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Abstract

The spin pumping is a versatile method to create the spin current and spin

accumulation in various conducting materials in hybrid nanostructures. In this

chapter a theoretical description for spin pumping from a ferromagnet into a

normal metal is presented based on the spin-exchange interaction between

localized moments and conduction electrons in hybrid nanostructures. It is

demonstrated that pure spin currents are generated by the coherent spin pumping
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due to ferromagnetic resonance and the thermal spin pumping due to the spin

Seebeck effect. The inverse effect that the spin dynamics is manipulated by spin

injection into a ferromagnet from a normal metal with strong spin-orbit coupling

using the spin-Hall effect is also discussed.

Introduction

There has been growing interest in the phenomena caused by the interplay between

spin-dependent transport and magnetization dynamics of ferromagnets in hybrid

nanostructures [1, 2]. This is not only because new spin transport phenomena

emerge but also because the potential applications to spin-based magnetoelectronic

devices are expected [3]. Recent extensive experimental and theoretical studies

have demonstrated that nonequilibrium spin injection from a ferromagnet into a

nonmagnetic material creates spin current and spin accumulation in various

nonmagnetic materials.

Spin current is a flow of spin angular momentum carried by conduction electrons

in normal and ferromagnetic metals or by spin waves (magnons) in ferromagnets [4].

Spin angular momentum transfer plays a central role both in magnetization

switching caused by spin-transfer torque and in spin pumping caused by magneti-

zation precession. Spin current without accompanying charge current, the so-called

pure spin current, is particularly important for spintronic applications because of

reducing heat dissipation and is created in nonmagnetic materials by the methods,

e.g., nonlocal spin injection [5–11], spin pumping [12–17], and the spin-Hall effect

[18–29]. The efficient spin injection, spin transfer, spin manipulation, and spin

detection are of crucial importance in utilizing the spin degrees of freedom as a new

functionality in spin-based magnetoelectronic devices.

Spin pumping is a method to generate a spin current (spin accumulation) from a

ferromagnet into an adjacent metal or semiconductor in hybrid structures using

magnetization dynamics, such as magnetization precession caused by ferromagnetic

resonance (FMR) [12–17, 21]. In FMR, spin angular momentum is steadily trans-

ferred from externally applied microwaves, via the precession of magnetization

driven by microwave, to the ferromagnetic material, in which the rate of spin angular

momentum supplied frommicrowave fields to the magnetization is balanced with the

rate of magnetization damping (the so-called Gilbert damping) at which the spin

angular momentum is dissipated to the lattice. When a normal conductor is electri-

cally in contact with a ferromagnet with the precessing magnetization, the spin

angular momentum can flow out of the ferromagnet into the normal conductor

through the interface, resulting in the creation of spin current and the enhanced

magnetization damping. It is also possible to generate a spin current by thermal

effects using heat flow or temperature difference in nanostructures [30, 31]. The spin

pumping is widely used as a versatile spin-injection method to create spin current and

spin accumulation in various conducting materials in hybrid nanostructures.
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In this chapter, a theoretical description of spin pumping based on the spin-

exchange interaction between localized moments and conduction electrons in

hybrid nanostructures is presented. This gives an alternative approach to the spin-

pumping formalism [32–34] based on the Landauer-B€uttiker scattering formalism

[35, 36]. These approaches are complementary to each other and provide a deeper

understanding of the physics of spin pumping.

Basic Equations

A ferromagnetic metal is phenomenologically modeled as a system of localized

moments (d-electrons) and conduction electrons (s-electrons), which are coupled

by the exchange interaction [12, 13, 37–40]. The localized moments mainly carry

the magnetization of ferromagnet, and the conduction electrons mainly carry charge

and spin current. The system is described by the Hamiltonian H = H0 + Hsd + Hz,

where H0 consists of the Hamiltonians of conduction electrons and localized

moments and Hsd represents the so-called s-d exchange interaction between

them [37–41]:

Hsd ¼ �Jsdva

ð
drŜ r, tð Þ � ŝ r, tð Þ: (1)

Here Jsd is the exchange interaction constant, va is the volume per lattice site, and

Ŝ(r, t) and ŝ(r, t) are, respectively, the spin densities of localized spins and

conduction electrons,

Ŝ r, tð Þ ¼
X

Ŝi tð Þδ r� rið Þ; (2)

ŝ r, tð Þ ¼
X
σ0σ

ψ†
σ0 r, tð Þŝσ0σψσ r, tð Þ; (3)

where Ŝi is localized spin at lattice site i (|Si|= S), ŝσ0σ is electron spin operator, and
ψσ
† and ψσ are the creation and annihilation operators of conduction electrons with

spin σ(=", #). The Hamiltonian HZ is of the Zeeman type

HZ ¼ γħ
ð
drŜ r, tð Þ �Heff þ γeħ

ð
drŝ r, tð Þ �H; (4)

where Heff is an effective magnetic field acting on localized spins, which includes

external dc magnetic field H, microwave field hac(t), demagnetization field, and

magnetocrystalline anisotropy field; γ = gμB/ħ and γe = geμB/ħ are the gyromag-

netic ratios of localized spin and conduction-electron spin, respectively; g and ge
are the g factors; and μB is the Bohr magneton.
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The equation of motion dŜ/dt = iħ�1[H, Ŝ] for the localized spins yields

@

@t
M r, tð Þ ¼ �γM r, tð Þ �Heff � γJexM r, tð Þ �m r, tð Þ; (5)

whereM r, tð Þ ¼ �γħ Ŝ r, tð Þ
D E

is the magnetizations of localized spins, Jex = vaJsd/

(ħ2γγe) is the dimensionless exchange interaction constant, and

m r, tð Þ ¼ �γħ ŝ r, tð Þh i is the magnetization of conduction electrons.

The equation of motion dŝ/dt = iħ�1[H, ŝ] for the conduction-electron spins

leads to

@

@t
m r, tð Þ ¼ �γem r, tð Þ �H� γeJexm r, tð Þ �M r, tð Þ þ ∇ � jm r, tð Þ; (6)

where jm(r, t) is the current density of spin magnetic moments given by the

expectation value of the current operator

ĵm r, tð Þ ¼ �γeħ
X
σσ0

Re ψ†
σ0 r, tð Þŝσ0σ ħ∇

ime

� �
ψσ r, tð Þ

� �
; (7)

where me is the mass of conduction electrons. The spin-angular-momentum current

density js is given by js ¼ γ�1
e jm . The spin current js is a second-order tensor jsi

k

specified by the flow direction i and the spin polarization direction k. Both js and jm
are called “spin current” in the following.

Landau-Lifshitz-Gilbert Equation and Bloch Equation

In ferromagnets, the localized spins are tightly coupled together by strong exchange

interaction to align parallel to each other, which allows one to describe the localized

spins in terms of the magnetization M. When a ferromagnet is subject to externally

applied microwave hac(t) in addition to external dc magnetic field H, the magne-

tization (the localized spins as a whole) is driven by hac(t) away from its equilib-

rium direction and coherently precess around the direction of H with fixed

magnitude.

The dynamics of magnetization M(r, t) is phenomenologically described by

including the Gilbert damping term that determines the magnetization dissipation in

Eq. 5, which is called the Landau-Lifshitz-Gilbert (LLG) equation [42].

@

@t
M r, tð Þ ¼ �γM r, tð Þ � Hþ hac tð Þ½ � � γJexM r, tð Þ �m r, tð Þ

þ α0
Ms

M r, tð Þ � @

@t
M r, tð Þ

� �
;

(8)

1448 S. Takahashi



where α0 is the dimensionless Gilbert damping parameter in the absence of the s-d
exchange interaction and Ms = |M(r, t)| = ħγS/va is the saturation magnetization.

For simplicity, demagnetization and magnetocrystalline anisotropy fields are

disregarded, as they are much weaker than the exchange interaction.

The dynamics of the magnetization m(r, t) of conduction electrons is phenom-

enologically described by including the spin relaxation term in Eq. 6 and assuming

the diffusive spin current jm = �D∇m, where D is the diffusion constant of

conduction electrons, which results in the Bloch equation with the diffusion

term [43, 44].

@m r, tð Þ
@t

¼ �γem r, tð Þ � JexM r, tð Þ � @m r, tð Þ
τsf

þ D∇2m r, tð Þ; (9)

where τsf is the spin relaxation time, δm(r, t) = m(r, t) � m0(r, t) is the

nonequilibrium spin (magnetic moment) accumulation, a deviation of m(r, t)
from the equilibrium local and instantaneous value m0(r, t) = m0[M(r, t)/Ms]

induced by exchange field JexM(r, t) with magnitude m0 = χeJexMs in the direction

ofM(r, t), χe ¼ 2μ2BN 0ð Þ is the paramagnetic susceptibility of conduction electrons,

and N(0) is the density of states at the Fermi level. Note that m0/Ms = χeJex = (1/2)

(γe/γ)JsdvaN(0) ~ Jsd/eF, where eF is the Fermi energy. In Eq. 9, the terms due to

applied dc and microwave fields are disregarded, unless applied fields play a

significant role as in the Hanle dephasing effect [12].

Modeling of Ferromagnetic Layer

It is convenient to decompose the magnetization M(r, t) into an array of ferromag-

netic sheet magnetization Mn(t) of atomic layers at position xn = na using the

δ-function: M x, tð Þ ¼
X

n
Mn tð Þδ x� xnð Þ . When all the sheet magnetizations

uniformly precess in the same phase as in the ferromagnetic resonance (FMR),

the magnetization is given by

M x, tð Þ ¼ Ma tð Þ
X
n

δ x� xnð Þ; (10)

where Ma(t) = �γħS(t)/a2 is the sheet magnetization (magnetic moment per area),

S(t) is localized spin at the lattice site, and a is the lattice constant. A ferromagnetic

layer is described by an array of ferromagnetic sheets immersed in a free electron gas

of a normal metal, and a nonmagnetic layer is simply described by the region in the

absence of magnetization sheets. This modeling enables one to solve the coupled

equations for M(t) and m(r, t) analytically and numerically in hybrid structures

consisting of a ferromagnetic layer and a nonmagnetic layer with comparable spin-

diffusion lengths, such as transition metal ferromagnets and heavy noble metals of Pt

and Pd, and provides clear physical insight into spin-pumping phenomena.
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Spin Pumping by Precessing Magnetizations

A simple description of spin pumping, i.e., how the angular momentum of applied

microwave is transferred to conduction electrons to create spin accumulation and

spin current via the precession of localized spins, is presented by introducing

two-dimensional sheets of localized spins in a normal metal as shown in Fig. 1.

A most simple description is spin pumping from a single ferromagnetic sheet,

which is pedagogical to capture the fundamental features of spin pumping.

Spin Pumping from a Single Ferromagnetic Sheet

A two-dimensional sheet of ferromagnetically aligned spins of localized electrons

(d-electrons) in the yz plane is introduced in an electron gas system of normal metal

as shown in Fig. 1a, in which the localized spins in the sheet couple with the

conduction electrons (s-electrons) by the exchange interaction. The magnetization

of the sheet is represented by the two-dimensional δ-function at x = 0,

M x, tð Þ ¼ Ma tð Þδ xð Þ ¼ M tð Þaδ xð Þ; (11)

δ δ

δ

δ

a b

c d

Fig. 1 Spin pumping from ferromagnetic sheets immersed in an electron gas of normal metal

(Fermi sea): (a) single ferromagnetic sheet at x= 0. (b) Two ferromagnetic sheets at x= x1, x2. (c)
Periodic array of ferromagnetic sheets at x = xn = nd with period d. (d) Array of N ferromagnetic

sheets corresponding to a ferromagnetic layer (F) of thickness dF = Na. Each sheet consists of

ferromagnetically aligned moments �γħS indicated by precessing arrows and carries the

two-dimensional magnetization Ma = �γħS/a2. Spin accumulation δm(x, t) and spin current

js(x, t) are generated by the uniformly precessing moments represented by arrows on the sheets
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where M(t) = Ma(t)/a = �ħγS(t)/a3 corresponds to a bulk magnetization in the

regular array of sheets with lattice period a.
Since the precession frequency (ω � GHz) is much smaller than the spin

relaxation rate τ�1
sf � 1012s�1

� �
, i.e., ωτsf � 1, the time derivative term in Eq. 9

is disregarded, so that the Bloch equation becomes the stationary diffusion equation

with the source term

1

τsf
� D∇2

� �
δm x, tð Þ ¼ 1

τex
M̂ tð Þ � δm 0, tð Þ � χe

γe

@

@t
M̂ tð Þ

� �
aδ xð Þ; (12)

where M̂ = M/Ms = Ma/Ma = S/S is the magnetization direction and τex =
a/(γeJexMa) = ħ/(SJsd). Equation 12 is integrated as

δm x, tð Þ ¼ τsf
τex

a

2λs
M̂ tð Þ � δm 0, tð Þ � χe

γe

@M̂ tð Þ
@t

" #
e�jxj=λs; (13)

where λs = (Dτsf)
1/2 is the spin-diffusion length. By taking the cross product of M̂(t)

and Eq. 13 at x = 0 and using vanishing product δm(0, t) � M̂ = 0, one obtains

δm x, tð Þ ¼ � χe
γe

1

1þ Γ2
a

M̂� @M̂

@t

 !
þ Γa

1þ Γ2
a

@M̂

@t

" #
e�jxj=λs; (14)

where

Γa ¼ τex
τsf

2λs
a

¼ ħ
SJsdτsf

� �
2λs
a

; (15)

which indicates that Γa in a single sheet is enhanced by the factor (2λs/a) compared

with Γbulk = ħ/(SJsdτsf) in a bulk ferromagnet [39]. As seen in Eq. 14, the parameter

Γa plays an important role in spin pumping and magnetization dynamics.

Inserting Eq. 14 into the LLG equation, the effective LLG equation is written as

@M̂ tð Þ
@t

¼ �eγM̂ tð Þ � Hþ hac tð Þ½ � þ αM̂ tð Þ � @

@t
M̂ tð Þ; (16)

with the renormalized parameters [14, 39],

α ¼ eγ
γ

α0 þ αSPð Þ, eγ ¼ γ

1þ αSP=Γa
; (17)

where αSP is the additional contribution to the Gilbert damping due to spin

pumping,
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αSP ¼ γ

γe
χeJex

Γa

1þ Γ2
a

¼ ħγ
2πMa

h

2e2
1

ρNλs

� �
1

1þ Γ2
a

; (18)

and ρN = 1/[2e2N(0)D] is the electrical resistivity. Typical parameter values of ρN
= 20μΩ cm, λs = 10 nm, a = 0.3 nm, and S = 2 give αSP ~ 0.05 in the single

ferromagnetic sheet.

Themagnetization current jmx=�D∇xδm pumped by precessingmagnetization is

jmx x, tð Þ ¼ 1

2

x

xj j
γe
γ
α0Ma M̂� @M̂

@t
þ Γa

@M̂

@t

 !
e�jxj=λs (19)

the z-component of which is stationary (time independent) spin current and satisfies

jzmx
� �

pump
¼ jzmx 0þð Þ � jzmx 0�ð Þ ¼ � γe

γ
αSPMa M̂� @M̂

@t

 !
z

: (20)

When circularly polarized microwave h(t) = hac(cos ωt, sin ωt, 0) is applied in

the presence of dc magnetic field H = (0, 0, H ), the magnetization is uniformly

precessed around the dc magnetic field with circular precession of the transverse

components

M� tð Þ ¼ Mx tð Þ � iMy tð Þ ¼ M� 0ð Þe�iωt; (21)

m� x, tð Þ ¼ mx x, tð Þ � imy x, tð Þ ¼ m� x, 0ð Þe�iωt; (22)

driven by circularly polarized microwave field h�(t) = hx(t) � ihy(t) = hace
�iωt in

the complex representation. For small-angle precession of M, Eq. 16 gives the

solutions

M̂� tð Þ ¼ � eγhace�iωt

ω� eγHð Þ 	 iαω
; (23)

yielding the FMR lineshape

M̂� @M̂

@t

 !
z

¼ ω M̂þ tð ÞM̂� tð Þ� 	 ¼ ω eγhacð Þ2
ω� eγHð Þ2 þ αωð Þ2 : (24)

At resonance ω ¼ eγHð Þ, the stationary components of spin accumulation and spin

current are

δmz xð Þ ¼ �2π
μBS

a2
ħωN 0ð Þ½ � ρNλs

h=2e2

� �
αSP sin

2Θe�jxj=λs; (25)
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jzmx xð Þ ¼ x

xj j
μBS

a2
αSPω sin2Θe�jxj=λs; (26)

where Θ is the precession angle of magnetization satisfying sinΘ ¼ eγhac=αωð Þ.
The microwave absorption power is P ¼ h tð Þ � @Ma tð Þ=@t�
 � ¼

ωIm hþac tð ÞM�
a tð Þ� 	

, which is combined with the z-component of the LLG equation

in Eq. 16 to yield

P ¼ Ma
αω2eγ M̂þ tð ÞM̂� tð Þ� 	 ¼ ħω

S

a2
eγ=γð Þ γhacð Þ2αω

ω� eγHð Þ2 þ αωð Þ2 ; (27)

which becomes P ¼ ħω S=a2ð Þ eγ=γð Þαω sin2Θ ¼ aeγMsh
2
ac=α at resonance.

Spin Pumping from the Periodic Array of Ferromagnetic Sheets

A periodic array of F sheets with arbitrary period d in a normal metal shown in Fig. 1c

is studied to see how spin pumping takes place from the F sheets to the conduction

electrons, depending on the sheet separation relative to the spin-diffusion length.

When all the sheet magnetizations are coherently precessed (in-phase) bymicrowave,

the magnetizations are represented by the periodic array of the two-dimensional

δ-functions at xn = nd with arbitrary sheet separation d,

M x, tð Þ ¼ Ma tð Þ
X1
n¼�1

δ x� ndð Þ: (28)

In this case, the Bloch equation Eq. 9 is solved analytically to yield δm(x, t) in a

periodic function of x with period d, which reads in a region of 0 < x < d,

δm x, tð Þ ¼ χe
γe

1

1þ Γ2
M̂� @M̂

@t
þ Γ

@M̂

@t

 !
cosh x� d=2ð Þ=λs½ �

cosh d=2λsð Þ ; (29)

where

Γ ¼ Γatanh d=2λsð Þ; (30)

which indicates that Γ strongly depends on the sheet separation relative to the spin-

diffusion length. When d is much smaller than λs (d
 λs), Γ � (d/2λs)Γa, indicating

that Γ is significantly smaller than Γa of the single sheet case due to the exchange of

spin current between the sheets, whereas when d is much larger than λs (d� λs), the
situation is the same as in the isolated single sheet case (Γ � Γa).
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Using Eq. 29 in Eq. 8, the LLG equation for the magnetization vector M̂ is

written in an effective form

@

@t
M̂ tð Þ ¼ �eγM̂ tð Þ � Heff þ hacð Þ þ α M̂ tð Þ � @M̂ tð Þ

@t

" #
; (31)

with the renormalized parameters

α ¼ eγ
γ

α0 þ αSPð Þ, eγ ¼ γ

1þ αSP=Γ
; (32)

where

αSP ¼ χeJex
γ

γe

Γ

1þ Γ2
¼ ħγ

2πMsa

gsNtanh d=2λsð Þ
1þ Γ2

atanh
2 d=2λsð Þ , gsN ¼ h=2e2ð Þ

ρNλs
: (33)

Thus, the additional Gilbert damping depends on the separation of the sheets

relative to the spin-diffusion length. For (d/2λs) 
 1, αSP is strongly reduced by

the factor (d/2λs) compared with that of single F sheet, due to the mutual interfer-

ence between the F sheets through emission and absorption of spin current. For

(d/2λs)� 1, the sheets are isolated from each other and the situation is the same as

in a single F sheet, thus reducing the results of the single sheet case.

A bulk ferromagnet is represented by taking the atomic limit of the sheet

separation (d ! a), in which Γ ! Γbulk = ħ/(SJsdτsf), so that the z-component of

the pumped spin accumulation and the additional Gilbert damping due to the s-d
interaction becomes

δmz ¼ �μBN 0ð Þ ħω M̂þM̂�
� �

1þ ħ= SJsdτsfð Þ½ �2 ; (34)

αSP ¼ ħγ
4πMsλs

gsN
1þ ħ= SJsdτsfð Þ½ �2 �

ħμBN 0ð Þ
Msτsf

� 3

8S

ħ
eFτsf

; (35)

wheregsN ¼ h=2e2ð Þ= ρNλsð Þ. The parameter values of N(0)= 1023 eV�1 cm�3, τsf=
10�12 s, and Ms = 103 Oe give αSP � 6 � 10�4, which is much smaller than the

typical damping parameter of order of 10�2 in transition metal ferromagnets (Co,

Fe, Ni, and their alloys) [39].

Spin Pumping from Two Ferromagnetic Sheets

It has been shown that the resonant line width in ferromagnetic layers separated by

normal-metal spacers is dramatically narrowed when the resonance fields of the F
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layers approached each other [45]. Here, the two ferromagnetic sheets in a normal

metal shown in Fig. 1b are considered to investigate how the spin pumping is

modified in the presence of two sheets, particularly the dependence of pumped spin

accumulation on their sheet separation and relative precessional motion.

The magnetizations of the two F sheets are represented by the two-dimensional

δ-function at x = x1 and x = x2,

M x, tð Þ ¼ M1 tð Þδ x� x1ð Þ þM2 tð Þδ x� x2ð Þ: (36)

The coupled equations of the LLG equation for Mi(t) (i = 1, 2) and the Bloch

equation for δm(x, t) are

@

@t
Mi ¼ �γMi � Hþ hiac tð Þ þ Jexm xi, tð Þ� 	þ α0M̂i � @Mi

@t
; (37)

δm x, tð Þ ¼ 1

Γa

X2
j¼1

M̂j � δm xj, t
� �� χe

γe

@M̂j

@t

" #
e�jx�xj j=λs; (38)

where hac
i (t) is a microwave field applied on Mi(t). Making the dot and cross

products of M̂i(t) and Eq. 38 at x = xj, one has the coupled equations for M̂i(t) �
δm(xj, t) andM̂i(t)� δm(xj, t), the solutions of which are used in Eq. 38 to derive δm
(x, t) as a function of M1(t) and M2(t). Using the calculated δm(x, t) in Eq. 37, the

effective LLG equations are obtained for M1(t) and M2(t).
It is interesting to consider the situation where applied microwave fields, hac

1 (t)
and hac

2 (t), oscillate either in the same phase or in the π phase difference. The

corresponding magnetization precessions driven by the microwaves are the

in-phase oscillation mode (M1 = M2) and the out-of-phase oscillation mode

Mx, y
1 ¼ �Mx, y

2 ,Mz
1 ¼ Mz

2

� �
as shown in Fig. 2a, b.

In the in-phase mode in Fig. 2a, the z-component of pumped spin accumulation

is time independent and given by

δmz xð Þ ¼ � μBN 0ð Þ
1þ Γ2

þ
ħω M̂þM̂�
� � e�jx�x1j=λs þ e�jx�x2j=λs

1þ e�d=λs
; (39)

where d = |x2 � x1| is the distance between the two sheets and

Γþ ¼ Γa

1þ e�d=λs
; (40)

where Γa is given in Eq. 15.

In the out-of-phase mode in Fig. 2b, the z-component of pumped spin accumu-

lation is [46]
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δmz xð Þ ¼ � μBN 0ð Þ
1þ Γ2

�
ħω M̂þM̂�
� � e�jx�x1j=λs þ e�jx�x2j=λs

1� e�d=λs
; (41)

where

Γ� ¼ Γa

1� e�d=λs
; (42)

which indicates that Γ� becomes larger than Γa when the distance d becomes

smaller than the spin-diffusion length λs.

Γ =

δ

λ =
λ =

δ

Γ =
α

α

Γ =

λ λ

λ

a b

c d

e

Fig. 2 (a) In-phase mode and (b) out-of-phase mode of two precessing magnetizationsM1(t) and
M2(t). Spatial variation of pumped spin accumulation in the in-phase mode (c) and out-of-phase

mode (d) of the magnetizations at x = �d/2 for Γa = 0.2 and different sheet separation d. (e)
Additional Gilbert damping parameter αSP as a function of sheet separation d
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The effective LLG equation for the magnetizations has the same form as Eq. 16

with the renormalized parameters,

α� ¼ eγ�
γ

α0 þ α�SP
� �

, eγ� ¼ γ

1þ α�SP=Γ�
; (43)

where the subscript + (�) denotes the quantities for the in-phase (out-of-phase)

mode and α�SP is the additional Gilbert damping constant due to spin pumping [46],

α�SP ¼ γ

γe
χeJex

Γ�
1þ Γ�ð Þ2 ¼ α0SP

1� e�d=λs

1� e�d=λsð Þ2 þ Γ2
a

; (44)

where α0SP ¼ ħγ=2πMsað ÞgsN.
Figure 2 shows the spatial variation of spin accumulation δmz(x) normalized to

μBN(0)ħω( M̂ + M̂ �) and pumped by the in-phase and out-of-phase precessing

magnetizations for Γa = 0.2 and different sheet separation d. In the in-phase

mode shown in Fig. 2c, the peak hight δmz(xi) is nearly independent of sheet

separation because of weak d-dependence of Γ+. By contrast, in the out-of-phase

mode in Fig. 2d, a giant enhancement of spin pumping occurs for a small sheet

separation, as seen in the curve of d/λs = 0.2, when the condition α0SP 
 α0 is

satisfied. Calculations for large Γa(Γa > 1) show quite different behaviors; the

spin pumping in the out-of-phase mode is strongly suppressed for smaller distance

(d < λs) due to the destructive interlayer spin current.

Figure 2e shows the additional Gilbert damping αSP due to spin pumping in the

in-phase and out-of-phase modes of the magnetizations for Γa = 0.2. In the out-

of-phase mode, αSP increases with decreasing layer separation from αSP
0 and has a

peak at L/λs = �ln(1 � Γa) � Γa with the maximum value αoutSP =α
0
SP � 2Γað Þ�1

� 2:5, for which the spin pumping is strongly enhanced to generate a large spin

accumulation, as seen in Fig. 2d. In the in-phase mode, by contrast, αSP decreases
with decreasing layer separation from α0SP L � λsð Þ to α0SP=2 L 
 λsð Þ . It is

interesting to note that in the out-of-phase mode, there is an optimum layer

separation at which the giant spin pumping and the enhanced Gilbert damping

occurs simultaneously, whereas in the in-phase mode, the spin-pumping effi-

ciency is rather independent of the layer separation, while the Gilbert damping

decreases with decreasing the separation.

The giant spin pumping and enhanced Gilbert damping can be tested by exper-

iments by using a thin insulating ferromagnetic layer, such as yttrium-iron-garnet

(YIG), for the ferromagnetic layers, in which an ac current is applied to the central

normal-metal spacer layer, thereby producing Oersted microwave fields on the

adjacent magnetizations and driving them in the out-of-phase precession

motion [46].
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Spin Pumping from a Ferromagnetic Layer with N Ferromagnetic
Sheets

To describe spin pumping in a realistic situation, an array of ferromagnetic sheets is

introduced in a normal metal to form a ferromagnetic layer where all the spins

coherently precess (in-phase) by microwave as shown in Fig. 1d. In this situation,

the ferromagnetic layer is represented by the array of two-dimensional δ-functions
at xn = na (n = 1, 2, � � � , N ) with atomic distance a as

M x, tð Þ ¼ Ma tð Þ
XN
n¼1

δ x� xnð Þ ¼ M tð Þa
XN
n¼1

δ x� xnð Þ; (45)

with magnetization M(t) = Ma(t)/a and thickness dF = Nd of the F layer. The

system corresponds to a N/F/N system. Note that if the N/F/N is divided into two

parts at the middle of the F layer, each of which corresponds to an F/N system with

half the thickness of F (dF/2). In the present model, it is implicitly assumed that the

electron transport across the interface is transparent, and the spin-diffusion length is

common in the F and N layers.

In integrating the Bloch equation for spin accumulation,

δm x, tð Þ ¼ � 1

Γa

XN
j¼1

χe
γe

@

@t
M̂ tð Þ � M̂ tð Þ � δm xj, t

� �� �
e�jx�xj j=λs; (46)

and taking the dot and cross products of Eq. 46 and M̂ tð Þ, one obtains

δm xi, tð Þ ¼ � χe
γe

XN
j

A�1
� �

ij
Γa

@M̂

@t
Yj þ M̂� @M̂

@t
Zj

" #
; (47)

where A�1 is the inverse matrix of A whose components are

Aij ¼ Γ2
aδij þ

XN
k¼1

XikXkj; (48)

and

Xij ¼ e�jxi�xj j=λs, Yj ¼
XN
k¼1

Xjk, Zj ¼
XN
k¼1

XjkYk: (49)

The LLG equation for the magnetization is written as

@

@t
M̂ ¼ �γM̂� Heff þ hacð Þ � γJexM̂� δmF þ α0M̂� @

@t
M̂; (50)
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where the average spin accumulation

δmF tð Þ ¼ 1

N

XN
i¼1

m xi, tð Þ;

acts as the exchange torque on M(t). Using Eq. 47, the effective LLG equation of

the F layer becomes

@M tð Þ
@t

¼ �eγM tð Þ � Heff þ hac tð Þ½ � þ α

Ms
M tð Þ � @M tð Þ

@t

� �
; (51)

where α and eγ are the renormalized Gilbert damping parameter and gyromagnetic

ratio

α ¼ eγ
γ

α0 þ αSPð Þ; (52)

αSP ¼ γ

γe
χeJexΓa

1

N

XN
ij¼1

A�1
� �

ij
Yj; (53)

γeγ ¼ 1þ γ

γe
χeJexΓa

1

N

XN
ij¼1

A�1
� �

ij
Zj; (54)

which reduce the results of the preceding sections in the case of N = 1 and N = 2.

Equation 47 is numerically solved with respect to δm(xj, t), which is used to

calculate δm(x, t) in Eq. 46. The spatial variations of spin accumulation δmz(x) and
spin current jsx

z (x) are shown in Fig. 3a,b, respectively, for the thickness dF/λs =
2 (N = 100, a/λs = 0.02) and various values of Γa. In the case of small Γa, spins are

uniformly accumulated inside the ferromagnetic region between the vertical dashed

lines indicated in the figure and the spin current vanishes there and are efficiently

pumped out of F into the metallic region with the large amplitude decaying

exponentially in the spin-diffusion length. As Γa increases, the spin accumulation

in F decreases near the boundaries, and the spin-pumping efficiency is reduced. As

clearly seen in Fig. 3b, the length scale in the spatial variation of the spin current in

F depends strongly on Γa, indicating that there is no definite length scale for spin

accumulation in F in the case of spin pumping.

If the spin accumulation inside the F layer is approximated as a constant and

denoted by δmF(t), the analytical expression is obtained as

δmF tð Þ ¼ � χe
γe

ΓN

1þ Γ2
N

@M̂

@t

 !
� χe

γe

1

1þ Γ2
N

M̂� @M̂

@t

 !
; (55)
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where

ΓN ¼ ΓaP
jY

2
j =N

� 
1=2 � ΓaP
jYj=N

� Γbulk

1� 1� e�dF=λeð Þ= dF=λsð Þ ; (56)

indicating that ΓN varies as ΓN � (2λs/dF)Γbulk for dF < λs and tends to the bulk

value Γbulk = (a/2λs)Γa = ħ/(SJsdτsf) for dF � λs. In this approximation, the

renormalized parameters in Eqs. 52, 53, and 54 become

α ¼ eγ
γ

α0 þ αSPð Þ; (57)

αSP ¼ γ

γe
χeJex

ΓN

1þ Γ2
N

; (58)

γeγ ¼ 1þ γ

γe
χeJex

1

1þ Γ2
N

: (59)

For the parameter values of dN/λs = 2 and a/λs = 0.02 in Fig. 3, ΓN � 0.02Γa.

Figure 4a shows the additional Gilbert damping parameter αSP as a function of

thickness dF for a/λs = 0.02 and different values of Γa. The numerical results are

well reproduced by the analytical calculation. It follows from Eq. 58 that αSP has a
peak at ΓN= 1, which corresponds to the layer thickness dF/λs� (a/λs)Γa if dF
 λs,
e.g., dF/λs � 0.2 in the case of Γa = 10, as seen in Fig. 4a. On the other hand, in the

case of small Γa, αSP decreases linearly with increasing thickness dF in a wide

δ

Γ

Γ

Γ

Γ

Γ

Γ

Γ

Γ

Γ

Γ

λ λ

a b

Fig. 3 Spatial variation of (a) pumped spin accumulation δmz(x) normalized to χe=γeð Þω MþM�ð Þ
=M2

s and (b) pumped spin current jsx
z (x) for the thickness dF/λs = 2 of a ferromagnetic layer with

N = 100 sheets and different values of Γa in a N/F/N system. The ferromagnetic region lies

between the vertical dashed lines and the outsides are the normal metallic region
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range, as seen in the curve of Γa= 0.5. In this range, Eq. 56 becomes ΓN= (a/dF)Γa

= 2(λs/dF)Γbulk, so that

αSP � ħγ
2πMsdF

h

2e2
1

ρNλs
; (60)

indicating that the additional Gilbert damping due to spin pumping is inversely

proportional to the F thickness [14]. In the thick case (dF � λs), ΓN = (a/λs)Γa and

αSP tend to a constant value.

Figure 4b shows the thickness dependence of the experimental Gilbert damping

α measured in Py/Pt systems by FMR [47–49]. The solid curves represent the

theoretical fit using Eqs. 56, 57, and 58 with the parameter values χeJex = 0.2 and

λs = 12 nm, and (Γbulk, α0)= (0.041, 0.0055) for the top curve, (0.03, 0.005) for the

middle curve, and (0.017, 0.0045) for the bottom curve, where γ = γe is assumed.

According to the theory of spin pumping based on the scattering formalism [14,

33, 32], the additional Gilbert damping constant is given by

αSP ¼ 1

2π

ħγ
MsdF

g"#

1þ g"#=g
s
N

� 
 , dN � λsð Þ; (61)

where g"# is the so-called spin mixing conductance andgsN ¼ h=2e2ð Þ= ρNλsð Þ. In the
case of transparent interface g"# � gsN

� 

, Eq. 61 reduces exactly to Eq. 60. This

transparent condition requires g"# � gsN ¼ 1015cm�2 for a metal with ρN ~ 20 μΩ

cm and λs ~ 10 nm like Pt or Pd. Recent experiments indicate that the mixing

conductance has large values up to g"# ~ 1016 cm�2 for various ferromagnets [50].

numerical

Γ =5

χ
λ

λ

χ
α

α

a b

Fig. 4 (a) Additional Gilbert damping parameter αSP as a function of thickness dF for Γa = 0.5,

2, 10. The open circles and solid curves are the results of numerical calculation and analytical

approximation, respectively. (b) Gilbert damping parameter α as a function of thickness dF. The
diamonds are the experimental values for trilayer Pt/Py/Pt systems (dF = dPy) by Mizukami

et al. [47], and the triangles and circles are those for bilayer Py/Pt systems (dF= 2dPy) by Azevedo
et al. [48] and Nakayama et al. [49], respectively. The solid lines are fitting by the present model
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Spin Pumping from Ferromagnetic Insulator

Magnetic insulators, such as yttrium-iron-garnet (YIG), are useful energy-saving

materials for spintronics because of their low magnetic damping and losses owing

to purely magnetic excitations and almost frozen electric excitation. In the follow-

ing, it is shown that the spin pumping is possible from a ferromagnetic insulator

(FI) into an adjacent normal metal (N) in a bilayer system such as YIG/Pt, which

originates from the spin-exchange interaction between a conduction electron in Pt

and a localized moment in YIG at the interface [51, 52]. The effect of exchange

interaction is incorporated in the Landau-Lifshitz-Gilbert (LLG) equation for the

magnetization of FI and the diffusion-modified Bloch equation for spin accumula-

tion in N [53], which is solved to derive the spin current pumped from FI into N. By

combining the pumped spin current with the inverse spin-Hall effect (ISHE) [21],

one obtains the output voltage V appeared between the N ends as a function of the

exchange coupling.

At the FI/N interface, conduction electrons in N interact with magnetic moments

of FI through the so-called s-d exchange interaction [41],

Hsd ¼ �Jsdva
X
i� I

Ŝi tð Þ � ŝ ri, tð Þ; (62)

where ŝ(ri, t) and Ŝi(t) are the conduction-electron spin density and the localized

spin at lattice site i on the interface (I) at x = 0 and Jsd is the exchange coupling

strength between them. When the aligned localized spins are uniformly precessed

by a microwave field, Ŝi can be replaced by the magnetizationM using the relation

Ŝi(t)/S = �M(t)/Ms [39], which enables to rewrite Eq. 62 as

Hsd ¼ �Jex

ð
dxM tð ÞaSδ xð Þ �m x, tð Þ; (63)

where Jex = vaJsd/(ħ2γγe) = (va/vS)JsdS/(ħγeMs) is the dimensionless exchange

coupling constant, S is an effective block spin per unit cell, γe is the gyromagnetic

ratio of conduction electron, aS(a) is the lattice constant, vS ¼ a3S va ¼ a3ð Þ is the

unit cell volume for localized moment (conduction electron), and m(x, t) is the

magnetization of conduction electrons. Equation 63 indicates thatM(t)aSδ(x) plays
a role of the interface magnetization and gives rise to the mutually exerted spin

torque on M and m as follows:

dm x, tð Þ=dt½ �ex ¼ � dM tð Þ=dt½ �ex ¼ �γeJexm x, tð Þ �M tð ÞaSδ xð Þ (64)

through the exchange interaction at the interface.

By including the exchange spin torque in the LLG equation and integrating with

respect to x,
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@

@t
M tð Þ ¼ �γM tð Þ � Heff þ hac tð Þ½ �

� aS
dF

γJex M tð Þ �m 0, tð Þ½ � þ α0M̂ tð Þ � @

@t
M tð Þ;

(65)

where hac(t) is the microwave field, γ is the gyromagnetic ratio of FI, and α0 is the
Gilbert damping constant of FI. The magnetization of conduction electrons is

written as m(x, t) = m0(t)aSδ(x) + δm(x, t), where m0(t) = χeJexM(t) is the local

equilibrium spin density, χe ¼ 2μ2BN 0ð Þ is the spin susceptibility of conduction

electrons, and δm(x, t) is spin accumulation.

The Bloch equation with the exchange spin torque and the spin diffusion is given by

@

@t
m x, tð Þ ¼ �γeJex m x, tð Þ �M tð Þ½ �aSδ xð Þ

� δm x, tð Þ
τsf

þ D∇2δm x, tð Þ;
(66)

where τsf is the spin-flip relaxation time and D is the diffusion constant. With the

precession frequency (~GHz) much smaller than the spin-flip relaxation rate

τ�1
sf � 1012s�1

� �
, the solutions of Eq. 66 are obtained for the transverse spin

accumulation δm� = δmx � iδmy, which are used to calculate the longitudinal

spin accumulation

δmz xð Þ ¼ 1

ΓsMs
Im δmþ 0, tð ÞM� tð Þ½ �e�x=λs , x > 0ð Þ (67)

where

Γs ¼ ħ
SJsdτsf

λs
aeff

(68)

and M�(t) = Mx(t) � iMy(t), λs ¼
ffiffiffiffiffiffiffiffiffi
Dτsf

p
is the spin-diffusion length, and aeff = (a/

aS)
3aS. Note that the factor (λs/aeff) appears in Γs due to the exchange interaction

restricted to the interface with the effective exchange interaction range aeff.
The calculated spin accumulations are expressed in the vector form

δm x, tð Þ ¼ � χe
γe

1

1þ Γ2
s

M̂� @M̂

@t

 !
þ Γs

1þ Γ2
s

@M̂

@t

 !" #
e�x=λs ; (69)

which is used in Eq. 69 to yield the effective LLG equation

@M

@t
¼ �eγM� Heff þ hacð Þ þ α

Ms
M� @M

@t

� �
; (70)
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with the renormalized Gilbert damping constant and gyromagnetic ratio

α ¼ eγ
γ

α0 þ αSPð Þ, eγ ¼ γ

1þ αSP=Γsð Þ ; (71)

where

αSP ¼ aeff
dF

γ

γe
χeJex

Γs

1þ Γ2
s

¼ 1

4π

ħγ
MsdF

gsN
1þ Γ2

s

, gsN ¼ h

2e2ρNλs
; (72)

and ρN is the electrical resistivity of the normal metal.

The pumped spin current is given by jsx ¼ γ�1
e D∇xδm, whose z-component is

jzsx ¼
ħω
8π

gsN
1þ Γ2

s

MþM�
M2

s

� �
e�x=λs ; (73)

where ω = 2πf ( f is a microwave frequency). Thus, the spin current strongly

depends on the magnitude of the exchange coupling through Γs. For the strong

coupling limit Γ2
s 
 1

� �
, the spin current is independent of the exchange coupling.

For the weak coupling limit Γ2
s � 1

� �
, the spin current is proportional to the square

of the exchange coupling. In ordinary ferromagnets ħ/(SJsdτsf) 
 1, whereas (λs/
aeff)� 1 due to the interface effect. In strong ferromagnets like Fe, Co, Ni, Py, etc.,

the condition Γ2
s 
 1 is safely satisfied, indicating a maximum efficiency for spin

pumping.

By taking into account the boundary condition that the spin current vanishes at

the outer surface of N, jzsx x ¼ dNð Þ ¼ 0, the pumped spin current is expressed as

jzsx ¼
ħω
8π

g2N
sinh dN � xð Þ=λs½ �

sinh dN=λsð Þ
tanh dN=λsð Þ

1þ Γ2
s tanh

2 dN=λsð Þ
MþM�
M2

s

� �
; (74)

which gives rise to the electric field E along the y direction by the inverse spin-Hall

effect (ISHE): σNE ¼ θSHE 2e=ħð Þ jzsx xð Þ
 �
x
, where � � �h ix is the average over x. Thus,

the output voltage V = wNE between the Pt ends with length wN is given by

V � θSH
ħω
4e

wN

dN

� �
γhac
αω

� �2
tanh dN=λsð Þ tanh dN=2λsð Þ

1þ Γ2
s tanh

2 dN=λsð Þ ; (75)

at the resonance condition ω ¼ eγHð Þ . Equation 75 enables one to estimate the

magnitude of the exchange interaction Jsd from a measured value of voltage V at

resonance.

Using the measured value V = 4.8 μV by Kajiwara et al. [52] together with

experimental parameters, dN = 10 nm, wN = 3 mm, λs = 7 nm, θSH = 0.0037, γ =
1.76 � 107 Oe�1 s�1, α = 6.7 � 10�5, ω = 59 � 109 s�1, hac = 0.11 Oe, and (γhac/
αω)= 0.49, one has Γs� 19. Using this Γs value, τsf= 0.3 ps, ρN= 30 μΩcm, 4πMs
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= 1,956 Oe, a = 0.2 nm, aS = 1.24 nm, and S ¼ Msa
3
S= ħγð Þ ¼ 16 in Eq. 68, one

obtains SJsd ~ 0.16 eV, which is one order of magnitude smaller than those of

typical ferromagnets (SJsd ~ 1 eV for Co, Fe, Ni, and their alloys).

According to the spin-pumping theory based on the scattering formalism [14, 33,

32], one obtains the output voltage at resonance,

V ¼ θSH
ħω
4e

wN

dN

� �
γhac
αω

� �2
tanh dN=λsð Þ tanh dN=2λsð Þ
1þ gsN=g"#

� 

tanh dN=λsð Þ

; (76)

where g2N ¼ h=2e2ð Þ= ρNλsð Þ. When the mixing conductance is large, gsN=g"# 
 1
� 


,

which corresponds to the strong exchange interaction (Γs 
 1), Eqs. 75 and 76

tend to the same result,

V ¼ θSH
ħω
4e

wN

dN

� �
γhac
αω

� �2

1� 1

cosh dN=λsð Þ
� �

; (77)

which is the highest spin-pumping efficiency. In the opposite limit, i.e., gsN=g"#
� 


� 1 Γs � 1ð Þ, one has the relation g"# � gsN=Γ
2
s . The values Γs = 19 [52] and gsN

¼ 6� 1014cm�2 estimated above yield the mixing conductance g"# � 2 � 1012

cm�2 at the interface of Pt/YIG.

Recent experiments have reported large spin mixing conductance of the order of

g"# ~ 1013 cm�2 [54] and ~ 1015 cm�2 [55] in the YIG/Pt interfaces and g"# ~

1014–1015 cm�2 in the YIG/Ag interface [56, 57], probably due to improvement of

interface conditions. These results indicate that a high spin-pumping efficiency is

achieved even in the FI/N system.

Manipulation of Magnetization Dynamics by Spin-Hall Effect

In the preceding section “Spin Pumping by Precessing Magnetizations,” it is

demonstrated that the magnetization damping of a ferromagnetic layer is enhanced

by spin pumping into an adjacent normal-metal layer. The inverse effect that the

magnetization dynamics is manipulated by injecting spin current from a normal-

metal layer into a ferromagnetic layer is possible by using the spin-Hall effect in a

normal-metal layer. The control of magnetization damping and magnetization

switching has been demonstrated by experiments using materials with large spin-

orbit interactions such as Pt [58–60] and Ta [61].

A simple and useful system is a bilayer film consisting of a ferromagnetic layer

(F) and a normal-metal layer (N) shown in Fig. 5a, in which the external magnetic

field H is along ẑ, the applied current J is along ŷ, and x̂ is normal to the interface.

The dynamics of magnetization M in a F/N bilayer film is described by a general-

ized Landau-Lifshitz-Gilbert (LLG) equation [12, 13] including the spin torque
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terms due to spin pumping (SP) and spin-Hall effect (SHE). In the absence of the

applied current (J = 0), only the spin pumping from the precessing magnetization

into the Pt layer contributes to a relaxation of the precessional motion and yields an

additional Gilbert damping constant αSP
SP to the intrinsic damping constant αPy of an

isolated Py layer [13, 33], the sum of which is denoted as α0 = αPy + αSP, where αSP
is a positive value because the spin current is pumped out of F.

In the presence of the applied current (J 6¼ 0), SHE contributes to a further

relaxation of the precessing magnetization and modifies the relaxation by changing

the magnitude and polarity of J as follows. The spin current density jsx
SH generated

by SHE in the N layer is injected across the F/N interface, and the transverse

component of the incident spin current is absorbed to be transferred to the magne-

tization, exerting a spin-transferred torque on M [62]:

@M

@t

� �
SHE

¼ � γjSHs =dF
� �

M̂� M̂� σ̂
� �

; (78)

where γ is the gyromagnetic ratio, M̂ is the unit vector in the direction of

magnetization M, σ̂ is a unit vector in the polarization direction of the spin current,

and dF is the thickness of the F layer. Thus, the generalized LLG reads

@M̂

@t
¼ �γM̂�Heff þ α0M̂� @M̂

@t
� γjSHs
MsdF

M̂� M̂� σ̂
� �

; (79)

where the effective field Heff = H � 4πMxx̂+hac(t) is the sum of in-plane applied

field H, demagnetizing field �4πMxx̂, Ms is the saturation magnetization of the F

layer, and linear-polarized microwave field hac(t) = (0, hace
�iωt, 0) with ω = 2πf

α

a b

Fig. 5 (a) Schematic diagram of F/N bilayer system.M and J represent the magnetization and the

applied electric current, respectively, and Js
SP and Js

SH the interface spin-current densities polarized

along z due to spin pumping and SHE, respectively. (b) Modulation of the Gilbert damping

constant αSH = [α(J ) � α(�J )]/2 as a function of J. The solid circles are the experimental values

for Py/Pt by Ando et al. [58]
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( f is a microwave frequency). The third term in r.h.s. of Eq. 79 is the spin-

transferred torque term due to SHE.

In the present setup, the precession axis along ẑ is parallel to the polarization

direction σ̂ of the injected spin current σ̂ k ẑð Þ, and thus the linearized LLG equation

of Eq. 79 with respect to the precession amplitude is solved to yield analytical

expressions for (Mx, My), which enables to calculate the microwave absorption

P ¼ � ωh2ac=2
� �

Im χyy
� 	

with dynamic susceptibility [63]:

χyy ¼ � γMs γ H þ 4πMsð Þ þ iα0ω½ �
ω2 �Ω2

K � γjSHs =MsdF
� �2 � 2iαωγ H þ 2πMsð Þ

: (80)

Here, ΩK ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H H þ 4πMsð Þp

, α ¼ α0 þ αSH is the total relaxation coefficient and

αSH is the relaxation coefficient due to SHE [58, 59]:

αSH ¼ jSHs
MsdF

1

HFMR þ 2πMs
; (81)

where HFMR is the resonance field satisfying

HFMR þ 2πMs ¼ 2πMsð Þ2 þ ω=γð Þ2 � jSHs =MsdF
� �2h i1=2

: (82)

The applied current jN in the N layer generates the spin-Hall current θSHẑ � jN
flowing in the direction normal to the interface and polarized along ẑ, where θSH =
σSH/σN is the Hall angle, σSH is the spin-Hall conductivity, σN is the electrical

conductivity of the N layer, and jN = [(σNdN)/(σNdN + σFdF)]j due to the shunting

effect [59, 64, 65]. Incorporating the spin current generated by SHE in the drift-

diffusion equations (Valet-Fert model) [66–70] and assuming the injected spin current

of the form jSHs ¼ � ħ=2eð Þ G"#=2eAJ

� �
δμ 0ð Þẑ , where G"# is the interface spin

conductance, δμ(0)ẑ is the spin accumulation polarized along ẑ at the interface, and
AJ is the junction area, the injected spin-current density at the interface turns out to be

jSHs ¼ ηθSH ħ=2eð Þ J=ANð Þ; (83)

where (J/AN) is the applied current density, AN is the cross-sectional area of the N

layer, and η is the injection efficiency

η ¼ ρF=dFð Þ
ρF=dFð Þ þ ρN=dNð Þ

g"#=g
s
N

� 

tanh dN=2λsð Þ

1þ g"#=g
s
N

� 

coth dN=λsð Þ

, g"# ¼
hG"#
2e2AJ

(84)

with the thickness dN (dF), the electrical resistivity ρN (ρF), and the spin-diffusion

length λs of the N layer. For small applied current γ jSHs
�� ��= ωMsdFð Þ 
 1 , the

additional relaxation αSH(J) due to SHE is proportional to the applied current:
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αSH Jð Þ � ηθSH
2eγ=ħð Þ= eωMsdFð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2πγMs=ωð Þ2

q J

AN

; (85)

indicating that αSH(J) varies linearly with J and takes either a positive or negative

value by changing the polarity of J, because spins are ejected from F or injected into

F by the polarity change. The modification of the relaxation due to SHE is

observable from a microwave absorption P of ferromagnetic resonance (FMR)

whose spectrum versus H is written as

Pw � 1

4
h2acω

HFMR þ 4πMs

HFMR þ 2πMs

� �
Ms αω=γð Þ

H � HFMRð Þ2 þ αω=γð Þ2 ; (86)

where HFMR is the resonance field satisfying ω ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HFMR HFMR þ 4πMsð Þp

.

The resonance width W of the FMR spectrum is given by W ¼ 2=
ffiffiffi
3

p� �
αω=γð Þ,

and the difference of which at � J leads to

2αSH ¼ α Jð Þ � α �Jð Þ ¼
ffiffiffi
3

p
γ=2ω

� 

W Jð Þ �W �Jð Þ½ �: (87)

This relation allows one to obtain αSH by measuring the FMR widths of current

polarities �J. Once the value of αSH is obtained by analyzing the FMR spectra, the

product ηθSH is readily estimated from Eq. 85. Figure 5b shows αSH as a function of

applied current J. The solid line is a fit to the experimental data by Ando et al. [58]

using Eq. 85, yielding ηθSH � 0.09 for 4πMs = 6.1 kOe, f = 9.441 GHz, dN = dF =
10 nm, and wN = 0.02 cm. For the parameters of ρN = 15.6 μΩcm, ρF = 15.4 μΩcm,

and λNs ¼ 5nm at room temperature, the injection efficiency is η ~ 0.4, and hence the

Hall angle of the Pt layer is θSH ~ 0.2. The large spin-injection efficiency is promising

for spintronics application utilizing SHE in manipulating themagnetization dynamics.

When the applied current is large enough and the anti-damping contribution due

to SHE cancels out the intrinsic magnetization damping, the total damping coeffi-

cient vanishes at the critical current density,

jcr ¼ � 2e

ħ
α0
ηθSH

dFMs H þ 2πMsð Þ; (88)

above which the magnetization switching or the spontaneous magnetization oscil-

lation occurs by means of SHE. For α0 = 0.01, ηθSH = 0.1, dF = 20 nm, and Ms =
500 Oe, the critical current density is of the order of 107 A/cm2.

Thermal Spin Pumping

Recent observation of the spin Seebeck effect [71–74] and the transmission of

electrical signal through insulating ferromagnets [52, 75] have opened new possi-

bilities in both fundamentals and applications in spintronics [30]. Ferromagnetic
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insulators are unique in that they are electrically inactive with frozen charge

degrees of freedom but magnetically active due to spins of localized electrons.

Low-lying collective spin excitation, spin wave (magnon), carries spin angular

momentum. Utilizing pure spin excitation without charge excitation is crucial for

developing energy-saving spintronic devices.

In this section, it is demonstrated that the spin current flows across the interface

between a ferromagnetic insulator and a normal metal in the presence of temper-

ature difference between them. The spin-flip scattering of conduction electrons

through the exchange interaction with local moments at the interface creates a

magnon excitation in the ferromagnet [51]. Making use of linear-response theory

and fluctuation-dissipation theorem, an analytical expression is obtained for the

spin current through the interface generated by the temperature difference. The spin

Seebeck effect is briefly discussed.

Spin Pumping Due to Temperature Difference

When conduction electrons in N are incident on FI, the electrons are reflected back

at the FI/N interface, since electrons are prohibited to enter FI due to the large

energy gap at the Fermi energy. At the scattering, there are spin-flip processes in

which an electron reverses its spin from down to up or up to down, thereby emitting

or absorbing a magnon in FI as shown in Fig. 6. The spin-flip scattering involving

magnon excitation gives rise to transfer of spin angular momentum between FI and

N. In the equilibrium situation where the temperatures of FI and N are equal, the

scattering processes of (a) and (b) in Fig. 6 are balanced with each other and no spin

current flows across the FI/N interface. In the nonequilibrium situation where the

temperatures of FI and N are different, one of the spin-flip processes dominates over

the reversed process, so that the spin current flows across the FI/N interface.

a b

Fig. 6 Quantum mechanical spin-exchange processes at the interface of a ferromagnetic insulator

(FI) and normal-metal (N) junction. (a) They (b) represent the magnon emission and absorption

associated with the spin-flip scattering of conduction electrons at the interface, respectively,

thereby transferring spin angular momentum ħ from FI to N and from N to FI via the exchange

interaction
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The electron-magnon interaction at the interface can be described by using the s-
d exchange interaction between local moments and conduction electrons at the

interface:

Hsd ¼ Jsd
Na

XNI

n¼1

ð
d3rSn � ψ†

σ0 rnð Þσ̂σ0σψσ rnð Þ; (89)

where Sn are local moments at position rn on the interface; ψσ
†(rn) and ψσ(rn) are the

annihilation operator of an incident electron with spin σ at position rn, respectively;
σ̂ is the Pauli spin operator; Na is the number of lattice sites in N; and NI is the

number of local moments that interact with conduction electrons at the interface.

Using the Fourier transformation ψσ rð Þ ¼
X

k
cσ kð Þeik�r and

Sn ¼ N
�1=2
S

X
q
Sqe

iq�rn ; where ckσ is the annihilation operator of an incident

electron with momentum k and spin σ and NS is the number of localized moments

in FI, Eq. 89 is written as

Hsd ¼ Jeff
X
k, k0, q

S�q c
†
k0"ck# þ Sþq c

†
k0#ck" þ Szq c†

k0"ck" � c†
k0#ck#

� 
h i
ρq�k0þk; (90)

where Jeff ¼ Jsd= NaN
1=2
S

� 

, S�q ¼ Sxq � iSyq, andρp�k0þk ¼

XNI

n¼1
ei p�k0þkð Þ�rn :

The spin current through the interface is calculated from JsF=N ¼ ħ=2ð Þ d=dtð Þ
N"

e


 �� N#
e


 �� �
, where Nσ

e ¼
X

k
c†kσckσ is the number operator of electrons with

spin σ. Within the second-order perturbation with respect to Jsd [76], the spin

current JF/N
s across the interface is obtained as

JsF=N ¼ 1

ħ
NIJ

2
eff

ð1
�1

dt eiδμt=ħ S��q tð ÞSþq 0ð Þ
D E

σþq tð Þσ��q 0ð Þ
D Eh

�e�iδμt=ħ Sþq tð ÞS��q 0ð Þ
D E

σþ�q tð Þσ�q 0ð Þ
D Ei

;
(91)

where Sþq tð ÞS��q 0ð Þ
D E

and σþq 0ð Þσ��q tð Þ
D E

are the spin correlation functions for local

moments and conduction electrons, respectively; σþp ¼
X

k
c†k"ckþp# ; and σ�p ¼X

k
c†k#ckþp" . Note that the spin-flip scattering of an electron at the interface

produces the energy change by δμ = μ" � μ#, which appears as the time-dependent

phase factor in Eq. 91. It follows from the fluctuation-dissipation theorem [77] that

the correlation functions are expressed in terms of the imaginary parts of the

dynamical spin susceptibilities of F as

S��q tð ÞSþq 0ð Þ
D E

¼ � ħ
π

ð1
�1

dωe�iωtn ω,Tαð ÞImχþ�
α q,ωð Þ; (92)
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Sþq tð ÞS��q 0ð Þ
D E

¼ � ħ
π

ð1
�1

dωe�iωt n ω,Tαð Þ þ 1½ �Imχþ�
α q,ωð Þ; (93)

and likewise in N, where n(ω, Tα) = 1/[exp(ħω/kBTα) � 1] is the Bose distribution

function with effective temperature Tα, and α takes either F or N (α = F, N).

Inserting Eqs. 92 and 93 into Eq. 91, the interface spin current is expressed as

JsF=N ¼ 2ħ
π
NIJ

2
eff

X
p, q

ð1
�1

dω n ω,Tmð Þ � n ωþ δμ=ħ, Teð Þ½ �

�Imχþ�
F q,ωð ÞImχþ�

N p,ωþ δμ=ħð Þ;
(94)

where Tm(= TF) is the magnon temperature and Te(= TN) is the conduction-electron
temperature. The conduction electrons quickly equilibrate with the lattice, so that Te
is equal to the lattice (phonon) temperature Tp. Using χþ�

F q,ωð Þ ¼
2 Szh i= ħω� ħωq þ iδ

� �
for the localized moments without damping, where ħωq is

the magnon excitation energy, and χþ�
N p,ωð Þ ¼

X
k
f ξkð Þ � f ξkþp

� �� 	
=

ħω� ξk þ ξkþp þ iδ
� �

for the conduction electrons, where f(ξk) is the Fermi

distribution function and ξk is one-electron energy measured from the Fermi

level, the interface spin current becomes [51]

JsF=N ¼ 4πAJ

Szh i
a2

Jsd
eF

� �2
1

NS

�
X
q

ħωq þ δμ
� �

coth
ħωq þ δμ

2kBTe

� �
� coth

ħωq

2kBTm

� �� �
:

(95)

Note that JF/N
s vanishes in the equilibrium condition of Tm = Te and δμ = 0.

To examine how the spin accumulation is converted to the magnon spin current

and how the spin current depends on the magnon energy and temperature, one

may consider a simple model that magnons have the parabolic dispersion with no

excitation gap ħωq = Aexq
2. At high temperatures comparable to room tempera-

ture, Eq. 95 can be expanded up to the first order with respect to δμ and the

temperature difference Tm � Te, which leads to the spin-current density across the
interface

jsF=N � � ħ
2e

G
μð Þ
"#

2eAJ

δμ 0ð Þ � ħ
2e

G
Tð Þ
"#

2eAJ

kB Tm � Teð Þ; (96)

where the interface spin conductances normalized to (2e2/h)AJ are

g
μð Þ
"# ¼ G

μð Þ
"#

2e2=hð ÞAJ

� 8π 6=πð Þ1=3 Szh i
a2

Jsd
eF

� �2 kBTm

Aex

� �
; (97)
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g
Tð Þ
"# ¼ G

Tð Þ
"#

2e2=hð ÞAJ

� 16π2
Szh i
a2

Jsd
eF

� �2

; (98)

which correspond to the so-called mixing conductance with dimensions of cm�2.

It follows from the parameter values Szh i ¼ 5=2, aS = 0.6 nm, Aex = 6.24 meV

nm2, and kBT � 26 meV at room temperature that g
μð Þ
"# � 3:5� 1016 Jsd=eFð Þ2 cm�2

andg
Tð Þ
"# � 1:1� 1017 Jsd=eFð Þ2 cm�2. For example, the value of (Jsd/eF)= 0.5 yields

g
μð Þ
"# � 1� 1015 cm�2 and g

Tð Þ
"# � 3� 1015 cm�2 , which are the same order of

magnitude as those in metallic junctions [33, 50].

Taking into account the interface spin current in Eq. 96 in the spin-diffusion

theory and using the boundary condition that spin currents are continuous at the

interface, one obtains the spin current and spin accumulation in the normal-metal

layer of thickness dN [70],

δμ xð Þ ¼ 2eρNλsj
s
F=N

cosh x� dNð Þ=λs½ �
sinh dN=λsð Þ ; (99)

jsN xð Þ ¼ �jsF=N
sinh x� dNð Þ=λs½ �

sinh dN=λsð Þ ; (100)

and the interface spin-current density which includes the thermal pumping and

backflow effects,

jsF=N ¼ � 1

4π
g

Tð Þ
"#

kB Tm � Teð Þ
1þ g

μð Þ
"# =g

s
N

� 

coth dN=λsð Þ

; (101)

where gsN ¼ h=2e2ð Þ= ρNλsð Þ is the spin conductance of the N electrode.

The electric field induced by ISHE in the normal layer is given by EISHE ¼ θSH
ρN 2e=ħð Þ jsN zð Þ
 �

, so that the detected voltage VISHE = wNEISHE reads

VISHE ¼ �θSH
wN

dN

� � g
Tð Þ
"# =g

s
N

� 

tanh dN=2λsð Þ

1þ g
μð Þ
"# =g

s
N

� 

coth dN=2λsð Þ

kB
e

Tm � Teð Þ; (102)

which enables one to deduce the nonequilibrium temperature difference of the order

of (Tm � Te) ~ 3 � 10�4 K for the measured value of VISHE = 1.5 μV in a YIG/Pt

device and the parameter values of θSH � 0.01, wN = 4 mm, dN = 15 nm, and

g
Tð Þ
"# =g

s
N ¼ g

μð Þ
"# =g

s
N ¼ 0:01 Jsd=eF � 1ð Þ.
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Magnon Current, Magnon Accumulation, and Magnon Temperature

It is important to find a relation between the effective magnon temperature and the

magnon accumulation generated by a temperature gradient in a ferromagnetic

insulator (FI). In the presence of temperature gradient ∇T along z in FI (see

Fig. 8), the magnon current jm may flow according to the phenomenological

equation

jm ¼ �Dm∇δnm þ Lm �∇Tð Þ; (103)

where Dm is the diffusion constant of magnons, Lm is a coefficient, the first term is

the contribution of nonequilibrium magnon accumulation δnm, and the second term
is the contribution driven by the temperature gradient. Since individual magnons

carry spin angular momentum �ħ, the magnon spin current is jsm ¼ �ħjm.
The magnon accumulation is

δnm ¼ nm � nm; (104)

where nm ¼ ħγð Þ�1 Ms �Mzð Þ ¼
X

q
b†qbq

D E
is the magnon population in a

nonequilibrium state; bq
†(bq) is the magnon creation (annihilation) operator; hbq†bqi

is the distribution of magnon with energy ħωq, which is represented by the Bose

distribution function with magnon temperature Tm; and nm is the local equilibrium

magnon population with the lattice (phonon) temperature Tp which is equal to the

applied temperature. At high temperatures around room temperature (RT), the

magnon distribution functions can be expanded with respect to ħωq/kBTα, yielding

δnm � 6=πð Þ1=3 kB
2πAexaS

Tm � Tp

� �
; (105)

where
X

q
ħωq

� ��1 ¼ 6=πð Þ1=3VF= 2πAexaSð Þ is used. Note that the magnon accu-

mulation is represented by the temperature difference Tm � Tp, the deviation of the
magnon temperature from the lattice temperature.

Assuming the continuity equation for magnons, ∇ � jm = �δnm/τm, where τm is

the magnon relaxation time, and using Eq. 103, the magnon-diffusion equation is

written as

∇2δnm zð Þ ¼ 1

λ2m
δnm zð Þ; (106)

where λm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Dmτm

p
is the magnon-diffusion length. Using the boundary condition

jm = 0 at the sample ends of z = �L/2, the magnon spin current jsm ¼ �ħjm
� �

and

magnon accumulation become
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jsm zð Þ ¼ �ħ 1� cosh z=λmð Þ
cosh L=2λmð Þ

� �
Lm �∇Tð Þ; (107)

δnm zð Þ ¼ λm
Dm

sinh z=λmð Þ
cosh L=2λmð Þ
� �

Lm �∇Tð Þ: (108)

When the temperature difference ΔT is applied between the ends of the sample with

a linear temperature variation T(z) = T0 + (z/L)ΔT along the z direction in a

ferromagnetic insulator of length L, the temperature gradient is given by ∇T =
ΔT/L. Equating Eqs. 105 and 108, the nonequilibrium magnon temperature varies

along the temperature gradient as

Tm � Tp ¼ �ηm
λm
L

sinh z=λmð Þ
cosh L=2λmð Þ
� �

∇T; (109)

where ηm = 2π(6/π)�1/3(LmAexaS/kBDm).

The spatial distributions of the magnon current and the magnon accumulation in

the presence of temperature gradient are shown in Fig. 7a, b, respectively. Both

magnon current and magnon accumulation are proportional to the difference

between the magnon and lattice temperatures. The magnon (particle) current

Δ
λ

η
Δ

δ
Δ

λ

a

b

Fig. 7 (a) Spatial
distribution of (a) magnon

current and (b) magnon

accumulation, which is

proportional to the difference

of magnon and lattice

temperatures, in FI in the

presence of a positive

temperature gradient along

z(�L/2 < z < L/2)
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flows from the high-T side to the low-T side and vanishes at the sample ends due to

the boundary condition jm(z = �L/2) = 0. This magnon flow creates an accumu-

lation of magnons in the low-T region, where the effective magnon temperature is

higher than the lattice temperature, whereas it creates a depletion of magnons in the

high-T region, where the effective magnon temperature is lower than the lattice

temperature.

Spin Seebeck Effect

When a normal-metal layer is placed at position zN on the FI layer as shown in

Fig. 8a, the electron temperature of the N layer equilibrates with the lattice

temperature of the FI layer at the contact position (Te = Tp). Thus, from Eqs. 102

and 109, the inverse spin-Hall voltage generated by SSE becomes

VISHE ¼ ξm
wN

dN

� �
kBΔT
ej j

� �
λm
L

sinh zN=λmð Þ
cosh L=2λmð Þ
� �

; (110)

where

ξm ¼ θSHηm
g

Tð Þ
"# =g

s
N

� 

tanh dN=2λsð Þ

1þ g
μð Þ
"# =g

s
N

� 

coth dN=λsð Þ

: (111)

− Δ + Δ

>δ <δ
> <

−

− − −

=

=

=

Δ

−

−

a c

b

Fig. 8 (a) Schematic diagram of a device setup for measuring the spin Seebeck effect in the

presence of temperature bias ΔT between the two ends of a YIG film. (b) Schematic illustration of

magnon (particle) current jm, magnon spin current jsm ¼ �ℏð Þjm, and magnon accumulation δnm in

FI in the presence of temperature gradient ΔT/L along z. (c) Dependence of VISHE/ΔT on the

displacement zPt of Pt wire from the center of YIG layer along the z direction. The open circles are
the experimental data by Uchida et al. [72] and the solid curves are the fitting results using Eq. 110
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When the magnon-diffusion length is larger than the sample length (λm > L ),

VISHE � ξm wN=dNð Þ kBΔT= ej jð Þ zN=Lð Þ; (112)

indicating that VISHE varies linearly with respect to zN, which has been observed in a
YIG/Pt system at room temperature [72].

A qualitative physical picture of the spin Seebeck effect is presented in Fig. 8b.

A nonequilibrium state between magnetic moments in YIG and conduction elec-

trons in Pt is created by applying the temperature difference between the two ends

of the YIG film. The thermally excited magnons flow from the high-T to the low-T
ends driven by the temperature gradient. This magnon flow creates a magnon

accumulation (δnm > 0) in the low-T side, where the effective magnon temperature

is higher than the lattice temperature (Tm > Tp), whereas it creates a magnon

depletion (δnm < 0) in the high-T side, where the effective magnon temperature

is lower than the lattice temperature (Tm < Tp). Since the electron temperature Te of
the N layer equilibrates with the lattice temperature at the contact zN (Te= Tp), Tm is

higher (lower) than Te at the contact in the low-T (high-T ) side [78]. When the

contact lies in high-T side, the spin current flows from FI into N in proportion to

Tm � Te and also to ΔT, whereas it flows in the reverse direction from N to FI when

the contact lies in low-T side. Consequently, the voltage signal VISHE generated by

the spin current has different signs depending on whether the contact position zN is

in the high-T or low-T region. Figure 8c shows the experimental date measured by

Uchida et al. [72], and the solid curves are the fitting results using Eq. 110.

The nearly linear dependence of measured VISHE at room temperature implies

that the magnon-diffusion length is very long of the order of mm, and the damping

of the magnon accumulation is extremely weak in YIG which prevents a rapid

equilibration of magnons with phonons. The qualitative picture presented above is

validated by the microscopic models based on scattering and linear-response

theories [79, 80] and numerical simulations [81].

Thermally induced spin-angular-momentum transfer across the YIG/Pt interface

has been used to control the Gilbert damping of magnetization [82].

Summary

In this chapter, a theoretical description for spin pumping from a ferromagnet into a

normal metal is presented based on the spin-exchange interaction between localized

moments and conduction electrons in hybrid nanostructures. It is demonstrated that

pure spin currents are generated by the coherent spin pumping due to ferromagnetic

resonance (FMR) and the thermal spin pumping due to the spin Seebeck effect

(SSE). The inverse effect that the spin dynamics is manipulated by spin injection

from a normal metal with strong spin-orbit coupling into a ferromagnet using the

spin-Hall effect (SHE) is discussed. Owing to the spin-exchange interaction

between localized moments and conduction electrons, the spin angular momentum

is transferred from one subsystem where nonequilibrium electron spins or magnons
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are accumulated as a spin source by means of FMR, SHE, or SSE to a neighboring

nonmagnetic subsystem where a pure spin current carried by electron spins is

generated to produce an electric current of conduction electrons (dc voltage) by

means of the inverse spin-Hall effect (ISHE) or to a neighboring magnetic

subsystem where magnon excitation or spin-transfer torque strongly affects the

magnetization dynamics (damping) or even induces the magnetization switching.

Spin pumping and related phenomena would open up new avenues in the field of

metallic, semiconducting, and insulating spintronics.

The present formalism based on the spin-exchange interaction is an alternative

to the spin-pumping formalism based on the Landauer-B€uttiker scattering theory.

While these approaches are apparently different and have been developed rather

independently so far, these are two sides of the same coin and provide complemen-

tary views for spin pumping. Further intensive and comprehensive studies would

provide a unified picture of spin pumping in hybrid nanostructures.
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