again begins by calculating the power spectra for multiple windowed regions
within an ROI and a corresponding reference phantom. The sample and reference
power spectra are then divided yielding

Ss f ; zoð Þ
Sref f ; zoð Þ /

exp �4 atot fð Þ � aref fð Þ
� �

zT

� �
exp �4 aloc fð Þ � aref fð Þ

� �
zo

� � Mc zoð ÞFc fð Þ
Mc ref zoð ÞFc ref fð Þ

" #
ð4:25Þ

where once again we have assumed that the frequency dependence of the scat-
tering does not change within the ROI. Note that a change in the acoustic con-
centration Mc zoð Þ within the ROI does not impact the attenuation estimate. The
power-spectra ratio for each window is then multiplied by a Gaussian function and
corrected for the attenuation of the reference phantom to yield

GRS f ; zoð Þ ¼ exp � f � fcð Þ2

2r2
c

 !
Ss f ; zoð Þ

Sref f ; zoð Þ exp �4aref fð Þzo

� �

/
exp � f � fcð Þ2

2r2
c

 !
exp �4 atot fð Þ � aref fð Þ

� �
zT

� �

exp �4aloc fð Þzoð Þ Mc zoð ÞFc fð Þ
Mc ref zoð ÞFc ref fð Þ

2
66664

3
77775
ð4:26Þ

which is approximately equal to

GRS f ; zoð Þ / exp �
f � ~fc

� �2

2~r2
c

 !
exp �4aloc fð Þzoð Þ

" #
ð4:27Þ

because of the frequency dependence of total attenuation and scattering. If we
assume that the attenuation within the ROI has the form aloc fð Þ ¼ a0f þ bb; then
Eq. (4.27) becomes

GRS f ; zoð Þ / e
� f�~fcð Þ2

2~r2
c e�4aofzo / exp �

f � ~f 0c zoð Þ
� �2

2~r2
c

 !
ð4:28Þ

where

~f 0c zoð Þ ¼ ~fc � 4~r2
cao � zo: ð4:29Þ
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Therefore, the attenuation slope can be calculated as

ao ¼ �
1

4~r2
c

o~f 0c
ozo

: ð4:30Þ

Selection of fc and ~rc for Hybrid Method: fc is often chosen as the fre-
quency where the spectral peak of GRS( f, zo) is approximately in the middle
of the usable frequency range. Similarly, ~rc is chosen as the bandwidth of
the received echoes from the ROI.

4.3.5 Comparison of Spectral Difference, Spectral
Log-Difference, and Hybrid Methods for Local
Attenuation Estimation

Before concluding our discussion of local attenuation estimation, we will briefly
compare the performance of the three algorithms that utilize a reference phantom
as was originally reported in Labyed and Bigelow (2011). These algorithms were
selected for comparison because they are the easiest to implement when using
modern ultrasound clinical array transducers. We use computer simulations to
evaluate the dependence of the algorithms on the number of independent echoes
and the number of pulse lengths utilized to obtain the estimates. The simulations
utilized a 10 MHz source with a 5 cm focal length and a 50 % -3-dB bandwidth.
We assume that the local attenuation has the form aloc fð Þ ¼ a0 f : Figure 4.6
shows the variance of the estimates as a function of ROI size.

From this figure, it is clear that for any given ROI size, the spectral-difference
method has the lowest variance. However, the spectral-difference method is also
significantly impacted by any heterogeneities in the tissue (Kim and Varghese
2008; Labyed and Bigelow 2011). The spectral-log difference method and the
hybrid method have comparable performance both in terms of variance (Fig. 4.6)
and in terms of their robustness to tissue heterogeneity (Labyed and Bigelow
2011). Neither the spectral log-difference nor the hybrid method are impacted by
changes in acoustic concentration within the ROI. However, a bias will be
introduced when there is a change in the frequency dependence of the scattering. If
we assume that the change in frequency dependence results from a variation in the
effective scatterer diameter, then the bias is approximately given by

Error Np=cm�MHzð Þ ffi
16:32 fmid a2

eff zp

� �
� a2

eff zdð Þ
� 	
c2 zp � zd

� � ð4:31Þ

where fmid is the middle frequency of the usable frequency range.
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4.4 Total Attenuation Estimation Algorithms

When performing ultrasound tissue characterization, it is critically important to
correct for the frequency dependence of the attenuation along the propagation
path. Therefore, in this section we will summarize the two types of algorithms that
have been proposed for this purpose. Both of these algorithms assume that the
total attenuation for the sample has a linear frequency dependence give by
atot fð Þ ¼ as f : A third approach, which will not be discussed in detail, would be to
use estimates of local attenuation in each of the intervening tissue layers and then
sum the estimates to calculate the total attenuation from Eq. (4.2) directly. While
this third approach works for some applications with clearly identifiable and rel-
atively thick layers, it tends to have problems when the intervening tissue layers
are more complex.

4.4.1 Multiple Filter Algorithm for Total Attenuation
Estimation

The first type of algorithm that will be discussed is the multiple-filter algorithm.
This algorithm requires either applying multiple Gaussian filters to the backscat-
tered waveforms or using multiple transmit frequencies that span the bandwidth of
the transducer (Bigelow 2008, 2010a, b; Labyed and Bigelow 2010). Because most
modern tissue characterization applications utilize a clinical array transducer, we
will focus our discussion on the use of multiple filters. We use echoes from a
reference phantom to correct for diffraction effects.

Fig. 4.6 The standard
deviation (STD) in the percent
error of the attenuation
coefficient estimates that were
obtained using the spectral
difference method from the
homogeneous sample, versus
the number of pulse lengths
and the number of echoes per
ROI for the (a) spectral
difference algorithm, (b) the
spectral-log difference
algorithm, and (c) the hybrid
algorithm
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The algorithm begins with finding the power spectra from a single windowed
region in the tissue sample and from the corresponding region in a well-charac-
terized reference phantom. After correcting for the attenuation in the reference
phantom, the ratio of the spectra is given by

Ss fð Þ
Sref fð Þ e

�aref fð ÞzT / exp �4as fzTð Þ Fc fð Þ
Fc ref fð Þ ð4:32Þ

where we can assume that the window is located at zo = 0 without loss of gen-
erality. We then assume that the frequency dependence of the scattering is
approximately given by Fc fð Þ / exp �Af nð Þ where n is approximately equal to 2.
While this is clearly true for the Gaussian form factor, it is also true over a limited
kaeff range for other common form factors as shown in Fig. 4.7 taken from
Bigelow (2010a, b).

In this figure, the fits for each form factor are given by

Fc Sphere f ; aeff

� �
ffi exp �1:11 kaeff

� �2:167
� 	

Fc Shell f ; aeff

� �
ffi exp �2 kaeff

� �1:914
� 	

;
ð4:33Þ

and the fit was performed for kaeff from 0 to 1.2 because kaeff values less than 1.2
are of the greatest interest when quantifying the tissue microstructure.

If we then multiply Eq. (4.32) by a series of Gaussian filters, we can show that

Ss fð Þ
Sref fð Þ e

�aref fð ÞzT exp � f � fcð Þ2

2r2
c

 !
ffi C1 exp �

f � ~fc
� �2

2r2
c

 !
ð4:34Þ

Fig. 4.7 Form factor with fit
of the form exp �Af nð Þ for
(a) fluid filled sphere and
(b) spherical shell taken from
Bigelow (2010a, b)

84 T. A. Bigelow and Y. Labyed



where

~fc ffi 1� 2~r2
c As � Arð Þ

� �
fc þ 4~r2

czTas

~r2
c ¼

r2
c

1� 2r2
c As � Arð Þ

ð4:35Þ

using a derivation similar to that performed for the hybrid method discussed
previously. Therefore, for each filter applied, we can find

n fcð Þ ¼
fc � ~fc
� �

4~r2
czT

ffi As � Arð Þ
2zT

fc � as: ð4:36Þ

The intercept of n fcð Þ with respect to fc will give the slope of the frequency
dependence for the total attenuation.

One of the challenges when using the multiple-filter method is determining the
optimal number of filters. In an early work, the use of four filters was examined
(Bigelow 2010a, b; Labyed and Bigelow 2010). For the first three filters, the center
frequency of each filter was calculated as

fc1 ¼ fmin þ
fmax � fmin

4

fc2 ¼ fc1 þ
fmax � fmin

4

fc3 ¼ fc2 þ
fmax � fmin

4

ð4:37Þ

where fmin and fmax were the smallest and largest frequencies of the usable fre-
quency range, respectively. The usable frequency range is the range of frequencies
in the power spectrum for which the power spectrum exceeds some level (for
example -20 dB) based on the noise level of the received echoes. Once these
center frequencies were set, the bandwidths were determined by finding the per-
cent bandwidth such that fmin corresponded to the -10 to -15 dB bandwidth for
the filter as calculated from

r2
c1 ¼

10 fc1 � fminð Þ2

2 ln 10ð Þ �BWdBð Þ

 !
ð4:38Þ

where BWdB is the desired bandwidth (i.e. -10 or -15 dB) for the first filter that
would correspond with fmin. The bandwidths of the other three filters were then
selected to have the same -3-dB percent bandwidth as the first filter. The
remaining 4th filter was then selected to span the entire usable frequency range of
the backscattered echoes.

Recently, a statistical analysis study was performed on the multiple-filter
algorithm to derive an expression for the standard deviation of the total attenuation
estimate as a function of ROI size, bandwidth, and number of Gaussian filters
(Labyed 2010). The focus was on the variance of the estimates as this is the
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limiting criterion when estimating the total attenuation (Bigelow and O’Brien
2005a, b; Bigelow et al. 2005; Bigelow 2008, 2010a, b; Labyed and Bigelow
2010). While it is trivial to get the attenuation correct on average, it is much more
challenging to obtain precise estimates especially when the ROI is small. The
statistical analysis used non-overlapping (independent) filters to simplify the
mathematics and found that the variance in the total attenuation estimate was
proportional to

varðasÞ /
Ns þ Nrð Þ

NsNr

1

PK
j¼1

PM
i¼1

fi � fc jð Þð Þ2
� �( )

�

PK
j¼1

PM
i¼1

fi�fc jð Þð Þ2
� �

fc jð Þ

 �2

PK
j¼1

PM
i¼1

fi�fc jð Þð Þ2
� �

fc jð Þ2
 �

ð4:39Þ

where fi are the individual frequency components of the spectrum, fc(j) is the
center frequency of the jth Gaussian filter when a total of K filters are used, and Ns

and Nr are the number of independent echoes used to estimate the power spectra of
the sample and reference, respectively.

Precision of Total Attenuation Estimation Algorithms: The precision of
the total attenuation estimation algorithms is strongly influenced by the
bandwidth of the source and the number of independent echoes used to
obtain the estimate. There is also some dependence on the size of the
windowed region used to estimate the power spectrum as this can influence
the accuracy of the power spectra estimate.

The results of the statistical analysis also revealed that the optimal number of
non-overlapping filters is equal to two. In addition, the standard deviation of the
total attenuation estimate decreases with increasing ROI size, i.e., with increasing
number of independent echo lines used to compute the power spectra, and
increasing time window length used to gate the echo lines. Note that the total
attenuation is estimated from the power spectrum that is obtained by averaging the
power spectra of the windows within the ROI. Therefore, using a large number of
echo lines improves the estimate of the power spectrum, and hence improves the
estimate of the total attenuation.

The results of the statistical analysis were validated using numerical simula-
tions. Backscattered signals were simulated for a sample and a reference that had
attenuation coefficients of 0.7 and 0.5 dB/cm-MHz, respectively. The sample
scatterers had a Gaussian Form Factor with a 20 lm effective radius, while the
reference had spherical shell scatterers with 10 lm radii. Both the sample and the
reference had a scattering density of 100 mm-3, corresponding to approximately
10 scatterers per resolution cell, which is adequate for fully developed speckle.
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Figure 4.8 shows plots of the theoretical and calculated standard deviation of
the total attenuation estimate from the simulated backscattered signals as a
function of the number of non-overlapping filters. It is clear that using two
independent Gaussian filters yields the smallest standard deviation in the estimate
of the total attenuation. As shown in Fig. 4.9, the STD in the total attenuation
estimate decreased with increasing number of independent echoes.

Fig. 4.8 Plots of the
theoretical and calculated
standard deviation of the total
attenuation estimate from the
simulated backscattered
signals, obtained with the
multiple-filter method using
an ROI length of 10 pulse
lengths and an ROI width of
60 independent echo lines,
with respect to the number of
non-overlapping filters

Fig. 4.9 Plots of the
theoretical and calculated
standard deviation of the total
attenuation estimate from the
simulated backscattered
signals, obtained using the
multiple filter method with
two Gaussian filters and an
ROI length (time window
size) of 10 pulse lengths with
respect to the number of
independent of echoes per
ROI
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4.4.2 Spectral Fit Algorithm for Total Attenuation
Estimation

The second type of algorithm used for obtaining the frequency-dependent attenu-
ation along the propagation path involves estimating the frequency dependence of
the backscatter and the attenuation simultaneously. Initially, the tissue was assumed
to satisfy a Gaussian form factor Fc Gaussian f ; aeff

� �
¼ exp �0:827 k � aeff

� �� �� �
and a fit was performed to estimate both as and aeff (Bigelow and O’Brien 2005a, b;
Bigelow et al. 2005). Other authors have extended the algorithm to allow for a more
general form for the backscatter BSC fð Þ ¼ bf nð Þ and then perform a fit for b, n, and
as (Nam et al. 2011). However, we will focus on the original spectral fit algorithm
where only two parameters were estimated.

The spectral fit algorithm begins by dividing the spectra from the windowed
region of the sample by the spectra from the windowed region of a known ref-
erence. Initially, a planar target was used as a reference, but a reference phantom
has also been used. Our derivation here will assume a reference phantom is used.
After dividing the spectra, the result is multiplied by the attenuation and back-
scatter terms for the reference as given by

Sfit fð Þ ¼ Ss fð Þ
Sref fð Þ e

�aref fð ÞzT BSCref fð Þ / exp �4as fzTð ÞFc fð Þ: ð4:40Þ

Assuming a Gaussian form factor for Fc fð Þ; the natural log of Eq. (4.40) will
yield

� ln Sfit fð Þ
� �

¼ 0:827
2p
c

aeff

� �2

f 2 þ 4as fzT þ Constant ð4:41Þ

where a simple polynomial fit will yield both the total attenuation slope, as, and the
effective scatterer radius, aeff.

When implementing the spectral fit algorithm, more accurate and precise
estimates are obtained as the frequency range (Df = fmax-fmin) used to obtain the
attenuation estimate increases, similar to the case for the multiple filter method
(Labyed 2010). Figure 4.10 shows average error and the deviation as a function of
frequency range for attenuation values of 0, 0.3, 0.5, and 1 dB/cm-MHz with aeff of
5–105, 5–75, 5–85, and 5–150 lm, respectively taken from Bigelow and O’Brien
(2005a, b). Also, shown are the results for a 25 lm aeff and attenuation values
varying from 0 to 1 dB/cm-MHz. The results were obtained using a 3 mm
Hamming window (*13.5 pulse lengths) and 25 independent echoes. Regardless
of the scattering and attenuation properties of the sample, a consistent variance is
achieved provided the same Df is used to obtain the estimates. Figure 4.10 also
reiterates that when finding the total attenuation, achieving good accuracy is much
easier than achieving small variance.
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Methods to Improve Usable Frequency Range: Because the total attenu-
ation estimation algorithms are highly dependent on bandwidth. One way of
increasing the bandwidth is to use higher frequency transducers. Using
higher frequency transducers however, limits the penetration depth into
tissue. Recently, methods that are based on coded excitation and pulse
compression have been shown to improve the bandwidth and penetration
depth (Oelze 2007). Surface micro-machined capacitive ultrasonic trans-
ducers are new designs that demonstrated a big improvement in the band-
width (Ladabaum et al. 1998; Ergun et al. 2003). Some ultrasound clinical
systems, however, allow the transducer to be excited at three different center
frequencies. This feature can be used to increase the usable frequency range
in the power spectrum of the backscattered signal.

4.4.3 Comparison of Spectral Fit Algorithm and Multiple
Filter Algorithm

As described in Sect. 4.4.1, the optimal number of filters for the multiple-filter
method is two. However, that result was only valid when the Gaussian filters were
non-overlapping. Therefore, it is important to test whether using overlapping filters
can improve the attenuation estimates. A comparison of the performance between
the multiple-filter method and the spectral-fit method is also important to consider.

Fig. 4.10 Plots of the a accuracy and b precison for a range of attenuations and scatterer sizes
taken from Bigelow and O’Brien (2005a, b) estimated from simulated backscattered signals
illustrating the importance of the frequency bandwidth when estimating the total attenuation
using the spectral fit algorithm
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In this section, we compare the bias, STD, and mean squared error (MSE) of the
total attenuation estimates obtained with the spectral-fit method, the multiple-filter
method that uses two non-overlapping filters, and the multiple-filter method that
uses four overlapping filters as described in (see Sect. 4.4.1). We use the numerical
simulations described in Sect. 4.4.1 to perform these tests. Figure 4.11 shows the
results as a function of number of independent echoes in the sample while
Fig. 4.12 gives the results as a function of number of pulse lengths used to estimate
the backscattered power spectrum. The results indicate that the variance strongly
depends on the number of echoes with only a weak dependence on the number of
pulse lengths. However, a slight bias is introduced for smaller pulse lengths that is
not observed when the number of independent echoes tends towards zero.

Fig. 4.11 Plots of the a bias, b STD, and c MSE of the estimate as, which was obtained using the
multiple filter method with two independent Gaussian filters, the multiple filter method with four
overlapping Gaussian filters, and the spectral-fit method, with respect to the number of
independent of echoes per ROI for an ROI length of 10 pulse lengths
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ROI Size needed for Total Attenuation Algorithms: A good rule of thumb
is to have a windowed region of at least 10 pulse lengths and at least 25 to 35
independent echoes. However, these values are also dependent on the fre-
quency range available for obtaining the estimates.

Based on the two figures below, the MSE is comparable for both the spectral fit
method and the multiple filter method with two independent Gaussian filters.
However, the spectral fit method provides a slightly smaller STD and a slightly
larger bias compared to the two independent filter method. The figures also show
in the multiple filter method, that using three overlapping Gaussian filters and a
fourth filter that spans the entire usable frequency range gives better results than
using only two independent Gaussian filters. This latter result demonstrates that

Fig. 4.12 Plots of the a bias, b STD, and c MSE of the estimate as, which was obtained using the
multiple filter method with two independent Gaussian filters, the multiple filter method with four
overlapping Gaussian filters, and the spectral-fit method, with respect the number of pulse lengths
per ROI for an ROI that has 50 independent echo lines
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the multiple filter method could potentially be improved to yield smaller errors in
the attenuation estimates by using two overlapping filters.
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Chapter 5
Quantitative Ultrasound and Cell Death

Omar Falou, Ali Sadeghi-Naini, Azza Al-Mahrouki,
Michael C. Kolios and Gregory J. Czarnota

Abstract This chapter surveys the structural and physical changes that occur
during cell death along with novel non-invasive techniques recently developed for
the detection of such changes utilizing mid- to high-frequency ultrasound. Cell
death introduces structural changes in the cell’s nucleus including nuclear con-
densation and fragmentation. These result in differentiable echogenicities of living
cells and cells dying of programmed cell death (apoptosis). Quantitative ultra-
sound (QUS) methods have exhibited good capabilities to detect cell death, par-
ticularly apoptosis, resulting from exposure to anticancer therapies in cell pellets
in vitro, in liver samples ex vivo, and in cancer mouse models in vivo. Experi-
mental results demonstrate that there is a strong correlation between changes in
ultrasound backscatter characteristics and tumor regions that have responded to
treatment. Recent emerging data from clinical applications of this work have also
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demonstrated that QUS techniques can distinguish between clinically responding
or non-responding breast cancer patients during the course of neo-adjuvant
treatment. As such, QUS at conventional frequencies is expected to provide rapid,
non-invasive, and quantitative functional information, in real time for evaluating
responses to a specific therapy.

Keywords Cancer � Treatment monitoring � Therapy response � Apoptosis �
Quantitative ultrasound � Cell characterization � Tissue characterization

5.1 Introduction

The reality of cancer therapy is that there is no unique solution for all patients, and
hence, cancer treatments include the use of chemotherapy drugs, ionized radiation,
hormone therapy, immunotherapy, gene therapy, and surgery, or a combination of
some of these treatments. Further, recent studies have shown that there are vari-
ations in responses to a given therapy from one patient to another due to the
complexity of the biological systems (Notta et al. 2011). For instance, studies have
demonstrated that the genetic variations in leukemia stem cells have led to the
production of diverse cells, which in turn is the reason behind poorer therapy
outcomes. In other types of cancers, resistance or desensitization to therapy is
another challenge, which is caused by different factors such as the low level of
reactive oxygen species in cancer stem cells (Diehn et al. 2009). Such challenges
make it hard to follow one specific course of treatment with the hope of a good
therapy outcome. This necessitates the need for an efficient early monitoring
modality to effectively evaluate the response to treatment, which would ultimately
improve the outcome of therapy by facilitating treatment customization. Imaging,
in general, is non-invasive and cost effective approach that could have a significant
impact in assessing and choosing the appropriate type of treatment in the early
stages of the therapy, so the disease may be contained. This can be achieved
through the detection of cell death using an imaging modality, which would reflect
the level of response to a specific treatment. Cancer imaging is a very valuable tool
when used in different cancer management stages, which include detection and
monitoring of tumor progression under treatment (de Torres et al. 2007; Sarkeala
et al. 2008; Lee et al. 2004; Ferme et al. 2005; Ashamalla et al. 2005; Brindle
2008; Keidar et al. 2004). This helps in providing physicians with informed
clinical decision-making that can save lives. Advances in the various imaging
modalities have allowed the quantification of a wide range of different cellular
components that provide molecular, biochemical, functional, morphological, and
structural information (Brindle 2008; Fass 2008; von Schulthess et al. 2006;
Artemov et al. 2003; Sipkins et al. 1998). In this chapter, we will discuss sub-
cellular changes that lead to gross morphological and structural alterations, and
can be detected with quantitative methods in ultrasound imaging. We will also
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review the advancements made in cancer imaging in general with specific focus on
imaging cell death, particularly apoptosis. With special focus on the advances
made to date in the detection and treatment monitoring using QUS, we will discuss
recent in vitro, ex vivo, in vivo and clinical studies.

5.2 Apoptosis

Cellular transformation, where cell death pathways or tumor suppression genes are
altered along with a failure of immunological control, can lead to malignancy.
Numerous studies have targeted immunological (Quezada et al. 2011; Ferguson
et al. 2011) and cell death signaling pathways (Denicourt and Dowdy 2004; Hunt
and Evan 2001) as well as changes in oncogenes (Levine and Puzio-Kuter 2010;
Visvader 2011) in order to control cancer. These therapies can induce multiple
forms of cell death such as apoptosis, necrosis, autophagy and mitotic catastrophe.
We will briefly discuss the different cellular changes involved with apoptotic cell
death as it is a common pathway induced by many anti-cancer treatments.

Apoptosis or programmed cell death is a vital process in development and
normal cell turnover. It is an essential cellular homeostatic mechanism in organs
and tissues, and has a defense role in the function of the immune system as well as
eliminating diseased cells. However, when this process is disrupted, it becomes a
factor in different disease conditions, such as various cancers, neurodegenerative
and auto-immune diseases (Elmore 2007; Ding et al. 2011; Burguillos et al. 2011;
Chen et al. 2006). Different physiological or pathological stimuli can trigger
apoptosis by inducing various pathways in cells, which explains why not all cells
exposed to the same stimulus will undergo apoptosis. Regardless of the stimuli or
the pathway, complex cascades lead to the production of a number of cysteine
proteases (caspases) that result in the demise of cells. This process is accompanied
by several morphological changes that include the condensation of cells and their
chromatin, where the cytoplasm becomes dense and the cellular organelles are
tightly packed. Membrane blebbing follows and the cellular fragments separate
into apoptotic bodies (Fig. 5.1). Chromatin is cleaved into fragments by specific
enzymes resulting in apoptotic laddering. The formed apoptotic bodies are then
engulfed by macrophages or neighboring cells and thus the cellular fragments are
not released into the interstitial surroundings nor are anti-inflammatory cytokines
produced (Zullig and Hengartner 2004). Furthermore, tumorigenesis is related to
resistance to apoptosis, which can translate to resistance to anti-cancer therapies.

Inducing apoptosis alone has proved not to be the only solution in cancer
treatment, indicating a role for non-apoptotic mechanisms such as autophagy and
mitotic catastrophe (Hanahan and Weinberg 2011) all of which result in necrosis
(dead cells). In mitotic catastrophe, which can be induced by mitotic-arresting
drugs such as taxotere or ionizing radiation, which interfere with mitotic spindle
formation, nuclear material undergoes irreversible condensation of chromatin
(pyknosis) with multiple genome copies of material accumulating in cells that
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survive. Cells that die after mitotic catastrophe go on to die either through
apoptosis or non-apoptotic death. In autophagy, cells digest themselves and are
characterized by clustering of the phagolysosome membrane-associated protein
LC3. These different forms of cellular changes, which are associated with
malignant tumor cells and the targeted therapies, are manifested through different
characteristic morphological modifications which result in cells adopting different
physical properties. The associated cellular changes therefore can be detected with
different imaging modalities both in vitro and in vivo, and will be discussed further
in this chapter in the context of imaging.

Fig. 5.1 Morphological changes of apoptotic cells. a Human umbilical vein endothelial cells
(HUVEC) exposed to ultrasound activated microbubbles and ionizing radiation to induce
apoptosis (scale bar = 5 lm), b Hematoxylin and eosin straining of a section from prostate
xenograft tumor; treated similarly, and c TUNEL staining of a section from prostate xenograft
tumor; treated as in b; arrows in both b and c point to apoptotic cells, and scale bars = 50 lm
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5.3 Advances in the Detection of Cell Death Using Different
Imaging Modalities

The earlier the evaluation of a cancer treatment outcome, the better is the prog-
nosis for patients because treatment alterations can be made or salvage regimens
instituted, especially in aggressive diseases such as lung or brain cancers. Alter-
ation and deregulation of cell death is characteristic of cancer; therefore, many
cancer therapies induce different forms of cell death including apoptosis. In order
to assess the effectiveness of a therapy non-invasively by monitoring cellular
changes, a number of imaging modalities have been investigated. This includes
positron emission tomography (PET), where a number of radiolabeled PET tracers
are being developed to target cell proliferation and apoptosis (Nguyen and
Aboagye 2010). Evading apoptosis has been described as being a hallmark of
cancer (Evan and Vousden 2001), whereas inducing apoptosis is an important
therapeutic approach. Apoptosis, as described earlier, is characterized by mor-
phological changes that include cell shrinkage, membrane blebbing, condensation
of chromatin, and the formation of apoptotic bodies. The morphological changes
are the outcome of various molecular and biochemical changes that include: (1)
the activation of death receptors or mitochondrial effectors to activate caspases,
and (2) the exposure of plasma membrane phosphatidylserine, which consequently
label cells for clearance by phagocytes. Based on the biochemical changes in
apoptotic cells, a number of PET probes have been developed such as Annexin-V,
a protein that binds to phosphatidylserine (Blankenberg 2008). Another molecular
imaging approach to detect cellular changes is single photon emission computed
tomography (SPECT), which is similar to PET imaging by using an optical or
radioisotope labeled reporting molecule, but with less sensitivity. Combined
modality imaging using SPECT/CT has also been utilized. A recently character-
ized tracer, 4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid (GSAO),
which is abundant in the cytosol of dying cells and binds covalently to Hsp90, was
shown to identify cell death with high sensitivity compared to other tracers when
scanned with SPECT/CT (Park et al. 2011). Using MRI to image apoptosis has
also been investigated (Blankenberg 2008; Zhao et al. 2001; Schellenberger et al.
2002; Vangestel et al. 2011; Hiller et al. 2006; Bailey et al. 2009), where Gd-
DTPA-labeled annexin V was used to detect apoptosis. Although the above
described modalities are not invasive, they employ the use of radioisotope probes
that can be limited in their use, and need to be fully evaluated before use in clinical
trials. As such, imaging of cell death without using a contrast agent or a tracer
is favorable, and the use of diffusion-weighted MRI (DWI) is an alternative
(Blankenberg 2008; Charles-Edwards and deSouza 2006). Other methods that do
not require contrast agents, such as ultrasound, rely on the microstructural changes
associated with cell death to generate the contrast being detected.

Clinical ultrasound imaging is the most frequently used imaging modality in the
world accounting for almost 25 % of all imaging procedures (Forsberg 2004).
Ultrasound imaging has the advantage of low cost, rapid imaging speed, portability
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and high spatial resolution. Unlike many clinical imaging modalities that are based
on the contrast-agent interaction with body fluids or tissues; diagnostic ultrasound
is based on the scattering and reflection of acoustic waves and does not have
adverse bioeffects. However, despite its safety and popularity, relatively unso-
phisticated pulse echo techniques are still the basis of this imaging modality.
Advances in ultrasound instrumentation over the last decade have led to the rapid
expansion of clinical ultrasound. Furthermore, new developments in transducer
technology have increased available frequencies to 20–80 MHz providing better
image spatial resolution at the expense of reduced ultrasound penetration depth.
The associated ultrasound wavelengths and resultant spatial resolutions are
20–75 lm, on the order of the size of cells. Nevertheless, individual cells cannot
be resolved but the speckle pattern visualized in ultrasound images is a result of
constructive and destructive interference effects which are related to cellular
structure. This suggests an increased sensitivity to statistical features related to the
structure, size and organization of cells. For over two decades it has been known
that the necrotic core of living spheroids has an increased ultrasound echogenicity
that can be detected using high-frequency ultrasound as shown in Fig. 5.2
(Sutherland 1988; Sherar et al. 1987). Such increases were not produced by the
introduction of exogenous contrast agents as required by many other imaging
modalities, but rather by the mechanism of cell death itself. This was confirmed by
analyzing histology of regions of cell death which correlated well with regions of

Fig. 5.2 Ultrasound images of MCF-7 spheroids taken with 25 (top) and 55 (bottom) MHz
transducers using the VEVO 770 ultrasound scanner. B-scan images (x–z plane) in the left hand
panel, and two c-scan images (x–y planes, middle and right panels, chosen within red area
denoted in dotted line in B-scan images) at different depths. Images illustrate an increased
echogenicity ([6 dB) for both 25 and 55 MHz transducer data, illustrating contrast between
necrotic and viable spheroid regions (scale bar = 100 lm)
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increased ultrasound signal intensity. These early investigations were a precursor
to specific studies on apoptotic cell death and quantitative analyses using spe-
cialized methods in spectroscopic signal analysis of ultrasound signals.

5.4 Quantitative Ultrasound Techniques

Conventional ultrasound produces images related to tissue echogenicity. Changes
in image brightness may occur as a result of tissue properties but like any medical
imaging device can be affected by instrument parameters which can be modified
from imaging session to imaging session. This makes it extremely difficult to
compare images between different ultrasound machines and even for the same
machine when different settings are used. Another major disadvantage of con-
ventional ultrasound is its high degree of user dependence since it requires spe-
cialized education in image optimization techniques and proper understanding of
the interactions that occur between the ultrasonic beam and the organs. Quanti-
tative parameters based on the ultrasound-backscatter radiofrequency (RF) have
been developed in order to eliminate instrument dependence and to provide low
levels of user dependence. In addition, QUS techniques have aimed to increase the
diagnostic sensitivity and specificity of ultrasound, thus providing more functional
imaging rather than classic grayscale anatomical-based imaging (Guglielmi et al.
2009; McPherson 1991; Skorton and Collins 1988). Early parameters investigated
include integrated backscatter (related to image intensity), ultrasound attenuation,
and speed of sound. Because the last two parameters are difficult to measure
in vivo, another method of characterization relies on the characterization of tissue
power spectra, normalized to correct for the effect of the system transfer function,
as developed by the late Lizzi et al. (1997, 1983). While both approaches analyze
the same backscattered signal, the latter is more suitable for in vivo imaging.
Moreover, attenuation and speed of sound are more dependent on molecular tissue
composition than backscatter, which is more dependent on tissue structure rather
than molecular composition (Sarvazyan and Hill 2004) making it more suitable for
the detection of gross morphological changes that accompany cell death. QUS
methods originally developed at lower frequencies, and later applied at high fre-
quencies to cell death, can be classified as either spectroscopic or methods that
examine the statistics of the backscattered signal intensity. Ultrasound backscatter
spectroscopy can be used to estimate tissue acoustic parameters through analysis
of the frequency (spectral) content of backscattered signals (Lizzi et al. 1996,
1997) which are related to the tissue microstructure (Feleppa et al. 1986; Mamou
et al. 2005). In addition, researchers have been able to estimate the size, shape and
acoustic properties of ‘‘effective’’ scatterers in tissue utilizing theoretical models
(Insana 1995, 1996). Changes in the size and/or acoustical parameters of scatterers
are reflected in the power spectra. These methods were first applied clinically in
the 1970s to applications other than cell death, with limited success due to rela-
tively early imaging equipment, limited computational resources needed for
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performing digital signal processing and poorly controlled biology. Moreover,
many of these investigations were attempting to detect benign from malignant
tissue which is a more subtle and complex problem because there are less apparent
differences between normal and malignant tissue than between viable and dead
tissue. In the majority of work published on the use of ultrasound to detect cell
death, higher frequencies are used to detect differences in cell morphology (living
versus apoptotic or necrotic). We hypothesized that the use of mid- to high-
frequency ultrasound, with wavelengths on the order of the size of cells, make
quantitative ultrasound more sensitive to cell structure and the spatial distribution
of cells, and therefore to the structural changes that occur during cell death.
However, recent evidence also demonstrates that conventional frequency ultra-
sound may be used to detect cell death. Much of the preliminary research con-
ducted at high-frequency and now low-frequency has relied on pre-clinical in vitro
research conducted using centrifuged cell-pellet models as a model system for
in vivo tumors, with comparisons of observed scattering to theory.

In terms of theory, two general approaches have been used to model ultrasound
backscatter: continuous and discrete (Mo and Cobbold 1992). In the discrete
model, backscattered wavelets from discrete weak scatterers are coherently sum-
med at the ultrasonic source to generate the total backscattered signal. In the
continuous model, because there are many scatterers in the resolution volume of an
ultrasound transducer, the medium is modeled as a continuum for which fluctua-
tions of tissue density and compressibility give rise to the scatter. In the case of the
continuum model, a correlation length can be estimated from the backscattered
power spectrum, which can be related to an effective scatterer size (Oelze and
O’Brien 2002). In the discrete approach, the backscattered power spectrum can be
inverted to provide estimates of the scatterer properties, such as an effective
scatterer size. The continuum model requires randomly spaced scatterers and many
scatterers per resolution cell in order to provide scatterer property estimates from
theory. While most analysis to date of scattering from tumors and cells have
utilized a continuum model for estimation of scatterer properties, the idea that cells
are the prominent source of scattering in tumors suggests that a discrete model
may better describe the generation of the backscattered signal.

For complex structures like tissue, the extracellular matrix, nerves, blood
vessels and lymphatics may play a role in tumor backscatter. However, of key
importance is the observation, by our group and others (Oelze and Zachary 2006;
Oelze and O’Brien 2006), that for tumors with high cellular content, ultrasound
backscatter from pellets of cells exhibit similar frequency-dependent ultrasound
backscatter as xenograft tumors in mice formed from the same cell type (Fig. 5.3).
This attests to the suitability of cell pellet models for investigating the basic
biophysical mechanisms of scattering, i.e., it is a good model used in numerous
studies for investigating tumor ultrasound scattering (Taggart et al. 2007).

In the context of the work described below, quantitative ultrasound parameters
were calculated as follows: RF data within the region-of-interest (ROI) were
obtained and multiplied by a Hamming function to suppress undesired spectral
lobes. The power spectrum calculated using a Fourier transform of the resultant
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data for each line segment within the ROI and subsequently averaged. The
resulting power spectrum was divided by the power spectrum computed from a flat
quartz calibration plate (in vitro, in vivo data, and ex vivo data) or a glass bead
phantom (human data) to remove the effects of system and transducer transfer
functions and to calculate the normalized power spectrum. The integrated

Fig. 5.3 Normalized power spectra, hematoxylin and eosin stains and ultrasonic images for
FaDu derived tumor cells: a viable cell pellet sample and tumor xenograft. a Normalized power
spectra compensated for frequency dependent attenuation within the intervening sample,
computed from FaDu tumor (solid) and cell sample (dotted). b Hematoxylin and eosin staining
for a section through a FaDu cell sample and c FaDu tumor. The scale bar = 20 lm. d Ultrasonic
images for FaDu viable cell sample and e Tumor xenograft. Gains are not similar in the two
images, but in a the scattering strength can be compared as the data are normalized. The scale
bar = 1 mm. Adapted from Vlad (2009)
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backscatter and integrated backscatter coefficient were calculated by integrating
the normalized power spectrum and the frequency-dependent backscatter coeffi-
cient (Turnbull et al. 1989) over the -6 dB bandwidth of the transducer,
respectively. Linear regression analysis was performed within the -6 dB band-
width to calculate the spectral slope of the best fit line, its mid-band fit, and
corresponding 0-MHz intercept described by the ultrasonic spectrum analysis
framework (Lizzi et al. 1983, 1997). The backscatter amplitudes were calculated
by multiplying the pixel intensities in the B-mode image by the inverse of the
transfer function of the ultrasound instrument provided by the manufacturer
(Czarnota et al. 1997). The backscattered signal intensity was estimated by
averaging the pixel intensities in the B-mode image (Kolios et al. 2003).

5.5 Quantitative Ultrasound Detection of Cell Death

The majority of work in QUS has been focused on tissue characterization (Mamou
et al. 2006; Oelze et al. 2004; Takiuchi et al. 2000; Vered et al. 1987). The use of
QUS techniques for the detection of morphological changes associated with cell
death is a new advancement (Kolios et al. 2002). Early work on acute myeloid
leukemia (AML) cell pellets (tightly packed aggregates of cells) in vitro exposed
to the chemotherapeutic agent cisplatin and imaged at high frequency ultrasound
(20–60 MHz) has demonstrated large increases (up to *6 folds) in the ultrasound
backscatter amplitude 24 h after exposure associated with cell death (Czarnota
et al. 1997, 1999). Further work has demonstrated that treated regions can clearly
be differentiated from untreated ones due to the changes in ultrasound backscat-
tered signal intensity as shown in Fig. 5.4 (Kolios et al. 2003). The sensitivity of
the ultrasound detection method to the number of cells responding to treatment
was assessed by mixing treated acute myeloid leukemia cells with untreated cells
to form mixtures containing 0, 2.5, 5, 10, 20, 40, 60, 80 and 100 % treated cells
(not all the treated cells respond to the treatment; therefore, the percentages rep-
resent an upper bound to the concentration of treated cells). It was found that the
ultrasound technique could differentiate between untreated cells and a mixture of
2.5 % treated cells, indicating that the technique is sensitive to very low levels of
apoptosis (Tunis et al. 2005). The application of this technique to liver samples
ex vivo demonstrated a strong correlation between ischemic cell death and
increases in the integrated backscatter (4–9 dBr) (Vlad et al. 2005). In addition, we
have applied the ultrasonic characterization techniques to several cell lines to
examine how integrated backscatter coefficient, attenuation and speed of sound
were dependent on cell structure. Integrated backscatter coefficient, attenuation
and speed of sound were estimated through measurements from cell pellets using a
novel container. The data strongly suggest that integrated backscatter coefficient is
correlated with the size of the nucleus in these experiments (Taggart et al. 2007).
This finding is of particular significance because the nucleus is the cell organelle
that undergoes the most significant changes when the cell undergoes apoptosis and
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other forms of cell death. The same techniques were applied to several cancers
in vivo using different treatment methods to test the robustness of the ultrasound
techniques and applicability in other cell lines. In recent work, we have demon-
strated that these techniques may be used to differentiate between responding and
non responding regions within a tumor in animal models (Banihashemi et al. 2008;
Vlad et al. 2009). Moreover, we have shown that despite the existence of other
structures within the tumor (e.g., blood vessels or lymphatics), these techniques
may be used to non-invasively monitor treatment. Time-dependent increases in
mid-band fit, consistent with increases in ultrasound backscattered signal intensity,
at high ultrasound frequency were observed in xenograft malignant melanoma
tumors after photodynamic therapy (Banihashemi et al. 2008). Such increases
correlated well with morphological changes associated with apoptotic cell death
after treatment. Similar experiments were conducted on xenograft tumors in vivo

Fig. 5.4 Ultrasonic images (8 9 8 mm) of a three layer AML pellet (normal-treated-normal)
using the a 20 MHz and b 40 MHz transducers (scale bars = 1 mm). The treated layer can
clearly be differentiated due to the increase in the backscattered signal intensity (*11 dB). The
bottom row shows hematoxylin and eosin stains of the pellet from the boundary between the
unexposed top and cisplatin exposed middle layers c Nuclear condensation and cytoskeletal
disruption can be seen in the treated region on the left hand side of the Hematoxylin and eosin
stain. There is excellent correspondence between the area of treated and untreated cells and
backscatter increase. In panel b the bottom layer could not be visualized due to the ultrasound
attenuation effect. The scale bar = 20 lm. Adapted from Kolios et al. (2003)
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imaged at 10–30 MHz after radiotherapy (Vlad et al. 2009). Large hyperechoic
regions appeared in two mouse models (FaDu and C666-1) at 24 h after treatment
as demonstrated in Fig. 5.5. In these models, the integrated backscatter increased
by 6.5 and 8.2 dBr for the FaDu and C666-1 tumors, respectively. The spectral
slopes increased from 0.54 to 0.78 dBr/MHz for the FaDu tumors and from 0.77 to
0.90 dBr/MHz for the C666-1 tumors, in these regions compared with pre-treat-
ment tumors. The hyperechoic regions in the ultrasound images in such studies
have corresponded to areas of cell death assessed by histology. This further
indicates that ultrasound imaging may potentially be used as a non-invasive
technique for treatment monitoring.

Fig. 5.5 Ultrasound imaging of in vivo tumor response to radiation. Ultrasound images of C666-1
tumors presenting areas with increased echogenicity at 24 after treatment and corresponding to the
areas of cell death indicated in TUNEL staining (a, b). 0 Gy signifies the image before treatment.
(c) A particular case of another tumor type (FaDu) in which a portion of the tumor exhibited
increased echogenicity that corresponded very well with the TUNEL staining (scale bar = 1 mm).
In many cases (depending on the tumor type) such variable responses are seen (scale bar = 500 lm)
(d) High scale magnifications of region in black box in part (c) illustrate pattern of cell death, similar
to that seen in the cell pellet system; scale bar = 100 lm. Adapted from Vlad et al. (2009)
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5.6 Emerging Clinical Studies

QUS has recently been proposed for imaging cancer therapy response which can
facilitate personalized medicine in cancer treatment procedures. Personalized
medicine is predicated on changing an ineffective therapy to one which is more
efficacious for a specific patient. Therapy response monitoring using appropriate
imaging methods is paramount in personalized medicine. In cancer treatment,
standard anatomical based imaging can detect macroscopic changes in tumor size
but these often take many weeks to months to develop. Functional imaging
methods which probe tumor physiology have recently been demonstrated capable
of detecting tumor responses from days to weeks after starting therapy. They could
be used to non-invasively guide changes in treatment, after days of use instead of
waiting many months, in order to optimize the chances of cure.

Patients with locally advanced breast cancer (LABC) represent a typical patient
population which could highly benefit from changing ineffective therapies to more
efficacious treatments. Locally advanced breast cancer is an aggressive form of
breast cancer which continues to have poor outcomes despite the development of
new therapies. LABC has variable definitions, including Stage III or inoperable
disease. This cancer accounts for 5–20 % of all new breast cancer diagnosed in
North America (American Cancer Society 2007; Mankoff et al. 1999; Giordano
2003). Most of the fatalities are young women typically between 20 and 45 years
old with large bulky inoperable breast cancers and represent a majority of the years-
lost-to-disease in breast cancer due to their young age. LABC carries a much poorer
prognosis compared to early stages with only 55 % of LABC patients surviving at
5 years because of the high risk for metastatic spread (Giordano 2003). Also,
despite aggressive therapeutic combinations including chemotherapy, surgery and
radiation treatment (RT) the loco-regional recurrence rate remains high at 10–20 %
(Giordano 2003). LABC is often inoperable and current guidelines recommend
treatment ‘‘up-front’’ with aggressive neo-adjuvant chemotherapy. The neo-adju-
vant therapy is then followed by surgery that is generally a mastectomy with
axillary nodal clearance, followed by radiotherapy and possibly Herceptin and/or
hormonal manipulation if indicated (De Lena et al. 1981; Esteva and Hortobagyi
1999; Hortobagyi 1990). Clinical and pathological complete responses to neo-
adjuvant chemotherapy have been reported by several groups as an important
marker of better outcomes, with survival rates reaching 70 % (Chollet et al. 1997;
Smith et al. 2002). However, response to the neo-adjuvant treatment is assessed
clinically over the course of several months, relying on subjective measurement of
the palpable tumor size. Unfortunately, this is an unreliable measure and a poor
predictor of residual disease and patient outcome. Changes in palpable tumor size
often occur late in treatment regimens (months) whereas functional changes in
tumor physiology, can occur much earlier (weeks). A reliable measure of tumor
response soon after the initiation of treatment, e.g., apoptosis, would allow treat-
ment to be tailored. This would enable the selection of more effective therapy
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earlier, in order to better control not only the primary disease but also metastatic
spread during treatment, and thus improve patient outcomes.

Various imaging modalities have recently been developed to evaluate treatment
response (Brindle 2008; Sadeghi-Naini et al. 2012a). Diffuse optical imaging (DOI),
using near-infrared light to provide functional information related to tissue micro-
structure and biomechanical composition, has been shown to predict tumor response
in breast cancer patients undergoing neo-adjuvant within 1–4 weeks after treatment
initiation (Cerussi et al. 2007; Soliman et al. 2010). However, this technique may
only be applied to tissues with low attenuation, such as brain and breast. Dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) is sensitive to tissue
microvasculature changes and can be used to assess the effectiveness of tumor
treatments (Padhani and Husband 2001). However, its utility in treatment moni-
toring is limited due to lack of a standard quantification approach. Radionuclide
imaging has been shown to detect treatment response with high sensitivity and
specificity (Kim et al. 2004). This technique, however, remains limited due to the
high cost of radionuclides production. Finally, dynamic contrast-enhanced ultra-
sound (DCE-US) using microbubbles can measure blood perfusion and is hence
used to monitor tumor response (Lamuraglia et al. 2010). However, clinical approval
of microbubbles is still pending in many countries. The need for an accessible
imaging methodology of treatment monitoring has motivated researchers to con-
sider QUS which was previously demonstrated capable of probing apoptosis in this
context (Fig. 5.6). In contrast with other imaging modalities, ultrasound imaging
and therefore QUS imaging, have the advantage of low cost, rapid imaging speed,
portability and high spatial resolution. Moreover, as stated earlier, unlike the other
modalities being investigated for treatment monitoring, no injections of contrast
agents are needed because the image contrast and changes in normalized power
spectrum are caused by changes in the physical properties of dying cells.

QUS at conventional frequencies has recently been applied in our research
laboratory for the evaluation of tumor cell death response in LABC patients
receiving neo-adjuvant chemotherapy (Sadeghi-Naini et al. 2013). Conventional
ultrasound data were acquired prior to treatment onset and at four times during
treatment. Several QUS parameters were applied as measures of tumor response
during the course of neo-adjuvant treatment. The parameters included spectral
slope, 0-MHz intercept, mid-band fit (Lizzi et al. 1983, 1997; Feleppa et al. 1986;
Oelze and O’Brien 2002), and parameters associated with fitting the Rayleigh
(Molthen et al. 1998) and Generalized Gamma (Tunis et al. 2005) distributions to
the RF signal envelope. Obtained results (n = 24 patients) have demonstrated a
close association between average changes in QUS parameters after one to two
cycles of chemotherapy (few weeks) and clinical response in the tumor many
months later. More specifically, patients who had a significant clinical response
demonstrated considerable changes in mean values of QUS parameters consistent
with cell death, while women with no substantial changes in QUS parameters
demonstrated no ultimate clinical response (Fig. 5.7). In addition, texture analysis
techniques on QUS parametric maps are currently being investigated. The pre-
liminary results obtained suggested that these techniques may distinguish between
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clinically responding and non-responding patients more robustly (Sadeghi-Naini
et al. 2012b). Texture analysis techniques provide second order statistics for the
parametric maps through a number of textural parameters such as energy, corre-
lation, contrast, and homogeneity (Haralick et al. 1973). As observed in Fig. 5.7,
textural changes are clearly detectable in the 0-MHz parametric maps generated
for the clinically responding patient, whereas they remain negligible in the case of

Fig. 5.6 Parametric imaging of breast tumors. These panels demonstrated the feasibility of using
ultrasound to image breast cancer and to monitor treatment responses. Panel a presents clinical
ultrasound data from a woman with a large locally-advanced breast cancer, imaged at 10 MHz.
The focus is set at 1.75 cm depth and the total field of view is 4 cm. The skin is at the top of the
image. The blue line outlines the radiological extent of disease which shows a central mass with
spiculated extensions. Panel b shows a magnified view of panel a reconstructed from the raw RF
data. The left panel is from the same patient imaging session as in Panel a whereas the right panel
shows the same nominal region one week after the administration of Adriamycin-Cyclophos-
phamide chemotherapy. Panel c shows mid-band fit parametric overlays on both images. There is
a 5 dBr increase in mean backscatter mid-band fit over the region of interest. This is consistent
with experiments in vitro in pre-clinical models where cell death is concurrently detected. Scale
bars in b and c = 0.5 cm
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clinically non-responding patient during the course of neo-adjuvant chemotherapy.
These early findings indicate that QUS can potentially be used to non-invasively
monitor treatment response in patients.

5.7 Concluding Remarks

In summary, we have demonstrated that the amplitude and the frequency depen-
dence of the ultrasonic backscatter are sensitive to the structural and physical
changes that cells undergo during cell death. During apoptosis induced by exposure
to cisplatin or cell death due to radiation exposure, the ultrasonic backscatter

Fig. 5.7 Monitoring tumor cell death response in LABC patients receiving neo-adjuvant
chemotherapy using conventional frequency QUS. a, b: Representative parametric 0-MHz
intercept images of a large tumor during neo-adjuvant chemotherapy for a a clinically responding
patient, b clinically non-responding patient (scale bars = 1 cm.). Scans 1, 2, 3, and 4 are pre-
treatment, week 1, week 4, and week 8 scans, respectively. In the clinically responding patient the
continuous changes are detectable in the 0-MHz intercept images over the course of treatment. In
the case of the clinically non-responding patient there is no striking change in the 0-Mhz intercept
during the majority of therapy compared to the case of clinically responding patient. c The whole
mount histopathology corresponding to the clinically responding patient indicates just a small
residual mass in the mastectomy specimen (10 cm wide). d The whole mount histopathology
corresponding to the clinically non-responding patient indicates a large compact residual mass in
the mastectomy specimen (8 cm wide). Adopted from Sadeghi-Naini et al. (2012a)
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amplitude of in vitro samples has been demonstrated to increase by a factor of four
creating a large contrast between treated and untreated regions. Similar ultrasonic
contrast between normal and damaged tissues has also been detected in other
models of tissue damage/remodeling ex vivo, e.g., organ preservation. In vivo, we
have demonstrated that there is an excellent correspondence between tumor regions
that have responded to treatment and the changes in the ultrasonic backscatter
characteristics similar to those observed in vitro. Recently, we have investigated
clinical applications for the ultrasonic detection of breast tumor cell death in LABC
patients undergoing neo-adjuvant chemotherapy. Results have demonstrated that
QUS techniques may distinguish between clinically responding or non-responding
patients early during the course of neo-adjuvant treatment. These promising results
pave the way for establishing protocols for the clinical applications of the con-
ventional frequency QUS techniques in therapy response monitoring.
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Chapter 6
Modeling of Ultrasound Backscattering
by Aggregating Red Blood Cells

Emilie Franceschini and Guy Cloutier

Abstract This chapter provides a review of the last 15 years on the use of
quantitative ultrasound (QUS) techniques to characterize red blood cell (RBC)
aggregation (i.e., aggregate size, structure and packing organization). The paper
focuses on studies aimed at explaining factors affecting the frequency dependent
backscatter coefficient (BSC). The theoretical structure factor model of ultrasound
backscatter by aggregated RBCs is presented. Computer simulations based on this
model are then described to understand the impact of the RBC aggregate size and
packing organization on the frequency-dependent BSC. Two QUS cellular imag-
ing methods, based respectively on the structure factor size estimator and the
effective medium theory combined with the structure factor model, are compared
to estimate the structural aggregate parameters. Finally, in vitro and in vivo results
are presented with an optimization method to take into account the attenuation
effects of intervening tissues between the probe and the blood flow.
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6.1 Introduction

Blood is a heterogeneous suspension of erythrocytes, leukocytes, and platelets in a
fluid plasma. The scattering of ultrasound by blood is mainly attributed to the
erythrocytes, also called red blood cells (RBCs), because they constitute the vast
majority (97 %) of the cellular content of blood and occupy a large volume
fraction (hematocrit) of 35–45 % under normal conditions. RBCs in normal blood
flowing through human vessels constitute reversible aggregates. Aggregates usu-
ally form rouleaux or complex three-dimensional structures. The mechanisms of
aggregate formation and dissociation are complex and depend on the shearing
conditions of the flow, the concentration of protein macromolecules in plasma
(such as fibrinogen) (Chien 1975; Meiselman 1993; Armstrong et al. 2004) and the
RBC aggregability (Rampling et al. 2004). The aggregation phenomenon is normal
and occurs in the circulation of many mammalian species. However, hyperag-
gregation, i.e. an abnormal increase in RBC aggregation, is a pathological state
associated with several circulatory diseases such as vascular thrombosis (Chabanel
et al. 1994), coronary artery disease (Neumann et al. 1991), diabete mellitus (Poggi
et al. 1994; Le Dévéhat et al. 1996), myocardial infarction and cerebrovascular
accidents (Hayakawa and Kuzuya 1991; Vayá et al. 2004). The fact that these
diseases and their complications generally occur in specific locations of the vas-
cular system suggest a pathological micro- and/or macro-circulatory hemodynamic
contribution to their etiologies.

Currently, indices of aggregation can be measured in vitro on samples obtained
by venipuncture using different techniques including viscosimetry, erythrocyte
sedimentation rate, electrical impedance and light scattering (Stoltz and Donner
1991). Contrary to these techniques needing a withdrawal of blood and the anal-
ysis in a laboratory instrument, the ultrasound backscattering method has the
potential to measure RBC aggregation under both in vivo and in situ flow con-
ditions. This imaging modality could significantly contribute to the hemorheology
field especially at high ultrasound frequencies, since it allows characterization of
RBC aggregation in space and in time, as demonstrated by its sensitivity to
measure aggregate formation kinetics (Cloutier et al. 2004, 2008) and its ability
to follow cyclic aggregation and disaggregation states under pulsatile flows
(De Kroon et al. 1991; Nguyen et al. 2008). The ultrasound backscattering method
would certainly stimulate prospective clinical studies aimed at elucidating the role
of RBC aggregation in the development of cardiovascular diseases and it can
also help to improve our basic understanding of the relationship between the
hemodynamic of the circulation and RBC aggregation.

Ultrasound and Scatterer Size Estimation
In the ultrasonic blood characterization field, the aim is to obtain quantitative
parameters that reflect the RBC aggregation state. One of this relevant quantitative
parameter is the aggregate size. It is thus interesting to quickly recall the main
quantitative ultrasound (QUS) techniques allowing to estimate scatterer size.
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For years, many investigators have attempted to estimate the tissue structure
properties (i.e. scatterer size and concentration) by analyzing the power spectra of
the radio frequency (RF) data. The access to RF data from laboratory instruments
and, increasingly, from clinical scanners allows application of a normalization
procedure (Madsen et al. 1984; Wang and Shung 1997) to obtain the backscat-
tering coefficient (BSC), defined as the power backscattered by a unit volume of
scatterers per unit incident intensity per unit solid angle. The spectral content of
the RF data (and therefore the BSC) contains information about the size, shape,
concentration and acoustic impedance of the scattering objects within the tissues.
A spectral analysis approach consists in estimating two spectral parameters:
the spectral slope and intercept (Lizzi et al. 1986, 1996). The spectral slope is the
linear slope of the BSC as a function of frequency on a log-log scale and
the spectral intercept is the extrapolation of the BSC linear fit to zero frequency.
The slope is related to the effective scatterer size, and the intercept is determined
by the scatterer size and acoustic concentration (the acoustic concentration is the
product of the scatterer concentration times the square of the relative impedance
difference between the scatterers and surrounding tissue). Another QUS method
used to extract effective scatterer size and acoustic concentration relies on theo-
retical scattering models (such as the spherical gaussian model) in order to fit the
BSC to an estimated BSC by an appropriate model (Insana et al. 1990). Both
spectral analysis and fitting approaches considered random structures, i.e. a low
density of scatterers (Lizzi et al. 1986; Insana et al. 1990). These QUS approaches
have been successfully used for the characterization of the eye (Feleppa et al.
1986), the prostate (Feleppa et al. 1997), apoptotic cells (Kolios et al. 2002), the
breast (Oelze and Zachary 2006) and cancerous lymph nodes (Mamou et al. 2010).
However, as will be discussed later (Sect. 6.2), it is not possible to apply these
QUS techniques on blood because it is an extremely dense medium (5 million
erythrocytes/mm3) that cannot be considered as random.

Challenges of Ultrasonic Blood Characterization
Besides the high cellular number density of blood, another difficulty for modeling
blood backscattering is to consider clustering particles such as RBC aggregates,
characterized by specific size, structure and packing organization. Indeed, the
structure and packing organization are also relevant QUS parameters for the blood
characterization since the structure differs between normal and pathological
human RBC aggregates. This was shown by Schmid-Schönbein et al. with
microscopic observations of blood samples from normal and diabetic patients
(Schmid-Schönbein et al. 1976, 1990) (see Fig. 6.1). The structures of RBC
aggregates have the tendency to form clumps (i.e. isotropic structures) in patho-
logical human blood such as in diabetes mellitus, whereas these structures are
rouleaux in normal blood (i.e. anisotropic structures).

The aim of the present chapter is to provide a review with an emphasis on the
last fifteen years or so on the use of the frequency dependent BSC to characterize
RBC aggregation (i.e. aggregate size, structure and packing organization). Before
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that, the mean backscattered power or the mean BSC was more generally studied,
and the reader can refer to the article of Cloutier and Qin (1997) to have a review
on the use of the backscattered power to characterize aggregating RBCs.
Section 6.2 presents the structure factor model (Savery and Cloutier 2001; Fon-
taine et al. 2002) used for modeling aggregated RBCs. In Sect. 6.3, computer
simulations of ultrasound backscattering by blood are described based on the
structure factor model established in Sect. 6.2. The use of computer simulations
allowed to provide information on the impact of the RBC aggregate size and
packing organization on the frequency dependent BSC, information that cannot
easily be obtained experimentally. In Sect. 6.4, two theoretical backscattering
models for the estimation of the structural aggregate parameters are described and
their performance are compared based on the computer simulations addressed in
Sect. 6.3. Finally, in vitro and in vivo results are presented in Sect. 6.5.

6.2 Backscattering Theory

To model ultrasound backscattering by blood, some simplifying assumptions (but
nevertheless acoustically realistic) are necessary. First, it is assumed that shear
wave propagation and wave mode conversion are neglected such that only

Fig. 6.1 Photomicrographs
of normal and pathological
RBC aggregation as taken
under controlled shear
conditions in a transparent
rheoscope chamber. At high
shear, the cells are dispersed,
deformed into ellipsoids, and
aligned with their major axes
parallel to the direction of the
flow (g, h). As the shear rate
is lowered, the aggregates
begin to form and assume an
equilibrium size which is
larger in diabetics than in
healthy controls (e, f). At low
shear rate (8 s�1), the normal
rouleaux have a stationary
size and the hyperaggregating
cells in diabetics show a
tendency to form clumps (d).
At stasis, the cells combine
into primary rouleaux and
into large secondary
aggregates (a, b). Figure
reproduced from Schmid-
Schönbein et al. (1990)
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compressional waves are taken into account. Secondly, attenuation of the back-
scattered ultrasound blood echoes due to viscous losses is also ignored. As a
consequence, the RBCs and plasma are acoustically described as fluid and non-
viscous media. Moreover, contrary to the majority of soft tissues, backscattering
by blood is also time dependent because of the flow conditions. Nevertheless, one
can consider that blood movement is much slower that sound propagation (around
1,540 m/s in blood) such that the insonified blood is quasi-stationary (Mo and
Cobbold 1993).

Under the above conditions, two major difficulties for modeling blood back-
scatter are the high volume concentration of RBCs (i.e. hematocrit) and the
clustering of particles. In this section, we indicate how these difficulties have been
achieved by presenting successively the ultrasound backscattering from a single
RBC, a collection of disaggregated RBCs and aggregated RBCs.

6.2.1 Backscattering Cross Section by a Single RBC Under
Rayleigh Condition

Before modeling the ultrasound backscattering by an ensemble of interacting
RBCs, it is instructive to model backscattering by a single RBC. A parameter
characterizing the ultrasonic signal backscattered by a single scatterer is the dif-
ferential backscattering cross section per unit volume rb, which is the power
backscattered by one particle per unit incident intensity per unit solid angle (Mo
and Cobbold 1993).

The hemoglobin solution encapsulated by the RBC membrane is acoustically
described as a fluid and non-viscous medium, characterized by a compressibility
j1 ¼ 3:41� 10�10 Pa�1 and a density q1 ¼ 1:092 g/ml (or equivalently an
impedance z1 ¼ 1:766 MRayl and a sound speed c1 ¼ 1,617 m/s) (Shung 1982;
Savery and Cloutier 2007). The effect of the RBC membrane on acoustical
backscattering is neglected because of the small membrane thickness of around
10 nm. The plasma is acoustically described as a fluid and non-viscous medium,
characterized by a compressibility j2 ¼ 4:09� 10�10 Pa�1 and a density q2 ¼
1:021 g/ml (or equivalently an impedance z2 ¼ 1:580 MRayl and a sound speed
c2 ¼ 1,547 m/s) (Shung 1982; Savery and Cloutier 2007). The RBC is thus con-
sidered as a weak scattering medium with a relative contrast of acoustical
impedance between the RBC and the plasma equals to cz ¼ ðz1 � z2Þ=z2 ¼ 0:13.

Typical human RBCs are flexible biconcave disks having a diameter of
approximately 8 lm and a thickness of 2.2 lm. In most clinical experiments, the
ultrasound frequency is in the range of 5–30 MHz, i.e. a wavelength in the range
of 50–300 lm. Since the incident wavelength is larger than the size of a RBC,
scattering follows the Rayleigh theory. This theory predicts that the backscattering
cross-section is proportional to the fourth power of the incident wave frequency
and to the square of the scatterer volume, a behavior that does not depend on the
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shape of the scatterer (Coussios 2002). Under the Rayleigh scattering theory, the
backscattering cross-section rb of a single weak scattering RBC is given by (Mo
and Cobbold 1993):

rbð�2kÞ ¼ k4V2
s

16p2
cj � cq

� �2
; ð6:1Þ

where k is the wavenumber, Vs the RBC volume, cj the relative contrast in
compressibility cj ¼ j1 � j2ð Þ=j2 and cq the relative contrast in density
cq ¼ q1 � q2ð Þ=q1. Note that the dependence of rb in (�2k) indicates the back-
scattering configuration where the wave vector is the opposite of the incident wave
vector k.

In the case of weak scattering, when cj and cq are very small, the difference

between cj and cq approximates to cj � cq

� �
� �2cz. Therefore Eq. 6.1 reduces to:

rbð�2kÞ ¼ k4V2
s

4p2
c2

z : ð6:2Þ

The RBCs are often modeled as scatterers of simple shape such as spheres of
equivalent volume. The typical volume of a RBC being 94 lm3, one RBC can be
approximated by a sphere of radius a ¼ 2:82 lm. In order to take into account a
spherical shape, a spherical form factor F can be added in the expression of rb as
follows (Insana and Brown 1993; Savery and Cloutier 2007):

rbð�2kÞ ¼
k4V2

s c2
z

4p2
FðkÞ ¼

k4V2
s c2

z

4p2
3

sinð2kaÞ � 2kacosð2kaÞ
ð2kaÞ3

 !2

: ð6:3Þ

Savery and Cloutier (2007) compared a semi-analytical model of the backscat-
tering cross section of a realistic biconcave RBC with analytical models of simple
shapes (sphere, cylinder, ellipsoid) mimicking a RBC (see Figs. 6.2 and 6.3). This
study shows that for frequencies below 21 MHz (i.e. ka \ 0:21), a RBC can be
considered as a sphere of equivalent volume as given in Eq. (6.3). Beyond that
limit, the shape and orientation of a RBC could modify the behavior of the
backscattering cross-section. However, in practice, when a collection of RBCs
randomly oriented is studied, the behavior of the mean backscattering cross section
should depend on a mean form factor of the collection of RBCs randomly oriented,
such that the limit frequency for the expression of rb using the spherical form
factor should be above 21 MHz. That is why a collection of non-aggregating RBCs
at hematocrits between 6 and 30 % shows experimentally a fourth power fre-
quency-dependence of backscatter up to 30 MHz (Wang and Shung 1997).
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6.2.2 Backscattering by Disaggregated RBCs:
The Particle Model

The ability of a tissue to generate acoustical echoes is often quantified by the
frequency-dependent BSC. In this subsection, we consider a simple case of non-
aggregating cells.

For a dilute, random suspension where the volume concentration of particles is
typically less than a few percents, each particle equally and individually con-
tributes to the backscattered power. It means that each particle scatters the incident

Fig. 6.3 Normalized backscattering cross section with respect to 4pa2 as a function of the
frequency ka for different descriptive shapes and incident wave directions along Oz (k ¼ kz) and
Ox (k ¼ kr) (Figure from Savery and Cloutier 2007)

x0

z

Fig. 6.2 Geometric cross sections of a red blood cell and equivalent descriptive shapes (Figure
modified from Savery and Cloutier 2007)
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waves unaffected by the presence of the other particles. The BSC is thus pro-
portional to the average number of scatterers per unit volume n (also called the
scatterer density related to the hematocrit / as n ¼ /=Vs) as follows:

BSCð�2kÞ ¼ nrbð�2kÞ ð6:4Þ

where rb is the backscattering cross section of a single scatterer obtained from
Eq. (6.3). However, for human blood at a normal hematocrit (� 40 %), even in the
absence of aggregation, the RBCs are densely packed. It means that the positions
of any pair of scatterers are neither uncorrelated nor perfectly correlated in space
and time, such that the RBCs cannot be treated as independent scatterers. In the
absence of aggregation, a few stochastic scattering models (Angelsen 1980; Mo
and Cobbold 1986, 1992; Twersky 1987; Fontaine et al. 1999), described next,
were proposed to better understand the ultrasound backscattered power properties.

Two classical approaches are known as the particle and continuum models. The
particle model (PM) consists of summing contributions from individual RBCs and
modeling the RBC interaction by an analytical packing factor expression (Mo and
Cobbold 1986; Twersky 1987). The continuum model (CM) considers that scat-
tering arises from spatial fluctuations in the density and compressibility of the
blood continuum (Angelsen 1980). A hybrid model generalizing the PM and CM
frameworks was later proposed by Mo and Cobbold (1992). The RBCs are treated
as a single scattering unit within a voxel, which size is defined as a fraction of the
acoustic wavelength. The contribution from each single scattering unit is then
determined as in the PM, and the contribution from all voxels is then summed by
considering the influence of the mean number of scatterers per voxel and its
variation in numbers between voxels. A complete description of these models can
be found in a review by Mo and Cobbold (1993). Herein we only present in details
the PM, which was used as a framework in Fontaine et al. (1999).

The classical approach known as the PM consists of summing contributions
from individual RBCs, all considered much smaller than the acoustic wavelength,
and modeling the RBC interaction by a packing factor W (Mo and Cobbold 1986;
Twersky 1987). Based on this approach, the BSC is given by:

BSCPMð�2kÞ ¼ nrbð�2kÞW : ð6:5Þ

The packing factor W can be expressed in terms of the statistical pair-correlation
function gðrÞ, which is the probability of finding two particles separated by a
distance r:

W ¼ 1þ n

Z
gðrÞ � 1ð Þdr: ð6:6Þ

An example of a pair-correlation function g is shown in Fig. 6.4. The function g is
zero at short separations (r \ 2a), since the particles are impenetrable. Then g
oscillates around the value of 1 with several peaks in the range of r � 2a, with a
maximum at r ¼ 2a. The occurrence of these peaks at a large range (r [ 2a)
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indicates a high degree of ordering. As the distance r increases, the oscillation of
the peaks becomes weak and g tends to a value of 1. Physically, the packing factor
W is a measure of orderliness in the spatial arrangement of RBCs. At very low
hematocrits, when the RBC positions are completely random, ðgðrÞ � 1Þ is equal
to 0 and W is equal to unity such that the BSC is simply the sum of the back-
scattering cross section rb from all RBCs. As the hematocrit increases, W decays
gradually to zero since closer packing will invariably lead to a greater orderliness
in the RBC spatial arrangement. The most often used packing factor expression is
based on the Percus-Yevick pair-correlation function for identical, unpenetrable
and radially symmetric particles in the m-dimensional (slabs, circles and spheres
for m ¼ 1; 2 and 3, respectively) (Twersky 1987). The Perkus-Yevick packing
factor WPY is dependent on the hematocrit but independent on the frequency. Its
value for spheres (m ¼ 3) was first applied to blood by Shung (1982) and is given
by Twersky (1987):

WPY ¼
ð1� /Þ4

ð1þ 2/Þ2
: ð6:7Þ

Several studies compared the theoretical BSCPM as a function of the hematocrit
with experimental observations (Shung 1982; Lucas and Twersky 1987; Yuan and
Shung 1988; Berger et al. 1991). For porcine RBCs suspended in a saline sus-
pension that do not exhibit aggregation (i.e. aggregation does not occur in saline),
the PM succeeded to explain the nonlinear relationship between the backscatter
amplitude and hematocrit, as shown in Fig. 6.5 (Yuan and Shung 1988). The
ultrasonic backscatter versus the hematocrit curve peaks around 13 % as it was
expected by the PM using the Perkus-Yevick packing factor given by Eq. 6.7.
Comparisons were also conducted on aggregating blood from different species
(Yuan and Shung 1988). It is worth noting that the RBC aggregation tendency
varies among species (Zijlstra and Mook 1962; Weng et al. 1996a). For example,
horse blood has an excessive tendency to aggregate; porcine, dog and normal
human bloods have a moderate tendency; and bovine blood forms no aggregate.
For bovine whole blood, Yuan and Shung (1988) found that experimental and
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Fig. 6.4 Example of a pair-
correlation function g

6 Modeling of Ultrasound Backscattering by Aggregating Red Blood Cells 125



theoretical curves of BSC as a function of hematocrit were qualitatively in good
agreement, since the tendency of aggregation is minimal for this blood species.
However, to date, no data obtained under RBC aggregation conditions were fitted
to the PM.

6.2.3 Backscattering by Aggregated RBCs: The Structure
Factor Model

A major difficulty for modeling blood backscattering is to consider clustering
particles as RBC aggregates. The aforementioned approach failed to predict the
magnitude and frequency dependence of backscatter echoes observed in in vitro
experiments when considering aggregating RBCs (Yuan and Shung 1988). Indeed,
it was experimentally demonstrated that the aggregated RBCs did not follow a
fourth-order frequency dependence contrary to the disaggregated case (Yuan and
Shung 1988; Savery and Cloutier 2001). That is why Savery and Cloutier (2001)
proposed the Structure Factor Model (SFM) to predict backscattering by aggre-
gating RBCs, by considering first a low hematocrit. This model was later gen-
eralized to a normal hematocrit of 40 % (Fontaine et al. 2002). The SFM sums the
contributions from individual RBCs and models the RBC interaction by a statis-
tical mechanics structure factor S as follows (Savery and Cloutier 2001; Fontaine
et al. 2002):

BSCSFMð�2kÞ ¼ nrbð�2kÞSð�2kÞ ¼ /
Vs

rbð�2kÞSð�2kÞ: ð6:8Þ

The aggregation phenomenon is only affecting the structure factor S since RBC
properties (i.e. rb and Vs) and the systemic hematocrit / are expected to remain
constant in the modeled region of interest. The structure factor S is by definition
linked to the three-dimensional (3D) Fourier transform of the total correlation
function gðrÞ � 1ð Þ:
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Sð�2kÞ ¼ 1þ n

Z
gðrÞ � 1ð Þe�2jkrdr: ð6:9Þ

It can be easily seen by considering the particular case, of an incident plane wave
in the x direction of a Cartesian coordinate system (x; y; z) that Eq. (6.9) becomes:

Sð�2kÞ ¼ 1þ n

Z
gðx; y; zÞ � 1ð Þe�2jkxdx dy dz: ð6:10Þ

In Eq. (6.10), the structure factor is linked to the standard Fourier transform of the
projection, on the ultrasound propagation axis, of the total correlation function.
The Fourier transform of the projection is, by the Fourier projection-slice theorem,
a line of the 3D Fourier transform of the total correlation function (see appendix of
Fontaine et al. 1999). That is why the structure factor S depends only on the
modulus k of the wave vector k. Note that the low frequency limit of S is by
definition the packing factor W used under Rayleigh conditions. For non-aggre-
gated RBCs under Rayleigh conditions, Eq. (6.8) therefore directly reduces to
Eq. (6.5). It is important to emphasize that the structure factor cannot analytically
be calculated contrary to the packing factor (Twersky 1987).

The SFM was largely used to perform simulation studies on RBC aggregation
as described in the next Sect. 6.3.

6.3 Computer Simulations of Ultrasound Backscattering
by Aggregated RBCs

Computer simulation studies have been proposed to better understand mechanisms
of ultrasound backscattering by various RBC distributions. First, the backscatter
by non-aggregated RBCs as a function of the hematocrit was studied using one-
dimensional (1D) and two-dimensional (2D) computer simulations (Routh et al.
1987; Zhang et al. 1994). In these studies, the RBCs are represented by slabs or
circles, respectively in 1D or 2D, randomly positioned one by one. Following these
studies, Lim and Cobbold (1999) performed 3D computer simulations for non-
aggregated RBCs (represented by spheres) and 2D computer simulations for
aggregated RBCs. In 3D, the backscattered power of non-aggregated RBCs peaked
at around 12 % hematocrit, which corresponds to the PM theoretical prediction
and experimental results (Yuan and Shung 1988). In 2D, the mean backscattered
power by aggregated RBCs for frequencies below 5 MHz was computed to study
the effects of the aggregate size, aggregate compactness and size distribution as a
function of the hematocrit. Hunt et al. (1995) performed 1D and 2D computer
simulations to study the differences in the backscattered power for several spatial
distributions of the scattering sources. These simulations predicted that there
would be a large reduction of the backscatter amplitudes if the scattering sources
were regularly spaced and that backscatter amplitudes are very sensitive to the
degrees of randomness (i.e. random or pseudo-random spatial distribution).
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Later, our group performed computer simulations to predict the frequency
dependence of the BSC from aggregated RBCs based on the SFM (Teh and
Cloutier 2000; Savery and Cloutier 2001, 2005; Fontaine et al. 2002; Fontaine and
Cloutier 2003; Saha and Cloutier 2008; Saha et al. 2011; Franceschini et al.2011),
contrary to the works previously mentioned which have studied the mean BSC
over the studied frequency bandwidth or the integrated backscatter. Our aim was to
demonstrate that the use of the BSC frequency dependence would be more
powerful than the indices generally used. Most of these simulations were based on
particle dynamics or statistical mechanics to obtain the RBC spatial distributions
(Savery and Cloutier 2001, 2005; Fontaine et al. 2002; Fontaine and Cloutier 2003;
Saha and Cloutier 2008) and had the objective to mimic the rheological behavior
of blood. The RBC distributions obtained showed aggregates with various sizes,
shapes and compactness. Most of those studies were restricted to two dimensions
(Savery and Cloutier 2001, 2005; Fontaine et al. 2002; Fontaine and Cloutier
2003) because of the computational load to generate aggregating RBC distribu-
tions. Besides techniques based on particle dynamics or statistical dynamics,
another simple and fast method was to randomly generate non-overlapping and
identical shaped aggregates (Teh and Cloutier 2000; Saha et al. 2011; Franceschini
et al. 2011), as performed previously by Lim and Cobbold (1999). Although this
method did not take into consideration realistic interactions between RBCs, it
allowed to isolate the effects of hematocrit, aggregate size, shape and/or size
distribution on the ultrasound backscattering. In this section, the BSC computation
using the SFM is explained and a recent computer simulation that isolates the
effects of aggregate size and compactness is presented.

6.3.1 BSC Computation Using the Structure Factor Model

The computation of the BSCSFM using the SFM requires the knowledge of the
structure factor S as described in Eq. (6.8). Since the structure factor S is by
definition a statistical quantity, an average of all structure factors obtained from
several particle distributions can give an estimated value of S.

For each distribution of RBCs, a density matrix M is computed by dividing the
square simulation plane L2 in N2

p pixels for a 2D computer simulation (or L3 in N3
p

pixels for a 3D simulation) and by counting the number of RBCs falling into each
pixel. This matrix represents the microscopic density function defined by

MðrÞ ¼
XN

i¼1

dðr� riÞ ð6:11Þ

where ri are the position vectors defining the center of the ith RBC in space, N the
number of RBCs in blood and d the Dirac distribution. An equivalent expression of
Eq. (6.9) for the structure factor S can be given in terms of the microscopic density
distribution M as follows:
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Sð�2kÞ ¼ E
1
N

Z
MðrÞe�i2krdr

����
����
2

" #
ð6:12Þ

where E is the ensemble average. The structure factor is thus computed by
averaging 2D Fourier transforms for 2D computer simulations (or 3D Fourier
transforms for 3D simulations) of several density matrices for averaging purpose.
The FFTs give the structure factor values Sð�2k) on a centered grid of wave-
vectors between �pNp=2L with a step of Dk ¼ p=L.

6.3.2 Effects of the Aggregate Size and Compactness
on the BSC Frequency Dependence

Computer simulations in 2D were recently performed by Franceschini et al. (2011)
to isolate, for the first time, the effect of aggregate compactness /i (i.e. the RBC
concentration within aggregates) on the BSC frequency dependence. The simu-
lation algorithm was suitable for generating non-overlapping and isotropic RBC
clusters. The locations of the RBCs inside each aggregate were generated ran-
domly to give the desired compactness of aggregates such that the distribution of
RBCs within each aggregate was different.

6.3.2.1 Effect of the Aggregate Compactness on the BSC

A key feature of these simulations was the possibility to have various compact-
nesses of aggregates /i with the same size of aggregates rag. Figure 6.6a and b
illustrates spatial arrangements of RBCs for a constant value of rag=a ¼ 6:32 (i.e.
rag ¼ 17:39 lm), a constant systemic hematocrit / ¼ 20 % and two compactnesses
of aggregates of 40 and 60 %. The corresponding backscattering coefficients
BSCSFM were computed with the SFM between 4 and 100 MHz for different
aggregate compactnesses of 40, 50 and 60 % at a systemic hematocrit of 20 % (see
Fig. 6.6c). As the compactness of aggregates /i increases, the BSCSFM amplitude
increases at low frequencies (\ 23 MHz). The first peaks of the BSCSFM are
between 18.0 and 20.6 MHz for all simulated conditions.

6.3.2.2 Effect of the Aggregate Size on the BSC

Figure 6.7 shows BSCSFM as a function of frequency for the disaggregated case
(rag=a ¼ 1) and for aggregated conditions with radii rag=a ¼ 3:16; 5:0 and 7.07, at
different hematocrits. In these simulations, the compactness of aggregates had a
constant value of /i ¼ 60 %. For frequencies less than 20 MHz, the BSCSFM
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amplitude increases with the size of aggregates. Moreover, the BSCSFM peaks
occur at lower frequencies as the aggregate radius increases.

To summarize, this study had provided some insights into the influence of the
aggregate size and compactness on the BSC frequency dependence (Franceschini
et al. 2011). The aggregate compactness as well as the aggregate size can greatly
influence the BSC amplitude. The frequency position of the BSC first peak was
found not to be significantly affected by changes in the aggregate compactness,
whereas it was greatly affected by changes in the aggregate size. Note that other
computer simulations putting emphasis on the influence of the aggregate shape
(i.e. anisotropy) and of the aggregate size distribution on ultrasound backscattering
can be found in the literature (Lim and Cobbold 1999; Fontaine et al. 2002; Savery
and Cloutier 2005).
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Fig. 6.7 Dependence of the backscattering coefficients for different aggregate sizes and a
constant aggregate compactness /i ¼ 60 % at systemic hematocrits of 10, 20 and 30 % (Figure
modified from Franceschini et al. 2011)

= 20 % ,   i = 40% (b)   (c)   = 20 %,   i = 60 %

0 300150 0 300150

150

300

µm µm

µm
φ φ φ  φ

=20%

10 20 30 100

Frequency (MHz)

φ

4

  i = 40%
  i = 50%
  i = 60%

φ
φ
φ

 SFM

10-1

10-2

10-4

10-5

B
SC

 (
m

m
-1

.r
ad

-1
)

10-6

10
-7

10-3

(a)   

Fig. 6.6 a and b RBC distributions used in 2D computer simulations for a constant aggregated
radius rag ¼ 6:32a ¼ 17:32 lm and a constant systemic hematocrit / ¼ 20 % at two aggregate
compactnesses: a /i ¼ 40 % and b /i ¼ 60 %. c Dependence of the backscattering coefficients
on the compactness of aggregates: rag=a ¼ 6:32 and / ¼ 20 % (Figure modified from
Franceschini et al. 2011)

130 E. Franceschini and G. Cloutier



6.4 Ultrasound Backscattering Modeling
for the Estimation of Structural Aggregate Parameters

As seen previously in Sects. 6.2.3 and 6.3, the SFM allows to simulate the BSC
from RBCs whatever the RBC spatial distribution (i.e. disaggregated or aggregates
with isotropic or anisotropic shape and/or with various aggregate sizes, shapes and
compactnesses). However, the SFM can hardly be implemented to estimate
structural parameters in the framework of an inverse problem formulation because
of the intensive computational time to assess the structure factor by realizing
distributions of RBCs with simulations. That is why two scattering theories, named
the Structure Factor Size Estimator (SFSE) and the Effective Medium Theory
combined with the Structure Factor Model (EMTSFM), have been recently
developed in order to approximate the SFM for practical assessments of RBC
structural features (i.e., in an inverse problem formulation). Both theories are
based on some simplifying assumptions regarding the RBC spatial distributions:

• First, isotropic aggregates are assumed. In human blood, low shear rates can
promote the formation of RBC aggregates having anisotropic (i.e. rouleaux) or
isotropic (i.e. clump) structures, as seen in Fig. 6.1. The rouleaux like pattern is
typically associated to normal blood. However, as the binding energy between
RBCs increases with inflammation (Weng et al. 1996b), aggregates form clump
structures such as in diabetes mellitus (Schmid-Schönbein et al. 1976, 1990).
The assumption of isotropic aggregates is thus valid as far as we are concerned
with the study of pathological states.

• Second, a minimal polydispersity in terms of aggregate sizes is assumed. Under
in vivo conditions with ultrasound measurements on a blood vessel, the shear
rate distribution varies with the radial position, and consequently, the aggregate
size distribution too. That is why the backscattered echoes from blood are
generally analyzed over a rectangular or a hamming window which is moved
along the RF signal to examine the whole vessel at different depths (Yu and
Cloutier 2007; Yu et al. 2009). For example, at a central frequency of 25 MHz,
the window length was typically around 400 lm (Yu et al. 2009). RBC
aggregates may thus be assumed to be locally identical, but variations can be
considered within an ultrasound image by moving the measurement window.

6.4.1 Structure Factor Size Estimator

Yu and Cloutier (2007) and Yu et al. (2009) developed the SFSE scattering theory,
which consists of using a second-order Taylor expansion of the structure factor as
follows:
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Sð�2kÞ � C0 � 2kC1 þ ð�2kÞ2C2

� W � 4R2
gk2

� W � 12
5
ðkaDÞ2

ð6:13Þ

where C0, C1, and C2 are simply the series coefficients. We have shown earlier that
C0 is the low frequency limit of the structure factor, named the packing factor W
(see Eq. 6.6), here for aggregated RBCs. By considering isotropic aggregates, the
second constant C1 is equal to zero because the blood remains the same if the
blood sample is turned around 180� (i.e. Sð�2kÞ ¼ Sð2kÞ). By a dimensional
analysis, the third constant C2 is a surface in m2 and is assumed to be the square of
the mean aggregate gyration radius R2

g, as usually performed in the field of crys-
tallography using x-ray scattering (Guinier and Fournet 1955; Yu and Cloutier
2007). The diameter of an homogeneous spherical object in terms of number of

RBCs can also be related to its radius of gyration as D ¼
ffiffiffiffiffiffiffiffi
5=3

p
Rg=a (Guinier and

Fournet 1955; Yu and Cloutier 2007).
To summarize, the SFSE parameterizes the BSC by two structure indices, the

packing factor W and the mean aggregate diameter D assumed to be isotropic, as
follows:

BSCSFSEð�2kÞ ¼ nrbð�2kÞ W � 12
5
ðkaDÞ2

� �

¼ /
Vs

k4V2
s c2

z

4p2
3

sinð2kaÞ � 2kacosð2kaÞ
ð2kaÞ3

 !2

W � 12
5
ðkaDÞ2

� �
:

ð6:14Þ

Assuming that the hematocrit /, the RBC radius of the equivalent sphere a and the
impedance contrast cz are known a priori, the parameters W and D are estimated
by fitting the measured BSC versus frequency with the theoretical BSCSFSE given
in Eq. (6.14).

6.4.2 Effective Medium Theory Combined with the Structure
Factor Model

A new scattering theory, named an Effective Medium Theory (EMT) combined
with the SFM (EMTSFM), was recently proposed by Franceschini et al. (2011).
The EMT was initially developed by Kuster and Toksoz (1974) in the field of
geophysics. Herein, the EMT assumes that aggregates of RBCs can be treated as
individual homogeneous scatterers, which have effective properties determined by
the concentration of RBCs within aggregates (i.e. the compactness of aggregates
/i) and acoustical properties of blood constituents. The approximation of RBC

132 E. Franceschini and G. Cloutier



aggregates as homogeneous effective particles is combined with the SFM to
consider the concentrated blood medium. The effective particle interactions were
thus modeled by a structure factor, as in Savery and Cloutier (2001) and Fontaine
et al. (2002). The EMTSFM parameterizes the BSC by three indices: the aggregate
radius, the concentration of RBCs within aggregates (also named aggregate
compactness) and the systemic hematocrit. In the field of clinical hemorheology,
assessing the compactness of RBC aggregates is of high clinical importance since
it is related to the binding energy between cells. Normal RBC aggregates form
rouleaux type structures, whereas pathologies associated with stronger binding
energies result in clumps of RBCs (close to a spherical isotropic packing). A
complete description of the EMTSFM is described below.

As a first approximation, we assume that all the RBCs are aggregated in blood,
that the aggregates are identical and isotropic and that the RBCs within the
aggregates are evenly distributed. The EMTSFM assumes that aggregates of RBCs
can be treated as individual homogeneous scatterers as shown in Fig. 6.8. Each
aggregate is thus approximated by an effective single particle. The density qag and
compressibility jag of the new effective particle are determined by considering the
EMT (Kuster and Toksoz 1974). It means that qag and jag are derived from the
acoustical properties of the two fluids that constitute the aggregates (i.e. q1, q2, j1

and j2, where 1 indicates properties of RBCs and 2 those of plasma) and from the
internal concentration of RBCs within the aggregates /i, as follows:

qag ¼ /iq1 þ ð1� /iÞq2

1
jag
¼ /i

j1
þ 1� /i

j2

ð6:15Þ

The BSC from blood is then obtained by summing contributions from individual
effective particles of radius rag and modeling the effective particle interaction by a

Reality Effective medium
   approximation

Fig. 6.8 Schematic representation of aggregates treated as individual scatterers. The aggregates
of RBCs in blood (left side) are assumed to be homogeneous particles (right side) with effective
properties that depend on the internal hematocrit, and density and compressibility of the RBCs
within them (Figure from Franceschini et al. 2011)
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statistical mechanics structure factor Sag. The equivalent BSC expression is thus
given by:

BSCEMTSFMð�2kÞ ¼ nagragð�2kÞSagð�2kÞ; ð6:16Þ

where nag is the number density of aggregates that is related to the effective
volume fraction of aggregates /ag. The effective volume fraction of aggregates is
equal to the volume fraction of RBCs in blood / divided by the aggregate com-
pactness /i: /ag ¼ /=/i. The backscattering cross-section rag of an effective
single sphere can be determined using the fluid-filled sphere model developed by
Anderson (1950). That model provides an exact solution for the backscattering of
sound by a single fluid sphere, not necessarily small compared to the wavelength,
in a surrounding fluid medium (i.e. the plasma). The structure factor Sag corre-
sponds here to a collection of Nag identical and disaggregated particles (mimicking
RBC aggregates) of radius rag randomly distributed.

By assuming that the RBC radius a and the acoustical properties of plasma and
RBCs are known a priori, the unknown parameters are the aggregate radius rag and
aggregate compactness /i. The unknown parameters can be estimated by matching
the measured BSC with the theoretical BSCEMTSFM given by Eq. (6.16).

6.4.3 Assessment of the Accuracy of Scattering Models
in Determining the RBC Aggregate Size and Aggregate
Compactness

To our knowledge, there is no means to experimentally assess aggregate sizes at
40 % hematocrit because RBCs at that hematocrit are opaque to light. The
experimental assessment of accuracy of the SFSE was only performed at a low
hematocrit of 6 % by comparing optical and acoustic measurements of RBC
aggregate sizes (Yu and Cloutier 2007). That is why 3D computer simulations
producing BSCs from RBC aggregates were recently performed to evaluate the
accuracy of the SFSE method (Saha et al. 2011). In this subsection, we determine
the performance of the EMTSFM to extract RBC aggregate sizes and compact-
nesses from simulated BSCSFM and compare that with SFSE predictions. This
comparison is based on 2D computer simulations using the SFM previously pre-
sented in Sect. 6.3. In the following, all the estimated parameters are denoted by a
star.

The SFSE and EMTSFM are first examined when the aggregate size is fixed
rag=a ¼ 6:32 and aggregate compactnesses /i vary from 40 to 60 %. Figure 6.9a
presents the BSC fitted curves with the SFSE and the EMTSFM to the simulated
BSCSFM already presented in Fig. 6.6. The fitted curves using the SFSE overes-
timate the BSCSFM amplitude at low frequencies, whereas the EMTSFM provides
good fittings to the simulated BSCSFM . The values of the estimated parameters W�
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and R�g obtained with the SFSE and estimated parameters r�ag=a and /�i obtained
with the EMTSFM are reported in Table 6.1 for a systemic hematocrit of 20 %.
Although the true radius is fixed, the estimated R�g increases with the aggregate
compactness. A linear relation links also the estimated parameters W� and R�g
when the aggregate compactness varies (see Fig. 6.9b), as it was previously
observed in Yu and Cloutier (2007) and Saha et al. (2011). Therefore there is no
significant correlation between the actual fixed radius and the estimated radii. The
SFSE cannot take into account a variation in aggregate compactnesses since a
change in compacity is interpreted as a change in the aggregate size. On the other
hand, the EMTSFM gives quantitatively satisfactory estimates with relative errors
inferior to 8 % for the estimated aggregate size and inferior to 19 % for the
estimated compactness.

The SFSE and EMTSFM are also evaluated when the aggregate size varies and
the aggregate compactness is fixed to a high value: /i = 60 %. Figure 6.10a
presents the BSC fitted curves with the SFSE and the EMTSFM to the simulated
BSCSFM at a hematocrit of 30 %. The EMTSFM fits very well the simulated
BSCSFM , whereas the fitted SFSE curves over-estimate the simulated BSCSFM in
the low frequency range. For the SFSE, significant correlations between the
estimated and true radii of aggregates with a correlation coefficient r2 around 0.95
were found for all hematocrits (Fig. 6.10b). The EMTSFM gives quantitatively
satisfactory estimates with relative errors inferior to 7 and 14 %, respectively, for
the aggregate size and the aggregate compactness, whereas the relative errors for
the estimated radii with the SFSE model are comprised between 24 and 62 % (see
Table 6.2).

To conclude, although the SFSE did not provide good fits to the simulated data,
significant correlations between the estimated and true radii of aggregates with r2

around 0.95 were found when the aggregate compactness was fixed. However, the
SFSE showed no significant correlation between the actual fixed radius and those

10-1

10-2

10-3

10-4

10-5

B
SC

 (
m

m
-1 .

ra
d-1

)

10 20

Frequency (MHz)
4

  =20%φ

  i = 40%

  i = 50%

  i = 60%

φ
φ
φ

SFM

4 5 6 7 8 9
4
6
8

10
12
14
16
18
20
22
24

SFSE estimated radius Rg*

SF
SE

 e
st

im
at

ed
 p

ac
ki

ng
 

fa
ct

or
 W

*

  SFSE estimated 
parameters

Fitted line, r2 = 0.99

(a) (b)

Fig. 6.9 a Frequency-dependent backscatter coefficients computed with the SFM for different
aggregate compactnesses and a constant aggregate size rag=a ¼ 6:32 at a systemic hematocrit of
20 %, and corresponding fitting with the SFSE (in dashed lines) and with the EMTSFM (in solid
lines). b Linear relationship between estimated parameters W� and R�g obtained with the SFSE
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estimated when the aggregate compactness varied (see Table 6.1), and the SFSE
parameters W� and R�g followed a linear relationship. It means that the BSC
parameterization is reduced to one parameter physically linked to the aggregate
size. On the other hand, the EMTSFM was the model that better matched the
simulated data and gave quantitatively satisfactory estimates when the aggregate
radius and compactness varied. At the moment, the SFSE is largely used because
of a fast computation around 0.1 s to estimate parameters from a single BSC,
against 1 s with the EMTSFM using Matlab programs (The MathWorks, Inc.,
Natick, MA). Also, the SFSE was developed to consider tissue attenuation for
in vivo applications (Franceschini et al. 2008, 2010), whereas it is still not the case
for the EMTSFM.

Table 6.1 Comparison of the SFSE and EMTSFM based on simulated BSCs for the following
aggregating conditions: rag=a ¼ 6:32, / ¼ 20 %, /i varies

SFM SFSE EMTSFM

Actual
rag=a

Actual /i
(%)

Estimated
W�

Estimated
R�g

eR�g % Estimated /�i
(%)

e/�i
(%)

Estimated
r�ag=a

er�ag

(%)

6.32 40 6.49 3.92 37.86 44.56 11.40 5.8 8.23
6.32 50 12.51 6.12 3.01 59.5 19.00 5.9 6.65
6.32 60 17.74 7.49 18.60 67.71 12.85 5.8 8.23

Values of the aggregate size rag=a and compactness /i used for computation of the simulated
BSCSFM from the SFM, and values of parameters found with the SFSE and EMTSFM and
corresponding relative errors e

10 -4

10 -5

B
SC

 (
m

m
-1 .

ra
d-

1 )

  =30%φ

10 20 30

Frequency (MHz)

40 504

rag/a = 1   
rag/a = 3.16 
rag/a = 5     

SFM

rag/a = 7.07 

10 -3

10 -1

10 -2

3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9

10
  =10%

  =30%
  =20%

Fitted line, r2=0.95
Fitted line, r2=0.99
Fitted line, r2=0.95

SF
SE

 e
st

im
at

ed
 r

ad
iu

s 
R

g*

Actual aggregate 
radius rag /a

φ
φ
φ

1 2 3 4 5 6 7 8 9
2

4

6

8

10

12

14

16

18
  =10%

  =30%
  =20%

Fitted line, r2=0.99
Fitted line, r2=0.99

Fitted line, r2=0.99

SFSE  estimated
 radius Rg

*

SF
SE

 e
st

im
at

ed
 p

ac
ki

ng
 

fa
ct

or
 W

*

φ
φ
φ

(a) (b) (c)

Fig. 6.10 a Frequency-dependent backscatter coefficients computed with the SFM for different
aggregate sizes and a constant aggregate compactness /i ¼ 60 % at a systemic hematocrit of
30 %, and corresponding fitting with the SFSE (in dashed lines) and with the EMTSFM (in solid
lines). b Comparison of the estimated aggregate size R�g obtained with the SFSE to the true size
rag=a for the three systemic hematocrits of 10, 20 and 30 %. c Linear relationship between W�

and R�g
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6.5 In Vitro and In Vivo Experimental Studies

6.5.1 In Vitro Experiments

As seen previously in Sect. 6.3, computer simulations allowed to determine the
influence of the aggregate size, shape and compactness on ultrasound backscat-
tering. It is currently difficult to control all these parameters in in vitro experi-
ments. An instructive in vitro experiment is to shear blood in a Couette flow device
providing a linear velocity profile and a constant shear rate for a given rotational
speed of the device (Foster et al. 1994; Van Der Heiden et al. 1995; Yu and
Cloutier 2007; Yu et al. 2009). A homogeneous level of aggregation could thus be
expected in such a controlled flow. Figure 6.11 shows the typical measured
BSCmeas as a function of frequency for porcine blood at a systemic hematocrit of
40 % sheared at different shear rates in a Couette flow device (Franceschini et al.
2010). These experimental data were obtained using an ultrasound scanner Vevo
770, Visualsonics (Toronto, Canada) equipped with a 25 MHz-center frequency
probe (RMV 710). The measured BSCmeas signifies here the experimental measure
of the BSC. It was calculated here by a substitution method with a reference
phantom (i.e. a sample of disaggregated RBCs suspended in saline at a 6 %
hematocrit) to compensate the backscattered power spectra for the electrome-
chanical system response, and the depth-dependent diffraction and focusing effects
caused by the ultrasound beam. As observed in Fig. 6.11, the amplitude of the
BSCmeas increases and the peak occurs at lower frequencies as the shear rate
decreases (i.e. when the level of aggregation increases). Also represented are
corresponding fitted curves obtained with the SFSE, as well as the corresponding
values of W�, D� and the correlation coefficient r2 to assess the goodness of fit
between the model and the measured data. Note that in this section the aggregate
sizes estimated by the SFSE correspond to the mean aggregate diameter D� instead
of the mean aggregate gyration radius R�g (see Eq. (6.13)). The SFSE provides
good fits to the data and W� and D� increase when the shear rate decreases.

Table 6.2 Comparison of the SFSE and EMTSFM based on simulated BSCs for the following
aggregating conditions: rag=a varies, / ¼ 30 %, /i ¼ 60 % (except in the case of diaggregated
RBCs where /i ¼ 100 %)

SFM SFSE EMTSFM

Actual
rag=a

Actual /i
(%)

Estimated
W�

Estimated
R�g

eR�g

(%)
Estimated /�i
(%)

e/�i
(%)

Estimated
r�ag=a

er�ag

(%)

1 100 0.17 0.38 62.00 100 0.00 1.0 0.00
3.16 60 2.67 1.32 58.23 66 10.00 3.0 5.06
5 60 5.31 3.04 39.20 68 13.33 4.7 6.00
7.07 60 8.58 5.33 24.61 66 10.00 6.6 6.65

Values of the aggregate size rag=a and compactness /i used for computation of the simulated
BSCSFM from the SFM, and values of parameters found with the SFSE and EMTSFM and
corresponding relative errors e
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The corresponding spatial maps of aggregate size and packing factor estimates
(parametric images) for a shear rate of 10 s-1 are displayed in Fig. 6.12. The
parametric images are superimposed on a conventional B-mode frame. The
parametric images are useful for describing how aggregate structures vary in size
as a function of depths. In the Couette flow experiments, the parametric images are
quite homogenous as it was expected, since the level of aggregation is identical
whatever the depth. Under in vivo conditions with ultrasound measurements on a
blood vessel, the shear rate distribution varies with the radial position, and con-
sequently, the aggregate size distribution too. An example of parametric images of
porcine blood in a tubular in vitro experiment is displayed in Fig. 6.13.

6.5.2 In Vivo Experiments

The difficulty to apply the SFSE or the EMTSFM in vivo is that the spectral
content of backscattered echoes is also affected by attenuation caused by inter-
vening tissue layers (such as the skin) between the probe and the blood flow. To
evaluate correctly microstructural parameters, it is thus of major interest to take
into account tissue attenuation effects. Some groups (He and Greenleaf 1986;
Oosterveld et al.1991) developed measurement techniques to evaluate the fre-
quency-dependent attenuation in order to compensate a posteriori the backscat-
tered power spectrum. Recently, Bigelow et al. (2005a, 2005b) introduced a new
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Fig. 6.11 Backscatter coefficients for blood sheared at different shear rates, and corresponding
fitting with the SFSE (Figure modified from Franceschini et al. 2010)
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algorithm that has the advantage to estimate simultaneously the effective radius of
the tissue microstructure and the total attenuation. These two parameters were
determined by using a single minimization method that fits the spectrum of the
backscattered RF echoes from the region of interest (ROI) to an estimated spec-
trum by an appropriate model. This last strategy was recently adapted for the
estimation of RBC scatterer sizes by slightly modifying the SFSE and was named
the Structure Factor Size and Attenuation Estimator (SFSAE) (Franceschini et al.
2008, 2010). The SFSAE allows to determine simultaneously blood structural
parameters (i.e. W and D) and the total attenuation by modeling the theoretical
backscattering coefficient of blood as follows (Franceschini et al. 2008):
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Fig. 6.12 Quantitative images of porcine blood sheared at 10 s�1 in a Couette device
superimposed on the gray-scale B-mode images. Parameters W� and D� were estimated by the
SFSE (Figure modified from Franceschini et al. 2010)
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Fig. 6.13 Quantitative images of porcine blood sheared in a tube superimposed on the gray-scale
B-mode images. Parameters W� and D� were estimated by the SFSE (Figure modified from
Franceschini et al. 2010)
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BSCSFSAEð�2kÞ ¼ nrbð�2kÞ W � 12
5
ðkaDÞ2

� �
Að�2kÞ

� nrbð�2kÞ W � 12
5
ðkaDÞ2

� �
e
�4 a0 k c
8:68 2p

ð6:17Þ

where A is the frequency-dependent attenuation function, c is the mean speed of
sound in the intervening tissue layers and a0 is the attenuation coefficient (in dB/

MHz) defined by: a0 ¼
X

i

aiei, where ai and ei are respectively the intervening

tissue layer attenuations (in dB/cm/MHz) and thicknesses. One can note in
Eq. (6.17) the coefficient 8.68 that expresses unit conversion from dB to Neper:
a0[Neper/MHz] ¼ a0[dB/MHz]=8:68. According to the above equation, we thus
assume that the attenuation increases linearly with the frequency f :
aðf Þ ¼ a0f=8:68. The packing factor W�, aggregate diameter D� and total atten-
uation along the propagation path a�0 are determined by matching the measured
BSC with the theoretical BSCSFSAE given by Eq. (6.17), as performed previously
with the SFSE model.

Note that the SFSAE allows to estimate a total attenuation, including the
intervening tissues between the probe and the blood flow but also the blood
attenuation itself. The skin is one of the most attenuating tissue layers during
in vivo scanning. The attenuation of human dermis is around 0.21 dB/MHz at
14–50 MHz considering a 1-mm dermis thickness (Raju and Srinivasan 2001). On
the other hand, the blood attenuation is smaller around 0.015 dB/mm/MHz for
disaggregated blood and 0.053 dB/mm/MHz for large aggregating conditions
(Franceschini et al. 2010).

With in vitro experiments (Franceschini et al. 2008, 2010) the method gave
satisfactory estimates with relative errors below 25 % for attenuations between
0.115 and 0.411 dB/MHz and D�\7:29 (corresponding to a product krag\2:08).
Measurements were also performed on an arm’s vein of a normal subject using an
ultrasound scanner equipped with a 25 MHz center frequency probe (Franceschini
et al. 2009). The probe was positioned in longitudinal view to examine a complex
flow in the vinicity of two closed venous valves. Regions were examined upstream
and downstream from the two venous valves. Quantitative ultrasound parametric
images of the aggregate diameter D�, the packing factor W� and the total atten-
uation a�0 were constructed by using the SFSAE (Fig. 6.14). The black pixels in
Fig. 6.14 correspond to rejected solutions of the optimization method, when the
estimated packing factor W� or diameter D� was found equal to zero, which is
unrealistic (see section V-D in Franceschini et al. 2010). For the two structural
parameters D� and W�, statistically significant differences were observed between
blood stagnation and circulation zones; whereas attenuation mean values were
quite similar. This work shows the SFSAE ability to estimate blood structural
properties in vivo and in situ, and opens the way to parametric imaging for clinical
studies in abnormal blood conditions.
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6.6 Conclusion

This chapter has focused on the theoretical structure factor model of ultrasound
backscattering by aggregated RBCs, on computer simulations to understand the
impact of the aggregate structure on the frequency-dependent BSC and on two
approximated theoretical models, the SFSE (or SFSAE) and the EMTSFM,
allowing the estimation of blood structural properties. The SFSAE, i.e. the mod-
ified SFSE allowing to take into account the intervening tissue between the probe
and the blood, has been shown able of estimating blood structural properties
in vivo and in situ. Using the SFSAE, future works should focus on in vivo and
in situ assessment of the pathophysiological impact of abnormal RBC aggregation
on the cardiovascular system (see for example Yu et al. 2011).

The EMTSFM recently proposed is also a very promising model needing to be
developed to speed the parameter estimation. Computed simulations show the
superiority of the EMTSFM to estimate RBC aggregate size and compactness in
comparison with the SFSE. An important contribution of this new model is the
parameterization of the BSC with the aggregate compactness, which is a structural
parameter not available in any other modeling strategies proposed in quantitative
ultrasound imaging. The main limitation of the EMTSFM (as well as the SFSE) is
the assumption of isotropic aggregates that limits the use of these models to
pathological blood. In the future, improvements should consider incorporating the
aggregate anisotropy and the possibility to simultaneously estimate the tissue
attenuation, as for the SFSAE. It means that the EMTSFM could be slightly
modified by introducing the attenuation term to estimate simultaneously the RBC
aggregate size, compactness and the total attenuation.
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Fig. 6.14 Quantitative images of blood circulating in the vinicity of the two closed venous
valves superimposed on the gray-scale B-mode images. Parameters W�, D� and a�0 were estimated
by the SFSAE (Figure modified from Franceschini et al. 2009)

6 Modeling of Ultrasound Backscattering by Aggregating Red Blood Cells 141



Acknowledgments We acknowledge the continuous financial support of the Canadian Institutes
of Health and Natural Sciences and Engineering Research Council of Canada, and the French
National Center for Scientific Research (CNRS).

References

Anderson VC (1950) Sound scattering from a fluid sphere. J Acoust Soc Am 22:426–43
Angelsen BAJ (1980) Theoretical study of the scattering of ultrasound by blood. IEEE Trans

Biomed Eng 27:61–67
Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC (2004) The hydrodynamic radii of

macromolecules and their effect on red blood cell aggregation. Biophys J 87:4259–4270
Berger NE, Lucas RJ, Twersky V (1991) Polydisperse scattering theory and comparisons with

data for red blood cells. J Acoust Soc Am 89:1394–1401
Bigelow TA, Oelze ML, O’Brien WD (2005a) Estimation of total attenuation and scatterer size

from backscatter ultrasound waveforms. J Acoust Soc Am 117:1431–1439
Bigelow TA, O’Brien WD (2005b) Signal processing strategies that improve performance and

understanding of the quantitative ultrasound SPECTRAL FIT algorithm. J Acoust Soc Am
118:1808–1819

Chabanel A, Horellou MH, Conard J, Samama MM (1994) Red blood cell aggregability in
patients with a history of leg vein thrombosis: influence of post-thrombotic treatment. Br J
Haematol 88:174–179

Chien S (1975) Biophysical behavior of red cells in suspensions. In: Surgenor DM (ed) The red
blood cell. Academic, New York

Cloutier G, Qin Z (1997) Ultrasound backscattering from non-aggregating and aggregating
erythrocytes—a review. Biorheology 34:443–470

Cloutier G, Daronat M, Savery D, Garcia D, Durand LG, Foster FS (2004) Non-Gaussian
statistics and temporal variations of the ultrasound signal backscattered by blood at
frequencies between 10 and 58 MHz. J Acoust Soc Am 116:566577

Cloutier G, Zimmer A, Yu FT, Chiasson JL (2008) Increased shear rate resistance and fastest
kinetics of erythrocyte aggregation in diabetes measured with ultrasound. Diabet Care
31:1400–1402

Coussios CC (2002) The significance of shape and orientation in single-particle weak-scatterer
models. J Acoust Soc Am 112:906-915

De Kroon MGM, Slager CJ, Gussenhoven WJ, Serruys PW, Roelandt JRTC, Bom N (1991)
Cyclic changes of blood echogenicity in high frequency ultrasound. Ultrasound Med Biol
17:723–728

Le Dévéhat C, Khodabandehlou T, Vimeux M, Aouane F (1996) Diabetes mellitus: its effects on
blood rheological properties and microcirculatory consequences. Clin Hemorheol 16:677–683

Feleppa EJ, Lizzi FL, Coleman DJ, Yaremko MM (1986) Diagnostic spectrum analysis in
ophthalmology: a physical perspective. Ultrasound Med Biol 12:623–631

Feleppa EJ, Liu T, Kalisz A, Shao MC, Fleshner N, Reuter V (1997) Ultrasonic spectral-
parameter imaging of the prostate. Int J Imag Syst Technol 8:11–25

Fontaine I, Bertrand M, Cloutier G (1999) A system-based approach to modeling the ultrasound
signal backscattered by red blood cells. Biophys J 77:2387–2399

Fontaine I, Savery D, Cloutier G (2002) Simulation of ultrasound backscattering by red blood cell
aggregates: effect of shear rate and anisotropy. Biophys J 82:1696–1710

Fontaine I, Cloutier G (2003) Modeling the frequency dependence (5–120 MHz) of ultrasound
backscattering by red cell aggregates in shear flow at a normal hematocrit. J Acoust Soc Amer
113:2893–2900

142 E. Franceschini and G. Cloutier



Foster FS, Obara H, Bloomfield T, Ryan LK, Lockwood GR (1994) Ultrasound backscatter from
blood in the 30–70 MHz frequency range. In: Proceedings IEEE Ultrasonic Symposium,
pp 1599–1602

Franceschini E, Yu FTH, Destrempes F, Cloutier G (2010) Ultrasound characterization of red
blood cell aggregation with intervening attenuating tissue-mimicking phantoms. J Acoust Soc
Amer 127:1104–1115

Franceschini E, Yu FTH, and Cloutier G (2008) Simultaneous estimation of attenuation and
structure parameters of aggregated red blood cells from backscatter measurements. J Acoust
Soc Am 123:EL85-91

Franceschini E, Yu FTH, Destrempes F, Cloutier G (2009) In vivo ultrasound characterization of
red blood cell aggregation using the structure factor size and attenuation estimator. In:
Proceedings IEEE ultrasonic symposium, pp 301–304

Franceschini E, Metzger B, and Cloutier G (2011) Forward problem study of an effective medium
model for ultrasound blood characterization. IEEE Trans Ultras Ferroelectr Freq Control
58:2668–2679

Guinier A, Fournet J (1955) Small angle scattering of X-rays. Wiley Interscience, New York
Hayakawa M, Kuzuya F (1991) Effects of ticlopidine on erythrocytes aggregation in thrombotic

disorders. Angiology 42:747–753
He P, Greenleaf JF (1986) Application of stochastic analysis to ultrasonic echoes—estimation of

attenuation and tissue heterogeneity from peaks of echo envelope. J Acoust Soc Am
79:526–534

Hunt JW, Worthington AE, Kerr AT (1995) The subtleties of ultrasound images of an ensemble
of cells: simulation from regular and more random distributions of scatterers. Ultrasound Med
Biol 21:329–341

Insana MF, Wagner RF, Brown DG, Hall TJ (1990) Describing small-scale structure in random
media using pulse-echo ultrasound. J Acoust Soc Am 87:179–192

Insana MF, Brown DG (1993) Acoustic scattering theory applied to soft biological tissues. In:
Shung KK, Thieme GA (eds) Ultrasonic scattering in biological tissues. CRC, Boca Raton, FL

Kolios MC, Czarnota GJ, Lee M, Hunt JW, Sherar MD (2002) Ultrasonic spectral parameter
characterization of apoptosis. Ultrasound in Med Biol 28:589–597

Kuster GT, Toksoz MN (1974) Velocity and attenuation of seismic waves in two-phase media:
part I theoretical formulations. Geophysics 39:587–606

Lim B, Cobbold RSC (1999) On the relation between aggregation, packing and the backscattered
ultrasound signal for whole blood. Ultrasound Med Biol 25:1395–1405

Lizzi FL, Ostromogilsky M, Feleppa EJ, Rorke MC, Yaremko MM (1986) Relationship of
ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans Ultrason
Ferroelect Freq Contr 33:319–329

Lizzi FL, Astor M, Kalisz A, Liu T, Coleman DJ, Silverman R, Ursea R, Rondeau M (1996)
Ultrasound spectrum analysis for different scatter morphologies: theory and very-high
frequency clinical results. In: Proceedings IEEE Ultrason Symp, pp 1155–1159

Lucas RJ, Twersky V (1987) Inversion of ultrasonic scattering data for red blood cell suspensions
under different flow conditions. J Acoust Soc Am 82:794–799

Madsen EL, Insana MF, Zagzebski JA (1984) Method of data reduction for accurate
determination of acoustic backscatter coefficients. J Acoust Soc Am 76:913–923

Mamou J, Coron A, Hata M, Machi J, Yanagihara E, Laugier P, Feleppa E (2010) Three-
dimensional high-frequency characterization of cancerous lymph nodes. Ultrasound Med Biol
36:361–375

Meiselman HJ (1993) Red blood cell role in RBC aggregation: 1963–1993 and beyond. Clin
Hemorheol 13:575–592

Mo LYL and Cobbold RSC (1986) A stochastic model of the backscattered Doppler ultrasound
from blood. IEEE Trans Biomed Eng 33:20–27

Mo LYL and Cobbold RSC (1992) A unified appraoch to modeling the backscattered Doppler
ultrasound from blood. IEEE Trans Biomed Eng 39:450–461

6 Modeling of Ultrasound Backscattering by Aggregating Red Blood Cells 143



Mo LYL, Cobbold RSC (1993) In: Shung KK, Thieme GA (eds) Ultrasonic scattering in
biological tissues. CRC, Boca Raton, FL

Neumann FJ, Katus HA, Hoberg E, Roebruck P, Braun M, Haupt HM, Yillmanns H, Kubler W
(1991) Increased plasma viscosity and erythrocyte aggregation: Indicators of an unfavorable
clinical outcome in patients with unstable angina pectoris. Br Heart J 66:425–430

Nguyen LC, Yu FT, Cloutier G (2008) Cyclic changes in blood echogenicity under pulsatile flow
are frequency dependent. Ultrasound Med Biol 34:664–673

Oelze ML, Zachary JF (2006) Examination of cancer in mouse models using high frequency
quantitative ultrasound. Ultrasound Med Biol 32:1639–1648

Oosterveld BJ, Thijssen JM, Hartman PC, Romijn RL and Rosenbusch GJE (1991) Ultrasound
attenuation and texture analysis of diffuse liver disease: methods and preliminary results. Phys
Med Biol 36:1039–1064

Poggi M, Palareti G, Biagi R, Parenti M, Babini AC, Coccher S (1994) Prolonged very low calory
diet in highly obese subjects reduces plasma viscosity and red cell aggregation but not
fibrinogen. Int J Obes 18:490–496

Raju I, Srinivasan MA (2001) High-frequency ultrasonic attenuation and backscatter coefficients
of in vivo normal human dermis and subcutaneous fat. Ultrasound Med Biol 27:15431556

Rampling MW, Meiselman HJ, Neu B, Baskurt OK (2004) Influence of cell-specific factors on
red blood cell aggregation. Biorheology 41:91–112

Routh HF, Gough W, Williams RP (1987) One-dimensional computer simulation of a wave
incident on randomly distributed inhomogeneities with reference to the scattering of
ultrasound by blood. Med Biol Eng Comput 25:667–671

Saha RK, Cloutier G (2008) Monte Carlo study on ultrasound backscattering by three-
dimensional distributions of red blood cells. Physical Review E 78:061919

Saha RK, Franceschini E, Cloutier G (2011) Assessment of accuracy of the structure-factor-size-
estimator method in determining red blood cell aggregate size from ultrasound spectrum
backscattering coefficient. J Acoust Soc Am 129:2269–2277

Savery D, Cloutier G (2001) A point process approach to assess the frequency dependence of
ultrasound backscattering by aggregating red blood cells. J Acoust Soc Am 110:3252–3262

Savery D, Cloutier G (2005) Effect of red cell clustering and anisotropy on ultrasound blood
backscatter: a Monte Carlo study. IEEE Trans Ultras Ferroelectr Freq Control 52:94–103

Savery D, Cloutier G (2007) High-frequency ultrasound backscattering by blood: analytical and
semi-analytical models of the erythrocyte cross section. J Acoust Soc Amer 23:3963–3971

Schmid-Schönbein H, Gallasch G, Gosen JV, Volger E, Klose HJ (1976) Red cell aggregation in
blood flow. I New methods of quantification. Klin Wschr 54:149–157

Schmid-Schönbein H, Malotta H, Striesow F (1990) Erythrocyte aggregation: causes,
consequences and methods of assessment. Tijdschr NVKS 15:88–97

Shung KK (1982) On the ultrasound scattering from blood as a function of hematocrit. IEEE
Trans Sonics Ultrason SU-29:327–331

Stoltz JF, Donner M (1991) Red blood cell aggregation: measurements and clinical applications.
Tr J Med Sci 15:26–39

Teh BG, Cloutier G (2000) Modeling and analysis of ultrasound backscattering by spherical
aggregates and rouleaux of red blood cells. IEEE Trans Ultras Ferroelectr Freq Control
47:1025–1035

Twersky V (1987) Low-frequency scattering by correlated distributions of randomly oriented
particles. J Acoust Soc Am 81:1609–1618

Van Der Heiden MS, De Kroon MGM, Bom N, Borst C (1995) Ultrasound backscatter at 30 MHz
from human blood: influence of rouleau size affected by blood modification and shear rate.
Ultrasound Med Biol 21:817–826

Vayá A, Falcó C, Rganon E, Vila V, Martnez-Sales V, Corella D, Contreras MT, Aznar J (2004)
Influence of plasma and erythrocyte factors on red blood cell aggregation in survivors of acute
myocardial infarction. Thromb Haemost 91:354–359

Wang SH, Shung KK (1997) An approach for measuring ultrasonic backscattering from
biological tissues with focused transducers. IEEE Trans Biomed Eng 44:549–554

144 E. Franceschini and G. Cloutier



Weng X, Cloutier G, Pibarot P, Durand LG (1996a) Comparison and simulation of different
levels of erythrocyte aggregation with pig, horse, sheep, calf, and normal human blood.
Biorheology 33:365–377

Weng X, Cloutier G, Beaulieu R, Roederer GO (1996b) Influence of acute-phase proteins on
erythrocyte aggregation. Am J Physiol 271:H2346–H2352 (Heart and Circulatory, Physiology
40)

Yu FTH, Cloutier G (2007) Experimental ultrasound characterization of red blood cell
aggregation using the structure factor size estimator. J Acoust Soc Am 122:645–656

Yu FTH, Franceschini E, Chayer B, Armstrong JK, Meiselman HJ, Cloutier G (2009) Ultrasonic
parametric imaging of erythrocyte aggregation using the structure factor size estimator.
Biorheology 46:343363

Yu FTH, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G (2011) A local increase in red
blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative
cellular ultrasound imaging. J Thrombosis Haemostasis 9:481–488

Yuan YW, Shung KK (1988) Ultrasonic backscatter from flowing whole blood. I: dependence on
shear rate and hematocrit. J Acoust Soc Am 84:52–58

Zhang J, Rose JL, Shung KK (1994) A computer model for simulating ultrasonic scattering in
biological tissues with high scatterer concentration. Ultrasound Med Biol 20:903–913

Zijlstra WG, Mook GA (1962) Medical reflection photometry. In: Van Gorcum (ed) Assen,
Netherlands

6 Modeling of Ultrasound Backscattering by Aggregating Red Blood Cells 145



Chapter 7
Backscatter Quantification
for the Detection of Metastatic Regions
in Human Lymph Nodes

Jonathan Mamou, Alain Coron, Emi Saegusa-Beecroft, Masaki Hata,
Eugene Yanagihara, Junji Machi, Pascal Laugier
and Ernest J. Feleppa

Abstract Quantitative ultrasound (QUS) methods using high-frequency ultra-
sound offer a means of investigating biological tissue at the microscopic level.
This chapter describes high-frequency, three-dimensional (3D) QUS methods to
characterize freshly dissected lymph nodes of cancer patients. 3D ultrasound
radio-frequency data were acquired from lymph nodes using a 25.6-MHz center-
frequency transducer. Each node was inked prior to tissue fixation to recover
orientation after sectioning for 3D histological evaluation. Backscattered echo
signals were processed using 3D cylindrical regions-of-interest to yield four QUS
estimates associated with tissue microstructure (i.e., effective scatterer size,

J. Mamou (&) � E. J. Feleppa
F. L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA
e-mail: jmamou@riversideresearch.org

E. J. Feleppa
e-mail: efeleppa@riversideresearch.org

A. Coron � P. Laugier
UMR7623, Laboratoire d’Imagerie Paramétrique, CNRS, Paris, F-75006, France
e-mail: alain.coron@upmc.fr

P. Laugier
e-mail: pascal.laugier@upmc.fr

A. Coron � P. Laugier
UMR7623, LIP, UPMC Univ Paris 06, Paris, F-75005, France

E. Saegusa-Beecroft � M. Hata � E. Yanagihara � J. Machi
University of Hawaii and Kuakini Medical Center, Honolulu, HI, USA
e-mail: emilysaegusa@hotmail.com

M. Hata
e-mail: masakihata4999@yahoo.co.jp

E. Yanagihara
e-mail: kplety@earthlink.net

J. Machi
e-mail: junji@hawaii.edu

J. Mamou and M. L. Oelze (eds.), Quantitative Ultrasound
in Soft Tissues, DOI: 10.1007/978-94-007-6952-6_7,
� Springer Science+Business Media Dordrecht 2013

147



acoustic concentration, spectral intercept, and spectral slope). QUS estimates were
computed following established methods using two scattering models. Then, the
four QUS estimates were combined using linear-discriminant analysis to increase
classification performance. Finally, the discriminant scores were used to compute
a posteriori cancer probability. In this study, more than 400 lymph nodes acquired
from more than 250 patients diagnosed with colon, breast, or gastric cancer were
processed. Results indicated that metastatic and cancer-free lymph nodes of colon-
and gastric-cancer patients could be well classified using these methods and that
metastatic regions could potentially be detected and used to guide pathologists
towards suspicious regions.

Keywords High-frequency ultrasound � Lymph node � Cancer � Metastases

7.1 Introduction

Quantitative ultrasound (QUS) imaging attempts to determine meaningful tissue
properties in a robust, system-independent, and user-independent fashion. Cur-
rently, QUS approaches are being investigated by several research groups, and
many tissue parameters have been estimated using a wide range of methods and
algorithms. This chapter specifically focuses on QUS methods that analyze the
backscattered spectrum of high-frequency ultrasound (HFU, [ 20 MHz), radio-
frequency (RF) echo signals. These QUS methods are derived from the theoretical
framework of ultrasound scattering established in Lizzi et al. (1983) for biological
tissues and subsequently expanded (Oelze et al. 2002; Insana et al. 1990; Feleppa
et al. 1986; Mamou et al. 2008; Oelze and Zachary 2006). Since these pioneering
studies, several groups have established QUS approaches to investigate ocular,
liver, prostate, renal, blood, and cardiac tissues at conventional frequencies (i.e.,
\10 MHz) for more than three decades (Perez et al. 1988; Lizzi et al. 1983, 1987;
Insana et al. 1991; Feleppa et al. 2004; Franceschini et al. 2010; Saha et al. 2011).

This chapter describes QUS methods that are being used to characterize freshly
excised human lymph nodes from histologically proven cancer patients. Specifi-
cally, the frequency-dependent information derived from the raw RF backscattered
signals (Oelze et al. 2002; Insana et al. 1990; Feleppa et al. 1986) is used to assess
tissue microstructural properties quantitatively and relate them to histological
properties. Therefore, our hypothesis is that QUS estimates obtained using HFU
may help to differentiate between cancer-containing (i.e., metastatic) nodes and
cancer-free nodes. The QUS methods described in this chapter are able to quantify
tissue properties based on theoretical assumptions about the nature of scattering.
Accordingly, two scattering models were used to yield four QUS estimates. In
previous lymph-node studies more than a decade ago, our group successfully used
spectrum-analysis methods at 10 MHz to detect distinct differences between can-
cerous and cancer-free lymph nodes of breast- and colorectal-cancer patients
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(Feleppa et al. 1997); in those preliminary studies at conventional frequencies (i.e.,
10 MHz), a single attenuation-independent QUS estimate, spectral intercept, pro-
duced an area under the ROC curve (AUC) of 0.97 for identifying metastatic nodes.

In the current standard of care, lymph nodes dissected from a cancer patient are
sent to a pathology laboratory for microscopic histological examination. Two
different pathology procedures exist: (1) a postoperative complete histological
preparation and evaluation, or (2) an intraoperative ‘‘touch-prep’’ procedure. The
complete procedure involves bisection nodes that are 5 mm or smaller or cutting
larger nodes into 3-mm pieces; fixing and embedding the cut pieces; preparing
three to six thin (3-lm) sections from the exposed cut surfaces; placing thin
sections on microscope slides; and staining and examining the slides. The com-
plete procedure typically utilizes hematoxylin and eosin (H&E) stains, but also can
employ more-sensitive immunohistochemical methods. Complete histological
preparation and evaluation provide the definitive means of detecting metastases in
lymph nodes; however, the procedure obviously is limited by sampling constraints.
The entire volume of the node is not examined. The touch-prep procedure is used
for rapid detection of metastases while the patient remains under anesthesia in the
operating room. It essentially is a cytological procedure in which selected nodes
are dissected and each dissected node is cut in half with a scalpel, and both cut
surfaces are pressed on a microscope slide to transfer cells to the slide for
microscopic examination. (Postoperatively, nodes that have undergone the intra-
operative touch prep procedure also undergo a complete histology preparation and
examination.) The touch-prep method is used primarily for sentinel lymph nodes—
most commonly for the axillary nodes of invasive breast-cancer patients. If
metastases are detected in a touch-prepped node, then a formal (complete) node
dissection is performed during the same operation. However, because only cells
from the two cut surfaces are examined, the touch-prep procedure presents a high
probability of false-negative determinations.

Clearly, both pathology procedures suffer from sampling constraints that can
result in false-negative determinations; clinically significant micrometastases (i.e.,
metastases between 0.2 and 2 mm in size) can be missed. In the touch-prep
procedure, the pathologist only examines cells from two adjacent surfaces of the
lymph node, and the cells derived from these surfaces may not reveal the presence
of a small cancerous region within a metastatic node, i.e., there is a sampling
problem. In the complete histological evaluation, the nodes are sectioned into
blocks (2–3 mm thick), fixed and embedded, and then thin sections of the surfaces
of the thick sections are obtained, histochemically stained, and evaluated under a
microscope. Consequently, this method also suffers from a sampling problem; the
method reliably detects nodal metastases that are present in the examined thin
sections, but only a limited number (usually 2–3) of thin sections are obtained
from the surfaces of thick sections. Furthermore, the postoperative histological
procedure is time consuming (e.g., requiring 2–3 days).

Although the QUS methods that we are investigating eventually may allow
reliable detection of nodal metastases in touch-prep specimens while the patient
remains under anesthesia in the operating room, our immediate objective is to
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develop high-frequency QUS methods capable of reliably detecting small metas-
tases in freshly excised nodes so that histological examination can be directed
toward suspicious regions of the node and small metastases that reside between
thick-section surfaces can be detected. In particular, these methods could be used
to evaluate all the dissected lymph nodes in their entirety.

In the remainder of this chapter, we present the methods we have developed to
acquire and co-register three-dimensional (3D) ultrasound and 3D histological
data, to estimate four QUS parameters (i.e., effective scatterer size, acoustic
concentration (Oelze et al. 2002), slope and intercept (Lizzi et al. 1983)), to
construct color-coded QUS images, or to display 3D interactive maps of cancer
probability within the entire lymph node (Mamou et al. 2010). The chapter is
organized into the following three sections: the Methods section presents our
methods from surgery and lymph-node preparation to QUS image formation; the
Results section presents results from a database of over 250 lymph nodes; finally,
the Conclusions section presents a summary of the study to date and the next steps
of the study. The Institutional Review Boards (IRBs) of the University of Hawaii
and the Kuakini Medical Center (KMC) in Honolulu, HI, approved the protocols
for participation of human subjects in the study. All participants were recruited at
KMC and gave written informed consent as required by both IRBs.

7.2 Methods

7.2.1 Surgery and Ultrasound Data Acquisition

Patients with histologically proven primary cancers (e.g., breast, colon, and gastric
cancers) were scheduled for lymphadenectomy. During the surgery, 5–20 lymph
nodes were dissected at KMC. Dissected nodes were taken to the pathologist for
gross preparation, which included isolating individual nodes and removing as much
overlying fibroadipose (i.e., fatty) tissue as possible from each node. Following gross
preparation, individual, manually defatted lymph nodes were placed in a water bath
containing isotonic saline (0.9 % sodium chloride solution) at room temperature. RF
ultrasound data were acquired with a focused, single-element transducer (PI30-2-
R0.50IN, Olympus NDT, Waltham, MA) with an aperture of 6.1 mm and a focal
length of 12.2 mm (i.e., an F-number of 2). The transducer had a center frequency of
25.6 MHz and a �6-dB bandwidth that extended from 16.4 to 33.6 MHz.
Figure 7.1a shows the 3-axis scanning system with a lymph node being scanned.
Figure 7.1b provides a closer view of the transducer and the lymph node pinned to
the sound-absorbing material. The transducer was excited by a Panametrics 5900
pulser/receiver unit (Olympus NDT, Waltham, MA) used with an energy setting of
4 lJ. RF echo signals were digitized using an 8-bit A/D board (DB-105, Acqiris,
Monroe, NY) at a sampling frequency of 400 MHz. A 3D scan of each lymph node
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was obtained by scanning in a raster pattern with scan vectors separated by 25 lm in
x and y directions to uniformly interrogate the entire lymph node.

7.2.2 Histology Data Acquisition

For this project, a non-standard histology procedure was required for two reasons.
First, we needed fine spatial sampling to guarantee that no clinically significant
metastases would be missed. Accurate determination of the presence and distribution
of cancer foci was critical for developing and assessing classifiers and the ability to
image clinically significant metastases. Second, we needed fine sampling to permit
rapid co-registration of the 3D ultrasound volume with the 3D histology volume.
Co-registration was critical to evaluate whether the QUS methods are able to detect
the metastatic regions within the lymph nodes in a sufficiently reliable manner.

Accordingly, scanned nodes were inked immediately after ultrasound data
acquisition to provide visual references for subsequent reassembly of histology
into 3D volumes and spatial matching with volumes generated from the 3D HFU
dataset and 3D QUS processing. Inked nodes then were prepared for histology.
Figure 7.2a and c display a schematic and an actual lymph node after inking. Red
and blue inks divided the surface of a whole node into two sections (i.e., to recover
top and bottom) and a circle of black ink was placed at a junction between the two
colored sections (i.e., to recover left and right). The complete node was photo-
graphed using a digital camera (FujiFilm FinePix S9100, Fuji Photo Film, Tokyo,
Japan) equipped with Hoya +2 and +4 close-up lenses (Hoya Corp., Tokyo, Japan)

(a)

x axis

y a
xis

z 
ax
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(b)

Fig. 7.1 The scanning system with a lymph node pinned to a piece of sound-absorbing material.
Axis orientations are shown. (Reproduced from Mamou et al. 2010)
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in order to estimate the size of the lymph node prior to histologic preparation
including tissue fixation and subsequent shrinkage. In this study, we approximated
each lymph node as an ellipsoid; sizing the lymph node consisted of measuring the
length of the three main axes of the lymph-node-approximating ellipsoid as
illustrated in Fig. 7.2c and e.

Following sizing, the node was cut longitudinally, approximately in half, per-
pendicular to the black-inked region and bisecting the node at the junction between
the red and blue inks, as indicated in Fig. 7.2a. The two half-nodes were fixed in
10 % neutral-buffered formalin and embedded in paraffin with the flat cut surface
oriented downward in the embedding cassette, as illustrated in Fig. 7.2b. After
embedding, the two fixed half-nodes were microtomed into paired thin sections,
placed on microscope slides and stained with H&E. Figure 7.2d and f show a
cartoon and an actual pair of half-node histology sections adjacent to the flat cut
plane, respectively. One cut plane is shown on Fig. 7.2b to d with two different
shades of gray to illustrate how 3D histologic volumes were derived from his-
tology sections. In most histology sections, orientation was easily recovered
because the blue-, red-, and black-inked boundaries were visible at the edges of the
remaining perinodal fibroadipose tissue. (In Fig. 7.2f, the visible blue, red, and
black inks are enhanced digitally for display purposes.)

Each pair of stained thin sections was 3 lm thick and sets of 3 to 5 pairs were
obtained 50 or 100 lm from the preceding set of sections depending on the size of
the lymph node. (Steps of 50 lm were used for nodes smaller than 5 mm; 100 lm
steps were used for larger nodes.) Digital images were made of each H&E-stained
slide; each image contained the paired histologic images of the two lymph-node
halves. These histological images were made using either the same digital camera
used for sizing or a high-quality, high-throughput slide scanner (NanoZoomer,
Hamamatsu, Japan) with a pixel resolution of 0.46 lm. (In conventional node
evaluations, the pathologist characterizes each lymph node based on only 2 or 3
stained histology sections from each major cut surface, which typically is only the
pair of surfaces exposed by the single node-bisecting central cut. However, in our
study, the best-quality pair of thin sections at each step section were histologically
evaluated; this typically involved 15 to 30 thin sections per node.)

7.2.3 Three-Dimensional Histologic Volume Reconstruction

The set of bitmap images of the histologic sections was used to reconstruct a 3D
histological model of the node with an inter-section spacing that matched the
original separations (i.e., 50 or 100 lm) between the thin sections obtained at each
step. The 3D histology reconstruction enabled spatial matching of histologically
proven, metastatic cancer foci with their signatures in QUS images.

To explain the spatial relationships between ultrasound scan planes and his-
tology sections, three dashed lines are included on Fig. 7.2e to symbolize three
parallel ultrasound scan planes. Their spatial locations are quantified by their y
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Fig. 7.2 Illustration of the geometry-conserving, histology, and sizing procedures of a lymph
node: a inking cartoon; b sectioning cartoon prior to embedding for histology; c and e sizing
photographs of a colon-cancer lymph node; d and f cartoon and sizing photographs of histology
section; and g three conventional B-mode images (40-dB dynamic range) obtained at different y
locations (y ¼ 0 is the central section of the lymph node). Shrinkage due to fixation is estimated
from the dimensional changes in c and e compared to f. The scanning planes are indicated by the
dashed pink, green, and purple lines in Fig. 7.2e. The complete 3D ultrasound data set of this
lymph node contains 160 sections. (Reproduced from Mamou et al. 2010)
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coordinate in reference to the center plane depicted by the green dashed line. The
center plane is also depicted in green on Fig. 7.2a. The ultrasound images corre-
sponding to these three scan planes are shown in Fig. 7.2g. The colors used around
the ultrasound images are the same as in Fig. 7.2e.

To permit accurate co-registration, an additional digital image was acquired of
a central slice with orientation information added as blue, black, and red dots to
identify the inked edges of the connective remnants of the perinodal fibroadipose
tissue (Fig. 7.3a). From that information, we were able to recover the orientation
of the HFU coordinate system with respect to the top (red) and bottom (blue) half-
node sections. The four dots were detected automatically using a disc detection
algorithm looking for discs of known a priori diameter and colors (i.e., one blue
disc, one red disc and two black discs). The results of the disc detection algorithm
are shown in Fig. 7.3b, where the two dots corresponding to the red half are
symbolized by red and black crosses, and those corresponding to the blue half are
symbolized by red and blue discs.

Then, in each digital image, we needed to isolate the separate histology sections
from the two lymph-node halves. Isolation was accomplished using a segmentation
algorithm that we expressed as a cost-minimization problem based on a para-
metric-shape modeling of the sections as ellipses. Thus, we searched for the
position, size and orientation of two non-intersecting ellipses, E1, E2, one for each
section and covered as much tissue as possible and as little background as possible
(i.e., the cost function increased when more background tissue was included and
decreased when more node tissue was included). From the estimated ellipses E1

and E2, the location of each section was extracted as well as a straight line to
separate the two sections. This line was the bisector of the points P1 2 E1 and
P2 2 E2 that minimized the Euclidian distance between the two ellipses.

(a) (b)

Fig. 7.3 a Extra digital image with the dots to recover the orientation with respect to the
ultrasound data set. b Results of the automatic disc detection algorithm: the black and red crosses
indicate where the two discs corresponding to the red half were found and the black and the blue
discs indicate where the two discs corresponding to the blue half were found
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Figure 7.4 illustrates the results of the segmentation algorithm on a lymph node
from a colon-cancer patient. (Details about the energy minimization routine can be
found in Coron et al. 2010.)

After the location of the sections was found in each digital image, we registered
the saturation channel of each consecutive pair of sections in order to find the rigid
transform that best aligned one image to the next. In order to minimize the
background area, the images were limited to a bounding box slightly larger than
the bounding box of the ellipses. The following two metrics were considered:
normalized correlation and mutual information. This optimization problem was
solved using elastix (Klein et al. 2010), a publicly available computer program
for intensity-based medical image registration that includes a hierarchical strategy
and adaptive stochastic gradient descent optimizer.

The rigid transformations were used to align each digital image with the image
with the extra dots. Then, using the bisector of the ellipses and the previously
estimated transforms, the sections were separated. Two new images were created
(one for each section) from each digital image. Additionally, the sections of the top
half-node needed to be reflected because of the discrepancy in the orientation of
the HFU acquisition system and the image-coordinate system. In order to get an
initial rigid transform for aligning the bottom and top half-nodes, the rotation and
translation that best matched the two pairs of dots were estimated.

Because histology preparation potentially could lose portions of tissue or pro-
duce tears on the two central sections, they were not considered to be good
candidates for registering the two half-nodes. Therefore, we constructed the
‘‘footprint’’ images of the top and bottom half-nodes. Then, the rigid transform that
best aligned the half-nodes was estimated by registering these footprint images
with elastix. The footprint of each half-node was defined as the maximum of
the saturation value of each image belonging to each half.

Once the two half-nodes were reconstructed and registered, a final rigid
transform was applied to the entire data set so that the detected dots matched the
orientation of the ultrasound data as illustrated in Figs. 7.2 and 7.3. This final step
led to a stack of histology images aligned with the 3D ultrasound data set.

Slide 1 Slide 2 Slide 9 Slide 15 Slide 18

…..…. …..

Fig. 7.4 Results of the section detection using the energy minimization approach on a lymph
node from a colon-cancer patient. The ellipses minimizing the cost function are shown as well as
the closest points, P1 and P2, from both ellipses. (Only five digital histology images of the 18
total images are shown)
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7.2.4 Three-Dimensional Ultrasound Segmentation

Observation of the 3D ultrasound images revealed that some residual perinodal
fibroadipose tissue often remained surrounding the lymph node. The thickness of
the remaining layer varied among lymph nodes, and for most lymph nodes it was
between 100 and 500 lm. The layer of intervening fibroadipose tissue could bias
the QUS results because fibroadipose tissue could have a different attenuation than
nodal tissue and also QUS processing needed to be limited to nodal tissue and to
exclude fibroadipose tissue.

Therefore, a 3D segmentation algorithm was developed to detect the remaining
fibroadipose tissue. The algorithm followed a region-based, semiautomatic
approach which was implemented in MATLAB (The MathWorks, Inc., Natick,
MA). First, the envelope of each RF line was downsampled by a factor of 8 by
computing approximation coefficients with Mallat’s pyramidal algorithm (Mallat
2009) and log-compressed. Then, the 3D watershed transform was applied to the
3D H-minima transform (Soille 2002) of the 3D Deriche gradient (Farnebäck and
Westin 2006) of the log-compressed approximation coefficients.The watershed
transform is a well-known segmentation approach known to oversegment (i.e.,
generate many regions). Therefore, the H-minima transform was used to remove
local minima of the 3D gradient to reduce the number of regions returned by the
watershed transform.

The 3D ultrasound data was segmented into three regions (i.e., saline, fibro-
adipose, and lymph-node tissue). In order to classify each watershed-deduced
region as saline, node tissue or fibroadipose tissue, a pseudo-maximum-probability
classifier was used. The mean echo amplitude of each region, �x, was used for
classification because examination of the ultrasound data revealed that at a given
depth, a saline voxel is almost certainly less echogenic than a node-tissue voxel,
and a typical node-tissue voxel is less echogenic than a typical residual-fibroadi-
pose voxel. The classifier used two thresholds, T1 and T2, to classify voxels based
on which of the conditional probability density functions (PDFs), pðxjCÞ with C
being saline, node tissue, or fibroadipose tissue, was the greatest. Therefore, a
region was classified as saline if �x� T1, node tissue if T1\�x� T2, and fibroadipose
tissue if �x [ T2.

The PDF for the lymph-node tissue was estimated from voxels located in a
small 3D region centered at the transducer focus and in the middle of the xy-plane;
this volume usually was exactly at the center of the lymph node and therefore was
entirely filled by lymph-node tissue. The saline PDF was estimated from voxels
located in the top four corners of the 3D RF data set; these corners are always filled
by saline because lymph nodes typically have an ellipsoidal shape. Finally, the
residual-fibroadipose-tissue PDF was estimated using voxels from a 3D slice near
the focal plane (i.e., at a value of z between 12.05 and 12.15 mm). Because
fibroadipose voxels usually have a higher echo amplitude than the amplitude of
node tissue or saline, the regions within this slice with the 10 % highest mean-
intensity values were selected and used to estimate the residual-fibroadipose-tissue
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PDF. To account for beam diffraction, T2 was rendered depth (d) dependent:
T2ðdÞ ¼ T2 þ KðdÞ where KðdÞ is the maximum of a reference echo at depth d.
Finally, residual artifacts (if any) of the 3D segmentation were corrected by an
expert using our custom visualization software.

A previous study showed that even without human correction, the 3D seg-
mentation algorithm produced satisfactory results on a limited, but representative,
set of lymph nodes obtained from colorectal-cancer patients (Coron et al. 2008).
However, most axillary lymph nodes obtained from breast-cancer patients had to
be manually corrected because they were structurally more complex. In particular,
some fatty deposits remained inside the lymph nodes. We are currently investi-
gating novel approaches to segment the axillary lymph nodes automatically.

7.2.5 QUS Estimation

During the course of this project, several QUS methods were applied and many
different QUS estimates were obtained (Mamou et al. 2010, 2011), but for this
chapter we will only focus on the QUS methods that quantify the backscattered
spectra. In total, four QUS estimates were obtained computed from using these
methods. Specifically, two different ultrasound-scattering models were used, each
leading to two QUS estimates. These four QUS estimates quantify microstructural
tissue properties and were used to test the hypothesis that QUS estimates are
statistically different between cancerous (i.e., metastatic) and non-cancerous tissue
in lymph nodes.

7.2.5.1 Three-Dimensional Cylindrical Regions of Interest

To take advantage of the 3D RF data set, we used 3D regions of interest (ROIs)
because they closely follow the beam shape and permit us to obtain normalized
spectra with a high SNR (because more independent RF segments are used than in
2D ROIs having the same cross-section). The complete 3D RF data set was sepa-
rated into overlapping 3D cylindrical ROIs having a diameter (in the xy plane) of
1 mm and a length (in the z direction) of 1 mm. The size of the ROI was based on
the resolution cell size of our imaging system. Theory predicted the axial and lateral
resolutions of the HFU imaging system to be 86 and 116 lm, respectively (Kino
1987). Therefore, a cylindrical ROI contained about 648 resolution cells, which
allowed ample averaging of independent scattering contributions. The overlap
between adjacent ROIs depended on the total number of voxels in the 3D RF data
set; it was selected to permit smaller data sets to have sufficient ROIs for statistical
stability while avoiding overly long computation times for larger data sets.

Figure 7.5 shows three cross-sectional B-mode images of a segmented lymph
node obtained from a colon-cancer patient. The results of the 3D segmentation are
depicted by the green and red highlights in all three cross-sections. Based on the
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3D segmentation results, QUS estimates were computed only when the 3D ROI
was entirely composed of lymph-node tissue (i.e., all of the 3D ROI was contained
inside the red highlighted segmented border of the lymph-node tissue). The dark
blue square in Fig. 7.5a and b and the light-blue circle in Fig. 7.5c depict a 3D
cylindrical ROI (L ¼ 1 mm). QUS parameters were estimated in each ROI to
generate QUS images having a voxel size corresponding to the spacing between
adjacent ROIs. The solid blue square in Fig. 7.5 depicts a QUS voxel corre-
sponding to the surrounding cylindrical ROI.

7.2.5.2 Calibration

To remove system and user dependence, calibration was performed using the
reflection of a planar reflector over a range of depths using the same instrument
settings as those used during lymph-node data acquisition (Lizzi et al. 1987; Oelze
et al. 2002; Insana et al. 1990). This calibration step is critical to obtain robust
QUS estimates that depend only on underlying tissue properties and therefore can
be used rigorously to assess tissue pathology.
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Tissue is a weak reflector of sound because the acoustic impedance of the great
majority of tissue scatterers is within a few percent of that of water (Duck 1990;
Goss et al. 1978, 1980). To maintain the same digitizer and pulser settings for
calibration and acquisition of echo signals from tissue, we used a weakly reflecting
planar reflector that also is a weak reflector of sound for a calibration target. We
used Dow Corning 710 oil (Dow Corning Corporation, Midland, MI) because it
has acoustic properties close to those of water, but is more dense than water so that
ultrasound from a transducer mounted above the interface can propagate through
an aqueous medium to the weakly reflecting water-oil interface (Assentoft et al.
2001; Oelze et al. 2003). Maintaining the same digitizer and pulser settings
guarantees a more accurate calibration, making the QUS estimates more system
independent.

7.2.5.3 Attenuation Compensation

Because original theoretical frameworks assume that a plane wave is propagating
through a non-attenuating medium, calibration reduces processing to the plane
wave case (Insana et al. 1990; Lizzi et al. 1983), but attenuation compensation
remains necessary. Frequency-dependent attenuation can lead to a bias in QUS
estimates which is a function of depth and does not depend on the underlying
tissue properties. Therefore, a critical part of the signal processing and the theo-
retical models underlying QUS is accurately compensating for attenuation (Oelze
and O’Brien 2002).

In this study, attenuation compensation is particularly critical because HFU
waves are attenuated more strongly than waves at more-commonly encountered
lower frequencies. Attenuation compensation was performed by utilizing an
attenuation-compensation function in the frequency domain. Attenuation com-
pensation was conducted individually for every RF segment of each ROI.

Figure 7.5a shows the boundaries of the layer of external, node-enveloping,
fibroadipose tissue (in green) and of the lymph node itself (in red). These
boundaries were obtained by the segmentation algorithm summarized above. To
reach the beginning of the RF segment, sound had to travel through two layers of
attenuating material with different attenuation-coefficient values. The first was a
layer of highly attenuating, residual, external fibroadipose tissue (of length dF in
Fig. 7.5a) and the second was an internal layer of lymph-node tissue (of length dN

in Fig. 7.5a). Note that values of dF and dN are different for each RF segment of
the 3D ROI. (A uniform speed-of-sound value of 1485 m/s was assumed for saline,
lymph-node tissue, and fibroadipose tissue.)

To compensate for the attenuation for each specific RF segment of each specific
ROI, the following attenuation-compensation function was computed (Oelze and
O’Brien 2002):
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Aðf Þ ¼ e4aFðf ÞdF e4aN ðf ÞdN
2aNðf ÞL

1� e2aN ðf ÞL

� �2

1þ aNðf ÞL
p

� �2
" #2

; ð7:1Þ

where L is the length of the ROI in cm, and aFðf Þ and aNðf Þ are the attenuation
coefficients in Np/cm at frequency f of the fibroadipose tissue and lymph-node
tissue, respectively. In this study, the value of L was kept at 1 mm. The frequency-
dependent attenuation coefficient of fibroadipose tissue was measured to be
0.97 dB/MHz/cm (using a spectral-difference method applied to backscattered
echoes from the fat tissue of four lymph nodes) at 20 MHz, and the coefficient
inside the lymph node was assumed to be 0.5 dB/MHz/cm which is typical of soft
tissue (Goss et al. 1978, 1980). (The spectral-difference method consists of sub-
tracting the spectra of two ROIs at different depths and estimating the attenuation
as a function of frequency and distance (i.e., in dB/MHz/cm); this method is prone
to large standard deviations. We are currently investigating more-robust substi-
tution methods to estimate fibroadipose-tissue and lymph-node-tissue attenuation
more accurately (van der Steen et al. 1991; D’Astous and Foster 1986)).

In Eq. (7.1), the first term accounts for the attenuation due to the fibroadipose-
tissue layer (of length dF); the second term accounts for the attenuation inside the
lymph node to the beginning of the ROI (i.e., a distance of dN traveled in the
lymph node); the third term accounts for the attenuation within the ROI of length
L; and the fourth term accounts for the effect of using a Hanning window over the
length L of the ROI. A Hanning window was used to compute the power spectrum
of every RF segment.

The attenuation-compensated power spectrum of the RF segment of this spe-
cific ROI was computed by:

Sðf Þ ¼ FT RFLðtÞHLðtÞ½ �j j2Aðf Þ; ð7:2Þ

where FT is the Fourier transform operator, RFL is the raw RF-segment time-
domain signal data, and HL is the Hanning window of length L centered on the
middle of the RF segment.

Finally, the attenuation-compensated power spectrum of the entire ROI,
SROIðf Þ, was computed by averaging the attenuation-compensated power spectrum
of each RF segment as:

SROIðf Þ ¼
1
N

XN

i¼1

Siðf Þ; ð7:3Þ

where N is the number of RF segments within the ROI and Siðf Þ is the attenuation-
compensated spectrum of the i th RF segment of the ROI computed using
Eq. (7.2). In this study, N is equal to 1,251 because the adjacent A-lines were
25 lm apart and therefore the radius of a cylindrical ROI was composed of 20
A-lines and p202 � 1; 251.
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7.2.6 QUS Estimation

Following averaging, SROIðf Þ was divided by the calibration spectrum of the
water-oil interface located at the center depth of the ROI (i.e., zref on Fig. 7.5a).
The resulting spectrum was log-compressed to produce the normalized power
spectrum (in dB) of the ROI (Oelze et al. 2002):

WROIðf Þ ¼ 10 log SROIðf Þ½ � � 10 log Soilðf ; zref Þ
� �

; ð7:4Þ

where

Soilðf ; zref Þ ¼
4

Rðf Þ2
FT RFoilðt; zref Þ
� ��� ��2; ð7:5Þ

and RFoilðt; zref Þ is the RF time signal of length L obtained from the reflection of
the water-oil interface at a depth zref . Rðf Þ is the frequency-dependent pressure-
reflection coefficient of the water-oil interface. Numerical values of Rðf Þ were
obtained from 1 to 100 MHz by fitting reflection-coefficient measurements to a
reflection-coefficient model that included an attenuating medium (i.e., the oil has a
complex impedance, see Eq. (8.3.3) of Kinsler et al. 2000). Using this normali-
zation approach, WROIðf Þ is dependent only upon tissue properties; system and
user dependence have been entirely removed (Oelze et al. 2002; Insana et al. 1990;
Lizzi et al. 1983).

To obtain QUS estimates, WROIðf Þ was parameterized. Specifically, four QUS
parameters were estimated by fitting two different models to Eq. (7.4) over an
ROI-dependent frequency band (i.e., the fitting band). The first model was a
straight line and led to estimates of spectral intercept (I) and spectral slope (S). The
second model was a spherical Gaussian scattering model (i.e., a spherical Gaussian
form factor (Insana et al. 1990)); this model yielded estimates of effective scatterer
sizes (D in lm) and acoustic concentration (i.e., CQ2 expressed in dB mm �3).
Briefly, QROIðf Þ ¼ WROIðf Þ � 40 logðf Þ is fit to an affine function of f 2, i.e.,
QROIðf Þ ’ Mf 2 þ N. Finally, D is estimated from M only and then CQ2 is esti-
mated from D and N (Oelze et al. 2002). The frequency band over which the
models were fit to QROI or WROI was varied between each ROI using an SNR-
estimation algorithm. Theory predicts that standard deviations of QUS estimates
decrease when the fitting band increases in width (Oelze et al. 2002; Chaturvedi
and Insana 1996). Briefly, the algorithm estimates the backscattered spectrum
which would be obtained from a virtual planar reflector placed at the center of the
ROI. This estimation takes into account the transducer beam properties and also
the attenuation along the propagation path to the ROI. The optimization bandwidth
included the frequencies for which the estimated backscattered spectrum ampli-
tude was [ � 12 dB when normalized by the spectrum from the oil at the natural
focus of the transducer. Details about the SNR-estimation approach can be found
in Mamou et al. (2010).
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The estimation process was repeated for all ROIs within the entire segmented
lymph-node tissue. 3D QUS images were formed by color-coding and overlaying
the parameter values (i.e., D, CQ2, I, or S) on the conventional B-mode volume.
Also, ROIs that were not fully contained in depth between z ¼ 10:9 mm and
z ¼ 13:3 mm were not processed because they were judged to be too far away
from the nominal focal depth of the transducer.

7.2.7 Classification and Cancer-Probability Estimation

A set of uniform lymph nodes (i.e., either entirely devoid of metastatic tissues or
essentially completely filled by metastatic tissue) was used to train the classifier.
Specifically, the average values of all four QUS parameters for each lymph node of
the training set were computed and a linear-discriminant (LD) function, D, was
computed.

D ¼ a1Dþ a2CQ2 þ a3I þ a4S ¼ a!� E
!
; ð7:6Þ

where a! is the vector of linear coefficients and E
!

is the vector formed by the four
QUS estimates. The linear-coefficient vector was obtained using the Fisher LD
approach which maximizes the ratio of the interclass variance to intraclass
variance.

a!¼ ðR1 þ R0Þ�1ð l!1 � l!0Þ; ð7:7Þ

where R1 and R0 are the covariance matrices of E
!

for cancer and non-cancerous

lymph nodes, and l!1 and l!0 are the mean of E
!

for cancerous and non-cancerous
lymph nodes, respectively.

The LD approach was used to evaluate the classification performance of the
combination of any two or three QUS estimates as well as all four QUS estimates
together. The classification performance was evaluated by deriving ROC curves
and computing the AUC for each individual QUS estimate and for all possible
linear combinations of the four estimates.

Finally, D was used to compute a posteriori cancer probability for each ROI of
each lymph node:

PðdÞ ¼ e� d�D1ð Þ2=r2
D

e� d�D1ð Þ2=r2
D þ e� d�D0ð Þ2=r2

D

; ð7:8Þ

where D1 and D0 are the mean of the discriminant score for cancerous and non-
cancerous nodes, rD is the total variance over the training set, and d is the dis-
criminant score for the ROI.

162 J. Mamou et al.



7.3 Results

More than 400 lymph nodes were processed with these QUS methods. For clas-
sifier-training purposes, nodes were separated by primary cancer organ (i.e.,
colorectal, gastric, and breast) and only uniform nodes were used; uniform nodes
were nodes either essentially entirely filled with metastatic tissue or nodes devoid
of any metastatic tissue.

7.3.1 Illustrative QUS Images

A powerful visualization software was developed in MATLAB to permit the
exploration in 3D of each lymph node. The software allows visualization of three
orthogonal cross-sections of the B-mode data, along with the segmentation results,
any individual QUS estimate, the cancer probability, as well as the matching plane
of co-registered histology.

To illustrate the visualization software, parametric images enhanced by effec-
tive scatterer sizes are shown in Figs. 7.6 and 7.7. In these figures, three panels
show the ultrasound data while the fourth displays the co-registered histology that
matches the presentation of the xy ultrasound plane. On the ultrasound panels, the
segmentation results are shown by the green and red outlines that demarcate the
fibroadipose and nodal tissue, respectively. Additionally, the estimated effective
scatterer sizes for each ROI are color-coded and overlaid on the conventional
B-mode data display. Finally, the fourth panel displays the histology images
closest to the corresponding ultrasound section shown in the xy plane, i.e., at a
constant z.

The lymph node shown in Fig. 7.6 was obtained from a colon-cancer patient
and it did not contain any metastatic foci. The lymph node shown in Fig. 7.7 was
obtained from a different colon-cancer patient and was entirely metastatic. To
permit comparison, the color scale for the effective scatterer-size estimates is the
same on the two figures. Specifically, the average scatterer-size estimates were
21:3� 1:6 lm for the non-metastatic node and 38:9� 3:0 lm for the metastatic
node. These illustrative results suggest that a larger scatterer size may reliably
indicate metastatic regions within lymph nodes of colon-cancer patients.

7.3.2 Classification Performance

In total, 267 uniform lymph nodes from 168 patients were entirely processed and
used to train LD-based classifiers. Table 7.1 presents the classification perfor-
mance results. For each organ, the first line shows the classification results
expressed as ROC AUC values obtained using the single best QUS estimate and
the second line shows the AUC results obtained by linearly combining the four
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QUS estimates. Finally, the last two columns display sensitivity and specificity
values obtained at a specific operating point on the corresponding ROC curve. This
operating point was chosen to be clinically conservative (i.e., specifying a high
sensitivity value to limit false-negative determinations at the expense of moder-
ately-higher false-positive determinations).

The colorectal-cancer results are very satisfactory, and excellent classification
performance was obtained with an AUC value of 0.950 using D alone. Note that
LD analysis did not increase the performance significantly. The gastric-cancer
results are similar and equally satisfactory when the four QUS estimates were
combined, although because of the limited number of cases, greater uncertainty in
the AUC value exists. In previous reports, the gastric-cancer nodes were analyzed
in combination with the colorectal-cancer nodes because their histologic differ-
ences are minute (Mamou et al. 2011) and because the number of cases was
insufficient for independent analysis. As the number of gastric-cancer cases
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Fig. 7.6 3D cross-sectional parametric images of a non-metastatic lymph node from a colon-
cancer patient. Effective scatterer-size estimates are color-coded and overlaid on the three
conventional B-mode images. Co-registered histology is also shown
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increases, our methods will be tested for their ability to track these minute
differences.

The axillary nodes of breast-cancer patients are structurally very different from
the gastric- and colorectal-cancer nodes, and classification performance was much
poorer; classifcation of axillary nodes gave an AUC of 0.752 using LD analysis.
Note that the single best QUS estimate (i.e., D) produced a nearly random clas-
sification with an AUC value of 0.565, marginally above 0.500. This result may
indicate that the scattering models being used are not well suited to lymph nodes
obtained from breast-cancer patients.

The ROC curves obtained using LD analysis are displayed in Fig. 7.8. Clini-
cally conservative operative points are also shown on the ROC curves in the same
figure. These ROC curves illustrate how the QUS method potentially could be used
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clinically to drastically reduce the number of false-negative determinations
obtained using current standard histopathology procedures.

7.3.3 Cancer-Probability Images and Pathology Guidance

Three-dimensional parametric images depicting cancer probability within lymph
nodes were generated using the methods described in Sect. 7.2.7. These images
permit a quick investigation of the entire lymph node using the 3D interactive
display, and the images can be interpreted readily by clinicians and pathologists.
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Fig. 7.8 ROC curves obtained using LD analysis

Table 7.1 Classification performance of QUS
Primary
organ

Patient
number

Total
nodes

Cancerous
nodes

Non-
cancerous
nodes

Parameter ROC AUC Sensitivity
(%)

Specificity
(%)

D 0:958� 0:012 90.5 85.7
Colorectal 77 140 21 119 LD 0:958� 0:012 90.5 85.7

D 0:880� 0:069 100 85.0
Gastric 17 25 5 20 LD 0:950� 0:044 100 90.0

D 0:565� 0:061 87.5 36.0
Breast 74 102 16 86 LD 0:752� 0:065 87.5 48.8

Areas under the ROC curve (AUC)
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Figure 7.9 displays an illustrative image of a partially metastatic lymph node
obtained from a colon-cancer patient. This image is analogous to Fig. 7.6 except
that regions in the lymph node having a QUS-derived cancer probability greater
than 50 % are highlighted in red and cancerous regions in the histology image
(bottom right panel) were outlined in green by the pathologist. Figure 7.9 indicates
that the metastatic foci were well detected in the B-mode images augmented with
the cancer-probability overlay.

7.4 Conclusions

The results of this study establish the potential of QUS-based detection of meta-
static regions in dissected lymph nodes. For colorectal- and gastric-cancer nodes,
the four QUS estimates were able to yield high sensitivity while maintaining
satisfactory specificity. Therefore, the results to date suggest that these methods
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have a superb potential for specific detection and localization of micrometastases
often missed during conventional histology of this category of lymph nodes.
However, for axillary nodes of breast-cancer patients, the results suggest that the
two scattering models used to obtain the four QUS estimates might be inappro-
priate. New models should be investigated and heavily tested.

Although not presented in this chapter, our QUS methods have been augmented
to include nine additional QUS estimates based on envelope statistics (Mamou
et al. 2011, 2012). The inclusion of these envelope-based estimates significantly
improved classification performance for breast-cancer nodes. Specifically, an AUC
of 0.85 with a sensitivity of 93.8 % and a corresponding specificity of 55.8 % were
obtained. Nevertheless, the results remained less satisfactory than results for the
other node types. (The inclusion of the QUS estimates based on envelope statistics
did not significantly improve the already excellent classification performance
obtained for colorectal- and gastric-cancer lymph nodes.)

For axillary sentinel lymph nodes, which are cut in half prior to 3D ultrasound
scanning during the touch-prep procedure, we also are investigating the use of
higher-frequency ultrasound. We currently are scanning half-nodes obtained from
sentinel lymph nodes with a single-element transducer having a center frequency
around 35 MHz. The improved spatial resolution in QUS estimates obtained using
this higher frequency potentially could benefit detection of smaller metastatic foci
while also improving classification performance.

Additionally, in the presented studies, only LD methods were used for classi-
fication. Potentially, the results could be improved further by the use of more
complex classifiers such as artificial neural networks or support vector machines.
The use of support vector machines for this project is currently being investigated.

Finally, the 3D cancer-probability maps can serve as basis for development of a
novel pathology tool. A low-cost, small-footprint device could be designed to scan
lymph nodes quickly, obtain QUS estimates, derive cancer-probability values, and
efficiently guide the pathologist towards suspicious regions. This device would
include a 3D HFU scanner and a computer display that would allow interactive
investigation of each lymph node over its entire volume in 3D (See Fig. 7.9). Such
a tool could be invaluable for reducing the current rate of false-negative deter-
minations and could significantly benefit the current standard of care of cancer
patients undergoing lymphadenectomy.
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Chapter 8
Quantitative Ultrasound for Tissue-type
Imaging of the Prostate: Implications
for Planning and Guiding Biopsies
and Delivering Focal Treatments

Ernest J. Feleppa and Christopher R. Porter

Abstract Improved means of imaging prostate cancer would enable more-effective
biopsy and treatment guidance and potentially would provide a reliable means of
monitoring non-surgical therapy. Current, commonly used, conventional means of
imaging the prostate do not reliably depict cancerous lesions, and as a result, biopsy
needles are placed with respect to visible anatomic features of the gland, treatment
tends to involve the entire gland, and post-treatment monitoring of therapy is based
predominantly on serum PSA levels, and in many cases, periodic biopsies. Con-
ventional transrectal ultrasound is the most-commonly employed imaging modality
for use in prostate biopsy and treatment procedures, but it offers no advantages in
terms of reliably depicting cancerous regions of the gland. However, new methods
of tissue-type imaging that are based on spectrum analysis of echo signals and that
utilize non-linear methods for classification offer promise as a means of more-
reliably distinguishing cancerous lesions from non-cancerous tissue in the prostate.
Such advanced methods have produced areas under ROC curves exceeding 0.84
compared to an area of 0.64 for conventional assessments of the same locations in
biopsy-guiding B-mode images. The potential improvement in imaging sensitivity
implied by the ROC curves is more than 50 %. If current validation studies confirm
these encouraging results, then an effective, inexpensive, noninvasive means of
imaging prostate-cancer foci, and therefore of guiding biopsies and enabling focal
treatments, will be available to urologists and radiation oncologists.

Keywords Prostate cancer � Focal therapy � Quantitative ultrasound � Tissue-type
imaging � Spectrum analysis � Artificial neural networks � Support-vector
machines � ROC curves

E. J. Feleppa (&)
Lizzi Center for Biomedical Engineering, Riverside Research,
156 William Street, 9th floor, New York, NY 10038, USA
e-mail: efeleppa@riversideresearch.org

C. R. Porter
Department of Urology, Virginia Mason Medical Center, Seattle, WA, USA

J. Mamou and M. L. Oelze (eds.), Quantitative Ultrasound
in Soft Tissues, DOI: 10.1007/978-94-007-6952-6_8,
� Springer Science+Business Media Dordrecht 2013

171



8.1 Introduction

The American Cancer Society estimates that nearly 238,590 new cases of prostate
cancer (PCa) will be detected in men in the United States during 2013, which makes
PCa the most-commonly detected male cancer in the United States, excluding skin
cancers (Cancer Facts and Figures 2013). The Society also estimates that nearly
30,000 men in the United States will die of PCa during 2013, which makes PCa the
second-leading cause of death by cancer in the United States.

8.1.1 Current Needs

Definitive diagnosis of PCa is performed using core-needle biopsies obtained
transrectally, and the most-common means of guiding transrectal biopsies of the
prostate is conventional transrectal ultrasound (TRUS) imaging. However, TRUS
does not reliably distinguish between cancerous and non-cancerous tissue in the
prostate; therefore, TRUS-guided biopsies rely upon relatively well-imaged ana-
tomical structures, such as the interface between the gland and periprostatic
fibroadipose tissues, as spatial references for placing core needles in the gland.
Because cancerous lesions are not reliably depicted on conventional images,
biopsy sampling is done essentially blindly with respect to actual cancer foci, and a
positive biopsy cannot be assured even in the presence of PCa foci. The probability
of a positive core in a gland having small scattered cancer foci is unacceptably
small. In fact, our analysis of published repeat-biopsy data for traditional sextant
biopsies suggests that the actual sensitivity of the TRUS-guided biopsy procedure
may be as low as 50 %; other studies draw similar conclusions (Haas et al. 2007;
Applewhite et al. 2002; Feleppa et al. 2002). In other words, a significant fraction
of the population of patients who actually have PCa have a negative biopsy result
because of the current inability to image suspicious regions reliably, and conse-
quently, the inability to target biopsy needles to cancerous tissue. Furthermore, all
negative procedures, whether they are true or false, impose an unwarranted health
risk as well as cost to the patient. This risk is associated with various side effects of
the biopsy, including hemorrhage and particularly infection (Feliciano et al. 2008;
Loeb et al. 2012). In addition, recent reports express concern that drug resistance is
developing among the common pathogens associated with biopsy-related infec-
tions (Macchia 2007). Therefore, reducing the number of true negative biopsies
would be beneficial to patients from the standpoint of reducing risk as well as cost.

A second concern derived from the limitations of current ultrasonic imaging
methods is the difficulty encountered in selecting patients for focal therapy and
planning the therapy with confidence that no cancer foci are missed. Most current
forms of therapy are amenable to a focal approach; these methods include exter-
nal-beam radiation therapy, brachytherapy, cryo-ablation, and high-intensity
focused ultrasound (HIFU). Current cautious approaches to focal surgery
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emphasize hemitherapy that excludes either the left or right side of the gland and
attempts to spare the urethra, bladder, rectum, and the contralateral neurovascular
bundle. Assuming no cancer foci are present in the untreated portion of the gland,
the obvious benefits of focal therapy are reduction of side effects and maintenance
of gland function, e.g., retention of reproductive functions. Patient selection and
treatment planning for focal therapy now rely heavily on saturation transperineal
biopsies that utilize 40 to as many as 80 cores to provide a reasonably good sense
of where cancer is NOT present and therefore what regions, if any, can be spared
from treatment. However, although it is minimally septic, the use of so many
inserted needles is a significantly invasive and traumatic procedure. The avail-
ability of a reliable means of imaging cancer in the prostate would eliminate the
need for saturation biopsies and would markedly enhance means of patient
selection for focal therapy and planning the therapy itself.

An additional concern regarding ultrasonic imaging of PCa is the inability of
TRUS to provide a reliable means of staging or estimating the aggressiveness of
detected PCa. Because conventional ultrasound does not distinguish cancerous
from non-cancerous prostate tissue, TRUS images cannot depict tumor proximity
to the capsule, extra-capsular extensions, or seminal-vesicle invasion with cer-
tainty, and as a consequence, TRUS imaging does not contribute information of
value to clinical staging estimations. Improved clinical staging is desirable because
20–30 % of radical prostatectomies show evidence of disease that is not gland
confined, which retrospectively reveals that a significant number of surgical pro-
cedures are unwarranted (Epstein et al. 1994; Partin et al. 1997). Furthermore, a
number of studies show that the benefits of treatment to many patients are minimal
or non-existent (Ahmed et al. 2009, 2012; Wei 2010). However, treatment tends to
be performed in the absence of a reliable means of determining whether a detected
cancer is indolent or a threat to life because no reliable means exist for assessing
disease aggressiveness. If a method were available to monitor untreated PCa with
confidence, then changes indicating disease progression, such as tumor growth,
could provide a basis for initiating required treatment; a static cancer could con-
tinue to be monitored noninvasively with confidence.

Ultrasound is not the only imaging modality deficient in its ability to distinguish
cancerous regions from non-cancerous ones. While some advanced methods
mentioned in this chapter show promise for overcoming existing limitations in the
ability to visualize cancer in the prostate, all currently commonly used, conven-
tional, clinical, imaging modalities are deficient in that regard; none can depict
PCa reliably.

8.1.2 Quantitative Ultrasound

Ultrasonic spectrum analysis has been investigated by our group since the early
1970s as a means of extracting and utilizing information that is present in the raw
‘‘radio-frequency’’ (RF) echo signals derived from tissue during an ultrasound
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scan. The conversion of RF signals to envelope-detected, video signals needed to
generate high-definition, high-contrast, B-mode images discards or distorts much
of the information present in the original RF signals. Spectrum analysis of linearly
processed RF signals is one way of capturing and presenting the information that
ordinarily is discarded in conventional ultrasound imaging. No way exists to know
in advance whether the captured information can be of use for tissue typing and
imaging, but in research undertaken by our group, spectrum analysis has in fact
proven to be useful in distinguishing among tissue types of interest in the eye,
liver, blood vessels, lymph nodes, and prostate (Coleman et al. 2004; Silverman
et al. 2003; Lizzi et al. 1988, 1997; Lee et al. 1998; Noritomi et al. 1997a, b, 1998;
Kolecki et al. 1995; Tateishi et al. 1998; Dasgupta et al. 2007; Feleppa et al. 1997,
1998, 2000, 2001, 2002, 2004, 2007). Because the methods used to compute
spectra retain and exploit all quantitative information present in the original RF
signals, the methods based on spectrum analysis have been termed quantitative
ultrasound or ‘‘QUS.’’ Although QUS originally was applied to spectrum analysis
and estimates derived from spectrum analysis, the term now is becoming gen-
eralized to include any signal-processing approach that quantitatively exploits the
information contained in the original echo signals, including for example, methods
that derive estimates from the statistics of envelope signals that are computed in a
linear quantitative manner from linearly processed RF data. Examples of the use of
envelope statistics to characterize tissue are the studies to detect metastatic foci in
lymph nodes described elsewhere in this book by Mamou (Chap.7, this volume).

8.2 Background

8.2.1 Spectrum Analysis

When used to characterize or type tissue, QUS based on spectrum analysis seeks to
exploit the fact that different types of tissues may have different ultrasound-scat-
tering properties. If those differences exist in tissues that need to be distinguished
from each other or in tissues that change over time either in the course of sur-
veillance or in response to treatment, then sensing those differences and expressing
them quantitatively may have great medical value. Spectrum-analysis-based QUS
offers a convenient, easy-to-implement method for representing the properties of
tissues of interest as they are expressed in backscattered ultrasonic echo signals.

Spectrum analysis as the basis for the prostate tissue-type imaging (TTI)
methods described here can trace its origins back to the work of many investigators
in the 1960s and 1970s, including perhaps most notably the research of Purnell and
Sokulu (Jones et al. 1976). These investigators coined the term ‘‘spectra-color’’ for
an ultrasonic imaging technique that employed color to depict the frequency
content of echo signals compared to those in the incident ultrasound pulse.
However, spectrum analysis subsequently matured as a method of tissue typing
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largely through the work of Lizzi and other pioneering investigators such as
Zagzebski, Insana, and Wagner (Nicholas 1982; Zagzebski et al. 1983; Feleppa
et al. 1986; Lizzi et al. 1983, 1987, 1997; Nassiri and Hill 1990; Insana et al.
1990; Insana and Hall 1990). Hosokowa et al. (1994) attempted to validate the
theory underlying spectrum analysis using widely spaced, spherical cell clusters
cultured in a collagen-based medium to represent ideal scatterers; they obtained
results that matched theoretical predictions over a limited range of scatterer (i.e.,
cell-cluster) sizes. More recently, several younger investigators, such as Kolios,
Oelze, Mamou, and Bigelow, have made valuable contributions to spectral
methods by advancing insights into underlying mechanisms and by extending and
refining the scattering theory associated with spectral behaviors (Bigelow and
O’Brien 2004a, b, 2005, 2006; Mamou et al. 2005; Oelze et al. 2002a, b; Oelze
and Zachary 2006; Kolios et al. 2001, 2002).

The basic theories of scattering in tissue assume that scattering is weak and the
Born approximation applies (Wu and Ohmura 1962). In essence, this approxi-
mation considers scattering behavior to depend solely on the interaction between
scatterers and the incident field; i.e., it assumes that the total field, which includes
perturbations to the incident field by other scatterers, including components arising
from scattering, can be replaced by the incident field alone because the contri-
bution of the field to the total field can be ignored. The theoretical framework first
published by Lizzi expressed the spectrum of the backscattered echo signals
received at the transducer as the integral over three spatial autocorrelation func-
tions: the two-way beam-directivity autocorrelation function, which expresses the
behavior of the incident-beam profile in two dimensions transverse to the beam-
propagation direction; the one-dimensional autocorrelation function of the time-
domain window used to select backscattered signals for spectral processing; and
the three-dimensional autocorrelation function of spatial variations in relative
acoustic impedance, which expresses the properties of the scatterers themselves
(Lizzi et al. 1983, 1987; Zagzebski et al. 1983; Feleppa et al. 1986). The funda-
mental equation derived by Lizzi et al. is

S ¼ 4k2
ZZZ

Rf Dxð ÞRD Dy;Dzð ÞRG Dxð Þej2kDxdDx dDy dDz

where S is the normalized spectrum (corrected for the system transfer function),
k is the wave number, Rf(Dx) is the spatial autocorrelation function of the dis-
tribution of the relative acoustic impedance of the scatterers, RD(Dy, Dz) is the
autocorrelation function of the two-way ultrasound beam-directivity function, and
RG(Dx) is the autocorrelation function of the gating function (typically a Hamming
or Hanning window) (Lizzi et al. 1983). Normalization of the spectrum tradi-
tionally is performed by computing the spectrum of a ‘‘perfectly’’ reflecting sur-
face (such as an optically flat glass plate) placed parallel to the planar wave front
of the ultrasound pulse at the transducer focal point. More recently, a weakly
reflecting water-oil interface is being used by our group to reduce reflected-signal
amplitude and allow the use of identical instrument power and gain settings for
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acquiring calibration and actual tissue echo-signal data. (The oil used has a density
greater than that of water, so an ultrasound beam can be directed downward toward
the interface through a weakly and linearly attenuating water path.) The reflectivity
of the oil-water interface is well-defined so that calibration data acquired from it
can be referenced to a perfect reflector.

In practice, this equation is applied using assumed autocorrelation functions for
the scatterer acoustic impedance, typically Gaussian. For the Gaussian function,
the equation predicts a gently curving spectrum when expressed in logarithmic
form, i.e., in dB with respect to a perfectly reflecting calibration target. When
approximated by a straight line over the available noise-limited bandwidth, the
linear fit to a calibrated spectrum has two, basic, independent defining parameters:
(1) a slope value that is dependent only on scatterer size and attenuation in the
intervening medium and (2) an intercept value that depends on scatterer size,
concentration, and acoustic impedance relative to the environment of the scat-
terers. An additional spectral parameter is the midband (or midband fit), which is
the value of the straight-line approximation at the center of the noise-limited
frequency band, i.e., it is the average value of the amplitude of the straight-line
approximation over the usable frequency band. The midband parameter is
equivalent to the integrated-backscatter parameter developed and investigated by
Miller and his co-workers (O’Donnell et al. 1979; Lanza et al. 1996, 1998; Miller
et al. 1998).

If attenuation is negligible or can be estimated, then an attenuation-corrected
slope value can be computed easily, and from it, the effective size, d, of scatterers
can be estimated. Once d is estimated using the attenuation-corrected slope value,
then the combination of concentration, C, and relative acoustic impedance, Q, can
be derived from the intercept value. That combination is termed CQ2 or simply
‘‘acoustic concentration.’’ Only two of the three spectral parameters, slope,
intercept, and midband, are independent of each other. Their relationship is
expressed by y = af ? y0 where y is the amplitude of the straight line, a is the
slope of the line, f is frequency, and y0 is intercept. However, slope and midband
are affected by attenuation in intervening tissue, while in theory, intercept is
independent of attenuation if attenuation is linear with frequency, which is an
accepted approximation in soft tissue.

8.2.2 Classification

Once spectral-parameter values are computed for known tissue types, e.g., can-
cerous and non-cancerous tissues in the biopsied regions of the prostate, a classifier
can be trained to assign a score for the likelihood of an unknown tissue being in
one or the other tissue-type category. If the ‘‘truth’’ is known, e.g., if biopsy
histology is available to serve as the gold standard, then the scores generated by
the classifier can be compared to the true tissue type to determine the classification
performance of the classifier. The most-accepted method of expressing classifier
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performance is the ROC curve where ROC originally stood for ‘‘receiver-operator
characteristics’’ when the method was first developed for technical purposes, e.g.,
to assess the ability to extract usable signals from noise. The ROC curve shows
how effective a system is in classifying an unknown correctly into either of two
possible groups, e.g., cancerous or noncancerous tissue in the prostate (Metz
et al. 1998). The ROC curve expresses system performance as the tradeoff
between the true-positive fraction (i.e., sensitivity) as a function of the false-
positive fraction (i.e., 1 minus specificity). By reversing the abscissa, the curve
directly expresses sensitivity as a function of specificity. This rarely used
‘‘reversed ROC curve’’ perhaps is a more appropriate representation for clinical
evaluations.

A perfect classifier is one that has a sensitivity of 1.0 with a specificity of 1.0,
i.e., a value of 1.0 for sensitivity at a value of 0.0 for 1 minus specificity. The
sensitivity value of the ROC curve for such a classifier would be 1.0 for all values
of 1 minus specificity, and the area under that ROC (AUC) curve would be 1.0. A
classifier that is purely random in its determinations would have an ROC curve that
begins at the origin and linearly goes to a value of 1.0 for sensitivity at a value of
1.0 for 1 minus specificity, and the AUC value for that classifier would be 0.5. In
ROC-curve classifier-performance assessment, an AUC value of 1 indicates a
perfect classifier and an AUC value of 0.5 indicates an entirely random classifier.
Real classifier systems, including humans reading images such as X-ray, ultra-
sound, or magnetic-resonance images, typically produce AUCs in the range of 0.6
or poorer to 0.9 or better.

To utilize determinations made by classifiers such as linear-discriminant-
analysis methods, nearest-neighbor methods, artificial neural networks (ANNs), or
support-vector machines (SVMs) as inputs for ROC-curve calculations, the
computations by the classifier produce a score for the likelihood of a positive, and
this score is compared to a gold standard, such as the biopsy histology results
serving as the gold standard in our prostate studies. Such scores can be ‘‘contin-
uous’’ over a range determined by the classification software, but typically, scores
are normalized to a range extending from 0 to þ1 or -1 to þ1. To utilize reader
interpretations as inputs for ROC-curve calculations, reader determinations often
are expressed as a ‘‘discrete’’ level of suspicion (LOS) for positives using 5 or
more integer values. As an example, on a scale of 1–5, 1 would indicate the
reader’s virtual certainty of a negative finding, 5 would indicate virtual certainty of
a positive finding, and 3 would indicate an indeterminate case with an equal
likelihood of a positive or a negative finding. These LOS scores for cancer are
compared to a gold standard to compute the ROC curve. In our studies, we use the
LOS values assigned by the examining urologist to establish a baseline ROC curve
for comparing the classifier being developed to the available conventional image-
based classification method. Most available ROC-computing software accommo-
dates discrete and continuous types of likelihood assignment. Such software also
typically provides considerable information in addition to the AUC values such as
the standard error in the AUC estimate and the 95 %-confidence-intervals of the
AUCs.
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When only a single parameter is needed for classification of two tissue types,
then a simple histogram can be used to display the distributions of parameter
values for the two types of interest. A decision-threshold value can be selected for
assigning tissue type based on the values of that parameter, and a sensitivity and
specificity can be computed for the distributions and the threshold point. Alter-
natively, an ROC curve can be generated from the parameter-value distributions;
the overall classification performance of the single parameter can be determined
from the AUC value, and the tradeoff between sensitivity and specificity can be
determined from the curve shape (Metz et al. 1998). In our experience, a single
parameter rarely is sufficient for reliable differentiation of tissue types, and this is
emphatically the case in identifying PCa.

Typically, two or more parameters are required to differentiate between two
tissue types. Because only two independent parameters are associated with the
linear-regression approximation, the best two parameters usually are all that is
needed for classification. For example, if effective scatterer size is an important
tissue property, i.e., if size is significantly different in the two tissue types, then
slope and intercept or slope and midband would be useful parameter combinations.

For useful clinical decision making, a single number is desirable for a decision
threshold, and in the case of two or more relevant parameters, linear-discriminant
analysis provides a single discriminant-function value for the threshold
(McLachlan 1992). The distribution of discriminant-function values can serve as a
basis for selecting the preferred trade-off between sensitivity and specificity, and
the classification performance of the discriminant analysis can be expressed in an
ROC curve. Linear-discriminant methods work well when the categories of
interest occupy different, but separable regions of parameter space where dis-
criminant analysis effectively can rotate the point of view of the observer to
maximize the apparent separation among the classes. However, when the two
categories of interest, e.g., cancerous and non-cancerous prostate tissue, include
many sub-categories, e.g., different Gleason grades of cancerous tissue and the
various types of benign tissues such as atrophic, hyperplastic, calcified, acutely
inflamed, chronically inflamed, etc., linear methods have little hope of performing
effective classification.

When the parameter values of subtypes of cancerous and non-cancerous tissues
are intermingled in parameter space, linear methods become challenged and non-
linear methods of classification have better hope of recognizing the possible clus-
tering of values into sub-regions for each tissue type within the overall parameter
space. Examples of such non-linear methods are nearest-neighbor analysis, ANNs,
and SVMs (Shawe-Taylor and Cristianini 2000; Shakhnarovish and Indyk 2005;
Keller et al. 1985; Cortes and Vapnik 1995; Theodoridis and Koutroumbas 2009).
Our prostate classification and imaging studies to date have investigated the use of
all three classification methods and have had the best success using SVMs, as
discussed below. Like linear-discriminant methods, these non-linear methods pro-
duce scores that express the relative likelihood of an unknown tissue being can-
cerous or non-cancerous; the scores have a distribution for each tissue type, and
classification performance can be represented in an ROC curve.
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8.2.3 Imaging

A classifier that is trained to distinguish effectively between cancerous and non-
cancerous tissue based on a set of parameters can be used to generate images that
show the relative likelihood of cancer being present at a pixel location. Such a
method can be applied to an entire image plane or to a subset of pixels in a region
of interest (ROI) within the plane. A three-dimensional (3D) rendering can be
generated from a set of properly registered two-dimensional (2D), TTI images to
produce a TTI volume image. Parameter values can be generated to span the range
of values found in the data for a given classification study, e.g., the spectral-
parameter values for cancerous and non-cancerous prostate tissue. These artificial,
parameter values then can serve as test values to be given cancer-likelihood scores
by the trained classifier. The output is a lookup table (LUT) that contains a
likelihood score for each of the combinations of parameter values that can be
encountered in actual tissue. Then, when spectral parameters are computed at a
pixel location in an image, the values can be referred to the matching parameter-
value location in the LUT to obtain the corresponding likelihood score. The score
then can be expressed as a pixel value in gray scale or false color. As discussed
below, we have found in our studies that locally varying intercept and midband
spectral-parameter values combined with the value of the patient’s serum prostate-
specific antigen (PSA) level provide good classification using either an ANN or an
SVM for classification. The combination of local parameter values then can be
translated into TTI pixel values using a multi-element LUT.

8.3 Ultrasonic Prostate Tissue-type Images

8.3.1 Database Development

Our first step toward generating tissue-type images of the prostate was to build a
database of spectral-parameter values for RF echo signals acquired from tissue that
was sampled by core-needle biopsies. The RF data were acquired immediately
prior to firing the spring-loaded biopsy-needle gun and removing tissue. This
method prevented corruption of the RF signals either by the needle itself or by the
subsequent tissue trauma and hemorrhage along the needle track. Note that in
transrectal prostate biopsies, the needle is in a fixed location with respect to the
probe and as a result, the trajectory of the needle is well defined with respect to the
scanned region.

In our initial studies, which used a B-K model 3535 scanner (B-K Medical,
Peabody, MA), the needle traversed the probe at an angle and emerged from the
probe near, but slightly proximal to the mechanically sector-scanning transducer,
which was near the tip of the probe. In these studies, the urologist obtaining the
biopsy held the probe in a fixed position once the desired biopsy location was
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found, and advised an assistant to acquire data via the computer interfaced with the
clinical ultrasound scanner. Data acquisition occurred over a single frame, and
when the transfer of data to the computer memory was complete, as indicated by a
tone from the computer, the urologist fired the biopsy-needle gun. In our more-
recent studies, which used a Hitachi EUB-525 scanner (Hitachi Medical Systems
America, Twinsburg, OH), all frames were digitized continuously, and the latest
acquired frame was kept in the memory of the digitizer board. In these later
studies, firing of the biopsy-needle gun was sensed to trigger data transfer from the
digitizer board to computer memory automatically, and the computer stored the
latest digitized frame from the digitizer board. In both studies, the acquired RF
data could be spatially related with high precision to the actual site of the tissue
sample. Also, in both studies, the full set of biopsy-plane scans for a given patient
were digitized and retained in computer memory before being transferred to the
hard disk. Retention of data in computer memory until completion of the exam-
ination permitted performing biopsies rapidly, with minimal overall examination
time and patient discomfort. Upon completion of the examination, data then were
transferred from memory to hard disk for permanent storage.

Each biopsy tissue sample, also termed a ‘‘core,’’ was placed in an individual
vial containing fixative, and the vial was labeled to indicate biopsy location, e.g.,
left-base-medial, or right-mid-lateral. Medial and lateral designations were used in
the 12-core examinations of later studies, but were not relevant in the simpler,
6-core biopsies of earlier studies. These designations referred to biopsies of the
prostate peripheral zone; the peripheral zone is the most highly glandular region of
the prostate and therefore is the region most likely to contain prostatic adeno-
carcinoma, i.e., cancer of the prostatic secretory epithelium. The examinations also
sometimes included biopsies of the prostate transition zone and, very rarely, the
seminal vesicles.

In addition to acquiring RF echo-signal data from the biopsied tissue, these
studies also document several patient variables, e.g., each patient’s level of serum
PSA, age, NIH-defined race, ethnicity, etc. (Race and ethnicity data are required
for reporting purposes as well as having a possible role in tissue classification.)

To provide a baseline for comparing the performance of developed classifiers to
conventional methods, the urologist performing the biopsy assigned a LOS for the
tissue being biopsied based primarily on its appearance in the conventional
B-mode, ultrasound image used to direct the needle, but also consciously com-
bined with all other available information regarding the patient, e.g., the results of
the palpation performed during the digital rectal examination (DRE), PSA level,
gland size estimated from the B-mode image, family history, etc. The LOS values
ranged from 1 for virtual certainty of non-cancerous tissue to 5 for virtual certainty
of a cancerous tissue with 3 indicating an entirely indeterminate tissue.

Subsequently, the actual tissue type of each biopsy core was provided by the
pathologist. Pathology reports specified the biopsy-core location as described
above, which enabled matching the results of RF spectrum analysis to the tissue
type determined by the pathologist. We used the pathologists’ determinations as
our gold standard, which we considered to be entirely correct. A limitation to this
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approach was that the intense work load of the pathologists prevented them from
specifying how much of a positive core consisted of cancerous tissue, or more-
ideally, which quadrants of a core contained cancerous tissue. Occasionally,
microscopic foci of cancer were identified, and we treated such cores as negative
cases. We retained pre-cancerous prostatic intraepithelial neoplasia (PIN) and
transition-zone data in our data base, but we have not used these tissue types in our
classification studies to date.

8.3.2 Classifier Development

The complex and interwoven expressions of healthy and unhealthy prostate tissue
suggest that simple, linear methods of classifying cancerous versus non-cancerous
tissues in the gland are likely to be inadequate. For example, a range of grades exist
for prostatic adenocarcinoma, with higher grades associated with a greater loss of
differentiation and normal tissue architecture. Non-cancerous tissues include a wide
range of age-dependent ‘‘normal’’ tissues as well as varying degrees of chronic and
acute inflammation, glandular and stromal hyperplasia, glandular and stromal
atrophy, and pre-cancerous tissue such as PIN. Therefore, as expected, our attempts
to distinguish cancerous from non-cancerous prostate tissue based simply on the
values of spectral parameters and clinical variables such as PSA level failed to
produce acceptable results. However, our early investigations of non-linear methods
such as nearest-neighbor classification techniques, showed promise and encouraged
us to apply more-powerful ANN methods. We employed a variety of off-the-shelf
and custom software. The ANN software that provided the best results, as ascer-
tained using ROC analyses, was the MATLAB neural-network toolbox (The
Mathworks, Inc., Natick, MA)-specifically, a MATLAB implementation of a mul-
tilayer-perceptron (MLP) ANN. Similar, but slightly poorer results were obtained
using NConnect (SPSS, Chicago, IL) MLP and radial-basis-function ANNs.

Classification was performed using intercept and midband parameter values
along with PSA, age, and race variables. Slightly superior performance was
obtained using all parameters, but because the difference was not statistically
significant and in order to reduce the number of classifier dimensions and thereby
to maximize generality, we limited our final classification parameters to intercept,
midband, and PSA-level values. To optimize the MLP configuration, we ran the
ANN using a script that prescribed different numbers of hidden layers and nodes.
The scores for the likelihood of cancer, along with the actual tissue types were
evaluated using ROC methods to identify the best MLP configuration.

Classifier training was performed by using a leave-one-patient-out approach as
well as a leave-one-biopsy-out approach. In the leave-one-biopsy-out approach,
the MLP was trained using 90 % of the data and validated using 10 % of the data
while a single biopsy was tested (i.e., assigned a score for the likelihood of cancer)
by the trained MLP. This was repeated for every biopsy in the data set, and the
scores for all the biopsies, along with their true tissue types, were input to the ROC
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software. However, concern existed regarding the possibility of a favorable bias in
apparent classification performance that might result if data associated with the
multiple biopsies of a given patient were correlated and if some of those data were
in the training set while some also were in the test set. Therefore, to eliminate any
chance of such bias, we tested using all data for a given patient in the test set and
repeated the classification run for every patient, drawing a different patient for
each run and returning the previous test set to the training and validation sets.
Again, the likelihood scores and true tissue types for all biopsies were input to the
ROC software for assessment.

As a specific example, the data set from the Washington DC Veterans Affairs
Medical Center included 64 patients and 617 biopsies. We ran our MLP using a
leave-one-patient-out approach 64 times using the set of data for a different single
patient each time and we randomly divided the remaining data into a training set
(90 %) and a validation set (10 %). The scores and true tissue types were input to
any one of a variety of ROC-software packages, including ROCkit by Charles
Metz (http://xray.bsd.uchicago.edu/krl/KRL_ROC/software_index6.htm), Med-
Calc by Frank Schoonjans (http://www.medcalc.be/), or our own custom MAT-
LAB-based ROC software. For all methods, computed ROC AUC values were
essentially identical, and our best-performing MATLAB MLP classifier gave
AUCs of 0.844 ± 0.018 (95 % CI: 0.806, 0.877) for the classifier and
0.638 ± 0.031 (95 % CI: 0.576, 0.697) for the corresponding B-mode-based
classification using LOS assignments, as shown in Fig. 8.1. The standard errors
(0.018 and 0.031) in the AUC estimates are very small compared to the AUC
difference (0.206) between these ROC curves, and the lower 95 %-confidence
value (0.806) of the MLP ROC is significantly greater than the upper value (0.697)
of the LOS ROC. For the likely values of sensitivity for B-mode-guided biopsies
of approximately 0.50, the corresponding sensitivity of the MLP ROC curve is

Fig. 8.1 ROC curves
produced (1) by a MATLAB
implementation of an MLP
ANN using a leave-one-
patient-out approach (upper
curve) and (2) by LOS
assignments primarily based
on B-mode appearance
(lower curve). The vertical
axis is True-positive Fraction
(TPF), which is equivalent to
sensitivity; the horizontal axis
is False-positive Fraction
(FPF), which is equivalent to
1 minus specificity
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approximately 0.80, i.e., the MLP sensitivity is superior to the B-mode-based
sensitivity by approximately 60 %. If that classifier improvement could be trans-
lated into real-time images used for biopsy guidance, then a marked improvement
in biopsy yield would be possible. Similarly, such images, whether generated in
real time or off line, could make targeted or focal treatments a clinical reality.

A similar approach was used for developing and assessing the SVM classifier,
which has the advantages of being less vulnerable with respect to false minima,
overtraining, and excessive dimensionality. As was the case with ANN develop-
ment, the data, consisting of intercept, midband and PSA values plus the actual
histologically determined tissue type (cancerous vs. non-cancerous) were analyzed
using SVM methods as implemented in the OSU SVM Toolbox for MATLAB
using a radial-basis-function kernel. A grid search was performed to establish
optimal values of the cost-function constant, C, and the radial-basis constant, c.
For each value of C and c in the grid search, an SVM model was generated using a
leave-one-patient-out approach, i.e., the model was determined using all data
values except those for the one patient; the set of values for the specified patient
were treated as the unknown. This process was iterated for all patients, an ROC
analysis was performed, and an AUC value was estimated. The optimal C and c
values were selected on the basis of the maximal AUC.

8.3.3 TTI Development

TTIs are needed that can represent the likelihood of cancer at each pixel or voxel
in a user-defined ROI. The ROI could be the entire scan plane, a biopsy-targeting
window, the prostate only, a 3D representation of the gland, or some other user-
specified region. Pixel or voxel values could be computed by running classifier
software either by using the full available data set as the training set, by using a
simpler classification algorithm based on the weights of a trained classifier, or by
using an LUT. We chose to use an LUT to assign values to pixels in the ROI.

To generate the LUT, we examined our data set and determined what ranges of
data values, i.e., values for intercept parameter, midband parameter and PSA level,
were representative of the data. Although PSA levels for a few patients with
extensive advanced disease exceeded 100, we limited PSA values to a range
between 0 and 78; similarly, we limited midband values to a range between -0.47
and -0.65 dB and intercept values to a range between -0.35 and -0.65 dB, where
dB denotes decibels with respect to a perfectly reflecting calibration target. For
each variable, we divided the range into 40 steps in value, which resulted in 64,000
combinations of values. Clearly, not all value combinations are reasonable, e.g., an
intercept value of -0.65 dB and a midband value of -0.47 dB have a corre-
sponding slope value of 4.0 dB/MHz at a center frequency of 5.75 MHz, which is
the center of the frequency range in our prostate studies: 3.5 MHz to 8.0 MHz.
According to Lizzi et al., this slope value is not theoretically possible (Lizzi
et al. 1983, 1987; Feleppa et al. 1986). (Over the bandwidth of 3.5 to 8.0 MHz,
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the theoretical slope limit for isotropic Rayleigh scattering with an f4 dependence
on backscattered power is approximately 3 dB/MHz.) However, a midband value
of -65 dB and an intercept value of -35 dB have a corresponding slope of
-5 dB/MHz, and this slope value corresponds to a scatterer diameter of approx-
imately 230 lm. Scatterers of this size are very likely to exist among the stromal
and acinar elements of the prostate.

The 64,000 combinations were input to the best-performing MLP as unknowns,
i.e., test cases. The full data set was used as the training set. Experience in opti-
mizing the MLP showed that 250 epochs (iterations) were required for the MLP to
converge to the best possible solution; therefore, 250 epochs were used to compute
a likelihood-of-cancer score for each of the 64,000 combinations of intercept
parameter, midband parameter and PSA level.

An SVM-based LUT was generated in a manner equivalent to the method used
to generate the MLP-based LUT. Once optimal C and c values were selected, the
SVM was applied to the same 64,000 combinations of intercept, midband and PSA
as were used in the ANN case to generate an SVM-based LUT. Figure 8.2 shows
an SVM-based LUT surface plot for a PSA level of 7.5; the associated SVM
utilized a C value of 2,000 and a c value of 10,000. The surface plot depicts the
relative likelihood of cancer on the vertical axis for the given PSA value and all
64,000 combinations of midband and intercept on the two horizontal axes. The
relative likelihood of cancer shows a broad peak at midband values of

Fig. 8.2 An SVM-based LUT for a PSA value of 7.5 showing a broad peak in the score value for
relative cancer likelihood at low (negative) intercept and intermediate midband parameter values.
The vertical axis is the cancer-likelihood score; the horizontal axis on the left is the midband axis,
with decreasing values toward the viewer; the horizontal axis on the right is the intercept axis
with decreasing values toward the viewer
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approximately -50 to -55 dB and at low intercept values. As PSA value
increases, all likelihood values increase, but with less emphasis in any particular
region of the midband-intercept space, i.e., the LUT surface plot tends to flatten as
it rises with increasing PSA values.

To generate a TTI using an LUT, the patient’s serum PSA level is entered into
the TTI software, and the software computes spectral-parameter values at a pixel
(or voxel) location in the ROI. These three values fall on a specific step for each of
the 40 values of midband, intercept, and PSA. That step is located in the LUT, and
the corresponding value for the relative cancer likelihood is returned. The likeli-
hood value then is translated into a color-encoded or gray-scale pixel (or voxel)
value in the TTI image. Figure 8.3 shows an example of a TTI for a prostate that
was scanned in situ immediately prior to prostatectomy while the patient was in
the operating room. Subsequent prostatectomy histology showed a 12-mm, pre-
viously unrecognized, anterior tumor as well as smaller cancer foci and some PIN
tissue. The left image in Fig. 8.3 is the gray-scale TTI; the center image is a
midband-parameter image of the same scan plane with superimposed TTI color
encoding to display the regions of highest relative likelihoods for cancer; the right
image is the approximately corresponding whole-mount histology section, which
clearly shows the demarcated anterior tumor and some smaller foci of cancerous
and PIN tissue. The planes of the ultrasound scans and whole-mount histology are
not necessarily identical, but are at the widest gland cross section and clearly
overlap in the region of the anterior tumor.

Additional examples of TTIs are the 3D versions of this same prostate, as
shown in Fig. 8.4, and the biopsy-search-window TTIs of Fig. 8.5. In Fig. 8.4, the
most-highly suspicious volumes are depicted in red. The representation of the
gland in Fig. 8.4 was generated from a set of parallel scan planes acquired at 5 mm
plane separations; 2D TTIs were generated for each plane; and the set of 2D TTIs

Fig. 8.3 TTI images compared to post-surgical histology. Gray-scale TTI image (left image) and
a color-overlay TTI on a midband image (center image) show a high suspicion of cancer in a
large anterior tumor and smaller nearby foci. (In the color image, red depicts the highest cancer
likelihood and orange the second-highest likelihood.) Whole-mount prostatectomy histology
(right image) shows demarcations made by the pathologist to indicate cancerous and
precancerous neoplastic tissue, particularly a large (12-mm) anterior tumor that was not detected
previously by conventional imaging or palpation. All views are from the apex: the patient’s right
is the viewer’s left; his anterior is up. [Reproduced, with permission, from Ultrasonic Imaging]
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was assembled into a 3D rendering using manual demarcation of the gland surface
and TTI color-encoding to demarcate the tumor surfaces automatically. (In
Fig. 8.4, the gland is rotated so that it is viewed through the base rather than
viewing it more conventionally from the apex as shown in Fig. 8.3.) This type of
3D rendering could be extremely useful in planning therapy. It clearly shows that a
nerve-sparing approach could be applied with a tight margin on the right portion of
the gland, but a more generous and cautious one on the left side. It also could
provide inputs for planning focal or differential radiation, cryo-ablation, or high-
intensity ultrasound treatments. The illustrative biopsy-guidance TTI windows of
Fig. 8.5 were generated from two separate scans of the same biopsy patient. In this
figure, five levels of relative cancer likelihood are shown with green indicating the
lowest likelihood, yellow-green a slightly higher likelihood, yellow an interme-
diate likelihood, orange a moderately high likelihood, and red the highest likeli-
hood. The left image in Fig. 8.5 was generated from a plane in which the biopsy
subsequently proved to be positive; the right image was from a plane that had a
negative biopsy. If such images had been available to guide the biopsies in real
time, the needle certainly could have been targeted into the red and orange regions
shown in the left image, but the green and yellow-green regions in the right image
might have been spared.

Fig. 8.4 3D TTI of the gland shown in Fig. 8.3. Cancerous regions warranting dose escalation in
ablative treatments or a conservative (wide) surgical margin are clearly indicated; regions that
could be spared in ablative treatments or safely could undergo nerve-sparing surgery also are
apparent. All views are from the base; i.e., the gland is rotated around its vertical axis compared
to Fig. 8.3. [Reproduced, with permission, from Ultrasonic Imaging]
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8.4 Discussion and Summary

Focal treatments of PCa that spare at least half the prostate or differential treat-
ments that grade the delivery of ablative radiation, cryotherapy, or HIFU over the
gland according to images that reliably present the spatial distribution of cancer
within the gland can reduce treatment toxicity without degrading treatment effi-
cacy. Similarly, biopsies that are guided by images that present the likelihood of
cancer can improve the positive yields of core-needle biopsies while simulta-
neously reducing or eliminating the current need to insert the needle blindly into
non-cancerous regions.

The studies described here use sophisticated, non-linear methods of classifi-
cation to distinguish cancerous from non-cancerous tissues based on RF echo
signals. At present, these methods rely on ANNs and SVMs, and although more
than 600 samples are available from more than 60 patients in the data set cited
above, only 17 % of the samples in our most-recent data set are cancerous.
Considering the range of possible expressions of cancerous and non-cancerous
prostatic tissues, further study certainly is required to increase the number of
independent samples and to assure that the classifier has sufficient generality.
Furthermore, a conservative perspective would consider the patients, and not the
biopsy cores to be the independent samples; to take that perspective into account, a
much larger data set is required to fully validate the method and allay concerns
regarding the generality of the classifier.

Concerns regarding excessive dimensionality and vulnerability to false minima
that are inherent when using ANN classifiers are less of an issue with SVMs. Our
preliminary investigations of SVMs for classifying prostate tissue have given us
very encouraging results, e.g., providing ROC AUCs equivalent or superior to
what we achieved using ANNs, but with far lower dimensionality. A third option
to pursue is identification of additional spatially varying parameters such as those

Fig. 8.5 Illustrative biopsy-guidance images with a small TTI ROI window. Two planes from
the same patient are shown. Color encoding is used to depict cancer likelihood; the highest
likelihood is depicted in red and the lowest in green; the background gray-scale image is a
midband image. The actual biopsy histology was positive in the left image and negative in the
right one. This type of search-window TTI could be used to guide biopsies more effectively.
[Reproduced, with permission, from Ultrasonic Imaging]

8 Quantitative Ultrasound for Tissue-type Imaging 187



associated with the statistics of envelope or RF-signal amplitudes (Mamou Chap.7,
this volume).

Confidence in reliable ultrasonic TTIs such as the ones under development and
described here can enable detection and treatment of PCa to advance dramatically.
The ultrasonic TTIs illustrated in this chapter can be applied clinically either as
pure ultrasound techniques using existing digital technology to generate TTIs in
real time or they can be used in combination with other modalities to produce even
more-powerful methods of imaging PCa. For example, the inability of current
imaging methods to depict suspicious regions reliably prevents many patients from
choosing the option of watchful waiting or active surveillance. A reliable means of
imaging cancerous foci would give such patients confidence that their diseases can
be monitored safely and unnecessary treatment of indolent disease can be avoided.
As a second example, TTI methods can be integrated into existing ultrasonic
instruments that ablatively treat prostate diseases such as benign hyperplasia and
cancer with HIFU. Integration would provide a single-modality instrument for
targeting and guiding HIFU ablation of selected cancerous regions of the gland and
sparing regions that present a low likelihood of being cancerous. As an additional
example, the mechanical properties sensed by ultrasound and exploited in ultra-
sound-based TTIs also can be applied in conjunction with spatially matching
chemical properties sensed by magnetic-resonance spectroscopy methods, with
perfusion and diffusion properties sensed by contrast-enhanced magnetic reso-
nance, or with metabolic properties sensed by positron-emission methods.
Admittedly, such hybrid methods require reliable means of spatial co-registration,
but modern image-processing technology seems to be on the verge of enabling
such co-registration to be performed quickly and accurately. Once these
QUS-based TTI methods are more-fully validated by the on-going studies cited in
the acknowledgments below, clinical implementation will be straightforward.
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Chapter 9
Therapy Monitoring and Assessment
Using Quantitative Ultrasound

Michael L. Oelze, Jeremy P. Kemmerer, Goutam Ghoshal
and Roxana M. Vlad

Abstract Quantitative ultrasound (QUS) techniques have demonstrated the ability
to detect changes in tissue microstructure following the application of cancer
therapy. In this chapter, QUS techniques, i.e., spectral-based analysis and envelope
statistics, are examined for their ability to detect, image and quantify the thera-
peutic response of diseased and normal tissues ex vivo and in vivo. Specifically,
high frequency QUS ([20 MHz) techniques were used to detect changes in the
tumor microstructure of cancer mouse models following radiation therapy and
changes in ex vivo liver tissue following thermal therapy. QUS parameter esti-
mates were correlated with changes observed in photomicrographs of histological
slides of stained tissues. Mouse tumors treated with radiation therapy demonstrated
an increase in the ultrasound integrated backscatter of 6–8 dB in the treated
regions compared to untreated regions. The treated regions can be clearly distin-
guished in ultrasound images as hyperechoic areas. When liver tissues were treated
with heat, a change in the slope of the frequency dependence of the backscatter
coefficient versus thermal dose was observed. QUS changes were examined versus
transient elevations in temperature using a thermocouple in order to guide the
application of thermal therapies in these samples. It was observed that some QUS
parameters were capable of tracking changes in the temperature. This work pro-
vides means of using QUS to monitor and guide therapy application, and rapidly
assess the response of tissues to different therapies.
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9.1 Introduction

Quantitative ultrasound (QUS) techniques are based on processing radio-frequency
(RF) ultrasound data. RF data are used to construct conventional medical ultra-
sound B-mode images by applying an envelope detection technique (Cobbold
2007). This type of processing removes the frequency-dependent information.
B-mode images are good at displaying large-scale structures, larger than the
wavelength, because simple tissue interfaces such as organ boundaries produce
well-defined RF signals whose envelopes can be clearly detected. Most structures
of interest, including organ parenchyma and tumors, have a complex spatial
distribution of mechanical properties that result from the complex internal
microstructure of biological tissues. B-mode images reflect this complexity,
exhibiting an average gray-scale level that is related to the average scattering
strength and results in a specific speckle pattern that depends on tissue charac-
teristics. Clinicians interpret this speckle pattern on the basis of boundary geom-
etry of specific structures, internal brightness and texture, but not much
information can be inferred about the properties of the underlying tissue structure.
Smaller scale structures, smaller than the ultrasound wavelength, could be char-
acterized using the frequency-dependent information content from RF backscat-
tered signals by extracting various parameters that could be related to specific
tissues properties, e.g., size, density, compressibility and number of tissue scat-
tering structures (Insana et al. 1990). QUS techniques incorporate this type of
analysis. Since tissue microstructure changes follow disease processes or thera-
peutic interventions, it is possible to detect these changes using QUS techniques.
QUS applications include characterization of cancer pathology in certain organs,
i.e., prostate, lymph nodes and monitoring therapy response following cancer
treatment, i.e., chemotherapy, photo-dynamic therapy and radiotherapy. QUS
methods can detect changes in tissue before any changes in the size of the tumor
are detectable in anatomical images.

The ability to detect tumor response to treatment addresses an important aspect
in the field of cancer therapy. Often, poor prognosis in a patient is associated with
a lack of response to a specific therapy. A patient may benefit from an earlier
detection of a non-responsive treatment by a change to a more aggressive treat-
ment earlier during the course of treatment and, thus, avoidance of side effects
associated with prolonged ineffective treatments. Therefore, QUS techniques have
the potential of advancing the methods of cancer diagnosis and lead to adaptive
therapy approaches in the treatment of cancer.

The clinical management of cancer treatment remains a significant challenge
because, tumors are phenotypically heterogeneous and, therefore, it is rare for all
cancers of a particular type to respond to a specific therapy. Tumor responses to
treatment are traditionally assessed by measurements of tumor size in clinical
images using the response evaluation criteria in solid tumors (RECIST) guidelines
(Jaffe 2006; Eisenhauer et al. 2009). Current methods to monitor tumor response
include palpation, ultrasound, computed tomography and magnetic resonance
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imaging (MRI). These techniques assess the response of a tumor to cancer by
identifying changes in the size of the tumor. Measurement of tumor size is not
ideal for predicting patient outcome because changes in tumor size appear late
during the course of therapy. For instance, changes in tumor size could be
observed at 6–8 weeks after a treatment starts (Michaelis and Ratain 2006). Fur-
thermore, a change in the tumor size as indicated by a certain imaging modality
might not correspond with the ground truth identified in the histopathology. For
instance, in one study that compared response assessment by palpation, X-ray
mammography, ultrasound, and MRI, it was found that agreement of tumor
shrinkage with pathology was only 19, 26, 35, and 71 %, respectively (Yeh et al.
2005).

In recent years, the measurements of tumor size have been supplemented by
imaging of tissue function, often termed molecular imaging, which aims to
characterize biological processes at the cellular and molecular level in vivo.
Dynamic contrast enhanced MRI (DCE-MRI) monitors the tumor perfusion by
rapidly acquiring series of images that are used to follow the kinetics of a contrast
agent into the tumor (Brindle 2008). DCE-MRI has been recently used to evaluate
breast tumor response to neo-adjuvant chemotherapy but its application is limited
by reduced availability and high cost. Positron emission tomography (PET)
imaging using a glucose analogue, the radionuclide 2-[18F] fluoro-2-deoxy-d-
glucose (FDG) is an established modality in the diagnosis and management of
various malignancies (Brindle 2008). Studies of lung cancer (Weber et al. 2003),
oesophageal cancer (Weber et al. 2001) and lymphoma (Spaepen et al. 2001) have
demonstrated that reduced FDG uptake can identify early tumor response to
treatment. Persistently increased FDG uptake after treatment is associated with a
high risk for early disease recurrence and poor prognosis (Brindle 2008). These
results have shown that PET imaging is a promising imaging modality to identify
tumor response. However, PET imaging has the disadvantage of requiring com-
plex resources, including special radiation safety considerations for the design of
imaging facility, handling of the radionuclides and the need of having a cyclotron
on site for the radionuclides production or ready access to these radionuclides.

Detecting early tumor response to therapy, and thus predicting the likely out-
come of a treatment, requires suitable means to identify markers of the response.
Markers of response may include: cell death, vascular damage, changes in
metabolism or receptor expression associated with tumor cell death or inhibition of
proliferation (Ian et al. 2004). For instance, increased tumor cell death, early
during a course of treatment, is a good prognostic indicator of a treatment outcome
(Symmans et al. 2000; Roberg et al. 2007).

Developing techniques that can rapidly assess treatment response in order to
adapt cancer therapy to treatment response may solve an important clinical need.
Recent advances in new ultrasonic imaging modes have yielded promise for early
detection of the response of cancer to therapy. Specifically, QUS techniques have
matured and research has been successfully conducted on the ability of these
techniques to diagnose cancer and to detect cell death or tissue changes induced by
therapy (Oelze and Zachary 2006; Vlad et al. 2008, 2009, 2010, 2011; Kolios and
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Czarnota 2009; Kemmerer et al. 2010). This chapter will discuss applications of
QUS techniques to monitor and assess therapeutic response.

9.2 QUS Techniques and Traditional Cancer Therapy

A non-invasive technique, e.g., ultrasound imaging enhanced by QUS parameters,
capable of assessing early tumor responsiveness to therapy within days after the
start of a treatment could aid clinicians in making decisions to guide treatment
selection. This will help to select a treatment adapted to tumor aggressiveness and
provide individualized patient therapy. It might lead to improved outcomes and the
sparing of patients from unnecessary side effects related to ineffective prolonged
cancer treatments.

Increased tumor cell death, early during a course of treatment, is a good
prognostic indicator of a treatment outcome (Symmans et al. 2000; Roberg et al.
2007). Experimentally, ultrasound imaging and spectrum analysis techniques were
applied for the first time by Czarnota et al. (1997, 1999), Kolios et al. (2002) to
detect cell death in cell samples and tissues exposed to cancer therapies (e.g.,
chemotherapy and photodynamic therapy). Two parameters, Ultrasound integrated
backscatter (UIB) and spectral slope (SS) calculated from the ultrasonic power
spectra were used to monitor the responses of cells and tumors exposed to cancer
treatment (Vlad et al. 2008, 2009, 2011). The UIB depends on size and acoustic
properties (density and compressibility) of scatterers in a sample and the SS can be
related to the effective scatterer size. Further details on the theoretical and signal
analysis considerations and how spectral parameters are related to tissue micro-
structure can be found elsewhere (Lizzi et al. 1983). In the experiments performed
on cell samples exposed to a chemotherapeutic drug, apoptotic cells exhibited up
to a 16-fold increase in UIB in comparison with viable cells, as well as other
measurable changes in ultrasonic parameters (Kolios et al. 2003; Tunis et al.
2005). The same technique can be used to detect oncotic cell death following
ischemic injury when cells and tissues were deprived of essential nutrients. UIB
increased up to eight-fold in rat livers exposed to ischemic injury (Vlad et al. 2005)
and up to four-fold in cell samples left to die at room temperature (Kolios et al.
2003). These provide the groundwork for future investigations regarding the use of
ultrasound in cancer patients to individualize treatments based on non-invasive
imaging assessment of tumor responses to specific interventions.

In research conducted by Vlad et al. (2008), radiotherapy effects can be char-
acterized by QUS methods in preclinical mouse cancer models, as early as 24 h
after treatment administration. For instance, ultrasound imaging and ultrasound
images enhanced by spatial maps of ultrasound spectral parameters enabled non-
invasive assessment of cell death in tumor regions that responded to radiotherapy.
The key advantage of the technique is that the image contrast and changes in UIB
and SS are caused by changes in physical properties of cells undergoing death and,
hence, responding to therapy. This is an important benefit of the technique,
because it does not require injections of contrast agents or radioisotopes, unlike
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other imaging modalities for treatment monitoring, e.g., DCE-MRI, single photon
emission computed tomography and PET.

Figure 9.1 is an image from a representative head and neck cancer mouse
model exposed to a radiation dose of 4 Gy in a single fraction. Data were collected
with an ultrasound scanner using a broadband 25 MHz single element focused
transducer with a -6 dB bandwidth of 12–30 MHz, 12.5 mm focal distance and
6 mm aperture. After exposure to radiotherapy, the tumor exhibited large hyper-
echoic areas corresponding to the brown colored regions in the TUNEL staining
indicating cell death Fig. 9.1a, b. The local estimates of the UIB demonstrated
values greater by 6–8 dB in the echogenic regions selected from mouse tumors
treated with radiotherapy compared with the UIB estimates calculated from
regions that did not respond to therapy, Fig. 9.1c, d.

Fig. 9.1 a Ultrasound image of a mouse tumor presenting regions with increased echogeneity
after radiotherapy, b corresponding histological TUNEL stained section, indicating an area of cell
death (brown colored area), c parametric image constructed from local estimates of the UIB and
superimposed on the corresponding B-mode image. The increased echogeneity in the ultrasound
image and greater UIB estimates in the parametric image corresponded to the area of cell death in
histology. d Hematoxylin and Eosin histological staining at higher magnification demonstrating a
clear delineation between the areas of cell death on the left side of the image, characterized by
small condensed and fragmented nuclei indicated by the black arrows, and regions appearing as
viable tissue on the right side of the image indicated by the white arrows. Scale bars are: (a, b and
c) -1 mm and d -50 lm
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Figure 9.2 demonstrates the use of the ultrasound spectral parameters in char-
acterization of tumor responses to radiotherapy in six head and neck cancer mouse
models. The results indicate that the SS increased from 0.77 ± 0.03 dB/MHz
before treatment to 0.90 ± 0.05 dB/MHz (p \ 0.05) after treatment administration
in hyperechoic regions selected from mouse tumors at 24 h after exposure to
radiotherapy. As previously described, these changes in ultrasound images and
spectral parameters were interpreted as direct consequences of cell death following
radiotherapy (Vlad et al. 2008, 2009).

In order to adopt the ultrasound imaging and QUS methods in preclinical and
clinical applications, it is essential to know how well the volume of cell death in
ultrasound and parametric images corresponds to the true cell death in histology.
Currently, stained histological sections are considered the gold standard for cancer
diagnosis, detection of cell death and assessment of tumor response. For instance, the
ability to know how well the margins of a region of cell death represented in ultra-
sound and parametric images correspond to the cell death as assessed from histology
can result in the development of new clinical applications, e.g., guiding needle and
surgical excision biopsies for diagnostic purposes using ultrasound methods.

Because changes calculated in the QUS parameters were mainly demonstrated
by the hyperechoic regions in the ultrasound images following radiotherapy, a
metric of comparison between the true cell death in histology and these hyperechoic
regions was developed. An example of qualitative comparison between the volume
and localization of cell death, assessed from histology, with the volume and
localization of cell death surrogate assessed from the ultrasound images as
hyperechoic regions for a mouse cancer model is presented in Fig. 9.3. This method
used volumetric meshes to compare the volumes and the localization of cell death in
histological and ultrasound images. The procedure was developed on seven mice
and it has been presented elsewhere, Vlad et al. (2010). In the example from

Fig. 9.2 a Averaged normalized power spectra and spectral slopes of six head and neck tumors
before treatment (XRT-) and 24 h following radiotherapy (XRT+); b corresponding feature
analysis plot indicating a clear separation between the (XRT-) tumors and the (XRT+) tumors.
Error bars in panel a represent the standard error of the averaged spectra for n = 6 animals
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Fig. 9.3, the method was applied to demonstrate the potential of mid-to-high fre-
quency (10–20 MHz) ultrasound imaging to detect early tumor response 24 h after
delivery of radiotherapy treatment. This technique, briefly described here, could be
applied similarly to assess tumor response to other modalities of cancer treatment.

To construct the volumetric mesh model of tumor and cell death, the ultrasound
and histological images were rigidly registered. The tumors and regions of cell
death were manually outlined on the histological images. Similarly, the tumors and
hyperechoic regions were outlined on the ultrasound images. Each set of contours
from histology and ultrasound images was converted to a volumetric mask in order
to compare the corresponding volumes. An in-house developed algorithm was used
to calculate the mask volumes and the overlap of mask volumes for each repre-
sentation of tumor and cell death in ultrasound and histology. Finally, to visualize
the volumes and create models of tumor and cell death in each representation
(ultrasound and histology), the mask files were converted to a triangular surface
mesh, finite element model, using methodology described by Balter et al. (2005).

There are differences between the volume of tumor and cell death as assessed
from ultrasound and histological images, Fig. 9.3c–f. Part of these differences can
be attributed to tissue shrinkage during histopathological processing and defor-
mation of tissue during cutting and mounting of each section. Considering that the
size of the tumor in the ultrasound image is the ground truth, a scaling factor of
*17 % was calculated to account for differences in tumor size between the his-
tological and ultrasound images. Using this factor, the histological images were
scaled uniformly to compensate for tissue changes during histological processing.
The average difference in the volume of tumors as represented in ultrasound and
histology decreased from 17 ± 2 % to 3 ± 2 % after compensating for tissue
shrinkage, (Vlad et al. 2010). The average overlap of the volumes of cell death
assessed from ultrasound and histological images was 70 ± 12 % for the seven
mice used to develop this method (Vlad et al. 2010). An illustrative example of
this type of cell death overlap is presented in Fig. 9.3f. It can be observed that the
differences resulted from the tumor representation in histology and ultrasound
propagated to the cell death representation in the two modalities. In addition,
factors linked to how well the ground truth of cell death in histology corresponded
to the hyperechoic areas in the ultrasound images contributed to this difference.

The method indicated a good co-localization of cell death volume in the
ultrasound and histological representation. The good agreement between cell death
representation in histological and ultrasound images indicated that high frequency
ultrasound imaging is capable of detecting early response to radiotherapy in these
types of tumors. These results provide confidence in the capabilities of ultrasound
imaging to detect cell death and support the basis for the application of mid-to high
frequency ultrasound imaging and QUS methods to characterize early tumor
responses to cancer radiotherapy.

A more precise co-localization between the cell death in histology and cell
death identified by the ultrasound could be obtained by adding local estimates of
QUS parameters to this analysis. QUS parameters, e.g., UIB and SS, were able to
differentiate different modalities of cell death in well controlled laboratory
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conditions (Vlad et al. 2008). Rigorous QUS analysis might have the potential of
differentiating cell death from early tissue reactions to radiotherapy, e.g., inflam-
mation and edema, in the hyperechoic regions observed in ultrasound images
following radiotherapy.

Fig. 9.3 a Representative ultrasound image of a mouse tumor 24 h after radiotherapy with 4 Gy
in a single fraction, presenting a large hyperechoic region after treatment, b Corresponding
Hematoxylin and Eosin image indicating an area of cell death of similar shape as the hyperechoic
area in the ultrasound image. These types of images were used to contour the tumor and cell death
in ultrasound imaging and corresponding histology. Volumetric mesh models of a tumor and cell
death segmented from c ultrasound images and, d from corresponding histology. Volumetric
mesh models e demonstrating the overlap between the tumor representation in ultrasound and
histology and, f demonstrating the overlap of cell death representation in ultrasound and
histology. Scale bars are 4 mm
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9.3 QUS Techniques Applied to Thermal Therapy

For more than 60 years the idea of noninvasive surgery has attracted the attention
of medicine (Fry et al. 1954; Kennedy et al. 2003). The benefits of noninvasive
surgery are the improved patient recovery time, the reduction in occurrence of
post-operative infection, and the reduction of healthy tissues affected by the pro-
cedure. For almost as long, ultrasound has been suggested as a tool for conducting
noninvasive surgical procedures through high intensity focused ultrasound (HIFU).
The use of ultrasound to treat tumors has been investigated in the prostate
(Madersbacher et al. 1995; Gelet et al. 1996; Chaussy et al. 2002; Sanghvi et al.
1996; Uchida et al. 1995; Foster et al. 1993), in tumors (ter Haar et al. 1991; Prat
et al. 1995; Sibille et al. 1993; Yang et al. 1991), the kidney (Frizzell et al. 1977;
Adams et al. 1996; Daum et al. 1999), the brain (Hynynen and Jolesz 1998; Sun
and Hynynen 1999), and for various eye conditions (Lizzi et al. 1984).

HIFU has seen dramatic advancements in higher power transducer array
designs using novel materials and driving systems (Clement 2004). Array designs
have allowed improved focusing with narrower beams to better control the affected
regions. The result is a decrease in treatment times, less distortion in beam
characteristics, and improved lesion formation.

While improved technology for transducer array design has been important to
the advancement of HIFU treatment of cancer, several significant roadblocks still
exist for widespread clinical acceptance of this noninvasive treatment option. The
clinical roadblocks faced by having a truly noninvasive HIFU treatment option are
related to the monitoring and assessment of treatment. Noninvasive monitoring of
HIFU during treatment requires an estimation of the temperature rise in the can-
cerous regions and surrounding normal tissues and an assessment of the therapy
effectiveness. The goal is to treat cancerous regions while minimizing the effects
on surrounding healthy tissue. Noninvasive assessment of the treatment refers to
detecting the onset of cell or tissue death or coagulative necrosis due to the rise in
tissue temperature and mapping out the regions where these effects occurred.

9.3.1 Monitoring of HIFU Therapy: Non Ultrasonic
Techniques

Currently, monitoring can be done invasively through the placement of tempera-
ture probes in the tissues to be treated. However, aside from the complications
involved with the invasiveness of the procedure, the placement of temperature
probes leads to a sampling problem, i.e., only limited portions of the cancerous
region and surrounding healthy tissues can be monitored. Second, viscous heating
effects near the thermocouple result in local increases in temperature readings and
unreliable temperature readings. Third, mapping out of cancerous regions and the
assessment of treatment throughout the cancerous regions can only be
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accomplished through a limited sampling when using an invasive procedure. In the
treatment of cancer, it is vitally important to treat all of the cancerous lesions
including microscopic disease, which requires knowledge of the extent of the
cancer before treatment and residual microscopic disease after treatment.

In terms of monitoring the temperature rise in tissues treated with HIFU and
guiding exposures, ultrasound, CT, and MRI have been investigated (Clement
2004). However, currently only MRI has been found to accurately monitor and
quantify the temperature rises in tissues treated with HIFU in vivo noninvasively
(Hynynen et al. 1996; Hazle et al. 2002; Huber et al. 1994; Chung et al. 1996;
Smith et al. 1995). MRI can provide quantitative spatial maps of induced tem-
perature rise in tissues with good accuracy and good spatial resolution (Gellerman
et al. 2005; Bohris et al. 1999; Cline et al. 1995). Several groups have investigated
MRI for use in monitoring temperature rises in vivo during HIFU treatment
(Hynynen et al. 1996; Hazle et al. 2002; Huber et al. 1994; Chung et al. 1996;
Smith et al. 1995). MRI has been used to correlate ablation volumes using HIFU
treatment with pathology in a rabbit hepatocarcinoma model (Hazle et al. 2002;
Weidensteiner et al. 2003). MRI has been used successfully with HIFU to guide
and monitor the treatment of uterine fibroids and leiomyomas in vivo (Tempany
et al. 2003). MRI has also been investigated as a technique to guide HIFU therapy
in the brain (Hynynen and Jolesz 1998; Sun and Hynynen 1999; Hynynen et al.
2001).

While research in the area of MRI guided HIFU therapy continues, several
issues limit its widespread clinical use. First, MRI can suffer from motion artifacts.
However, progress continues to be made in the area of motion detection that
should mitigate some or all of these effects (Clement 2004). Second, the lack of
portability and the expense related to MRI devices limits the widespread use of
MRI-guided HIFU treatment. Third, ultrasound equipment that is MRI-compatible
is required to perform the procedures, which also limits the availability of the
technique and raises the expense of the procedures. Finally, MRI does not allow
inherently real-time mapping of temperature in vivo (Anand et al. 2007).

9.3.2 QUS Techniques for Monitoring HIFU

Ultrasound is attractive as an imaging modality to monitor and guide HIFU
treatment because it is nonionizing, inexpensive, portable, real time, and conve-
nient. Because of its attractiveness, several ultrasonic techniques have been
investigated for monitoring, quantifying, and mapping the temperature rise
induced in tissues by HIFU treatment. These techniques include quantifying the
change in sound speed through cross-correlation of backscattered signals during
treatment (Anand et al. 2007; Abolhassani et al. 2007; Daniels et al. 2007;
Varghese et al. 2002a; Simon et al. 1998; Pernot et al. 2004; Maas-Moreno and
Damianou 1996). As temperature increases in most tissues, the speed of sound also
increases, which causes a slight time shift in backscattered echoes (Bamber and
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Hill 1979). This time shift can be detected by cross-correlating signals from a
region at one temperature with signals from the same region at a different tem-
perature. A second route has utilized elastographic methods to examine the
changes in tissue stiffness when undergoing temperature rises (Konofagou et al.
2003; Lizzi et al. 2003; Miller et al. 2002; Varghese et al. 2002a). Other techniques
have examined the spectral content of the backscattered ultrasonic signals to
quantify temperature rises in vivo during HIFU treatment (Seip and Ebbini 1995;
Amini et al. 2005; Arthur et al. 2005; Trobaugh et al. 2008). All of these tech-
niques have met with some success.

Several investigators have examined techniques to estimate changes in speed of
sound and thermal expansion with temperature for the purposes of monitoring HIFU
treatment using cross-correlation techniques (Anand et al. 2007; Abolhassani et al.
2007; Daniels et al. 2007; Varghese et al. 2002a; Simon et al. 1998; Pernot et al.
2004; Maas-Moreno and Damianou 1996). These investigators have claimed the
ability to detect changes in temperature as small as 0.5 �C using cross-correlation to
estimate time shifts in the RF backscattered signals with good spatial resolution
(Anand et al. 2007). More recent advances have tracked changes in three-dimen-
sional (3D) volumes as opposed to two-dimensional (2D) image planes. Finally,
these techniques offer the possibility of real-time tracking of temperature changes
in vivo.

However, time-domain cross-correlation methods are limited due to several
factors. First, the time-domain cross-correlation methods are limited by motion in
subsequent acquisition scans. Motion between the acquisition of imaging frames
causes scan lines to become decorrelated resulting in large errors in the estimation
of time shifts. Motion artifacts are especially predominant in abdominal organs,
e.g., the liver or kidney, where centimeter-sized displacements can cause large
estimate errors in micrometer-sized displacements due to sound speed changes.
Recent attempts to combat these errors have met with some success by relying on
fast frame rate imaging to detect and monitor shifts in sound speed due to motion
artifacts (Liu and Ebbini 2010). Second, sound speed and thermal expansion
coefficients do not always follow the same linear increase relative to temperature
increases for every kind of tissue. For example, the speed of sound of fatty tissues
will actually decrease with increasing temperature while the speed of sound in
liver will increase monotonically with temperature until about 50 �C (Bamber and
Hill 1979). Finally, the thermal lens effect, caused by the distortion of the focused
beam, will introduce errors into the estimation of echo shifts (Simon et al. 1998).

Another ultrasound monitoring technique that has been investigated is the use
of elastographic methods for estimating the changes in tissue stiffness versus
temperature rise. In one technique investigators used an ultrasound stimulated
acoustic emission technique to examine the shift in frequency of the acoustic
emission stimulated by a radiation force (Konofagou et al. 2003). As the stiffness
of the tissue increased with increased temperature, the frequency of the stimulated
acoustic emission would increase. The technique was examined in simulation, agar
gel phantoms, and muscle tissue and indicated that below the coagulative necrosis
threshold the frequency shift increased with increasing temperature. While the
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results were encouraging, the drawbacks to the proposed technique were the lack
of sensitivity to tissue stiffness, the slow acquisition time, and differentiating shifts
in frequency due to changes in the size of the lesion as a result of heating.

Other investigators examined traditional strain imaging techniques to estimate
mechanical properties of tissues during or after HIFU therapy. Varghese et al.
(2002b) used speckle tracking algorithms to estimate the changes in tissue
mechanical properties and relate these estimates to tissue necrosis. Lizzi et al.
(2003) investigated a radiation force technique to provide strain images related to
changes in tissue stiffness due to HIFU treatment. Miller et al. (2002) quantified
the limitation of strain imaging techniques to estimate the temperature rise in
tissues such as the liver. They found that it was necessary to have large signal-to-
noise ratios (SNRs) to acquire good estimates ([26 dB) and that motion during
monitoring needed to be minimal. Further limitations were found for liver tissues
with high fat concentration.

Other investigators have examined spectral techniques for monitoring the
temperature increases in tissues treated with HIFU. In one technique, investigators
hypothesized that the sound speed and density of subwavelength scatterers would
change differently compared to the background when subjected to hyperthermia
treatment (Arthur et al. 2005). Based on this theory, the investigators examined the
changes in the backscatter energy versus temperature over the range of 37–50 �C.
They found that the backscatter energy changed monotonically with temperature
with either positive or negative slope depending on the location in the scanned
region. However, like earlier techniques involving echo shifts, the technique to
estimate changes in the backscatter energy depended on correlating tissue regions
during temperature increases. Therefore, motion between the acquisition of
imaging frames caused scan lines to become decorrelated and estimation errors to
increase. In addition, these techniques have not been tested in in vivo situations.

Seip and Ebbini (1995) proposed another spectral-based technique for esti-
mating temperature increases using a discrete scattering model. In their approach,
the investigators hypothesized that backscattered spectra from tissues would have
resonances due to semi-regularly spaced scatterers in the tissues. The resonances
would shift as the temperature increased due to changes in the speed of sound and
thermal expansion. The investigators used an autoregressive technique to estimate
the shifts in the resonant frequencies and related these shifts to temperature
increases. The technique was limited by the need to have regularly spaced scat-
terers, the need for two or more regularly spaced scatterers to be included in the
range gated window used for estimation, the large bias and variance of frequency
shift estimates, and appropriate choice of the autoregressive model order (Simon
et al. 1998). Later studies estimated shifts in resonant frequencies using a unique
spectral estimation routine based on state-covariance subspace analysis allowing
high resolution in frequency analysis (Amini et al. 2005). Similar limitations
existed with the improved spectral estimation routine except that the bias and
variance of estimates could be reduced.

Silverman et al. (1986) developed spectral-based parameters to examine the
changes induced in tumor xenografts treated ultrasonically to induce hyperthermia.
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These spectral-based parameters were correlated to histological changes observed
in the tumors. Subcutaneous tumors were treated with a spherically focused
transducer having a center frequency of 4.6 MHz with the focus just above the
skin surface of the tumor to insonify the whole tumor. Tumors were scanned both
immediately prior and subsequent to treatment. The diagnostic ultrasound system
employed a weakly-focused 10 MHz transducer. Raw RF data were acquired from
the system allowing the power spectrum of the backscattered signal to be calcu-
lated. The normalized power spectrum from a data block was calculated using a
planar reference spectrum (Lizzi et al. 1983). From the normalized backscattered
power spectrum, the spectral slope and spectral intercept (SI) were estimated. In
addition, the normalized power spectrum was further divided into a low bandwidth
(5–8 MHz) and a high bandwidth (11–14 MHz) to create bandpass images and
estimates. From these bandpass images a co-occurrence matrix was formed and
these values compared between pre-treatment and post-treatment.

Estimates of the spectral-based parameters resulted in significant changes
between pre- and post-treatment samples. The SS was observed to decrease from
0.261 dB/MHz pre-treatment to -0.147 dB/MHz post-treatment. The SI was
observed to increase from -66.84 dB pre-treatment to -55.31 dB post-treatment
immediately after ultrasonically induced hyperthermia. Co-occurrence matrices
from pre- and post-treatment had different shapes. The treated case resulted in a
shift upwards and to the right along the diagonal. The results of Silverman et al.
(1986) suggested that histologic changes accounted for the changes observed in the
spectral-based parameters. They observed that low frequency estimates followed
deterministic structural elements (e.g., boundaries in the tumor) while higher
frequency estimates were correlated to changes in cellular scattering, cytoplasmic
vacuoles and widened intercellular spaces.

In a similar study to assess the effects of thermal therapy on tissues, QUS
techniques involving spectral-based parameters [backscatter coefficient (BSC),
effective scatterer diameter (ESD) and effective acoustic concentration (EAC)]
were explored for their ability to correlate to tissue damage (Kemmerer and Oelze
2012). Scattering property estimates and attenuation estimates were generated
from rat liver samples submersed in a saline bath heated to 37, 45, 50, 55, 60, 65,
or 70 �C for 10 min. Ultrasonic scans were performed in a 37 �C saline bath using
a weakly-focused (f/4) 20 MHz transducer. All scans were completed less than
two hours after euthanasia to minimize the effects of tissue decomposition. From
the results of the study, the attenuation coefficient was observed to increase
monotonically with exposure temperature, increasing by 86 % for the highest
temperature with respect to the non-treated case. Figure 9.4 displays graphs of the
BSC estimates for the different thermal doses corrected using estimates of atten-
uation from the samples. The BSC had close agreement for all thermal doses from
8 to 15 MHz. Above 15 MHz, an increased BSC slope was observed for samples
heated at and above 55 �C compared to lower temperature exposures. The BSC
was then parameterized to provide estimates of the ESD and EAC assuming a
spherical Gaussian model. When using a bandwidth above 15 MHz (Fig. 9.4
bottom), the ESD and EAC were able to distinguish treated from non-treated cases.
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Figure 9.5 shows a plot of the ESD estimates for different thermal doses. The
findings suggest that, in rat liver, the ultrasonic BSC (below 15 MHz) and the
sound speed are relatively insensitive to tissue changes due to thermal therapy.
Attenuation, BSCs above 15 MHz, and scatterer property estimates above 15 MHz
were sensitive to tissue changes caused by thermal therapy and could potentially
be used for therapy assessment.

Thermal lesions in rat livers were also produced by a HIFU transducer and the
response of the tissue was quantified using QUS imaging. QUS techniques were
used to scan the same area before and after producing the thermal lesion with
HIFU. Lesions were verified via histological analysis using optical microscopy.
Figure 9.6 shows parametric images of thermal lesions using the EAC. Decreases
in the EAC were observed in liver lesions created using HIFU. A nominal
attenuation value of 0.7 dB/MHz/cm was used in the estimates of EAC both before
and after therapy. These changes were not observed when heating the liver via a
water bath and at first glance suggest that different mechanisms may have caused
the damage. Further examination revealed that the apparent decrease in EAC was
associated with the region behind the lesion and was an artifact of

Fig. 9.4 (left) Graph of the BSC versus frequency for the lower thermal doses and (right) for the
higher thermal applied doses and (bottom) blow up of the higher thermal applied doses
(15–25 MHz). Figures taken from Kemmerer and Oelze (2012)
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undercompensated attenuation. Therefore, the decrease in the EAC observed
behind the lesion was attributed to the increase in the attenuation within the lesion
due to heating. EAC within the lesions did not change appreciably due to heating
with HIFU similar to water bath heating of the liver.

Similar work was also conducted by Silverman et al. (2006) using spectral
parameter imaging in both the fundamental and harmonic of backscattered RF data
to visualize a HIFU lesion. B-mode images derived from a focused 9 MHz source
were compared with spectral-parameter images based on the midband fit (MBF)
created at the fundamental frequency (9 MHz) and at the harmonic (18 MHz).
Lesions were formed using a HIFU system in freshly excised rabbit liver and in
chicken breast. Images of HIFU-induced lesions constructed from the MBF had
increased contrast of approximately 3 dB between tumor margins compared to
images using traditional ultrasonic B-mode. MBF images derived from the har-
monic had higher contrast in attenuated structures related to the lesions. In the
image space, as the image shifts from untreated to treated regions, changes in the
image features will occur. These changes are quantified by the rate of the change
in image features across the boundary or the gradient of feature changes. The
gradients between the lesion and surrounding untreated tissues were 3.4, 6.9 and
17.2 dB/mm for B-mode, MBF at the fundamental and MBF at the harmonic,
respectively. These results suggest that spectral-based features can provide
improved ability to visualize and perhaps quantify the extent of treatment due to
HIFU exposure.

In another study, the backscatter coefficient and spectral-based parameters were
quantified in fresh rabbit and beef liver during exposure to heat in a saline bath
(Ghoshal et al. 2011) in order to quantify the changes in QUS parameters versus
temperature. Samples were scanned using a 20 MHz single-element weakly-
focused transducer. QUS parameters (ESD and EAC) were estimated from the
backscatter coefficient estimates. QUS parameters were estimated from the sam-
ples versus increases in temperature from 37 to 50 �C in 1 �C increments.

Fig. 9.5 Estimates of the
average ESD for liver
samples heated in a saline
bath for different durations.
Figure taken from Kemmerer
and Oelze (2012)
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Fig. 9.6 QUS images of lesions formed using HIFU. The left and right panels each represent one
liver sample. The top panels are pre-exposure, the middle panels are post-exposure and the
bottom panels are photographs of the exposed regions. The red circles indicate the location of the
lesion
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Changes in the backscatter coefficient versus frequency were observed at dif-
ferent temperature elevations. Figure 9.7 shows graphs of the backscatter coeffi-
cients for the rabbit and beef livers taken at four different temperatures. From the
backscatter coefficients, estimates of the ESD and EAC were obtained. Figure 9.8
shows the changes in the ESD and EAC estimates for the rabbit and beef livers

Fig. 9.7 Plots of the frequency versus backscatter coefficient at different temperatures for the
(left) beef liver and the (right) rabbit liver. Figures taken from Ghoshal et al. (2011)

Fig. 9.8 Change in (left panels) ESD and (right panels) EAC versus temperature for the (top)
beef liver samples and (bottom) rabbit liver samples. Figures taken from Ghoshal et al. (2011)
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versus temperature. Significant increases in ESD and decreases in EAC of
20–40 % were observed in the samples over the range of temperatures examined.
The results of this study suggest that the backscatter coefficient and spectral-based
parameters can differentiate between livers elevated to different temperatures. The
dependencies of the spectral-based parameters on the temperature elevation of
tissues could provide a means to monitor HIFU lesion formation and temperature
elevation during therapy. One advantage to using the spectral-based parameters is
that they are absolute functions of the tissue state. Therefore, to obtain an estimate
of the temperature, previous image frames are not needed. This means that tech-
niques based on estimating the spectral-based parameters will minimize tissue
motion artifacts.

In a related study, real time monitoring of HIFU induced heating was accom-
plished using spectral-based estimates of the scatterer property changes and using
changes in estimates based on the envelope statistics (Hruska and Oelze 2009). In
this study, fresh liver samples and tumors in live rats (MAT IIB) were imaged with
a clinical system during heating with a HIFU transducer. The rise in temperature
was monitored with a thermocouple. Estimates of the ESD, EAC, and two esti-
mates from the envelope statistics were utilized. The envelope of the backscattered
ultrasound was modeled using the homodyned K distribution (Hruska and Oelze
2009). From the homodyned K distribution, the k parameter and the l parameter
were estimated with each imaging frame. The k parameter is the ratio of coherent
to incoherent signal energy and the l parameter provides an estimate of the
number of scatterers per resolution cell.

Fig. 9.9 (top and clockwise) B-mode image of liver sample, EAC versus temperature,
l parameter versus temperature, k parameter versus temperature and ESD versus temperature
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In the liver samples, the EAC was negatively correlated with the temperature
elevation while the ESD was positively correlated with the temperature elevation.
QUS images were constructed that mapped the changes in the QUS parameters
versus time and temperature elevation. Figure 9.9 shows a B-mode image of the
liver sample and the corresponding temperature profile and changes in the QUS
parameters versus temperature. The different QUS parameters were observed to
correlate (visually) to changes in temperature as recorded by the thermocouple.

In the case of the tumor exposed to HIFU, the EAC parameter were observed to
track the changes in the temperature as monitored with the thermocouple.
Figure 9.10 shows the B-mode image of the tumor and the corresponding
temperature profile and QUS parameters versus temperature. The ESD and
k parameters did not provide significant correlations with the elevation in tem-
perature. These results suggest that QUS parameters have the potential to monitor
the lesion formation induced by HIFU and to monitor the rise in temperature.

9.4 Conclusion

QUS techniques have demonstrated the ability to monitor and detect therapeutic
response of cancer to radiation, chemotherapy, and thermal therapies. Changes in
QUS parameter estimates following therapy have been correlated to changes in
tissue microstructure assessed from histological images. These techniques appear
to be sensitive to changes in tissue microstructure following various therapies.
QUS techniques that are capable of detecting changes in tissue microstructure are

Fig. 9.10 (top and clockwise) B-mode image of rat tumor, EAC versus temperature, l parameter
versus temperature, k parameter versus temperature and ESD versus temperature
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spectral based estimates (SS, SI, MBF, UIB, ESD, EAC), envelope statistics,
estimates of attenuation, estimates of sound speed, elastographic imaging and
techniques that examine changes in strain and stiffness of tissue following therapy.

Ultrasound imaging is a low-cost portable technique. The key advantage of this
technique is that the image contrast is caused by changes in the physical properties
of tissue following administration of various therapies. Therefore, the subject can
be imaged before and multiple times during the treatment without the need of
injecting specialized contrast agents as required for other techniques (e.g., PET,
DCE-MRI). A technique capable of noninvasively monitoring the administration
of therapy and rapidly assessing its effectiveness would be of great value to tailor
treatments to individual patients and particularly promising in multistage inter-
ventions or combination treatments.

A penetration depth of 2–5 cm at the frequencies of 30 MHz down to 10 MHz
allows the technique to be applicable to a variety of tumor types such as skin
cancers, certain cancers of the breast and cancers that can be reached with
endoscopic probes such as nasopharyngeal and gastro-intestinal cancers. Currently
the ultrasound scanners used in clinical imaging use frequencies of 1–10 MHz and
typically do not have RF capabilities to allow QUS analysis. Ongoing work in
detecting cell death at lower ultrasound frequency of 5–10 MHz may extend the
range of applications in the clinic and to other tumor sites seated deeper into the
body. Finally, clinical ultrasound systems capable of providing raw RF signals for
conducting QUS analysis have become largely available. Therefore, the potential
for QUS techniques to play a role in monitoring and assessing therapy response in
the future of cancer care is high.
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Chapter 10
Review of Envelope Statistics Models
for Quantitative Ultrasound Imaging
and Tissue Characterization

François Destrempes and Guy Cloutier

Abstract The homodyned K-distribution and the K-distribution, viewed as a
special case, as well as the Rayleigh and the Rice distributions, viewed as limiting
cases, are discussed in the context of quantitative ultrasound (QUS) imaging. The
Nakagami distribution is presented as an approximation of the homodyned
K-distribution. The main assumptions made are: (1) the absence of log-compression
or application of non-linear filtering on the echo envelope of the radiofrequency
signal; (2) the randomness and independence of the diffuse scatterers. We explain
why other available models are less amenable to a physical interpretation of their
parameters. We also present the main methods for the estimation of the statistical
parameters of these distributions. We explain why we advocate the methods based
on the X-statistics for the Rice and the Nakagami distributions, and the K-distri-
bution. The limitations of the proposed models are presented. Several new results
are included in the discussion sections, with proofs in the appendix.
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10.1 Introduction

The statistical distributions presented here appeared in the context of various
applications in the past 130 years or so. The Rayleigh distribution was introduced
in Rayleigh (1880) in the context of sound propagation. The Rice distribution
appeared in Nakagami (1940), and in Rice (1945) as a model of wave propagation.
The K-distribution was first introduced in Lord (1954) in the context of random
walks and then in the context of sea echo (Jakeman and Pusey 1976). The
homodyned K-distribution was introduced and studied in Jakeman (1980) and
Jakeman and Tough (1987) as a model of weak scattering. The Nakagami
distribution was defined in Nakagami (1943) in the field of wave propagation.

In ultrasound imaging, the Rayleigh distribution appeared as a model of the
gray level (also called amplitude) in an unfiltered B-mode image, viewed as the
envelope of the radiofrequency (RF) image, in the case of a high density of random
scatterers with no coherent signal component (Burckhardt 1978; Wagner et al.
1983). The Rice distribution corresponds to a high density of random scatterers
(the diffuse signal component), but combined with the presence of a coherent
signal component (Insana et al. 1986). Non-Rayleigh distributions were considered
in ultrasound imaging as early as the pioneer article of Burckhardt (1978). The
K-distribution corresponds to a variable (effective) density a of random scatterers,
with no coherent signal component and was introduced in ultrasound imaging by
Shankar et al. (1993), and Molthen et al. (1993), Narayanan et al. (1994), Shankar
(1995) and Molthen et al. (1995). The homodyned K-distribution corresponds to
the general case of a variable effective density of random scatterers with or without
a coherent signal component (Dutt and Greenleaf 1994). A simpler model consists
in modeling the gray level of the speckle pattern in a B-mode image by a
Nakagami distribution (Shankar 2000; Dumane and Shankar 2001). In the context
of QUS, the estimated parameters of the statistical distribution of the echo
envelope play the role of quantitative measures that give information about the
underlying tissues of interest.

The Nakagami distribution has been the most frequently adopted model in the
context of tissue characterization, probably due to its simplicity. As the pioneer
work, let us mention Shankar et al. (2001) in the context of breast tumor classi-
fication. The Nakagami model was then systematically used in various medical
ultrasound imaging fields, including: ophthalmology (Tsui et al. 2007); vascular
flow applications (Huang et al. 2007; Huang and Wang 2007; Tsui et al. 2008a,
2009a, 2009b); and breast cancer (Tsui et al. 2008b, 2010a, 2010b, 2010c). The
K-distribution was used in the context of breast cancer classification in the pioneer
work of Shankar et al. (1993). More recently, the homodyned K-distribution was
used for cardiac tissue characterization (Hao et al. 2002) and cancerous lesion
classification (Oelze and O’Brien 2007; Hruska et al. 2009; Mamou et al. 2010,
2011), and a model of mixtures of Rayleigh distributions was adopted for liver
fibrosis quantification (Yamaguchi et al. 2011).
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Whereas at the time of Shankar et al. (1993) and Dutt and Greenleaf (1994), the
estimation of the (homodyned) K-distribution was a problem, since then, several
estimation methods have been published. In particular, the K-distribution can be
estimated using the simple and reliable X-statistics (Blacknell and Tough 2001)
(defined as the log-moment E½I log I�=E½I� � E½log I�, where I denotes the square
of the echo envelope amplitude) and a method by Hruska and Oelze (2009) was
proposed for the estimation of the homodyned K-distribution. Thus, the use of the
Nakagami model does not seem justified anymore in the context of QUS, since it
reduces the information carried by the homodyned K-distribution model.

10.2 Chapter Content

The remaining part of this chapter is organized as follows. Section 10.3 presents in
details the various models mentioned in the introduction, as well as other available
models. A physical underlying model is also presented to help with the interpre-
tation of the various parameters. In Sect. 10.4, the most frequently used estimation
methods for the main distributions are presented. Finally, Sect. 10.5 presents the
limitations of the main models and hints to future work on that matter.

In Sect. 10.4.1, various estimation methods are explained: (1) the Maximum
Likelihood Estimator (MLE) and the Maximum A Posteriori (MAP); (2) moments
based methods; and (3) log-moments based methods. Then, in Sects. 10.4.2–
10.4.6, we kept the same structure in the presentation of the estimation methods for
each of the five distributions presented in Sects. 10.3.1 and 10.3.3 whenever
possible (according to the literature).

In Sects. 10.3 and 10.4, various remarks and additional results are mentioned in
the subsections entitled ‘‘discussion‘‘. As far as we know, most of these results are
new (Theorems 8-12, 18-23, 25-26, Corollary 2, Lemmas 4 and 5), except prob-
ably Lemmas 1-3, although we did not find references. Theorem 28 was used
explicitly in Destrempes et al. (2009, Table 1), but without proof. The proofs of the
new results are postponed to the appendix. The purpose of these new results is to
deepen the understanding of the published methods mentioned in this chapter.

Table 10.1 Main distributions discussed in this chapter and the relations among them

Distribution Notation Relation

Gamma Gðwja; 1Þ
Rice PRiðAje; r2Þ
Rayleigh PRaðAjr2Þ ¼ PRiðAj0;r2Þ
Homodyned K PHKðAje;r2; aÞ ¼

R1
0 PRiðAje;r2wÞGðwja; 1Þ dw

K PKðAjr2; aÞ ¼
R1

0 PRaðAjr2wÞGðwja; 1Þ dw

¼ PHKðAj0;r2; aÞ
Rice PRiðAje; r2Þ ¼ lima!1 PHKðAje;r2=a; aÞ
Rayleigh PRaðAjr2Þ ¼ lima!1 PKðAjr2=a; aÞ
Nakagami N ðAjm;XÞ Approximation of the homodyned K-distribution
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10.3 Statistical Models

We first present in Sect. 10.3.1 various models for the first-order statistics of the
amplitude of the echo envelope. The most general of these models is the homo-
dyned K-distribution that depends on three parameters e� 0, r2 [ 0 and a [ 0.

The Rice distribution with parameter r2 ¼ a2=2 is viewed as the limiting case of

the homodyned K-distribution with parameter r2 of the form a2=ð2aÞ when
a!1. The K-distribution is a special case of the homodyned K-distribution with
e ¼ 0, whereas the Rayleigh distribution is a special case of the Rice distribution
with the same constraint. The parameter a is related to the homogeneity of the
diffuse scattering medium and the density of the scatterers. It is called the scatterer
clustering parameter (Dutt and Greenleaf 1994). In the context of the K-distri-
bution, it is also called the effective number of scatterers (Narayanan et al. 1994).
The parameter e is called the coherent component and is related to the strength of
the specular reflection or the periodic organization of the scatterers. The diffuse
signal power can be viewed as 2r2a for the homodyned K-distribution (and
K-distribution), whereas e2 can be viewed as the coherent signal power. In
Sect. 10.3.2, an underlying physical model is presented. In Sect. 10.3.3, the
Nakagami distribution is described as an approximation of the homodyned
K-distribution. Finally, in Sect. 10.3.4, the relevance of these distributions com-
pared to other available models is discussed (see Destrempes and Cloutier (2010)
for further reading on that topic). The reader may refer to Table 10.1 for a sum-
marize of the main distributions discussed here and the relations among them.

10.3.1 The Homodyned K-Distribution and Related
Distributions

10.3.1.1 The Rayleigh Distribution

The (2-dimensional) Rayleigh distribution (Rayleigh 1880) is defined by

PRaðA j r2Þ ¼ A

r2
exp
�
� A2

2r2

�
; ð10:1Þ

where A represents the amplitude of the signal. In Jakeman and Tough (1987), the
distribution is expressed, in the context of n-dimensional random walks, in terms

of the variable a2 ¼ nr2. The case n ¼ 2 corresponds to Eq. (10.1). Equivalently,
the intensity I, i.e. the square of the amplitude A, is distributed according to an
exponential distribution.
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10.3.1.2 The Rice Distribution

The (2-dimensional) Rice distribution is expressed as

PRiðA j e; r2Þ ¼ A

r2
I0

� e
r2

A
�

exp
�
�ðe

2 þ A2Þ
2r2

�
; ð10:2Þ

where r[ 0 and e� 0 are real numbers and I0 denotes the modified Bessel
function of the first kind of order 0 (the intensity I should not be confused with the
Bessel function I0). See Jakeman and Tough (1987, Eq. 2.16) for a generalization
in dimension n� 2. The special case where e! 0 yields the Rayleigh distribution.
The case n ¼ 2 corresponds to Nakagami (1940) and Rice (1945). In Nakagami
(1960, p. 4, Eq. 5), the Rice distribution is called the ‘‘n-distribution‘‘ (Nakagami,
1940).

10.3.1.3 The K-Distribution

The (2-dimensional) K-distribution (Lord 1954; Jakeman and Pusey 1976) is
defined by

PKðA j r2; aÞ ¼ 4Aa

ð2r2Þðaþ1Þ=2CðaÞ
Ka�1

� ffiffiffiffiffi
2
r2

r
A
�
; ð10:3Þ

where a [ 0, r2 [ 0, C is the Euler gamma function, and Kp denotes the modified
Bessel function of the second kind of order p. In Jakeman and Tough (1987,

Eq. 2.11), the distribution is expressed in terms of the parameters a and b ¼
ffiffiffiffi
2
r2

q
.

In view of the compound representation presented below, we find the proposed
parametrization more convenient.

Theorem 1 (Jakeman and Tough 1987). The compound representation of the
K-distribution is

PKðA j r2; aÞ ¼
Z 1

0
PRaðA j r2wÞGðw j a; 1Þ dw; ð10:4Þ

where PRa denotes the Rayleigh distribution, and Gðw j a; 1Þ is the gamma distri-
bution wa�1 expð�wÞ=CðaÞ of mean and variance equal to a.

The compound representation is useful to simulate the K-distribution, and in the

evaluation of its value. A K-distribution with parameters r2 ¼ a2=ð2aÞ and a

yields the Rayleigh distribution with parameter ‘‘r2’’ ¼ a2=2, as a!1. See
Jakeman and Tough (1987, Eq. 2.12). Thus, the parameter ‘‘r2’’ of the limiting

Rayleigh distribution is a2=2, and should not be confused with the parameter r2 of
the K-distribution. The relation between these two quantities is

‘‘r2’’ ¼ a2=2 ¼ r2a.
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10.3.1.4 The Homodyned K-Distribution

The (2-dimensional) homodyned K-distribution (Jakeman 1980; Jakeman and
Tough 1987) is defined by

PHKðA j e; r2; aÞ ¼ A

Z 1
0

uJ0ðueÞJ0ðuAÞ
�
1þ u2 r2

2

��a
du ð10:5Þ

where r2 [ 0, a[ 0, e� 0, and J0 denotes the Bessel function of the first kind of
order 0. In Jakeman and Tough (1987, Eq. 4.13), the homodyned K-distribution is

expressed in terms of the parameters a, a2 ¼ nr2a, and a0 ¼ e, in the context of
n-dimensional random walks.

Theorem 2 (Jakeman and Tough 1987). The compound representation of the
homodyned K-distribution is

PHKðA j e; r2; aÞ ¼
Z 1

0
PRiðA j e; r2wÞGðw j a; 1Þd w; ð10:6Þ

where PRi denotes the Rice distribution and Gðw j a; 1Þ is the gamma distribution
with mean and variance equal to a.

The case e! 0 yields the K-distribution (with parameters r2, a). In particular,
the compound representation of the homodyned K-distribution is consistent with
Eq. (10.4), upon taking e! 0. A homodyned K-distribution with parameters e,

r2 ¼ a2=ð2aÞ and a yields the Rice distribution with parameters e and ‘‘r2’’

¼ a2=2, as a!1. Thus, if in addition, e! 0, then one obtains the Rayleigh

distribution with parameter ‘‘r2’’ ¼ a2=2, as a!1. Figure 10.1 illustrates four
representative examples of the homodyned K-distribution (including two examples
of the K-distribution, as a special case).

Two functions of the three parameters of the homodyned K-distribution are
invariant under scaling of the intensity (Dutt and Greenleaf 1994): (1) the
parameter a; (2) the structure parameter j ¼ e2=ð2r2aÞ, i.e. the ratio of the

coherent signal power e2 with the diffuse signal power a2 ¼ 2r2a. Other param-
eters of the homodyned K-distribution were considered in the literature: the
coherent to diffuse signal ratio k ¼

ffiffiffiffiffiffi
2j
p

¼ e=ðr
ffiffiffi
a
p
Þ (Dutt and Greenleaf 1994;

Dutt 1995; Hruska and Oelze 2009), and the parameter b equal to 1=a (Dutt and
Greenleaf 1994; Dutt 1995).

Considering r2 ¼ a2=ð2aÞ and letting a tend to infinity, one obtains a Rice

distribution for which the diffuse signal power is also a2 and the structure

parameter j is also equal to e2=a2.
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10.3.2 Interpretation of the Distributions in the Context
of Ultrasound Imaging

In Shankar et al. (1993), Molthen et al. (1993), Narayanan et al. (1994), Shankar
(1995) and Molthen et al. (1995), one considers Ns scatterers lying in an ambient
scattering medium within the resolution cell. Each scatterer corresponds to a
phasor ajei/j with two elements: (1) an amplitude aj depending on the scattering
properties (i.e., the scattering cross section) and the position of the scatterer with
respect to the ultrasound beam, the instrumentation and the attenuation; (2) a phase
/j that depends on the scatterer’s position. One then postulates (Narayanan et al.

1994) a K-distribution with parameters r2 and as for each amplitude and considers
uniformly distributed independent phases for each scatterer. The choice of the
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Fig. 10.1 Typical examples of the homodyned K-distribution. Top row K-distribution (e ¼ 0).
Bottom row e [ 0. The dashed curves represent the approximating Nakagami distributions. The
Kullback-Leibler distance values between the two distributions were: top left 0:035; top right
0:0025; bottom left 0:33 (with a coherent to diffuse signal ratio k ¼ e=ðr

ffiffiffi
a
p
Þ equal to 8:5); bottom

right 0:012 (with k � 1:9)
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K-distribution was motivated in Narayanan et al. (1994) by its good modeling
properties of the first-order statistics of the echo envelope in the case where the
Rayleigh distribution model (corresponding to infinitely many scatterers of iden-
tical cross-sections) breaks down, as explained in the next paragraph. Assuming
weak scattering, the resulting complex signal is expressed as

A ¼
XNs

j¼1

aje
i/j : ð10:7Þ

Then, its amplitude A is viewed as the norm of the complex signal.
Note that Eq. (10.7) can be viewed as a random walk in the Euclidean plane

(corresponding to n ¼ 2), since the complex number ei/j corresponds to the vector
ðcosð/jÞ; sinð/jÞÞ. Thus, the amplitude A ¼ A corresponding to Eq. (10.7) follows
a K-distribution with parameter a ¼ asNs. In that context, a is called the effective
number of scatterers, because the number of scatterers Ns is multiplied by the
parameter as. For instance, if Ns is large, but as is so small that asNs � 10, then
the resulting distribution is a K-distribution rather than a Rayleigh distribution. For
the same reason, even if Ns is small, but as is so large that asNs� 10, then one
obtains a Rayleigh distribution. The parameter as is a parameter describing the
lack of uniformity of the scattering cross sections in the range cell (c.f. Narayanan
et al. 1994, Eq. (6)). A small value of as corresponds to a great variability, whereas
a large value of as corresponds to a small variability. Thus, the parameter as is
viewed as a measure of homogeneity of the scattering medium. The choice of the
K-distribution is also consistent with the observation that the higher order
moments of the intensity of the echo envelope may be larger than the ones pre-
dicted by the Rayleigh distribution model in the case of pathological tissues
(Shankar et al. 1993). For instance, under the Rayleigh model, one would have

E½I2�=E½I�2 ¼ 2, whereas the K-distribution model yields E½I2�=E½I�2 ¼
2ð1þ 1=aÞ, which corresponds to observed values upon taking a sufficiently small.
So, the statistics of the echo envelope depart from the Rayleigh model if the
number of scatterers is small and as is not too large, or if the cross-sections are
heterogeneous and Ns is not too large.

Adding a coherent component e, with constant amplitude e and either a constant
phase or a uniformly distributed phase, then yields a homodyned K-distribution
with parameters e, r2 and a ¼ asNs, for the amplitude A ¼ keþ Ak. Since a
coherent component may arise when the scatterers are organized periodically, the
parameter a does not quite represent the effective number of scatterers in that
context, but it may still be viewed as a scatterer clustering parameter. The coherent
component may also be caused by specular reflection.
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10.3.3 The Nakagami Distribution as an Approximation

The Nakagami distribution (Nakagami 1943, 1960) is defined by

N ðA jm;XÞ ¼ 2mm

CðmÞXm A2m�1e�mA2=X; ð10:8Þ

where C is the Euler gamma function. The real numbers m [ 0 and X [ 0 are
called the shape parameter and the scaling parameter, respectively. Equivalently,
the intensity I ¼ A2 follows a gamma distribution, with shape parameter m and
scale parameter X=m.

The shape parameter m can be interpreted as the square of the intensity signal-

to-noise ratio (SNR), i.e. m ¼ E½I�2
VarðIÞ and X represents the mean intensity E½I� (i.e.,

the total signal power). The intensity SNR should not be confused with the
amplitude SNR. For instance, when m ¼ 1, one retrieves the Rayleigh distribution.
This observation can be found in Nakagami (1960, p. 17, Eqs. 50 and 51). In that
case, the intensity SNR is equal to 1, whereas the amplitude SNR is about 1:91.

The Nakagami distribution can be viewed as an approximation of the homo-
dyned K-distribution. First of all, we have the limiting case where a!1, which
yields the Rice distribution and corresponds to the case m� 1.

Theorem 3 (Destrempes and Cloutier 2010). Let m ¼ ðe2þ2r2Þ2
4r2ðe2þr2Þ and

X ¼ e2 þ 2r2. Then,

DKL

�
PRiðe; r2Þ; N ðm;XÞ

�
� 0:02; ð10:9Þ

where DKL denotes the Kullback-Leibler distance (Kullback and Leibler 1951)
between two distributions.

Recall that the Kullback-Leibler distance (also called Kullback-Leibler diver-
gence because it is non-symmetric) is a measure of the difference between two
probability distribution functions (PDF) f ðxÞ and gðxÞ in the continuous random

variable x and is defined by
R

f ðxÞ log
f ðxÞ
gðxÞ dx. It has the properties: (1)

DKLðf ; gÞ� 0 for any PDFs f and g; and (2) DKLðf ; gÞ ¼ 0 if and only if f 	 g.
However, it is a non-symmetric measure (i.e., DKLðf ; gÞ is not necessarily equal to
DKLðg; f Þ). The choice of m and X in Theorem 3 is consistent with the identities

SNR2 ¼ ðe2þ2r2Þ2
4r2ðe2þr2Þ and E½I� ¼ e2 þ 2r2 valid for the Rice distribution. See also

Nakagami (1960, p. 18, Eq. (55)).
We also have the following approximation result in the case of the K-distri-

bution (e! 0), which corresponds to the case m\1.

Theorem 4 (Destrempes and Cloutier 2010). Let m ¼ a
ðaþ1Þ and X ¼ 2r2a. Then,
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DKL

�
PKðr2; aÞ; N ðm;XÞ

�
� 0:0325: ð10:10Þ

For Theorem 4, the choice of m and X is consistent with the identities
E½I log I�=E½I� � E½log I� ¼ 1=m and E½I log I�=E½I� � E½log I� ¼ 1þ 1=a valid for
the Nakagami distribution and the K-distribution, respectively (see Sects. 10.4.4.5
and 10.4.6.3).

10.3.4 Discussion

In this section, a new result on the Nakagami distribution as an approximation of
the homodyned K-distribution is introduced (in greater generality than Theorems 3
and 4). We then discuss the consistency of the distributions presented in Sect.
10.3.1 in the limit case of a vanishing diffuse signal power, and we explain why
other models available in the literature fail to have this feature (Destrempes and
Cloutier 2010). Finally, as a new result, that property is shown to hold for the
Nakagami distribution.

Considering the general case of a homodyned K-distribution with parameters e,

r2, and a, the Mð1Þ-statistics E½A�=
ffiffiffiffiffiffiffiffi
E½I�

p
is expressed explicitly in Theorem 24 as a

function Mð1ÞHKðc; aÞ, where c ¼ ja. Using the identity Mð1ÞNa ðmÞ ¼
Cð1=2þmÞffiffiffi

m
p

CðmÞ of

Theorem 30, one then solves the equation Mð1ÞNa ðmÞ ¼ Mð1ÞHKðc; aÞ in the variable m,
using a binary search algorithm based on Theorem 31. This yields a function
m ¼ mðc; aÞ. Moreover, considering E½I�, one is led to the identity X ¼ e2 þ
2r2a ¼ l (the average value of the intensity). So, one is interested in the Kullback-
Leibler distance

DKL

�
PHKðe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc
ðcþ aÞ

r
; r2 ¼ l

2ðcþ aÞ ; aÞ; N ðm ¼ mðc; aÞ;X ¼ lÞ
�
;

ð10:11Þ

as a function of c, a, and l. It can be seen that this function is independent of the
scaling factor l (this is actually a general property of the Kullback-Leibler
distance).

We computed Eq. (10.11) for k ¼ e=ðr
ffiffiffi
a
p
Þ ¼ 0:0; 0:1; . . .; 2:0, a ¼ 1; 2; . . .; 20,

taking r2 ¼ 1=a. For each value of k and a, a sample set of size N ¼ 1,000 was
simulated according to the corresponding homodyned K-distribution. The Kullback-
Leibler distance was then estimated as the average over the simulated set of

log
�

PHKðAi j e ¼ k; r2 ¼ 1=a; aÞ= N ðAi jm ¼ mðc; aÞ;X ¼ k2 þ 2Þ
�

. The maxi-

mal value was 0:072 (this result could be slightly improved upon considering the
X-statistics instead of the Mð1Þ-statistics). So, the Nakagami pdf is a satisfying
approximation in that range of the parameters k and a. See Fig. 10.1 for examples of
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approximating Nakagami distributions. In that figure, we included an example of a
value of k much larger than 2; in that case, the KL distance is quite large (0:33).

Theorem 2 states that the homodyned K-distribution corresponds to a model in
which the diffuse signal power 2r2 of a Rice distribution is modulated by a gamma
distribution, but not its coherent signal component e. As mentioned in Destrempes
and Cloutier (2010), there are several more models for the first-order statistics of
the echo envelope. One modeling possibility introduced in Barakat (1986) and
further developed in Jakeman and Tough (1987) is equivalent to modulate both the
coherent signal component e and the diffuse signal power 2r2 of the Rice distri-
bution by a gamma distribution. This gives rise to the generalized K-distribution.
Note that this distribution has not been used in ultrasound imaging as of now.
However, in Eltoft (2005), the Rician inverse Gaussian distribution (RiIG) is
introduced, and it corresponds to a model in which both the coherent signal
component e and the diffuse signal power 2r2 of a Rice distribution are modulated
by an inverse Gaussian (IG) distribution, instead of a gamma distribution. Thus,
this model is related to the generalized K-distribution, as further discussed in
Destrempes and Cloutier (2010).

Three other distributions were introduced in the context of ultrasound imaging.
The first one is called the generalized Nakagami distribution (Shankar 2000), and
is obtained from the Nakagami distribution by a change of variable of the form
y ¼ A1=s, where s is a shape adjustment parameter and A is the amplitude of the
signal. This distribution was also proposed in Raju and Srinivasan (2002) (in the
equivalent form of a generalized gamma distribution). The second other distri-
bution is called the Nakagami-gamma distribution (Shankar 2003). That distri-
bution can be viewed as a model in which the Rice distribution is approximated by
a Nakagami distribution, and in which its total signal power X is modulated by a
gamma distribution. The third distribution is called the Nakagami-generalized
inverse Gaussian (NGIG) distribution (Agrawal and Karmeshu 2006), and it cor-
responds to a model in which the (approximating) Nakagami distribution has its
total signal power X modulated by a generalized inverse Gaussian (GIG) distri-
bution instead of a gamma distribution.

As shown in Destrempes and Cloutier (2010), none of these five other models is
compatible with the limit case of a vanishing diffuse signal power 2r2as. Indeed, in
that case, one should obtain an infinite intensity SNR (if e [ 0). It turns out that
only the homodyned K-distribution and its related distributions satisfy that prop-
erty. In fact, keeping as (the scattering cross sections homogeneity) and Ns (the
number of random scatterers within the resolution cell) constant (see 10.3.2), one
must have r2 ! 0 if the diffuse signal power 2r2asNs vanishes. Then, as computed
in Destrempes and Cloutier (2010), one obtains an infinite intensity SNR if e [ 0,
either for the Rice distribution or the homodyned K-distribution. Moreover, it was
shown in Destrempes and Cloutier (2010) that the total signal power depends only
on the coherent component in that case, which is a desirable property. Since the
other distributions do not have these two properties, it makes the interpretation of
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their parameters more delicate, even if goodness-of-fit tests with data might be
satisfying.

Finally, let us show that the Nakagami distribution also has these two prop-
erties. For that purpose, we consider a homodyned K-distribution with parameters
e, r2, and a, and its approximating Nakagami distribution with parameters m ¼
mðe2=ð2r2Þ; aÞ and X ¼ e2 þ 2r2a as at the beginning of this section. If e [ 0 and
a are fixed and r2 ! 0, then, the parameter c ¼ e2=ð2r2Þ ! 1. From Theorem

26, part b), one has limc!1Mð1ÞHKðc; aÞ ¼ 1 (a being fixed). Thus, from Theorem
31, part b), one concludes that mðc; aÞ ! 1. Therefore, one obtains

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðc; aÞ

p
!1. Moreover, if r2 ! 0, then X ¼ e2 þ 2r2a! e2, which is

independent of the diffuse signal parameters r2 and a. Therefore, the Nakagami,
just as the Rice distribution and the homodyned K-distribution, is compatible with
the limit case of a vanishing diffuse signal.

10.4 Parameter Estimation Methods

We discuss various known methods for the estimation of the parameters of the
distributions presented in 10.3 based on an independent and identically distributed
(i.i.d.) sample set ðA1; . . .;ANÞ of positive real numbers (representing the
amplitude).

10.4.1 Overview of a Few Estimation Methods

10.4.1.1 The MLE and the MAP

The MLE is defined as a critical point of the log-likelihood function (Edgeworth
1908, 1909; Fisher 1912, 1922, 1925) (the reader may also consult Pratt (1976))

LðhÞ ¼
XN

i¼1

log PðAi j hÞ; ð10:12Þ

where h represents the vector of parameters of the distribution and fA1; . . .;ANg is
the sample data of size N. Actually, there might be multiple critical points and no
global maximum (on the entire parameter domain). However, if the true value of
the parameters is in the interior of a compact subset of the parameter domain, then
the global maximum of the log-likelihood on that compact set converges to the
true value of the parameters as the size of the sample tends to infinity (Redner
1981). Thus, one can define the MLE as the critical point with largest log-likeli-
hood value (Redner and Walker 1984). A major difficulty lies in the analysis of the
critical points: how many are there and which one coincides with the MLE? In
fact, if the sample size is not sufficiently large, there might be no critical point of
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the log-likelihood function. Thus, one needs to address this issue before applying
any numerical method to find the MLE.

One may also wish to impose a prior pðhÞ on the parameters of the distribution.
In that case, one considers the critical points of the constrained log-likelihood
function

LðhÞ þ log pðhÞ; ð10:13Þ

where log pðhÞ is viewed as a regularizing term. The MAP can then be defined as
the critical point with largest value of the constrained log-likelihood function.

10.4.1.2 Moments Based Methods

Moments’ methods have the advantage, over the MLE, of providing simpler and
faster algorithms. On the other hand, the resulting systems of equations do not
always admit a solution.

The simplest of these methods is based on the first few moments of the
intensity. The number of moments considered is then equal to the number of
parameters in the estimated distribution: one for the Rayleigh distribution, two for
the Rice distribution, the K-distribution or the Nakagami distribution, and three for
the homodyned K-distribution. Thus, one solves the system of equations

E½Im� ¼ Im; m ¼ 1; . . .; r ð10:14Þ

where r is the number of parameters of the distribution. In Eq. (10.14), the left-
hand side E½Im� represents a function of the parameters of the distribution, whereas
the right-hand side Im is the empirical moment computed from the data.

A slightly more complex method is based on the first few moments of the
amplitude. Thus, one solves the system of equations

E½Am� ¼ Am; m ¼ 1; . . .; r: ð10:15Þ

Since the intensity is the square of the amplitude, such methods use lower orders of
the intensity, and thus, are likely to be less sensitive to noise. On the other hand,
the analytical expressions of those moments are typically more complex than
integral order moments of the intensity.

One may also use arbitrary fractional order moments of the intensity. For later
reference, we find convenient to introduce the MðmÞ-statistics, defined as

MðmÞ ¼ Am

ðIÞm=2
; ð10:16Þ

where m [ 0. This statistic is the fractional moment of order m of the amplitude
normalized so that it becomes invariant under multiplication of the signal by a
positive scaling constant.
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Lemma 1 For any non-constant random variable, 0\MðmÞ\1, if 0\m\2,
whereas MðmÞ[ 1, if m[ 2.

Proof If m\2, the function Im=2 is convex. Therefore, by Jensen’s inequality

(Jensen 1906), we have E½Am� ¼ E½Im=2�\ðE½I�Þm=2 since the random variable I is
non-constant. If m [ 2, the function Im=2 is concave and we obtain the reversed
inequality. �

If the number of parameters r is at least 2, the method based on the first few
moments of the intensity is equivalent to solving the system

E½I� ¼ I;
E½Am�
ðE½I�Þm=2

¼ Am

ðIÞm=2
; m ¼ 4; 6 ð10:17Þ

and thus amounts to working with the Mð4Þ and Mð6Þ statistics. Similarly, the
method based on the first few moments of the amplitude is equivalent to solving
the system

E½I� ¼ I;
E½Am�
ðE½I�Þm=2

¼ Am

ðIÞm=2
; m ¼ 1; 3 ð10:18Þ

and thus amounts to working with the Mð1Þ and Mð3Þ statistics.
One may also combine various moments in the form of the SNR of a fractional

order of the amplitude

RðmÞ ¼ Am

ðA2m � ðAmÞ2Þ1=2
; ð10:19Þ

or the skewness

SðmÞ ¼ A3m � 3Am A2m þ 2ðAmÞ3

ðA2m � ðAmÞ2Þ3=2
; ð10:20Þ

or the kurtosis

KðmÞ ¼ A4m � 4Am A3m þ 6A2m ðAmÞ2 � 3ðAmÞ4

ðA2m � ðAmÞ2Þ2
: ð10:21Þ

Note that these three statistics can be expressed in terms of the family of MðmÞ-

statistics. For instance, we have RðmÞ ¼ MðmÞ

ðMð2mÞ�ðMðmÞÞ2Þ1=2.

Considering more equations than the number of parameters of the distribution
yields an overdetermined system of (non-linear) equations that may be solved in
the sense of the least mean square (LMS). Thus, overall, all these methods amount
to considering various combinations of the MðmÞ-statistics.
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10.4.1.3 Log-Moments Based Methods

One may also work with moments of functions of the intensity that involve its
logarithm. Ideally, one would consider powers of the logarithm of the intensity.
But powers greater than 1 appear to be intractable for the distributions considered
in this chapter, because the resulting integrals are not known explicitly as far as we
can tell. Moreover, one may want to obtain functions that are invariant under a
change of the intensity by a scaling factor. Thus, one is led to the so-called
U-statistics (Oliver 1993)

U ¼ log I � log I; ð10:22Þ

and the X-statistics (Blacknell and Tough 2001)

X ¼ I log I=I � log I: ð10:23Þ

Lemma 2 For any non-constant random variable, U\0:

Proof The function log I is convex. Therefore, from Jensen’s inequality, we
obtain E½log I�\ log E½I�, since the random variable I is non-constant. �

Lemma 3 For any non-constant random variable, X [ 0.

Proof The function I log I is concave. Thus, E½I log I�[ E½I� log E½I�. From
Lemma 2, we conclude that E½I log I�[ E½I�E½log I�. �

10.4.2 Parameter Estimation Method for the Rayleigh
Distribution

Since a Rayleigh distribution with parameter r2 on the amplitude A is equivalent to
an exponential distribution with parameter 2r2 on the intensity I ¼ A2, the MLE of
the parameter r2 is equal to I=2. Note that, in this special case, the MLE coincides
with the estimator based on the first moment of the intensity.

10.4.3 Parameter Estimation Methods for the Rice
Distribution

10.4.3.1 The MLE for the Rice Distribution

In Talukdar and Lawing (1991), the Rice distribution is estimated in the sense of
the MLE, as follows.
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Theorem 5 (Talukdar and Lawing 1991). Let A1; . . .;AN be a finite sample set of
positive numbers. Let e� 0 and r2 [ 0 be the parameters of the Rice distribution.

Let l ¼ e2 þ 2r2, and j ¼ e2=ð2r2Þ. Let yi ¼ Ai=
ffiffi
I
p

, where I ¼ 1=N
PN

i¼1 A2
i .

Then, the critical points of the log-likelihood function LRiðe; r2Þ of the Rice dis-
tribution are the points of the form

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj=ðjþ 1Þ

p
; r2 ¼ l=ð2ðjþ 1ÞÞ; ð10:24Þ

where l ¼ I and j� 0 is any root of the function f ðjÞ defined by

1
ð1þ jÞ þ

ð1þ 2jÞ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ jÞ

p XN

i¼1

yi
I1ð2yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ jÞ

p
Þ

I0ð2yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ jÞ

p
Þ
� 2: ð10:25Þ

Here, Ip denotes the modified Bessel function of the first kind of order p (the
subscript avoids the confusion with the intensity I).

Theorem 5 gives useful information on the value of l for the critical points of
the log-likelihood function. It also introduces a one-variable function f ðjÞ. But the
main drawback is the lack of information on the roots of f . Fortunately, a more
recent result gives complete information about the critical points of the log-like-
lihood function of the Rice distribution in the following form.

Theorem 6 (Carrobi and Cati 2008). Let A1; :::;AN be a finite sample set of
positive numbers. Let e� 0 and r2 [ 0 be the parameters of the Rice distribution.

Let I ¼ 1=N
PN

i¼1 A2
i . Assume that the elements Ai are not all identical. Then, the

log-likelihood function LRiðe; r2Þ of the Rice distribution has exactly two critical
points: ð0; I=2Þ and another one, denoted ðê; r̂2Þ, that satisfies ê [ 0 and r̂2 [ 0.
Moreover, the MLE is the second one. In fact, the MLE is actually an absolute
maximum of the log-likelihood function on its domain.

Thus, the MLE ð̂e; r̂2Þ consists of the unique critical point of the log-likelihood
function LRiðe; r2Þ for which both coordinates are positive.

10.4.3.2 Expression of Fractional Order Moments of the Amplitude

The MðmÞ-statistics is explicitly known for the Rice distribution.

Theorem 7 (Rice 1954). Assume that A ¼
ffiffi
I
p

is distributed according to the Rice
distribution, with parameters e� 0 and r2 [ 0. Set j ¼ e2=ð2r2Þ. Then, the MðmÞ-

statistics E½Am�=E½I�m=2 is equal to

MðmÞRi ðjÞ ¼
Cðm=2þ 1Þ
ðjþ 1Þm=2 1 F1ð�m=2; 1;�jÞ; ð10:26Þ
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where pFqða1; :::; ap; b1; :::; bq; zÞ is the generalized hypergeometric series (here
p ¼ q ¼ 1).

10.4.3.3 Method Based on the Moments of the Amplitude

In Talukdar and Lawing (1991), an estimation method of the Rice distribution
based on the first two moments of the amplitude is proposed as an alternative to the
MLE. The method consists of solving the system of equations

E½A� ¼ A; E½A2� ¼ A2: ð10:27Þ

For that purpose, it is proposed to consider the equivalent system E½I� ¼ I and
E½A�

E½I�1=2 ¼ Mð1Þ. The point of using this equivalent system is that the Mð1Þ-statistics

for the Rice distribution depends only on the parameter j. As a special case of
Theorem 7, we have the Mð1Þ-statistics.

Corollary 1 Talukdar and Lawing (1991). Assume that A ¼
ffiffi
I
p

is distributed
according to the Rice distribution, with parameters e� 0 and r2 [ 0. Set

j ¼ e2=ð2r2Þ. Then, the Mð1Þ-statistics E½A�=E½I�1=2 is equal to

Mð1ÞRi ðjÞ ¼
Cð3=2Þffiffiffiffiffiffiffiffiffiffiffi

jþ 1
p e�j=2

�
ð1þ jÞI0ðj=2Þ þ jI1ðj=2Þ

�
; ð10:28Þ

where Ip denotes the modified Bessel function of the first kind of order p:

10.4.3.4 Discussion

In this section, we present a new result on the computation of the MLE of the Rice
distribution. We show that the Talukdar-Lawing estimator of Sect. 10.4.3.3 can be
computed with a binary search algorithm. We introduce two log-moments based
methods for the Rice distribution. Finally, we compare these estimators on sim-
ulated data.

Concerning the MLE computation, a little more work allows to combine
Theorems 5 and 6 into the following result. See Fig. 10.2 for an illustration of the
function f ðjÞ.

Theorem 8 Notation as in Theorem 5. Assume that the data elements Ai are not
all identical. Then, the function f ðjÞ of Eq. 10.25 has exactly two non-negative
roots: 0 and a unique positive root, denoted j
. The MLE is expressed as in
Eq. (10.24), with j ¼ j
 (i.e. the unique positive root of the function f ). Moreover,
f ðjÞ[ 0 on the interval ð0;j
Þ, and f ðjÞ\0 on the interval ðj
;1Þ.
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Theorem 8 implies that an efficient binary search algorithm can be used for the
computation of the MLE of the Rice distribution.

Concerning the estimation method based on the MðmÞ-statistics, in general, there

is no closed form for a solution to the equation. MðmÞRi ðjÞ ¼ M, but one can use the
following result, relevant for any m 6¼ 2. See Fig. 10.3, right column, for an

illustration of the function MðmÞRi ðjÞ.

Theorem 9 Let m[ 0. Then,

(a) limj!0 MðmÞRi ðjÞ ¼ Cðm=2þ 1Þ;
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(b) limj!1MðmÞRi ðjÞ ¼ 1;

(c) if m\2, the function MðmÞRi ðjÞ is an increasing function; if m [ 2, the function

MðmÞRi ðjÞ is a decreasing function.

Thus, let M [ 0 be a real number (playing the role of the MðmÞ-statistics). If
m\2 and Cðm=2þ 1Þ�M\1, then an efficient binary search algorithm yields the

unique solution to the equation MðmÞRi ðjÞ ¼ M. Indeed, from Theorem 9, the

function MðmÞRi ðjÞ is increasing in that case and its range is the interval
½Cðm=2þ 1Þ; 1Þ. On the other hand, if m\2 and M\Cðm=2þ 1Þ, then there is no

solution to the equation MðmÞRi ðjÞ ¼ M. Nevertheless, in that case, the value j ¼ 0

minimizes the distance between MðmÞRi ðjÞ and M. Thus, it makes sense to take
j ¼ 0. Similarly, if m [ 2 and 1\M�Cðm=2þ 1Þ, then there is a unique solution

to the equation MðmÞRi ðjÞ ¼ M, and this solution can be found efficiently with a
binary search algorithm. On the other hand, if m [ 2 and M [ Cðm=2þ 1Þ, one
may take j ¼ 0. Thus, it makes sense to switch to the Rayleigh model (corre-

sponding to j ¼ 0), whenever the equation MðmÞRi ðjÞ ¼ M has no solution. This
argument applies to the special case where m ¼ 1, which corresponds to the
Talukdar-Lawing method of Corollary 1. For later reference, we introduce here
what we call the Rice conditions

m\2 and Cðm=2þ 1Þ�M\1, or m [ 2 and 1\M�Cðm=2þ 1Þ: ð10:29Þ

Thus, as explained above, the equation MðmÞRi ðjÞ ¼ M has a solution if and only if
the Rice conditions are satisfied. Note that the U and X-statistics can be computed
analytically for the Rice distribution.

Theorem 10 Assume that A ¼
ffiffi
I
p

is distributed according to the Rice distribu-
tion, with parameters e� 0 and r2 [ 0. Set j ¼ e2=ð2r2Þ. Then,

(a) the U-statistics E½log I� � log E½I� is equal to

URiðjÞ ¼ Cð0; jÞ þ log
j

jþ 1
; ð10:30Þ

where Cð0; xÞ is the incomplete gamma function
R1

x
e�t

t dt;
(b) the X-statistics E½I log I�=E½I� � E½log I� is equal to

XRiðjÞ ¼
1

jþ 1
ð2� e�jÞ: ð10:31Þ

Theorem 11 below shows that a binary search algorithm can be used to solve
the equation URi ¼ U if and only if U� � cE, where cE is the Euler’s constant. If
ever U\� cE, one may switch to the Rayleigh model (j ¼ 0). Similarly,
Theorem 12 shows that the equation XRi ¼ X has a solution (which is then unique
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and can be found with a binary search algorithm) if and only if X\4. If ever X� 4,
one may switch to the Rayleigh model.

Theorem 11

(a) limj!0 URiðjÞ ¼ �cE, where cE is the Euler’s constant;
(b) limj!1 URiðjÞ ¼ 0;
(c) the function URiðjÞ is an increasing function.

Theorem 12

(a) limj!0 XRiðjÞ ¼ 1;
(b) limj!1 XRiðjÞ ¼ 0;
(c) the function XRiðjÞ is a decreasing function.

See Fig. 10.4, right column, for an illustration of the X-statistics for the Rice
distribution.
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In order to compare these four estimators, we considered the parameter k ¼ffiffiffiffiffiffi
2j
p

¼ e=r with values in the set f0:1; 0:2; . . .; 2:0g. For each value of k, 1; 000
datasets of N ¼ 1; 000 elements each were simulated according to the corre-
sponding Rice distribution. Thus, we could estimate the normalized mean squared

error (MSE) of the estimator k̂ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðk̂ � kÞ2�

q
=k. The resulting normalized MSE

curves are presented in Fig. 10.5. As one can see, the MLE is slightly better than
the estimators based on the Mð1Þ or the X-statistics. The method based on the
U-statistics is slightly worse than the other estimators. The two estimators based
on the Mð1Þ and the X-statistics are practically equivalent.

10.4.4 Parameter Estimation Methods for the K-Distribution

10.4.4.1 The MLE for the K-Distribution

The partial derivatives of the log-likelihood function of the K-distribution with
respect to a and r2 are equal to

o

oa
LKðr2; aÞ ¼ �NwðaÞ þ

XN

i¼1

log
� 1ffiffiffiffiffiffiffi

2r2
p Ai

�
þ

o
oa Ka�1

� ffiffiffiffi
2
r2

q
Ai

�

Ka�1

� ffiffiffiffi
2
r2

q
Ai

� ; ð10:32Þ

o

or2
LKðr2; aÞ ¼ �Na

r2
þ
XN

i¼1

1
r2

� 1ffiffiffiffiffiffiffi
2r2
p Ai

� Ka
� ffiffiffiffi

2
r2

q
Ai

�
Ka�1

� ffiffiffiffi
2
r2

q
Ai

� : ð10:33Þ

Solutions to this system of two non-linear equations are found numerically in
Joughin et al. (1993). In Roberts and Furui (2000), an Expectation-Maximization
(EM) algorithm is proposed for finding the MLE. In that context, the variable w of
Eq. (10.4) is viewed as the latent variable. A variant of the EM algorithm is used
in Chung et al. (2005) in place of the standard EM algorithm.

However, none of the methods (Joughin et al. 1993; Roberts and Furui 2000;
Chung et al. 2005) can be used in full generality, because the MLE is not always
well-defined for the K-distribution. See Sect. 10.4.4.6 for a discussion on that
issue.

10.4.4.2 Expression of Fractional Order Moments of the Amplitude

The MðmÞ-statistics is explicitly known for the K-distribution.
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Theorem 13 (Dutt and Greenleaf 1995). Assume that A ¼
ffiffi
I
p

is distributed
according to the K-distribution, with parameters r2 [ 0 and a[ 0. Then, the MðmÞ

-statistics E½Am�=E½I�m=2 is equal to

MðmÞK ðaÞ ¼ Cðm=2þ 1ÞCðm=2þ aÞ
am=2CðaÞ : ð10:34Þ

10.4.4.3 A Method Based on the Moments of the Intensity

The simplest moments method consists in solving the system of equations

E½I� ¼ I; E½I2� ¼ I2: ð10:35Þ

Equivalently, that method is based on the mean intensity and the Mð4Þ-statistics
(that statistics is called the V-statistics in Blacknell and Tough (2001)). One

computes for the K-distribution VKðaÞ ¼ E½I2�=E½I�2 ¼ 2
�

1þ 1
a

�
. Thus, there is a

solution to the system (10.35) if and only if V [ 2, in which case the solution is
equal to a ¼ 2=ðV � 2Þ.

10.4.4.4 Two Methods Based on Fractional Order Moments
of the Amplitude

In Dutt and Greenleaf (1995), the authors suggest to use the SNR based on
fractional order moments in the form of the RðmÞ-statistics, where m[ 0. In that
study, it is shown that a value of m ¼ 1=4 yields a reliable estimator. We have the
following result (note that there is a typographical error in Dutt and Greenleaf
(1995, Eq. (6), p. 253)).

Theorem 14 (Dutt and Greenleaf 1995). Assume that A is distributed according
to the K-distribution, with parameters r2 [ 0 and a[ 0. Then, the RðmÞ-statistics

E½Am�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½A2m��E½Am�2
p is expressed as

RðmÞK ðaÞ ¼
Cðm=2þ 1ÞCðm=2þ aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðmþ 1ÞCðmþ aÞCðaÞ � C2ðm=2þ 1ÞC2ðm=2þ aÞ
q : ð10:36Þ

In Iskander and Zoubir (1999), the authors suggest the use of fractional order

moments in the form of the Y-statistics E½A2rþ2s�
E½A2r �E½A2s�, where s [ 0, and r 2 N. It is
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shown that a value of s\2 yields lower variance of the resulting estimator, taking
r ¼ 1. The following result holds.

Theorem 15 (Iskander and Zoubir 1999). Assume that A is distributed according
to the K-distribution, with parameters r2 [ 0 and a [ 0. Then, the Y-statistics

E½A2þ2s�
E½A2�E½A2s� is expressed as

YKðaÞ ¼ ð1þ sÞð1þ s

a
Þ: ð10:37Þ

Using Theorem 15, there is a solution to the equation YKðaÞ ¼ Y if and only if

Y [ 1þ s. In that case, a ¼ sð1þsÞ
Y�ð1þsÞ is the unique solution. Note that the V-statistics

corresponds to the special case where s ¼ 1.

10.4.4.5 Two Log-Moments Methods

In the case of the K-distribution, it has been proposed (Oliver 1993) to use the
U-statistics in order to estimate a.

Theorem 16 (Oliver 1993). Assume that
ffiffi
I
p

is distributed according to the
K-distribution, with parameters r2 [ 0 and a[ 0. Then, the U-statistics E½log I� �
log E½I� is expressed as

UKðaÞ ¼ �cE þ wðaÞ � log a; ð10:38Þ

where cE is the Euler’s constant and wðzÞ ¼ d½log CðzÞ�=dz is the digamma
function (Abramowitz and Stegun 1972, (6.3.1)).

There is also a method (Blacknell and Tough 2001) based on the X-statistics.

Theorem 17 (Blacknell and Tough 2001). Assume that
ffiffi
I
p

is distributed
according to the K-distribution, with parameters r2 [ 0 and a[ 0. Then, the
X-statistics E½I log I�=E½I� � E½log I� is expressed as

XKðaÞ ¼ 1þ 1
a
: ð10:39Þ

Lemma 3 guarantees that X is non-negative. Thus, there is a solution to the
equation XKðaÞ ¼ X if and only if X [ 1, in which case the unique solution is
equal to a ¼ 1=ðX � 1Þ. See Fig. 10.4, left column, for an illustration of the
X-statistics for the K-distribution.
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10.4.4.6 Discussion

In this section, we present further results on the MLE and the MAP of the
K-distribution. We then show that the methods introduced in Sects. 10.4.4.3 to
10.4.4.5 can be solved with a binary search algorithm. Finally, we present a
comparison of these estimators on simulated data.

Arguing that the existing methods for computing the MLE are time consuming
and that moments based methods do not always lead to a solution of the resulting
equations, a Bayesian estimation method of the SNR (denoted D and called the
detection index) was proposed in Abraham and Lyons (2010).

To clarify the notion of MLE for the K-distribution, we present the following
two results.

Theorem 18 Let a[ 0 be fixed. Then, there exists a root r2ða; ~AÞ[ 0 of
o

or2 LKðr2; aÞ.

Theorem 19 Let N� 1 be the sample size and r2ða; ~AÞ denote any root of
o

or2 LKðr2; aÞ. Then,

(a) lima!0 a o
oa LKðr2ða; ~AÞ; aÞ�N.

(b) lima!1 a o
oa LKðr2ða; ~AÞ; aÞ ¼ 0.

Thus, if ever the function o
oa LKðr2ða; ~AÞ; aÞ is decreasing for some sample set,

then there is no MLE. This is the case, for instance, if fA1;A2g ¼ f1
2 ;
ffiffi
7
p

2 g (see
Fig. 10.6). So, the point in considering other estimators than the MLE is not so
much that its computation is time consuming, but rather that it is not always well-
defined for the K-distribution.

However, one may set a prior on the parameters r2 and a and see if the
maximum a posteriori (MAP) is well-defined. For the K-distribution, let us con-
sider the prior pðaÞ ¼ 1=a (so, this prior does not depend on r2 for simplicity of
technical considerations). This amounts to setting the Jeffreys non-informative
prior (Jeffreys 1946) on the parameter a. Recall that the Jeffreys prior is defined as

LK( 2( , Ã ), )

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

scatterer clustering parameter α

Fig. 10.6 Behavior of the
function o

oa LKðr2ða; ~AÞ; aÞ for
the K-distribution in the case

where ~A ¼ f1
2 ;
ffiffi
7
p

2 g. The MLE
is not defined in this case

242 F. Destrempes and G. Cloutier



pðaÞ ¼
�
IFðaÞ

�1=2
, where IFðaÞ denotes the Fisher information (Fisher 1956),

namely IFðaÞ ¼ �E½ o2

o2a
log PðA jr2; aÞ� ¼ E½

�
o
oa log PðA j r2; aÞ

�2�. In Abraham

and Lyons (2010), it is shown that pðaÞ� 1=a for large values of a. Then, the MAP
corresponds to a solution to the system of equations

o

oa
LKðr2; aÞ þ o

oa
log pðaÞ ¼ 0; ð10:40Þ

o

or2
LKðr2; aÞ ¼ 0: ð10:41Þ

Now, with the proposed prior, we obtain o
oa log pðaÞ ¼ �1=a: Then, from Theorem

19, we know that o
or2 LKðr2ða; ~AÞ; aÞ � 1=a�ðN � 1Þ=a[ 0, for a sufficiently

small and N [ 1, and that o
oa LKðr2ða; ~AÞ; aÞ � 1=a\0 for a sufficiently large.

Therefore, the Intermediate Value Theorem implies that there is a[ 0 for which
o
oa LKðr2ða; ~AÞ; aÞ � 1=a ¼ 0: Thus, this MAP estimator is well-defined for the
K-distribution. Furthermore, its computation is amenable to a binary search
algorithm. Note that one may have chosen the prior pðr2; aÞ ¼ 1

r because it is
scale-invariant (i.e., PKðA j r2; aÞ ¼ 1

r PKðAr j 1; aÞ). However, with that choice of
prior, one may have an undefined MAP estimator. Other priors are possible, but we
have not explored that avenue here.

Note that in Abraham and Lyons (2010), it is advocated to take the non-
informative prior 1=a2 instead of the Jeffreys prior 1=a, in order to obtain a
posterior distribution with a well-defined mean, i.e. such that

R1
0 aPða j ~AÞ da\1.

But, there is no need to require a finite posterior mean to define the MAP. The only
requirement is a finite sum for the posterior distribution (i.e.,

R1
0 Pða j ~AÞ da\1.

Now, taking the prior 1=a2 (Abraham and Lyons 2010), the first statement is

equivalent to
R1

0 a
QN

i¼1 PðAi j r2aÞ 1
a2 da\1. On the other hand, taking the

Jeffreys prior 1=a, the second statement is equivalent to
R1

0

QN
i¼1

PðAi j r2aÞ 1
a da\1. Thus, as one can see, the two statements are equivalent

(because, two different priors are considered).
One may wish to simplify the above MAP estimator by considering a hybrid

MAP. Namely, the first moment of the intensity yields the identity r2 ¼ I=ð2aÞ.
Substituting this expression into the difference of Eq. (10.40) with Eq. (10.41)
yields the equation

n
a

o

oa
LKðr2; aÞ � r2 o

or2
LKðr2; aÞ

o���
r2¼I=ð2aÞ

� 1 ¼ 0: ð10:42Þ

The following result implies that a solution to Eq. (10.42) can be found with a
binary search algorithm, provided that the sample size N is greater than 1.
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Theorem 20 Let N � 1 be the sample size. Then,

a) lima!0

n
a o

oa LKðr2; aÞ � r2 o
or2 LKðr2; aÞ

o���
r2¼I=ð2aÞ

¼ N.

b) lima!1

n
a o

oa LKðr2; aÞ � r2 o
or2 LKðr2; aÞ

o���
r2¼I=ð2aÞ

¼ 0.

Concerning the estimation method based on the MðmÞ-statistics, in general, there

is no closed form for a solution to the equation MðmÞK ðaÞ ¼ M, but one can use the
following result, relevant for any m 6¼ 2. See Fig. 10.3, left column, for an illus-

tration of the function MðmÞK ðaÞ.

Theorem 21 We have the following properties

(a) if m\2, then lima!0 MðmÞK ðaÞ ¼ 0; if m[ 2, then lima!0 MðmÞK ðaÞ ¼ 1;

(b) lima!1MðmÞK ðaÞ ¼ Cðm=2þ 1Þ;
(c) if m\2, then MðmÞK ðaÞ is strictly increasing on its domain ð0;1Þ; if m[ 2, then

MðmÞK ðaÞ is strictly decreasing on its domain ð0;1Þ.

So, let M [ 0 be a real number (playing the role of the MðmÞ-statistics). If m\2
and 0\M\Cðm=2þ 1Þ, then an efficient binary search algorithm yields the

unique solution to the equation MðmÞK ðaÞ ¼ M. Indeed, from Theorem 21, the

function MðmÞK ðaÞ is increasing in that case and its range is the interval
ð0;Cðm=2þ 1ÞÞ. On the other hand, if m\2 and Cðm=2þ 1Þ�M\1, then there is

no solution to the equation MðmÞK ðaÞ ¼ M. However, in that case, the distance

between MðmÞK ðaÞ and M is minimal as a!1. Thus, it makes sense to take the
Rayleigh distribution. Similarly, if m [ 2 and M [ Cðm=2þ 1Þ, then there is a

unique solution to the equation MðmÞK ðaÞ ¼ M, and this solution can be found
efficiently with a binary search algorithm. On the other hand, if m[ 2 and
1\M\Cðm=2þ 1Þ, one may take a!1. For later reference, we introduce here
what we call the K-distribution conditions

m\2 and 0\M\Cðm=2þ 1Þ, or m [ 2 and Cðm=2þ 1Þ\M: ð10:43Þ

Thus, the equation MðmÞK ðaÞ ¼ M has a solution if and only if the K-distribution
conditions are satisfied. Note that the Rice conditions (10.29) and the K-distri-
bution conditions (10.43) are mutually exclusive and they are exhaustive (that it is
to say, with the understanding that M plays the role of the MðmÞ-statistics).

Concerning the parameter estimation method (Dutt and Greenleaf 1995), the

following result shows that the equation RðmÞK ðaÞ ¼ R, where R [ 0 plays the role of

the RðmÞ-statistics, has a solution if and only if R\ Cðm=2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðmþ1Þ�C2ðm=2þ1Þ
p , and that there

is at most one solution. Moreover, it shows that an efficient binary search algo-
rithm can be used to find the solution, whenever it exists. Finally, one sees that the
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solution a ¼ 1 is the one that minimizes the distance between RðmÞK ðaÞ and R,

whenever the equation RðmÞK ðaÞ ¼ R has no solution. This amounts to switch to the
Rayleigh model, with parameter a2 ¼ lima!1 r2a ¼ I.

Theorem 22 The following properties hold

(a) lima!0 RðmÞK ðaÞ ¼ 0;

(b) lima!1 RðmÞK ðaÞ ¼
Cðm=2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðmþ1Þ�C2ðm=2þ1Þ
p ;

(c) RðmÞK ðaÞ is strictly increasing on its domain ð0;1Þ.

Concerning the method of Oliver (1993), the following result shows that an
efficient binary search algorithm can be used in order to find the unique solution to
the equation UKðaÞ ¼ U, whenever U\� cE. If ever U� � cE, Theorem 23
shows that it makes sense to adopt the Rayleigh model.

Theorem 23 We have the following properties

(a) lima!0 UKðaÞ ¼ �1;
(b) lima!1 UKðaÞ ¼ �cE;
(c) UKðaÞ is strictly increasing on its domain ð0;1Þ.

Similarly, one may switch to the Rayleigh distribution, whenever V � 2 (c.f.
Sect. 10.4.4.3), or Y � 1þ s (c.f. Sect. 10.4.4.4), or X� 1 (c.f. Sect. 10.4.4.5).
Theorems 22 and 23 are illustrated in Fig. 10.7.

In order to compare the various estimators, we considered the parameter a with
values in the set f1; 2; . . .; 20g. For each value of a, 1; 000 datasets of N ¼ 1; 000
elements each were simulated according to the corresponding K-distribution. As in
Dutt and Greenleaf (1994), one may consider the estimation of the parameter
b ¼ 1=a instead of a itself. In that case, one does not need to discard values of 1=a,
because whenever the method has no solution, one may switch to the Rayleigh
model (a ¼ 1), which corresponds to 1=a ¼ 0. Thus, we could estimate the
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Fig. 10.7 Typical behavior of the RðmÞ-statistics (left image) and of the U-statistics (right image)
for the K-distribution. Here, m ¼ 1=4

10 Review of Envelope Statistics Models for Quantitative Ultrasound Imaging 245



normalized mean squared error (MSE) of the estimator b̂ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðb̂� bÞ2�

q
=b. The

resulting normalized MSE curves are presented in Fig. 10.8. As one can see, the
estimators based on the Mð1Þ, Y , or X statistics and the hybrid MAP are practically
equivalent and are better than the estimators based on the U or the R statistics.

10.4.5 Parameter Estimation Methods for the Homodyned
K-Distribution

10.4.5.1 Expression of Fractional Order Moments of the Amplitude

Theorem 24 Assume that A ¼
ffiffi
I
p

is distributed according to the homodyned
K-distribution, with parameters e� 0, r2 [ 0 and a[ 0. Let c ¼ e2=ð2r2Þ. Then,

(a) (Prager et al. 2002) if c� 0, the MðmÞ-statistics E½Am�=E½I�m=2 can be expressed
in the following form

MðmÞHKðc; aÞ ¼
Cðm=2þ 1Þ
ðcþ aÞm=2

Z 1
0

wm=2
1F1ð�m=2; 1;� c

w
ÞGðw j a; 1Þ dw; ð10:44Þ

where pFq denotes the hypergeometric series (here, p ¼ q ¼ 1).
(b) (Dutt and Greenleaf 1995) if c ¼ 0, the MðmÞ-statistics is equal to

MðmÞHKð0; aÞ ¼ Cðm=2þ 1ÞCðm=2þ aÞ
am=2CðaÞ : ð10:45Þ
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Fig. 10.8 Left: Comparison between the normalized MSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðb̂� bÞ2�

q
=b, where b ¼ 1=a, of

the estimators based on the Mð1Þ-statistics (black solid line), the Y-statistics (magenta solid line),
the X-statistics (green solid line), the U-statistics (blue solid line), and the R-statistics (dotted
line), for the K-distribution. Right: Comparison between the normalized MSE of the estimators
based on the Mð1Þ-statistics (black solid line), the V-statistics (dashed line), and the hybrid MAP
(red solid line). The sample size is N ¼ 1; 000
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(c) (Hruska and Oelze 2009) if m=2þ a is not an integer and c� 0, the MðmÞ-
statistics can be expressed as

MðmÞHKðc; aÞ ¼
Cðm=2þ 1Þ
ðcþ aÞm=2

nCðm=2þ aÞ
CðaÞ 1F2ð�m=2; 1; 1� m=2� a; cÞ

þ Cðm=2þ 1Þ sinðpm=2Þ
C2ð1þ m=2þ aÞ sinðpðm=2þ aÞÞ

cm=2þa
1F2ða; 1þ m=2þ a; 1þ m=2þ a; cÞ

o
:

ð10:46Þ

(d) (Jakeman and Tough 1987) if m=2 [ 2 is an integer and c� 0, then the MðmÞ-
statistics is equal to

MðmÞHKðc; aÞ ¼
ðm=2Þ!ðm=2Þ!
ðcþ aÞm=2CðaÞ

Xm=2

i¼0

Cðm=2� iþ aÞ
i!i!ðm=2� iÞ! ci: ð10:47Þ

10.4.5.2 A Method Based on the Moments of the Intensity

A moments’ method for the estimation of the homodyned K-distribution was
proposed in Dutt and Greenleaf (1994). Namely, one solves the system of
equations

E½I� ¼ I; E½I2� ¼ I2; E½I3� ¼ I3 ð10:48Þ

in order to estimate ðe; r2; aÞ, where I ¼ A2 is the intensity. In Prager et al. (2003),
the three moments E½I�, E½I2�, and E½I3� are expressed analytically as functions of
s2 ¼ r2a (denoted r2 in that reference), k ¼ e=ðr

ffiffiffi
a
p
Þ, and b ¼ 1=a, as follows

E½I� ¼ s2½k2 þ 2�;
E½I2� ¼ s4½8ð1þ bÞ þ 8k2 þ k4�;
E½I3� ¼ s6½48ð1þ 3bþ 2b2Þ þ 72k2ð1þ bÞ þ 18k4 þ k6�:

ð10:49Þ

In Prager et al. (2003, Appendix C, p. 712), an algebraic method is presented to
solve the system (10.49) for s2, k, and b, rejecting negative or imaginary values.

Observe that Eq. (10.48) is equivalent to the system of equations

l ¼ I; Mð4ÞHKðc; aÞ ¼ I2=I
2
; Mð6ÞHKðc; aÞ ¼ I3=I

3
; ð10:50Þ

where l ¼ e2 þ 2r2a ¼ E½I�. Moreover, the values of e and r2 can be recovered
from c, a and l with the change of variables
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e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

c
ðcþ aÞ

r
; r2 ¼ l

1
2ðcþ aÞ : ð10:51Þ

10.4.5.3 A Method Based on the Moments of the Amplitude

In Dutt (1995, Sect. 9.2.2, p. 116), it was suggested to use the first three moments
of the amplitude to estimate the homodyned K-distribution, namely, to solve the
system of equations

E½A� ¼ A; E½A2� ¼ A2; E½A3� ¼ A3: ð10:52Þ

However, at that time, the authors could not find a closed form expression of the
moments of the amplitude. So, approximate expressions were used instead. As
noted in Dutt (1995, p. 117), the parameter estimation might break down for small
values of a and large values of k, due to the weakness of the approximations.

Note that an explicit expression of an arbitrary moment of the amplitude was
given in Hruska and Oelze (2009, Eq. (8), p. 2473). Thus, the estimation method
based on the first three moments of the amplitude would likely need to be tested
again with the exact expressions of those moments.

Observe that Eq. (10.52) is equivalent to the system of equations

l ¼ I; Mð1ÞHKðc; aÞ ¼ A=I
1=2

; Mð3ÞHKðc; aÞ ¼ A3=I
3=2
: ð10:53Þ

10.4.5.4 Methods Based on the SNR of Fractional Order Moments
of the Amplitude

In Dutt (1995, Sect. 9.2.4, p. 117), it was proposed to use the SNR R of the
amplitude and of the intensity. It is reported in Dutt (1995, Sect. 9.5, p. 142) that
the method based on SNRs gave better results than the three methods presented in
Sects. 10.4.5.2, 10.4.5.3 and 10.4.5.5. But then, the exact expression of
Eq. (10.46) was not used, so that this conclusion is not necessarily valid.

In Martin-Fernandez and Alberola-Lopez (2007), the authors suggested to use
the statistics R for two distinct values of m (or more), using an exact expression of
that statistics. In fact, the authors suggested the values 0:01, 0:03, 0:05, 0:075, 0:1,
0:25, 0:4, 0:5, 0:75, and 1. A solution is then found by inspection of the SNR level
curves. Namely, for each value of the fractional order m, the statistics R is
expressed analytically as a function of k ¼ e=ðr

ffiffiffi
a
p
Þ, and a (denoted l in that

reference). One then considers the point ðk; aÞ that is closest to all the corre-
sponding SNR level curves, in the sense of the least mean squares (LMS). Thus,
this method is an extension of the method based on the SNRs of Dutt (1995,
Sect. 9.2.4).
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10.4.5.5 A Method Based on the SNR and Skewness of the Amplitude

In Dutt (1995, Sect. 9.2.4, p. 117), it was proposed to use the SNR R ¼
E½A�

ðE½A2��E2½A�Þ1=2 and the skewness S ¼ E½ðA�E½A�Þ3�
ðE½A2��E2½A�Þ3=2 of the amplitude for the estima-

tion of the homodyned K-distribution. Again, that method should be tested with
the exact expression of Eq. (10.46).

10.4.5.6 A Method Based on the SNR, Skewness and Kurtosis
of Fractional Order Moments of the Amplitude

In Hruska and Oelze (2009), the authors suggested the use of the SNR R, the

skewness S, and the kurtosis K ¼ E½ðAm�E½Am�Þ4�
ðE½A2m��E2½Am�Þ2, for two values of m, namely 0:72

and 0:88. These statistics were expressed analytically as a function of
k ¼ e=ðr

ffiffiffi
a
p
Þ, and a (denoted l in that reference). One then considers the point

ðk; aÞ that is closest to the six corresponding SNR, skewness, and kurtosis level
curves in the sense of the LMS. In order to do so, the ðk; aÞ-space was sampled at
the points of the form ði� 0:01; 10�3þj�0:01Þ, with 0� i; j� 500. The two methods
(Martin-Fernandez and Alberola-Lopez 2007; Hruska and Oelze 2009) were not
compared in Hruska and Oelze (2009). However, the choice of the fractional
orders 0:72 and 0:88 was validated empirically in Hruska and Oelze (2009) (as
opposed to taking the numerous fractional orders 0:01; . . .; 1 in Martin-Fernandez
and Alberola-Lopez (2007)).

10.4.5.7 Discussion

In this section, we present new results on the MðmÞ-statistics and the MLE for the
homodyned K-distribution.

Concerning Theorem 24, the case where m=2þ a is not integer (with no
restriction on c) is covered by part c), whereas part b) covers the case where
m=2þ a is an integer, but with the restriction c ¼ 0. So, what about the case where
c[ 0 and m=2þ a is an integer. The following result answers that question.
However, in practice, one may use linear interpolation to approximate the MðmÞ-
statistics whenever m=2þ a is close to an integer (as done in Hruska and Oelze
(2009)).

Theorem 25 Assume that A ¼
ffiffi
I
p

is distributed according to the homodyned
K-distribution, with parameters e� 0, r2 [ 0 and a[ 0. Let c ¼ e2=ð2r2Þ. Then, if
c[ 0, the MðmÞ-statistics is expressed as
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MðmÞHKðc; aÞ ¼
2

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1
n¼0

ð1þ m=2Þn
n!n!

ffiffiffi
c
p m=2þaþnKm=2þa�nð2

ffiffiffi
c
p Þ:

ð10:54Þ

where ð1þ m=2Þn denotes the rising factorial Cð1þ m=2þ nÞ=Cð1þ m=2Þ.

Theorems 9 and 21 on the behavior of the functions MðmÞRi ðjÞ and MðmÞK ðaÞ,
respectively, can be extended to the following theorem.

Theorem 26 Assume that A ¼
ffiffi
I
p

is distributed according to the homodyned
K-distribution, with parameters e� 0, r2 [ 0 and a[ 0. Let c ¼ e2=ð2r2Þ. Then,

(a) limc!0 MðmÞHKðc; aÞ ¼ MðmÞK ðaÞ (the function introduced in Theorem 13).

(b) limc!1MðmÞHKðc; aÞ ¼ 1.

(c) For any a[ 0 and c[ 0, the function MðmÞHKðc; aÞ is increasing in the variable
c, if m\ 2, whereas it is decreasing in the variable c, if m[ 2.

See Fig. 10.9 for an illustration of Theorem 26. Theorem 26 implies that the

equation MðmÞHKðc; aÞ ¼ M, a being known, has at most one solution, and moreover,
it gives sufficient and necessary conditions for a solution to exist, as expressed in
the following Corollary.

Corollary 2 Let M [ 0 be a real number (playing the role of MðmÞ). There exists at

most one non-negative solution c ¼ cðmÞM ðaÞ to the equation MðmÞHKðc; aÞ ¼ M, a
being known.

(a) If the Rice conditions (10.29) are satisfied, then there exists a non-negative
solution for any a[ 0.

(b) If the K-distribution conditions (10.43) are satisfied, then there exists a non-

negative solution if and only if a� a0 ¼ ðMðmÞK Þ
�1ðMÞ.

So, given a [ 0, I and A, one can recover e and r2 as follows. First of all, we

take c ¼ cðmÞM ðaÞ, where M ¼ A=ðIÞ1=2. Then, one uses Eq. (10.51), with l ¼ I and

c ¼ cðmÞM ðaÞ. In this manner, well-defined functions can be obtained

eða; I;AÞ; r2ða; I;AÞ; ð10:55Þ

We now discuss briefly the MLE for the homodyned K-distribution. The fol-
lowing result is useful for the computation of the partial derivatives of that
distribution.

Lemma 4 Let e� 0, r2 [ 0 and a [ 0.

(a) The homodyned K-distribution PHKðA j e;r2; aÞ can be expressed as
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1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a�1
Ka�1

�
XðhÞ

�
d h; ð10:56Þ

where XðhÞ ¼
ffiffiffiffi
2
r2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ e2 � 2Ae cos h
p

.
(b) The partial derivative o

oe PHKðA j e; r2; aÞ can be expressed as

1
p

Z p

0

2A

r4CðaÞ ðA cos h� eÞ
�XðhÞ

2

�a�2
Ka�2

�
XðhÞ

�
d h: ð10:57Þ

(c) The partial derivative o
or2 PHKðA j e; r2; aÞ can be expressed as

� a
r2

1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a�1
Ka�1

�
XðhÞ

�
d h

þ 1
r2

1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a
Ka
�
XðhÞ

�
d h:

ð10:58Þ

(d) The partial derivative o
oa PHKðA j e; r2; aÞ can be expressed as
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Fig. 10.9 Typical behavior of the MðmÞ-statistics for the homodyned K-distribution, a being fixed,
when m\2 (bottom row) and m[ 2 (top row). In fact, we took here m ¼ 1 (bottom row) and m ¼ 3
(top row), as well as a ¼ 1:1 (left column) and a ¼ 10:1 (right column)
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r2CðaÞ
�XðhÞ
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�a�1
Ka�1

�
XðhÞ

�

�
n
�wðaÞ þ log
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� od h;

ð10:59Þ

where w denotes the digamma function.

One could then extend Theorems 18 and 19 in the context of the homodyned
K-distribution. In fact, we suspect that the MLE is not always well-defined for the
homodyned K-distribution. Thus, one would have to consider a MAP estimator.
Since such an estimator results in a time-consuming algorithm, we will not
develop further that topic here.

10.4.6 Parameter Estimation Methods for the Nakagami
Distribution

10.4.6.1 The MLE for the Nakagami Distribution

Since a Nakagami distribution on the amplitude A is equivalent to a gamma
distribution on the intensity I ¼ A2, the estimation of the Nakagami distribution
parameters amounts to the well-known estimation problem of the gamma distri-
bution. In particular, the MLE is the unique solution to the equation

X ¼ I; wðmÞ � log m ¼ log I � log I; ð10:60Þ

where w denotes the digamma function.

10.4.6.2 A Method Based on the First Two Moments of the Intensity

The most frequently used method for the parameter estimation of the Nakagami
distribution is based on the first two moments of the intensity in the following form

X ¼ I; m ¼ I
2

I2 � I
2 :

ð10:61Þ

Note that the term I
2

I2 � I
2 is the square of the SNR of the intensity. This method is

equivalent to the V-statistics’ method (i.e., based on the Mð4Þ-statistics I2=I
2
).
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10.4.6.3 Discussion

We first mention a relation between the MLE and the U-statistics for the Naka-
gami distribution. Then, new results on moments and log-moments based methods
are presented. Finally, a comparison of these estimators on simulated data is
reported.

Concerning the MLE of the Nakagami distribution, note that the term log I �
log I is the U-statistics. Thus, it is negative unless all terms Ii are identical. Also,
the term wðmÞ � log m is the analytical expression of the U-statistics for the
Nakagami distribution, as stated in the following result.

Theorem 27 Let A be distributed according to the Nakagami distribution with
parameters m and X. Then, the U-statistics E½log I� � log E½I� is expressed as
UNaðmÞ ¼ wðmÞ � log m.

Thus, the MLE turns out to correspond to the U-statistics’ method. But unlike
the K-distribution, the equation wðmÞ � log m ¼ U admits a solution for any
U\0. Indeed, the following result shows that a binary search can be used to
compute the unique solution to that equation.

Theorem 28 (Destrempes et al. 2009). The following properties hold

a) limm!0 wðmÞ � log m ¼ �1;
b) limm!1 wðmÞ � log m ¼ 0;
c) the function wðmÞ � log m is strictly increasing on its domain ð0;1Þ.

Proof

a) We have the identity described in Abramowitz and Stegun (1972, p. 259,
(6.3.21)) wðmÞ ¼ logðmÞ � 1

2m� 2
R1

0
t

ðt2þm2Þðe2pt�1Þ, for m [ 0. This yields

� logðmÞ þ wðmÞ� � 1
2m, and hence limm!0� logðmÞ þ wðmÞ ¼ �1.

b) The same identity as above yields the computation
limm!1 � logðmÞ þ wðmÞ ¼ �2 limm!1

R1
0

t
ðt2þm2Þðe2pt�1Þ dt ¼ 0:

c) We have o
om UNaðmÞ ¼ � 1

mþ wð1ÞðmÞ. But from Abramowitz and Stegun (1972,

p. 260, (6.4.1)), we have wð1ÞðmÞ ¼
R1

0
te�mt

1�e�t dt. Now, te�at

1�e�t [ e�mt, since

e�t [ 1� t, for t [ 0. Therefore, wð1ÞðmÞ[
R1

0 e�mt dt ¼ 1
m, and we are done.

�

One can also show that the X-statistics is equal to 1=m for the Nakagami
distribution.

Theorem 29 Let A be distributed according to the Nakagami distribution with
parameters m and X. Then, the X-statistic E½I log I�=E½I� � log E½I� is expressed as
XNaðmÞ ¼ 1

m.

10 Review of Envelope Statistics Models for Quantitative Ultrasound Imaging 253



Thus, the shape parameter of the Nakagami distribution can be estimated
directly with the equation m ¼ 1=X, where X ¼ I log I=I � log I.

Finally, one can compute explicitly the Mð1Þ-statistics for the Nakagami
distribution.

Theorem 30 Let A be distributed according to the Nakagami distribution with

parameters m and X. Then, the Mð1Þ-statistic E½A�=
ffiffiffiffiffiffiffiffi
E½I�

p
is expressed as

Mð1ÞNa ðmÞ ¼
Cð1=2þmÞffiffiffi

m
p

CðmÞ .

The equation Mð1ÞNa ðmÞ ¼ M can be estimated with a binary search algorithm, for
any 0\M\1.

Theorem 31 The following properties hold

a) limm!0
Cð1=2þmÞffiffiffi

m
p

CðmÞ ¼ 0;

b) limm!1
Cð1=2þmÞffiffiffi

m
p

CðmÞ ¼ 1;

c) the function Cð1=2þmÞffiffiffi
m
p

CðmÞ is strictly increasing on its domain ð0;1Þ.

Theorems 27, 29, 30 and 31 can be checked directly using the software
Mathematica (Wolfram Research, Inc., Champaign, IL, USA, version 7.0).

In order to compare these four estimators, we considered the parameter m with
values in the set f0:1; 0:2; . . .; 2:0g. For each value of m, 1; 000 datasets of N ¼
1; 000 elements each were simulated according to the corresponding Nakagami
distribution. We could estimate the normalized MSE of the estimator m̂ asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðm̂� mÞ2�
q

=m. The resulting normalized MSE curves are presented in

Fig. 10.10. As one can see, the estimators based on the MLE (i.e., the U-statistics,
in this case) or the X-statistics are practically equivalent. They are better than the
estimator based on the Mð1Þ-statistics, especially on the interval m 2 ½0:0; 0:5�.
These three estimators are systematically better than the estimator based on the
V-statistics.
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Fig. 10.10 Comparison
between the normalized MSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðm̂� mÞ2�
q

=m of the

estimators based on the MLE
(red solid line), the
X-statistics (black solid line),
the Mð1Þ-statistics (blue solid
line), and the V-statistics
(dashed line), for the
Nakagami distribution. The
sample size is N ¼ 1; 000
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10.5 Conclusion

We conclude with the following issues.

1. It was argued that the homodyned K-distribution is a sound model for the first-
order statistics of the echo envelope of the RF ultrasound signal, in the context
where the backscattered echo signal received at the transducer of an ultrasound
device is assumed to be the vector sum of the individual signals produced by
the scatterers distributed in the medium (Wagner et al. 1983, 1987). The
K-distribution is a special case where there is no coherent component (due to
the absence of specular reflection). The Rice and the Rayleigh distributions are
limit cases of the homodyned K-distribution or the K-distribution, respectively,
corresponding to an infinite homogeneity of the diffuse scattering medium. The
Nakagami is an approximation of the homodyned K-distribution. All these five
distributions share two desirable properties: (1) the total signal power depends
only on the coherent component in the case of a vanishing diffuse signal; and
(2) the intensity SNR is infinite in that case. The other models presented in
Jakeman and Tough (1987), Shankar (2000, 2003), Barakat (1986), Eltoft
(2005), Raju and Srinivasan (2002), Agrawal and Karmeshu (2006) do not have
these two properties. Thus, we recommend the homodyned K-distribution (or
its related distributions, in special cases) as a model for the ultrasound echo
envelope in that context, as was done in Dutt and Greenleaf (1994), Hruska and
Oelze (2009) and Destrempes and Cloutier (2010).

2. It was shown that the methods based on the X-statistics and the mean intensity
are practically as good as the MLE for the Rice and the Nakagami distributions,
or the proposed hybrid MAP for the K-distribution. For the homodyned
K-distribution, one may use a method based on the SNR, skewness and kurtosis
of fractional orders of the amplitude (Hruska and Oelze 2009).

3. A homodyned K-distribution with parameters ðk; aÞ in the range ½0; 2� � ½1; 20�
can be approximated by a Nakagami distribution with KL distance less than
0:072 (but for much larger values of k, the KL distance might be much larger).
However, although one may express the two parameters X and m of the
Nakagami distribution in terms of the three parameters e, r2 and a of the

homodyned K-distribution in the form X ¼ e2 þ 2r2a and m ¼ ðe2þ2r2aÞ2
4r2aðe2þr2ð2þaÞÞ,

as follows from Destrempes and Cloutier (2010, Eq. (23) and Tables 3 and 4),
the converse statement is not true. Thus, the Nakagami distribution gives less
information on the statistical properties of the echo envelope than the homo-
dyned K-distribution. In particular, one may not retrieve the coherent or diffuse
signal power from the parameters of the Nakagami distribution. For this reason,
we recommend the use of the homodyned K-distribution, rather than the
Nakagami distribution, in the context of tissue characterization. On the other
hand, the Nakagami distribution may be used in the context of image seg-
mentation, since in that application, the main property is a good fit of the
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distribution with the data. This was the point of view adopted in Destrempes
et al. (2009, 2011) and Bouhlel and Sevestre-Ghalila (2009).

4. When the product of the wave number with the mean size of the scatterers is
much smaller than the wavelength, and acoustic impedance of the scatterers is
close to the impedance of the embedding medium, a high density of scatterers
results in a packing organization that implies constructive and destructive wave
interferences and a correlation between the individual signals produced by the
scatterers (Hayley et al. 1967; Twersky 1975, 1978, 1987, 1988; Lucas and
Twersky 1987; Berger et al. 1991). In such a case, the assumption made here on
the randomness of the scatterer positions (or phase) might not be valid. The
resulting first-order statistics might still be characterized with the proposed
models, but the physical interpretation of the parameters should be done with
caution in that case and should be further studied. See Wagner et al. (1987),
Weng et al. (1990, 1992) and Narayanan et al. (1997) for further reading on that
issue.

5. The distributions mentioned here concern the envelope of the RF signal. When
a log-compression or other (nonlinear or linear) operators are applied to the
envelope, the distribution of the gray levels no longer follows the distributions
computed on the RF echo envelope. In the case of log-compression, the
resulting distribution has been modeled in Dutt and Greenleaf (1996), assuming
the K-distribution for the envelope. In Prager et al. (2003), a decompression
algorithm is proposed, assuming the homodyned K-distribution for the enve-
lope. As mentioned before, operators other than log-compression can be applied
on the envelope. In Nillesen et al. (2008), a linear filter was applied to the RF
data before computing the envelope. Five distributions were tested to fit the
data: the Rayleigh distribution, the K-distribution, the Nakagami distribution,
the inverse Gaussian distribution and the gamma distribution. The authors
showed, based on empirical tests, that, overall, the gamma distribution best fits
the data. See also Tao et al. (2002, 2006) and Shankar et al. (2003) for further
reading on the gamma distribution model in ultrasound imaging. See also
Keyes and Tucker (1999) for a comparison of the K-distribution with a few
other models as well as Tsui et al. (2005, 2009c), Tsui and Wang (2004), Tsui
and Chang (2007) for the effect of log-compression or transducer characteristics
on the parameters of the Nakagami distribution. Here, we were concerned with
the statistical distributions of the amplitude of the unfiltered envelope of the RF
image, and therefore we did not study such distributions.

6. The parameters of the homodyned K-distribution reveal the scattering proper-
ties of the underlying tissue, but they are also instrumentation and depth
dependent. In particular, the transducer center frequency, the point spread
function (PSF) and the attenuation of the signal within the tissue play a role. A
challenge consists in removing these dependencies. See Hruska (2009) for
further reading on that matter.

7. The estimation problem is important, since the use of poor estimators might
wash down the performance of a method, otherwise fine. However, the mere
study of the bias and variance of an estimator is not sufficient, since it assumes
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data distributed according to the distribution. Moreover, in the context of
ultrasound imaging, various factors intervene, such as the presence of noise, the
efficiency of the algorithm (in view of clinical applications, where the speed of
execution of an algorithm is relevant). Thus, ideally, the study of an estimation
method should include simulations of ultrasound data, as well as in vitro and
in vivo experimental tests.

10.5.1 Perspective

In the future, it would be interesting to see a study of log-moments methods for the
homodyned K-distribution. We believe that it would be instructive to establish
relations between echo envelope statistics and spectral quantitative measures. See
Oelze and O’Brien (2007) for an example of quantitative ultrasound assessment in
the context of breast cancer that used the parameters of the homodyned K-dis-
tribution combined with an analysis of the normalized backscattered power
spectrum. In the articles by Shankar et al. (1993), Molthen et al. (1993), Narayanan
et al. (1994), Shankar (1995) and Molthen et al. (1995), an underlying physical
model for the K-distribution was introduced. In the more recent article by Saha and
Kolios (2011), the Nakagami distribution was estimated on simulated tissues based
on a scattering model. A challenge consists in deepening the understanding of an
underlying physical model for the homodyned K-distribution. Finally, it would be
desirable to take into account the effect of instrumentation and attenuation on the
echo envelope statistics. Thus, there remains several challenging problems in that
area of QUS imaging, that we believe will turn out to be useful in a clinical
context.
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Appendix: Proofs of the New Results

Proof of Theorem 8 From Theorem 6, there is exactly one critical point of Lðe; r2Þ
for which e [ 0, and it is the MLE (here, for L denotes LRi). Therefore (using
Theorem 5), the function f ðjÞ has exactly one positive root j
 and it corresponds
to the MLE. Moreover, one can check that j ¼ 0 is also a root of the function f .
Namely, we have limj!0 f ðjÞ ¼ �1þ 1

N

PN
i¼1 y2

i , and by construction,
1
N

PN
i¼1 y2

i ¼ 1.

We have limj!1 f ðjÞ ¼ 2ð�1þ 1
N

PN
i¼1 yiÞ ¼ 2ð�1þ

ffiffi
I
p
=
ffiffi
I
p
Þ. A direct

application of Cauchy-Schwartz’ inequality ensures that
ffiffi
I
p
=
ffiffi
I
p

\1, so that
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limj!1 f ðjÞ\0. In view of the Intermediate Value Theorem for continuous
functions, it follows that f ðjÞ\0, if j[ j
.

Next, we want to show that f ðjÞ[ 0 for j 2 ð0; j
Þ. Since j
 is the only

positive root of f , and since f ðjÞ\0 on ðj
;1Þ, it is enough to show that of
oj \0 at

j
; for then, f ðjÞ[ 0 if j\j
 is sufficiently near j
, and hence, f ðjÞ[ 0 on
ð0; j
Þ using the Intermediate Value Theorem.

First of all, we claim that of
oj ¼ 1

N
o2L
oj2 at a critical point of

Lðe; r2Þ ¼
PN

i¼1 log PRiðAi j e; r2Þ, whenever e [ 0 (i.e. j[ 0). Indeed, with the

change of variable e ¼
ffiffiffiffiffiffiffiffiffi

lj
ðjþ1Þ

q
and r2 ¼ l

2ðjþ1Þ, we obtain directly from Eq. (10.2)

1
N

Lðl; jÞ ¼ 1
N

XN

i¼1

log Ai � log lþ log 2þ logðjþ 1Þ

� ðjþ 1Þ
l

1
N

XN

i¼1

A2
i � jþ 1

N

XN

i¼1

log I0ð
2Aiffiffiffi

l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
Þ:
ð10:62Þ

Next, the derivative of 1
N Lðl; jÞ with respect to j is equal to

1
ðjþ 1Þ �

1
l

1
N

XN

i¼1

A2
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jðjþ 1Þ
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p
Þ
: ð10:63Þ

But, from Talukdar and Lawing (1991), we have l ¼ I ¼ 1
N

PN
i¼1 A2

i at a critical
point ðe; a2Þ of LRi. Therefore, we obtain that 1

N
oL
oj ¼ f ðjÞ at such a critical point

(because Ai=
ffiffiffi
l
p

is then equal to yi ¼ Ai=
ffiffi
I
p

). Taking the partial derivative of

Eq. (10.63) with respect to j, we also see that of
oj ¼ 1

N
o2L
oj2 at a critical point ðe; r2Þ of L.

Now, recall that if u ¼ uðx; yÞ and v ¼ vðx; yÞ is a change of variable, then
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þ o2L

ox2

�ox

ou

�2
þ 2

o2L

oxoy

ox

ou

oy

ou
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ð10:64Þ

At this point, we find convenient to use the change of variable e2 ¼ lj=ð1þ jÞ and

r2 ¼ l=ð2ð1þ jÞÞ. We develop o2

oj2 L ¼
�

G11 � G12 þ 1
4 G22

�
l2

ðjþ1Þ4 at a critical

point of L, where G11 ¼ o2L
oe2oe2, G12 ¼ o2L

oe2or2, and G22 ¼ o2L
or2or2 (we make use of the fact
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that oL
oe2 ¼ 0 ¼ oL

or2 at the critical point). Now, from Carrobi and Cati (2008, Appendix
A, p. 686-687), we have H11H22 � H2

12 [ 0 and H11\0 at the critical point of

interest, where H11 ¼ o2L
oeoe, H12 ¼ o2L

oeor2, and H22 ¼ o2L
or2or2 (r2 is viewed as a variable).

From there, if one uses the change of variable e ¼
ffiffiffiffi
e2
p

(and r2 ¼ r2), one concludes

that G11G22 � G2
12 ¼

�
H11H22 � H2

12

�
1

4e2 [ 0 and G11 ¼ H11
1

4e2 \0, at that critical

point. Thus, we obtain the upper bound G22\G2
12=G11 (because G11\0Þ, and

therefore o2L
oj2 \

�
G11� G12 þ 1

4 G2
12=G11

�
l2

ðjþ1Þ4. But this is equal to

1
G11

l2

ðjþ1Þ4
�

G11 � 1
2 G12

�2
, and it is non-positive since G11\0. Therefore, of

oj ¼
1
N

o2L
oj2 \0 at the point j ¼ j
 (with l ¼ I). This completes the proof of Theorem 8.�

Proof of Theorem 9 (a) Setting j ¼ 0 in Theorem 7, we obtain directly

MðmÞRi ð0Þ ¼ Cðm=2þ 1Þ.
(b) From Luke (1962, pp.7–8), we have the following asymptotic behavior

1F1ða1; b1; zÞ / Cðb1Þ
Cða1Þ

zvez
�

1þOð1=zÞ
�
; ð10:65Þ

where v ¼ a1 � b1, valid for j arg zj\p and jzj ! 1. Therefore, we have

1F1ðm=2þ 1; 1; jÞ / 1
Cðm=2þ 1Þ j

m=2ej
�

1þOð1=jÞ
�
: ð10:66Þ

We conclude that limj!1MðmÞRi ðjÞ ¼ limj!1
Cðm=2þ1Þe�j

ðjþ1Þm=2 � 1
Cðm=2þ1Þ j

m=2ej ¼ 1.

(c) From the definition MðmÞRi ðjÞ ¼ Cðm=2þ 1Þ 1F1ð1þm=2;1;jÞ
ejðjþ1Þm=2 , we obtain after

algebraic simplifications

d

d j
MðmÞRi ¼ Cðm=2þ 1Þ

d
d j 1 F1ð1þ m=2; 1; jÞ � 1 F1ð1þ m=2; 1; jÞ

�
1þ m

2 ðjþ 1Þ�1
�

ejðjþ 1Þm=2
:

ð10:67Þ

Now, from Gradshteyn and Ryshik (1994, 9.213, p.1086) and Gradshteyn and
Ryshik (1994, 9.212(3), p.1086), we have d

d j 1 F1ð1þ m=2; 1; jÞ ¼ ð1þ
m=2Þ 1F1ð2þ m=2; 2; jÞ ¼ m

2 1 F1ð1þ m=2; 2; jÞ þ 1 F1ð1þ m=2; 1; jÞ. So, omitting

the positive factor Cðm=2þ 1Þe�jðjþ 1Þ�m=2, we obtain

m
2 1 F1ð1þ m=2; 2; jÞ � m

2 1 F1ð1þ m=2; 1; jÞðjþ 1Þ�1: ð10:68Þ

Multiplying by ðjþ 1Þ and dividing by m=2 (both are positive numbers), we obtain

1F1ð1þ m=2; 2; jÞðjþ 1Þ � 1 F1ð1þ m=2; 1; jÞ: ð10:69Þ
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Using (Gradshteyn and Ryshik 1994, 9.212(2), p.1086), we have j 1F1

ð1þ m=2; 2; jÞ � 1 F1ð1þ m=2; 1; jÞ ¼ � 1F1ðm=2; 1; jÞ. Therefore, we finally
obtain (up to a positive constant)

1F1ð1þ m=2; 2; jÞ � 1 F1ðm=2; 1; jÞ: ð10:70Þ

Now, by definition, the hypergeometric function 1F1ða; b; zÞ is equal toP1
n¼0

ðaÞn
ðbÞn

zn

n!, where ðaÞn ¼ aðaþ 1Þ:::ðaþ n� 1Þ is the rising factorial. If m=2\1,

then ð1þm=2Þn
ð2Þn

[ ðm=2Þn
ð1Þn

and hence 1F1ð1þ m=2; 2; cÞ � 1 F1ðm=2; 1; cÞ[ 0, On the

other hand, if m=2 [ 1, then ð1þm=2Þn
ð2Þn

\ ðm=2Þn
ð1Þn

and hence 1F1ð1þ m=2;

2; jÞ � 1 F1ðm=2; 1; jÞ\0. This completes the proof of the theorem. �

Proof of Theorem 10 (a) First of all, using the change of variable I ¼ A2, one
computes

Z 1
0

log A2PRiðA j e; r2Þ dA ¼
Z 1

0
log I

1
2r2

I0

� e
r2

ffiffi
I
p �

e�e2=ð2r2Þe�I=ð2r2Þ dI;

ð10:71Þ

which is a Laplace transform equal to Cð0; e2

2r2Þ þ log e2, where Cð0; xÞ is the
incomplete gamma function

R1
x

e�t

t dt. Then, after subtraction by the term

logðe2 þ 2r2Þ, one obtains Cð0; e2

2r2Þ þ logð e2

e2þ2r2Þ, which is equal to Cð0; jÞ þ
logð j

jþ1Þ (where j ¼ e2=ð2r2Þ).
(b) Again, using the change of variable I ¼ A2, we compute

Z 1
0

A2 log A2PRiðA j e; r2Þ dA

¼
Z 1

0
I log I

1
2r2

I0

� e
r2

ffiffi
I
p �

e�e2=ð2r2Þe�I=ð2r2Þ dI:
ð10:72Þ

This Laplace transform is equal to 4r2 � 2e�
e2

2r2r2þ ðe2 þ 2r2Þ
�
Cð0; e2

2r2Þ þ log e2
�
.

Dividing by e2 þ 2r2 and subtracting E½log I� ¼ Cð0; e2

2r2Þ þ log e2 (from the proof

of part a)), one obtains ð4r2 � 2e�
e2

2r2r2Þ  ðe2 þ 2r2Þ, which is equal to
1

jþ1 ð2� e�jÞ, after algebraic simplifications. �

Proof of Theorem 11 (a) From Abramowitz and Stegun (1972, (6.5.15), p. 262),
we have Cð0; jÞ ¼ E1ðjÞ (the exponential integral). Moreover, from Abramowitz

and Stegun (1972, (5.1.11), p. 229), E1ðjÞ ¼ �cE � log jþ
P1

n¼1
ð�1Þnjn

nn! . We

conclude that URiðjÞ ¼ �cE � logð1þ jÞ þ
P1

n¼1
ð�1Þnjn

nn! . Henceforth,
limj!0 URiðjÞ ¼ �cE.

(b) Since Cð0; jÞ ¼
R1

j
e�t

t dt, it follows that limj!1 Cð0; jÞ ¼ 0. Moreover,
limj!1 log j

jþ1 ¼ 0.
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(c) We compute d
d j URiðjÞ ¼ � e�j

j þ 1
j� 1

jþ1. This is positive because
ej [ 1þ j, for j[ 0. �

Proof of Theorem 12 Parts (a) and (b) follow from basic Calculus.

(c) We compute d
d j XRiðjÞ ¼ e�jðjþ1Þ�ð2�e�jÞ

ðjþ1Þ2 . Ignoring the positive factor

1=ðjþ 1Þ2, we obtain e�jð2þ jÞ � 2. This is negative since ej [ 1þ j=2, for
j[ 0. �

Lemma 5 Let a[ 0 be fixed. Denote any root of o
or2 Lðr2; aÞ by r2ða; ~AÞ, where

~A ¼ fA1;A2; :::;ANg.

(a) If 0\a� 1=2, then r2ða; ~AÞ� aþa2þ
ffiffiffiffiffiffiffiffiffiffiffi
2a3þa4
p

a2

�
A
�2

.

(b) If 1=2\a� 3, then r2ða; ~AÞ� 1
2a2

�
A
�2

.

(c) If a[ 3, then r2ða; ~AÞ� 2a�3þ
ffiffiffiffiffiffiffiffi
4a�7
p

4ða�2Þ2
�
A
�2

.

(d) If 0\a� 1=2, then r2ða; ~AÞ� 1
2a2

�
A
�2

.

(e) If 1=2\a� 3=2, then r2ða; ~AÞ� 1
2ða=2þ1=4Þ2

�
A
�2

.

(f) If 3=2\a� 3, then r2ða; ~AÞ� 1
2

�
A
�2

.

(g) If a [ 3, then r2ða; ~AÞ� 1
2ða�2ÞA

2.

(h) The function o
or2 Lðr2; aÞ is positive at the lower bounds mentioned in parts

(a) to (c), whereas it is negative at the upper bounds of parts (d) to (g).

Proof We compute

r2
o

or2 PKðA jr2; aÞ
PKðA j r2; aÞ ¼ �aþ

� 1ffiffiffiffiffiffiffi
2r2
p A

� Ka
� ffiffiffiffi

2
r2

q
A
�

Ka�1
� ffiffiffiffi

2
r2

q
A
� : ð10:73Þ

Part a). If 0\a� 1=2, then Ka�1ðxÞ ¼ K1�aðxÞ\K1ðxÞ and KaðxÞ[ K0ðxÞ for any
x [ 0. Also, the inequality K0ðxÞ=K1ðxÞ[ 1� 1

ðxþ1Þ holds for any x [ 0. There-

fore, from Eq. (10.73), we obtain r2
o

or2PHKðA j r2;aÞ
PHKðA j r2;aÞ [ � aþ 1

2 f ð
ffiffiffiffi
2
r2

q
AÞ, where

f ðxÞ ¼ xð1� 1
ðxþ1ÞÞ. Thus, we obtain that

r2 o

or2
Lðr2; aÞ[ � Naþ 1

2

XN

i¼1

f ð
ffiffiffiffiffi
2
r2

r
AiÞ: ð10:74Þ

Here, L denotes LK. Now, the function f ðxÞ is convex. Therefore, from Jensen’s
inequality (Jensen 1906), we conclude that

r2 o

or2
Lðr2; aÞ[ � Naþ N

2
f ð

ffiffiffiffiffi
2
r2

r
AÞ: ð10:75Þ
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But the right-hand side of Eq. (10.75) is positive if r2\ aþa2þ
ffiffiffiffiffiffiffiffiffiffiffi
2a3þa4
p

a2

�
A
�2

. This
proves part a).

Part b). If a [ 1=2, then KaðxÞ[ Ka�1ðxÞ for any x [ 0. Therefore, from Eq.

(10.73), we obtain r2
o

or2PKðA jr2;aÞ
PKðA j r2;aÞ [ � aþ 1ffiffiffiffiffi

2r2
p A. Thus, we conclude that

r2 o

or2
Lðr2; aÞ[ � Naþ 1ffiffiffiffiffiffiffi

2r2
p

XN

i¼1

Ai: ð10:76Þ

But the right-hand side of Eq. (10.76) is positive if r2\ 1
2a2

�
A
�2

. This proves part
b).

Part c). If a[ 3, then x
2

KaðxÞ
Ka�1ðxÞ [ x

2� ð
2ða�1Þ

x þ 1
2ða�2Þ

x þ1
Þ. Thus, r2

o

or2PKðA j r2;aÞ
PKðA j r2;aÞ has

lower bound �1þ f ð Affiffiffiffiffi
2r2
p Þ, where f ðxÞ ¼ ðða�2Þ

x2 þ 1
xÞ
�1. Thus, we conclude that

r2 o

or2
Lðr2; aÞ[ � N þ

XN

i¼1

1
2r2ða�2Þ

A2
i
þ

ffiffiffiffiffi
2r2
p

Ai

: ð10:77Þ

From Jensen’s inequality, we then obtain

r2 o

or2
Lðr2; aÞ[ � N þ N

1
2r2ða�2Þ

A
2 þ

ffiffiffiffiffi
2r2
p

A

; ð10:78Þ

because the function f ðxÞ above is convex. But the right-hand side of Eq. (10.78) is

positive if r2\ 2a�3þ
ffiffiffiffiffiffiffiffi
4a�7
p

4ða�2Þ2
�
A
�2

. This proves part c).

Part d). If 0\a� 1=2, then KaðxÞ\Ka�1ðxÞ for any x [ 0. Therefore, from

Eq. (10.73), we obtain r2
o

or2PKðA j r2;aÞ
PKðA j r2;aÞ \� aþ 1ffiffiffiffiffi

2r2
p A. This yields the inequality

r2 o

or2
Lðr2; aÞ\� Naþ 1ffiffiffiffiffiffiffi

2r2
p

XN

i¼1

Ai: ð10:79Þ

But the right-hand side of Eq. (10.79) is negative if r2 [ 1
2a2

�
A
�2

. This proves part
d).

Part e). If 1=2\a� 3=2, then KaðxÞ
Ka�1ðxÞ\1þ ða�1=2Þ

x for any x [ 0. Therefore, we

have r2
o

or2PKðA j r2;aÞ
PKðA jr2;aÞ \� a

2� 1
4þ 1ffiffiffiffiffi

2r2
p A. It follows that

r2 o

or2
Lðr2; aÞ\� Nða=2þ 1=4Þ þ 1ffiffiffiffiffiffiffi

2r2
p

XN

i¼1

Ai: ð10:80Þ

But the right-hand side of Eq. (10.80) is negative if r2 [ 1
2ða=2þ1=4Þ2

�
A
�2

. This
proves part e).
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Part f). If 3=2\a� 3, then KaðxÞ
Ka�1ðxÞ\1þ 2ða�1Þ

x for any x [ 0. Thus, we obtain

r2
o

or2PKðA j r2;aÞ
PKðA j r2;aÞ \� aþ ða� 1Þ þ 1ffiffiffiffiffi

2r2
p A. From there, we conclude that

r2 o

or2
Lðr2; aÞ\� N þ 1ffiffiffiffiffiffiffi

2r2
p

XN

i¼1

Ai: ð10:81Þ

But the right-hand side of Eq. (10.81) is negative if r2 [ 1
2

�
A
�2

. Hence, part f) of
the Theorem.

Part g). If 3\a, then x
2

KaðxÞ
Ka�1ðxÞ\ða� 1Þ þ x2

4ða�2Þ for any x [ 0. Therefore, we

obtain

r2 o

or2
Lðr2; aÞ\� N þ 1

2r2ða� 2Þ
XN

i¼1

A2
i : ð10:82Þ

But the right-hand side of Eq. (10.82) is negative if r2 [ 1
2ða�2ÞA

2. Hence, part g)
of the Theorem.

Finally, part h) follows from the proof of parts a) to g). �

Proof of Theorem 18 From Lemma 5, for any a [ 0, there exist two values
0\r2

1\r2
2 for which o

or2 Lðr2
1; aÞ[ 0 and o

or2 Lðr2
2; aÞ\0, where L denotes LK.

Thus, by the Intermediate Value Theorem, there exists r2 ¼ r2ða; ~AÞ such that
o

or2 Lðr2; aÞ ¼ 0. �

Proof of Theorem 19 Part a). Let 0\a\1=2. In Eq. (10.32), the term �wðaÞ þ

log
�

x
2

�
�

o
oaK1�aðxÞ
K1�aðxÞ is an increasing function of x [ 0. Also, from Lemma 5 part d),

we have r2ða; ~AÞ� 1
2a2

�
A
�2

. Therefore, we obtain
ffiffiffiffi
2
r2

q
Ai� 2a Ai

A
. It follows that

LBðaÞ ¼ �wðaÞ þ log
�
a Ai

A

�
�

o
oaK1�a

�
2a

Ai
A

�
K1�a

�
2a

Ai
A

� is a lower bound for that term. Now,

from Abramowitz and Stegun (1972, Eq. (9.6.45), p. 377), we have
o
oaK1�aðxÞ
K1�aðxÞ �

o
oaK1ðxÞ
K1ðxÞ ¼

K0ðxÞ
x K1ðxÞ as a! 0. Moreover, from Abramowitz and Stegun (1972, Eqs.

(9.6.8) and (9.6.9), p. 375), we have K0ðxÞ
x K1ðxÞ � � log x for small values of x [ 0. But

x ¼ 2a Ai

A
has small values for a! 0. Thus, we obtain

lima!0 aLBðaÞ ¼ lima!0 a
n
�wðaÞ þ log

�
a Ai

A

�
þ log

�
2a Ai

A

�o
¼ 1. This proves

part a).
Part b). First of all, we observe that there exist constants 0\C1\C2, such that

1
C2
� lim infa!1

r2ða;~AÞ
1=a � lim supa!1

r2ða;~AÞ
1=a � 1

C1
. The first inequality follows

from Lemma 5 part c), whereas the third inequality follows from Lemma 5 part g).
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Let L denote LK. Since by definition o
or2 Lðr2; aÞjr2ða;~AÞ ¼ 0, we might as well

consider the expression a o
oa Lðr2; aÞ � r2 o

or2 Lðr2; aÞ. From Eqs. (10.32) and
(10.33), each term of that expression is equal to

� awðaÞ þ a log
� 1ffiffiffiffiffiffiffi

2r2
p Ai

�
þ a

o
oa Ka�1

� ffiffiffiffi
2
r2

q
Ai

�

Ka�1

� ffiffiffiffi
2
r2

q
Ai

�

þ a�
� 1ffiffiffiffiffiffiffi

2r2
p Ai

� Ka
� ffiffiffiffi

2
r2

q
Ai

�
Ka�1

� ffiffiffiffi
2
r2

q
Ai

� :
ð10:83Þ

From Abraham and Lyons (2002, Eq. (46)), we have
o
oaKa�1ðxÞ
Ka�1ðxÞ �wða� 1Þ �

logðx=2Þ þ x2

4a2 for large values of a. Also, from Abraham and Lyons (2002,

Eq. (45)), we have KaðxÞ� CðaÞ
2ðx=2Þa

�
1� ðx=2Þ2

ða�1Þða�2Þ

�a�2
for large values of a.

Therefore, taking r2 ¼ 1=ðCaÞ, we obtain the asymptotic expression

�awðaÞ þ awða� 1Þ þ CA2
i

2
þ a� ða� 1Þ

�
1� CaA2

i
2ða�1Þða�2Þ

�a�2

�
1� CaA2

i
2ða�2Þða�3Þ

�a�3 : ð10:84Þ

Finally, Eq. (10.84) tends to 0 as a tends to infinity. This proves part b). �

Proof of Theorem 20 Part a). Let 0\a\1. We consider again Eq. (10.83). Using

the asymptotic forms (for small values of x and of a)
o
oaK1�aðxÞ
K1�aðxÞ �

K0ðxÞ
x K1ðxÞ,

K0ðxÞ
x K1ðxÞ � �

log x and ðx2Þ
K0ðxÞ
K1ðxÞ � �

x2

2 log x, and setting x ¼
ffiffiffiffi
2
r2

q
Ai with r2 ¼ 1=ðCaÞ and

C ¼ 2=I, we obtain the asymptotic expression

�awðaÞ þ a log
�1
2

ffiffiffi
a
p ffiffiffiffi

C
p

Ai

�
þ a log

� ffiffiffi
a
p ffiffiffiffi

C
p

Ai

�
þ aþ a2CA2

i log
� ffiffiffi

a
p ffiffiffiffi

C
p

Ai

�
:

ð10:85Þ

Part a) then follows by taking the limit of Eq. (10.85) as a! 0.
Part b). Taking r2 ¼ 1=ðCaÞ, where C ¼ 2=I, into Eq. (10.84), we obtain the

limit 0 as !1. This proves part b). �

Proof of Theorem 21 a) At a ¼ 0, we have Cðaþ m=2Þ ¼ Cðm=2Þ. Also, CðaÞ
has a simple pole with residue 1 at a ¼ 0. Therefore, Cðaþ1=2Þ

am=2CðaÞ �Cðm=2Þa1�m=2 at

a � 0, which shows part a).

b) Using Sterling’s formula, we have Cðaþm=2Þ
am=2CðaÞ �

e�a�m=2ðaþm=2Þaþm=2�1=2

am=2e�aaa�1=2 , which is

equal to e�m=2
�

1þ m=2
a

�a�
1þ m=2

a

�m=2�1=2
. Therefore, lima!1

Cðaþm=2Þ
am=2CðaÞ ¼ 1, and we

are done.
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c) Using the logarithmic derivative, we have d
d a MðmÞK ðaÞ ¼ MðmÞK ðaÞ�

wðaþ m=2Þ � wðaÞ � m
2a

�
. Now, we have MðmÞK ðaÞ[ 0. Also, 1

a ¼
wðaþ 1Þ � wðaÞ, and hence wðaþ m=2Þ � wðaÞ � m

2a ¼ wðaþ m=2Þ��
m
2 wðaþ 1Þ þ ð1� m

2ÞwðaÞ
�

. Since the function w is convex, we conclude that

wðaþ m=2Þ �
�

m
2 wðaþ 1Þ þ ð1� m

2ÞwðaÞ
�

[ 0, if m=2\1, whereas it is negative if

m=2 [ 1. �

Proof of Theorem 22 a) We consider the function f ðaÞ ¼ Cðmþ1ÞCðmþaÞCðaÞ
C2ðm=2þ1ÞC2ðm=2þaÞ,

noting that RðmÞK ¼
�
f ðaÞ � 1

��1=2
. Now, as a! 0, we have CðaÞ ! 1, whereas

Cðmþ1ÞCðmþaÞ
C2ðm=2þ1ÞC2ðm=2þaÞ !

Cðmþ1ÞCðmÞ
C2ðm=2þ1ÞC2ðm=2Þ [ 0. This proves part a).

b) Next, using directly Sterling’s formula for Cðmþ aÞ, CðaÞ and Cðm=2þ aÞ,
one finds that lima!1 f ðaÞ ¼ Cðmþ1Þ

C2ðm=2þ1Þ, which proves part b).

c) Finally, taking the logarithmic derivative of f ðaÞ yields
d f
d a ¼ f ðaÞ

�
wðmþ aÞ þ wðaÞ � 2wðm=2þ aÞ

�
. This is negative, since f ðaÞ[ 0 and

wðm=2þ aÞ[ 1
2 ðwðmþ aÞ þ wðaÞÞ (because w is a convex function). It follows

that f ðaÞ[ lima!1 f ðaÞ ¼ Cðmþ1Þ
C2ðm=2þ1Þ. We claim that gðmÞ ¼ Cðmþ1Þ

C2ðm=2þ1Þ [ 1, for any

m[ 0. In fact, the function gðmÞ is increasing (its derivative is equal to
gðmÞðwðmþ 1Þ � wðm=2þ 1ÞÞ) and gð0Þ ¼ 1. Therefore, f ðaÞ[ 1, and it follows

that
�
f ðaÞ � 1

��1=2
is an increasing function. This completes the proof of part c).

�

Proof of Theorem 23 This is an immediate consequence of Theorem 28. �

Proof of Theorem 24 Starting with Eq. (10.44), we compute

MðmÞHKðc; aÞ ¼
Cðm=2þ 1Þ
ðcþ aÞm=2

Z 1
0

wm=2
1F1ð�m=2; 1;� c

w
ÞGðw j a; 1Þ dw

¼ Cðm=2þ 1Þ
ðcþ aÞm=2

Z 1
0

wm=2e�c=w
1F1ð1þ m=2; 1;

c
w
ÞGðw j a; 1Þ dw

¼ 1

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1
n¼0

ð1þ m=2Þn
n!n!

cn
Z 1

0
wm=2þa�n�1e�c=we�w dw:

ð10:86Þ

Using (Erdélyi 1954, I, p. 146, (29)), this is equal to

1

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1
n¼0

ð1þ m=2Þn
n!n!

cn2ð ffiffifficp Þm=2þa�nKm=2þa�nð2
ffiffiffi
c
p Þ

¼ 2

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1
n¼0

ð1þ m=2Þn
n!n!

ð ffiffifficp Þm=2þaþnKm=2þa�nð2
ffiffiffi
c
p Þ:

ð10:87Þ

This completes the proof of Theorem 25. �
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Proof of Theorem 26 a) This follows from Theorem 24, part b), and Theorem 13.

b) From Theorem 24, part a), we know that MðmÞHKðc; aÞ is equal to
Cðm=2þ1Þ
ðcþaÞm=2

R1
0 wm=2

1F1ð�m=2; 1;�c=wÞGðw j a; 1Þ dw. From Luke (1962, pp. 7–8), we

have Cðm=2þ 1Þ 1F1ð�m=2; 1;�zÞ ¼ Cðm=2þ 1Þe�z
1F1ð1þ m=2; 1; zÞ ¼ zm=2ð1þ

Oð1=zÞÞ, for large values of z. Let g[ 0 be a real number (arbitrarily small). Take
z0 sufficiently large so that ð1� gÞzm=2�Cðm=2þ 1Þ 1F1ð�m=2; 1;�zÞ�
ð1þ gÞzm=2, for any z� z0. Then, if c=w� z0, i.e. w� c=z0, we have ð1�
gÞcm=2�Cðm=2þ 1Þwm=2

1 F1ð�m=2; 1;�c=wÞ� ð1þ gÞcm=2. Therefore, the inte-

gral Cðm=2þ1Þ
ðcþaÞm=2

R c=z0

0 wm=2
1F1ð�m=2; 1;�c=wÞGðw j a; 1Þ dw has lower bound ð1�

gÞ cm=2

ðcþaÞm=2 Prðw� c=z0Þ and upper bound ð1þ gÞ cm=2

ðcþaÞm=2 Prðw� c=z0Þ. On the other

hand, the function 1F1ð�m=2; 1;�zÞ equals 1 at z ¼ 0, and hence there is a real
number C [ 0 such that 0\ 1F1ð�m=2; 1;�c=wÞ�C for any w [ c=z0. Thus, the

integral Cðm=2þ1Þ
ðcþaÞm=2

R1
c=z0

wm=2
1F1ð�m=2; 1;�c=wÞGðw j a; 1Þ dw has lower bound 0 and

upper bound Cðm=2þ1Þ
ðcþaÞm=2 C Cðm=2þaÞ

CðaÞ . But now, limc!1
cm=2

ðcþaÞm=2 ¼ 1, limc!1 Pr

ðw� c=z0Þ ¼ 1, and limc!1
1

ðcþaÞm=2 ¼ 0. Therefore, we obtain

lim infc!1MðmÞHKðc; aÞ� 1� g and lim supc!1MðmÞHKðc; aÞ� 1þ g. Since g is arbi-

trarily small, we conclude that limc!1MðmÞHKðc; aÞ ¼ 1.

c) We consider the function f ðc;wÞ ¼ 1F1ð1þm=2;1;c=wÞ
ec=wðcþaÞm=2 . From Theorem 24, part a),

we have MðmÞHKðc; aÞ ¼ Cðm=2þ 1Þ
R1

0 wm=2f ðc;wÞGðw j a; 1Þ dw. Thus, we obtain
o
o c MðmÞHKðc; aÞ ¼ Cðm=2þ 1Þ

R1
0 wm=2 o

o c f ðc;wÞGðw j a; 1Þ dw.

We compute the value of o
o c f ðc;wÞ as

d
d z 1 F1ð1þ m=2; 1; c=wÞw�1 � 1 F1ð1þ m=2; 1; c=wÞ

�
w�1 þ m

2 ðcþ aÞ�1
�

ec=wðcþ aÞm=2
:

ð10:88Þ

Using (Gradshteyn and Ryshik 1994, 9.213, p. 1086) and (Gradshteyn and Ryshik
1994, 9.212(3), p. 1086), we have d

d z 1F1ð1þ m=2; 1; c=wÞ ¼ ð1þ m=2Þ 1F1ð2þ
m=2; 2; c=wÞ ¼ m

2 1F1ð1þ m=2; 2; c=wÞ þ 1 F1ð1þ m=2; 1; c=wÞ. So, we obtain after
algebraic simplifications

m=2

ec=wðcþ aÞm=2þ1

n
1F1ð1þ m=2; 2; c=wÞðc

w
þ a

w
Þ � 1F1ð1þ m=2; 1; c=wÞ

o
:

ð10:89Þ
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Using (Gradshteyn and Ryshik 1994, 9.212(2), p. 1086), we have
c
w 1F1ð1þ m=2; 2; c=wÞ � 1F1ð1þ m=2; 1; c=wÞ ¼ � 1F1ðm=2; 1; c=wÞ. Therefore,
we finally obtain

am=2

ec=wðcþ aÞm=2þ1w

n
1F1ð1þ m=2; 2; c=wÞ � w

a 1F1ðm=2; 1; c=wÞ
o
: ð10:90Þ

Now, let m=2\1. Then, we obtain the strict lower bound for o
o c f ðc;wÞ

am=2

ec=wðcþ aÞm=2þ1w

n
1F1ð1þ m=2; 2; c=wÞ � w

a 1F1ð1þ m=2; 2; c=wÞ
o
: ð10:91Þ

Consider the function gðc;wÞ ¼ Cðm=2þ 1Þwm=2 am=2

ec=wðcþaÞm=2þ1w 1F1ð1þ m=2; 2; c=wÞ.
We have shown that

o

o c
MðmÞHKðc; aÞ[

Z 1
0

gðc;wÞGðw j a; 1Þ dw�
Z 1

0

w

a
gðc;wÞGðw j a; 1Þ dw:

ð10:92Þ

But, w
a Gðw j a; 1Þ ¼ Gðw j aþ 1; 1Þ. So, we obtain

o

o c
MðmÞHKðc; aÞ[

Z 1
0

gðc;wÞGðw j a; 1Þ dw�
Z 1

0
gðc;wÞGðw j aþ 1; 1Þ dw:

ð10:93Þ

Thus, we want to show that
R1

0 gðc;wÞGðw j a; 1Þ dw�
R1

0 gðc;wÞ
Gðw j aþ 1; 1Þ dw� 0. Ignoring the positive factor Cðm=2þ 1Þ am=2

ðcþaÞm=2þ1, we are

thus lead to the function hðc;wÞ ¼ wm=2�1
1F1ð1þm=2;2;c=wÞ

ec=w , and we show thatR1
0 hðc;wÞGðw j a; 1Þ dw�

R1
0 hðc;wÞGðw j aþ 1; 1Þ dw� 0 as follows. In Lemma

6, we show that hðc;wÞ is decreasing in the variable w, if m=2\1. Then, in Lemma
7, we show that for any decreasing positive function HðwÞ, we haveR1

0 HðwÞGðw j a; 1Þ dw�
R1

0 HðwÞGðw j aþ 1; 1Þ dw� 0.

Next, let m=2 [ 1. Then, we obtain the strict upper bound for o
o c f ðc;wÞ

am=2

ec=wðcþ aÞm=2þ1w

n
1F1ð1þ m=2; 2; c=wÞ � w

a 1 F1ð1þ m=2; 2; c=wÞ
o
: ð10:94Þ

The same argument as above (but with reversed inequalities) leads to

o

o c
MðmÞHKðc; aÞ\

Z 1
0

gðc;wÞGðw j a; 1Þ dw�
Z 1

0
gðc;wÞGðw j aþ 1; 1Þ dw;

ð10:95Þ
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where the function gðc;wÞ is defined as above. So, in this case, we want to show
that

R1
0 hðc;wÞGðw j a; 1Þ dw�

R1
0 hðc;wÞGðw j aþ 1; 1Þ dw� 0, where hðc;wÞ is

defined as above. But, this is implied by Lemmas 6 and 7 (case m=2 [ 1). This
completes the proof of the theorem. �

Lemma 6a) If m=2\1, the function hðc;wÞ ¼ wm=2�1
1F1ð1þm=2;2;c=wÞ

ec=w is decreasing in
the variable w.

b) If m=2 [ 1, the function hðc;wÞ is increasing in the variable w.

Proof Using the change of variable x ¼ c=w, we consider the function

FðxÞ ¼ 1F1ð1þm=2;2;xÞ
exxm=2�1 . So, we want to show that FðxÞ is increasing if m=2\1 and FðxÞ is

decreasing if m=2 [ 1 (the function x ¼ c=w is decreasing in the variable w).
We compute

d

d x
FðxÞ ¼

d
d z 1F1ð1þ m=2; 2; xÞ � 1F1ð1þ m=2; 2; xÞ

�
1þ ðm2� 1Þx�1

�
exxm=2�1

: ð10:96Þ

Using (Gradshteyn and Ryshik 1994, 9.213, p. 1086) and (Gradshteyn and

Ryshik 1994, 9.212(3), p. 1086), we have d
d z 1F1ð1þ m=2; 2; xÞ ¼ ð1þm=2Þ

2 1F1ð2þ
m=2; 3; xÞ ¼ ðm=2�1Þ

2 1F1ð1þ m=2; 3; xÞ þ 2
2 1F1ð1þ m=2; 2; xÞ.

So, we obtain after algebraic simplifications

ðm=2� 1Þ
exxm=2

nx

2 1F1ð1þ m=2; 3; xÞ � 1F1ð1þ m=2; 2; xÞ
o
: ð10:97Þ

Using (Gradshteyn and Ryshik 1994, 9.212(2), p. 1086), we finally obtain

�ðm=2� 1Þ
exxm=2 1F1ð1þ m=2; 1; xÞ: ð10:98Þ

The result is now clear. �

Lemma 7 a) Let HðwÞ be a decreasing positive function. Then, one hasR1
0 HðwÞGðw j a; 1Þ dw�

R1
0 HðwÞGðw j aþ 1; 1Þ dw� 0.

b) Let HðwÞ be an increasing positive function. Then, one hasR1
0 HðwÞGðw j a; 1Þ dw�

R1
0 HðwÞGðw j aþ 1; 1Þ dw� 0.

Proof a) Since HðwÞ is a positive decreasing function, we can approximate it by

functions of the form
PN

n¼1 an Bðbn;wÞ, where an� 0, bn [ 0, and Bðb;wÞ is equal
to 1, if w 2 ½0; b�, and Bðb;wÞ ¼ 0, if w [ b. Now,

R1
0 Bðb;wÞGðw j a; 1Þ

dw ¼
R b

0 Gðw j a; 1Þ dw ¼ 1� Cða;bÞ
CðaÞ , where Cða; bÞ is the incomplete Euler gamma

function. But the function 1� Cða;bÞ
CðaÞ is decreasing. Therefore,R1

0 Bðb;wÞGðw j a; 1Þ dw [
R1

0 Bðb;wÞGðw j aþ 1; 1Þ dw, and we are done.
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b) Since HðwÞ is a positive increasing function,, we can approximate HðwÞ by

functions of the form
PN

n¼1 an ð1� Bðbn;wÞÞ, where an� 0, bn [ 0. Now,R1
0 ð1� Bðb;wÞÞGðw j a; 1Þ dw ¼ Cða;bÞ

CðaÞ , and we are done. �

Proof of Corollary 2. Let m=2\1. Since 0\M\1, we conclude from Theorem 26,
using the Intermediate Value Theorem, that for any a[ 0 such that MKðaÞ�M,

there is a unique value of c� 0 for which MðmÞHKðc; aÞ ¼ M. Thus, if

M�Cðm=2þ 1Þ, a has no restrictions, because MðmÞK ðaÞ\Cðm=2þ 1Þ for any a [ 0
(Theorem 21). On the other hand, if MKðaÞ\M, let a0 be the unique solution to the

equation MðmÞK ða0Þ ¼ M (Theorem 21). Then, using once more Theorem 21, we

obtain that MðmÞK ðaÞ\M if and only if a� a0. Henceforth, if MðmÞK ðaÞ\M, the

domain of the function cðmÞM ðaÞ is the interval ð0; a0�

The case m=2 [ 1 is handled similarly, but with reversed inequalities. �

Proof of Lemma 4. Part a). From the definition in Eq. (10.6), the distribution
PHKðA j e; r2; aÞ is equal to

R1
0 PRiðA j e; r2wÞGðw j a; 1Þd w. Using the identity

I0ðzÞ ¼ 1
p

R p
0 ez cos hd h from Abramowitz and Stegun (1972, Eq. (9.6.16), p. 376)

and the definition of the Rice distribution (10.2) , we can express PRiðA j e;r2wÞ in

the form 1
p

R p
0

A
r2w exp

�
e

r2w A cos h
�

exp
�
� ðe

2þA2Þ
2r2w

�
d h. It follows that

PHKðA j e; r2; aÞ can be written as

1
p

Z p

0

nZ 1
0

A

r2w
exp
� e
r2w

A cos h
�

exp
�
�ðe

2 þ A2Þ
2r2w

�
Gðw j a; 1Þd w

o
d h;

ð10:99Þ

which yields Eq. (10.56) after evaluation of the inner integral.
Part b). Using Eq. (10.56), the partial derivative of the homodyned K-distri-

bution with respect to e is equal to

1
p

Z p

0

2A

r2CðaÞ
o

oe

n�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�o
d h

¼ 1
p

Z p

0

2A

r2CðaÞ
nða� 1Þ

2

�XðhÞ
2

�a�2
Ka�1

�
XðhÞ

�

þ
�XðhÞ

2

�a�1 d

d z
Ka�1

�
XðhÞ

�o o

oe
XðhÞd h

¼ � 1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a�1
Ka�2

�
XðhÞ

�
2
ðe� A cos hÞ

r2XðhÞ d h:

ð10:100Þ

Here, we have used the identity z d
d z Ka�1ðzÞ þ ða� 1ÞKa�1ðzÞ ¼ �z Ka�2ðzÞ

(Abramowitz and Stegun 1972, Eq. (9.6.26), 2nd identity, p. 376) and algebraic
simplifications.
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Part c). Using Eq. (10.56), the partial derivative of the homodyned K-distri-
bution with respect to r2 is equal to

1
p

Z p

0

2A

CðaÞ
o

or2

n 1
r2

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�o
d h

¼ � 1
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�
d h

þ 1
p

Z p

0

2A

r2CðaÞ

nða� 1Þ
2

�XðhÞ
2

�a�2
Ka�1

�
XðhÞ

�

þ
�XðhÞ

2

�a�1 d

d z
Ka�1

�
XðhÞ

�o o

or2
XðhÞd h

¼ � 1
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�
d h

� 1
r2

1
p

Z p

0

2A

r2CðaÞ

n
ða� 1Þ

�XðhÞ
2

�a�2
Ka�1

�
XðhÞ

�

�
�XðhÞ

2

�a�1
Ka

�
XðhÞ

�o�XðhÞ
2

�
d h

¼ � a
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�
d h

þ 1
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a
Ka
�
XðhÞ

�
d h:

ð10:101Þ

Here, we have used the identity z
2

d
d z Ka�1ðzÞ ¼ � z

2 KaðzÞ þ ða�1Þ
2 Ka�1ðzÞ (Abra-

mowitz and Stegun 1972, Eq. (9.6.26), 4th identity, p. 376) and algebraic
simplifications.

Part d). Eq. (10.59) follows from part a) upon taking the logarithmic derivative
of the integrand in Eq. (10.56). �
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Chapter 11
The Quantitative Ultrasound Diagnosis
of Liver Fibrosis Using Statistical Analysis
of the Echo Envelope

Tadashi Yamaguchi

Abstract The development of a quantitative diagnostic method for liver fibrosis
using ultrasound would be highly medically significant. Detection and classifica-
tion of tissue disease using the characteristics of the ultrasound echo signal, such
as power spectrum, texture parameters, local attenuation and statistical charac-
teristics, requires an understanding of the relationship between complicated scat-
terer structures and the echo signal. In this chapter, a quantitative ultrasound
(QUS) method for detecting and classifying liver fibrosis on the basis of the
estimation of scatterer density from the statistical analysis of echo envelopes is
introduced. Fibrotic tissue is inhomogeneous; therefore, its envelope probability
density function (PDF) cannot be accurately modeled by a single PDF. Addi-
tionally, some regions have variable scatterer densities. In order to detect and
characterize the fibrotic liver quantitatively, the relationship between the scatterer
distribution and the PDF of echo envelopes of inhomogeneous scattering media
using computer simulations was examined. Based on these simulations, the
analysis parameters in the simulated fibrotic tissue were successfully used to
characterize liver fibrosis in clinical data sets.

Keywords Liver fibrosis � Envelope statistics

11.1 Introduction

Ultrasound imaging is highly sensitive to changes in the acoustic properties of
tissues, and abnormalities are often diagnosed on the basis of recognition not only
of the shapes of important structures but also of subtle changes in tissue texture. In
ultrasound tissue characterization based on the characteristics of the echo signals,
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such as power spectrum, texture parameters, local attenuation and statistical
characteristics, it is assumed that changes in tissue properties such as attenuation
and elasticity are uniform in the liver, and therefore, a single evaluation index is
used in many methods (Valckx and Thijssen 1997; Shankar 2000; Oelze et al.
2002; Ito et al. 2007; Oosterveld et al. 1993; Kikuchi et al. 1995; Bleck et al. 1996;
Yamaguchi and Hachiya 1998; Fukuda et al. 1998; Badawi et al. 1999; Yamaguchi
et al. 2001; Wang et al. 2002; Yeh et al. 2002, 2003; Sandrin et al. 2003; Fujii et al.
2004; Yamada et al. 2006; Toyoda et al. 2009).

Ultrasound images include granular patterns known as speckle. The speckle in
ultrasound images is not just a function of the scattering of structures in tissues but
is also the result of coherent accumulation of random scattering from within the
resolution cell of the imaging system (Burckhardt 1978; Wargner et al. 1983;
Tuthill et al. 1983). The probability density function (PDF) of the ultrasound echo
amplitude from many identical scatterers from random spatial locations is char-
acterized by the Rayleigh distribution (Toyoda et al. 2009; Burckhardt 1978).
However, because the spatial scatterer distribution in an actual tissue is not abso-
lutely random and may not come from identical scatterers, the Rayleigh distribution
may not approximate the statistical characteristics of echo envelope. Therefore,
various statistical distributions have been proposed to model the first-order statistics
of the amplitude of the echo envelope (Narayanan and Shankar 1991; Shankar et al.
1993; Dutt V Greenleaf 1996; Cramblitt and Parker 1999; Shankar 2001).

In this chapter, the relationships of these statistical distributions are briefly
presented. Next, a procedure for approximating the complicated scattering struc-
tures in tissue by a simple mathematical model is examined. These models are then
applied to actual clinical diagnosis. Specifically, clinical data using diagnostic
ultrasound equipment will be used with the envelope statistics approaches to
diagnose liver fibrosis.

11.2 Relationship Between Statistical Models and Scatterer
Distributions

Theoretically, the PDF of the echo amplitude envelope when many identical
scatterers per resolution cell are present with random spatial locations, e.g., like in
normal liver tissue, is the Rayleigh distribution (Burckhardt 1978; Wargner et al.
1983; Tuthill et al. 1983). However, the PDF of the echo amplitude envelope can
become non-Rayleigh under different experimental conditions in heterogenous
media. In this case, the PDF might be better approximated by the k-distribution,
the Nakagami model or modified statistical models such as the homodyned
k-distribution and the generalized Nakagami model (Narayanan and Shankar 1991;
Shankar et al. 1993; Dutt V Greenleaf 1996; Cramblitt and Parker 1999; Shankar
2001). These standard PDFs can represent more scattering conditions then the
simple model of the Rayleigh distribution (Fig. 11.1), and they contain two or
more parameters that can be useful for tissue characterization. Therefore, the
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ability of these more general PDFs to fit experimental data is usually better than
with the Rayleigh PDF that depends on a single parameter. Notionally, the rela-
tionship between each statistical model and different scattering conditions is
illustrated in Fig. 11.2. Nevertheless, little is known about how to correctly model
the echo amplitude envelope in heterogeneous media, which is the case for almost
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all living tissues. Therefore, an analysis method for associating a tissue structure to
a simple mathematical statistics model was proposed. The basics and details are
explained in the following sections.

11.3 Basics of Echo Envelope Statistical Analysis for Liver
Fibrosis

11.3.1 The Histologic Characteristics of Liver Fibrosis

Ideally, the human liver is composed of small hexagonal structures termed liver
lobules. The size of each liver lobule is about 1 mm in diameter and 1 mm in
height, and they contain over 500 thousand liver cells, a central vein at the center
and hepatic portal veins at the apex. These structures are smaller than the wave-
length of the typical ultrasound pulse used in clinical examinations and can serve
as scatterers of ultrasound. A fiber will be generated in the portal vein region in
liver lobule if fibrosis (i.e. hepatitis) develops. The changes in the liver that lead
from the onset of fibrosis to cirrhosis are gradual. Cirrhosis, an irreversible and the
final condition of liver fibrosis, destroys a large number of liver lobules and
replaces them with a permanent type of connective tissue called regenerative
nodules. These nodules cannot perform the various functions of the liver.

As a matter of course, fibrotic liver is a heterogeneous medium with different
types of tissues intermingled. It is important to parameterize the amount of mixture
of fiber tissues in the heterogeneous liver in order to diagnose the advance of
fibrosis. As compared with normal liver, the density of tissue fiber structure is
high. Moreover, according to the kind of fibrosis generated and specific generation
process, the variation of density liver tissue can be large. The difference in the
density of the liver appears in an echo image as a difference in brightness or
textures, because the nodules and collection of fibrous structures that develop are
larger than the ultrasound wavelength and/or the scatterer density of fibers is larger
than that of a normal liver. Furthermore, normal liver also consists of different
types of tissues, i.e., the main cellular structure of liver, and various kinds of blood
vessels or bile ducts. The density of tissue inside a blood vessel or bile duct is very
low compared to the liver parenchyma. The changes in the densities of liver tissues
affect the ultrasound echo image, i.e., as is the case for liver fibrosis.

11.3.2 Basic Analysis Method of Characteristics of Echo
Signals

In a homogeneous medium with high scatterer density of identical scatterers with
random spatial locations, the PDF, pðxÞ , of demodulated echo amplitude x can be
approximated by the Rayleigh distribution given by
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pðxÞ ¼ 2x

r2
e�ðx

2=r2Þ; ð11:1Þ

where r is a scale parameter representing the variance of the echo amplitude
envelope.

One method to quantify the PDF of the characteristics of the echo amplitude
envelope is through quantile–quantile probability plots (Q–Q plots). A Q–Q plot is
used to compare distributions. To form the Q–Q plot for the Rayleigh distribution,
the accumulative distribution function, F(x), is used

FðxÞ ¼
Z x

0
p xð Þdx ¼ 1� e� x=rð Þ2 : ð11:2Þ

Using a logarithmic transform, Eq. (11.2) can be rewritten as

ln � ln 1� FðxÞf g½ � ¼ 2 ln xð Þ � ln rð Þf g: ð11:3Þ

Typically, in the Q–Q plot of the Rayleigh distribution, the horizontal axis is the
log-compressed amplitude X = ln(x), the vertical axis Y = ln(-ln(1-F(x))) and
the Y-intercept is determined by -2ln(r). If perfect approximation of the simulated
echo signal by the Rayleigh distribution is possible, then the resulting Q–Q would
be a straight line with a slope of two and a zero intercept, because r2 = 1 in the
normalized Rayleigh distribution described by Eq. (11.1). However, the shape of
the Q–Q plots from the echo signals from a heterogeneous medium has different
characteristics. The characteristics are explained below using a computation
simulation in the next section.

11.3.3 Computer Simulation Models of Heterogeneous
Medium

Computer simulations were performed using Field II (Jensen 1991, 1999; Jensen
and Svendsen 1992) and MATLAB (The MathWorks Inc., MA, United States) in a
two-dimensional (2D) space. A linear-array probe with 128 elements was simu-
lated, and the size and the kerf of each element were 5.00 9 0.385 mm and
0.05 mm, respectively. The center frequency of the probe was set to 6.0 MHz and
the sampling frequency was 50 MHz using 16-bit accuracy. The focal length was
40 mm, and the speed of sound was 1,540 m/s. The size of the scattering domain
was 60 9 60 mm, and scatterers were placed inside this domain with random
spatial locations. An ultrasonic wave was used to radiate each of six computer-
simulated domains having media with different scattering properties.

The 2D heterogeneous-medium models were simulated by embedding a circular
scattering region in the computational domain with a number density different
from that of the base medium. The base medium, which simulated normal liver
tissue, was homogeneous with a uniform density of 10 scatterers per resolution
cell (sc/rc). The base medium was termed ‘‘surrounding medium’’ in order to
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distinguish it from the circular region. For instance, to model a blood vessel or a
bile duct, a circular region containing 1 sc/rc was embedded into the base medium,
which contained 10 sc/rc. Similarly, a circular region with 60 sc/rc was embedded
into the base medium to model fibrosis. The circular region was also a homoge-
neous medium. When the circular region was embedded in the base medium, the
resulting heterogeneous medium contained two different scattering media. In
actual living tissues like liver, two or more regions having different scatterer
densities can have various mixed scattering properties. The mixing properties
correspond to the amount of diseased tissue in the liver. Therefore, we created
several kinds of heterogeneous-medium models by changing the size of the cir-
cular regions embedded inside the base medium. In every case, the scatterer
density of the circular region was different from that of the base medium. Six
different models were created by varying the mixing properties of the circular
region. The six heterogeneous scatterer models are shown in Figs. 11.3 and 11.4.
In Figs. 11.3 and 11.4a–f, the fraction of the circular regions within field of view in
each simulation model is 8, 12, 18, 24, 30 and 40 %, respectively (Yamaguchi
et al. 2010; Yamaguchi and Hachiya 2010).

11.3.4 Basic Characteristics of Echo Signals
in the Simulation Model

The statistical characteristics of the simulated echo-signal envelope from the same
region of interest (ROI) in each simulated domain were analyzed. The size of the
ROI was 25 mm in depth 9 40 mm in the lateral direction. The ROI dimensions
are about 8 times greater than the resolution-cell dimensions of the simulated
imaging system. (The resolution cell is defined as the product of the -3 dB beam
width and the -3 dB pulse length.)

Fig. 11.3 Heterogeneous scatterer medium models that imitated a blood vessel or bile duct. A
circular scatterer medium of 1 sc/rc is embedded in a surrounding scatterer medium of 10 sc/rc

Fig. 11.4 Heterogeneous scatterer medium models that imitated fiber. A circular scatterer
medium of 60 sc/rc is embedded in a surrounding scatterer medium of 10 sc/rc
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Figure 11.5 displays the Q–Q plots of each heterogeneous model shown in
Fig. 11.3. This figure shows that the mixing properties and the value of the Q–Q
plot slope (differential coefficient) are almost linearly related. This result demon-
strates that the relevant properties of echo signals can be approximated successfully
with only one PDF such as Weibull or k-distribution (Narayanan and Shankar 1991;
Cramblitt and Parker 1999; Jensen and Svendsen 1992). Another feature of the Q–Q
plots is that the line always goes through the origin (i.e., X = Y = 0). These
features can be quantified by using advanced models like the Weibull or Nakagami
distribution, which are easily related to the Rayleigh distribution.

Figure 11.6 shows the Q–Q plots of each heterogeneous model from Fig. 11.4.
All the Q–Q plot lines are curved, and the curvature increases with increasing
inclusion size. However, each plotted whole line is not necessarily a curve. The
plot is usually straight until it bends around the average value of normalized
amplitude in the comparison Rayleigh distribution (i.e., near X equals 0). Note that
the slope of the portion whose amplitude is smaller than the root mean square takes
a value of approximately 2, independent of the inclusion size. These phenomena
can be understood by investigating the relationships between the probability dis-
tribution of the echo-signal envelope and the scatterer distribution.

11.4 Q–Q Plot Based Estimation Method of Scatterer
Density Applied to Liver Fibrosis Data

11.4.1 Basics of Applied Estimation Method

From the observations of the previous sections, liver-fibrosis characterization can
be successful if the high-amplitude and the low-amplitude regions of the envelope

Fig. 11.5 The result of Q–Q
plot of each heterogeneous
model (Fig. 11.1) which
imitated a blood vessel or a
bile duct
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can be quantified effectively. Therefore, an applied signal-analysis method was
proposed.

In heterogeneous scatterer medium models that imitated fibrotic liver, the PDF
of echo envelope amplitude of the circular scatterer medium of 10 sc/rc was
approximated by the Rayleigh distribution, and the PDF of echo envelope
amplitude of surrounding scatterer medium of 1 sc/rc was also approximated by
the Rayleigh distribution. However, dispersion of these two Rayleigh distributions
differed. In the Q–Q plot based estimation method of scatterer density, the PDF of
echo data from the fibrotic tissue can be assumed to be a composite function of two
Rayleigh distributions with different r values. If the mixing ratio of diseased tissue
in the liver is defined as a, then the PDF of the echo envelope of fibrotic liver can
be expressed by

pmixðxÞ ¼ 1� að Þpnor xð Þ þ apdis xð Þ: ð11:4Þ

In Eq. (11.4), pnor and pdis are the Rayleigh distributions of normal liver and
diseased tissue (or blood vessel and/or bile), and the variances of the echo enve-
lopes are rnor

2 and rdis
2 , respectively. The variance ratio rr = rdis

2 /rnor
2 , which

corresponds to the degree of diseased tissue, and therefore, the ratio of scatterer
density and the mixing ratio a, which corresponds to the amount of diseased tissue,
are parameters of the echo amplitude envelope distribution of simulation model.

Figure 11.7 illustrates the Q–Q plot based estimation method for characterizing
liver fibrosis. The Q–Q plot of the echo signal in an ROI is approximated by two
straight lines. These two straight lines are derived by minimizing the sum of the
Kullback–Leibler (K-L) divergence DKL between the Q–Q plot result and the two
straight lines. DKL is evaluated by

Fig. 11.6 The result of Q–Q
plot of each heterogeneous
model (Fig. 11.4) which
imitated liver fibrosis

282 T. Yamaguchi



DKL pjjqð Þ ¼
X1
x¼0

p xð Þ log
p xð Þ
q xð Þ ; ð11:5Þ

where the PDF of the simulated echo-signal envelope is p(x) and that of the
Rayleigh distribution function is q(x).

The parameters used for fibrosis characterization are Sh = tanhh, Sl = tanhl and
Xc, which is the X value where the two straight lines intersect. In the case of low
scatter densities, such as blood vessels or bile ducts, the characteristics of the echo-
signal envelope predominantly appear in the straight line with a slope value Sl, but
in the case of high scatterer density, such as fibrotic regions, the characteristics
predominantly appear in the straight line with a slope value Sh. If a small amount
of signal from fibrotic liver is contained in the analysis ROI filled with the speckle
presumably from a normal liver, then Sh has lower value than Sl and would follow
curves produced in Fig. 11.6.

The differences among characteristics of the PDFs for different degrees of liver
fibrosis depend on the mixing ratio of diseased tissue ra as shown in Figs. 11.5 and
11.6. The ratio of scatterer density rr = rdis

2/rnor
2 also is an important parameter

for estimating the degree of fibrosis because the stiffness of tissue is correlated
with scatterer density. We also examined the influence of the difference in the
scatterer density of the mixing medium compared to the surrounding medium, i.e.,
the homogeneous base medium.

In the heterogeneous-medium simulations, the mixing ratio of the circular
region in the ROI was fixed at 30 %, and the scatterer density was varied. Spe-
cifically, the scatterer density of the surrounding medium was 10 sc/rc, and the
scatterer densities of the circular region were varied from 1 to 60 sc/rc. When
the scatterer density of the circular region was 10 sc/rc, the scatterer density of the
circular region became equal to the scatterer density of the surrounding medium,
i.e., it was a pure homogeneous scattering medium. The properties of the
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heterogeneous scattering models are shown in Fig. 11.8. In Fig. 11.8a–f, the
scatterer density of the circular region is 1, 3, 5, 20, 40, or 60 sc/rc, respectively.

The values of slope in high echo amplitude part Sh and low echo amplitude part
Sl and the parameter Xc of the position at which two straight lines intersect can be
calculated from the mixing ratio a and the ratio of scatterer density rr from Eq.
(11.4) and simulation models as shown in Figs. 11.3, 11.4 and 11.8. Figure 11.9
shows an example of an evaluation chart which uses the ratio of scatterer density
and mixing ratio evaluated from Sh and Xc. This chart shows the values which Sh

and Xc can take when a and/or each dispersion of Pnor and Pdis in Eq. (11.4) are
changed. The calculated ranges of the ratio of scatterer density and the mixing
ratio for the evaluation chart are 1–10 and 0–50 %, respectively. Solid lines are
level lines on which the mixing ratio is constant and dotted lines are level lines on
which the ratio of scatterer density is constant. When the ratio of scatterer density
is unity, the PDF becomes a Rayleigh distribution, which corresponds to normal
liver. The distribution deviates from the Rayleigh distribution when the ratio of
scatterer density and the mixing ratio increase. This increase was observed to be
associated with liver fibrosis progression.

Using clinical data, Sh and Xc easily can be calculated from the Q–Q plot of the
observed PDF. Next, the ratio of scatterer density and the mixing ratio that

Fig. 11.8 A heterogeneous scattering medium in which the scatterer densities of the circular
region vary
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correspond to the degree of degeneration and the amount of fibrous tissue can be
obtained using Fig. 11.9. In summary, using this method with clinical data, the
fibrosis stage can be quantified using an inverse approach based on the model
described in Eq. (11.4).

Figure 11.9 also illustrates how the ratio of scatterer density and mixture ratio
can be estimated clinically. Additionally, in vivo clinical data obtained from
patients with early (F1, i.e., portal fibrotic widening) and advanced (F4, i.e., cir-
rhosis) fibrosis indicated that advanced cases have a higher scatterer density.
Additionally, the relationship between Sh and Sl can be used to estimate the degree
of vascularization or bile duct presence. When the value of Sh and Sl is compa-
rable, and they are smaller than 2 as shown in Fig. 11.5, it is assumed that the echo
from a vascularization or a bile duct is included in the analyzed echo data.

11.4.2 Example of Clinical Data Experiment

The Q–Q plot based estimation method was applied to clinical data obtained from
patients, and parameter values were displayed as pixel values in parametric images
permitting quantitative evaluation of liver fibrosis. The clinical data sets were
acquired from one healthy adult volunteer and four adult patients with chronic
hepatitis C who underwent liver biopsy at Ogaki Municipal Hospital (Toyoda et al.
2009; Yamaguchi et al. 2010; Yamaguchi and Hachiya 2010). The data from the
four patients were classified between F1 and F4 according to the new Inuyama
classification using the biopsy results. The amplitudes of the received echo signals
in each B-mode scan line were obtained using a prototype system based on a
commercially available diagnostic ultrasound system (SSA-770A, Toshiba Med-
ical Systems Co., Otawara, Japan) with a convex transducer. In harmonic mode,
the transmission and reception frequencies of the ultrasound system were 3.5 and
7.0 MHz respectively with a 40 MHz sampling frequency. The amplitude data
used for analysis were anti-logged data calculated from 15-bit logged data. The
scan-line density was 380 lines per 90 degrees, and the amplitude data in each
scan line (15 bit) were decimated at 100 samples/mm.

The analysis was carried out for each of the five clinical data sets using ROIs
covering the entire liver as observed on the ultrasound image. Each ROI had a size
of 5 9 5 mm, and overlapping ROIs were used to cover the entire liver. The
parameters Sl, Sh, and Xc in the samples in the liver area were calculated in each
ROI for each clinical data set. Figure 11.10 displays the resulting parametric
images using all three parameters (Sl, Sh, and Xc.). If 1:5� Sl\2:0, 0:5� Sh\1:3,
and 0:2�Xc\0:7, then the central pixel of the ROI was assumed to be fibrotic.
These classification criteria were determined from the results of the computer
simulations. In Fig. 11.10, only the walls of the thick blood vessels appear red in
F0, and few liver regions are designated as fibrotic in F1. This suggests a reduction
in false-positive determinations was achieved by introducing the new parameters.
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Overall, the red regions in Fig. 11.10 (i.e., the fibrotic regions) spread in pro-
portion to the degree of pathological change. These results were consistent with
the histological features of fibrosis in each liver sample as observed in Azan
stained histology shown in Fig. 11.11.

Fig. 11.10 Results of parametric imaging on the basis of the three parameters Sl, Sh, and Xc.
a F0, b F1, c F2, d F3 and e F4

Fig. 11.11 Azan staining histology. Fibrous tissue is dyed with blue stain. The length of the
short axis of each pathology specimen is 700–800 lm. a F0, b F1, c F2, d F3 and e F4
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11.5 Conclusion

In this chapter, the PDFs of the echo amplitude envelope in heterogeneous media
using basic and applied distribution functions were examined. The results of the
analysis in the media with variable scatterer densities indicated that the tissue
structural changes could be divided into different conditions. By estimating three
parameters, these different conditions were divided adequately and it became
possible to detect and potentially grade liver fibrosis.

Additionally, ultrasound-derived results were consistent with histological fea-
tures of clinical data sets. The scatterer density and the degree of fibrosis (frac-
tional amount of fibrotic tissue) can be estimated by plotting echo-signal envelope
statistical parameters. Therefore, the proposed method of envelope analysis
potentially can provide invaluable information for non-invasive detection and
characterization of liver fibrosis.

This method can further be applied to other diseases when the relationship of
each parameter, scatterer density, and tissue structure is investigated for the case of
each disease.
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Part III
Scanning Acoustic Microscopy



Chapter 12
Recent Applications of Acoustic
Microscopy for Quantitative
Measurement of Acoustic Properties
of Soft Tissues

Yoshifumi Saijo

Abstract High resolution biomedical imaging using high frequency ultrasound is
possible because both wavelength and beamwidth are inversely proportional to
ultrasonic frequency. Scanning acoustic microscopy (SAM) uses 100 MHz or
higher frequency ultrasound. The spatial resolution achieved by a 100 MHz and
1 GHz ultrasound SAM are 15 and 1.5 lm, respectively. This level of detail
enables cellular imaging. There are three unique features of SAM compared with
other microscopy modalities such as optical, electron and atomic force micros-
copy. First, SAM can be applied for easy and simple histopathological examina-
tions because it does not require special staining techniques. The contrast observed
in SAM images depends on the acoustic properties (i.e., density, stiffness, and
attenuation) and on the topographic contour of the tissue. Second, microscopic
acoustic properties obtained with high frequency ultrasound can be used for
assessing echo intensity and texture in clinical echography with lower frequency
ultrasound. Third, SAM data can provide the basic data for assessing biomechanics
of tissues and cells. Ultrasound is transmitted through a coupling medium and
focused on the surface of the substrate. Transmitted ultrasound is reflected at both
the surface of the biological material and the interface between the biological
material and the substrate. The transducer receives the sum of these two reflec-
tions. The interference of these two reflections is determined by acoustic properties
of the biological material. The interference signal as a function of the frequency
depends on the thickness and sound speed of the sample. The interference signal as
a function of the intensity depends on the amplitude of the surface reflection and
attenuation of ultrasound propagating through the tissue. For bone, cartilage,
tendon and cardiovascular tissues, microacoustic properties can provide important
information on biomechanical properties. Biomechanic evaluation of these tissues
is especially important for assessing the pathophysiology. Cells are considered to
consist of viscoelastic materials and SAM has provided information on viscosity
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by ultrasonic attenuation estimates and information on elasticity by sound speed
estimates. Instead of stretching cells or using atomic force microscopy for mea-
suring biomechanical properties, SAM can be used to measure precise mechanical
property distributions without contact to the cells. Thus, SAM provides a new
paradigm of pathology that is based on the mechanical properties of is the object
being imaged. Recent developments such as ultrasound speed microscopy, 3D
ultrasound microscopy and high frequency array transducers may provide a clin-
ically applicable SAM in the near future.

12.1 Introduction

High resolution biomedical imaging using high frequency ultrasound is possible
because both wavelength and beam width are inversely proportional to ultrasonic
frequency. Routine echography in clinical applications uses ultrasound in the
frequency ranges between 1 and 15 MHz with corresponding spatial resolution
approximately a few hundred micrometers to several millimeters. Scanning
acoustic microscopy (SAM) uses 100 MHz or higher frequency ultrasound
(1 GHz). The spatial resolution achieved by a 100 MHz (1 GHz) ultrasound SAM
are 15 (1.5 lm), respectively; this level of detail enables cellular imaging. SAM
provides a source of contrast different from conventional echography that is based
on the mechanical properties of object being imaged. There are three unique
features of SAM compared with other microscopy modalities such as optical,
electron and atomic force microscopy. First, SAM can be applied for easy and
simple histopathological examinations because it does not require special staining
techniques because the contrast observed in SAM images depends on the acoustic
properties (i.e., density, stiffness, and attenuation) and on the topographic contour
of the tissue.

Second, microscopic acoustic properties obtained with high frequency ultra-
sound can be used for assessing echo intensity and texture in clinical echography
with lower frequency ultrasound. Density q and sound speed c determine the
characteristic acoustic impedance Z of the material as

Z ¼ q c ð12:1Þ

Assuming that the interface between two fluid-like media is infinite and plane,
the relative reflected sound power, in dB, can be determined from the specific
acoustic impedance of each medium if the material is approximately isotropic.

dB ¼ 10 log10
Pr

Pi
¼ 10 log10

Za � Zbð Þ2

Za þ Zbð Þ2
ð12:2Þ
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where Pr is the sound power reflected at interface, Pi is the incident sound power,
Za is the acoustic impedance of medium a, Zb is the acoustic impedance of
medium b.

Third, SAM data can provide the basic data for assessing biomechanics of
tissues and cells. Furthermore, SAM can microscopically target materials where
direct mechanical measurements cannot be applied. In its simplest form, the rela-
tionship between the sound speed and the elastic bulk modulus of a fluid media is

c ¼
ffiffiffiffi
K

q

s
ð12:3Þ

where c is the sound speed, K is the elastic bulk modulus, and q is the density.
Because biological soft tissue may be considered as a fluid, the sound speed and

impedance can be used to estimate elastic properties of the tissue. Recent bio-
mechanical studies have suggested that the mechanical properties of tissues may
not be sufficiently similar to fluids and should be treated as soft solid materials.
However, the acoustical relationships of solid materials can also be described by
the following equation.

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 1� rð Þ

q 1þ rð Þ 1� 2rð Þ

s
ð12:4Þ

where c is the sound speed, E is the Young’s modulus, r is the Poisson’s ratio, and
q is the density. This equation indicates that the Young’s modulus of tissue and the
sound speed are closely related.

Soft materials are sometimes considered to be viscoelastic materials. In these
cases, viscosity is also derived from acoustic properties, although it is a compli-
cated procedure (Mikhailov et al. 1964). The tissue absorption is given by

a ¼ 2f 2p2

3q c3
gvþ 4

3
gs

� �
ð12:5Þ

where a is the absorption, f is the frequency, gv is the volumetric viscosity, gs is the
shear viscosity, q0 is the density, and c is the speed of sound.

12.2 Principles of Acoustic Microscopy

Figure 12.1 shows a schematic illustration of ultrasonic reflections from a tissue
surface and from the interface between tissue and substrate in acoustic micros-
copy. The soft biological material is attached to a substrate. A normal glass slide or
high-molecular polymer materials used in dishes for cell culture can be used as the
substrates. The biological material is sectioned as an appropriate thickness to
separate the reflections from the tissue surface and from the interface between

12 Recent Applications of Acoustic Microscopy 293



tissue and substrate. Single-layered cultured cells are also appropriate objects for
SAM.

The ultrasound is transmitted through a coupling medium and focused on the
surface of the substrate. Transmitted ultrasound is reflected at both the surface of
the biological material (Ss) and the interface between the biological material and
the substrate (Sd). The transducer receives the sum of these two reflections. The
interference of these two reflections is determined by acoustic properties of the
biological material. The interference signal as a function of the frequency depends
on the thickness and sound speed of the sample. The interference signal as a
function of the intensity depends on the amplitude of the surface reflection and
attenuation of ultrasound propagating through the tissue. The speed of sound can
be estimated through analysis of the frequency-dependent characteristics of the
interference signal. In our previous SAM system, the frequency-dependent char-
acteristics were obtained from serial measurements with varying frequencies from
100 to 200 MHz with 10 MHz steps between scans. The newly proposed ultra-
sound microscope obtains the frequency-dependent characteristics by fast Fourier
transform of a single broad-band pulse.

12.3 Application to Cellular Imaging

Application of SAM for cellular imaging began at the very early stages of SAM
development (Lemons and Quate 1975). Johnston et al. (1979) used SAM for the
analysis of subcellular components. They could detect such features as nuclei and
nucleoli, mitochondria, and actin cables of fixed cells. Hildebrand et al. (1981)
applied SAM for the observation of living cells. Their analysis of acoustic images
of actively motile cells indicated that leading lamella were less dense or stiff than
the quiescent trailing processes of the cells.

Following the Stanford group, Bereiter-Hahn (1985) at Frankfurt performed
series of studies on the biomechanics of living cells by observations with SAM. He
proposed a hypothesis that the shape and locomotion of tissue cells depended on
the interaction of elements of the cytoskeleton, adhesion to the substrate and an
intracellular hydrostatic pressure. His group also found that higher values of
impedance and attenuation coefficients were found in the cell periphery than in the
central part of the cell. The phenomenon was suggested to be due to the different

Fig. 12.1 Schematic
illustration of ultrasonic
reflections from a tissue
surface and from the interface
between tissue and substrate
in acoustic microscopy
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organization of cytoskeletal elements (Litniewski and Bereiter-Hahn 1990).
Veselý et al. (1994) developed subtraction of the SAM images (SubSAM) of live
cells as a method for investigating minimal changes in cellular topography and
elasticity. SubSAM opened an approach to a characterization of cell motility
in vitro and to an understanding of early cellular reactions to various stimuli. They
assumed that migration was due to an extension of the cell into the direction of
minimum stiffness, and they were consistent with the hypothesis that local release
of hydrostatic pressure provided the driving force for the flux of cytoplasm
(Bereiter-Hahn and Lüers 1998).

Briggs and coworkers at Oxford University are also pioneers of acoustic
microscopy. They utilized short ultrasonic pulses to derive the thickness of the
cell. From these measurements, they calculated the acoustic velocity, impedance
and attenuation by analyzing two separate signals reflected from the top and the
bottom of the cell (Briggs et al. 1993).

Recently, time-resolved acoustic microscopy with GHz frequency ultrasound
has been developed for cellular imaging. Weiss et al. (2007) compared the
acoustical images of chicken heart muscle cells and fluorescence optical images of
the same cells after staining showed that the actin fibers ended inside the dark
streaks in the acoustical images and thus represented the focal contacts (FCs).
Figure 12.2 shows optical and acoustical images of embryonic chicken heart
muscle cells taken at room temperature. The acoustical images have dimensions of
65 9 65 lm and were taken with a center frequency of 860 MHz at the focus
(z = 0). They also estimated quantitative acoustical properties of a single HeLa
cell in vivo and to derive elastic parameters of subcellular structures. The value of
the sound velocity inside the cell (1,534.5 ± 33.6 m/s) was only slightly higher
than that of the cell medium (1,501 m/s) (Weiss et al. 2007).

A research group from Toronto has also been investigating ultrasound back-
scatter from leukemia cells, but for the purposes of monitoring treatment. After the
treatment, backscatter increased by 400 % compared with estimates obtained from
the control samples. Changes in spectral parameters were hypothesized to be
linked to structural cell changes during apoptosis (Taggart et al. 2007). They
clarified the mechanism of backscatter change by comparing high frequency

Fig. 12.2 Optical and acoustical images of embryonic chicken heart muscle cells taken at room
temperature
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ultrasound spectroscopy (10–60 MHz) and SAM (0.9 GHz) on HeLa cells that
were exposed to the chemotherapeutic agent cisplatin (Brand et al. 2008).

We have also applied SAM for cellular imaging in human pulmonary arterial
endothelial cells. Cold preservation is the most practical method to maintain the
viability of isolated lungs in clinical lung transplantation. However, rapid cooling
may affect pulmonary endothelial function. Human pulmonary arterial endothelial
cells were incubated at 4 �C for 2 h. Microtubules were visualized using immu-
nocytochemical techniques. Ultrasonic attenuation was estimated with scanning
acoustic microscopy. Endothelial barrier integrity was estimated as transendo-
thelial electric resistance. Low temperature caused a reversible microtubule dis-
assembly (Suzuki et al. 2004). Figure 12.3 shows the ultrasonic attenuation,
endothelial electric resistance and microtubule formation during and after rapid
cooling of pulmonary endothelial cells.

A two-dimensional distribution of the ultrasonic intensity, which is closely
related to the mechanical properties of the cells, was visualized to analyze cell
organs, such as the nucleus at the center part of the cell and the cytoskeleton at the
peripheral zone. TGF-beta 1 induces fibroblasts to synthesize and contract extra-
cellular matrix (ECM) components and connective tissue growth factor (CTGF).
After stimulation with TGF-beta1, the ultrasonic intensity at the actin zone was
significantly increased compared with the control (Hagiwara et al. 2009).
Figure 12.4 shows the ultrasonic intensity image obtained with 300 MHz SAM
before (left) and after (right) the stimulation by TGF-beta1.

Figure 12.5 shows 1.2 GHz SAM image of a cultured smooth muscle cell of the
renal artery. The fringe shift indicates the difference of the cellular thickness.

Fig. 12.3 Ultrasonic attenuation, endothelial electric resistance and microtubule formation
during and after rapid cooling of pulmonary endothelial cell
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12.4 Conventional SAM Images

As described previously, soft tissues should be sliced thinly so that ultrasound can
penetrate through the tissue and be reflected at the interface between tissue and
substrate. From our experiences, approximately 10 micron thick specimens were
appropriate for a 100 MHz SAM system because of signal amplitude and image
quality. If the speed of sound is 1,500 m/s in the specimen, the wavelength of the
100 MHz ultrasound is approximately 15 lm. Thus, time-of-flight methods cannot

Fig. 12.4 Ultrasonic intensity image obtained with 300 MHz SAM before (left) and after (right)
the stimulation by TGF-beta1

Fig. 12.5 1.2 GHz SAM
image of a cultured smooth
muscle cell of the renal artery
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be applied for the thickness measurement of such thin materials. Our group
proposed an unique method for calculating thickness and sound speed of thinly
sliced tissues using the interference between surface and bottom reflections
(Saijo et al. 1991, 1997). Results of these techniques are discussed in the following
subsections.

12.4.1 Gastric Cancer (Saijo et al. 1991)

Gastric cancer tissues were classified into five groups according to their patho-
logical findings; papillary adenocarcinoma, well-differentiated tubular adenocar-
cinoma, moderately differentiated tubular adenocarcinoma, poorly differentiated
adenocarcinoma, and signet-ring cell carcinoma. Figure 12.6 shows an example of
optical and acoustical images of a papillary adenocarcinoma. Figure 12.7 shows
the bar graph providing sound speed estimates for normal mucosa and five kinds of
cancer tissues.

Fig. 12.6 Optical (left), ultrasonic attenuation (center) and sound speed (right) images of a
papillary adenocarcinoma. Scale bar 1.0 mm

Fig. 12.7 Bar graph showing sound speed in normal mucosa and five kinds of cancer tissues.
(Norm normal mucosa, Pap papillary adenocarcinoma, Well well-differentiated tubular adeno-
carcinoma, Mod moderately-differentiated tubular adenocarcinoma, Poor poorly-differentiated
adenocarcinoma, Sig signet-ring cell carcinoma)
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The values of the sound speed increased as the cellular differentiation pro-
ceeded through the three kinds of tubular adenocarcinoma. As the density of the
biological soft tissues can be assumed to be nearly constant, increased sound speed
can thus be interpreted to mean that tubular adenocarcinoma tissues become
acoustically stiffer as the differentiation of the tissue proceeds. Electron micros-
copy has shown that the number of desmosomes, which are considered to attach
cell-to-cell, is significantly decreased in poorly differentiated adenocarcinomas.
Well-differentiated tubular adenocarcinoma specimens exhibit nearly the same
number of desmosomes as in normal mucosal tissue. This increasing trend was
thus regarded as the result of tightening of the intercellular attachment. Both the
ultrasonic attenuation and the sound speed were significantly lower in the signet-
ring cell carcinoma than in the adenocarcinoma. The intracellular component of
the signet-ring cell carcinoma is the periodic acid, Schiff stain (PAS) positive
substrate. The lower values of the ultrasonic attenuation and sound speed may be
attributed to the intracellular chemical components of the tumor tissues. These
images of the gastric cancer tumors clearly indicate that the SAM system can be
used to classify the types of cancer tissues, as revealed by estimates of the acoustic
parameters associated with the pathologies.

12.4.2 Myocardial Infarction

Because cardiac B-scan was developed at Tohoku University in early 1960s
(Tanaka et al. 1971), the origin of the strong echo in myocardium has been
investigated by various methods. The ‘‘Sensitivity Varying Method’’ in which
relative echo intensity of the myocardium tissue was compared with those of left
ventricular cavity (defined as zero) and pericardium (defined as the strongest) was
used for semiquantitative analysis of the echo intensity of myocardium. The echo
intensity of myocardium and histopathology were compared in hypertrophic car-
diomyopathy. The study demonstrated a relationship between the strong echo
portion and collagen fiber distribution (Tanaka et al. 1985). However, there have
been several reports that collagen content and myocardial echo amplitude were
only weakly correlated (Lythall et al. 1993).

The discrepancy may be caused from difference of optical histology and
acoustic properties; thus, acoustic microscopy was equipped for quantitative
measurement of acoustic properties of myocardial tissue components at the
microscopic level. Acoustic properties of the tissue elements in myocardial
infarction were estimated and the elastic bulk modulus of the normal and patho-
logical myocardium was assessed from the acoustic parameters. Four kinds of
tissue elements: normal myocardium, degenerated myocardium, granulation and
fibrosis, were observed in the specimens. Figure 12.8 is the acoustic image of the
myocardial infarction tissue. Fibrotic lesion corresponds to high attenuation in this
image. The average sound speeds were 1,620 m/s in the normal myocardium,
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1,572 m/s in the degenerated myocardium, and 1,690 m/s in the fibrosis, respec-
tively (Fig. 12.9).

The density of each tissue element was measured by the graded CuSO4 solution
method, and the specific acoustic impedance was calculated by the sound speed and the
density of each tissue element. The values were 1.75 9 106 Ns/m3 in the normal myo-
cardium, 1.69 9 106 Ns/m3 in the degenerated myocardium, and 1.85 9 106 Ns/m3

in the fibrosis, respectively. The relative reflected sound power (in dB) was calculated
on the assumption that the interface between the two kinds of tissue elements was
infinite and plane. The level at the interface between degenerated myocardium
and fibrosis was calculated as 15.4 dB. The clinical echocardiography literature
indicated that the strong echo of 15 dB was observed at the area of the scar in
myocardial infarction. The origin of the strong echo was clarified by the acoustic
microscopy measurements (Saijo et al. 1997).

Chandraratna et al. (1997) also assessed the bright echo area in myocardium by
using a 600 MHz SAM system. They also showed that the echo intensity was
affected by collagen fiber morphology (Tabel et al. 2006).

Because the biological tissues are modeled as fluid, the values of bulk modulus
also can be calculated from the values of sound speed and density. The average
estimated value of bulk modulus was 2.84 9 109 N/m2 for the normal myocar-
dium, 2.65 9 109 N/m2 for the degenerated myocardium, 3.12 9 109 N/m2 for
the fibrosis, respectively. One of the roles of collagen fibers in acute myocardial
infarction is to prevent the expansion of the infarction, and the frequency of left

Fig. 12.8 Optical (left), ultrasonic attenuation (center) and sound speed (right) images of acute
myocardial infarction. Scale bar 1.0 mm

Fig. 12.9 Bar graph showing
sound speed in four kinds of
tissue elements observed in
acute myocardial infarction
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ventricular rupture has been reported higher in the group which exhibits no
remarkable increment of the scar in myocardium (Uusimaa et al. 1997). From the
estimates, the bulk modulus of fibrosis was highest in the tissue components in
myocardial infarction. This suggested that the fibrosis formation soon after myo-
cardial infarction may prevent the infarct expansion and the cardiac rupture.

12.4.3 Kidney

SAM investigation of kidney was first initiated by Kessler et al. (1974) in the dawn
of acoustic microscopy. However, the quantitative data on kidney tissues were only
presented 20 years later when our group re-started investigations of kidney.
Regarding renal cell carcinoma, the values of ultrasonic attenuation and sound
speed were lower in both kinds of cancer cells than in normal kidney, although a
significant difference was not found between the clear cell and granular cell. Also,
both acoustic parameters for the cancer cells were significantly lower than those in
hemorrhage and fibrosis. These data suggest that the elasticity of renal cell carci-
noma tissue may be lower than that of normal kidney. Moreover, the high intensity
echo in clinical echography may be related to the heterogeneity of the microscopic
features of the acoustic field in the carcinoma tissue (Sasaki et al. 1996). We also
applied SAM to measure acoustic properties of renal angiomyolipoma. The results
suggested the difference of the clinical echographic features of renal cell carcinoma
and angiomyolipoma (Sasaki et al. 1997).

For the acoustic properties of dialysed kidney, the attenuation constant for
inflammatory granulation tissue was significantly higher than that for hyaline
degeneration tissue (P \ 0.001). Sound speed was high for granulation tissue, but
tended to diminish gradually for hyaline degeneration. Sound speed increased
again with progression to cystic degeneration (P \ 0.001), but the ultrasonic
attenuation remained low. When a cystic kidney contained a malignant lesion, the
previously low ultrasonic attenuation increased at that site (P \ 0.001), and the
previously high sound speed was diminished (P \ 0.001). Our data suggest that
the physical properties of dialysed kidneys at different stages of pathology can be
classified by their acoustic properties (Sasaki et al. 1997).

12.4.4 Atherosclerosis

The normal coronary artery consists of three parts and the structure is represented
in the optical microscopic images. The intima is comprised of the endothelium, the
inner elastic membrane, and thin collagen fibers. The media is comprised of the
elastic fibers and the smooth muscle. The adventitia is comprised of the collagen
fibers. The atherosclerotic intima consists of the thick collagen fibers, calcification,
and lipid pool. In the present study, the acoustic properties of five kinds of tissue
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elements, viz., the intimal collagen fiber, calcification, normal media, adventitia,
and fatty plaque were estimated. The cross-sectional images of coronary arteries
were observed by both optical and acoustic microscopy (Saijo et al. 2007).
Figure 12.10 shows an example of coronary artery images.

Based on the sound speed distribution, regions with different elastic parameters
were divided. Geometric and compositional information of each acoustic image was
digitized using NIH Image 1.60 software (free software from NIH) on a personal
computer (Power Macintosh 9600/233). Finite element meshes were generated
using ANSYS 5.5 (SAS IP, Inc., PA) software on a workstation (Ultra10, Sun
Microsystems, CA). The finite element models were solved for an intraluminal
pressure load of 110 mm Hg–14.6 kPa. In the calculation process, the region in the
images was considered as a part of the circumferential vessel wall and the central
angle was 30�. The sound speed distribution was inhomogeneous and the discon-
tinuity of the elastic property in the fibrous cap was observed in the atherosclerotic
coronary artery. Then, the fibrotic region was divided into four regions according to
the elasticity distribution. The first principle stress distribution of the normal cor-
onary artery showed that the stress was dominant in intima but the stress distribution
in the intima was uniform. The stress distribution in the atherosclerotic plaque
showed that the mean value of the stress was smaller than that found in the intima of
the normal coronary artery, but the peak stress was very high and concentrated into
the crack-like structure of the fibrous cap (Fig. 12.11a–d). The results indicated the
pathophysiology of coronary plaque rupture was strongly correlated with biome-
chanical properties of the tissue components in coronary artery (Saijo et al. 2001).

Figure 12.12 shows the optical (a), 200 MHz (b) and 1.1 GHz (c) acoustic
microscopy images of normal human coronary artery. The image quality is better
in the 1.1 GHz image due to improved spatial resolution. For example, each elastic
fiber in the media can be observed in the 1.1 GHz image while the media is almost
homogeneous in the 200 MHz image. However, the three-layered appearance of
coronary artery is more obvious in the 200 MHz image. The intima and adventitia
had higher ultrasonic attenuation than that of the media.

Fig. 12.10 Optical (left), ultrasonic attenuation (center) and sound speed (right) images of
coronary artery. Scale bar 1.0 mm
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Fig. 12.11 SAM data applied to FEM simulation. a Optical microscope, b acoustic microscope
(sound speed), c FEM model, d stress distribution of atherosclerotic coronary artery

Fig. 12.12 Comparison of the spatial resolution according to the ultrasonic frequency. a Optical,
b 200 MHz SAM, c 1.1 GHz SAM images of normal human coronary artery. Scale bar 0.2 mm
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For the assessment of plaque rupture occurring in a vulnerable plaque, SAM
investigations on atherosclerosis-prone mice were performed. The acoustic prop-
erties of the normal vessel wall and plaques, particularly fibrous caps of lipid-rich
plaques, were evaluated in the aortic roots of six normal C57BL mice and 12
atherosclerosis-prone apoE-deficient (apoE(-/-)) mice by SAM. After processing,
the attenuation of high-frequency (1.1 GHz) focused ultrasound was measured in
unstained tissue sections by SAM followed by quantification of the amount and
type of collagen in picrosirius red stained sections by means of polarized light
microscopy (PLM). Collagen appeared green in thin fibrous caps and bright orange
in thick caps by PLM. The attenuation of ultrasound was significantly higher in the
collagen fibers with orange color compared to those with green color (17.2 vs.
6.6 9 103 dB/mm) (Saijo et al. 2001).

Human carotid atherosclerotic lesions were imaged by a GHz-range SAM
system. The atherosclerotic lesions were characterized by either thickened fibrosis
with dense collagen fibers or lipid accumulation with sparse collagen network by
optical microscopy. SAM revealed that the fibrosis was classified into type I and
type III collagen by attenuation of ultrasound and that the sound field of lipid
accumulation lesions became inhomogeneous. The results could provide the sci-
entific basis for imaging of vulnerable plaques using diagnostic ultrasound (Saijo
et al. 2002).

Comparison of an in vivo intravascular ultrasound (IVUS) image and in vitro
excised tissue demonstrated the importance of SAM for understanding a lower
frequency ultrasound image. Figure 12.13 shows the comparison of a: optical
(Elastica-Masson staining), b: SAM (attenuation) c: SAM (sound speed) and d:
IVUS of thrombus in acute coronary syndrome. The tissue was obtained by an
aspiration catheter (PercuSerge, Medtronic, Minneapolis, MN, USA) in a clinical
setting. The white square in the IVUS image corresponds to microscopy images.

12.5 Ultrasound Speed Microscopy

A single ultrasound pulse with a pulse width of 2 ns was emitted and received by
the same transducer above the specimen. Saline was used as the coupling medium
between the transducer and the specimen. The reflections from the tissue surface
and those from the interface between the tissue and glass were received by the
transducer and were introduced into a Windows-based PC with a fast digitizer card
(Acqiris DP210, 2GSa/s, 8-bit, onboard memory 16 MB, Geneve, Switzerland).
The frequency range was 500 MHz, and the sampling rate was 2 GS/s. Eight
consecutive values of the signal taken for a pulse response were averaged in order
to reduce random noise.

The transducer was mounted on an X–Y stage with a microcomputer board that
was driven by the PC through RS232C. Both X-scan and Y-scan directions were
driven by linear servo motors and the position was detected by an encoder. The
scan was controlled to reduce the effects of acceleration at the start and
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deceleration at the end of the X-scan. Finally, two-dimensional distributions of
ultrasonic intensity, sound speed, attenuation coefficient and thickness of a spec-
imen measuring 2.4 9 2.4 mm were visualized using 300 9 300 pixels. The total
scanning time was 63 s.

Denoting the standardized phase of the reflection wave at the tissue surface as
/front, the standardized phase at the interference between the tissue and the sub-
strate as /rear then,

2pf � 2d

co
¼ /front ð12:6Þ

2pf � 2d
1
co
� 1

c

� �
¼ /rear ð12:7Þ

where d is the tissue thickness, co is the sound speed in coupling medium and c is
the sound speed in the tissue. Thickness is obtained as

d ¼ co

4pf
/front ð12:8Þ

Fig. 12.13 Comparison of SAM and IVUS images. a Optical (Elastica-Masson staining), b SAM
(attenuation), c SAM (sound speed) and d IVUS of thrombus in acute coronary syndrome
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Finally, sound speed is calculated as

c ¼ 1
co
� /rear

4pfd

� ��1

ð12:9Þ

After determination of the thickness, attenuation of ultrasound was then cal-
culated by dividing the reflected amplitude by the thickness and frequency.

12.5.1 Examples of USM Images

Figure 12.14 shows the ultrasound speed microscope images of an adenocarci-
noma of the lung. The acoustic properties of the adenocarcinoma lesion are
homogeneous and the sound speed is approximately 1,600 m/s. Indentation of
pleura and vessels were observed in this sample and the sound speed of these parts
were estimated at up to 1,750 m/s.

Figure 12.15 is an image of pulmonary tuberculosis. The histology is charac-
terized by formation of granuloma, which is specially called as tubercle. A
Langhans’s cell is formed by fusion of some epithelioid cells. Non-structured
hyalinized tissue is surrounded by a granuloma with Langhans’s cells. Ultrasonic
attenuation and sound speed of the granuloma was observed to be high.

Figure 12.16 is an image of a squamous cell carcinoma of the esophagus. The
cancer cells differentiate to stratified squamous epithelium. This type of cell
occupies 90 % of esophageal cancer. Keritinization and inter-cellular bridge for-
mation are the typical findings of the differentiation. The ultrasonic attenuation and
sound speed were observed to be higher than those of normal mucosa.

Figure 12.17 is an image of a well-differentiated tubular adenocarcinoma of the
stomach. The adenocarcinoma image shows clear tubular structure. The tubular

Fig. 12.14 USM images (left ultrasonic attenuation, right sound speed) of an adenocarcinoma of
the lung. Scale bar 0.5 mm
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Fig. 12.15 USM images (left ultrasonic attenuation, right sound speed) of pulmonary
tuberculosis. Scale bar 0.5 mm

Fig. 12.16 USM images (left ultrasonic attenuation, right sound speed) of a squamous cell
carcinoma of the esophagus. Scale bar 0.5 mm

Fig. 12.17 USM images (left ultrasonic attenuation, right sound speed) of a well-differentiated
tubular adenocarcinoma of the stomach. Scale bar 0.5 mm
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structure had higher ultrasonic attenuation and sound speed than the surrounding
zone. The sound speed values were similar to our previous estimates (Sasaki
et al. 1997).

Figure 12.18 is an image of a moderately differentiated adenocarcinoma of the
colon. A adenocarcinoma with desmoplasia (fibrosis) is typical for this cancer. The
case shown here was classified as early stage because the tumor was localized in
submucosal layer. A part of the cancer tissue contained rich fibrosis and the lesion
had high ultrasonic attenuation and sound speed.

12.5.2 Articular Tissues

As described before, SAM data can be used as the basic data for assessing bio-
mechanics of tissues and cells. Research on biomechanics is widely performed in
the field of orthopedic surgery. The acoustic properties of rabbit supraspinatus
tendon insertions were estimated using a SAM system. In the tendon proper and
the non-mineralized fibrocartilage, the sound speed and ultrasonic attenuation
gradually decreased as the predominant collagen type changed from I to II. In the
mineralized fibrocartilage, the acoustic properties increased markedly with the
mineralization of the fibrocartilaginous tissue. These results indicate that the non-
mineralized fibrocartilage has the lowest elastic modulus among four zones at the
insertion site, which could be interpreted as an adaptation to various types of
biomechanical stress (Sano et al. 2006).

Our group also attempted to quantify changes of articular cartilage of the knee
joint during immobilization in a rat model. The knee joints of adult male rats were
immobilized at 150� of flexion using an internal fixator for 3 days, and 1, 2, 4, 8,
and 16 weeks. The articular cartilage from the medial midcondylar region of the
knee was obtained, divided into three areas (non-contact area, transitional area,

Fig. 12.18 USM images (left ultrasonic attenuation, right sound speed) of a moderately
differentiated adenocarcinoma of the colon. Scale bar 0.5 mm
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contact area), and in each area, a degree of degeneration was evaluated by gross
observation, histomorphometric grading, and measurements of thickness and
number of chondrocytes. Figure 12.19 shows the results.

Degeneration of the articular cartilage was mainly observed in the contact and
transitional areas. Matrix staining intensity by safranin-O and number of chon-
drocytes were decreased in these two areas. The thickness of the articular cartilage
in the non-contact and contact areas was unchanged, but it was increased in the
transitional area. Decrease in sound speed was observed in the transitional area of
both the femoral and tibial cartilage, indicating the softening of the articular
cartilage. The changes of articular cartilage became obvious as early as one week
after immobilization. These changes may be due to a lack of mechanical stress or a
lack of joint fluid circulation during immobilization (Hagiwara et al. 2009; Ando
et al. 2011).

Fig. 12.19 Gradation color images and sound speed changes of articular cartilage assessed by
scanning acoustic microscopy (SAM). The upper row (A and B) shows gradation color images of
the tibial articular cartilage at 16 weeks; the second row (C and D) shows each corresponding
area to each upper row with hematoxylin and eosin staining, respectively. (A and C): the
immobilized group, (B and D): the control group, (E): gradation color scale bar. The low sound
speed area gradually expanded from the surface of the articular cartilage in the immobilized
group. The third row (F and G) shows the femoral cartilage; the lower row (H and I) shows the
tibial cartilage of the sound speed. (F and H): the transitional area, (G and I): the noncontact area
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12.6 Ultrasound Impedance Microscope

Figure 12.20 shows the schematic illustration of reflections in acoustic impedance
mode. In this mode, reflection from the interface between the thin plastic plate and
tissue was visualized. Thus, thin-slicing of the tissue is not required in this mode.

The target signal is compared with the reference signal and interpreted into
acoustic impedance as

Ztarget ¼
1� Starget

S0

1þ Starget

S0

Zsub ¼
1� Starget

Sref
� Zsub�Zref

ZsubþZref

1þ Starget

Sref
� Zsub�Zref

ZsubþZref

Zsub ð12:10Þ

where S0 is the transmitted signal, Starget and Sref are reflections from the target
and reference, and Ztarget, Zref and Zsub are the acoustic impedances of the target,
reference and substrate, respectively (Saijo 2009).

Acoustic impedance was assumed to be 1.5 9 106 Ns/m3 when water was used
as a reference. When silicon rubber was used, its acoustic impedance was cali-
brated with water as the standard reference material. In our analysis,
0.965 9 106 Ns/m3 was used. The acoustic impedance of the substrate was cal-
culated to be 3.22 9 106 Ns/m3, considering its sound speed and density.

Figure 12.21 shows the ultrasound impedance image of a rat brain. This image
was obtained by placing fresh brain tissue on the plastic plate. Each layer of the
brain was clearly observed due to acoustic impedance differences.

12.7 Summary of This Chapter

The principle and brief history of scanning acoustic microscopy (SAM) for
medicine and biology were described here. SAM was able to visualize high quality
microscopy images of tissues and cells suitable for histopathological examinations.

For bone, cartilage, tendon and cardiovascular tissues, micro-acoustic proper-
ties provided important information on biomechanical properties. Biomechanics of
these tissues are especially important for assessing the pathophysiology.

Cells are considered to consist of visco-elastic materials and SAM has provided
information on viscosity by ultrasonic attenuation estimates and information on

Fig. 12.20 Schematic
illustration of reflections in
acoustic impedance mode
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elasticity by sound speed estimates. Instead of stretching cells or using atomic
force microscopy for measuring biomechanical properties, SAM can be used to
measure precise mechanical property distributions without contact to the cells.

Thus, SAM introduced a new concept of pathology that is based on the
mechanical properties of is the object being imaged. Recent developments such as
ultrasound speed microscopy, 3D ultrasound microscopy and high frequency array
transducers may provide a clinically applicable SAM in the near future.
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Chapter 13
Acoustic Microscopy of Cells

Michael C. Kolios, Eric M. Strohm and Gregory J. Czarnota

Abstract Acoustic microscopy has proven to be a versatile biological tool since it
was first developed nearly 40 years ago. It can be used to create ultrasound images
with a resolution that approach conventional optical microscopy, or provide
quantitative data about the mechanical properties of the material being investi-
gated. This chapter focuses on acoustic microscopy methods to investigate how
single cells change during biological processes such as mitosis and chemotherapy-
induced apoptosis. Using ultrasound frequencies at 375 MHz, various properties of
cells (such as the thickness, sound speed, acoustic impedance, density, bulk
modulus and attenuation) were calculated during these biological processes. Sig-
nificant differences in these properties were observed between cells in their normal
resting state and late-stage apoptosis. C-scan and B-scan imaging of apoptotic cells
using 375 and 1,000 MHz provided information that could not be obtained using
other scanning methods. Variations in the ultrasound backscatter were observed
over time, which suggests that rapid changes in the ultrasound scattering structures
occur within seconds. In contrast, non-apoptotic cells did not show the same
activity. Finally, high resolution attenuation imaging of cells using frequencies up
to 1.2 GHz clearly showed organelles such as the nucleus, nucleolus and vacuoles.
During apoptosis, the nucleus became highly attenuating and was several times
more attenuating than the surrounding cytoplasm. In summary, this chapter
describes acoustic microscopy methods and techniques for a qualitative and
quantitative analysis of biological material.
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13.1 Introduction

The concept of using high frequency acoustic waves for imaging was first pro-
posed in 1929 by Sokolov (Sokolov 1929). The first high frequency ultrasound
imaging device was then patented and created by Sokolov to detect subsurface
flaws in materials in 1937 (Sokolov 1939), but the device suffered from technical
limitations and was not practical at the 3 GHz operating frequency. Throughout
the next few decades advances were made in acoustic microscopy, including a
scanning laser acoustic microscope in 1972 that operated up to 100 MHz (Kessler
et al. 1972). In 1974 the first sub-micron resolution scanning acoustic microscope
was created by Lemons and Quate (Lemons and Quate 1974). Two practical
applications were readily apparent: subsurface material imaging and flaw detection
(used extensively in nondestructive testing, NDT) and probing small biological
specimens. Readers are encouraged to review the numerous excellent references
on the use of acoustic microscopy for NDT for further information on that subject
(Kundu 2004; Shull 2002; Hellier 2001; Rose 2004). This chapter will focus on the
examination of biological media using acoustic microscopy methods.

Biological cells and tissue have poor inherent optical contrast when viewed
using optical microscopes. Techniques such as phase contrast, dark field and
differential interference contrast can help improve optical imaging of cells
(Spector and Goldman 2006). Fluorescent staining can improve identification of
specific cellular structures, but requires the addition of dyes that may alter the
natural state of a living cell and can only be used for a finite time after admin-
istration. While unstained cells have poor optical contrast, they have greater
acoustic contrast due to the variations in mechanical properties throughout the cell.
Moreover, acoustic waves are penetrating, and can be used to visualize the internal
structure of cells and thin tissue samples. Acoustic microscopy is not limited to
imaging; it can also be used to determine quantitative information about the
specimen.

There are many publications that describe how acoustic microscopy can be used
for imaging and quantifying cellular properties. Images of various types of living
and fixed cells and tissue were first published in 1975 using frequencies up to
900 MHz (Lemons and Quate 1975), and spatial resolutions comparable to optical
microscopes were demonstrated in 1978 (Jipson and Quate 1978). This work was
followed up by high quality sub-micron resolution measurements of fixed cells
(Johnston et al. 1979) and red blood cells (Wickramasinghe 1979) in 1979, then
live cells in 1981 (Hildebrand et al. 1981). Individual chromosomes extracted from
cultured peripheral blood leukocytes were imaged using low temperature acoustic
microscopy using 1.8 GHz with resolution of 0.38 lm in 1980 (Rugar et al. 1980).
Another resolution milestone was reached when individual bacteria were imaged
using 8 GHz ultrasound and liquid helium, reaching a resolution of 20 nm
(Hadimioglu and Foster 1984). These initial studies showcased the ability of ultra-
high frequency acoustic imaging to resolve detail at the sub-micron level in live
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cells without any stains. Following these seminal publications, numerous studies
have reported high resolution imaging of individual cells and cellular structures.

Acoustic microscopy has also been used to determine quantitative information
about the cell itself. The thickness, acoustic impedance and attenuation of single
living cells can be estimated from the interference fringes caused by reflections
from the substrate and cell surface (Hildebrand and Rugar 1984; Litniewski and
Bereiter-Hahn 1990; Lüers et al. 1991), but requires thin samples and prior
knowledge of the sound speed and density distribution within the cell. Measure-
ments of the reflected signal as a function of transducer position above the sample
are called v(z) curves (Atalar et al. 1977). The incident acoustic wave can undergo
mode conversion to a surface acoustic wave at specific angles of incidence and
transducer positions. The surface wave is then reemitted back towards the trans-
ducer, which cause variations in the v(z) signal as a function of position. These
variations can be used to determine several properties of cells such as the thick-
ness, sound speed, density elasticity and attenuation (Kundu et al. 1991). Varia-
tions of the signal as a function of frequency, known as a v(f) curve, can also be
used to measure the thickness, sound speed and attenuation of cells (Kundu et al.
2000). Time resolved methods require resolving the echoes from the cell surface
and substrate. The difference in time and amplitude of these echoes can be used to
determine the thickness, sound speed, acoustic impedance and attenuation of a cell
(Briggs et al. 1993; Daft et al. 1989; Weiss et al. 2007).

Acoustic microscopy methods can be applied to living cells to image changes in
cellular structure over time. Examples include probing cells during mitosis (Linder
et al. 1992; Strohm et al. 2010), apoptosis (Strohm et al. 2010), measuring cell
volume (Weiss et al. 2007), cell motility (Veselý et al. 1994; Zoller et al. 1997)
and cell adhesion to substrates (Tittmann et al. 2007; Hildebrand 1985). Moreover,
quantitative information about cellular properties can be extracted and related to
the cellular structure. Excellent comprehensive reviews of the history, lens design
theory, wave theory, spatial resolution limitations, and applications are given
elsewhere (Kundu 2004; Briggs and Kolosov 2009; Maev 2008).

13.2 History of Advances

The first generation acoustic microscopes did not have the ability to optically view
samples during acoustic measurements. Optical imaging was performed either
before or after the acoustic measurements. Difficulties arose in aligning the optical
and acoustic measurements over the same sample region, particularly for live cell
imaging where cells can move or change shape over time. Cell motility made it
difficult to ensure the appropriate viable cells or even a specific cell was being
interrogated. Methods were developed to integrate optical imaging directly into the
transducer (Faridian and Wickramasinghe 1983) using rapid sequential optical and
acoustic imaging (Nakamura et al. 1986), and more recently by combining the
acoustic lens with an inverted optical microscope for simultaneous optical and
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acoustic imaging (Kanngiesser and Anliker 1992; Lemor et al. 2003; Weiss et al.
2007). An example of a combined optical-acoustic microscope called the SASAM
recently developed by Kibero GmbH is shown in Fig. 13.1. The acoustic lens is
built on top of an inverted optical microscope (IX-81, Olympus, Japan) and
acoustic measurements are made from the top of the sample, while optical imaging
is performed through the optical objectives underneath the sample (Fig. 13.1). The
incandescent lamp used for optical imaging can be replaced with a xenon arc lamp
for fluorescent imaging. The optical and acoustic systems can be separately con-
trolled entirely via external hardware and a computer. A rotating module above the
sample houses the acoustic lens and an optical condenser. The condenser can be
rotated in place to make high quality transmission optical measurements with
optional phase contrast enhancement, however only reflection-mode optical ima-
ges are possible when the transducer is positioned over the sample. The entire
acoustic microscope is housed in an environmentally controlled chamber to
maintain constant temperature during measurements, which is particularly
important for longitudinal cellular measurements over time.

One of the most important elements of the instrument is the ultrasound trans-
ducer, which converts the electrical signal into pressure waves and vice versa.
Various single element transducers can be used with this system. An example of
three different transducers with center frequencies of 200, 375 and 1,200 MHz is
shown in Fig. 13.2a. A schematic of transducer operation typically used in acoustic
microscopy is shown in Fig. 13.2b. The bulk of the transducer consists of a sapphire
buffer rod (typically 4–6 mm in length, 2–4 mm in diameter) with a spherical
cavity ground at the bottom, and a piezoelectric material (typically zinc oxide
(ZnO) for ultrahigh frequency applications) at the top. Pressure waves created by
the ZnO travel through the lens and are focused by the cavity onto the sample.
Reflected echoes travel back through the lens, are converted to a voltage by the ZnO

Fig. 13.1 The SASAM 1000 acoustic microscope (Kibero GmbH, Germany). Left (A) Climate
controlled chamber, (B) Olympus inverted microscope and transducer module, (C) Computer
controller, (D) Climate controller module, (E) Electronics systems. Right A close up of the
sample holder, with the transducer positioned above and the optical objective underneath.
(A) Transducer, (B) Sample holder, (C) Thermocouple
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piezoelectric and then the analog signals are digitized by a computer. The cavity
aperture and angle, along with buffer rod dimensions are calculated depending on
the application and frequency used. An excellent thorough review of acoustic
microscopy lens design and theory is discussed in Briggs and Kolosov (2009).

Combining optical and acoustical imaging ensures that cells can be observed
optically during the acoustic measurements and allows for precise acoustic tar-
geting to cells or cell regions of interest as the transducer is visible in the optical
images. Figure 13.3 shows a 375 MHz transducer positioned above cells on a cell
culture dish. The 300 lm transducer diameter cavity and several live cells are
visible within the optical field of view. The transducer appears blurred as it
300 lm above the sample and beyond the focal range of the 10x optical objective.
The cells directly under the transducer cavity appear dark with poor contrast
(region B), whereas the cells around the flat transducer rim appear brighter with
better contrast (region C). This is because the transducer rim is flat and perpen-
dicular to the sample; the light from the objective travels through the sample and is
reflected by the rim back through the sample. This causes slightly better contrast
for cells under the rim than the cavity. Higher frequency transducers have a
smaller aperture (50–100 lm for GHz frequencies), and therefore are easier to
position with respect to the sample.

Maintaining constant temperature during acoustic measurements is crucial for
ultra-high frequency acoustic imaging. Temperature fluctuations can have a strong
effect on transducer sensitivity, where a shift of only 0.1 �C is enough to cause a
measurable change in focus when using a GHz transducer. This can affect the
imaging sensitivity and increase errors during quantitative measurements of cell
properties. The environmental control system used with the Kibero SASAM
acoustic microscope can maintain temperature stability of 37 �C ± 0.05 �C. If
samples are left undisturbed in the system over prolonged periods of time, tem-
perature stability has approached ±0.02 �C. The substrates and samples should be
at the target temperature within the environmental chamber before starting mea-
surements. When a substrate at room temperature is placed in the heated chamber,

Fig. 13.2 Left Three transducers used in the SASAM acoustic microscope. From left to right are
200, 375 and 1,200 MHz transducers. Right A diagram showing the typical construction and use
of a transducer with focus within the cell
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it will expand as it acclimatizes. This effectively moves the sample towards the
transducer, causing deviations in focus over time.

Cells present an additional difficulty over static or fixed samples in that they are
alive; they must be kept in proper conditions to ensure they are viable and in their
natural state. This generally requires temperatures around 37 �C with specific
humidity and carbon dioxide levels, and a growth medium with the appropriate
nutrients (the exact conditions depend on the cell type used). If cells are kept under
non-optimum conditions, they can become stressed and deviate from their natural
state. Extreme conditions can result in cell degradation which results in cell
rounding, poor adhesion and even death.

The hardware used for ultra-high frequency acoustic microscopy must be
optimized for high speed/high frequency data transfer (8 GHz sampling rates when
using frequencies over 1 GHz) if the radiofrequency (RF) data are to be acquired
for further analysis. Technological advancements in electronics and computers
have enabled offline analysis of the RF data generated during acoustic measure-
ments, where post-processing methods can be used to improve the signal. In
addition, low-noise and low-attenuation cables should be used to reduce trans-
mission losses.

13.3 Single Cell Imaging

One of the first applications of the acoustic microscope was to image biological
material, specifically single cells. The resolution approaches 1 lm at 1 GHz,
which is suitable for imaging single cells which are typically 15–30 lm in
diameter. Acoustic microscopes use a single element transducer. To create a 2D

Fig. 13.3 An optical image
of a transducer positioned
above a cell culture. The
transducer appears out of
focus as it is not within the
field of view. A small cluster
of cells are at the transducer
focus (A). The dark region
(B) in the optical image is the
area under the transducer
cavity, while the light region
(C) is under the transducer
rim. The area under the rim
appears to have better
contrast as the light is
reflected from the transducer
rim back towards the optics,
unlike the central dark region.
The scale bar is 30 lm
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image, the transducer must be scanned over the sample to record the signal at each
position. Acquisition times for a 50 9 50 lm area can range from several seconds
to several minutes, depending on the step size of the raster scan and temporal
averaging of the RF signals. Smaller step sizes increase resolution and higher
temporal averaging increase the signal to noise ratio (SNR) resulting in a better
image, but comes at the cost of acquisition time. Imaging live cells presents some
difficulties, as they can move during acquisition. Some cells are known to move up
to several microns per minute (Kay et al. 2008) and cell activity increases dra-
matically during biological processes such as mitosis and apoptosis. Therefore, it
is challenging to reduce acquisition time while maintaining image quality.

Typically two types of images are generated using acoustic microscopy:
attenuation images and backscatter images, both of which can give valuable
information about the cell structure. During a scan, ultrasound echoes are recorded
from the cell surface, cell interior and substrate. As the ultrasound pulse propa-
gates, it is attenuated as it travels through the cell and back to the transducer. In a
backscatter image, the echo from the substrate is gated out of the image, and only
the scattered ultrasound from within the cell is used to create the image. This gives
a map of the scattering regions within a cell above the substrate. An attenuation
image maps the total attenuation of the ultrasound pulse as it travels through the
specimen. The attenuation varies through different parts of the cell depending on
the cell thickness and the cell composition at the measurement location (such as
cytoplasm or the nucleus). The attenuation image can be generated by using the
gated signal from the substrate echo only (ignoring any backscatter from within the
cell), and gives a map of the attenuation throughout cell.

The combined optical-acoustic microscope is ideal for imaging live cells over
time to monitor various biological processes. One such process important to cancer
therapy is apoptosis, where cells undergo significant biological and morphological
changes over a period of time of up to several hours (Kerr et al. 1972; Taylor et al.
2008). Figure 13.4 illustrates the apoptotic process. During the initial stages of
apoptosis, small protrusions in the membrane called blebs can be observed. Even-
tually the cell morphs into a spherical shape due to the digestion of the structural
proteins that help maintain the normal cellular shape. Blebbing increases and
nuclear condensation occurs. Over time, the intracellular contents are internalized
into smaller apoptotic bodies, which are then eventually engulfed by phagocytes
in vivo. Significant insight into the changes a cell undergoes during apoptosis has
been observed using various optical imaging methods including confocal micros-
copy (Pelling et al. 2009). Ultrasound is based on a different type of contrast
mechanism, mechanical contrast, and can be used to complement optical studies and
help understand the mechanical changes that occur during the apoptotic process.

Our research group has studied the apoptotic process using breast cancer
(MCF7) cells. These are mammary cancer cells derived from an invasive breast
ductal carcinoma that have been used extensively in cancer studies since the early
1970s (Lacroix and Leclercq 2004). Paclitaxel was added to the MCF7 cell culture
24 h prior to imaging to induce apoptosis; specific experimental details can be
found in Strohm et al. (2010). The cells used in this study are adherent.
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When adherent cells undergo apoptosis, they round up, enabling easy identification
optically due to their morphological shape change. However optical identification
of apoptotic cells can be inconclusive, therefore fluorescent stains are used to help
identify apoptosis, particularly the stage of apoptosis. Hoechst 33342 stain labels
the DNA in all cells and fluoresces blue. It enables accurate delineation of the
nuclear membrane, which is important for identifying viable cells. Two stains are
commonly used simultaneously to detect apoptosis: Annexin-V (which fluoresces
green) and propidium iodide (which fluoresces red). Annexin-V binds to phos-
phatidylserine, a phospholipid usually present only in the cellular interior. During
the very early stages of apoptosis, phosphatidylserine becomes exposed on the
cellular membrane exterior to which Annexin-V can then bind. Propidium iodide
labels DNA but cannot pass through the membrane of a healthy viable cell.
Hoechst 33342 and propidium iodide both stain DNA, but only Hoechst 33342 can
penetrate and stain cells at any stage of the cell cycle while propidium iodide can
only penetrate into cells that have lost membrane integrity. Membrane integrity is
lost during the later stages of apoptosis. Therefore Annexin-V and propidium
iodide can be used in combination to identify the stage of apoptosis. Cells that
stain Annexin-V positive and propidium iodide negative indicate a cell in an early
stage of apoptosis, while both Annexin-V and propidium iodide positive indicate a
cell in the later stage of apoptosis. Figure 13.5 shows cells identified in various
stages of apoptosis due to the presence or absence of these stains. The stained cells
can then be selected for acoustical imaging and quantitative measurements at
different stages of apoptosis.

In the 1990s, measurements of the ultrasound backscatter (20–60 MHz) on cells
centrifuged into a tumor-mimicking cell pellet showed an increase in the back-
scatter intensity for cells undergoing apoptosis (Czarnota et al. 1997, 1999; Kolios
et al. 2002) compared to non-apoptotic cells. Individual cells cannot be resolved at
these frequencies, so acoustic microscopy must be used to examine changes on the
single cell level. Acoustic backscatter and attenuation images of MCF7 cells
before and during apoptosis are shown in Fig. 13.6 (using 375 MHz) and Fig. 13.7
(using 1000 MHz). Optical images taken a short time after the acoustic mea-
surements are shown for comparison. All measurements used a 0.5 lm step size

Fig. 13.4 A schematic diagram of the apoptotic process. A cell (a) will lose structural integrity
due to the digestion of structural proteins, resulting in morphological changes into a spherical
shape (b). The internal components are compartmentalized into smaller apoptotic bodies (c),
which can then be removed by the immune system (d). Blebbing or small protrusions in
membrane can be observed from early stages
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Fig. 13.5 Cells stained for apoptosis and viewed under fluorescence. The regions labeled ‘‘A’’
are cells stained blue (Hoechst 33342), and are normal viable cells in the interphase of the cell
cycle. Cells labeled ‘‘B’’ are in early stage apoptosis, and are stained blue and green (Annexin-V).
Cells labeled ‘‘C’’ are in late stage apoptosis, and are stained blue, green and red (propidium
iodide). In some cases, the blue and red stains overlap creating a purple color. Cells labeled ‘‘D’’
are stained red only, without any green. These may be cells in advanced stages of apoptosis, or
may be other cellular DNA debris. For these cells, it is unknown if cell death was apoptotic or
through another process of cell death. The scale bar is 30 lm

Fig. 13.6 MCF7 cells before apoptosis (top) and after (bottom). From left to right: optical image,
acoustic backscatter image and acoustic attenuation image. The acoustic images were made using
a 375 MHz transducer. The images are of two different cells in the same cell culture. The scale is
15 lm. (Figure reproduced from Strohm et al. (2010), � 2010 IEEE)

13 Acoustic Microscopy of Cells 323



with 100 point averaging at 375 MHz and 1,000 point averaging at 1,000 MHz.
Key differences in the images before and after apoptosis were observed. For the
cells imaged using 375 MHz ultrasound (Fig. 13.6), the optical image shows a
dramatic difference in the cell morphology before and after apoptosis. Before
apoptosis, the cell is adherent to the substrate and some surface blebs are visible
around the outer membrane. Major cellular organelles such as the nucleus and
nucleolus are visible. During apoptosis, the cell has detached from the substrate
and appears rounded, and cell organelles are no longer visible. Similar changes are
observed in the ultrasound attenuation images. In the backscatter images, the
backscatter occurs mainly around the nucleus for the non-apoptotic cell, while
backscatter occurs throughout the entire cell during apoptosis. Increased detail is
observed for cells imaged using 1,000 MHz ultrasound (Fig. 13.7). In the atten-
uation image, the nuclear membrane, the nucleolus and smaller cell organelles
(possibly vacuoles) are clearly visible; similar features are observed in both the
attenuation and optical image. The cell membrane shape is slightly different than
the optical image due to the time delay between the acquisition of the optical and
acoustic measurements. Fringes are observed in the acoustic backscatter image,
and are caused by the constructive and destructive interference of the signal
between the cell surface and substrate as the cell thickness is comparable to the
ultrasound wavelength. The ultrasound backscatter images of the cells undergoing
apoptosis conveys information not found in the optical image (Figs. 13.6 and
13.7). Ultrasound backscatter is observed throughout the entire cell at both 375 and

Fig. 13.7 MCF7 cells before apoptosis (top) and after (bottom). From left to right: optical image,
acoustic backscatter image and acoustic attenuation image. The acoustic images were made using
a 1,000 MHz transducer. The images are of two different cells in the same cell culture. The scale
is 15 lm. (Figure reproduced from Strohm et al. (2010), � 2010 IEEE)
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1,000 MHz. The backscatter pattern observed in the apoptotic cells at both fre-
quencies is suggestive of speckle. In these images, the nature of the dominant
ultrasonic scattering structure changes due to the smaller wavelength (Kolios
2009). The attenuation image of the apoptotic cell (Fig. 13.7) shows detail not
observed optically (or even acoustically at 375 MHz). The nucleus is clearly
delineated, and is 2–3 times more attenuating than the surrounding cytoplasm.
Small protrusions from the cell are visible, which are also observed in the optical
image. Figure 13.8 shows an apoptotic cell imaged at 1,000 MHz along with two
optical images: a bright field image and a fluorescence image where the cell has
been stained with Hoechst 33342 to label the nucleus. The stained nucleus in the
optical image and the highly attenuating center in the ultrasound image spatially
overlap, indicating the attenuating area observed in the attenuation image is the
nucleus. Further details are observed in two apoptotic cells imaged at 1,200 MHz
(Fig. 13.9). The attenuation through the nucleus was 2.5 times higher through the

Fig. 13.8 A cell in early stage apoptosis was stained with Hoechst 33342 to identify the nucleus
prior to acoustic measurements made at 1,000 MHz. The attenuation image shows a highly
attenuating central region of the cell (left), which coincides with the stained nucleus (middle). An
optical image of the cell is shown to the right. The scale bar is 15 lm

Fig. 13.9 Attenuation images of two different MCF7 cells in early stage apoptosis measured at
1,200 MHz. The highly attenuating nucleus is clearly visible, separate from the surrounding
cytoplasm. In both images, protrusions from the nucleus into the cytoplasm and out of the cell are
visible. The scale bar is 15 lm
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nucleus than the cytoplasm, and protrusions from the nucleus into the surrounding
cytoplasm and towards the cell exterior were observed.

Due to the penetrating nature of ultrasound, it can be used to visualize struc-
tures inside of cells and create cross-sectional images known as B-scans. This
image format is what is typically presented in clinical ultrasound images. B-scans
were made of apoptotic and non-apoptotic cells at 375 MHz and 1,000 MHz
(Fig. 13.10). At 375 MHz, the transducer was able to resolve parts of the cell
membrane of the non-apoptotic cell (Fig. 13.10a), losing detail around the cell
periphery where the membrane was close to the substrate. During apoptosis
(Fig. 13.10b), backscatter occurred throughout the cell in a pattern that resembled
a speckle pattern. The diffuse nature of the backscatter was possibly due to the
relatively low lateral and axial resolution (approximately 4 lm each) of the
375 MHz transducer in comparison to the cell size. At 1,000 MHz, the cell
membrane was clearly visible (Fig. 13.10c). Relatively little backscatter occurred
from within the cell. In contrast, the apoptotic cell showed extensive scattering
throughout the cell (Fig. 13.10d, e). Figure 13.10d was acquired with the ultra-
sound transducer focus approximately two-thirds below the cell surface the cell,
while Fig. 13.10e was acquired with the ultrasound transducer focus near the top
of the cell. Here the observed backscatter was clearly speckle, which is the well-
known interference pattern generated by sub-resolution scatters that is typical of
clinical ultrasound images at much lower frequencies. The speckle dimensions
appeared to be oval shaped, with the axial length twice the lateral length. The axial
and lateral resolutions of the 1,000 MHz transducer are approximately 2.1 and
1.2 lm, which agree with the speckle dimensions, further suggesting the back-
scatter observed within the cell was speckle (Foster et al. 1983). The transducer
depth of field was approximately 10 lm. With the focus near the top of the cell
(18 lm above the substrate), speckle near the bottom half of the cell could not be
resolved due poor sensitivity of the transducer outside of the transducer depth of
field. Additionally, the scattering that occurred from the top half of the cell
attenuated the ultrasound focused at the bottom of the cell. The amount of speckle
present in non-apoptotic cells was less than in an apoptotic cell. This indicates

Fig. 13.10 Ultrasound B-scans of cells at 375 (a, b) and 1,000 MHz (c, d, e). The same cell is
shown in (d) and (e) but with the transducer focus at different positions (indicated by the arrow)
to show that speckle occurs throughout the entire cell. The scale is 15 lm. (Figure reproduced
from Strohm et al. (2010), � 2010 IEEE)
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extensive activity and structural changes were occurring within the cell during
apoptosis, as the presence of speckle suggests many sub-resolution scattering
sources within the apoptotic cell.

13.4 Temporal Imaging

Apoptosis is a biological process in which the cell undergoes specific structural
and morphological changes in a highly controlled time sequence to reach an end
goal: cell death with minimal disruption to surrounding tissue. To examine how
the ultrasound echoes change in time from an apoptotic cell, optical and acoustic
methods were used to image an apoptotic cell every 60 s (Fig. 13.11a). A step size
of 1.0 lm with 100 point averaging was used with a 375 MHz transducer. The
optical image was recorded with the transducer above the cell (as shown in
Fig. 13.3) which resulted in poor contrast and detail due to poor optical illumi-
nation. The ultrasound attenuation image of the apoptotic cell did not change over
time, while variations in the backscatter pattern (speckle) were observed between
images. The bulk composition of the cell affects the ultrasound attenuation;
because negligible changes were occurring in the attenuation images over time, it
can be inferred that the bulk properties of the cell were not changing over the short
timescales of these measurements. However, the variations in backscatter observed
between images were indicative of rapid structural changes occurring within the
cell. In comparison, the optical, ultrasound backscatter and ultrasound attenuation
measurements of a non-apoptotic cell showed minimal variation when measured
20 min apart (Fig. 13.11b). In particular, the ultrasound backscatter occurred
mainly from the nuclear area of the cell, whereas the backscatter occurred
throughout the entire apoptotic cell.

A method was developed to quantify the variations in ultrasound backscatter
observed during apoptosis using the cross correlation of RF signals. The nor-
malized cross correlation R between two discrete signals x and y is given by

RxyðmÞ ¼

PN
k

yðkÞxðk þ mÞ

N
ffiffiffiffiffiffiffiffiffiffi
r2

xr
2
y

q ; ð13:1Þ

where N is the length of the signal, r is the variance and m is the lag (Ratner and
Bankman 2009). The correlation is equal to one if two signals are identical, and
equal to zero if there is no correlation. The 375 MHz transducer was positioned
above the center of the cell and the backscattered signal was recorded every 10 s
for 900 s (90 measurements). This was done for eight cells: four apoptotic and four
non-apoptotic. Figure 13.12 shows the signal measured at one specific time point
showing the echo from both the cell and substrate. The signal used in the calcu-
lations was gated to include the backscattered signal from the cell (between 1,500
and 1,520 ns in Fig. 13.12, 160 data points). Then for each cell, the correlation
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Fig. 13.11 Optical and ultrasound images of an apoptotic cell measured 1 min apart (a) and a
non-apoptotic cell measured 20 min apart (b). Top row optical images, middle row ultrasound
backscatter images, bottom row ultrasound attenuation images. Optical image quality and contrast
are poor as the images were recorded during acoustic scans. The scale bar is 15 lm. The scale bar
and ultrasound intensity scale are equal in both images. (Figure a reproduced from Strohm et al.
(2010), � 2010 IEEE)
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was calculated by comparing the first signal measured (at t = 0) to each sub-
sequent signal. If there was no change in the signal over time, the correlation
would be equal to one for all measurements. Conversely if the signal changed with
time, the correlation would vary depending on how different the two signals were.

The normalized cross correlation for the four non-apoptotic and four apoptotic
cells are shown in Fig. 13.13a and b, respectively. Over the 90 measurements, the
average correlation for the four non-apoptotic cells was 0.93 ± 0.05. Conversely,
the average correlation of the apoptotic cells was 0.68 ± 0.17, with variations
occurring on a timescale on the order of seconds for all cells over the entire
measurement period. These calculations indicate the signal from the non-apoptotic
cells were stable over time with minimal variations, in contrast to the rapidly
varying signals observed with apoptotic cells. These results correlate well with the
changes in speckle pattern observed from the images measured from apoptotic

Fig. 13.12 The ultrasound
RF signals and envelope from
the cell (at 1510 ns) and
substrate (at 1526 ns). The
echo from the cell was
approximately 18 mV (inset),
much smaller than the 0.6 V
signal from the glass
substrate. (Figure reproduced
from Strohm et al. (2010), �
2010 IEEE)

Fig. 13.13 The average normalized cross correlation measured for four non-apoptotic cells
(a) and four apoptotic cells (b). The correlation of the non-apoptotic cells was close to unity,
indicating that minimal changes in the signal occurred over time. In contrast, the correlation for
the apoptotic cells rapidly changed with time, indicating extensive signal variations over time.
(Figure reproduced from Strohm et al. (2010), � 2010 IEEE)
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cells one minute apart (Fig. 13.11a). Based on these results, we can conclude that
intracellular variations occur over a time period of seconds during apoptosis.

13.5 Quantitative Measurements

Several studies have measured the properties of individual cells using various
acoustic microscopy methods; however, it is difficult to compare the results
between different measurement systems or techniques. It is even more difficult to
compare the results from one cell line to another due to differences in cell types,
environmental settings and growth conditions. Additionally, systematic issues may
arise that prevent accurate absolute measurements. However, quantitative mea-
surement techniques have been developed to mechanical properties of cells using
time resolved or v(z) measurements. These methods have been used previously to
determine properties of cells such as the thickness, sound speed, acoustic
impedance, density, bulk modulus and attenuation as discussed above.

The time resolved method is used to determine the cell thickness and sound
speed. Echoes from the cell surface (t1), cell substrate interface (t2) and a reference
measurement on the substrate beside the cell (t0) must be resolved (Fig. 13.14).
The cell thickness d can be calculated using the echoes from the cell surface and
the reference measurement using

d ¼ c0

2
t0 � t1ð Þ; ð13:2Þ

where c0 is the sound speed in the coupling fluid. For live cell measurements,
coupling is achieved by using the cell medium or phosphate buffered saline (PBS)
to ensure cell viability during the experiments. In many situations, the sound speed
of the coupling medium is unknown at the high frequencies used and acoustic
microscopy methods can be used determine the sound speed and dispersion of the

Fig. 13.14 A diagram
showing the transducer
positioned above a single cell
for time resolved
measurements. The time of
flight of the ultrasound
echoes from the cell surface
(t2), cell-substrate interface
(t1) and a reference
measurement from the
substrate beside the cell (t0)
are used to calculate the
thickness and sound speed of
the cell
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medium (Strohm and Kolios 2011). The sound speed within the cell can be cal-
culated from the three echoes using

c ¼ c0
t0 � t1
t2 � t1

: ð13:3Þ

The thickness and sound speed of cells are straightforward to acquire and have
been reported in literature for a variety of cell types using different methods,
including time resolved methods. To obtain the other cell properties, the acoustic
impedance must be calculated using the echo amplitude from the cell surface, cell-
substrate interface and the substrate reference measurement. The amplitudes vary
as a function of transducer position, and the focus position of the cell surface,
substrate and reference will all be different. The maximum amplitude from each
surface must be found by measuring the signal as a function of transducer position
above the cell (a v(z) curve). A v(z) curve showing the signal from the three
interfaces of a 11 lm thick cell adhered to a glass substrateusing a 375 MHz
transducer is shown in Fig. 13.15 (note the amplitude from the cell membrane, A2,
has been scaled by a factor of 10); from this plot, the maximum amplitude from
each surface is determined (A1, A2 and A3). The amplitude maxima A2 and A3

occur closer together for a cell as the sound speed within the cell and coupling
fluid are comparable. These amplitudes are used to determine the acoustic
impedance of the cell. Before this is done, the reference amplitude from the
substrate (A3) must be corrected. The acoustic impedance calculations assume
perfect reflection from the substrate. While most of the ultrasound energy is
reflected from the glass back towards the transducer, some will be transmitted
through the glass. In addition, ultrasound incident on the substrate at specific
angles will be converted to other transmission modes such as surface acoustic

Fig. 13.15 V(z) curves from a 11 lm thick cell in interphase on top of a glass substrate. The
signal amplitude is measured as a function of transducer position axially through the sample. A2 is
from the top of the cell and A1 is from the cell-substrate interface. The reference measurement A3

is done on the glass beside the cell. The cell membrane measurement A2 is scaled up by a factor
of 10
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waves (Briggs and Kolosov 2009). A0 is the corrected amplitude assuming perfect
reflectance from the substrate, and can be calculated using

A0 ¼ A3
Zs � Z0

Zs þ Z0
; ð13:4Þ

where Z0 is the known acoustic impedance of the coupling fluid. With the maxi-
mum amplitudes from the cell surface (A1) and reference measurement (A0)
known, the acoustic impedance within the cell Zc can be calculated using

Zc ¼ Z0
A0 þ A1

A0 � A1
: ð13:5Þ

The results from the time resolved method (cell thickness and sound speed) and
v(z) method (cell acoustic impedance) can be used to calculate the density and bulk
modulus of the cell. The cell density is calculated using

q ¼ Zc

c
; ð13:6Þ

and the bulk modulus is calculated using

K ¼ cZc ¼ qc2; ð13:7Þ

where c was found using time resolved methods and Zc using the v(z) curve. Using
the combined methods from the time resolved measurements and v(z) curves, the
thickness, sound speed, acoustic impedance, density and bulk modulus of a cell
can been estimated.

The attenuation in the cell can be found by measuring the difference in the echo
amplitude between the substrate under the cell (A2) and the reference amplitude
beside the cell (A3) while the transducer remains at a fixed position above the cell.
The acoustic impedance of the substrate (Zs), coupling fluid (Z0) and the cell (Zc)
must be known to correct the amplitude echoes from the cell surface and substrate.
In addition, the cell thickness d at the measurement position must be known. If
these variables are known, then the attenuation within the cell can be calculated
using

a ¼ ac þ
1

2d
ln

A0

A2

Zs � Zc

Zs þ Zc

4ZcZ0

Zc þ Z0ð Þ2
Zs þ Z0

Zs � Z0

" #
ð13:8Þ

where ac is the attenuation in the coupling fluid through a distance 2d. The units
from this equation are given in Np/cm, and can be converted to dB/cm by mul-
tiplying by 8.686. Attenuation is frequency dependent that generally follows a
power law of the form

a ¼ a0f n; ð13:9Þ
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where a0 is the attenuation coefficient and n is the exponent of the frequency
dependent attenuation power law (Szabo 1995). The frequency dependence of bulk
tissue (a0 and n) has been reported using clinical frequency ranges of approxi-
mately 1–10 MHz (Duck 1990; Hill et al. 2004), and n typically has values
between 1 and 1.5. For liquids, the attenuation frequency dependence is generally
between 1.5 and 2, with water equal to 2 (Davidovich et al. 1972). While cells are
composed mostly of water they have significant intracellular materials such as
protein and therefore it is unknown how the attenuation varies with frequency.
Several attempts have been made to measure the frequency dependent attenuation
of individual cells (Daft et al. 1989), however those results are limited in that they
cover only a small number of frequencies and use limited cell types. A compre-
hensive examination of how the attenuation of different cell types vary with fre-
quency does not exist, which makes it difficult to compare the attenuation
coefficient from single cells to that of bulk tissue.

Over the past 30 years, various methods including the time resolved mea-
surements and v(z) curves have been used to determine cellular properties. Most
studies were done with a small sample size and lacked rigorous methodology
verification. Variations can exist from cell to cell therefore a large sample size is
essential to obtain representative and reproducible values. This is even more
crucial when examining cells of different types or changes in cells during various
biological processes.

A method to verify the combined time resolved and v(z) curve method was
presented in Strohm et al. (2010) where the properties of a 9 lm thick PVDF
polymer were calculated. The thickness, sound speed, acoustic impedance, density
and bulk modulus agreed to within 5 % of those supplied from the manufacturer.
The attenuation could not be compared as it was unknown what the attenuation
through the PVDF was at the frequencies used.

To help understand how the properties of cells change during apoptosis, single
MCF7 cells were measured using ultra-high frequency ultrasound using the time
resolved and v(z) methods before and during apoptosis. Cells were prepared and
stained with Hoechst 33342, Annexin-V and propidium iodide to identify the cell
state. Cells with no more than three neighboring cells were selected for mea-
surements. Cells in confluence were avoided due to the difficulty identifying cell
borders (both acoustically and optically). Moreover, the pressures exerted on a
measured cell by its neighbors are unknown and could vary from cell to cell, and
even for the same cell as a function of time. Therefore, for consistency, isolated
cells were selected. Cells in the metaphase state of mitosis were also chosen for
quantitative measurements. During metaphase, the cell has a rounded appearance
and the chromosomes line up along the center of the cell. The increased chro-
mosome density within the measurement region may alter the cellular properties.
The cell state can be identified optically or using a DNA-labeling stain such as
Hoechst 33342. Optical and fluorescence images of cells in various states of
mitosis are shown in Fig. 13.16. Fluorescent images of cells in the early and late
stages of apoptosis are shown in Fig. 13.5.
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The cellular properties (thickness, sound speed, acoustic impedance, density,
bulk modulus and attenuation) were calculated using both time resolved and
v(z) methods as discussed above. A 375 MHz transducer (60� aperture, 42 % -

6 dB bandwidth) centered on the cell nucleus was used for all measurements.
V(z) curves were made approximately ±25 lm around the transducer focus on the
substrate with a 1 lm step size. Cells were selected based on the optical and
fluorescence images. Further details regarding the acoustic microscope and mea-
surement method are described in Strohm et al. (2010). A total of 159 cells were
measured: 69 in interphase (normal cellular state), 31 in early apoptosis, 28 in late
apoptosis and 31 in the metaphase stage of mitosis. The thickness, sound speed,
acoustic impedance, density and bulk modulus for the four cell types measured are
shown in Table 13.1. Histograms showing the distribution for each parameter are
shown in Fig. 13.17. Table 13.2 summarizes the attenuation (dB/cm) and the

Fig. 13.16 Fluorescence (top) and optical (bottom) images of cells during mitosis. The cells
were stained with Hoechst 33342 to identify the DNA during fluorescence. The cells undergo
specific morphological changes during each phase of mitosis, enabling easy optical identification.
The scale bar is 10 lm

Table 13.1 The thickness, sound speed, acoustic impedance, density and bulk modulus of MCF7
cells in interphase, early stage apoptosis, late stage apoptosis, and the metaphase stage of mitosis.
The amplitude and time of flight of the ultrasound echoes from the cells using a 375 MHz
transducer were used with Eqs. 13.2–13.7 to calculate the properties. The standard deviation is
given as the error. Values that were statistically different from the interphase state (p \ 0.01) are
marked with an asterisk

Cell Cycle Number
of cells

Thickness
(lm)

Sound
Speed (m/s)

Acoustic
Impedance
(MRayls)

Density
(kg/m3)

Bulk
Modulus
(GPa)

Interphase 69 11.1 ± 1.9 1575 ± 25 1.559 ± 0.015 990 ± 18 2.46 ± 0.05
Early

apoptosis
31 15.2 ± 2.3* 1586 ± 22 1.556 ± 0.021 981 ± 17 2.47 ± 0.05

Late apoptosis 28 12.6 ± 2.3* 1557 ± 13* 1.539 ± 0.012* 988 ± 8 2.40 ± 0.03*
Metaphase 31 18.6 ± 1.5* 1567 ± 12 1.554 ± 0.014 992 ± 9 2.44 ± 0.03*
Water 1521.7 1.512 993.5 2.30
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attenuation coefficient (dB/cm/MHzn), where the attenuation coefficient was cal-
culated from Eq. 13.9 using n = 1, 1.5 and 2. Three attenuation coefficients are
reported using different power law factors as the frequency dependent attenuation
at these frequencies is unknown. Finally, a student t-test was used to determine if
there was a statistically significant difference between the interphase state and the
early apoptosis, late apoptosis, and metaphase (single sided one tail, unequal
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Fig. 13.17 Histograms of the thickness, sound speed, acoustic impedance, density, bulk modulus
and attenuation for the MCF7 cells in interphase, early and late stage apoptosis and the metaphase
state of mitosis. In most cases a normal distribution is observed, with the exception of the
attenuation. Early and late stage attenuation calculations appeared to deviate from a normal
distribution throughout the histogram
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variance, unequal sample size, p \ 0.01). Parameters that were statistically dif-
ferent from the interphase state are marked with an asterisk in Tables 13.1 and
13.2.

During apoptosis, the cell height increased from 11.1 lm for a cell in interphase
to 15.2 lm for early stage apoptosis. The cell rounds to a spherical shape while
losing some adhesion to the substrate during apoptosis. The cell volume doesn’t
change appreciably during this initial stage, the cell only changes shape which
accounts for the increased thickness. By late stage apoptosis, the cell thickness
decreased to 12.6 lm, which could be due to a decrease in cell volume as a result
of loss of cellular material. A statistically significant decrease in the sound speed
from 1586 to 1557 m/s was found from early to late stage apoptosis. From early to
late stage apoptosis, statistically significant decreases in the acoustic impedance
from 1.559 to 1.539 MRayls and the bulk modulus from 2.46 to 2.40 GPa were
observed. In general, most parameters did not change from interphase to early
stage apoptosis. This indicates that while the cell shape initially changed from a
flat adherent to a rounded morphology, significant internal structural changes may
be absent during the early stages of apoptosis. However, nearly all the cell
properties changed from early to late stage apoptosis, which is likely related to the
significant structural changes that occur within the cell. The acoustic measure-
ments were made over the central region of the cell containing the nucleus. During
apoptosis, it is known that the nucleus condenses and fragments. It is possible that
the changes in cell parameters are due to changes in the nuclear structure as the
cell nucleus undergoes chromatin condensation and nuclear fragmentation (Dini
et al. 1996). These large structural changes are expected to produce changes both
in the bulk material properties and in the scattering structures.

From the interphase cell state to the metaphase stage of mitosis, the thickness
increased from 11.1 to 19.0 lm, which is due to the rounding shape of the cell.
The other parameters (sound speed, density and acoustic impedance) did not
change. The bulk modulus decreased from 2.46 to 2.44 GPa but with a p-value
near the limits of statistical significance. We can conclude that despite a change in
cell shape, the mechanical properties of cells undergo negligible changes from
interphase to the metaphase stage of mitosis. This is similar to what was observed

Table 13.2 The attenuation of MCF7 cells in interphase, early stage apoptosis, late stage
apoptosis, and the metaphase stage of mitosis measured using a 375 MHz transducer. The
attenuation calculated using Eq. 13.8 is shown with dB/cm units, along with the attenuation
coefficient calculated using Eq. 13.9 with frequency to the power of 1.0, 1.5 and 2.0. The
attenuation of cells in early apoptosis and metaphase states were statistically different than the
interphase attenuation (p \ 0.01)

Cell Cycle Number
of cells

Attenuation
(dB/cm)

Attenuation
(dB/cm/MHz1.0)

Attenuation
(dB/cm/MHz1.5)

Attenuation
(dB/cm/MHz2.0)

Interphase 69 553 ± 132 1.47 ± 0.35 0.076 ± 0.018 0.0039 ± 0.0009
Early apoptosis 31 761 ± 207* 2.03 ± 0.55 0.105 ± 0.029 0.0054 ± 0.0015
Late apoptosis 28 539 ± 240 1.44 ± 0.64 0.074 ± 0.033 0.0038 ± 0.0017
Metaphase 31 400 ± 86* 1.07 ± 0.23 0.055 ± 0.012 0.0028 ± 0.0006
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during early stage apoptosis, where negligible differences in the cell properties
were observed (aside from thickness).

Statistically significant differences in the attenuation between interphase to
early apoptosis (545–740 dB/cm), then from early to late stage apoptosis
(740–519 dB/cm) were observed. A decrease in the attenuation was also observed
between cells in interphase and metaphase (545–399 dB/cm). Figure 13.17 shows
the histogram of the measured attenuation values in all the experiments; a normal
distribution was observed for the cells in the interphase and metaphase stage of
mitosis, but not for cells in the early and late stage of apoptosis. The attenuation
values were spread nearly evenly throughout the range of measured values. The
average attenuation from these cells also had a high standard deviation, where it
was nearly double that of the interphase and metaphase cells (Table 13.2). The
large attenuation range for the apoptotic cells is likely due to the biological process
itself. Apoptotic cells undergo significant changes over a rapid timescale as shown
in Fig. 13.11. During this process, the internal organelles, proteins and other
components are displaced within the cell. It is possible that the position of these
structures influence the measurements by increasing the attenuation when within
the ultrasound beamwidth, or decreasing the attenuation when absent. In contrast,
metaphase is a controlled process lacking the turbulent nature observed in apop-
tosis. Therefore, it is not surprising to see a wide range of attenuation measure-
ments from apoptotic cells.

13.6 Quantitative Measurement Sources of Errors

There are several sources of error when calculating the cellular properties dis-
cussed in the previous section. All calculations assumed water as the coupling fluid
(1,521 m/s sound speed and 993.5 kg/m3 density) and borosilicate glass as the
substrate (12.577 MRayls acoustic impedance). Growth medium was used as the
coupling fluid instead of water, which contains a small concentration of various
salts and nutrients to ensure cell viability. The salts may increase the density and
sound speed slightly, while it is unknown how the other ingredients will affect the
sound speed and density. The cellular sound speed, acoustic impedance and bulk
modulus are directly proportional to the coupling fluid sound speed; therefore, any
differences in the coupling fluid sound speed will have a direct effect on the
absolute sound speed, acoustic impedance and bulk modulus of the cell. The
density reported for all cells is less than that of water. Most studies have reported
cell densities higher than water and some errors in the density measurement could
have occurred. The density is calculated from the acoustic impedance (Eq. 13.6),
where the acoustic impedance calculation relies on accurate amplitude measure-
ments of the ultrasound echoes (Eqs. 13.4 and 13.5). The amplitude A3 is corrected
for losses due to ultrasound transmission through the substrate only. Other
uncorrected changes in the signal (e.g. due to mode conversion) would affect the
incident amplitude A0, which ultimately affect the density and bulk modulus
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calculations as they are calculated from the acoustic impedance. While these issues
may affect the accuracy of the cellular property estimates, these measurements
provide an excellent relative estimate, where differences in the cellular properties
were found between cells in different states.

The student t-test was used to determine if two properties were statistically
different between different cell types and/or cell states. The t-test assumes a normal
distribution and an appropriate sample size, and statistically significant results can
erroneously result if these conditions are not met. Generally a p-value of 0.05
(95 % confidence) is used to ascertain if two results are statistically different;
however, in the case of these measurements, some results did not follow a normal
distribution (e.g. late stage apoptosis attenuation) or sample sizes were relatively
low. Therefore, a stringent p-value of 0.01 (99 % confidence) was used to correct
for any errors that may exist due to anomalies in the statistical mathematics.

13.7 Future Work

The methods presented in this chapter can be used to measure the cellular prop-
erties of cells during any biological process, to differentiate between malignant and
benign cells, or even different cell lines and types. Future work will concentrate on
improving the sample size of the early/late stage apoptosis measurements to
increase accuracy, and examining if the properties of malignant and benign cells
are different. These results provide an understanding of how changes on a single
cell level affect the ultrasound signals from tumors during chemotherapy treatment
using clinical frequency (1–15 MHz) and high frequency (20–60 MHz) ultrasound
(Kolios and Czarnota 2009; Czarnota and Kolios 2010). Due to the complementary
nature of ultrasound and photoacoustics, the SASAM acoustic microscope
described in this chapter was modified to enable both acoustic and photoacoustic
measurements. The optical absorption contrast mechanism is different than
ultrasound, and using these probing methods in tandem can provide more infor-
mation about micro-sized materials. Applications include measuring biological
material with endogenous contrast such as melanoma cells (Rui et al. 2010) and
red blood cells (Strohm et al. 2013; Rui et al. 2010), visualizing cellular DNA
(Yao et al. 2010), determining vaporization thresholds (Strohm et al. 2011) and
spectral characterization (Strohm et al. 2012) of perfluorocarbon emulsions.
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Part IV
Ultrasound Computer Tomography



Chapter 14
Methods for Forward and Inverse
Scattering in Ultrasound Tomography

Roberto J. Lavarello and Andrew J. Hesford

Abstract Ultrasonic computed tomography (UCT) is a potentially useful technique
that has been explored for decades in the context of medical imaging. UCT can
provide quantitative images of acoustical parameters such as speed of sound,
attenuation, and density from measurements of pressure fields. Throughout the
years, several algorithms that rely on different wave propagation models have been
developed. In this chapter, the fundamentals of forward and inverse solvers for
ultrasonic tomography will be described.

Keywords Ultrasonic tomography � Ray-based tomography � Diffraction
tomography � Inverse scattering

14.1 Ultrasonic Tomography and the Wave Equation

Ultrasound imaging is widely used as a tool for medical diagnosis. The most
commonly used ultrasonic imaging method is sonography or B-mode imaging.
B-mode imaging uses data in reflection mode to produce anatomical greyscale
images. The brightness of each pixel is proportional to the amplitude of the
logarithmically compressed envelope of the echoes produced by tissues. Spatial
localization is performed using the pulse-echo principle.

However, the propagation of acoustic waves is a much richer phenomenon than
simple reflections of acoustic echoes. Attempts were conducted in the early 1970s
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to produce ultrasonic images in transmission mode that were more similar to
projective images formed with other modalities such as radiography and scintig-
raphy. These transmission-mode ultrasonic images were constructed by placing
a transmitter and a receiver transducer to face each other. By raster scanning
a sample placed in between the transducer pair, images of quantities such as
transmitted amplitude (Green et al. 1974; Marich et al. 1975) and time-of-flight
delays (Heyser and Croissette 1973, 1974) were produced. Advantages of using
ultrasound for projective imagings included the use of non-ionizing radiation and
the potential to exploit new sources of contrast for diagnostic imaging.

It was also in the early 1970s that the feasibility of applying the theory of
transmission tomography for clinical practice was demonstrated. In particular,
Hounsfield developed the first X-ray computed tomography device that allowed
production of two-dimensional cross-sectional images of X-ray attenuation coef-
ficients from a set of projection data at different orientation angles (Hounsfield
1973). This is not the only tomographic imaging modality used in clinical practice.
The concept of emission tomography using SPECT actually predates X-ray
tomography, having been demonstrated by Kuhl and Edwards in the 1960s (1963).
Emission tomography of humans using PET was reported in the mid 1970s (Phelps
et al. 1976). It was also by the mid 1970s that live animal imaging using magnetic
resonance principles was demonstrated (Damadian 1971; Lauterbur 1974). The
advantages of tomographic imaging compared to projective imaging were quickly
appreciated by the medical community. It is therefore not surprising that
researchers in the field of ultrasonic imaging also attempted to construct tomo-
grams from ultrasound projective data.

Acoustic tomography encompasses a set of techniques that aim to reconstruct
images of acoustic parameters from measurements of scattered pressure fields at
different spatial locations and frequencies. Considering the case of an incident
monochromatic field of angular frequency x propagating in fluid media, the wave
equation can be written as

qðrÞr2qðrÞ�1pðrÞ þ k2ðrÞpðrÞ ¼ �/incðrÞ;
kðrÞ ¼ x=cðrÞ � iaxðrÞ;

ð14:1Þ

where pðrÞ is the acoustical pressure, /incðrÞ are the acoustical sources, kðrÞ is the
complex wave number, and qðrÞ, cðrÞ and axðrÞ are the density, sound speed, and
acoustic attenuation (at frequency x) of the medium, respectively.

Equation (14.1) explicitly shows the relationship between parameters of the
medium and the complex scattered pressure field. Therefore, by inverting the wave
equation one can potentially create images of these parameters. Towards this end,
several approaches have been pursued throughout the decades in order to obtain
quantitative two- and three-dimensional tomographic ultrasonic images.
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14.2 Ray-Based Acoustic Tomography

The first experimental demonstrations of ultrasonic tomography were performed in
the early 1970s. Given the limited power of computer resources at that time, it is
not surprising that initial attempts at ultrasonic tomography were based on sim-
plifications of the wave equation. If density is assumed to be constant, the wave
equation (14.1) in the absence of a source can be written as

r2pðrÞ þ k2ðrÞpðrÞ ¼ 0: ð14:2Þ

If we let p ¼ p0 expð�ik0sðrÞÞ, with the wave number k0 corresponding to a
homogeneous background of sound speed c0, then the wave equation can be
rewritten in terms of the acoustic wavefront sðrÞ as

kðrÞ
k0

� �2

� rsðrÞ � rsðrÞð Þ � ik0

2p
r2sðrÞ ¼ 0: ð14:3Þ

Furthermore, if the medium is assumed lossless and the wavelength k0 ! 0, the
equation above can be written as

jrsðr; cÞj2 ¼ n2ðrÞ; ð14:4Þ

where nðrÞ ¼ c0=cðrÞ is the acoustic index of refraction. Equation (14.4) is known
as the eikonal equation, and is a fundamental result in geometrical acoustics
(Pierce 1989). The eikonal equation dictates how the acoustic wave front changes
due to variations of the acoustic wave number. The eikonal equation can alter-
natively be written as

jrTðr; sÞj2 ¼ s2ðrÞ; ð14:5Þ

where sðrÞ ¼ 1=cðrÞ is the slowness and Tðr; sÞ ¼ sðr; cÞ=c0 is the time of flight
required for the wave to reach point r:

14.2.1 Straight-Ray Propagation

A very significant implication of Eq. (14.4) is that if variations of sðrÞ are assumed
to be negligible, i.e., sðrÞ � 1=c0, then jrTðrÞj is a constant. Therefore, the
minimum-time arrival path between a transmitter and a receiver is a straight line.
Although some researchers attempted to perform acoustic tomography through
bone (Carson et al. 1977; Dines et al. 1981), a more favorable condition is met
when imaging soft tissues for which expected refraction index changes are typi-
cally less than 10 % (Goss et al. 1978, 1980). Therefore, at least in principle it was
reasonable to assume a straight ray propagation between a transmitter and a
receiver when imaging regions of the body composed exclusively of soft tissues. A
particular but important case that satisfied this requirement was breast imaging,
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which to this day remains the most widely studied medical application of acoustic
tomography.

Time-of-flight tomography creates tomograms of sound speed using measure-
ments of DTðrt; rrÞ ¼ Tðrr � rt; sÞ � Tðrr � rt; s0Þ, i.e., the difference in times of
arrival between a transmitter at rt and a receiver at rr with and without the sample
in between the transducers. If straight-ray propagation is assumed, DTðrt; rrÞ can
be related to the slowness using

DTðrt; rrÞ ¼
Z 1

0
dl Ds d r� rt þ l� ðrr � rtÞ½ �ð Þ; ð14:6Þ

where Ds ¼ sðrÞ � s0ð Þ. Consider the case of transmitters and receivers distributed
in straight lines as shown in Figure 14.1. Equation (14.6) can then be rewritten as

DTðp; hÞ ¼
Z Z 1

�1
drDsðrÞ d x cos hþ y sin h� pð Þ: ð14:7Þ

With this configuration, the same theory extensively used for other tomographic
medical imaging modalities can be used to create index of refraction tomograms
(Greenleaf et al. 1975). In particular, and using the notation in Fig. 14.1, the
Fourier slice theorem (Bracewell 1956) states that

Z 1
�1

dpDTðp; hÞe�jjp ¼
Z Z 1

�1
drDsðrÞe�jjp̂�r; ð14:8Þ

i.e., the values of the 1D Fourier transform of the measured data DTðp; hÞ corre-
spond to samples of the 2D Fourier transform of DsðrÞ over a line at h degrees
passing through the origin of k-space. A widely used method for the solution of
Eq. (14.6) is the filtered backprojection algorithm (Bracewell and Riddle 1967;
Ramachandran and Lakshminarayanan 1971; Shepp and Logan 1971). The algo-
rithm is based on rewriting (14.8) in polar coordinates, which results in

DsðrÞ ¼
Z p

0
dh
Z 1
�1

djjjjD�Tðj; hÞejjðp̂�rÞ; ð14:9Þ

Fig. 14.1 Straight-ray
acoustic tomography.
Transducers with a narrow
beam width are arranged in a
line of transmitters (red) and
a line of receivers (blue), and
measurements of time-of-
flight are collected. The
scattering object occupies the
region of space X
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where D�Tðj; hÞ is the 1D Fourier transform of DTðp; hÞ. The second integral in
Eq. (14.9) is the convolution of DTðp; hÞ with a filter hðpÞ whose Fourier transform
is equal to jjj: Therefore, Eq. (14.9) can be rewritten as

DsðrÞ ¼
Z p

0
DThðp̂ � r; hÞ; ð14:10Þ

where DThðp; hÞ ¼ DTðp; hÞ �
p

hðpÞ and �
p

represents the convolution with respect

to p. Algebraic methods were also developed for the inversion of Eq. (14.6) such
as the simultaneous algebraic reconstruction technique (SART) (Andersen and
Kak 1984). Reconstruction methods for fan-beam tomography were also explored
for UCT under straight ray propagation assumptions (Glover 1978).

Creating tomograms of acoustic attenuation proved to be slightly more
complicated. It was initially postulated that projections could be constructed from
either transmitted signal amplitude or integrated intensity measurements (Green-
leaf et al. 1974). However, these measurements were found to be sensitive to
effects such as out-of-plane signal propagation, signal loss due to reflection, and
phase cancellation across the receiver. Therefore, some researchers suggested
extracting projection data from the power spectrum of the received data instead
(Dines and Kak 1979; Klepper et al. 1981). After proper measurement of pro-
jection data, the reconstruction process was carried out using the same methods
described for time-of-flight tomography.

14.2.2 Refraction-Corrected Tomography

However, the simple straight-ray model was quickly found to be inappropriate for
tomography based on acoustic waves. In spite of the low variations of refraction
index, ultrasonic waves may undergo a non-negligible amount of refraction when
propagating through soft tissues. This is not the case for X-ray imaging, for which
refraction effects can be safely neglected. This limitation was acknowledged even
in the early days of acoustic tomography as a mechanism with potential to reduce
the visualization of small structures when using UCT (Greenleaf et al. 1975,
1978). An illustration of the effects of refraction is presented in Fig. 14.2, where
significant deviations from straight-ray path are shown when propagating through
an object with only 10 % speed-of-sound contrast.

As a result, efforts were conducted in order to incorporate refraction effects in
ray-based acoustic tomography. If the wavelength can be considered small com-
pared to the size of the scatterer, the wavefront refraction can be explained using
the eikonal equation in (14.4). Ray tracing methods allow for estimating the
refracted paths that replace the straight lines assumed in Eq. (14.6).

Using the method of characteristics (Jakowatz and Kak 1976), the eikonal
equation in Eq. (14.4) can be rewritten as a set of five ordinary differential
equations given by
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dx

ds
¼ p

n
;

dy

ds
¼ q

n
;

dp

ds
¼ on

ox
;

dq

ds
¼ on

oy
;

ds
ds
¼ n; ð14:11Þ

where p ¼ os=ox, q ¼ os=oy, and s is an auxiliary curve parameter. Only the first
four equations in (14.11) are needed to obtain the ray path ðxðsÞ; yðsÞÞ corre-
sponding to transmitter location ðx0; y0Þ and starting ray direction ðp0; q0Þ. Other
approaches for ray tracing may be derived from different forms of the eikonal
equation. For example, Johnson et al. (1975) performed ray tracing by solving the
second-order differential form of the eikonal equation

d

ds
n

dr

ds

� �
¼ rn: ð14:12Þ

Numerical recipes for the solution of Eqs. (14.11) and (14.12) can be found in
(Andersen and Kak 1982; Andersen 1986).

For the problem of refraction-corrected tomography one is concerned with
finding the actual bent path that connects a transmitter with a receiver, i.e., the ray
linking problem (Andersen and Kak 1982; Norton 1987). Ray linking in the
geophysical imaging community was traditionally performed using ray shooting
and ray bending methods (Julian and Gubbins 1977), with the former being one of
the earliest methods proposed for refraction-corrected tomography (Schomberg
1978; Lytle and Dines 1980). Ray shooting consists of solving the eikonal equation
for a fixed transmitter position ðx0; y0Þ and different values of ðp0; q0Þ to find all
rays that pass through the receiver location. If more than one ray is found, the
solution is taken to be equal to the ray of minimum travel time between transmitter
and receiver. Ray bending is based on Fermat’s principle,1 which states that the ray
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Fig. 14.2 Refraction effects on wave front propagation through a cylinder with index of
refraction n ¼ 1=1:1: a Homogeneous medium b Cylinder, index of refraction n ¼ 1=1:1

1 The eikonal equation can alternatively be derived from Fermat’s principle, and therefore this
principle can also be used for ray tracing. The interested reader can refer to acoustics textbooks
such as Pierce (1989).
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that connects two points is the path of minimum travel time. Ray bending consists
of perturbing an initial ray path joining the transmitter and receiver until a
minimum time-of-flight criterion is met.

Ray linking approaches can be computationally expensive due to the need to
calculate many ray paths for different transmitter/receiver pairs. Therefore,
researchers sought alternative methods more efficient than classical ray linking
(Andersen 1987). A particularly interesting class of algorithms consists of using
graph theory methods to find the path of minimum travel time connecting trans-
mitter/receiver pairs. Not only is this approach computationally efficient, but it
also provides a global optimum solution and therefore avoids convergence prob-
lems of the shooting and bending methods (Moser 1991; Klimes and Kvasnicka
1994; Song and Zhang 1998; Li et al. 2010).

The main difficulty with reconstructing refraction-corrected acoustic tomo-
grams is that in order to calculate the ray paths one has to know the spatial
distribution of the index of refraction, which is the quantity that needs to be
estimated. Therefore, the imaging problem becomes nonlinear with respect to the
speed of sound distribution and more sophisticated methods than simple inverse
Radon transforms need to be applied. Refraction-corrected approaches were
applied since the early days of acoustic tomography by iteratively refining prop-
agation paths based on the current estimate of the speed of sound distribution and
the eikonal equation (Johnson et al. 1975; Schomberg 1978; Denis et al. 1995).
Other researchers proposed methods based on modifying the measured data rather
than the propagation paths (Norton and Linzer , 1982). Refraction-corrected paths
were also proposed to reduce artifacts in acoustic attenuation reconstruction
(Farrell 1981; Pan and Liu 1981).

14.2.3 Reflection Mode Tomography

Another variation of UCT is reflection mode tomography, which is based on using
data collected in pulse-echo mode. Pulse-echo data pðt; rtrÞ collected with the
transducer at location rtr can be modeled as (Jensen 1990)

pðt; rtrÞ ¼ vpeðtÞ �
t

Z
drfmðrÞhpeðrtr; r; tÞ; ð14:13Þ

where vpeðtÞ is related to the pulse-echo wavelet generated by the transducer,
hpeðrtr; r; tÞ is the pulse-echo spatial impulse response of the transducer and fmðrÞ
is the spatially varying reflectivity of the medium.2

2 Equation 14.13 can actually be derived from direct first-order simplifications of the wave
equation which are not presented here for brevity. The interested reader may refer to Jensen
(1990).
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For point-like transducers and at large measurement distances such that
jrtrj � jrj, hpeðrtr; r; tÞ / dðt � 2jrtr � rj=c0Þ. This allows Eq. (14.13) to be
written as

pðt; rtrÞ /
Z

drfmðrÞvpeðt � 2jrtr � rj=c0Þ: ð14:14Þ

Norton and Linzer (Norton and Linzer 1979a, b) proposed to collect pulse echo
data in a circle of radius R, i.e., rtr ¼ ðR cos h;R sin hÞ with h 2 ½0; 2p�. It was
proposed that images of fmðrÞ could be generated by using the backpropagation
operation3

f̂ ðrÞ ¼
Z 2p

0
dhpð2jrtr � rj=c0; rtrÞ: ð14:15Þ

The formulation by Norton and Linzer assumes that propagation paths are straight
lines. As discussed in Sect. 14.2.2, this will not be the case when propagating in
inhomogeneous media. Bent ray paths derived from sound speed tomograms have
been proposed to improve the backpropagation operation in Eq. (14.15) (Ashfaq
and Ermert 2007; Schmidt et al. 2011; Koch et al. 2012).

14.2.4 Results and Limitations

Experimental imaging systems that utilize ray-based approaches to construct
acoustic tomograms of sound speed and acoustic attenuation from tissues have
been built over the decades. Several systems were built in the late 1970s and early
1980s to obtain clinical acoustic tomograms of human breasts (Glover 1977;
Carson et al. 1981; Greenleaf and Bahn 1981; Schreiman et al. 1984). One
example of a currently available system is CURE, developed at the Karmanos
Cancer Institute (Duric et al. 2005). Both straight-ray (Duric et al. 2007) and
refraction-corrected (Li et al. 2009) acoustic tomography have been implemented
in this system. The CURE system provides images of speed of sound, attenuation,
and reflectivity. Another example is the HUTT system, developed by researchers
from the University of Southern California (Jeong et al. 2005, 2008, 2009). This
system uses ray-based tomography to reconstruct images of attenuation coeffi-
cients at different frequencies. Image fusion methods are used to combine the
different tomograms into 3D volumes for improved diagnostic capabilities. In
laboratory environments, the 3D-USCT systems developed at the Karlsruhe
Institute of Technology use transducers arranged in a 2D cylindrical aperture.

3 This approach is in fact a synthetic aperture reconstruction method (Soumekh 1999) equivalent
to the delay-and-sum algorithm. A commonly used variation is to perform the backpropagation
operation using envelope-detected data, which results in a spatial compounding reconstruction
method (Trahey et al. 1986).
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Using ray-based theory, tomograms of sound speed and reflectivity have been
constructed (Gemmeke and Ruiter 2007; Jirík et al. 2012).

Ray-based tomography has also been proposed to reconstruct images of
parameters other than sound speed, acoustic attenuation and reflectivity. For
example, Zhang et al. proposed to reconstruct tomograms of the acoustic nonlinear
parameter from measurements of second harmonic amplitude (Zhang and Gong
1999) and nonlinear interaction of waves at two different frequencies (Zhang et al.
2001).

Despite its successful experimental implementation, ray-based ultrasonic
tomography has usually been met with partial skepticism due to the simplified
physical model used to reconstruct the acoustic tomograms. Refraction is a
dominant mechanism when imaging large objects compared to the wavelength, but
diffraction needs to be considered when the size of scattering structures are on the
order of the wavelength. Simulation studies suggest that even after refraction
correction, ray-based tomography can only produce quantitatively accurate
reconstructions of structures that are larger than a few wavelengths (i.e., 2–5
wavelengths) (Quan and Huang 2007). This limitation has also been observed with
experimental data (Leach Jr. et al. 2002). Therefore, attention shifted in the early
1980s to methods that provide sub-wavelength resolution by taking diffraction into
account.

14.3 Diffraction Tomography

Although diffraction tomography was formally introduced to the acoustic imaging
community by Mueller et al. in the late 1970s (Mueller et al. 1979, Mueller 1980),
the theoretical foundation for diffraction tomography was available in the literature
prior to the development of ray-based acoustic tomography. In his seminal work
on optical imaging back in 1969 (Wolf 1969), Emil Wolf outlined a method to
reconstruct three-dimensional distributions of refractive index using measurements
of scattered data. For the case of constant density, the wave equation in (14.1) can
be written as

r2pðrÞ þ k2
0pðrÞ ¼ �/incðrÞ � Oðk; rÞpðrÞ; ð14:16Þ

where Oðk; rÞ ¼ ðk2 � k2
0Þ is the scattering potential function. Equation (14.16)

can be written in terms of the Green’s function G0ðrÞ corresponding to k0 as

pscðrÞ ¼ pðrÞ � pincðrÞ ¼
Z

X
dr0Oðk; r0Þpðr0ÞG0ðr; r0Þ; ð14:17Þ

where pscðrÞ is the scattered pressure field, pincðrÞ is the incident pressure field
caused by the sources /incðrÞ, and X is the region occupied by the object to be
imaged.
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14.3.1 The First-Order Born Approximation and the Fourier
Diffraction Theorem

As in the case of refraction-corrected tomography, (14.17) is a nonlinear equation
of the function Oðk; rÞ to be imaged because pðr0Þ depends on the scattering
potential function. In order to obtain a closed-form, tractable solution, Wolf (1969)
invoked the first-order Born approximation to write Eq. (14.17) as

psc
BornðrÞ ¼

Z
X

dr0Oðk; r0Þpincðr0ÞG0ðr; r0Þ: ð14:18Þ

The results in Wolf (1969) were developed by Wolf using plane wave illumination
and the plane wave decomposition of the 3D Green’s function. The derivation
provided here corresponds to the 2D case depicted in Fig. 14.3 and is presented
with more details in Kak and Slaney (2001). The plane wave travels in the
direction of the unit vector ŝ0. The receivers are placed at locations rr over a line
g ¼ l0 perpendicular to ŝ0. Under the first order Born approximation, the scattered
field at locations rr can be written as

psc
BornðrrÞ ¼

Z
X

dr0Oðk; r0Þejk0 ŝ0�r0 j

4
Hð1Þ0 ðk0jr� r0jÞ ð14:19Þ

where Hð1Þ0 ð�Þ is the zero-order Hankel function of the first kind. Using the plane
wave decomposition of the Hankel function (Chew 1995) results in

psc
Bornðn;/0Þ ¼

Z
X

dr0Oðk; r0Þejk0g0 j

4p

Z 1
�1

da
1
b

ej½aðn�n0Þþbjl0�g0 j�; ð14:20Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � a2
p

. Rearranging terms and using the fact that l0 [ g0, 8r0 2 X
results in

Fig. 14.3 Diffraction
tomography using plane wave
illumination and point
receivers. The plane wave
travels in the direction of the
unit vector ŝ0. The receivers
are placed at locations rr over
a line g ¼ l0 perpendicular to
ŝ0. The scattering object
occupies the region of space
X
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psc
Bornðn;/0Þ ¼

j

4p

Z 1
�1

da
1
b

ejðavþbl0Þ �Oðk; k0 ½̂sðaÞ � ŝ0�Þ; ð14:21Þ

ŝðaÞ ¼ a
k0

n̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � a2
p

k0
ĝ; ð14:22Þ

where �Oðk; uÞ is the 2D Fourier transform of Oðk; rÞ. From Eq. (14.21), the 1D
spatial Fourier transform of psc

Bornðn;/0Þ is given by

Psc
Bornðj;/0Þ ¼

Z 1
�1

dn psc
Bornðn;/0Þe�jjn ¼ j

2
ejcl0

c
�Oðk; k0 ½̂sðjÞ � ŝ0�Þ; ð14:23Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � j2
p

. From Eq. (14.23) one can observe that the 1D Fourier
transform of the measured scattered pressure field is related to samples of the 2D
Fourier transform of the scattering potential function (see Fig. 14.4). Further, these
2D Fourier samples lie along semi-circular arcs of radius k0 whose centers in turn
lie on a circle of radius k0 centered at the origin of the 2D k-space. Therefore, by
using different transmitter/receiver combinations one can sample a disk of radiusffiffiffi

2
p

k0 in 2D k-space. By placing additional receiver lines at g ¼ �l0 one can
readily measure in k-space full circles instead of semi-circular arcs per transmitted
plane wave, effectively increasing the k-space coverage to a circle of radius 2k0.
This fundamental result is termed the Fourier diffraction theorem, and was quickly
acknowledged to be a generalization of the Fourier slice theorem (that applies to
non-diffracting tomographic imaging) to the case of imaging with diffracting
sources. One can also show that for a circular array of receivers with large radius

Fig. 14.4 k-space coverage of first order Born diffraction tomography. Scattered field data are
related to the 2D Fourier transform of OðrÞ at spatial frequencies k ¼ k0ðŝ� ŝ0Þ. Using scattered
field measurements at g ¼ l0 (blue) and g ¼ �l0 (red) provides samples over a full circle of
radius k0 centered at �k0 ŝ0

14 Methods for Forward and Inverse Scattering in Ultrasound Tomography 355



such that measurements are collected in the far field, the actual values of psc
BornðrrÞ

are proportional to �Oðk; k0½r̂r � ŝ0�Þ with r̂r the unit vector in the direction of rr

(Naidu et al. 1995).

14.3.2 The First-Order Rytov Approximation

The first-order Born approximation is not the only way to linearize the wave
equation. In particular, the first-order Rytov approximation was also applied to
obtain analytical solutions to the wave inversion problem (Iwata and Nagata 1975;
Devaney 1981; Kak and Slaney 2001). If the total pressure field is written as
pðrÞ ¼ expðUðrÞÞ, then Eq. (14.3) can be written as

r2UðrÞ þ k2
0 ¼ �Oðk; rÞ � jrUðrÞj2: ð14:24Þ

Further, if the total complex phase is rewritten as UðrÞ ¼ UincðrÞ þ UDðrÞ with
pincðrÞ ¼ expðUincðrÞÞ, Eq. (14.24) can be written as

r2UDðrÞ þ 2rUincðrÞ � rUDðrÞ ¼ �Oðk; rÞ � jrUðrÞj2: ð14:25Þ

Using the fact that r2pincðrÞ ¼ �k2
0pincðrÞ, it can be shown that

r2ðpincðrÞUDðrÞÞ ¼ pincðrÞ r2UDðrÞ þ 2rUDðrÞ � UincðrÞ � k2
0U

DðrÞ
� �

:

ð14:26Þ

Combining Eqs. (14.25) and (14.26) results in

r2ðpincðrÞUDðrÞÞ þ k2
0pincðrÞUDðrÞ ¼ �pincðrÞ Oðk; rÞ � jrUðrÞj2

� �
: ð14:27Þ

Equation (14.27) can be written in integral form as

pincðrÞUDðrÞ ¼
Z

X
dr0pincðr0Þ Oðk; r0Þ � jrUðr0Þj2

� �
G0ðr; r0Þ: ð14:28Þ

Up to this point, no simplifications have been made. If Oðk; rÞ � jrUðrÞj2, then
the complex excess phase can be approximated as

UD
RytovðrÞ ¼

1

pincðrÞ0
Z

X
dr0pincðrÞOðk; r0ÞG0ðr; r0Þ ¼

psc
BornðrrÞ
pincðrÞ ð14:29Þ

Equation (14.29) implies that the Fourier diffraction theorem can also be used to
reconstruct tomograms from measurements of the pressure field phase. Therefore,
diffraction tomography under either the first-order Born or Rytov approximations
can be used to reconstruct images of sound speed and acoustic attenuation by
mapping measurements of scattered fields to k-space samples of the scattering
potential function.
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14.3.3 Multi-Frequency Diffraction Tomography

In order to reconstruct an N-dimensional object, N degrees of freedom in the
measurements are needed. Conventional diffraction tomography exploits three
degrees of freedom (i.e., transmitter position and two angular orientations between
transmitter and receivers) to reconstruct 3D imaging targets. However, frequency
diversity can also be exploited as a degree of freedom. For a fixed transmitter/
receiver pair location, changing the angular frequency of the incident field will
provide a different sample of the scattering potential function in k-space. This was
exploited by Kenue and Greenleaf (1982) in order to increase k-space coverage
when a limited number of transmitter/receiver locations is allowed. Other
researchers exploited frequency diversity more aggressively by using bistatic
scanning configurations (i.e., a fixed angular separation between transmitter and
receiver) with broadband transducers (Norton 1983).

14.3.4 Frequency-Domain Interpolation Methods

Diffraction tomography under the Born and Rytov approximations provided an
elegant solution to the wave inversion problem. The most direct approach for
reconstructing tomograms under first order scattering assumptions is to use the
Fourier diffraction theorem to obtain samples of the 2D Fourier transform of the
scattering potential function. In order to reconstruct images of the scattering
potential function on a Cartesian grid, samples of �Oðk; uÞ distributed on a Carte-
sian grid in k-space are needed. Therefore, the use of interpolation methods is
required given that measurements of scattered fields provide Fourier samples in
circular arcs as described in Sect. 14.3.1. Frequency-domain interpolation was one
of the first algorithms proposed for acoustic diffraction tomography (Mueller et al.
1979). Pan and Kak reported that good results in terms of reconstruction quality
can be obtained by using bilinear interpolation after increasing sampling density
using zero-padding (Pan and Kak 1983). The unified Fourier reconstruction (UFR)
method performs the frequency-domain interpolation exploiting the limited spatial
support of the scattering potential function (Kaveh et al. 1984; Soumekh 1988).

14.3.5 The Filtered Backprojection Method

The filtered backpropagation algorithm was proposed by Devaney as the analo-
gous of filtered backprojection when imaging with diffracting sources (Devaney
1982). Consider the case depicted in Fig. 14.3. From the results in Sect. 14.3.1, the
scattering potential function can be reconstructed from its Fourier components
using
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Obpðk; rÞ ¼ 1

ð2pÞ2
Z
jkj\

ffiffi
2
p

k0

dk�ObpðkÞejk�r; ð14:30Þ

k ¼ k0ðŝ� ŝ0Þ; ð14:31Þ

where ObpðrÞ ¼ �Oðk; rÞ=k2
0 and �Obp is the spatial Fourier transform of Obp.

Introducing v such that ŝ ¼ cos v; sin vð Þ, Eq. (14.30) can be rewritten as

ObpðrÞ ¼ k2
0

2ð2pÞ2
Z p

�p
d/0

Z p

�p
dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ðv� /0Þ

p
�ObpðkÞejk�r: ð14:32Þ

The integral in v can be written in terms of j by noticing that in the n̂� ĝ
frame, cos v ¼ j=k0 (j 2 ½�k0; k0�) and /0 ¼ p=2. As a result,

ObpðrÞ ¼ k0

2ð2pÞ2
Z p

�p
d/0

Z k0

�k0

dj
jjj
c

�ObpðkÞejk�r: ð14:33Þ

Using the Fourier diffraction theorem in (14.23), Eq. (14.33) can be written as

ObpðrÞ ¼ 1

ð2pÞ2
Z p

�p
d/0

Z k0

�k0

djjjj�Gðj; gÞ�Cðj;/0Þejjn; ð14:34Þ

�Cðj;/0Þ ¼
j

k0
e�jk0l0 Psc

Born ðj;/0Þ; ð14:35Þ

�Gðj; gÞ ¼ ejðc�k0Þðg�l0Þ: ð14:36Þ

According to Eq. (14.34), the scattering potential function can be reconstructed
using a modified filtered backprojection algorithm. The modification consists of
including an additional filter �Gðj; gÞ prior to backpropagating the measured
scattered pressure data. Also, the angular integration uses angles in [�p; p] as
opposed to [0, p] in Eq. (14.9).

The need for depth-dependent filtering causes the filtered backpropagation method
to be more computationally expensive than its filtered backprojection counterpart.
Further, early studies found that Fourier interpolation methods were able to produce
images of comparable quality but reduced computational cost when compared to
filtered backpropagation (Pan and Kak 1983). In order to reduce the computational cost
of the method, Devaney proposed an approximate solution that consisted of replacing
the backpropagation filter �Gðj; gÞ with �Gðj; g0 ¼ x0 cos /0 þ y0 sin /0Þ, where
ðx0; y0Þ are the coordinates of the center of the region where good image quality
is desired (Devaney 1983). Therefore, the modified filtered backpropagation
method enables a reduction of computational cost at the expense of image quality.

Other variations of the filtered backpropagation method were later developed.
In particular, the hybrid filtered backpropagation method by Sponheim et al.
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preserved the essence of the original filtered backpropagation method while
allowing the use of data from a circular array of receivers and better handling
Rytov data for image reconstruction (Sponheim et al. 1991, 1994).

14.3.6 Algebraic Reconstruction Methods

Diffraction tomography as described in Sect. 14.3.1 was developed assuming
plane wave illumination and receivers arranged in a straight line. These are very
restrictive conditions, and therefore algorithms were later developed to handle
more complex incident fields and receiver apertures (Devaney and Beylkin 1984;
Devaney 1985; Gelius et al. 1991; Anastasio and Pan 2003). A particular approach
to handle more general imaging configurations consisted of casting the linearized
wave equation in (14.18) as a matrix equation. This approach allows the use of
algebraic methods to solve the diffraction tomography problem (Devaney 1986;
Ladas and Devaney 1991). An additional benefit of using algebraic methods is the
possibility of incorporating a priori information about the scattering potential
function during the reconstruction process. These approaches are usually simpli-
fied versions of methods for the inversion of the full integral wave equation, which
will be discussed in Sect. 14.4.

14.3.7 Advantages and Limitations

The most significant advantage of diffraction tomography is its spatial resolution.
If the scattered pressure is measured with full angular coverage on reception (i.e.,
transmitters and receivers distributed over a fully enclosed surface) the k-space can
be fully covered within a sphere of radius 2k0. Therefore, the achievable spatial
resolution is approximately k=2 and as a result diffraction tomography is expected
to produce tomograms with better spatial resolution than ray-based acoustic
tomography. Diffraction tomography methods were also developed to reconstruct
images of parameters other than sound speed and acoustic attenuation. Examples
include density imaging (Devaney 1985; Moghaddam and Chew 1993; Mensah
and Lefebvre 1997; Anastasio et al. 2005) and acoustic nonlinear parameter (Kai
et al. 1992).

However, the main limitation of diffraction tomography is its convergence
properties. Given that diffraction tomography is based on approximate expressions
of the full wave equation, it is expected to provide accurate quantitative images
only under weakly scattering conditions. The convergence of diffraction tomog-
raphy was analyzed in detail in the early 1980s (Slaney et al. 1984; Robinson and
Greenleaf 1986). Different convergence behavior was found depending on whether
the first order Born or Rytov approximations were used to linearize the wave
equation.
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For the first order Born approximation it is required that pscj j 	 pinc
		 		 within

the imaging target. A somewhat equivalent condition was adopted by Slaney et al.
(Slaney et al. 1984) regarding the quantity D/, which represents the maximum
phase change that the incident field suffers when propagating through an inho-
mogeneity. Slaney et al. found through simulations that diffraction tomography
based on the first order Born approximation breaks down as jD/j ! 0:8p. This
bound was consistent with the expectation of the first order Born approximation
breaking down for jD/j 
 p (Iwata and Nagata 1975; Slaney et al. 1984). An
example of the degradation of reconstruction quality with increasing D/ values is
given in Fig. 14.5.

The first order Rytov approximation is derived under the assumption that

jrUj2 	 k2
0 maxðc=c0 � 1Þ (Slaney et al. 1984; Tsihrintzis and Devaney 2000).

Unlike the Born approximation, the Rytov approximation imposes no restriction
on the size of the scatterer, and therefore it is usually valid for a wider class of
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Fig. 14.5 Diffraction tomography under the first order Born approximation. The imaging targets
are circular cylinders of radius 5k and D/ values of (a) 0.25p, (b) 0.5p, (c) p, and (d) 2p. Radial
profiles corresponding to the ideal (solid lines) and reconstructed (dash lines) sound speed images
are shown
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imaging targets. However, inversions using the Rytov approximation suffer from
phase wrapping problems caused when estimating U from measurements of the
scattered pressure data. Tomograms obtained with the Rytov approximation are
usually of better quality than the ones obtained with the Born approximation, but
phase wrapping causes a sudden and catastrophic failure in the inversion (Slaney
et al. 1984; Robinson and Greenleaf 1986). Phase unwrapping algorithms have
been proposed in order to improve the performance of Rytov-based methods
(Kaveh et al. 1984; Wedberg and Stamnes 1995) but only with limited success.

Therefore, just like for the case of ray-based acoustic tomography, diffraction
tomography is better suited for imaging regions composed exclusively by soft
tissues. However, unlike the case of ray-based tomography, non-convergence of
diffraction tomography may lead to unusable tomograms due to the distortion of
the underlying structures in the image (Robinson and Greenleaf 1986).

Several researchers have studied methods to extend the region of convergence
of diffraction tomography. A particular approach is to use a non-uniform back-
ground that accounts for large structures of the imaging target when linearizing the
wave equation. If both the incident field and Green’s function can be calculated for
such a background, then diffraction tomography can be used to image the fine
details of the object. A gross estimate of the scattering potential function can be
obtained from ray-based tomography. In order to retain the mathematical sim-
plicity of diffraction tomography, researchers have proposed to modify both the
free-space incident field and Green’s function by using time delays that model the
time-of-flight difference between the homogeneous and inhomogeneous back-
grounds. This approach has been explored with the delays calculated using straight
and refracted ray theory, and interesting results can be found in the literature
(Gelius et al. 1991; Mast 1999; Astheimer and Waag 2008).

However, the limitations of diffraction tomography caused the attention of the
research community to shift towards approaches that invert the full wave equation
and therefore account for refraction, diffraction, and multiple scattering.

14.4 Full Wave Inversion Methods

The pioneering studies on full acoustic wave inversion were conducted almost
simultaneously with the development of ultrasonic diffraction tomography. It was
during the early 1980s that initial reports of methods designed to invert the wave
equation were reported. These methods have a much higher computational cost
than diffraction tomography approaches, and were therefore not widely explored
until continued reports of the limitations of single-scattering tomography were
made available.

14 Methods for Forward and Inverse Scattering in Ultrasound Tomography 361



14.4.1 The Alternating Variables Method

Diffraction tomography under the first-order Born approximation will fail if the
condition pðrÞ � pincðrÞ is not met. If one were to exactly know the total pressure
field pðrÞ inside the imaging target, then the Born approximation would not be
needed and the scattering potential function could be determined. In a seminal
series of articles (Johnson and Tracy 1983; Tracy and Johnson 1993), Johnson
et al. (1984) provided full details on an algorithm designed for the simultaneous
estimation of pðrÞ and Oðk; rÞ. This method is known as the alternating variables
algorithm, and is also known as the iterative Born method in the microwave
imaging community (Wang and Chew 1989).

To illustrate the alternating variables method, it is convenient to express the
integral wave equation (14.17) in operator notation as

pincðr; rtÞ ¼ pðr; rtÞ �
Z

X
dr0 Oðk; r0Þpðr0; rtÞG0ðr; r0Þ

¼ pðr; rtÞ � GOpðr; rtÞ
ð14:37Þ

in which the total and incident pressures are explicit functions of rt 2 Xt for some
set Xt characterizing a variety of incident fields. Equation (14.37) is called the
forward problem, and solutions to the forward problem for distinct sources cor-
responding to unique points rt are independent. The operator G characterizes
interactions among points within the scattering domain X and, in practice, is
usually well conditioned.

For a known total field pðr; rtÞ, the scattered field observed at some observation
location rr 2 Xr may be written

pscðrr; rtÞ ¼
Z

X
dr G0ðrr; rÞpðr; rtÞOðk; rÞ ¼ GrOpðrr; rtÞ: ð14:38Þ

The operator Gr maps the total field within the domain X to an observed scattered
field within the set Xr. Gr may be inverted to compute the scattering potential O if
the total pressure p within X is known. Unlike in the forward problem, the inverse
problem is ill-posed and is rarely well determined. A generalized solution to the
inverse problem (14.38) is given by

Oðk; rÞ ¼ arg min
O2L2ðXÞ

Z
Xr

drr

Z
Xt

drt pscðrr; rtÞ � GrOpðrr; rtÞð Þ2: ð14:39Þ

The alternating variables algorithm consists of iterating through the following
steps: (1) calculate the total field p using Eq. (14.37) and an estimate of O, (2)
calculate O using Eq. (14.39) and the current estimate of p, and (3) repeat steps
(1)–(2) until O does not change significantly between consecutive iterations.
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14.4.1.1 Variable Density Case

Consider the wave equation in (14.1). By applying the change of variables pðrÞ ¼
f ðrÞq1=2ðrÞ (Johnson et al. 1982; Pourjavid and Tretiak 1992), Eq. (14.1) can be
rewritten in integral form as

f ðrÞ ¼ f incðrÞ þ
Z

X
dr0Oqðk; r0Þf ðr0ÞG0ðr; r0Þ; ð14:40Þ

where Oqðk; rÞ is given by

Oqðk; r0Þ ¼ k2ðrÞ � k2
0


 �
� q1=2ðrÞr2q�1=2ðrÞ: ð14:41Þ

By comparing Eqs. (14.17) and (14.40), it is clear the only difference between
the constant and variable density cases is the form of the scattering potential
function. Therefore, the alternating variables algorithm can be used to reconstruct
tomograms of Oqðk; rÞ. If one assumes a non-dispersive medium for which
k2ðrÞ � k2

0


 �
scales as x2, the term F q ¼ q1=2ðrÞr2q�1=2ðrÞ can be isolated from

the algebraic combination of reconstructions of Oqðk; rÞ at two or more frequen-
cies.4 Density tomograms can be constructed by solving the differential equation

r2uðrÞ � F qðrÞuðrÞ ¼ F qðrÞ; r 2 X

uðrÞ ¼ 0; r 62 X
ð14:42Þ

with uðrÞ ¼ q�1=2
r ðrÞ � 1


 �
. This approach for density imaging using the alter-

nating variables algorithm was proposed in (Berggren et al. 1986).

14.4.1.2 Convergence

This algorithm was extensively studied by Cavicchi et al. in the late 1980s. Initial
results showed that the alternating variables algorithm could provide improved
results in terms of reconstruction error when compared to diffraction tomography
based on the first-order Born approximation (Cavicchi et al. 1988). However, it
was found that the alternating variables algorithm suffered from divergence when
D/j j 
 p (Cavicchi and O’Brien, Jr. 1989), which is only marginally better than

the D/j j ! 0:8p condition found for first-order Born diffraction tomography in
(Slaney et al. 1984).

4 Density information from dispersive media can also be isolated from Oqðk; rÞ profiles at
different frequencies if the dispersion can be properly modeled as a function of x.
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14.4.2 Newton-Type Methods

The shortcomings of the alternating variables approach are caused by the nonlin-
earity of the inverse problem as a function of the total pressure. The solution to the
wave equation is unique, but inverse scattering is generally ill-posed (Colton et al.
2000). The ill-posed nature of the acoustic tomography problem becomes more
problematic for moderate to large complex wave number contrast with respect to
the background. Therefore, the key to improving the convergence of the inverse
scattering problem is to update not only the scattering potential function and total
pressure field, but also the background and its corresponding Green’s function.

Iterative updates of a background contrast profile were explored for electro-
magnetic inverse scattering by Chew and Wang (1990) and the approach was
termed the distorted Born iterative method (DBIM). For acoustic tomography,
Borup et al. (Borup et al. 1992) independently developed an inversion method
based on Newton-type iterations. Both the distorted Born and Newton-type
approaches have been found to be exactly equivalent (Remis and van den Berg
2000). Due to its more intuitive nature, the DBIM approach will be presented here.

Although a homogeneous background k0 was used to write the integral wave
equation in Sect. 14.3.1, one can use any inhomogeneous function kbðrÞ to char-
acterize the acoustic background. Therefore, the integral wave equation can be
written

pðr; rt; kÞ � pðr; rt; kbÞ ¼
Z

X
dr0 DOðr0Þpðr0; rt; kÞGbðr; r0Þ; ð14:43Þ

where pðr; rt; kÞ is the total pressure field produced by a source characterized by rt

in a medium with wave number k, DOðrÞ ¼ Oðk; rÞ � Oðkb; rÞ, and Gb is an
inhomogeneous Green’s function that characterizes the response of a point source
in the presence of the background. A first-order Born approximation can be
applied to linearize Eq. (14.43), which yields

Dpscðr; rtÞ ¼ pscðr; rt; kÞ � pscðr; rt; kbÞ ¼ pðr; rt; kÞ � pðr; rt; kbÞ

�
Z

X
dr0 DOðr0Þpðr0; rt; kbÞGbðr; r0Þ ¼ GbDOpðr; rtÞ;

ð14:44Þ

in which pscðr; rt; kÞ ¼ pðr; rt; kÞ � pincðr; rtÞ is the scattered field relative to a
homogeneous background with wave number k0. This approach has been termed
the distorted-wave Born approximation (Devaney and Oristaglio 1983) and was
proposed as a tool for introducing prior knowledge about the scattering strength
function into diffraction tomography.

Just as with Eq. (14.38), it is possible to invert Eq. (14.44) to obtain DO pro-
vided that the total field p is known throughout X. Because psc and, therefore, Dpsc

are generally observed on a set Xr that is distinct from X, a generalized solution
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DOðrÞ ¼ arg min
DO2L2ðXÞ

Z
Xr

drr

Z
Xt

drt Dpscðr; rtÞ � GbDOpðrr; rtÞð Þ2 ð14:45Þ

must be sought. The DBIM consists of iterating through the following steps:
(1) calculate p using Eq. (14.37) and a current estimate of kb, (2) calculate the
scattered field corresponding to kb using Eq. (14.38), (3) compute Dpsc by sub-
tracting the measured scattered field from the result of step (2), (4) estimate DO
using Eq. (14.45), (5) update kb  kb þ DO, (6) repeat steps (1)–(5) until the L2

norm of DO drops below a specified threshold, (7) set k ¼ kb:
Given a background kb, it is possible to numerically compute the Green’s

function Gb and, therefore, the operator Gb. However, it is often preferable to avoid
explicit construction of the Green’s operator Gb in favor of a representation that
describes the DBIM in terms of solutions of homogeneous, rather than inhomo-
geneous, scattering problems. From Eq. (14.44), is is possible to represent the
inverse problem in the form (Borup et al. 1992)

Dpscðrr; rtÞ ¼ FDOðrr; rtÞ; ð14:46Þ

where F is the Fréchet derivative of the scattering operator Gr in Eq. (14.38)
(Ghosh Roy et al. 2007). For iterative solutions of Eq. (14.46), it is not required to
explicitly invert F , but rather to repeatedly compute products of F (and, generally,
Fy) with test solutions. The product of F with some test solution DO can be shown
to be equivalent to (Hesford and Chew 2010)

FDOðrr; rtÞ ¼ Gr O 1� Gð Þ�1G þ 1
h i

DOpðrr; rtÞ; ð14:47Þ

where p ¼ pðr; rt; kbÞ and O ¼ Oðkb; rÞ correspond to the background medium
with wave number kb and Gr and G are the free-space Green’s operators in
Eqs. (14.37) and (14.38), respectively. Similarly, the adjoint Fréchet derivative
product is equivalent to

FyYðrÞ ¼
Z

Xt

drt pðr; rt; kbÞ 1� GOð Þ�1 GyrY�

 �

ðr; rtÞ
� �

; ð14:48Þ

in which ð�Þ� denotes complex conjugation. Therefore, it is possible to invert
Eq. (14.46) without explicit knowledge of an inhomogeneous background Green’s
function Gb. This operation can be made efficient provided that solutions of the

forward problem, represented by the operators ð1� GÞ�1 and ð1� GOÞ�1, and
products of the operators G and Gr can be computed efficiently. This topic will be
discussed more thoroughly in Sect. 14.5.
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14.4.2.1 Convergence and Frequency-Hopping Approach

The DBIM also suffers from divergence if the initial guess is far from the true
solution such that approximately D/ðkÞ � D/ðk0

bÞ
		 		[ p, where D/ðkÞ and D/ðk0

bÞ
are the maximum excess phases for the true and initial guess wave number pro-
files. However, this condition is less restrictive than the condition corresponding to
the alternating variables algorithm. Therefore, the DBIM can provide an extended
convergence region if a good initial guess is available. The simplest scheme is the
frequency-hopping approach, i.e., the sequential use of multiple frequency data,
processing first the low frequency data to achieve convergence and then the high
frequency data to refine the spatial resolution of the resulting tomograms (Kim
et al. 1987; Borup et al. 1992; Chew and Lin 1995; Haddadin and Ebbini 1998;
Lavarello and Oelze 2008). An example taken from (Lavarello and Oelze 2008)
is shown in Fig. 14.6, where DBIM and frequency hopping were used to
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Fig. 14.6 (a) Experimental DBIM reconstructions of a balloon phantom containing a saline
solution. In the frequency-hopping reconstruction, both 0:64- and 1:2-MHz data were used to
produce an image ((b) reconstruction using 0.64-MHz data only, (c) reconstruction using 1.2-
MHz data only, and (d) reconstruction using 0.64-MHz data initially followed by 1.2-MHz data).
Results show the actual profile of the model and reconstructions using both ideal (computed) and
measured data. Adapted from Lavarello and Oelze (2008)
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reconstruct the cross-section of a cylindrical rubber balloon filled with a saline
solution.5 The low frequency (0.64 MHz, D/ ¼ 0:85p) data reconstruction
exhibits limited spatial resolution, whereas the high frequency (1.2 MHz,
D/ ¼ 1:6p) reconstruction diverged from the expected sound speed profile. The
use of frequency hopping resulted in a convergent sound speed tomogram with
improved resolution with respect to the low frequency reconstruction.

14.4.3 Conjugate Gradient Methods

An alternative way to invert the full wave equation is to use conjugate gradient
approaches. This approach was studied in the early 1990s by researchers in the
electromagnetics community (Kleinman and van den Berg 1992; Harada et al.
1995; Lobel et al. 1997). Conjugate gradient approaches have been used in UCT as
well. Zhang et al. studied the performance of different methods to estimate the
conjugate gradient directions (Zhang et al. 2004) as well as regularization methods
for improved robustness (Zhang et al. 2002). Wiskin et al. (2007) have success-
fully demonstrated the application of the conjugate gradient method for obtaining
clinical ultrasonic tomograms.

The conjugate gradient method consists of iterating through the equations

�O
ðnþ1Þ ¼ �O

ðnþ1Þ þ an
�dðnÞ ð14:49Þ

�d
ðnþ1Þ ¼ ��gðnþ1Þ þ bn

�d
ðnÞ
; ð14:50Þ

where �O and �g are vector representations of the scattering potential function and
the Fréchet derivative of the residual minimized in Eq. (14.39), respectively,6 �d is
a vector pointing in the search direction, and a and b are scalar parameters.
Numerical methods for calculating �d, a and b are discussed in (Wiskin et al. 2007).

A notable variation of the conjugate gradient method is the contrast source
inversion (CSI) method, developed by van den Berg and Kleinman (van den Berg
and Kleinman 1997). The residual R to be minimized in the CSI approach is given by

R ¼
R

Xt
drt

R
Xr

drr pscðrr; rtÞ � Grwðrr; rtÞð Þ2R
Xt

drt

R
Xr

drr pscðrr; rtÞð Þ2

þ
R

Xt
drt

R
X dr wincðr; rtÞ � wðr; rtÞ þ OGwðr; rtÞ


 �2

R
Xt

drt

R
X dr wincðr; rtÞð Þ2

ð14:51Þ

5 In general, distortions may arise when reconstructing cross-sections of non-cylindrical objects
using 2D data. The interested reader may refer to (Lavarello and Oelze 2009; Duncan et al. 2009).
6 See Sect. 14.5 for a discussion on the discretization of the wave equation.
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where w ¼ Op and winc ¼ Opinc. More recent versions of the technique, such as
the multiplicative regularized contrast source inversion method (van den Berg
et al. 1999; Pelekanos et al. 2003), added further robustness to the original CSI
formulation.

14.4.4 Kaczmarz-Like Inverse Scattering

In the early days of X-ray tomography, algebraic methods were also studied for
constructing tomograms. Even though the X-ray CT imaging problem is linear, the
limited computing resources available at the time made it necessary to use iterative
methods for matrix inversion. The algebraic reconstruction technique (ART)
(Gordon 1974), one of the most celebrated iterative methods for the inversion of
the Radon transform, is based on Kaczmarz’s method. In short, Kaczmarz’s
method successively refines a current estimate of the solution by performing
orthogonal projections on the hyper-planes corresponding to the equations given
by each row of the matrix operator. If the system R � �f ¼ �g is to be inverted,
starting from an initial guess �f0 an updated solution �xðnÞ is calculated as

�f
ðnÞ ¼ �f

ðn�1Þ þ b
�gm � Rm � �f

ðn�1Þ

Rm � R H
m

R H
m ; ð14:52Þ

where �gm and Rm are the m-th entry of the measurement vector �g and the m-th row
of the matrix R, respectively, and b is a relaxation factor. This is a row-action
method because only one row of the matrix equation is used at a time. Similar
methods for inverse scattering that avoid constructing the Fréchet derivative
matrix are therefore of potential benefit for ultrasonic tomography.

14.4.4.1 The Propagation-Backpropagation Method

Natterer and Wübbeling (Natterer and Wübbeling 1995) proposed in 1995 a
method for inverse scattering that updated the scattering potential function using
scattered data from one transmission at a time. In essence, the method is a non-
linear version of Kaczmarz’s method. The imaging configuration corresponds to
Fig. 14.3, with the incident plane wave propagating with different direction vectors
hm ¼ ðcos hm; sin hmÞ. The wave equation in (14.2) is written in the form

r2uh þ k2
0ð1� f Þuhm ¼ 0 ð14:53Þ

uhm ¼ ejkhm�rð1þ vhmÞ: ð14:54Þ
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From Eq. (14.54) it can be derived that the scaled scattered field vhm for the m-th
transmission satisfies

r2vhm þ 2jk0hm � rvhm ¼ k2
0f ð1þ vhmÞ ð14:55Þ

for points inside the computational domain. In operator form, Eq. (14.55) can be
written as Rmðf Þ ¼ gm, where gm ¼ vhm at the receiver locations rr. This equation
indirectly represents the scattered pressure field as a nonlinear transformation of
the scattering potential function. The proposed algorithm, termed the propagation-
backpropagation method, consists of updating f as

f ðnÞ ¼ f ðn�1Þ þ xR0mð f ðn�1ÞÞ�C�1
m gm � Rmð f ðn�1ÞÞ
� �

; ð14:56Þ

where R0mðf Þ is the derivative of the operator Rmð f Þ, R0mð f Þ
� is the adjoint of

R0mð f Þ, and Cm ¼ R0mð f ÞR0mð f Þ
�.7

The operator Cm can be simplified considering the limit k0 !1 for which
Cm ! R0mð0ÞR0mð0Þ

� ¼ k2
0=qI and q is the radius of the reconstructed region

(Natterer 1997). In order to calculate the updates, R0mðf Þ
�g needs to be calculated.

This is performed indirectly by using the relationship

R0mð f Þ
�g ¼ k2

0 1þ v�hm

� �
z; ð14:57Þ

where z satisfies the differential equation

r2zþ 2jk0hm � rz ¼ k2
0 f �z: ð14:58Þ

The boundary conditions for both Eqs. (14.55) and (14.58) are given in (Natterer
and Wübbeling 1995). As a result, this method allows reconstruction of the
scattering potential function by successively solving two initial-value problems.
Both (14.55) and (14.58) were solved using five-point finite difference marching
schemes. A key detail of the actual marching implementations is that in order for
the recursion to be stable the condition h
 p=k0

ffiffiffiffiffiffiffiffiffiffiffi
1� f
p

has to be met, with h the
discretization step. Therefore, Natterer and Wübbeling suggested filtering high
spatial frequency components after each step of the iteration.

Finally, the propagation-backpropagation method has been reported to con-
verge as long as the initial guess f0 satisfies the heuristic rule j

R
ds ð f � f0Þj � k

(Natterer 2008). For low sound speed contrasts Dcr ¼ jc� c0j=c0, i.e., Dcr 	 1,
this convergence rule is equivalent to the one provided for DBIM in Sect. 14.4.2.

7 Direct algebraic manipulation reveals that, for the linear-operator case (i.e., Rmð f Þ ¼ Rm � �f),
(14.56) reduces to (14.52).
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14.4.4.2 Kaczmarz-Like DBIM

The fundamental principals of the propagation-backpropagation method can also
be applied to the DBIM to yield a Kaczmarz-like, round-robin scheme (Hesford
and Chew 2010). Rather than attempt to invert the entire Fréchet derivative to
arrive at an update to the background contrast, the round-robin scheme considers
only the portion of the Fréchet derivative constrained to a limited number of
source positions. The constrained Fréchet derivative problem will be severely
underdetermined. In this case, the problem must be solved in the minimum-norm
sense by forcing the solution to exist in the adjoint space of the Fréchet derivative.
Unlike the propagation-backpropagation method, the round-robin DBIM does not
require planar incident fields. Furthermore, the round-robin technique is readily
incorporated into existing DBIM solvers without requiring a reformulation of the
wave equation.

In analogy with frequency hopping, the round-robin technique attempts to avoid
local minima associated with the solution of a single, restricted inverse problem
(e.g., involving a single imaging frequency and a limited set of transmit angles) by
using a previously obtained solution as a starting guess for a subsequent inversion.
If local minima associated with distinct transmit angles do not coincide, a solution
stagnating in a local minimum for one transmit angle may move away from the
local minimum and toward the global minimum when the transmit angle is shifted.

14.4.5 Eigenfunction Methods

Eigenfunction methods for inverse scattering (Mast et al. 1997; Lin et al. 2000;
Waag et al. 2007) rely on eigenfunctions of the far-field operator

AðŝR; ŝTÞ ¼ lim
r!1

C
eik0r

rðd�1Þ=2
psðrR; ŝTÞ; ð14:59Þ

where C is an arbitrary constant, k0 is the wave number of a homogeneous
background material, ŝR and ŝT are points on the d-dimensional unit sphere X,
rR ¼ rŝR, and the scattered pressure ps is expressed as a function of the observation
point rR and the direction ŝT of an incident plane wave. Thus, the far-field operator
relates the angle ŝT of an incident plane wave to the far-field scattering behavior
observed at an angle ŝR.

For arbitrary focusing functions ui and uj, a measurement is defined as

Mji ¼ uj;Aui

� �
¼
Z

X
dŝR u�j ð�ŝRÞ

Z
X

dŝT AðŝR; ŝTÞuiðŝTÞ; ð14:60Þ

in which ð�Þ� represents complex conjugation. In the presence of an assumed
background with wave number kbðrÞ and corresponding contrast profile Ob, the
eigenfunction method is concerned with solving the differential far-field scattering
problem (Waag et al. 2007)
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Mji � uj;Abui

� �
¼ uj;ADui

� �
ð14:61Þ

for a differential update DO, where the far-field operator Ab corresponds to the
scattering behavior of Ob relative to the homogeneous background k0 and the far-
field operator AD corresponds to the scattering behavior of the unknown contrast
DO relative to Ob. The problem is regularized to ensure a unique solution by
minimizing

DOðrÞk k2
WR
¼
Z

V
dr DOðrÞj j2WRðrÞ; ð14:62Þ

where V contains the support of DO, for a suitable weighting function WR.
The unknown far-field operator AD may be written as

ADðŝR; ŝTÞ ¼
Z

V
dr Gf

bð̂sR; rÞDOðrÞpðr; ŝTÞ; ð14:63Þ

in which p is the acoustic pressure at a point r due to a plane wave incident from

an angle ŝT and Gf
b is a far-field representation of the Green’s function corre-

sponding to the background Ob and is, in analogy with Eq. (14.59), given by

Gf
bðŝR; rÞ ¼ lim

r!1
C

eik0r

rðd�1Þ=2
GbðrR; rÞ: ð14:64Þ

Thus, Eqs. (14.43) and (14.63) are equivalent when the former is restricted to
incident plane waves and far-field observations.

The differential scattering operation Eq. (14.43) that forms the basis of the
distorted Born iterative method may be generalized to transmission focusing with
an envelope function a and receive focusing with an envelope function b by
writing

Z
R

dr bðrÞsðrÞ ¼
Z

V
dr0

Z
R

dr bðrÞGbðr; r0Þ
� 

� DOðr0Þ
Z

T
drT aðrTÞpðr0; rTÞ

� 
;

ð14:65Þ

where the total acoustic pressure p is now expressed as an explicit function of the
source corresponding to a position rT in some transmission domain T and the point

r now exists in some measurement domain R. In the far-field limit, Gb ! Gf
b,

R ¼ X and r 7! ŝR. If only plane-wave incidence is considered, then T ¼ X and
rT 7! ŝT . When a ¼ ui and bðŝÞ ¼ u�j ð�ŝÞ, Eqs. (14.61) and (14.65) are equiva-
lent. The eigenfunction method employs a distorted Born approximation to line-
arize Eq. (14.61); therefore, the eigenfunction method is mathematically
equivalent to a DBIM that employs focused plane-wave transmissions and focused
far-field measurements.

The eigenfunction method is so named because artificial focusing envelopes ui

and uj are chosen to be eigenfunctions of the measured scattering operator A.
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These eigenfunctions concentrate energy within the support of the contrast function.
When coupled with an explicit representation of the inverse scattering solution using
Lagrange multipliers, the advantage of this choice of focusing profiles is a recon-
struction that uses minimal unnecessary information (Mast et al. 1997).

Because the operator A characterizes far-field scattering of incident plane
waves, focused transmissions or receptions are not directly applicable to the
eigenfunction method. Instead, focused measurements would need to be suitably
transformed into the required far-field operator, or the method would need to be
reformulated to directly incorporate focusing. Such modifications to the eigen-
function method have not been described in the literature.

14.4.6 The T-matrix Formulation

The methods described so far are designed to reconstruct a single functional that
depends on the complex wave number function. From this functional, sound speed
and attenuation tomograms can be obtained. As described in Sect. 14.4.1.1, the
functional can be made dependent on density variations with a proper change of
variables. Although density tomograms can be reconstructed with this approach
and the use of DBIM (Kwon and Jeong 1998; Lavarello and Oelze 2010; Lavarello
et al. 2010), the solution of Eq. (14.42) can cause instabilities in the presence of
noise. Alternatively, methods have been designed to natively take both com-
pressibility and density variations into account when inverting the wave equation
(van Dongen and Wright 2007).

One of these methods is the T-matrix formulation, presented by Lin and Chew
in Lin and Chew (1996). Unlike the methods considered so far in Sect. 14.4 that
directly use the wave equation in continuous differential or integral form, the
T-matrix formulation is based on the harmonic expansion of the acoustic pressure
field. Consider the case of a harmonic acoustic wave incident on an object. The
computational domain is divided into N homogeneous subscatterers distributed on
a rectangular grid of pixel size h. The total acoustic field produced at some point rp

in space is given by

pðrpÞ ¼ wtðrp � rsÞ � �fs þ
XN

m¼1

wtðrp � rmÞ � �am; ð14:66Þ

where rs is the location of the source, rm is the location of the m-th subscatterer,
wðrÞ is a vector whose elements are cylindrical harmonics, i.e.,

wðrÞ½ �l ¼ Hð1Þl ðk0rÞeilh; ð14:67Þ

and �fs and �am are vectors containing the amplitudes of the cylindrical harmonic
fields generated by the source and the m-th subscatterer, respectively.

372 R. J. Lavarello and A. J. Hesford



The equation above can be rewritten using the j-th subscatterer as the spatial

origin for all the cylindrical harmonics. Using the vector ŵðrÞ whose elements are

defined as ŵðrÞ
h i

k
¼ Jkðk0jrjÞeil\r, Eq. (14.66) can be rewritten as

pðrpÞ ¼ wtðrp � rjÞ � �aj þ ŵtðrp � rjÞ �
X
m 6¼j

�ajm � �am þ �ejs

 !
ð14:68Þ

where the elements of matrix ajm and vector �ejs can be obtained using the addition
theorem of Bessel functions (Chew 1995) as detailed in Lin and Chew (1996).

If h	 k, the coefficient that relates the amplitude of the source waves JkðrÞwith

the outgoing waves Hð1Þk ðrÞ in Eq. (14.68) can be approximated by the scattering
coefficient Rkðjj; qjÞ by a sphere of radius h=

ffiffiffi
p
p

, where jj and qj are the com-
pressibility and density of the j-th subscatterer, respectively. Further, under the same
condition h	 k the harmonics l ¼ 0; 1;�1 have been reported to be sufficient to
characterize the scattering process (Lin and Chew 1996). Consequently, and con-
sidering Eq. (14.68) at all subscatterer locations rj, j ¼ 1; 2; � � �N, the N � 1 vectors
of equivalent induced sources �as

k whose elements are given by �am satisfy the equation

�I �D �Rð Þ � �Af g � �as ¼ D �Rð Þ � �es ð14:69Þ

�as ¼
�as

l¼0

�as
l¼1

�as
l¼�1

2
64

3
75;�es ¼

�es
k¼0

�es
k¼1

�es
k¼�1

2
64

3
75;D �Rð Þ ¼

D �Rk¼0ð Þ 0 0

0 D �Rk¼1ð Þ 0

0 0 D �Rk¼�1ð Þ

2
64

3
75;

with �Rk an N � 1 vector whose elements are equal to Rkðjj; qjÞ, �A a 3N � 3N
matrix whose coefficients are taken from matrices �ajm, and �es

k an N � 1 vector
whose elements taken from vectors �ejs. If the total field �ets at the scatterer is
defined such that �as ¼ Dð�RÞ � �ets, then from Eq. (14.69),

�ets ¼ �I � �A � Dð�RÞ½ ��1��es: ð14:70Þ

Assuming that the receiver positions rr, r ¼ 1; 2; � � � ;Nr are held constant for all
transmissions, the corresponding scattered field vector �psc

s can be computed as

�psc
s ¼ �w � �as ¼ �w � Dð�RÞ � �ets ð14:71Þ

�w ¼ �wl¼0
�wl¼1

�wl¼�1

� �
ð14:72Þ

with �wl an Nr � N matrix whose rows can be calculated using Eq. (14.67) with
r ¼ rr � ri, i ¼ 1; 2; � � � ;N.

The matrix equations in Eqs. (14.70) and (14.71) are counterparts to the integral
equations in Eqs. (14.37) and (14.38), and can be solved for �R using Newton-type
or gradient descend methods as described in Lin and Chew (1996a, b).
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14.4.6.1 Convergence

The convergence of the T-matrix formulation has been studied by Lavarello and
Oelze (Lavarello and Oelze 2009). It was found that sound speed images derived
using the T-matrix formulation follow the same convergence rules that the DBIM
does, i.e., sound speed imaging convergence is dependent upon the maximum
phase shift induced by the scatterer on the incident field. Density imaging using the
T-matrix approach diverges due to a different mechanism, namely the weak
dependence of the scattering pattern on q for large ka values. When imaging
circular cylinders of radius a, the convergence condition was heuristically
approximated as k0a\1.8 Therefore, for practical biomedical imaging applications
the condition for convergence in j and q is likely to be more restrictive than that
for convergence in c. This restriction was later found to be valid for more complex
imaging targets exhibiting structures of different sizes, as shown in Fig. 14.7.
Further studies showed that the convergence of the T-matrix formulation is also
dependent on the acoustical properties of the imaging target, i.e., the actual values
of sound speed and density (Lavarello and Oelze 2010).
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Fig. 14.7 Speed of sound (top row) and density (bottom row) images obtained using the multiple
frequency T-matrix approach. First column: ideal profiles. Second and third columns:
reconstructions using single frequency data and multiple frequency data with fmin ¼ f0=64,
respectively. Even though the sound speed tomograms converged for both cases, multiple
frequency data was needed to obtain a convergent density tomogram. Adapted from Lavarello
and Oelze (2010)

8 Like in the case of sound speed imaging with DBIM, frequency hopping can be used to
improve the spatial resolution of density tomograms constructed with the T-matrix formulation.
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14.4.7 Results

The complexity of both algorithmic implementations and required experimental
setup has prevented widespread implementations of full wave inversion tech-
niques. However, experimental validation of some of these methods using acoustic
waves have been reported. An example is the laboratory system at the University
of Rochester (Waag and Fedewa 2006), which consists of 2048 elements operating
at 2.5 MHz with 67 % -6-dB bandwidth and distributed in a 150 mm diameter
ring. Using this ring system, reconstructions of large scale phantoms using
eigenfunction methods have been performed (Lin et al. 2000). Another notable
system is the scanner by Techniscan Inc. (Johnson et al. 1999), which consists of
linear arrays facing each other operating at frequencies up to 2.5 MHz. Mechanical
rotation is used in order to obtain full angular coverage on transmission. Using this
system, Techniscan Inc. researchers have successfully implemented inverse scat-
tering methods based on Newton-type and gradient descent approaches and
obtained breast images in vivo (Johnson et al. 2007; Wiskin et al. 2012). These
encouraging results suggest full wave inversion methods have reached a level of
maturity that allows them to be explored for clinical applications.

14.5 Numerical Forward Scattering Solutions

Full-wave inversion techniques such as the alternating variables method and the
distorted Born iterative method require repeated solutions of the integral equation
of scattering (14.17). For practical application of full-wave inverse scattering
methods, efficient methods should be employed to solve the acoustic scattering
problem with minimal computational effort. Among a wide variety of techniques
developed to address these issues, fast Fourier convolution methods (Johnson et al.
1984; Borup and Ghandi 1985; Cui and Chew 1999; Xu and Liu 2002) and the fast
multipole method (FMM) (Greengard and Rokhlin 1987; Rokhlin 1990; Chew
et al. 2001; Michielssen and Jin 2008) are popular choices. These methods are here
presented because they provide a complete solution to the wave equation and
because they illustrate a number of the efficiency issues present in forward and
inverse scattering problems. Simplified methods that trade accuracy for efficiency
by solving a restricted version of the scattering problem may offer greatly
improved performance and still provide sufficient accuracy for desired
applications.

A generalized representation of the method-of-moments formulation of the
wave scattering equation takes the form (Harrington 1993)

½A� G� f ¼ f i; ð14:73Þ
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in which the N � N matrices A and G are given by

Akj ¼
Z

X
dr tkðrÞvjðrÞ; ð14:74aÞ

Gkj ¼
Z

X
dr tkðrÞ

Z
X

dr0G0ðr; r0ÞOðr0Þvjðr0Þ ð14:74bÞ

for a Green’s function G0, a domain X that contains the support of a scattering
contrast profile O, a basis function vj and a testing function tk. The N-element

vectors f and f i are discrete representations of the total and incident fields,
respectively, such that

f ðrÞ ¼
XN�1

j¼0

fjvjðrÞ; ð14:75aÞ

f i
k ¼

Z
X

dr tkðrÞf iðrÞ: ð14:75bÞ

Using an iterative method such as GMRES (Saad and Schultz 1986) or BiCG-
STAB (Van der Vorst 1992), the inverse of the matrix A� G does not need to be
directly computed. Instead, the solution is obtained through repeated products of
A� G with a succession of test vectors. Because the basis and testing functions are
often localized, the matrix A tends to be sparse and, therefore, products of the form
Af are inherently efficiently computed. Consequently, fast Fourier convolution
methods and the FMM are each concerned with efficiently representing the matrix
product Gf .

14.5.1 Fast Fourier Convolution Methods

Methods that employ fast Fourier convolution of the Green’s function require that
the basis functions vj and the testing functions tk in a method-of-moments for-
mulation (14.73) have supports that are positioned at regular intervals throughout
the domain. Most commonly, a three-dimensional scattering domain X is subdi-
vided into a collection cj : 0� j\N

� �
of N disjoint cubic cells coincident with an

Mx �My �Mz ¼ N grid. Each cell cj has a volume D and is associated with a
constant contrast value Oj and a constant field value fj. Hence, the basis function vj

is the characteristic function, or pulse basis function, associated with cell cj. In this
case, the contrast function O is separable from the Green’s matrix G in
Eq. (14.73):

f s ¼ Gf ¼ GsOf ; ð14:76Þ
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where O is interpreted as a diagonal matrix with elements Ojj that correspond to
samples Oj of the contrast for cell cj.

Let ci represent a target cell that has an index ðl;m; nÞ within the Mx �My �Mz

grid, while a source cell cj has an associated grid index ðt; u; vÞ. The scattering
contribution to the matrix-vector product (14.76) at cell ci may be expressed as

f s
i ¼

XN�1

j¼0

Gs;ijOjfj ¼
XMx�1

t¼0

XMy�1

u¼0

XMz�1

v¼0

Gðl� t;m� u; n� vÞOtuvftuv; ð14:77Þ

where Otuvftuv ¼ Ojfj for the global index j corresponding to the local grid index
ðt; u; vÞ and the Green’s function

Gðl� t;m� u; n� vÞ ¼
Z

X
dr v0ðrÞ

Z
X

dr0G0ðr; r0 þ DrÞv0ðrÞ: ð14:78Þ

Translational invariance and the equivalence of all cells ci allows the characteristic
functions vi and vj in the definition of the Green’s matrix element Gs;ij to be
replaced with an arbitrary characteristic function such as v0. Hence, elements of
the Green’s function are functions only of the separation of two cells, rather than
their absolute positions. The offset in Eq. (14.78) is given by

Dr ¼ ðl� tÞDx; ðm� uÞDy; ðn� vÞDz½ �; ð14:79Þ

where each scattering cell has x, y, and z lengths Dx, Dy, and Dz, respectively.

Since the grid is cubic, Dx ¼ Dy ¼ Dz ¼
ffiffiffiffi
D3
p

.
The three-dimensional convolution (14.78) can be evaluated in the Fourier

domain if G satisfies the cyclic properties

Gð�t; u; vÞ ¼ GðMx � t; u; vÞ; ð14:80aÞ

Gðt;�u; vÞ ¼ Gðt;My � u; vÞ; ð14:80bÞ

Gðt; u;�vÞ ¼ Gðt; u;Mz � vÞ: ð14:80cÞ

To satisfy these criteria, the pairwise Green’s function G defined on the local
Mx �My �Mz grid must be replaced with a modified Green’s function G0 defined
on an expanded 2Mx � 2My � 2Mz grid. The modified Green’s function

G0ðt; u; vÞ ¼ Gðt0; u0; v0Þ; ð14:81Þ

in which the mappings

t0 ¼ t if 0� t\Mx;
t � 2Mx if Mx� t\2Mx;

�
ð14:82aÞ
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u0 ¼
u if 0� u\My;

u� 2My if My� u\2My;

�
ð14:82bÞ

v0 ¼
v if 0� v\Mz;

v� 2Mz if My� v\2Mz;

�
ð14:82cÞ

relate indices ðt0; u0; v0Þ on the original Mx �My �Mz grid to indices ðt; u; vÞ on the
expanded 2Mx � 2My � 2Mz grid. The product of the contrast and pseudo-pressure
must similarly be expressed on an expanded grid as

O0tuv f 0tuv ¼
Otuvftuv; if 0� t\Mx; 0� u\My; and 0� v\Mz;

0 otherwise:

�
ð14:83Þ

The expressions (14.81) and (14.83) allow contributions to the field observed at ci

(14.77) to be represented as a Fourier-domain multiplication:

fs;i ¼ F
�1

F O0tuv f 0tuv


 �
� FG0ðt; u; vÞ

� �
lmn
; ð14:84Þ

where F represents the discrete Fourier transform and the index triple ðl;m; nÞ
corresponds to a linearized index i. Thus, rather than requiring OðN2Þ computer
time storage to evaluate products of the Green’s matrix with some vector f , fast
Fourier convolution reduces the computational cost to that of the fast Fourier
transform (FFT): OðN log NÞ. Likewise, rather than computing the Green’s func-
tion for all pairwise interactions on the computational grid, which would require
OðN2Þ memory storage, the convolutional Green’s function G0 is defined only once
for each point on the extended 2Mx � 2My � 2Mz grid, which requires OðNÞ
storage.

14.5.2 The Fast Multipole Method

Like fast Fourier convolution methods, the FMM provides a mechanism for
evaluating the product of a discrete Green’s matrix and an arbitrary vector with
computational and storage complexities better than the OðN2Þ complexities of a
direct matrix-vector multiplication and without requiring explicit computation of
the full Green’s matrix G. This facilitates large-scale solutions even on modest
computer hardware. Although a hierarchical implementation provides optimum
performance, a single-level FMM highlights the fundamentals of the technique.

The FMM is derived by replacing the Green’s function represented in the
method of moments with a truncated expansion derived from Gegenbauer’s
addition theorem (Coifman et al. 1993):
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eik Dþdj j

Dþ dj j �
ik

4p

Z
S0

dŝ eik�d~aðk;D; ŝÞ; ð14:85Þ

in which dj j\ Dj j and the spectral translator

~aðk;D; ŝÞ ¼
XL

l¼0

ilð2lþ 1ÞhlðkDÞPlðD̂ � ŝÞ: ð14:86Þ

The substitution in Eq. (14.85) decomposes the Green’s function into local shifts d
and a long-distance translation D.

The number of terms in the translator sum (14.86) is determined by the excess
bandwidth formula bandwidth formula (Koc et al. 1999; Song and Chew 2001;
Chew et al. 2001)

L � k dj j þ 1:8d2=3
0 ðk dj jÞ1=3; ð14:87Þ

in which d0 ¼ � log � is the number of digits of accuracy for a desired error �. The
formula (14.87) results in an approximate addition theorem (14.85) that exhibits
the desired accuracy provided that the translation distance k Dj j[ L. If this con-
straint cannot be satisfied, more sophisticated methods, such as that described
in Hastriter et al. (2003), are required to select the truncation point. The excess
bandwidth formula (14.87) balances the need to incorporate sufficiently many
terms to accurately approximate an unbounded sum in the underlying addition
theorem with the tendency for Hankel functions to become unbounded with
increasing order, which can result in inaccurate finite-precision evaluation of
Eq. (14.86).

The FMM is made efficient by subdividing the scattering domain into some
number of distinct interaction groups that are each associated with a collection of
unique basis and testing functions. Define a source group of basis functions
J ¼ fvj : 0� j\Mg with center rJ and an observation group of testing functions
K ¼ ftk : 0� k\M0g with center rK , such that K is sufficiently distant from J for
an appropriate definition of ‘‘sufficiently distant’’. Typically, two groups are
deemed sufficiently distant if the smallest spheres that contain the groups do not
overlap; the minimum acceptable distance may be increased to improve accuracy
at the expense of efficiency. The indices k and j refer to a local enumeration of the
functions within groups K and J, respectively. For each group, a one-to-one
mapping exists such that j 7! j0 and k 7! k0, where the primed indices j0 and k0 are
used to refer to the respective global enumeration for basis and testing functions.

The contribution to the total Green’s matrix product in Eq. (14.73) for an
element tk 2 K due to the source group J takes the form
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½Gf �k0;J ¼
XM�1

j¼0

Gk0j0 fj0 �
ik

ð4pÞ2
Z

S0

dŝ RkðrK ; ŝÞ~aðk; rKJ ; ŝÞ
XM�1

j¼0

fj0FjðrJ ; ŝÞ

¼ ik

ð4pÞ2
Z

S0

dŝ RkðrK ; ŝÞ~aðk; rKJ ; ŝÞFJ ð̂sÞ;
ð14:88Þ

where f is an arbitrary discrete function being multiplied by the Green’s matrix
and the functions Fj and Rk are called, respectively, the radiation and receiving
patterns defined by

FjðrJ ; ŝÞ ¼
Z

X
dr OðrÞvjðrÞeikŝ�ðrJ�rÞ; ð14:89aÞ

RkðrK ; ŝÞ ¼
Z

X
dr tkðrÞeikŝ�ðr�rK Þ: ð14:89bÞ

The radiation patterns of all basis functions of the group J have been aggregated to
yield the group radiation pattern

FJ ð̂sÞ ¼
XM�1

j¼0

fj0FjðrJ ; ŝÞ ¼
Z

X
dr OðrÞ

XM�1

j¼0

fj0vjðrÞ
" #

eikŝ�ðrJ�rÞ: ð14:90Þ

The radiation pattern in Eq. (14.90) is a Fourier transform, restricted to the unit
sphere, of the product of the contrast function O with the discrete approximation of
f within J, and is here called the far-field transform of J.

Accumulation of radiation patterns using the far-field transform in Eq. (14.90)
prior to translation is one key aspect of the FMM. This allows the fields radiated by
all elements within one group to be translated en masse, avoiding redundant cal-
culations in Green’s function expansions in Eq. (14.85). Further redundancy may
be eliminated by considering the aggregate interaction of all source groups
J 2 far K, in which far K denotes the collection of all groups that are sufficiently
distant from the observation group K, The total far-field contribution to the
Green’s matrix product for an element tk 2 K is written

½Gf �k0;far K �
ik

ð4pÞ2
X

J2far K

Z
S0

dŝ RkðrK ; ŝÞ~aðk; rKJ ; ŝÞFJðŝÞ

¼ ik

ð4pÞ2
Z

S0

dŝ RkðrK ; ŝÞ
X

J2far K

~aðk; rKJ ; ŝÞFJðŝÞ:
ð14:91Þ

Hence, radiation patterns from all source groups J 2 far K may be successively
translated to the observer group K and accumulated before being distributed en
masse to the testing function tk using the receiving pattern Rk. Still greater effi-
ciency is obtained when the summation in Eq. (14.91) is reused for calculations
½Gf �k0;far K for all tk 2 K. Because the sum depends only on the center rK and not on
the individual testing functions tk, radiation patterns for all source groups J 2 far K
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need only be translated to K once; this translated field, which is expanded in terms
of incoming plane waves, may be successively distributed to every testing function
in K by simply changing the receiving pattern Rk.

The FMM fails to accurately compute interactions between an observation
group K and source groups J 62 far K. Entries in the Green’s matrix corresponding
to these near-field interactions must be directly computed using the method of
moments. Thus, the total action of the Green’s matrix product on an element
tk 2 K may be written

½Gf �k0 ¼ ½Gf �k0;far K þ
X

J 62far K

XMJ�1

j¼0

Gk0;j0 fj0 ; ð14:92Þ

where MJ is the number of basis functions in source group J and, as before, the
mapping ð�Þ0 converts a local index into a global index.

The FMM can be improved by recursively subdividing the scattering domain
into a hierarchy of cubic scattering groups. The hierarchical implementation
facilitates multiplication of a vector by an N � N Green’s matrix in OðNÞ time and
with OðNÞ storage (Chew et al. 2001). A (finer) level-l hierarchy is obtained by
dividing each group of the (coarser) level-ðl� 1Þ hierarchy into eight ‘‘child’’
subgroups, halving the length of the cube edges along each dimension. The level-0
group contains the entire scattering domain; thus, the l-th level of the hierarchy
contains 2l cubic groups.

In the hierarchical FMM, diagonal translators are used to carry fields between
groups at the coarsest possible level in the hierarchy. Near-field interactions, being
unsuitable for diagonal translations, are deferred to the next finer level, where a
portion of the interactions now exist between children of neighboring groups that
are, in the finer level, now suitable for diagonal translation of a lower bandwidth.
This is possible because, according to the excess bandwidth formula (14.87), the
approximate bandwidth of diagonal translators, and hence the minimum transla-
tion distance, at any level is proportional to the size of the groups, relative to the
acousti wavelength, in that level. The deferment of any remaining near-field
interactions continues recursively until the finest level of the hierarchy is reached.
At this level, all remaining near-field interactions are directly computed using the
summation in Eq. (14.92).

Key to the efficiency of this technique are interpolation and filtering schemes
that alter the sampling rate of outgoing radiation patterns and incoming group
fields. Because the possible bandwidth of outgoing and incoming wave expansions
depends on the size of the FMM group, these expansions should be sampled at the
minimum rate necessary for accurate representation. Radiation patterns for each
group at a particular level may be recursively aggregated from interpolated and
shifted forms of the radiation patterns of the group’s children. Likewise, incoming
waves may be recursively distributed among the children of each group at a
particular level by shifting and then filtering the waves to reduce their sampling
rates. A schematic representation of these procedures is provided in Fig. 14.8.
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Radiation patterns of source groups at the finer level are aggregated, following the
converging, dashed arrows at the left, to form the radiation pattern of the circled
source group at the coarser level. The resulting radiation pattern is translated via
the curved, solid arrow to an observer group at the right. The incoming plane-wave
envelope is distributed via the diverging, dashed arrows to constituent observer
groups at the finer level. At the finer level, interactions at each observer group that
were not represented at the coarser level are carried via diagonal translations along
the curved, hollow arrows.

14.5.2.1 Optimizations for Inverse Scattering Applications

Because the contrast profile is unknown during inverse scattering reconstructions,
the use of basis and testing functions specialized to the shape of the scatterer is
unwarranted. It is therefore convenient and computationally beneficial to employ
the same discrete representation used in fast Fourier convolution methods; namely,
that pulse basis functions vj and testing functions tk ¼ vk are defined on a col-
lection of N disjoint cubic cells regularly spaced to cover the scattering domain X.
While Eq. (14.91) still approximates the elements of the Green’s matrix in this
arrangement, the radiation pattern (14.89a) of a basis function vj 2 J for some
group J can be altered to remove its dependence on the contrast function, leaving

FjðrJ ; ŝÞ ¼ R�j ðrJ ; ŝÞ ¼
Z

cj0

dr eikŝ�ðrJ�rÞ; ð14:93Þ

where j now refers to a local index of the basis function within group J and j0 is the
corresponding global index. Thus, only one of the radiation or receiving patterns
for each group must be computed. The group far-field transform (14.90) becomes

Fig. 14.8 Graphical depiction of aggregation and distribution (dashed arrows) and diagonal
translations (curved arrows) in a two-level, hierarchical FMM
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FJ ð̂sÞ ¼
XM�1

j¼0

fj0Oj0
� �

FjðrJ ; ŝÞ; ð14:94Þ

in which the contrast O now modifies the source distribution f within the group
rather than the radiation patterns of its constituent basis functions. The total far-
field contribution to the Green’s matrix product is still governed by Eq. (14.91)
with the redefined group radiation patterns (14.94). The integration in Eq. (14.91),
generalized as

fk ¼
Z

S0

dŝ RkðrK ; ŝÞcKðŝÞ; ð14:95Þ

in which cK is an arbitrary function that describes the complex amplitude of plane
waves converging on rK from directions ŝ, is the adjoint of the far-field transform
when the far-field transform is viewed as an operator acting on the product ~f ¼ Of .
Thus, a discrete representation of the far-field transform operator (14.94) is suf-
ficient to represent both the forward and adjoint transforms.

Even greater savings in memory and computation are realized when the grid of
scattering cells aligns with the grid of FMM groups at the finest level. In that case,
for two groups J ¼ fvj : 0� j\Mg and K ¼ fvk : 0� k\Mg with respective
centers rJ and rK , j ¼ k ) rj � rJ ¼ rk � rK , where rj and rk represent, in turn,
the centers of the globally indexed cells cj0 and ck0 . Hence, the radiation and
receiving patterns in Eq. (14.93) are independent of the group center rJ and a
single representation of the group far-field transform (14.94) applies to every
FMM group.

The use of gridded basis and testing functions means that near-field evaluations
among finest-level groups that each contain OðMÞ elements can be computed in
OðM log MÞ time, with OðMÞ storage, using an FFT-accelerated convolution
(Hesford and Waag 2010) that extends the approach described in Sect. 14.5.1 to
accommodate pairwise Green’s functions that depend on the separation between
source and observer groups in the FMM hierarchy. If the total number of scattering
elements is N, then the number of finest-level FMM groups will be OðN=MÞ. The
total cost for the evaluation of neighboring interactions using FFT convolution is
therefore OðN log MÞ, compared to the OðNMÞ total cost for dense-matrix multi-
plication of neighboring interaction matrices. Thus, for a fixed problem size N,
FFT convolution dramatically reduces the dependence of calculations of neigh-
boring interactions on the group size M.

Another limiting factor in the size of the finest-level groups of a hierarchical
FMM is the cost of evaluating far-field transforms and of distributing incoming
plane waves to testing functions in each group. In a cubic, gridded arrangement of
scatterers, the diameter of each group is d ¼ OðM1=3Þ. Because the excess band-
width formula (14.87) is used to predict the bandwidth L of the radiation and
receiving patterns for a group, and L ¼ OðdÞ, the total number of samples of the
patterns is OðM2=3Þ. Thus, the far-field transform (14.94) may be represented by a
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matrix F 2 C
m�n, where m ¼ OðM2=3Þ and n ¼ OðMÞ. Similarly, the adjoint far-

field transform (14.95) may be represented as a matrix R ¼ Fy 2 C
n�m, where ð�Þy

represents the matrix adjoint.
The band-limited nature of the radiation and receiving patterns suggests that an

accurate, but approximate, reduced-rank decomposition of the far-field transform
may be obtained in the form

F � UVy; ð14:96Þ

with U 2 C
m�k, V 2 C

n�k and the rank k ¼ OðLÞ ¼ OðM1=3Þ. This approximation
reduces the cost of applying a far-field transform or its adjoint from OðM5=3Þ to
OðM4=3Þ. The adaptive cross approximation (ACA) (Bebendorf 2000; Zhao et al.
2005; Shaeffer 2008) provides a method for computing an approximation of the
form in Eq. (14.96). The effective use of adaptive-cross approximated far-field
transforms, together with recompression based on an efficient singular value
decomposition, was explored in Hesford and Waag (2011) and shown to signifi-
cantly reduce the computational cost of the FMM. Conceptually, the ACA works
by alternatively constructing columns to populate the column matrix U and the
row matrix V . Columns for U and V are selected as the most significant of the
remaining columns and rows, respectively, of the matrix F to be approximated; for
this purpose, ‘‘most significant’’ means the column or row of F that contributes the
largest element of the column of U or V that is currently being analyzed,
neglecting elements contributed by previously analyzed columns or rows.

14.6 Parallel Computing

Modern computer systems are inherently parallel. Low-cost desktop systems often
contain at least two CPU cores that share access to a common memory store, while
supercomputers are most commonly composed of many interconnected nodes that
each contain distinct memory stores and multiple CPUs. More recently, graphics
processing units (GPUs) have been adapted to general-purpose computations that
exploit low memory latency, rapid context switching and massive parallel pro-
cessing abilities to provide excellent computational power. Algorithms that
compute large-scale forward and inverse scattering solutions should leverage such
parallel facilities to be most effective.

Each parallel computing methodology has distinct advantages and drawbacks.
Shared-memory algorithms, for example, provide multiple computing threads
access to all data within a shared memory store. While such algorithms do not
require communication between the threads, threads must be synchronized to
prevent conflicting attempts to modify the same data. Distributed-memory systems
provide each task with its own locally relevant data that eliminates the need for
synchronization. However, operations that require the cooperation of more than
one task must use communication (typically over a network) of data. Both
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synchronization and communication result in serial bottlenecks that can limit the
effectiveness of massive parallelization. Furthermore, distributed-memory com-
munication often exhibits relatively high latency. To some extent, latency can be
concealed by initiating non-blocking communication that can be completed while
each task processes its local data.

General-purpose GPU computing takes a different approach than those of
classical shared- or distributed-memory parallel systems. A typical GPU may have
hundreds of lightweight, individual processing units capable of manipulating
floating-point numbers, but each performs optimally on independent data accessed
through a graphics memory store. Interactions with system memory must be
performed over a comparatively slow bus, and the graphics memory, while fast,
can have comparatively high latency with respect to the floating-point performance
of the GPU. To conceal this latency, GPUs offer fast context switches, and dis-
patch hundreds of independent tasks that can be quickly interchanged while they
await memory accesses. When multiple tasks must collaborate on blocks of data,
special care must be taken to avoid redundant memory access or performance can
suffer greatly. GPU computing has been reported to significantly speed-up the
execution of full wave inverse scattering methods (Garland et al. 2008; Roy et al.
2010; Wiskin et al. 2010).

The choice of algorithm and the selection of parallel hardware are closely
linked. The independence of the multiple forward solutions required for each
iteration of the DBIM makes for an ideal parallelization scheme, without the need
for substantial communication or synchronization, on either shared- or distributed-
memory systems (Hesford and Chew 2006). In contrast, the fast Fourier transforms
in the FFT-based methods described above are not ideal in distributed-memory
systems, since all elements in the FFT interact. Alternative forward solvers like the
FMM, with appropriate consideration, can be efficiently implemented on distrib-
uted-memory systems without requiring communication among all tasks.

In practice, modern algorithms often require hybrid parallelization to take
advantage of supercomputers with multiple, distributed-memory nodes that each
house several shared-memory CPUs. For example, a distributed-memory FMM
that subdivides the scattering object among multiple nodes can be readily adapted
to shared-memory nodes by assigning to each CPU a portion of the scattering
object assigned to that node. With careful ordering of computations, it is possible
to update representations of the field confined to the local portion of the object in
parallel without the need for synchronization. Figure 14.9 provides an illustration
of the benefit of multiple shared-memory threads and distributed-memory pro-
cesses when solving an acoustic scattering problem involving approximately
440 million unknowns on a supercomputer. The reported parallel speed-up is the
ratio of some reference solution time to the time required to compute a solution
with the number of parallel tasks (threads or processes) scaled by a task multiplier.
For the distributed-memory experiment, a minimum of 16 supercomputer nodes
were required to store the problem in memory; therefore, the reference solution
(with a unity task multiplier) employed 16 distributed processes. In all experi-
mental configurations, each distributed process employed six shared-memory
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threads. In the shared-memory experiment, a total of 64 distributed processes were
used for all experimental configurations; the unity task multiplier corresponds to
one shared-memory thread per process.

14.7 Closing Remarks

Acoustic tomography has reached a high level of maturity over the past four
decades. A wide variety of reconstruction algorithms exist that represent different
trade-offs between accuracy and computational cost. Several of these algorithms
have been described in this chapter, but the list should not be considered to be
complete.

Over the years, several engineering aspects of acoustic tomography have been
successfully implemented. Even with the use of full wave inversion methods, the
reconstruction of computational regions with hundreds of thousands to millions of
unknowns is now possible (Lavarello and Oelze 2008; Haynes and Moghaddam
2010; Hesford and Chew 2010; Wiskin et al. 2012). However, certain imple-
mentation aspects still require additional developments. The vast majority of
research in acoustic tomography involves the use of synthetic measurements,
whereas system calibration for measuring phase-sensitive data is a non-trivial
problem (Andre et al. 1997; Johnson et al. 1997; Waag and Fedewa 2006;
Parhizkar et al. 2011) which may impair imaging of sensitive parameters such as
attenuation coefficients and density. Although 3D imaging has been successfully
demonstrated, proper handling of boundary conditions needs to be addressed for

Fig. 14.9 Shared- and
distributed-memory parallel
speed-up of an FMM solution
of an acoustic scattering
problem involving
approximately 440 million
unknowns

386 R. J. Lavarello and A. J. Hesford



certain applications such as breast imaging where inspection in the axillary region
and near the chest wall may be required.

Perhaps the biggest challenge remaining for ultrasonic tomography is the
validation of its usefulness in clinical practice. The significance of imaging sound
speed, attenuation, or mass density for applications such as breast cancer detection
has not been properly addressed yet. Specifically, the contrast associated with
diseased tissue in terms of sound speed, density, and attenuation has not been
explicitly established and conflicting reports in the literature exist. Therefore, the
next chapter will provide a comprehensive discussion on the lessons learned from
experimental acoustic tomography studies.
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Chapter 15
Clinical Results with Ultrasound
Computed Tomography of the Breast

Michael André, James Wiskin and David Borup

Abstract Although the science and engineering of ultrasound computed tomog-
raphy (USCT) has been explored for over four decades, there have been relatively
few instances of a system being developed and applied to patients. Nonetheless,
there have been notable results from the clinical setting, especially recently, that
illustrate how a successful USCT scanner may provide significant advances to
women’s health. For practical anatomical reasons, this work has almost exclu-
sively addressed imaging of the female breast. Other quantitative ultrasound
techniques have been applied to characterizing the female breast, including
quantitative backscatter analysis, shear wave speed, computer-aided diagnosis,
etc., but USCT is the focus of this chapter. We highlight the evolution of scanner
design and image reconstruction by presenting key results from patient measure-
ments by the major researchers in the field. There has been steady progress in
electronics, parallel processors, reconstruction algorithms, understanding of the
physical properties of breast tissue and a resurgence of interest in the medical
community for dedicated breast ultrasound systems. It is understood today that
USCT may be able to contribute in many aspects of the medical management of
breast disease including detection, diagnosis and treatment of breast cancer.
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15.1 The Medical Problem

The American Cancer Society estimated in 2011 that the lifetime risk for breast
cancer is 12.15 % or 1 in 8 and the death rate is exceeded only by lung cancer in
women (American Cancer Society 2011). In addition, about 1 % of all breast
cancers occur in men. The National Cancer Institute estimated that in 2008
approximately 2.6 million women with a history of breast cancer were alive in the
U.S. (Howlader et al. 2011). Breast cancer originates in the glandular tissue, called
lobules, and in the ducts that connect them to the nipple. The remainder of the
breast is connective tissue and fat, the relative composition of which may change
with age and other factors. There are many known relative risk factors for breast
cancer but the dominant one is age; incidence and death rates increase with age
such that 97 % of breast cancer deaths occur in women 40 years of age and older.
The majority of masses that occur in the breast are benign, not threatening and
many may be identified with confidence on mammograms or sonograms. However,
a significant number of masses are either not seen on screening mammography or
the findings are not conclusive without further workup. Early detection of breast
cancer when the mass is small is very important to survival rate; 5 year survival
for women with cancer C20 mm is 80 % compared to 98 % for masses 10 mm
(American Cancer Society 2011).

15.1.1 Current Breast Cancer Imaging

Mammography is the primary screening tool for breast cancer together with
physical examination, while breast sonography is the principal adjunctive imaging
modality. As a general rule, a screening test is desired to have very high sensitivity
to disease with few or no false negative results. This often results in lower
specificity, leading to higher false positives that require further clinical evaluation.
A suspected finding in screening may advance the patient to a diagnostic exami-
nation. In this case the patient has additional specialized mammograms or very
commonly, a diagnostic breast sonogram is obtained possibly of only a portion of
one breast in the region where the finding is located. The handheld transducer used
in the diagnostic sonogram is also well suited to provide guidance for performing a
needle aspiration or core biopsy when a mass is identified that is suspicious for
cancer. In some instances the patient may undergo a magnetic resonance imaging
(MRI) breast examination that entails injection of a vascular contrast enhancing
material incorporating gadolinium, although it is impractical for use in general
screening. MRI has high sensitivity and is considered to provide the most accurate
depiction of the margins of a malignant mass so it is often used for surgical
planning and monitoring response to therapy. As a screening test applied to many
millions of patients, mammography is relatively inexpensive, sonography costs
approximately 2–3 times more, while breast MRI is up to 10 times more expensive
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than mammography. Representative mammograms, sonograms and MRI images
are compared later in the chapter.

15.1.2 Breast Sonography

Conventional sonography systems produce images of reflected and backscattered
ultrasound energy, or relative ‘‘echogenicity,’’ that occur at interfaces between the
different breast tissues. Image formation assumes straight-line propagation, 180�
backscatter and constant sound speed, usually 1,540 m/s, all of which are known to
be incorrect. Breast ultrasound is recognized to be a difficult exam to perform and
interpret while image quality is known to be dependent on the skill of the operator
as well as technical features of the scanner. A major strength of breast ultrasound
and its most common clinical use is differentiation of cystic and solid lesions with
nearly 100 % accuracy (Stavros et al. 1995, 2005; Hong et al. 2005; Brogoch et al.
2010). Nonetheless, numerous studies of conventional breast ultrasound show
substantial variance in diagnostic accuracy due to variability in radiologists’ skill
levels (Baker et al. 1999) and technical features of the scanner (Berg et al. 2006).

Work to improve the accuracy of diagnostic breast ultrasound led to the
development of a well-defined rule-based system for mass assessment based on
parameters describing the ultrasound appearance of breast lesions. Sonographic
features of a mass are described in accordance with the ACR Breast Imaging
Reporting and Data System

�
(BI-RADS

�
) (Mendelson et al. 2003). The BI-RADS

sonographic categories include size, shape, margin, relative echogenicity, lesion
boundary, orientation to the skin, posterior features (shadowing or enhancement
due to different attenuation), vascularity, and surrounding tissue. A final numerical
assessment is reported on an increasing scale of risk for cancer, 1–5, as well as 0
where more information is needed and 6 where the finding is a known cancer.
Precise application of the BI-RADS approach was shown to be helpful in differ-
entiating benign versus malignant solid masses, particularly when performed by
experts, although there is variability between readers (Brogoch et al. 2010; Baker
et al. 1999; Berg et al. 2006; Mendelson et al. 2003; Kwak et al. 2006; Kolb et al.
2002). Mass characterization with ultrasonography is highly dependent on technical
factors and settings of the scanner. Example images of three masses are shown in
Fig. 15.1. Posterior ‘‘enhancement’’ is evident for the fluid-filled simple cysts
(Fig. 15.1a), while posterior ‘‘shadowing’’ is seen for the malignant mass
(Fig. 15.1c). These effects are artifacts due to application of time-gain compen-
sation in regions where attenuation and reflection losses are not uniform with depth.

The American College of Radiology (ACR) published breast ultrasound prac-
tice guidelines to establish standards for indications of use, qualifications and
responsibilities of the practitioner, examination procedures, quality control, min-
imum equipment specifications and more (ACR 2011). Following these standards
breast ultrasound should be performed with linear array transducers of 10 MHz or
more and with variable focal zones. In order to obtain the needed high resolution,
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the field of view and range in sonography is small, which greatly complicates
interpretation, localization of masses and comparison to prior exams. The sono-
gram is performed with the patient supine in order to minimize the thickness of the
breast in accommodation of the high attenuation and small field of view at high
frequency. It can be difficult to precisely describe or record the location of a
finding in the breast since the tissue can be mobile. This complicates serial
monitoring of a mass over time and in some cases it is difficult to find a mass at the
time of biopsy that was seen in an earlier visit. BI-RADS uses a ‘‘face-of-the-
clock’’ scheme for sonography with the nipple at the center and the caudal
direction at 12:00, but of course the breast is three dimensional. These same issues
may complicate other quantitative enhancements to breast sonography including
shear wave speed (Berg et al. 2012) or elastography methods, and computer-aided
diagnosis (Andre et al. 2011).

15.1.3 Whole-Breast Ultrasound Imaging

Even with the best imaging methods available today, up to 80 % of breast biopsies
performed turn out to be benign (Silverstein et al. 2005; Kolb et al. 2002; Stavros
2004). Combined mammography and targeted breast ultrasound is still the most
effective approach for breast cancer screening in women at normal risk (Silverstein
et al. 2005; Stavros 2004). Adding a single screening ultrasound to mammography
yields an additional 1.1–7.2 detected cancers per 1000 in high risk women, but at
an increase in false positive findings (Silverstein et al. 2005; Shetty et al. 2003).

Despite the potential benefits, sonography is not usually employed for screening
due to several factors including procedural complexity, additional skill and
training required, a long procedure time, the requirement that a radiologist perform
it, the large number of images that need to be reviewed and cost. Nonetheless
sonography is being more widely employed particularly for younger women for
whom mammography may not be recommended and women with dense breasts

Fig. 15.1 Three sonograms of breast masses where the transducer is applied to the skin at the top
of the images. a Simple cystic mass with distinct margins. b Large complex cystic mass with
internal echoes and debris. c Spiculated solid malignant mass. The field of view and range for
these images is 4 cm

398 M. André et al.



where mammography is less sensitive. For women with particular risk factors,
breast sonography may be indicated as a secondary screening modality.

The American College of Radiology Imaging Network (ACRIN) Trial 6666
examined the role of whole-breast ultrasound (WBU) screening with conventional
scanners at multiple centers for several thousand patients with moderate risk
factors for cancer (Berg et al. 2008). In this procedure, a high frequency hand-held
transducer is slowly scanned across the entire breast in an overlapping raster
fashion while the patient lies supine. The ACRIN protocol for scanning both
breasts took 20–40 min and required that the procedure be performed and inter-
preted by a radiologist with special proficiency. A semi-automated system to
facilitate this procedure was developed by Sonocine (Reno, NV) that has received
approval from the U.S. Food and Drug Administration (Kelly et al. 2010). Any
suitable breast ultrasound transducer system is attached to a mechanically-driven
arm manipulated by the sonographer while the system records the position, angle
and tip of the linear array. Overlapping passes are made of the breast while the
sequence of up to 1,000 or more closely-spaced images of the breast is recorded.
The radiologist reviews the images while they are displayed in rapid sequence, at a
rate of a few per second, in two-dimensional (2D) mode as a cine loop. ACRIN
6666 and studies published by Sonocine show that there is a significant increase in
the number of cancers detected by WBU over mammography alone.

A particularly noteworthy substudy of ACRIN 6666 examined the effect of
supplementing annual mammography screening with annual ultrasound over a
three-year period in 2809 women at elevated risk due to radiographically dense
breast tissue and at least one additional risk factor such as personal and/or family
history of breast cancer (Berg et al. 2012). Adding ultrasound to mammography
each year significantly increased the chance of finding invasive cancer before it
spread to the lymph nodes. Of the 111 breast cancer diagnoses in this group,
mammography failed to see about half of the cancers present in women with dense
breasts although it did detect 33 cancers not seen on sonography. 32 cancers were
seen only by ultrasound of which 94 % were node-negative invasive. 26 were
detected on both mammograms and sonograms, while 9 were seen only by a single
MRI exam performed after three years of mammography and sonography. 11 were
not detected by any imaging screen during this period. Adding annual sonography
and a single MRI increased false positives by 5 % but they provided a significant
detection benefit for these women. Neither ultrasound or MRI are recommended as
a replacement for mammography, but it is important to emphasize that the vast
majority of additional cancers detected by supplemental sonography were early-
stage invasive cancers that had not spread to the lymph nodes. If a patient has an
MRI the ultrasound is probably not needed and possibly vice versa for reasons of
practicality.

In the U.S. 14 states have passed legislation requiring breast imaging centers to
inform patients if they have mammographically dense breast tissue. The legislation
is based on the proposition that breast density is a strong risk factor for breast
cancer. When the breast is comprised of less fat and more glandular tissue it
represents a challenge for mammography to detect masses. Categorizing breast

15 Clinical Results with Ultrasound Computed Tomography 399



tissue is a component of the mammographic BI-RADS protocol but it is highly
qualitative and variably applied. WBU has been shown to precisely differentiate
between fat and fibroglandular tissues while in addition USCT can provide
quantitative volumetric measurements of the tissues.

15.1.4 Opportunity for Ultrasound Computed Tomography

The discussion in the two previous sections describes many of the benefits and
limitations of conventional breast sonography. It also illustrates there is an
opportunity for new technology to play an important clinical role in breast cancer
detection, diagnosis and management. Whole breast USCT using transmission
and/or reflection techniques has been proposed for many years as a means to
address the shortcomings but also to provide entirely new ways to assess and
characterize masses and other findings in the breast.

The promise of USCT is based on several key attributes including:

• ability to provide global views of both breasts in a standard frame of reference
for detailed contralateral and serial comparisons

• operator independence
• uniform high resolution independent of range and location
• minimal refraction, spatial distortion or multiple scattering effects
• no speckle
• quantitative tissue properties of sound speed, attenuation and scatter
• ability to precisely locate findings to facilitate follow-up exams
• volumetric images to aid monitoring changes due to therapy
• anatomic breast positioning with no compression or distortion
• fast scans of the entire breast
• characterization of masses based on quantitative properties and accurate

morphometry
• accurately measures relative volumes of fat and glandular tissues
• significant improvements in both high speed data multi-channel acquisition

systems and powerful multi-processor computing.

The experimental basis for this promising opportunity is summarized in the
next section in which some of the notable clinical studies of USCT are reviewed.

15.2 Breast Ultrasound Computed Tomography

Research in a number of laboratories in the 1970s and 1980s showed potential for
USCT to provide accurate spatial registration, high spatial and contrast resolution,
few artifacts and quantitative tissue measurements, particularly of sound speed,
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attenuation and morphometry. However, with over four decades of research there
have been relatively few instances of practical systems being developed and
applied to patients. Instead the majority of the research work addressed theoretical
and computational developments. These early prototype scanners were mostly
very slow, with few data channels, sparse spatial sampling and long reconstruction
times limited by available technology. The U.S. medical community largely
concluded this work was premature or unnecessary given the success of high-
quality, fast, automated array technology that had multiple medical uses beyond
breast imaging (Carson and Fenster 2009). The research also illustrated USCT is a
highly complex, inherently non-linear problem that probably requires consider-
ation of the three-dimensional (3D) nature of sound propagation. With steady
scientific progress and new technology there is a revival of effort in this field and
the latest results are impressive. The developments described earlier that are
expanding the role for ultrasound in breast imaging have also enhanced the
opportunity for USCT to emerge from the laboratory.

Four approaches to USCT will be considered in three categories described in
Chap. 1: (a) ray-based backprojection, (b) diffraction tomography with an annular
array and (c) full-wave inverse-scatter tomography (IST) with reflection tomog-
raphy (RT). With the exception of recent work in IST, all of the approaches used
2D linear approximations to obtain sequential coronal planes through the breast.
Two USCT systems developed by the authors are explored in some detail; one
early diffraction tomography unit and the current full-wave inverse-scattering
tomography system.

15.3 Ray-Based Backprojection Tomography

The earliest attempts at USCT used transmission time of flight (TOF) and
amplitude measurements along straight rays combined with CT reconstruction
methods analogous to x-ray CT. Greenleaf et al. (1974, 1975, 1978) were probably
the first to describe results with ultrasound transmission tomography, while Glover
and Sharp (1977); Glover (1977) may have been the first to show results in
patients. Carson et al. (1981) was also actively imaging patients with a similar
system. Others worked with B-mode methods to produce reflection tomograms
(Carson et al. 1981; Mueller et al. 1979; Hiller and Ermert 1980).

In 1981, Greenleaf and Bahn (1981) published clinical results from approxi-
mately 150 patients, 30 of whom had biopsy-confirmed breast cancer. The scanner
employed 5 MHz single-element transmit-receive pairs, initially one pair and later
additional stacked in a vertical line that could acquire multiple planes of 2D data
with each rotation (Fig. 15.2). 2.4 9 104 transmission rays were acquired to
produce a 118 9 118 image matrix using filtered backprojection, examples of
which are shown in Fig. 15.3 for an adenocarcinoma. The patient lay supine with
one breast suspended in a water bath while the transducer pairs rotated 360�.
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The researchers carefully analyzed the calculated ultrasonic properties and
pathological findings of both normal breast tissues and masses for patients who
later had mastectomy. All solid lesions were found to have relatively higher sound
speed in association with varied patterns of attenuation. Figure 15.4 demonstrates

Fig. 15.2 Rotating transmit-receive pair of transducers obtained time-of-flight and signal
amplitude data for reconstruction by filtered backprojection. Adapted from Greenleaf et al. (1978)

TOF+
ATN

LEFT

ATN

RIGHT

Fig. 15.3 Sound speed
(TOF) is displayed in blue
and attenuation (ATN) in red
for right and left breast. The
two are superimposed in the
top row to emphasize the
location of the mass (arrow).
Adapted from Greenleaf et al.
(1978)
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the results of their analysis showing the relationship between sound speed
(velocity) and attenuation. Overall a broad distribution of values was found with
overlap of benign and malignant masses using only these two features. Several
different classification schemes were tested with resulting specificity of 80–90 %
(Greenleaf and Bahn 1981).

Carson et al., developed a system employing opposing 3.5 MHz transducers in
a 20 �C water tank that used a translate-rotate motion around the breast to acquire
90 views or linear profiles with filtered backprojection reconstruction (Carson
et al. 1981). Both transmission tomograms and compounded pulse-echo images
were produced, the latter formed on an analog scan converter. Figure 15.5 shows
images for a 41 year-old patient with a 1.8 cm infiltrating ductal carcinoma in the

Fig. 15.4 Relationship between sound speed and attenuation for normal tissues and masses.
Adapted from Greenleaf and Bahn (1981)

Fig. 15.5 Coronal images of compounded pulse echo (PE), attenuation (ATTEN) and speed of
sound (SOS) were obtained 9 cm from the nipple in a breast with infiltrating ductal carcinoma.
The mass is indicated by the arrows and readily seen in the SOS image as a bright white irregular
shape at 9:00 (Carson et al. personal communication)
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9:00 location (arrows). Image features include high sound speed (1,531 m/s)
surrounded by low speed fat (1,445 m/s). The mass is less echogenic than the
surrounding tissue in the pulse-echo image and it appears to have attenuating
borders (ATTEN). Not surprisingly, detection of malignancy was found to be more
difficult with smaller masses and in younger patients with denser breasts.

Analysis similar to that of Fig. 15.4 was performed of the ultrasonic properties
of 40 lesions. The speed of sound and attenuation relative to the surrounding
mammary tissue are plotted in Fig. 15.6 for normal tissues, unclassified benigns
and fibroadenomas (all solid dots), for cysts (open circles) and for cancers (5). In
this three-group analysis it is apparent that four benign lesions including one cyst
are classified with cancers. The overall sensitivity and specificity are quite good,
both greater than 90 % (Carson et al. 1983, Scherzinger et al. 1989).

A recent clinical prototype imaging system was developed that employs a ray-
based tomographic reconstruction but utilizes a stationary circular array without
rotation (Duric et al. 2005, 2007). It bears some resemblance to the design of a
previous diffraction tomography system (André et al. 1997) described in the next
section but has numerous improvements. The array consists of 256 elements
operating at 1.5 MHz, equally spaced on a diameter of 20 cm that is translated
vertically to acquire successive planes. There are 256 data acquisition channels
sampling at 6.25 MHz. This design affords very fast acquisition for a single slice
(*100 ms) with about 45 slices acquired per breast for a total exam time of 5 min.
Transmitted and reflected data are acquired to produce a reflection tomogram and

Fig. 15.6 Measured ultrasound characteristics of tissues and lesions. Adapted from Carson et al.
(1983)
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coincident images of sound speed and attenuation. Performance in phantoms met
expectations with in-plane resolution for the transmission images of 4 mm,
0.5 mm in the reflection mode (*k/2) and with effective slice thickness of 12 mm.
Spatial resolution is limited by the size and spacing of the elements plus the large
slice thickness (Fig. 15.7).

Sample images are shown in Fig. 15.8 from a patient whose subsequent biopsy
proved invasive ductal carcinoma. The mass shows higher sound speed and
attenuation compared to surrounding tissues (whiter) with apparent architectural
distortion evident in the higher resolution reflection image. In a small patient study
six features were found to be associated with malignancy: ratio of width to height
\1.4, irregular shape, irregular margins, architectural distortion, elevated sound
speed of 50–150 m/s relative to fat and elevated attenuation of 0.5 dB/cm relative
to fat at 1.5 MHz (Duric et al. 2006). In addition to characterizing masses, this
prototype scanner has shown potential value of the sound speed images for
monitoring response to neoadjuvant chemotherapy. Inability to account for out-of-
plane scattering and refraction limits accuracy of the attenuation measurements.
The group has designed a production level scanner with apparently 2,048 elements
that will be capable of much higher resolution and better in-plane focusing.

Although the results were very encouraging, these studies showed that the
breast contains considerable complexity with as much as ±8 % variation in sound
speed and 4 dB/cm/MHz attenuation. Given the long path length, variations in
refractive index are not negligible nor are refraction and multiple scattering.
Consequently, the straight-ray image inversion methods are likely to prove inad-
equate for most clinical use.

Fig. 15.7 Ring transducer array in the water tank that is positioned below the patient table for
scanning. From Duric et al. (2005)
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15.4 Diffraction Tomography

In ultrasound computed tomography, the wavelength of sound in tissue is on the
order of 1 mm and the effects of diffraction are not negligible. In general, due to
limitations of instrumentation and algorithms, the second stage in development of
ultrasound transmission imaging was to solve wave equations using two-dimen-
sional linearization techniques rather than geometrical ray models for recon-
struction. In its simpler forms this approach usually fails for breasts because it is
based on first-order perturbation approximations (Born or Rytov) that are valid
only for unrealistically small variations in sound speed and attenuation. Diffraction
tomography attempts to reconstruct an image from the scattered acoustic field with
consideration of diffraction effects by utilizing approximations to the wave
equation. Diffraction tomography received substantial theoretical treatment but
with only a few researchers exploring medical applications for its potential to
characterize tissue on the basis of physical properties. It is potentially able to
account for the inherent diffraction in sound propagation and is not limited by
assumptions of straight-line ray geometry. The method involves illuminating an
object with ultrasound and measuring a set of scattered wave data around the
object.

The approach described in this section used a wave-based diffraction tomog-
raphy (DT) technique in a clinical prototype system developed in 1994 that
addressed many of the shortcomings of previous work. It provided a large field of
view (20 cm diameter) with high resolution (*1 mm) at low acoustic intensities
(\10 mW cm2), it was not strongly dependent on operator expertise, it provided a
standardized sequential tomographic approach to surveying the entire breast, and it
provided quantitative tissue properties in vivo. The methods of image

Fig. 15.8 Images of a 10 mm invasive ductal carcinoma located inside the oval. a Reflection
image. b Sound speed. c Attenuation. d Sound speed fused with reflection. e Close up of edge
enhanced reflection image showing distortion. f Close up of (d). From Duric et al. (2006)
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reconstruction employed were similar to previous diffraction tomography work in
which the wave equation for the propagation of sound through a spatially variant
medium is solved approximately (Kaveh et al. 1980; Devaney 1982; Wolf 1969).
One significant difference is that this method acquired the 3608 2D scatter field
around the object in a very short time interval plus it employed much lower
frequencies (0.3–1.0 MHz) and continuous wave transmission. The researchers
developed several approaches to image reconstruction that are closely tied to the
annular array transducer configuration and data acquisition methods (André et al.
1995, 1996).

15.4.1 Clinical DT Prototype Design

This method of diffraction CT used steady-state sound to illuminate the medium
from which the amplitude and phase of the scattered sound waves emanating from
the medium and object were measured at the perimeter of the field. The system
used much lower frequencies than were attempted previously by most researchers.
By operating at 1 MHz and below, absorption and phase aberration are diminished
permitting simplifications in image reconstruction. Cylindrical geometry of the
transducer array allowed a compact design compared to plane-wave systems
(Fig. 15.9). The transducer elements emitted a concentric cylindrical beam pattern
that, together with the geometry of the receiver array, allowed transformation to a
plane wave basis for efficient reconstruction. The toroidal array was designed to
ensure adequate sampling of the entire 2D scattered field. The data acquisition
system was capable of recording, digitizing at 30 MHz (12 bits) and storing a large
amount of acoustic data quickly (\1 s at 0.5 MHz).

Fig. 15.9 Clinical DT prototype scanning system with annular array mounted on a vertical
translation stage below a modified breast biopsy table. From André et al. (1997)
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The patient scanning system is shown in Fig. 15.9 in which the cylindrical array
is mounted below a modified breast biopsy table. Two separate arrays with 20 cm
diameter were developed: 512 elements with center frequency at 0.5 MHz, and
1,024 elements with center frequency at 1.0 MHz. The entire measurement pro-
cedure is normally repeated at 10 discrete frequencies, xa (a = 1,2,…,A) where
A = 10, spaced at 62.5 kHz intervals from 687 to 1.250 MHz for the 1,024 array.
20 discrete frequencies were typically used with the 512 array, spaced at 31 kHz
from 300 to 600 kHz. The arrays had 60 % bandwidth and center frequencies of 1
and 0.4 MHz, respectively, in which the transducers were spaced evenly at slightly
less than k0/2 (0.5 mm transducer width with 0.75 mm spacing for the 1 MHz
array, 1.0 mm width and 1.5 mm spacing for the 0.5 MHz array). The elements
were 12 mm in height to encourage a dipole (cos h) pattern of wave propagation
and were on a locus of a circle of radius 102 mm in both arrays. The transducers
each act in turn as transmitter on a plane (r,h), while the remaining elements act as
receivers (Fig. 15.10). The z-direction is perpendicular to this plane. The full-
width half-maximum of the slice sensitivity profile was approximately 8 mm
across the field of view. The large 20 cm ring of transducers illuminated the tissue
via a heated coupling bath (Fig. 15.9). The acoustic properties and temperature of
the bath are adjusted to better match the acoustic properties of tissue and enhance
penetration through the skin.

The transmitter is operated in one of two modes: (1) a continuous-wave mode in
which single discrete frequencies (xa) were transmitted one at a time; (2) a
broadband mode in which a periodic signal was used that is timed to repeat in
concert with the receiver such that discrete frequency bands may be deconvolved
from the measurements. The second procedure provides a rapid way to acquire the
equivalent of many (usually 10 or more) discrete frequencies with a single
transmission. The desired single- frequency waves are combined in the arbitrary
waveform generator with varying phases between the different frequency cycles.
This wideband signal was developed experimentally to maximize the peak-to-peak

Fig. 15.10 Annular transducer array geometry (a) for a cylindrical wavefront emitted by
transducer k and received by transducer j. Water tank and array with cover removed (b)
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transmitted energy at each frequency. The Fourier transform of this wideband
signal is a comb-shaped pattern. The acquired information is in the form of an
N 9 N complex matrix, mjk(xa) (j, k = 1,… N), for data acquired at in sonifi-
cation frequency xa. A full set of receiver data for a complete transmit sequence is
obtained in approximately 1 s for the 512 array (64 MB) and \3 s for the 1,024
array (128 MB). Detailed description of the data acquisition procedures is given in
André et al. (1997).

15.4.2 DT Image Reconstruction

The complex amplitude, mjk(xa) (j, k = 1,… N), of the scattered acoustic wave
measured at transducer k due to transmission from transducer j acquired for the
medium may be described by the sound speed c(r, h) and attenuation coefficient
l(r, h) of the medium. The resulting image is based on the calculation of an
approximation of the complex scattering potential, Sa(r, h), at all locations (r, h)
throughout the slice of the medium (Fig. 15.10a). This algorithm has been
described in detail elsewhere (André et al. 1995, 1996) but will be summarized
here.

A solution to the wave equation due to single frequency illumination of the
medium can be expressed in terms of a two-dimensional integral equation
involving the complex scattering potential Sa(r, h), the position of the transducers
(r0, h), and the tabulated Hankel (H) and Bessel (J) functions (Devaney 1982),
where the radiation pattern of the transducers is approximated well by a linear
dipole such that

g r � r0; h� h0j jð Þ ¼ Hð1Þ
0

0 k q� q0j jð Þ ð15:1Þ

g r � r0; h� h00j jð Þ is the free-space Green’s function, which describes a source
transducer that acts as a dipole transmitter and receiver, q is density and k is the
wave number. This takes the form

mjk xað Þ ¼
XN

m;n

H0m k0r0ð ÞH0n k0r0ð Þe�imhj�inhk

Z
V

Jm k0rð ÞJn k0rð Þeih mþnð ÞSa r; hð Þrdrdh

ð15:2Þ

In the above equation, Hn
0 is the first derivative of the Hankel function of the

integer order n representing the antenna pattern of the transmitter j, and Hm
0

represents the antenna pattern of receiver k. Hn
0 can be shown by Gegenbauer’s

addition theorem (Abramowitz and Stegun 1965; Devaney 1982) to be indicative
of a dipole antenna pattern for both the transmitters and receivers. This antenna
pattern has a complex dipole amplitude with a cylindrically symmetric phase and a
magnitude in the imaging plane in the form of cos / where / is the angle from the
vector normal to each transducer face. Different transducer radiation patterns may
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be accommodated by substituting a weighted sum of monopole, dipole, etc.,
patterns or by using measured values. Jm(k0r) and Jn(k0r) are Bessel functions
determined for all values r within the plane (r, h). Equation 15.2 is derived in the
Born approximation, which assumes that the medium is a weak scatterer of
acoustic waves and induces small phase-shift variations in the incident wave front.
Attenuation and phase shift in tissue are proportional to frequency; attenuation for
breast tissue averages about 0.5 dB/cm/MHz while breast tissue exhibits fairly
small fluctuations (±8 %) in sound speed. The use of frequencies lower than
commonly employed in medical breast ultrasound, 0.5–1.5 MHz compared to
7–15 MHz, helps to constrain the breast properties to a range more appropriate for
inversion techniques within range of the Born approximation as illustrated in the
simple analysis of Fig. 15.11. The wave number, k0 = x/c0, was set to be the
wave vector of the coupling fluid.

Several methods have been described to invert Eq. 15.2 but one of the most
efficient methods is backpropagation that can be adapted to the specific geometry
of the DT system. This may be viewed as beam forming in which a sound beam is
formed in the medium by summing the set of N source transducers (j = 1,2,…,N),
such that the signals add coherently at the point (r, h).

The beam pattern of the transducer elements is removed by transforming the
cylindrical data set into a form analogous to plane wave transmitters and receivers:

Sa
pq ¼

1
H0m k0r0ð ÞH0n k0r0ð Þ

� �XN

j;k¼1

mjk xað Þe� iphj�iqhkð Þ ð15:3Þ

From reciprocity, we expect mjk and Spq to be symmetric matrices. At this point
it is possible to filter Spq to reduce the contribution from waves undergoing large
diffraction. There is no preferred measurement direction in the transducer array so
it can be shown that the convolution in the azimuthal domain is one dimensional
such that

Fig. 15.11 Range of validity
for the Born approximation at
0.5 and 1.0 MHz. At these
frequencies up to 10 %
variation in sound speed is
accommodated for objects
sizes up to the 20 cm
diameter of the arrays (red
arrow)
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Sa0
pq ¼

X
n

Spþn;q�nCn ð15:4Þ

where Cn are the filter coefficients in the azimuthal mode domain that simplify to

Cn ¼
4 k

p
1

1� 4n2
ð15:5Þ

The backpropagation reconstruction utilizes the filtered azimuthal mode data to
obtain the scattering potential or object function Sa(r, h) in terms of a large
azimuthally symmetric set of measured acoustic data mjk(xa), the known positions
of the transducers, and tabulated Hankel functions. This process is summarized as
follows. First compute the discrete two-dimensional Fourier transform of the fil-
tered data:

~Sa r; hð Þ ¼ 1

=2 J0 k0rð Þ½ �2
n o=2

XN=2
p;q¼�N=2

Jp k0rð ÞJq k0rð Þe�ih pþqð ÞSa0
pq

8<
:

9=
; ð15:6Þ

The discrete inverse two-dimensional Fourier transform of Eq. 15.6 recovers Sa,

Sa r; hð Þ ¼ =�1
2

~Saðr; hÞ
� �

ð15:7Þ

In Eq. 15.7,=2 represents the two-dimensional Fourier transform operation: g(j,
/) : =2{f(r, h)} : f(r, h)e-ijrcos(h-/)rdrdh, and =2

-1 represents the inverse
Fourier transform: f(r, h) : =2

-1{g(j, /)} : g(j, /)e-ijrcos(h-u)jdjd/. This
algorithm produces an image or map of Sa(r, h) with a spatial bandwidth of 2k0,
which is equivalent to a theoretical quantization limit of k/4 or approximately
0.4 mm at 1 MHz in water. The basic steps of the image reconstruction process are
shown in the flow chart of Fig. 15.12.

The reconstructed complex scattering potential Sa(r, h) given by Eq. 15.7 has a
real part with an inverse quadratic dependence on the sound speed, c(r, h), and an
imaginary part with a linear dependence on the attenuation coefficient, l(r, h).
However, for the range of sound speeds found in breast tissue, the real part of
Sa(r, h) can be linearized to reasonable accuracy. The linearized scattering
potential, I a(r, h), is given by:

Iaðr; hÞ ¼ �2x2
a

Dcðr; hÞ
c3

0

� �
� ixaDlðr; hÞ � qðr; hÞ1=2r2qðr; hÞ�1=2 ð15:8Þ

In Eq. 15.8, Dc(r, h) = c(r, h)-c0 and Dl(r, h) = l(r, h)-l0, which are spa-
tially dependent perturbations from the average sound speed, c0, and attenuation
coefficient, l0, of the entire medium including the object and coupling fluid. The
attenuation coefficient represents energy loss mechanisms including absorption
and scattering of acoustic energy out of the field of view of the transducers.

With this approach it was possible to define different ways of combining
multiple reconstructed images Sa(r, h) acquired at different discrete frequencies xa
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(a = 1,2,…,A). The researchers found that summing the complex images Sa(r, h)
or summing the magnitudes of these complex images reduces image artifacts due
to reflections of acoustic energy from the receiver transducer faces and from
multiple scattering events within the object being imaged.

As an extension to the above solution that is based in the Born approximation,
they developed a hybrid reconstruction scheme that performs phase aberration
correction to reduce distortion (André et al. 1997, 1996). This was accomplished
by synthesizing pulse data at each point in the image field from a multiple-
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frequency acquisition, summed as a Fourier series. These synthetic beams from all
transmitters sequentially focus at each point in the object and then propagate back
to all receivers. A time-of-flight map, s(r, h), is calculated to each point in the
object for each transmit–receive transducer pair and the attenuation of the pulse
peak value relative to the background water bath is determined. These maps are
essentially low-spatial frequency images of sound speed and attenuation. A phase
correction, e�jxsðr;hÞ, is applied to each single frequency backpropagation image,
which results in higher spatial frequency images. The corrected single-frequency
images were then summed to reduce aberration artifacts.

15.4.3 DT Results

Forty-five women, both symptomatic and asymptomatic, were successfully imaged
with the DT system in a small pilot study. Images for an asymptomatic 65 year old
patient with average density breasts were acquired at the same level with both
arrays (Fig. 15.13). The real (sound speed), imaginary (attenuation) and scatter
density components are displayed left to right. The images are frequency com-
pounded from 330 to 640 kHz for the 0.5 MHz data (top row) and from 630 to
1,200 kHz for the 1 MHz array (bottom row). Fibroglandular tissues appear with
bright signal while fat is dark.

A series of sequential tomographic slices for the left breast of a 42 year old
subject are shown in Fig. 15.14 acquired with the 1 MHz array. Images were
reconstructed from the nipple to maximum posterior level (bottom row to top) with
4 mm overlap at 10 mm intervals. The most posterior slices towards the chest wall
in the top row show increasing amounts of retroglandular fat with diminishing
bright signals from fibroglandular structures. Figure 15.15 shows polar plots of
angular scatter data for the same subject acquired at 0.5 MHz for transmission from
a single transducer at 08 acquired in the scan tank medium (a) and the medium plus
breast scanned at approximately the middle of the breast (b). The data from this
subject reveal high spatial frequency fluctuations that are believed to be acoustical
signals possibly due to diffraction effects, multiple scattering and reflections. These
data show significant attenuation and energy scattered at angles larger than those
subtended by the breast. This suggests that such large-angle scattering is due to
compressibility fluctuations, which gives rise to monopole terms. The patient had
dense breast tissue on mammography (BI-RADS Category 3) with regions of very
dense tissue, scattered microcalcifications but no abnormalities. The shape of
scatter amplitude distribution was found to be closely represented by the Rayleigh
distribution, suggesting a strong scattering condition. Other patient breasts with
higher fat-gland ratios (BI-RADS 1 and 2) were found to exhibit relatively weaker
scattering.

The advantages of summing data from multiple frequencies (10) is demon-
strated in Fig. 15.16 for a 15 cm uniform saline phantom with sound speed of
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Fig. 15.13 Images for a 65 yo patient with average density breasts acquired with both arrays.
Top row was acquired with 1 MHz array, bottom row with 0.5 MHz array at approximately the
same level in the breast

Fig. 15.14 Sequential series of images from a 42 yo subject with dense to very dense breast
tissue. 1 MHz array
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1,510 m/s. Non-uniformity is suppressed, the maximum effect of which occurs
with frequency separation Dx\ c0/D, where c0 is the average sound speed in the
medium + object, D is the diameter of the field of view, and the total frequency
range should be as large as possible. This image was acquired with the 0.5 MHz
array.

Tissue contrast (relative units) compared to the water bath medium for sound
speed images was measured in eight patients and is plotted in Fig. 15.17. Fat
presents low values, fibroglandular tissues that are high in collagen show inter-
mediate to higher sound speed values while the few cancerous masses all had very
high values. In phantoms, the minimum sound speed sensitivity was found to be
0.5 %, which provides excellent performance.

Fig. 15.15 Angular scatter distribution for the same subject with dense breast tissue (scattered
fibroglandular density, BI-RADS 3). 0.5 MHz array

Fig. 15.16 Images from the 0.5 MHz array for a 15 cm diameter saline-filled phantom showing
artifact reduction with 10-frequency averaging (right image)
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In general, the results of this work demonstrated a DT system sufficiently fast to
be practical for clinical research. Image quality was promising despite artifacts
inherent with coherent imaging methods and the low transmit power. The system
design allowed simplifications in the algorithms for more efficient computation
necessary with available computing resources and the researchers developed
iterative methods to reduce aberrations and extend the limits imposed by the Born
approximation. It was found to provide reproducible sound speed contrast but the
methods used to achieve this reduced the accuracy of the attenuation (imaginary)
component. It was concluded that the 2D geometric approximations in the algo-
rithms as well as the inability to acquire signals scattered out of plane were
significant limitations on performance.

15.5 Inverse Scatter Tomography (IST)

The third stage of development is the introduction of true wave equation based
methods, not linear perturbation approximations, as models of ultrasound wave
propagation (Berg et al. 2012; Carson and Fenster 2009). The wave equation
approach described in this section provides a non-linear model of considerable
accuracy, compensates for multiple scattering and provides uniform resolution
throughout the image plane. This model is inverted by an iterative simultaneous
determination of the breast tissue parameters and internal total fields (Fig. 15.18).
Until recently, the mathematical and technical challenges for full-wave 3D IST
were so complex that practical results in humans were not realized.

Fig. 15.17 Relative sound speed contrast for fat, fibroglandular (parenchyma) and confirmed
cancer masses measured in eight patients
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To achieve a solution of the inverse scattering problem the algorithm imple-
ments a fast forward solver and concomitant methods for large scale (*20 million
unknowns) minimization of a functional F. The minimization is based on the
Ribiere-Polak version of nonlinear conjugate gradients and therefore requires a
fast way to calculate the gradient of F and the step length. The inversion algorithm
is based on a type of approximate factorization of the Helmholtz wave equation
that leads to a form of the phase screen approach (U.S. Patent No. 6,636,584). To
solve the numerically ill-conditioned problem of full-wave inversion, increasing
discrete frequency data are used and the number of iterations can be reduced by
preconditioning to a practical level of 5–8 to achieve a 5 % residual. The method
does not account for density variations but for scatter in the forward direction this
approximation has proven reasonable. Detailed description of the 2D and 3D IST
algorithm is published elsewhere (Borup et al. 1992; Wiskin et al. 2007, 2011,
2012; Johnson et al. 2007).

15.5.1 IST Theory

The attainment of an inversion or imaging algorithm that utilizes the full wave-
form and the inherent nonlinearity of the inversion process in a potentially useful
time frame has been lacking. Furthermore, for medical application the inversion
should take place on a computational engine that can accompany the data
acquisition device, and be reasonably inexpensive, if the device is to be clinically
useful as a self-contained device.

The inverse scattering algorithm is based on the minimization of the functional
F, a function of the object function c xð Þ � 1=koð Þ k xð Þ þ ia xð Þð Þ where ko � x=co

and k xð Þ � x=c xð Þ are the wave-numbers in water and inhomogeneous tissue,
respectively, at frequency x ¼ 2pf and a is the attenuation coefficient in Np/mm.

Fig. 15.18 General principle of inverse scatter algorithm
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minFxjðc xð ÞÞ ¼ min
1
2

X
h¼1;...Nviews
l¼1;...;Nlevels

rl
xjh

cð Þrl
xjh cð Þ ð15:9Þ

at successive frequencies, xj; j ¼ 1; . . .Nfreq. We proceed from low frequencies to
high frequencies to avoid local minima. We image at 0.35, 0.4, 0.45, 0.5, 0.6, 0.7,
and 0.8 MHz successively for the 2D case, and 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
and 1.25 MHz successively for the 3D volume image. The vectors

rl
xh cð Þ � d̂

l
xh cð Þ � dl

xh

� �
2 CNR ð15:10Þ

represent the residual between the predicted field, d̂
l
xh cð Þ, and the measured field,

dl
xh, at each receiver position, for each transmitter position, h, level l, and at the

fixed frequency x. Note that this functional involves all views and all levels
simultaneously; that is, it is a true 3D algorithm.

The algorithm at the highest level is described in (Wiskin et al. 2007). It is a
series of updates to c. c nþ1ð Þ ¼ c nð Þ þ andn, where the descent direction
dn � �gn þ bndn�1, and where gn is the gradient, bn is the Ribiere-Polak coeffi-
cient (b0 = 0),

bn �
gn � gn�1ð ÞT gn

gn�1k k2 ð15:11Þ

and an is the step-length. The calculation of the step-length and the gradient are
detailed below.

15.5.1.1 Initial Estimates

Due to the minimization nature of the algorithm an initial estimate is required.
First a time of flight algorithm is used to create a series of initial distributions for
speed of sound and attenuation at each level. These initial estimates are used in a
series of 2D inverse scattering algorithms to create a series of 2D inverse scattering
images at each level, which are the distributions that minimize the functional for
one particular level, l. These 2D images are then concatenated together to form a
3D volume. The 3D volume is the starting estimate for the full 3D inverse scat-
tering algorithm. The 3D algorithm is required to account for energy that is
refracted or scattered out of plane; when ignoring these signals, the 2D-algorithm
gives an anomalously high result for the attenuation estimate.

15.5.1.2 Forward Problem

As mentioned above, a very fast solution of the forward problem is required. To
achieve this we rewrite the Helmholtz equation (15.44):
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o2p xð Þ
ox2

þ o2p xð Þ
oy2

þ o2p xð Þ
oz2

þ k xð Þ þ ia xð Þð Þ2p xð Þ ¼ 0 ð15:12Þ

as Aþ iBð Þ A� iBð Þ � i B;A½ �½ �p xð Þ ¼ 0 ð15:13Þ

where: A � o
ox, is a partial differential operator, and B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

oy2 þ o2

oz2 þ k2 x; y; zð Þ
q

is
a pseudo-differential operator. B;A½ � is the commutator of these operators.

Under the assumption that this commutator can be ignored, we can approxi-
mately ‘factor’ the Helmholtz equation to yield (15.4):

o

ox
p x; r?ð Þ ¼ iH x; r?ð Þp x; r?ð Þ ð15:14Þ

a ‘Schroedinger’ equation in ‘time’ x, with the unusual ‘‘Hamiltonian’’,

Hðx; r?Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

oy2
þ o2

oz2
þ k2 x; y; zð Þ

s
ð15:15Þ

in transverse co-ordinates r? � ðy; zÞ; x (the direction of propagation) plays the
role of time.

A symbolic solution for the propagator from initial state (wave field) at xo to
final state (wave field) at x, is given as the phase-space path integral:

p x; r?ð Þ p xo; ro
?

	 
��� 
¼
Z

Dr? xð Þ
Z

Dp? xð ÞeiS r?;p?ð Þ ð15:16Þ

with ‘‘action’’, S r?;p?ð Þ �
R x

xo dx p?
dr?
dx �H x; r?; p?ð Þ

	 

.

Discretizing the ‘time’ from xo to x, x0\x1\ � � �\xN�1\xN\xNþ1 ¼ x, and
utilizing standard properties of the exponential gives for the propagator:

YN
j¼1

Z
dpje

irjþ1pj e�iH x;rj;pjð ÞDx
Z

drje
�irjpj ð15:17Þ

We approximate this with the following form of the propagator acting on the initial
field at xo: p xo; r

?
o

	 

, to give the total field at the receivers:

p xN ; r
?
N

	 

¼
YN
j¼1

t xj; r?
	 


� F�1P� Fp xo; r
?
o

	 

ð15:18Þ

The � indicates element-wise multiplication of two matrices: i.e. if Akl, Pkl are
components of 2D matrices, P� Að Þkl� PklAkl

	 

. F indicates Fourier Transform.

P is the 2D matrix with elements, Pkl � eie
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0� kDkð Þ2� lDkð Þ2
p

, e is step length in x,
Dk is step length in transform space: ky, kz, and

t xj; r?
	 


� tj y; zð Þ � eie k xj;y;zð Þ�k0ð Þ � eiek0 c xj;y;zð Þ�1ð Þ ð15:19Þ
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is the ‘‘phase mask’’ element-wise multiplication operator discussed in U.S. Patent
No. 6,636,584.

15.5.1.3 Gradient of the Functional F

The Polak-Ribiere version of the nonlinear conjugate gradient algorithm requires
the gradient of functional F:

o

oc
F cð Þ ¼

X
lh

o

oc
rlh

� �T

rlh � J
T
xr ð15:20Þ

where J � orlh
oc is the Jacobian operator. This is obtained in the following manner.

dcxh
j ¼ vj � f j

rxh
is the contribution to the gradient, from view angle h and x-coor-

dinate, xj. It is the point-wise product of two 2-dimensional arrays of size (Ny, Nz).

viz., vj � F�1P� Fp xj�1; r
?
j�1

� �
, the total field at propagation distance j-1,

propagated through water, to propagation distance j. f j
rxh

is the field at xj, resulting
from treating all receivers, at tomographic view angle h, as transmitters, at fre-
quency x. The strength of each ‘transmitter’ is: f N

rxh
� dfN , i.e., the difference

between the measured and predicted fields at the receivers, and we recursively
define f j

rxh
¼ F�1P� Ftjf jþ1

rxh
, for j = N - 1,…,0.

15.5.1.4 Step Length Calculation for Ribiere-Polak Conjugate
Gradients

Step length an � gT
n dn

Jndnk k2, dn is the RP descent direction. gn is the gradient of the

functional F, and J � orlh
oc is the associated Jacobian.

The action of the Jacobian on the descent direction is given by

Jndn ¼
orlh

oc

� �
d ¼ dpN ð15:21Þ

where: dpj ¼ Apj�1 � dtj þ t xj; r?
	 


� A dpj�1

	 

, j = 1,..,N, and where A �

F�1P� F propagates a field a distance e through water, and dtj r?
	 


�
iek0tj y; zð Þdc xj; y; z

	 

from the definition of the phase mask tj.

Having determined the step length and descent direction the update is given by

c nþ1ð Þ ¼ c nð Þ þ andn ð15:22Þ
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15.5.2 IST/RT Scanner

A practical scanner employing IST imaging was developed by Techniscan Medical
Systems (now by CVUS LLC, Salt Lake City, UT) (Greenleaf et al. 1974, 1975,
1978; Glover and Sharp 1977). The current scanner that is the subject of this
section was employed in clinical research at the University of California, San
Diego (UCSD), Mayo Clinic, Rochester, MN, and University of Freiburg,
Germany to evaluate clinical feasibility of using IST and RT to analyze and detect
breast masses as well as monitor changes due to therapies. All of the data pre-
sented here are from UCSD where the majority of the work was done.

The TMS scanner (Fig. 15.19) provides an automated, standardized scan of the
whole breast nearly independent of operator expertise. The patient lies prone with
her breast pendant but docked to a retention rod in a controlled 31 �C water bath
within the field of view of several transducer arrays. The IST transmitter and
receiver array rotate around 360� to collect 180 tomographic views of ultrasound
wave data (Fig. 15.20). The transmitter emits broad-band planar pulses
(0.3–2 MHz) while the receiver array, comprised of 1,536 elements in 8 vertical
rows, digitizes the time signal. Total scan time is *10–20 s per level, *8 min for
the average breast. 3D transmission and aberration-corrected RT reconstructions
are accomplished in *40 min employing 2 nVidia GPUs for a portion of the
process.

Fig. 15.19 IST/RT scanner with transducer arrays in water tank
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15.5.3 Reflection Tomography (RT)

The scanner includes a set of three transceiver arrays that are coincident with the
transmission arrays to simultaneously acquire conventional B-scan data. The
arrays have bandwidths of *2–8 MHz and are focused at depths of 2.5, 4.0 and
7.5 mm to provide complete depth of coverage of the breast. The three coincident
RT arrays (3.6 MHz center frequency, 80 % bandwidth) spaced at 48� are angled
upward at 12� to access the chest wall. A high-resolution RT algorithm was
developed that utilizes the sound speed image to correct for refraction and
attenuation images to adjust amplitude along the ray. The resulting backprojected
RT image is a 360� B-scan image compounded from 60 views. The speed of sound
and attenuation images resulting from the 3D inverse scattering algorithm are used
to correct for refraction effects in the reflection algorithm. The canonical ray-
tracing equations derived from the eikonal equation

d

ds
n

dr

ds

� �
¼ rn; n xð Þ ¼ co=c xð Þ ð15:23Þ

are solved to give the energy path corrected for refraction due to speed variation.
The attenuation images are used to adjust the displayed amplitude of the back-
scattered energy along the computed ray.

Fig. 15.20 IST/RT
transducers arrangement.
1, 2, 3 are the reflection
transceivers coincident with
the transmission arrays
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15.5.4 IST and RT Results

15.5.4.1 Scanner Performance

2D reconstruction is completed in seconds, while the full 3D reconstruction is
accomplished in *24 min for average size breast using 2 GPUs. Image quality is
excellent with resolution measured as FWHM of LSF of 0.8 mm for RT and
1.5 mm for IST. As shown in Fig. 15.21 sound speed detectability is 7.5 m/s and is
highly linear from 1,325 to 1,700 m/s (R2 = 0.992). Sound speed is a function of
tissue stiffness, analogous to but not equal to bulk modulus. Attenuation tomo-
grams are a function of tissue structure and composition while providing image
contrast over a wide range (0–4 dB/cm/MHz) to assist in classification of masses.

Reflection tomography provides approximately twice the in-plane resolution as
the transmission IST images as expected from theory. Image artifacts from com-
pounding 60 views during 3608 rotation are greatly reduced by the refraction
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Fig. 15.21 Measured sound speed accuracy. Minimum detectability is *7.5 m/s

Fig. 15.22 Breast shaped urethane phantom scanned and reconstructed with RT algorithm. The
right image is with refraction correction using the IST sound speed map while the left image is
without
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correction as shown in Fig. 15.22 for a urethane phantom with a range of inclu-
sions (breast size and shape but not entirely tissue equivalent).

15.5.4.2 Patient Study Population

Female patients recruited to the IRB-approved protocol were referred for a diag-
nostic breast sonogram as the result of prior findings on mammography, physical
exam or previously known conditions. The purpose of the study was to measure a
range of tissue properties in women with widely varying breast sizes and mam-
mographic densities, to assess reproducibility of findings and to examine depiction
and quantitative properties of masses confirmed by biopsy for suspicious lesions or
long-term follow-up for benign findings in comparison to hand-held sonography.
The statistical design was to assess equivalence to sonography (93 % power).

15.5.4.3 Clinical Evaluation

Although more than 450 patients have been scanned with versions of IST in the
past 5 years, under the current IST/RT protocol 172 patients with an age range of
19–78 years were scanned by the end of 2011, including thorough validation with
other clinical findings and long-term follow-up (André et al. 2008; Wiskin et al.
2011; Callahan et al. 2007). The distribution of lesions imaged is as follows: 21 %
simple cysts, 17 % complicated cysts, 36 % various solid benign, 26 % cancers,
12 no findings. By study design, this mix of cases very closely matched the three-
year average of cases in the UCSD diagnostic breast imaging clinic. Mass sizes
ranged from 2–39 mm and there was good agreement in size (R2 = 0.7) between
sonography and IST. Not surprisingly, the 3D representation of IST allowed a
more accurate representation of the maximum mass diameter where sonography
normally only reports radial and anti-radial dimensions. Even more importantly,
for 13 patients who also had contrast enhanced MRI there was nearly perfect
agreement of size, shape and margins to the IST sound speed images. This high
correlation to MRI, which presently serves as the standard for delineating the
margins and extent of cancerous breast masses, is a promising opportunity for IST
to impact patient care with a much less expensive, less invasive but equivalent
imaging modality.

The general quantitative IST attributes of masses can be summarized as
follows:

• Simple cysts: low sound speed compared to water, low attenuation
• Complicated cysts: low to intermediate sound speed compared to water, low

attenuation
• Solid benign masses: higher sound speed and attenuation
• Malignancies: highest sound speed and attenuation
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The highest sound speed values that were measured in any patient were all
associated with malignant masses, never with normal structures or benign masses.
In addition, the three sets of IST/RT images provide reproducible information
about mass shape, margins, volume, architectural distortion, texture, relative
echogenicity, etc.

A sample of the range of findings found in patients is presented in the following
sections. Images are usually presented to the Radiologist in rows with sound speed
at the top in vertical columns of coronal, axial and sagittal views from left to right
as shown in Fig. 15.23.

15.5.4.4 Research Subject: Simple Cyst

The patient is a 57 year-old female with history significant for profound nipple
discharge of the left breast. The images in Fig. 15.23 above are of the right breast,
which had a negative biopsy five years prior to the IST scan. The patient com-
plained of a palpable abnormality on the right lasting for approximately one
month. A mass was detected in the retroareolar region on mammography and was
confirmed by sonogram to be cystic. USCT shows a large mass with distinct
margins readily seen just posterior to the nipple. The sound speed values of the
mass (upper row Fig. 15.23) are slightly higher (1,540 m/s) than that of water
(1,510) while the attenuation images show a black void representing low attenu-
ation values consistent with that of fluid (*0 dB/cm) (Fig. 15.23).

Water Bath

Attenuation

Coronal Axial Sagittal

Sound Speed

Fig. 15.23 Simple cyst in the right breast
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15.5.4.5 Research Subject: Benign Fibroadenoma

In this case a 40 year old subject had a persistent biopsy-confirmed fibroadenoma in
the left breast that was followed with a series of diagnostic sonograms. The mass
was 10 mm, it was hypoechoic on sonography with posterior shadowing, distinct
margins consistent with a solid mass, and it was found 5 cm from the nipple at the
3:00 position (Fig. 15.24). On IST/RT (Fig. 15.25) the mass is seen at 3:00,
8 9 9 9 6 mm diameter with intermediate sound speed (1,560 m/s), intermediate
attenuation (1.6 dB/cm/MHz), and hypoechoic with distinct margins on RT.

15.5.4.6 Research Subject: Invasive Ductal Carcinoma

This case was of a 33 year old woman, with no family history of cancer, seen for a
lump or thickening of the breast. Mammography (Fig. 15.26, left) showed a het-
erogeneously dense, spiculated 2 cm mass with malignant-appearing micro cal-
cifications in the left breast in the middle outer quadrant. The sonogram
(Fig. 15.26, right) shows at the 1:00 position in the breast, 2 cm from the nipple an
irregular, heterogeneous, highly suspicious mass with angular margins and abrupt
interface, 1.9 9 1.2 cm in diameter. Biopsy confirmed it was invasive ductal
carcinoma.

The IST sound speed and RT images (Fig. 15.27) show the mass at 1:00 in the
coronal view, 2.2 9 1.1 9 1.6 cm, corresponding well to the measurements by
sonogram. The mass has very high sound speed (mean 1,570 m/s), bright com-
pared to water, high attenuation (2.3 dB/cm/MHz) and appears hypoechoic with
spiculated margins and irregular shape on RT with architectural distortion similar

Fig. 15.24 Biopsy confirmed fibroadenoma, palpable mass at 3:00, 5 cm from nipple, 10 mm
solid
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to the mammogram. Precisely as the IST/RT images, the coronal T1-weighted
contrast-enhanced MRI (Fig. 15.28, right) showed a mass in the same location
with dimensions 2.1 9 1.7 9 1.8 cm. The fluid-filled void from the core biopsy is
visible in both sound speed and MR images.

Fig. 15.25 UST images with sound speed on the top row, attenuation on the middle row,
reflection tomography on the bottom row. The fibroadenoma is seen as a mass, marked by the red
cross hairs, with high sound speed at 3:00 on the coronal view, intermediate attenuation and
hypoechoic on the reflection tomogram

Fig. 15.26 Mammogram (left), sonogram (right)
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As shown in Fig. 15.29, normal tissues and masses may be characterized by
their acoustic properties. Fatty normal tissues (indicated by unfilled diamonds) are
consistently very low sound speed with lower attenuation, therefore, fatty tissues
appear dark on sound speed and attenuation images. Fibroglandular tissues (shown
by the clear triangles) have intermediate sound speed and attenuations values.
Simple cystic masses (shown by green circles) have consistently low attenuation
with intermediate sound speed close to that of water, while complex cystic masses
(shown by the blue circles) are higher in attenuation. Solid benign masses such as
fibroadenomas (shown by the purple triangles) are wide ranging in sound speed.

To date, cancers (shown by the red squares) have shown both high sound speed
(highest sound speed values ever measured were confirmed cancers) and high

Fig. 15.27 Sound speed IST in upper row, RT lower row. Coronal (left), cranio-caudal (middle),
sagittal (right)

Fig. 15.28 RT (left), sound speed (middle), T1 weighted MRI (right)
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attenuation. Clearly there is some overlap in the acoustic properties of masses, but
these data show promise that the quantitative WBU images may be helpful in
differentiating masses.

A 98 % agreement that a mass was present in the correct location was found
between IST/RT and sonography. It was determined from comparison to mam-
mography and physical exam that three masses were outside the field of view of
IST, either immediately at the chest wall or in the upper outer quadrant in the
axillary tail. No statistically significant differences were observed between the two
modalities in terms of sensitivity and specificity.

15.5.5 Summary

The attributes of whole breast IST and RT present the following potential clinical
advantages: (1) operator independence with automated scanning, (2) true anatomic
breast positioning, i.e., no breast compression or distortion, (3) no ionizing radi-
ation, (4) true quantitative 3D imaging algorithms (not just stacked 2-D images),
(5) accurately registered 3D IST and RT images, (7) global views of both breasts
for detailed contralateral and serial comparisons, and (8) ability to provide
quantitative tissue characteristics that have thus far, not been available in medi-
cine. These characteristics provide unique advantages in the clinical setting for
applications including, but not limited to, repeat breast imaging that is safe and
cost-effective, whole-breast screening for high-risk women, young women or
women with dense breasts, accurate volumetric analysis for detailed surgical
planning, and monitoring over time of response to surgery and therapy.

Fig. 15.29 Summary of
results for sound speed vs.
attenuation values for normal
tissues in 75 subjects. Data
for the three sample cases
above are indicated by the
red, blue and green boxes
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15.6 Conclusion

USCT has long history so it is a fair question to ask if the technology will soon be
ready for clinical use. The image quality, speed and performance of the IST/RT
scanner described in Sect. 2.5 appear to be suitable and practical enough to play a
role in breast cancer detection, diagnosis and management. Certainly in the very
near future it will be ready for thorough objective clinical testing and with clinical
success may come commercial viability. In addition, a new scanner is imminent
from Delphinus Medical Technologies (Detroit, MI) that encompasses many
design changes over the early prototype described in (Duric et al. 2005, 2006,
2007), which should lead to significant improvements in image quality. It is an
interesting and important time for USCT, with perhaps an opportunity to finally
advance from the laboratory to routine clinical use.
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