
Chapter 10

Mediterranean Phenology

Donatella Spano, Richard L. Snyder, and Carla Cesaraccio

Abstract This chapter describes the five Mediterranean zones around the world

and discusses vegetation and environmental factors, including climate, that make

the Mediterranean Climate zones unique. Several key reports on the role of climate

and climate change on phenological development of Mediterranean ecosystems are

presented and discussed. The chapter talks about the impact of current and

projected temperature and precipitation on phenology and emphasizes the impor-

tance of precipitation patterns on response to higher temperature. One conclusion is

that more studies are needed on drought impact on phenology since water stress can

increase plant temperature and result in even faster phenological development.

Drought can speed up phenological development, but it can also impede growth

and lead to reduced productivity.

10.1 Mediterranean Characteristics

Mediterranean-type ecosystems are found in the far west regions of continents

between 30� and 40� north and south latitude (Fig. 10.1). They cover about 2.73

million km2 (IUCN 1999), with the majority (i.e., 73 %) of the ecosystem in

the Mediterranean Basin including parts of Spain, Turkey, Morocco, and Italy
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(Rundel 1998). Areas are also found in California, Chile, Southwest and Southern

Australia, and South Africa. In response to the climate, similar woody, shrubby

plants, with evergreen sclerophyll leaves, have developed in communities of varying

density. The names for the shrub vegetation vary by region because of language and

plant structure. Common names for the vegetation include: maquis and garrigue
in the Mediterranean Basin, chaparral in California, matorral in Chile, fynbos or
renosterveld in South Africa, and mallee (kwongan or heathlands) in Australia.

Mediterranean ecosystems formed as a result of the unique climate, which falls

in a transition between dry, tropical and temperate zones (Fig. 10.1).

The main characteristics are (1) variable winter rainfall, (2) summer droughts of

variable length, (3) intensive summer sunshine, (4) mild to hot summers, and (5)

cool to cold winters. Commonly, there is a cold ocean current off the West coast of

regions with a Mediterranean climate that strongly influences the weather. The

range of summer and winter temperatures mainly depends on proximity to the

ocean (or sea) with higher temperatures near the coast during cooler periods and

higher temperatures inland during warmer periods. Temperatures also vary with

elevation having consistently cooler temperature in the mountains. Excluding

mountains, the annual precipitation range at lower elevations typically varies

between 250 and 900 mm with most falling in the winter and spring (i.e.,

November–April in the Northern Hemisphere and May–October in the Southern

Hemisphere). Outside of the Mediterranean Sea region, westerly winds over cold

ocean currents often lead to heavy marine fog that maintain low temperatures on the

coast during summers. In the winter, the coastal areas tend to be fog free, whereas

inland valleys that receive winter rainfall are prone to high-inversion radiation fog.

Differences in relative humidity are mainly related to temperature variations over

the zone rather than absolute humidity. Because the Mediterranean Sea has variable

and warmer surface temperatures, the dew point temperatures are more variable

over the Mediterranean Sea region.

Fig. 10.1 Geographical distribution of Mediterranean-type ecosystems
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The five Mediterranean zones have similar characteristics, but there are important

differences within each of the regions. Differences within a region are mainly related

to the length of the summer drought period, which generally decreases as one moves

poleward. For example, di Castri (1973, 1981) described a six-zone climate classifi-

cation based on the length of drought period after Emberger (1962), as shown in

Table 10.1.

Soil and climate both influence the development of natural vegetation, so a short

discussion of soils is included here. More extensive discussions are presented by

Thrower and Bradbury (1973), Zinke (1973), di Castri et al. (1981), Davis and

Richardson (1995), Joffre et al. (1999), and Joffre and Rambal (2002). Most Medi-

terranean soils exhibit (1) considerable erosion, (2) alluvial deposition, (3) limited

profile development, and (4) decreased soil development with increasing elevation.

Because limestone is deficient in some areas, those soils often have water infiltration

problems. Due to the lower precipitation, parent materials weather slower in Medi-

terranean zones than in more humid regions. Because of seasonal drying, some soils

are dominated by shrinking and swelling processes and produce Vertisols. The soils

tend to vary from reddish to brownish with increasing elevation. Higher precipitation

and cooler temperatures at higher elevations have led to the development of predom-

inant brownish podzolic soils with higher organic matter and moderate lime

accumulations at middle elevations (500–1,000 m). At low elevations (0–500 m)

with less precipitation and higher temperature, older terra rossa soils, which have

lower organic matter and a reddish color due to iron oxidation, developed from

limestone. In the river valleys, alluvial soils are found as highly weathered soils in

terraces, light and well-drained in alluvial fans, and heavy and poorly drained in the

valley floors. In some valley basins, fine textured soils have greatly inhibited drain-

age. In many areas within Mediterranean zones, older paleosoils, which were formed

under different climate conditions, are prevalent.

10.2 Vegetation Types

Although the climate developed relatively recently in geologic time, distinctive

flora with similar characteristics has evolved in the fiveMediterranean zones. While

the climate is similar within the five Mediterranean zones, high heterogeneity in

plant communities is common. This heterogeneity developed because of large

Table 10.1 Climate

classification based on length

of summer drought period

Classification Drought period (months)

Perarid 11–12

Arid 9–10

Semiarid 7–8

Subhumid 5–6

Humid 3–4

Perhumid 1–2
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variations in landforms, microclimate, soils, phylogenetic origin, evolutionary

strategy, ecological tolerance, and land use within the ecosystem.

The appearance of natural vegetation and landscape forms is strikingly similar

between the five Mediterranean zones. The plants are woody, shrubby, and ever-

green. The plant leaves tend to be small, broad, stiff, thick, and waxy or oily. In

some locations, there are small trees with or without an understory of annual and

herbaceous perennials. The vegetation represents different successional stages in

relation to climate, topographical features, and human impact (di Castri et al. 1981),

and it is prone to wildfires.

di Castri et al. (1981) presented a classification of six Mediterranean climate

types (Table 10.1), based on the length of summer drought, and provided informa-

tion on the structure of vegetation in each of the climate types. He noted that there

were several overlapping clusters of characteristics between the five regions.

However, the similarities between vegetation structures were most apparent

between California and Chile, and between Australia and South Africa.

Mediterranean ecosystems have a large plant diversity including about 48,250

species, which is approximately 20 % of the world total (Cowling et al. 1996). The

Mediterranean Basin, South Africa, Southwestern Australia, and California have about

25,000; 8,550; 8,000; and 900 species, respectively (Archibold 1995; Rundel 1998).

The Mediterranean Basin is mainly covered by scrub, sparse grass, or bare rock.

However, there are scattered evergreen trees that suggest earlier presence of mixed

forests. Several species ofQuercus including the holm oak (Quercus ilex) prevail in
the west with cork oak (Q. suber) dominant on non-calcareous soils. Arbutus unedo
and other shrubs are found in the same plant communities. As aridity increased in

the east, Kermes oak (Q. coccifera) became more prevalent than holm oak. Stone

pine (Pinus pinea), cluster pine (P. pinaster), and Aleppo pine (P. halepensis) are
common at higher elevations in the west. In the drier eastern region (e.g., Syria,

Lebanon, and Israel), Q. calliprinos, which is an evergreen oak, and deciduous oaks
are common. Corsican pine (P. nigra) and P. brutia often dominate in locations

where wildfires occurred. Q. ilex is also found on the Atlas Mountains of North

Africa at the elevation of 2,000 m. Shrublands are divided into maquis, which
comprises evergreen shrubs and small trees about 2.0 m tall, garrigue on calcareous
soils, and jaral on siliceous soils. All communities have representative species and

the size depends on local conditions.

South African sclerophyll plant communities include mountain and coastal

types (Moll et al. 1984). The mountain fynbos mainly consists of broad-leaved

proteoid shrubs, which are found at elevations up to about 1,000 m and grow to

heights between 1.5 and 2.5 m. At higher elevations, 0.2–1.5 m tall ericoid shrubs

are dominant. In addition, 0.2–0.4 m tall shrubs and tussocky hemicryptophytes

are present in the high elevation communities. Tussocky restioid shrubs, which

reach 0.3 m, dominate communities at higher elevations. In high-elevation, arid

regions, abundant succulent forms of karoo are the most common vegetation. The

west coast is dominated by open ericoid cover with shrubs growing to 1.0 m tall.

Small shrubs, grasses, and annuals form an open heath with 1–2 m tall proteoids

along the south coast.
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Western Australia is dominated by forests of karri (Eucalyptus diversicolor) and
jarrah (E. marginata). Karri is restricted to regions with acidic soils (Rossiter and

Ozanne 1970) and it grows in association with other tall eucalyptus. Casuarina
decussata and species of Banksia are common in the understory of these forests.

Jarrah forests occur on lateritic soils in areas with lower precipitation. These forests

change to wandoo (E. rudunca) woodland as the annual precipitation decreases.

The western region is separated from South Australia by the acacia shrubland.

Mallee is the dominant cover in the southeastern Mediterranean zone. The preva-

lent species are E. diversifolia and E. incrassata. In more favorable sites, species

such E. behriana grow with ground cover of herbs and grasses with few

sclerophyllous shrubs (Specht 1981). These communities integrate with sclerophyll

forests of stryngbark (E. baxteri) and messmate (E. obliqua).
The Chileanmatorral communities occur in the coastal lowlands and on the west

facing slopes of the Andes. Most matorral species are 1–3 m tall, evergreen shrubs

with small sclerophyllous leaves. Many spinescent species and drought-deciduous

shrubs are also important in these regions (Rundel 1981). Salix chilensis,
Cryptocarya alba, and other trees are found in wetter regions with shrubs forming

a cover.Matorral evergreen shrubs (e.g., Lithaea caustica and Quillaja saponaria)
dominate coastal regions. In more arid locations, succulent species and Fluorensia
thurifera are common. The central valley of Chile is dominated by Acacia caven
(Ovalle et al. 1990, 1996).

California chaparral typically consists of a dense cover of 1–4 m tall, evergreen

shrubs. In California, and particularly in the south, chamise (Adenostoma
fasciculatum) is common and California lilac (Ceanothus cuneatus) is sometimes

associated. In the Sierra Nevada foothills, chaparral occurs above 500 m elevation.

Pure stands of California lilac are considered a fire-successional form in Southern

California, but it is a dominant species of chaparral in Northern California (Hanes

1981). Manzanita (Arctostaphylos spp.) occurs throughout California, especially

where there is snow and temperatures drop below freezing in winter. Various

Quercus species may be present on lower hillsides. Coastal sage scrub (e.g.,

Artemisia californica) is the main vegetation along the coast.

Common characteristics of Mediterranean zones are summer drought, fire,

tectonic instability, and variable floods and erosion during winter. Perhaps the

most important of these is summer drought; however, drought tends to be more

severe in California, Chile, and the subarid region of the Mediterranean Basin

(Rundel 1995, 1998). In fact, the Mediterranean climate exhibits extreme year-to-

year variability. In the last century, the rainfall trends were relatively consistent

showing a general decrease. Mediterranean ecosystems are likely to be highly

affected by climate change (Cubasch et al. 2001; IPCC 2001, 2007) with a higher

variability of precipitation in many areas (Rodrigo 2002; Gao et al. 2006; Beniston

et al. 2007; Giorgi and Lionello 2008; Somot et al. 2008). In the Mediterranean

Basin, rainfall is projected to decrease by approximately 15 % for March–May,

42 % for June–August and 10 % for September–November (Somot et al. 2008).

Concurrently, inter-annual variability is expected to increase (Gao and Giorgi

2008), and the frequency of long drought periods (4–6 months) to be multiplied
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by 3 at the end of this century (Sheffield and Wood 2008). In addition, warmer

conditions may increase evapotranspiration demand by 200–300 mm in the south,

which will intensify the characteristic summer drought of the Mediterranean region

(Valladares et al. 2004). The drier summers could seriously impact on plant activity

(Christensen et al. 2007) and ecosystem productivity (Valladares et al. 2004; Ogaya

and Peñuelas 2007). Warming will also affect the other seasons and, although less

intense, drought will probably extend farther into the spring and autumn (Giorgi

et al. 2004). Since spring is the main vegetation growth season, changes in temper-

ature and precipitation could strongly affect the structure and functioning of Medi-

terranean ecosystems effects on plant phenology and growth (Bernal et al. 2011).

Although less well documented, it is likely that more aridity will not eliminate

the intermittent rainy years (Beniston et al. 2007) that occur in some regions. These

sporadic rainy years have a strong impact for regeneration (Castro et al. 2005;

Holmgren et al. 2006; Mendoza et al. 2009). Despite its importance, the role of

intermittent rainy years in maintenance of ecosystem structure needs more study

(Castro et al. 2005; Holmgren et al. 2006).

Dense cover and high woody biomass of shrublands of Mediterranean

ecosystems make them prone to wildfire, which is an important disturbance regime

in Mediterranean climates. Frequency of natural wildfire differs greatly between

and within Mediterranean zones depending on many factors (Mooney and Conrad

1977; Rundel 1981, 1983; Trabaud and Prodon 1993; Oechel and Moreno 1994).

Although fire is a natural disturbance in Mediterranean ecosystems, the

frequency and intensity of wildfires has increased dramatically in recent decades

(Rundel 1998). This has led to changes in forest vigor, structure and soil stability

(Kuzucuoglu 1989; Naveh 1990). Climate change is likely to increase fire fre-

quency and fire extent (Fischlin et al. 2007). Greater fire frequencies are noted in

Mediterranean Basin regions (Pausas and Abdel Malak 2004) with some exceptions

(Mouillot et al. 2003). Double CO2 climate scenarios increased projected wildfire

events by 40–50 % in California (Fried et al. 2004), and doubled the fire risk in

Cape Fynbos, South Africa (Midgley et al. 2005), favoring re-sprouting plants in

Fynbos (Bond and Midgley 2003), fire-tolerant shrub dominance in the Mediterra-

nean Basin (Mouillot et al. 2002), and vegetation structural change in California

(e.g., from needle-leaved to broad-leaved trees and from trees to grasses) and

reducing productivity and carbon sequestration (Lenihan et al. 2003). Studies by

Viegas et al. (1992) helped to identify critical periods of high potential fire risk of

Mediterranean shrubland ecosystems.

Pellizzaro et al. (2007) in Italy and Viegas et al. (2001) in Portugal and Spain

showed that knowledge of both the mean moisture content and the phenology of

plants are useful for fire risk assessment. Two groups of Mediterranean species

were identified for different ranges of leaf fuel moisture content (LFMC) values

throughout the year and different relationships between LFMC, seasonal changes of

meteorological conditions and phenological stages. The experimental data reveal

the different physiological and morphological responses by vegetation to cope with

the summer drought season typical of the Mediterranean climate. Species such as

Cistus and Rosmarinus avoid water stress by adjusting the growing period or by
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limiting water loss by reducing their transpiring surface. These species generally

grow as shallow rooted shrubs and, therefore, are particularly affected by variations

in moisture content of the surface soil layers (Correia et al. 1992; Munné-Bosch

et al. 1999; Gratani and Varone 2004). Pistacia lentiscus and Phillyrea angustifolia
are evergreen deep-rooted sclerophyllous species, tolerant to water stress and

affected by drought conditions only when particularly severe (Kummerow 1981;

Correia et al. 1992; Manes et al. 2002; Alessio et al. 2004). These species showed

the highest values of LFMC in spring during sprouting and flowering phases. In

summer, they partially reduced their vegetative activity that again increased in

autumn. Consequently, Pistacia and Phillyrea showed a seasonal pattern of LFMC,

although it was characterised by a range of values narrower than others such as

Cistus monspeliensis and Rosmarinus officinalis.
Deforestation, grazing, agriculture, fire events, and fire suppression have

changed vegetation community structure especially in recent decades. Increased

urbanization and land abandonment has led to uneven management more frequent

and larger wildfire disturbances (Rundel 1998).

Livestock grazing has greatly influenced Mediterranean ecosystems. A good

example is in California, where livestock grazing converted much of the grassland

from native perennials to exotic annuals from the Mediterranean Basin even prior to

immigration by large numbers of people of European ancestry (Rundel 1998). In the

late 1800s, agricultural expansion into the Central Valley and Southern California

caused extensive changes in natural communities. Later, agricultural and urban

expansion led to large changes in vegetation along the coast. Human activities

influenced grassland and oak woodlands of the State mainly by replacing native

perennial grasses with introduced annual grasses from Europe. Native Americans

purposely set fires to control vegetation, but European immigrants introduced fire

suppression as a management strategy in the late 1800s. This change in management

has led to fewer but more intense wildfires (Minnich 1983; Rundel and Vankat 1989).

When Spanish settlers arrived in Chile in the mid-1500s, they introduced grazing

and agriculture that greatly changed the natural ecosystems. The impact is most

obvious in the semi-arid transition region where over-grazing has caused

devegetation and desertification (Ovalle et al. 1990, 1996). Also, much of the Central

Valley now is covered with exotic annual grasses rather than the native grasses

(Gulmon 1977). Recently, Chile has become more urban having a plethora of

abandoned farms and ranches as the population leaves rural areas. This has led to a

big increase in mainly anthropogenic wildfires that have grown in size and intensity.

Even more recently, the planting of winegrape vineyards has expanded dramatically

in Chile and in California at the expense of native woodlands (Rundel 1998).

Agricultural development in Southwest Australia has resulted in widespread

fragmentation of mallee ecosystems mixed in with agricultural lands (Rundel

1998). The fragmented habitats tend to be too small to maintain viable plant

populations, which are also impacting on animal diversity. Deforestation is a big

problem in native eucalypt forests, and the resulting rise in water tables has led to

problems with saline paleosoil profiles (Rundel 1998), which threatens agriculture

as well as the replanting of forests. The introduction of exotic species has resulted in
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problems with biological diversity in the Mediterranean climate zones (Thuiller

et al. 2005; Gritti et al. 2006; Garcı́a-de-Lomas et al. 2010).

Anthropogenic impacts on the Mediterranean ecosystems in South Africa are

less obvious than in the other regions to a large extent because the soils of the region

are not conducive to support cereal and vegetable production (Rundel 1998).

However, large animal hunting and deforestation have impacted on the vegetation.

A large introduction of non-native trees, especially Australian acacias, along rivers

and streams, has occurred.

10.3 Phenology in the Mediterranean Climate

Mediterranean regions show seasonal changes in resource availability, which affect

growth and reproductive activities of vegetation. Resource fluctuations have a

strong influence not only on the structure and composition of the vegetation but

also on the seasonal behavior pattern of the species. For example, the

sclerophyllous forest can remain active throughout the year, but there is a distinct

annual growth rhythm because photosynthesis is limited by drought and nutrients.

However, several other species shed leaves during summer drought period.

Over recent decades, the economic, ecological, and cultural value of Mediterra-

nean vegetation was increasingly recognized (Quezel 1977; Joffre and Rambal

2002; Rundel 2007), and many studies were devoted to improving management

and protection of Mediterranean areas. In particular, comparative research on the

structure of Mediterranean region ecosystems, which included a detailed assess-

ment of phenological species behavior in the different areas, was performed. The

first systematic study on Mediterranean vegetation was presented by Mooney et al.

(1977) within the International Biological Program (IBP), which started in 1970.

The authors summarized the results of the comparison of the structural, functional,

and evolutionary features of California and Chile ecosystems. At the plant commu-

nity level, there is a longer protraction of each phenological event in Chile than in

California due to both the greater diversity of growth form and more moderate

climate in Chile (Mooney et al. 1977). In addition, di Castri et al. (1981) pointed out

that there were more species with non-overlapping phenological activities in Chile.

As more information on the phenology of ecosystems in the Mediterranean

Basin, South Africa and Australia became available, it was noted that there is a

pronounced seasonal rhythm in the vegetative growth throughout the year in

Mediterranean regions. However, less similarity in phenological pattern was

found when comparing Chile, California, and Mediterranean Basin with South

Africa and Australia. In South Africa and Australia, shrubs grow in the summer

as well as in the spring (Cody and Mooney 1978) because of differences in origin of

the biota (Specht 1973) and nutrient availability in the soils (Specht 1979, 1981).

Comparative analysis of Mediterranean species development was intensified

during the 1980s with more emphasis on the interactions between temperature

and water as limiting factors. Tenhunen et al. (1987) summarized the results of
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years of cooperative work between several scientists on functional analysis in

Mediterranean ecosystems. The work included studies on plant growth and devel-

opment. Montenegro (1987) discussed the difficulty in comparing these ecosystems

because of different methodologies used to quantifying phenology and growth. In

Portugal, phenological observations conducted on different species (Quercus
coccifera and Q. suber, Arbutus unedo, and Cistus salvifolius) showed that the

flowering stage occurred during all times of the year except the driest months in late

summer and the coldest months in winter. Shoot growth was intense in the absence

of water stress, and leaf drop was possibly more intense during drought (Pereira

et al. 1987). Similar results were obtained on Q. coccifera and Arbutus unedo in

Greece (Arianoutsou and Mardilis 1987), although the responses to the physical

environment were not synchronous for the two species. Moll (1987) observed that

the differences between vegetation in South Africa and in other Mediterranean

regions reported by Mooney and Kummerow (1981) were mostly due to the fact

that they compared non-heath shrubland in Chile, California, and the Mediterranean

Basin with heath shrubland in South Africa.

The occurrence of vegetative primary growth in spring is observed in the

Mediterranean climate regions of the Northern hemisphere, and in Chile. In the

South African fynbos, however, this phenophase is observed throughout the year,

mainly due to the milder winters (Orshan 1989). The protraction of stem vegetative

growth towards sub-optimal periods, like the end of winter or the beginning of

summer, seems difficult to avoid for species with long phenological cycles, such as

Lonicera implexa, Buxus fruticosum or B. sempervirens (Milla et al. 2010).

In recent decades, more attention was directed to the relationship between

phenological events and seasonal fluctuations in nutrient and water uptake. A

phenological survey conducted in central Italy (de Lillis and Fontanella 1992)

showed the effect of increasing water stress and nutrient limitations on several

species (Cistus monspeliensis, Pistacia lentiscus, Calicotoma villosa, Quercus ilex,
Erica arborea, Arbutus unedo, Phillyrea media, Smilax aspera, and Ruscus
aculeatus). Phenological rhythm of the community was closely correlated with

changes in environmental conditions, and large variation occurred among species.

In all species, peak growth was reached between March and early July, flowering

occurred before July except for A. unedo and S. aspera, which flowered in autumn

and winter, and fructification was unrelated to summer aridity. An analysis of water

availability and growth modulation allowed for division into drought-tolerant

species (Pistacia lentiscus, Phillyrea media, Arbutus unedo, and Ruscus aculeatus),
drought-deciduous species (Calicotoma villosa), and semi-deciduous species

(Cistus monspeliensis). Carbon leaf concentration peaked and nitrogen decreased

when growth stopped. Correia et al. (1992) compared the phenological

characteristics of four summer semi-deciduous (species of Cistus) and evergreen

(Pistacia lentiscus) shrubs in Portugal, corresponding to earlier and later succes-

sional stages of vegetation. The Cistus species were similar in growth, flowering,

and fruiting phenology, showing a long period of leaf emergence relative to

P. lentiscus, which had a flush-type leaf emergence and an almost simultaneous

leaf fall. In general, Pistacia showed lower leaf nitrogen contents than the Cistus
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species, with minimum value in winter, when the Cistus species had the highest

concentrations of nitrogen. However, increased drought frequency and intensity is

likely to greatly affect phenology of these species in the future. Little information is

known about the relationship between phenological stage occurrence and duration

and intensity of drought period.

Spano et al. (1999) recorded weekly phenology observations for a period of

11 years on the common species Pistacia lentiscus, Olea europea, Myrtus
communis, Quercus ilex, Spartium junceum, and Cercis siliquastrum, and on the

exotic species Robinia pseudoacacia, Salix chrysocoma, and Tilia cordata in

Sardinia to investigate the impact of drought on phenology. The range of pheno-

logical event dates for the nine species varied widely, especially for flowering of the

exotic species. The authors showed that difference in accumulated degree-days

could not explain the variations in observed phenological development. During the

winter and spring, there seemed to be little difference in the flowering dates of

common species. However, the non-native species Salix chrysocoma and Tilia
cordata showed more inter-annual variability and both exhibited later flowering

when there was more rainfall during March (i.e., prior to flowering). There was no

relationship with rainfall recorded two or more months prior to flowering.

Duce et al. (2000) conducted phenological observations on three maquis species
and oak trees over the period 1997–1999 at Giara di Gesturi, a nature reserve

located in Southern Sardinia, Italy. About 46 % oak trees (Quercus suber) and about
32 % successional Mediterranean maquis with four dominant species (Arbutus
unedo, Pistacia lentiscus, Phillyrea angustifolia, and Myrtus communis) cover the
reserve. Flowering and full ripe fruit stages occurred about 1 month later in 1997 for

Quercus suber and Pistacia lentiscus and the response was related to rainfall

distribution and water deficit. In 1997, both species were affected by the lack of

spring rainfall, which led to a longer and more intense drought period. In 2002,

Duce et al. showed a large species variation in terms of observed flowering dates

and cumulative degree-day values, indicating that other factors in addition to heat

units affected plant development (Duce et al. 2002). In general, the flowering date

was postponed when the soil water was not limiting, so flowering occurred earlier

during drought years.

Simões et al. (2008) analyzed the phenological patterns, growth and internal

nutrient cycling of the Mediterranean shrubs Cistus salvifolius and Cistus ladanifer
during 2 years of contrasted precipitation to compare their life responses and their

competitive potential to cope with future climate change and drought. The two

species exhibited different responses to summer drought. C. salvifolius showed high
seasonal dimorphism in plant structure, with greater leaf shedding before summer

drought, while the structure and biomass of C. ladanifer showed little change

throughout the year. The increase in length and intensity of drought also caused

greater variation on growth rates and leaf duration and shedding in C. salvifolius
than in C. ladanifer. The results suggest that C. ladanifer has greater stress-

tolerance ability against drought. The phenological pattern of Halimium
atriplicifolium and Thymus vulgaris were analyzed by Castro-Dı́ez et al. (2005)

to provide information on their response to unfavorable periods of Mediterranean
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climate (winter and summer). The two species arrested all phenological activities,

during colder months, probably due to a cold-induced decrease of meristem activity

(Kozlowski and Pallardy 1997). In contrast, a species-dependent response to

summer drought was found, as T. vulgaris ended all phenophases in June, while

H. atriplicifolium extended most of them into a period with virtually no rainfall

(July and August). T. vulgaris seems suffer from more severe water stress than

H. atriplicifilium due to its shallower root system and arrested phenological activity

earlier in the summer. The different morphological and phenological traits of long

and short shoots in the two species suggest a specialization in carbon gain along

different time periods of the year.

10.4 Phenology and Climate Change

The last IPCC AR4 report (Christensen et al. 2007) stated that the Mediterranean

ecosystems may be one of the most impacted by global change drivers (Sala et al.

2000). Diverse Californian vegetation types may show substantial cover change for

temperature increases greater than about 2 �C. For example, mixed deciduous forest

may expand at the expense of evergreen conifer forest (Hayhoe et al. 2004). The

bioclimatic zone of the Cape Fynbos biome could lose 65 % of its area under

warming of 1.8 �C relative to 1961–1990 (2.3 �C, pre-industrial) with species

extinction of 23 % in the long term (Thomas et al. 2004). For Europe, only minor

biome-level shifts are projected for Mediterranean vegetation types (Parry 2000),

contrasting with between 60 and 80 % of current species projected not to persist in

the southern European Mediterranean region (global mean temperature increase of

1.8 �C) (Bakkenes et al. 2002). Inclusion of hypothetical and uncertain CO2-

fertilisation effects in biome-level modeling may partly explain this contrast.

Land abandonment trends, however, facilitate ongoing forest recovery (Mouillot

et al. 2003) in the Mediterranean Basin, complicating projections.

In Southwestern Australia, substantial vegetation shifts are projected under

double CO2 scenarios (Malcolm et al. 2002). Knowledge of the vegetation behavior

under extreme climatic events is important for understanding the response and

evolution of ecosystems in future climatic scenarios. This is particularly true for

areas such as those in the Mediterranean regions that are currently subjected to a

high degree of water stress (Peñuelas and Boada 2003) or to a progressive

aridification (Peñuelas et al. 2002; Peñuelas and Boada 2003), that currently exhibit

a great geographical and temporal variability in precipitation and water availability

(Peñuelas 2001).

Several papers have presented the possible effects of changing temperature and

water availability on the growth of forests. Kramer et al. (2000) presented models

simulating physiological features of the annual cycle for boreal coniferous,

temperate-zone deciduous, and Mediterranean forest ecosystems. In Spain,

Peñuelas et al. (2002) compared phenological data from 1952 to 2000 providing a

complete record of common plants, migratory birds and a common butterfly.
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A conservative linear treatment of data showed that, in 2000, leaves unfolded on

average 16 days earlier, leaf fall occurred about 13 days later, and plants flowered

an average of 6 days earlier than in 1952. In addition, fruiting occurred about 9 days

earlier in 2002 than in 1974. Butterflies appeared 11 days earlier and spring

migratory birds arrived 15 days later than 1952. The biggest change in both

temperature and phenophase timing occurred in the last 25 years.

Garcı́a-Mozo et al. (2010) present the phenological trend of several species in

response to climate change at six sites in southern Spain from 1986 to the

present. They focused on vegetative and overall reproductive phenology in

Olea europaea L. and Vitis vinifera L., as well as in various species of Quercus
spp. and Poaceae. A trend towards earlier foliation, flowering and fruit ripening

was observed for the trees, and temperature increase was identified as the cause.

Herbaceous species were more affected than trees by changes in precipitation.

Morin et al. (2010) analyzed the phenological response to artificial climate

change, obtained through experimental warming and reduced precipitation on

several populations of three European oaks in a Mediterranean site. Experimental

warming advanced the seedlings vegetative phenology, which caused a longer

growing season, and advanced the leaf unfolding date. Conversely, soil water

content did not affect the phenology of the seedlings or their survival. Thus, the

phenological response of trees to climate change may be nonlinear, which suggests

that predictions of phenological changes in the future should not be built on

extrapolations of current observations.

Pinto et al. (2011) showed that air temperature was the main environmental

driver of Q. suber budburst timing. This was also reported for other oak species of

the Iberian Peninsula (Morin et al. 2010; Peñuelas et al. 2002; Sanz-Pérez et al.

2009). High mean and maximum daily temperatures in periods close to budburst

accelerate more effectively bud development than in January and February. In the

period with the best fit between budburst date and temperature (late-March to

budburst) minimum daily temperature had no influence on budburst. The current

differences in the timing of the budburst (earlier inQ. faginea than inQ. ilex) would
be reduced in a global warming scenario, which could modify the competitive

relationships between seedlings of these two species in the regeneration phase of

mixed forests.

In many locations and species, chilling temperature accumulation is necessary to

break bud dormancy (Cannell and Smith 1983; Hänninen 1990; Kramer 1994).

Results from studies on Mediterranean species (Garcı́a-Mozo et al. 2008), and even

considering longer periods of temperature averaging (Pinto et al. 2011), however,

failed to show any evidence of the chilling effect requirement. Conversely, other

authors noted the importance of chilling even under Mediterranean conditions

(Cesaraccio et al. 2004; Jato et al. 2007; Morin et al. 2010).

The relationship between rainfall and budburst date is a controversial topic.

Pinto et al. (2011) found no relationship for the budburst triggering mechanisms in

Q. suber, which seem species specific regardless of local soil and water conditions.

Spano et al. (1999) found little effect of rainfall on budburst of Mediterranean

species. Peñuelas et al. (2004), however, reported an overall relationship between
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October to February rainfall and budburst date for a range of Mediterranean

species.

Miranda et al. (2002) found that budburst in Mediterranean evergreen oaks is

likely to occur earlier although probably within a range of species-specific photo-

period limits. Moreover, with respect to shoot elongation, two main situations may

arise: (a) in water-limited areas, a drier spring and summer will lengthen the tree

water stress period and restrict shoot elongation; (b) in fully watered places, shoot

growth is limited by nutrient availability prior to budburst. Commonly, future

phenology trends of Mediterranean evergreen oaks likely exhibit and earlier

budburst and reduced shoot elongation (Pinto et al. 2011).

Temperature is the major factor responsible for phenological changes affecting

flowering, fruit ripening, and leaf unfolding and shedding in plants (Peñuelas and

Filella 2001); however, a delay in water supply is also of great importance (Dios

Miranda et al. 2009). A long delay of the rainy season results in later flowering, as

was shown for mesic Mediterranean environments (Peñuelas et al. 2002; Gordo and

Sanz 2005). These papers reported significant correlations between precipitation

and length of the life cycle. Importantly, changes in flowering date led to a

reduction in the number of fruits, number of seeds, seed size, and seedling recruit-

ment, affecting plant communities in the long term (Peñuelas et al. 2002).

The comprehensive analysis reported by Gordo and Sanz (2010) provides an

essential tool to understand why flowering and leaf unfolding (spring phenophases)

showed some of the largest phenological responses to climate change reported in

plants (Menzel et al. 2006; Gordo and Sanz 2009). They used a dataset of more than

200,000 records for six phenological events of 29 perennial plant species monitored

from 1943 to 2003. A comparison of sensitivity coefficients to temperature reported

in literature for the same species in other parts of Europe suggests a higher

sensitivity of populations in the Mediterranean. This fact would agree with the

higher sensitivity found in plant populations from warmer regions (Menzel et al.

2005; Tryjanowski et al. 2006; Doi and Takahashi 2008), which could be a result of

the lower probability of late frost damage (Askeyev et al. 2005). Differences in

temporal responses of plant phenology to recent climate change are due to

differences in the sensitivity to climate among events and species. Spring events

are changing more than autumn events as they are more sensitive to climate and

they are also undergoing the greatest alterations of climate relative to other seasons.

The phenology of Mediterranean plants is as responsive as the phenology of

plants in colder biomes (Osborne et al. 2000; Garcı́a-Mozo et al. 2002; Peñuelas

et al. 2002; Mutke et al. 2003; Gordo and Sanz 2005). Prieto et al. (2009) analyzed

the changes in the onset of spring growth in shrubland species in response to

experimental warming along a north–south gradient in Europe. ‘Bud break’ was

monitored in eight shrub and grass species in six European sites under control and

experimentally warmer conditions generated by automatic roofs covering vegeta-

tion during the night. This study showed that warmer temperatures projected for

coming decades have substantial to advance the spring growth of dominant species

in different European shrublands. It also demonstrated the overall difficulties of

applying simple predictive relationships to extrapolate the effects of global change
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on phenology. Various combinations of environmental factors occur concurrently

at different European sites and the interactions between different drivers (e.g. water

and chilling) can alter phenology significantly.

Results from Prieto et al. (2009) underscore the species-specific nature of the

responsiveness of spring growth to temperature (Peñuelas et al. 2002, 2004;

Hollister et al. 2005). The acceleration of the ‘bud break’ dates of the Spanish

species is particularly noticeable. In general, the ‘bud break’ is related to the period

when water first becomes available (Peñuelas et al. 2004). In a Mediterranean

forest, the influence of water availability and temperature in the control of leaf

development and spring flowering varies depending on the species (Ogaya and

Peñuelas 2004). The spring growth for both tree species was associated with the

mean temperature of the previous months, although only the ‘bud break’ of Erica
multiflora was accelerated by warming treatment. The lack of significant accelera-

tion in the ‘bud break’ ofGlobularia alypum in warming plots can be a consequence

of its stronger dependence on the soil water status described for some ecophysio-

logical parameters (Llorens et al. 2003) as well as for growth phenology. For Erica
multiflora, the relationship with water availability was not significant, although the

dry period between late winter and early spring in 2005 accelerated the onset of

growth in Erica multiflora in control plots compared with 2003 and 2004. Erica
multiflora is a species with a conservative strategy regarding water use (Llorens

et al. 2003) and, in the light of the warming effects described in this study, the

earlier growth in 2005 might be a consequence of an increased leaf temperature

resulting from reduced stomatal conductance under lower water availability. The

lower stomatal conductance reached in Erica multiflora in 2005 (winter and spring)
relative to the rates in 2003 and 2004 support this hypothesis (Prieto 2007).

Plant responses to warming also depended on specific combinations of environ-

mental drivers in particular years. For example, plant response depends on the

temperature or the amount and distribution of rainfall throughout the season and

preceding years. In Erica multiflora, in spite of the clear acceleration of ‘bud break’
dates in warming plots in 2003 and 2004, no significant change was observed in

2005, which was the year with the driest late winter and spring during of the 7 years.

Moreover, the earlier ‘bud break’ date in 2003 and 2004 was only accompanied by

greater spring shoot elongation in 2004 (Prieto 2007). This was partly due to the

high temperature reached during the European heat wave in 2003, which enhanced

evapotranspiration and reduced water availability for shoot growth.

Different phenological patterns of the various species partially help to explain

their various productivity responses to warming reported by Peñuelas et al. (2007).

Rainfall frequency reductions projected for some Mediterranean regions (Cheddadi

et al. 2001) will exacerbate drought conditions, and these conditions have now been

observed in the eastern Mediterranean (Körner et al. 2005). Soil water content

controls ecosystem water and CO2 flux in the Mediterranean Basin system (Rambal

et al. 2003), and reductions are very likely to reduce ecosystem carbon and water

flux (Reichstein et al. 2002). Many studies on the behavior of Mediterranean

species in response to drought are reported in the IPCC (2007) report. Established

Pinus halepensis (Borghetti et al. 1998) showed high drought resistance, but
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Ponderosa pine forests had reduced productivity and evapotranspiration during a

1997 heat wave. The Ponderosa pine did not recover for the rest of the season,

indicating threshold responses to extreme events (Goldstein et al. 2000). Mediter-

ranean Basin pines (Martinez-Vilalta and Pinol 2002) and other woody species

(Peñuelas et al. 2001) showed species-specific drought tolerance under field

conditions. Experimental drying differentially reduced productivity of Mediterra-

nean Basin shrub species (Llorens et al. 2003, 2004; Ogaya and Peñuelas 2004) and

tree species (Ogaya and Peñuelas 2007), but delayed flowering and reduced flower

production of Mediterranean Basin shrub species (Llorens and Peñuelas 2005),

suggests complex changes in species relative success under drying scenarios.

Drought may also act indirectly on plants by reducing the availability of soil

phosphorus (Sardans and Peñuelas 2004).

Seasonal and inter-annual variation in climatic patterns (e.g., rainfall regimes)

impacts on the pollination pattern in some anemophilous sub-desert plants. Alba-

Sanchez et al. (2010) explored the effect that seasonal and inter-annual variation of

rainfall regimes on pollination patterns in six anemophilous taxa located in the

semiarid area of Almerı́a (SE Spain), which is one of the most arid locations in

Europe. The sampling from 1998 to 2005 showed that the pulsed and discrete

rainfall events interspersed with drought periods are closely related to the alteration

of the pollination in certain species. This is manifested in: (i) delayed onset of

flowering until reaching the minimum threshold of soil water, in the case of some

annual plants (Plantago, Rumex, and Poaceae), or (ii) scant variability both in the

flowering period in plants with drought tolerance (Chenopodiaceae and Artemisia)

or plants often linked to soil-moisture availability (Urticaceae).

As cited by Matias et al. (2011), under a global-change scenario where habitat as

well as climatic conditions are altered (Houghton et al. 2001), the effect on

dynamics of soil nutrients and its interaction with the plant community are not

well known (Jensen et al. 2003; Andresen et al. 2010).

It is increasingly clear that changes in temperature or precipitation provoked by

climate change will alter nutrient cycles (Sardans and Peñuelas 2007), and therefore

nutrient availability for plants. Differences in carbon (C), nitrogen (N), and

phosphorus (P) availability have severe effects for plant communities as these are

fundamental nutrients for plant growth. Because P has strong implications in the

water-use efficiency (Graciano et al. 2005), this modulates plant vulnerability to

drought stress.

A dryer climate reduces microbial nutrient uptake, but increases soil nutrient

availability. Higher nutrient availability in dry soil, however, cannot be exploited

by plants due to the water deficit. This higher nutrient pool in soil, together with the

higher torrential rainfall predicted for the coming decades (Houghton et al. 2001)

may increase the risk of nutrient loss by leaching or erosion (De Luis et al. 2003;

Ramos and Martinez-Casasnovas 2004), leading to a short to middle-term nutrient

loss and soil impoverishment.

Matias et al. (2011) investigated the effect of three contrasting climatic scenarios on

different carbon (C), nitrogen (N), and phosphorus (P) fractions in soil and microbial

compartments among three characteristic habitats in a Mediterranean-type ecosystem:
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forest, shrubland, and open areas. The climatic scenarios were (1) using a 30 %

summer rainfall reduction, (2) simulating summer storms to reach the maximum

historical records and (3) current climatic conditions. The results support the idea

that higher rainfall boosts microbial and plant-nutrient uptake, and hence nutrient

cycling. The rainfall reduction led to an accumulation of nutrients in the soil, increas-

ing the risk of nutrient loss by leaching or erosion.

10.5 Conclusions

There are five Mediterranean zones around the world that are located near the west

coasts of continents between 30o and 40o latitude. The climate represents a unique

transition between arid zones towards the equator and temperate zones poleward. It is

characterized by cold to cool, wet winters and warm to hot summers with varying

periods of drought. The vegetation is similar in each region with woody, shrubby and

evergreen shrubland plants, sparse grass, scattered evergreen trees, and many species

of oak trees. In all zones, anthropogenic disturbances including deforestation, grazing,

agricultural development, and fire starting and suppression have changed the vegeta-

tion community structure. In general, phenology in the five Mediterranean zones

presents a pronounced seasonal rhythm related to vegetation and environmental

characteristics, with large variation among species. Whereas heat unit accumulation

is the main factor affecting phenology of well-watered plants, phenology of natural

Mediterranean vegetation is influenced by drought and plant nutrition in addition to

heat units. Climatic fluctuations and drought in particular, directly influence resources

availability and indirectly phenology. Like other climate regions, more research is

needed to better understand the interaction between weather factors and phenology.

The Gordo and Sanz (2009) analysis is a keystone to determine the role of recent

climate change in the observed phenological shifts and to understand why plants are

changing their phenology in Mediterranean ecosystems and how responses vary

among species and events. Differences in temporal responses of plant phenology to

recent climate change are due to differences in the sensitivity to climate among

events and species. Spring events are changing more than autumn events as they are

more sensitive to climate and are also undergoing the greatest alterations of climate

relative to other seasons.

In Mediterranean climate regions, water availability and temperature are both

key factors determining plant performance. For instance, water can restrict the

length of growing season and affect flowering phenology. However, there are few

studies on drought and phenology, so more research is needed to better

characterized climate change effects on vegetation.

A drier climate will affect growth but also spring phenology of someMediterranean

species. A reduction in the cooling effect of transpiration could have the same effect as

atmospheric warming and it could advance the initiation of growth in sensitive plants.

Lengthening of the growing season, due to earlier phenological development may not

result in higher productivity because drought can impede growth.
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Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains

(NE Spain). Glob Chang Biol 9:131–140
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Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant

diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250

Trabaud L, Prodon R (1993) Fire in Mediterranean ecosystems. Commission of European

Communities, Brussels

Tryjanowski P, Panek M, Sparks TH (2006) Phenological response of plants to temperature varies

at the same latitude: case study of dog violet and horse chestnut in England and Poland. Clim

Res 32:89–93
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Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using

meteorologically-based indexes. Int J Wildland Fire 10:223–240

Zinke PJ (1973) Analogies between the soil and vegetation types in Italy, Greece and California.

In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems, origin and structure.

Springer, Berlin/Heidelberg

196 D. Spano et al.


	Chapter 10: Mediterranean Phenology
	10.1 Mediterranean Characteristics
	10.2 Vegetation Types
	10.3 Phenology in the Mediterranean Climate
	10.4 Phenology and Climate Change
	10.5 Conclusions
	References


