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Abstract

The significant experimental advances of the last few decades in dealing with the

interaction of spin currents and nanomagnets, at the device level, have allowed

envisioning a broad class of devices that propose to implement information

processing using spin currents and nanomagnets. To analyze such spin-magnet

logic circuits, in general, we have developed a coupled spin-transport/magneti-

zation-dynamics simulation framework that could be broadly applicable to

various classes of spin-valve/spin-torque devices. Indeed, the primary purpose

of this chapter is to describe in detail the overall approach we have developed to

include a description of spin transport coupled with magnetization dynamics and

to show how it was benchmarked against available data on experiments.

We address noncollinear spin transport in section “Circuit Representation of Spin

Transport” using a lumped “four-component spin-circuit formalism” that describes

the interaction of noncollinear magnets (required for modeling spin torque), by

computing four-component currents and voltages at every node of a “circuit.” For

modeling the magnetization dynamics, we use the standard Landau-Lifshitz-Gilbert

(LLG) equation with the Slonczewski and the field-like terms included for spin

torque. Section “A Coupled Spin-Transport/Magnetization-Dynamics Simulator”

describes how this LLG model is coupled with the spin-transport model to analyze

spin-torque experiments and spin-magnet circuits in general.

We include MATLAB codes in the Additional Information to facilitate a

“hands-on” understanding of our model and hope it will enable interested

readers to conveniently analyze their own experiments, develop a deeper insight

into spin-magnet circuits, or come up with their own creative designs.

List of Abbreviations

ASL All-spin logic

CMOS Complementary Metal Oxide Semiconductor

CP Complementary pair

FM Ferromagnet

LLG Landau-Lifshitz-Gilbert

mZ Z-component of magnetization

NLSTT Nonlocal spin-transfer torque

NM Non-magnetic region

R Read

RNL Nonlocal resistance

W Write

W-R Write-read
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Introduction

Information Processing Using Spin Currents and Nanomagnets

A promising candidate in the quest for alternatives to charge-based transistors [1, 2]

has been a broad class of devices (e.g., [3–6]) that propose to implement informa-

tion processing using spin currents and nanomagnets. The significant experimental

advances of the last few decades in dealing with the interaction of spin currents and

nanomagnets at the device level have allowed envisioning large-scale circuits based

on these different proposals. In general, these experiments can be grouped under

one of two distinct physical phenomena: (1) injection of spin currents by magnets

into semiconducting or metallic channels and the transport of spin currents within

these channels [7–9] (usually laterally grown structures) and (2) spin-torque

switching of magnetization [10–12] by injecting spin currents into a magnet

(typically seen in vertically grown structures). In recent work (Behin-Aein, Datta

[3], Srinivasan, Sarkar [13]), we have suggested how these two phenomena can be

combined to form the basis of an all-spin logic (ASL) scheme, which can be used to

build computational logic blocks in a manner reminiscent of Complementary Metal

Oxide Semiconductor (CMOS) technology.

The primary purpose of this chapter is to bring to light a flexible and powerful

spin-transport/magnetization-dynamics framework that we constructed to describe

spin-magnet systems in general and which was instrumental in modeling ASL

[13, 14] for accurate switching behavior and energy-delay products, scaling trends,

and finding novel mechanisms of inbuilt directionality. Here, in the first part of this

introduction, we will briefly review – in the context of spin-based information

processing – how ASL represents a significant milestone in the development of

realistic all-spin device/circuit implementation.

Consider a typical ASL computational block shown in Fig. 1, comprising

nanomagnets and spin-transport channels. Each nanomagnet in this circuit can be

thought of as a reservoir of similarly oriented spins. The magnet can be suitably

engineered so that these spins collectively point along one particular direction,

commonly referred to as the “easy axis” of the magnet. The resulting magnetization

pointing one way or the opposite along the easy axis now provides a natural

representation for digital information, “0” and “1”. Information processing is

achieved by making the magnetization toggle between “1” and “0” based on the

spin-current input to the magnets through the spin-transport channels.

The operational principle of the individual ASL unit is quite similar to the

nonlocal spin-transfer torque (NLSTT) phenomenon shown in Fig. 2. In NLSTT

(Fig. 2a) a charge current flowing to the ground from a magnetic contact on the left

(input) gives rise to a spin current to the right, outside the path of charge current.

This “nonlocal” spin current has been shown to be capable of flipping the magne-

tization of a second magnet (output) on the right-hand side [15, 16]. Thus, infor-

mation is read from the left magnet by translation of the input terminal voltage into

a spin current IS, which transmits to the right and is written onto the second magnet
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(through spin-torque switching). Such information transfer from one nanomagnet to

the next as a process of read (R) followed by a write (W) is discussed in Ref. [17].

We note here that similar information transfer can also be achieved in the “local”

configuration, wherein charge current (and accompanying spin current) is directly

driven from the input to the output magnet. However, the nonlocal configuration

makes it easy to see the decoupled nature of charge and spin currents. For positive

voltages Vin, the spin current has a sign opposite to that of the inputmagnet, and the

overall structure in Fig. 2a functions as an inverter.

It is important to note, however, that while reads followed by writes (perhaps
after some processing) comprise the essence of logic, the mere availability of a read
and a write mechanism in NLSTT (or a number of the other spin-transfer torque

structures such as the popular magnetic tunnel junction) does not allow one to

perform logic functions using just several of these devices together. This is because,

in NLSTT, the measured quantity is a nonlocal voltage at the write terminal, several

orders of magnitude smaller than the voltage at the read terminal. This “output”

voltage is found to be insufficient to drive subsequent stages unless it is interfaced

through external amplifiers and/or sophisticated clocking mechanisms, requiring

additional CMOS circuitry. This is what we could broadly refer to as “CMOS-

dependent logic,” i.e., requiring transistor intervention at every stage. But, if we

wish to develop a “self-contained logic” scheme that would allow us to interconnect

hundreds of write-read (W-R) units without the use of any clocks or intervening

CMOS circuitry, then it is important to design individual W-R units to have gain

and directivity, properties that come naturally in transistor-based circuits but not so

easily with magnets. The ASL device (Fig. 2b) satisfies these additional device and

circuit requirements because it incorporates a lot more than the basic NLSTT

functionality.
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Fig. 1 A computational circuit with spin currents and nanomagnets: the magnets receive input

information in the form of spin currents via a spin-transport channel. Information is processed by

the switching action of the magnetization, and the processed information is transmitted as spin

current to the next stage. This particular layout represents a NAND logic gate (discussed in section

“A Coupled Spin-Transport/Magnetization-Dynamics Simulator”). The simulated behavior of the

magnetization is shown for a particular set of inputs
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In ASL, the external circuitry is avoided by designing W-R units with transistor-

like directionality: the magnet is controlled more effectively by the input spin

current than by the output spin current, just as the channel of a field effect transistor

is controlled more by the gate voltage than by the drain voltage. Every magnet has

an insulating barrier beneath it (such as due to oxide deposition, a physical cut,

doping, etc.), which allows it to interact separately with the preceding and

succeeding stages through a non-magnetic channel. Ideally, for unidirectional

information flow, we want one side of each magnet to behave as the write, where
it can receive information, and the other side to behave as the read from where it

can pass it on. Thus the device behaves as a self-contained current-driven switch

that does not require any intermediate charge-based conversion. The supply voltage

in this case only serves to provide “power gain” so that the read side can drive

subsequent stages. Having the same supply voltage on all the ASL devices makes

them function in the nonlocal configuration, while having different supply voltages

makes them function in the local configuration. Much of our work on ASL has been

focused on designing W-R units of the type shown in Fig. 2b and establishing

(Fig. 3a) that they exhibit sufficient gain and unidirectionality to allow large-scale

circuit implementation [13, 18, 19] analogous to CMOS.

Indeed one could view a series of standard CMOS inverters (Fig. 3b) as a

sequence of reads and writes as well. We could say that each complementary pair

(CP) plays the role of a magnet. The state of the CP is read by transforming it to

charge on a capacitor – the gate capacitor of the next stage being charged by VDD or

NLSTT: Physics ASL: Spintronic Device

Vout  Vin << 1

W: Write

Is,in

Insulating Barrier
Channel

Magnet

+ V

m̂

R: Read

Is,out

Information: Terminal voltages
Power Gain: requires external amplifiers

Information: Magnetization (no conversion to charge); Integrated read/write structure
Power Gain: Supply voltage

Device characteristics : Cascading, Unidirectional information transfer, fanout [13,18]

W R
W R Schematic

representation

a b

Physical 
structureIs

Vin

I
Vout

Fig. 2 (a) Nonlocal spin-transfer torque (NLSTT) phenomena can be viewed as a read (R)
followed by a write (W ). However, as discussed in the text, not all read-write units can be

cascaded to form large-scale circuits. (b) The basic ASL read-write unit that incorporates

additional device characteristics allowing circuits such as in Figs. 1 and 4
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discharged by ground, through the CP – which is then written onto the next CP

through the gate voltage. One advantage of magnets is that they are “nonvolatile.”

Unlike the CP which loses all information once the power supply is removed,

information stored in a magnet is “nonvolatile.” It is also a natural digital spin

capacitor, making it particularly well suited for digital and neuromorphic circuits

[3, 19, 20].

A signature result that distinguishes an inverter unit having gain from a passive

one is a ring oscillator comprising an odd number of W-R inverters connected in a

ring as shown in Fig. 4. Each unit, being an inverter, tries to switch the following

unit in a direction opposite its own. With an odd number of inverters in the ring,

there is no overall stable state. If the spin current from each unit exceeds the

threshold value needed to switch the following unit, then the z-component of the

magnetization (mz) of each unit exhibits continuous stable oscillations as shown.

Fig. 3 (a) Interconnection of basic W-R unit for ASL does not require any external amplifiers or

clocks. The information is entirely in the spin domain decoupled from the supply voltage, which

only powers the circuit. (b) A series of CMOS inverters can also be viewed as a sequence of reads

and writes

Fig. 4 An odd number of inverters connected in the form of a ring comprises a ring oscillator

where each unit periodically switches the following unit. Gain and directionality of individual

W-R units are essential for the functioning of a ring oscillator
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This behavior, well known for CMOS inverters, is really quite surprising in the

context of magnets. One does not expect three identical interconnected magnets

powered by a constant d.c. supply voltage to give rise to such controlled and

predictable oscillations. This is made possible by the two key characteristics we

mentioned, namely, gain and directivity: each unit is capable of switching the

following unit without itself getting affected in turn.

A Coupled Spin-Transport/Magnetization-Dynamics Model for
Spin-Based Device and Circuit Design

As mentioned earlier, to analyze spin-magnet logic circuits in general, we have

developed an overall simulation framework (Fig. 5) simultaneously capturing spin

transport as well as magnetization dynamics, which is broadly useful beyond ASL.

Indeed the primary purpose of this chapter is not to describe ASL circuits, which

have already been adequately discussed in our earlier publications; rather it is to

describe in detail the overall approach we have developed for the analysis of spin-

magnet circuits and how it was benchmarked [14] against available data on spin-

torque experiments. As can be noted from Fig. 5, the overall simulation framework

contains two individual components:

• A circuit model for noncollinear spin transport (pertaining to the transfer of spin

information between magnets)

• A description of magnetization dynamics (pertaining to the mechanism of

information processing and storage within the magnet)

In section “Circuit Representation of Spin Transport,” we address the spin-
transport component using a lumped “four-component spin-circuit formalism”

that we have developed, based on the work of the Bauer Group [21–23], to describe

the interaction of noncollinear magnets (required for modeling spin torque).

LLG equation

m1,m2 ...mnIs1, Is2 ...Isn

4-component 
‘Spin Circuit’ 
formalism  

Spin Transport 
(information transfer)

Magnetization dynamics
(information processing and storage) 

ˆ   ˆ      ˆ

Fig. 5 A coupled spin-transport/magnetization-dynamics model for spin-magnet circuits. The

magnetization dynamics relates to how (spin) information is processed and stored in the

nanomagnets. This is described by the standard Landau-Lifshitz-Gilbert equation. The “spin-

transport” component models how information is transferred among the nanomagnets. We intro-

duce a novel four-component spin-circuit formalism to describe this part
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This model computes four-component currents and voltages at every node of a

“circuit.” Each nodal quantity has four components: one for the charge information

and three components for the spin information corresponding to the x, y, and z

directions. The use of a lumped element representation allows one to conveniently

construct circuits in a modular fashion starting from basic device elements, quite

similar to the SPICE modeling widely used for CMOS circuits. This approach to

our spin-circuit model has been employed for modeling a broad spectrum of

spintronic devices ranging from analysis of local spin-valve structures [24] to

domain wall propagation [25]. In addition, the use of a lumped circuit model

facilitates insights into the working of complicated device geometries by straight-

forward transformation of such circuits into analytical expressions. This will be

shown in section “Circuit Representation of Spin Transport” with the example of

deducing an expression for magnetoresistance of a nonlocal spin valve leading to

the well-established result [26] for such structures.

For modeling the magnetization dynamics, we use the standard Landau-Lifshitz-
Gilbert (LLG) equation with the Slonczewski [27] and field-like terms included for

spin torque. Section “A Coupled Spin-Transport/Magnetization-Dynamics Simulator”

describes how this LLG model is coupled with the spin-transport model to analyze

existing experiments [15] and spin-magnet circuits in general.

We include MATLAB codes in the Appendix to facilitate a “hands-on” under-

standing of our model and hope it will enable interested readers to conveniently

analyze their own experiments, develop a deeper insight into ASL, or come up with

their own creative designs.

Circuit Representation of Spin Transport

As noted earlier the “spin-transport” component pertains to modeling how informa-

tion is transferred from one magnet to the next through spin-transport channels. The

modeling technique used for this purpose is the four-component lumped π-network
model for spin transport, which is accurate in the linear and diffusive regime of

transport. The use of lumped circuit elements in the model naturally lends itself

toward simulating large-scale circuits involving noncollinear magnets (Fig. 6a). Once

the basic circuit elements are in place, the process of translation from arbitrary

physical layouts (Fig. 6a) to “simulatable” circuit constructs (Fig. 6b) can literally

be automated. The rest of this section is an elaboration of this process flow.

From a modeling perspective, it should be recognized that any physical structure

designed for spin injection and spin transport can usually be resolved into three

regions (Fig. 7): (a) a non-magnetic channel that carries the spin current; (b) a

magnet, which acts as a source of spin-polarized carriers; and (c) optionally an

additional interface region which enhances the injection of spins from the magnet

into the channel. Once we have a reliable lumped element representation for each of

these regions, it is easy to model large-scale circuits since they are basically a

combination of these three blocks. We will briefly review the existing theory for

diffusive spin transport and show how it leads to a lumped circuit model.
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Spin Diffusion Equations and the Distributed Spin-Circuit Model

At the outset it is important to keep in mind that, depending on the regime of

operation and types of physical mechanisms involved, there are different tech-

niques available for modeling spin-magnet systems. An extremely low-

temperature experiment with correlation effects or involving high-spin orbit

coupling would require a full-quantum transport formalism like the

nonequilibrium Green function [28] or scattering theory [21] to describe the

current flow. On the other hand, due to practical operational constraints, spin-

based computing on a large scale understandably involves room temperature

operation, and the transport regime in these systems is closer to diffusive,

which is captured by the spin diffusion equations [29, 30].

Spin Transport
(4-component spin circuit) 

Each element is a lumped conductance 
represented by a 4x4 matrix

a

b

Fig. 6 Spin-transport modeling using lumped circuit elements. (a) The spin-based computational

circuit shown in Fig. 1 and (b) the equivalent spin-circuit representation using 4 � 4 lumped

π-conductance matrices derived further along this chapter

Fig. 7 The three regions of any circuit involving magnets interacting via spin currents
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We will now describe what we could call a “spin-circuit” approach, which is a

distributed transmission line representation leading to the spin diffusion equations.

The idea behind these equations is that, in spin diffusive channels, one can concep-

tually think of the up spins and down spins being transported through separate

conducting channels [31], intermittently connected to each other through a spin-flip

conductor (Fig. 8). Usually, when calculating quantities such as density of states or

current flow in non-magnetic materials, it is typical to ignore the spin nature and

simply account for a factor of two in the final result to include spin degeneracy. Here

we start off by explicitly accounting for transport in each spin channel.

For one-dimensional transport, the spin-dependent electron current can be writ-

ten in terms of distributed resistances ru, rd and spin-flip conductance gsf (Fig. 8) as

ruIu ¼ d μu=� qð Þ
dx

¼ � dVu

dx
, rdId ¼ d μd=� qð Þ

dx
¼ � dVd

dx
(1a)

dIu
dx

¼ � gsf μu � μdð Þ=� q ¼ �dId
dx

(1b)

where μu, μd are the quasi-Fermi levels for up- and down-spin channels; ru(d ) are the

resistances per unit length for each channel in Ω� m�1 , and gsf is the spin-flip

conductance per unit length inΩ�1m�1. These equations can be concisely rewritten

in a matrix form as

d

dx

Vu

Vd

� �
¼ � ru 0

0 rd

� �
Iu
Id

� �
d

dx

Iu
Id

� �
¼ �gsf

1 �1

�1 1

� �
Vu

Vd

� �
:

(2)

Decoupling charge and spin quantities: When modeling circuits involving the

interactions of many magnets that are not necessarily collinear to each other, this

representation in the up-down basis has now to be extended to each of the three

Iu

Id

ru ru ru ru

rd rd rd rd

gsf gsf gsf

Iu + Id = charge current

Iu − Id = spin current

L

I1 I2

1

Vu
Vd

Vu
Vd 2

Fig. 8 Distributed spin-circuit representation of a spin-transport section of length L with bound-

ary conditions V
⇀
1 and V

⇀
2 at the two ends
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spatial dimensions, i.e., an up-down representation for each of the “x,” “y,” and “z”

coordinates. This makes the situation quite complicated! Modeling such

noncollinear systems is greatly facilitated if we can separately consider the charge

and spin quantities by using a transformation such as

Vc

Vs

� �
¼ 1

2

1 1

1 �1

� �
Vu

Vd

� �
and

Ic
Is

� �
¼ 1 1

1 �1

� �
Iu
Id

� �

where the subscripts “c” and “s” refer to charge and spin, respectively. This basis

transformation allows us to rewrite Eq. 2 as

d

dx

Vc

Vs

� �
¼ � 1

4

rþ �r�
�r� rþ

� �
Ic
Is

� �
(3a)

d

dx

Ic
Is

� �
¼ 0 0

0 �4gsf

� �
Vc

Vs

� �
(3b)

where r� ¼ rd � ru (= 0 for non-magnetic materials, which effectively decouples

the charge and spin) and rþ ¼ rd þ ru . The advantage of using charge and spin

components is that the voltages and currents are conveniently extended to four-

component quantities by resolving the spin component into three spatial directions.

This becomes trivial in non-magnetic materials noting that there is no distinction

between x-, y-, and z-components.

Spin diffusion equations in the charge-spin basis: A simple differentiation of

Eq. 3a and insubstitution with Eq. 3b lead to the standard spin diffusion equation

now given in the charge-spin basis by

d2

dx2
Vc

Vs

� �
¼ 0 �r�gsf

0 λ�2
sf

� �
Vc

Vs

� �
(4)

where λsf is the spin diffusion length of the channel material given by the relation

λ2sf ¼ 1= rþgsf
� �

.

Lumped Spin-Circuit Model

The lumped spin-circuit model is derived as an analytical solution of the spin

diffusion equations (Eqs. 3 and 4) for any section of length L (Fig. 8) characterized

by a resistivity ρ�1 ¼ r�1
u þ r�1

d , spin diffusion length λsf, and with voltages V
⇀
1 and

V
⇀
2 across its ends. The solution of Eq. 4 can be substituted in Eq. 3a so that charge

and spin currents (Ic and Is) flowing into the section at either end can be related to

the voltage drop across its ends (ΔVc corresponding to charge and ΔVs

corresponding to spin) as
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Ic
Is

� �
1

¼ Gse½ �2�2

ΔVc

ΔVs

� �
þ Gsh
� 	

2�2

0

Vs1

� �
: (5)

The stepwise procedure leading from Eq. 4 to Eq. 5 is listed in Appendix A and
summarized in Fig. 9.Here we proceed directly to the result, i.e., the structure of the
lumped 2 � 2 series and shunt conductance matrices and how they relate to each of

the different regions, namely, the non-magnetic channel, the ferromagnet, and the

interface regions.

Non-magnetic Channel
A non-magnetic material is characterized by an equal number of conducting modes

at the Fermi level (Fig. 10) for both the up spins and down spins.

Consequently the equivalent circuit model has ru ¼ rd , i.e., r� ¼ 0. With this

simplification in place, Eq. 4 reduces to

Fig. 9 (a) The distributed network representation of the entire section can be lumped into (d) a
pi-network of conductances. To do so, there is (b) reformulation of the transmission line repre-

sentation into a matrix representation and (c) basis transformation from the standard up-down basis

to a charge-spin basis as explained in text
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d2

dx2
Vc

Vs

� �
¼ 0 0

0 λ�2
sf

� �
Vc

Vs

� �
:

Correspondingly, the series and shunt conductance matrices are given by

Gse
N ¼ 1

ρL

1 0

0
L

λsf

� �
cosech

L

λsf

� �0
@

1
A; Gsh

N ¼ 1

ρL

0 0

0
L

λsf

� �
tanh

L

2λsf

� �0
@

1
A:

Series conductance matrix (Gse): Clearly the charge and spin quantities are

decoupled due to the absence of any off-diagonal elements in the matrices. The

upper diagonal element simply relates the charge voltage drop to the charge current

flow by the usual charge conductance as one would expect with Ohm’s law. The

lower diagonal element relates the spin current flowing through the section to the

spin voltage drop across its ends.

Shunt conductance matrix (Gsh): This matrix has only one element located on

the lower diagonal, which is purely spin information. This term is a representation

of the spin-flip conductance of a non-magnetic channel. When this matrix is

shown to be electrically grounded at one end in the pictorial representation

(Fig. 9d), we would like to mention that this is not a real ground but rather

a virtual “spin” ground. The significance of this matrix is that it captures

the spin-current dissipation or generation in the structure and is equivalent to

the spin-flip conductance gsf in the up-down basis. Unlike charge current, spin

current is not conserved and will vary as it keeps encountering spin-randomizing

events while flowing through any material. This nonconservative nature of the

spin current is captured by what flows through the shunt conductance connected

to a virtual ground, while the spin-polarized current flowing through such a

material is captured by the lower diagonal element of the series conductance

matrix.

VSS

(A)
(C)
(B)

μ

E

D(E)

Non-Magnetic Channel

Iu

ru = rd

Id

ru ru ru ru

rd rd rd rd

gsf gsf gsf

Fig. 10 Distributed spin-circuit representation for a non-magnetic material characterized by the

same density of states at the Fermi level for both up and down spins
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Ferromagnet
A magnet is characterized by an unequal distribution of up-spin and down-spin

density of states (Fig. 11). This reflects as different conductivities [32] for the up-

and down-spin channels resulting in an unequal flow of up-spin and down-spin

currents within the magnet, i.e., a net spin current. Therefore, a magnet possesses

the property that a charge current flowing through it is naturally spin polarized.

The ability of the magnet to polarize a charge current is quantified by the

parameter “p” (spin polarization), defined as p ¼ ru � rdj j= ru þ rdð Þ. Upon solving
Eq. 4 for the case where ru 6¼ rd, this parameter naturally appears (Appendix A) in

the final lumped π-network of conductances and couples the charge and spin

quantities in the conductance matrix as shown below:

Gse
F ¼ 1

ρL

1 p

p p2 þ α cosech
L

λsf

� �0
@

1
A; Gsh

F ¼ 1
ρL

0 0

0 α tanh
L

2λsf

� �0
@

1
A;

where α ¼ 1� p2ð Þ L

λsf

� �
:

If these circuit elements are used in describing the flow of current injected into a

ferromagnet, then in addition to a charge current flow, there is a spin current

generated due to this off-diagonal element. On the other hand, for a non-magnetic

section, p = 0, implying that a charge current flowing through it will not generate a

spin current by itself.

Magnet/Channel Interface Region
The interface between the magnet and the channel can play quite an important role

in contributing to the spin polarization of the injected electrons. The first experi-

ments on spin injection dealt with all-metal structures having nearly “ohmic”

interfaces. Later when semiconducting channels were incorporated, it was observed

that the spin polarization was considerably reduced due to resistivity mismatch at

the interface. In fact one of the major breakthroughs in experiments is considered to

VSS

(A)
(C)
(B)

Magnet

μ

E

D(E)

Iu

ru  ≠ rd

Id

ru ru ru ru

rd rd rd rd

gsf gsf gsf

Fig. 11 Distributed spin-circuit representation for a ferromagnetic material characterized by

unequal density of states of up and down spins at the Fermi level
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be the introduction of tunnel barriers [33–35] in the interface region. Although it

has been conceived that the band structure properties of the tunnel barrier would

suppress one type of spin carrier (MgO) [36, 37], it is now recognized that even an

interface which cannot distinguish between the two types of spins can still help

enormously by alleviating the resistivity mismatch (see discussions in [38–40])

between the magnet and the channel.

The mismatch problem can be understood in simple terms keeping the following

picture in mind (Fig. 12). In the case of a magnet injecting into a semiconducting

channel through an ohmic interface, it is seen that the number of conducting modes

in the magnet is several orders larger than the conducting modes in the channel.

Consequently, despite high-spin polarization within the magnet, during the process

of injection, all the modes within the channel are filled, thereby resulting in zero

spin polarization within the channel.

A tunnel barrier alleviates this problem by suppressing the overall transmission

from the magnet into the channel to such an extent that there is a noticeable

difference between the number of up-spin and down-spin carriers that make it

through the interface into the channel. Therefore, the interface can be modeled as

a region having unequal up- and down-spin resistances.

Since a circuit model for an ohmic interface does not require any special matrix

elements, we will discuss just the modeling of the tunnel barrier. The lumped

spin-circuit model for the tunnel-barrier interface is the same as the one obtained

in the case of a magnet. However, it is important to keep in mind that the

mechanism of “p” is different in these two cases. In general, tunnel barriers at

the interface are very thin, and it is useful to reduce the conductance matrices with

the approximation that L � λsf . This results in the following conductance

matrices:

Gse
T ¼ gT

1 pT
pT 1

� �
; Gsh

T ¼ 0½ �;

where gT is the conductance of the tunnel barrier and PT is its effective spin

polarization. This use of a constant spin polarization in the conductance matrix

μ1

E

D(E)

Effective Interface polarization through 
alleviation of Mode mismatch

VSS

(A)
(B)
(C)

Magnet
Channel

Interface

ru

rd

ru  ≠ rd

Fig. 12 Transport through a tunnel-barrier interface between a ferromagnet and channel
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for a tunnel-barrier region is valid only in the low-bias regime. When injecting

across a tunnel barrier at high bias, the band structure effects result in a different

polarization corresponding to different conducting modes. For the high-bias

case the effective polarization is determined by integrating overall conducting

modes [41].

Example: Spin-Circuit Analysis of Nonlocal Spin-Valve Structures

Nonlocal spin valves (Fig. 13) are among the most popular class of devices used for

analyzing spin transport in lateral structures. In this structure a charge current is run

through one of the ferromagnets (injector) to a ground terminal. The charge current

gets spin polarized by the injecting magnet, and this spin current then diffuses

toward a detector magnet kept outside the path of the charge current. The presence

of the spin current in the channel perturbs the quasi-fermi levels beneath the detector

ferromagnet and causes a charge voltage to develop on the detector. The ratio of

the measured voltage to the injected current is called nonlocal resistance (RNL).

When RNL is a positive number, it indicates that the two magnets are parallel to

each other, and a negative value means that the magnets are antiparallel.

FM2 FM1

TB2 TB1

Non-magnetic 
Channel

V
+−

I

l1ll2

1

2

3

a

b

4

567

Fig. 13 Spin-circuit representation of a nonlocal spin-valve structure. (a) The nonlocal spin-valve
structure can be decomposed into multiple elements such as the injector and detector ferromagnets

(FM1 and FM2), tunnel barriers, and channel regions. (b) Each element can now be represented by

a π-network of conductances. A simple nodal analysis following current conservation laws can

determine the values of currents and voltages at each node

1296 S. Srinivasan et al.



As an example of lumped spin-circuit analysis, we will show how it can be applied

to calculate RNL both numerically and analytically. The first step is to break up the

spin-valve structure into subsections such as shown in Fig. 13a. The channel portion

is decomposed into three parts: a section between the two magnets of length “l” and
one overhanging region beyond each magnet of lengths “l1” and “l2,” respectively.
Similarly, there are subsections corresponding to each magnet and the tunnel-barrier

interface. Each of these subsections can now be described by an equivalent conduc-

tance as shown in Fig. 13b. (Note that the tunnel barrier does not have shunt elements

since it is assumed to be much thinner than its spin diffusion length.)

Once the equivalent lumped circuit representation has been obtained, the

nonlocal resistance of this structure is given by the ratio of V3c � V7cð Þ=I1c ,
which is the ratio of the charge voltage measured between nodes 3 and 7 to the

charge current entering node 1 from the external current source. It is important to

note that the circuit representation involving “virtual” ground terminals allows us to

apply the usual current conservation laws for charge currents to spin currents as

well. One can represent the total current at any node “i” in the structure as

X
j

I
⇀
ij ¼ 0 (6)

where the current I
⇀

is a two-component vector having a charge and a spin

component.

We already noted that the current flowing into any section from a node “i” is

given by Eq. 5 as

I
⇀
ij ¼ Gse V

⇀
i � V

⇀
j

� �
þ GshV

⇀
i same as Eq: 5ð Þ:

Combining Eqs. 5 and 6, we can set up a conductance matrix relating all the

nodal currents to the nodal voltages in the circuit as

I
⇀
1

⋮
I
⇀
7

8<
:

9=
; ¼ G½ �total �

V
⇀
1

⋮
V
⇀
7

8<
:

9=
;: (7)

Each of these currents and voltages is a two-component vector since they contain a

charge and a spin component. The explicit form of Gtotal is shown below:

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0

GF1 + GF1

G0F2 + GF2

G0F2 + GF2 + GT2

−GF1

−GF2

−GF2

−GN2

−GN2

−GT2

−GN3

−GN3

−GT1

−GT2

−GF1

G0F1 +GF1 + GT1

GN1 + G0N1 + GN2 + G0N2 + GT1

GN3 + G0N3 + GN2 + G0N2 + GT2

GN3 + G0N3

−GT1
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The subscripts F, T, and N correspond to the ferromagnet, tunnel-barrier, and

non-magnetic regions, respectively, while the G and G0 correspond to the series

(Gse) and shunt (Gsh) conductance matrices, respectively, with reduced subscripts

for convenience. The inputs to each of these conductance matrices are the material

parameters (resistivity and polarization) and physical dimensions (area, length, etc.)

of the particular section that they describe.

It is relatively straightforward to solve this conductance matrix analytically to

determine the ratio V3c � V7cð Þ=I1c , though one should keep in mind that each

element is a 2 � 2 matrix in itself. Appendix B provides the details of the analytical
derivation of nonlocal resistance from the above conductance matrix, resulting in

the following expression:

RNL ¼�2RSNe
�L=λN

PT1
RT1

RSN

1�P2
T1

þ
Pf1

RF1

RSN

1�P2
f1

0
BB@

1
CCA�

PT2
RT2

RSN

1�P2
T2

þ
Pf2

RF2

RSN

1�P2
f2

0
BB@

1
CCA

1þ
2
RT1

RSN

1�P2
T1

þ
2
RF1

RSN

1�P2
f1

0
BB@

1
CCA� 1þ

2
RT2

RN

1�P2
T2

þ
2
RF2

RSN

1�P2
f2

0
BB@

1
CCA� e�2L=λN

:

(8)

In this expression, the “Ps” refer to the spin polarization of the magnet and effective

polarization of the tunnel-barrier interfaces, while the “Rs” refer to the resistance of
the channel and magnet over one spin diffusion length. The same expression was

first derived in Ref. [26] using the spin diffusion equations and is widely cited by

experimentalists dealing with these devices.

In practice a quick way to obtain the nonlocal resistance is to write a simple

code to solve this conductance matrix, and we have provided a MATLAB

script in Appendix C that implements the same procedure detailed above. The

simulated result is shown in Fig. 14 superimposed with the analytical solution

from Eq. 8.

4-Component Spin-Circuit Representation for Noncollinear Magnet
Structures
The preceding example and analysis dealt with the application of lumped

spin circuits to a class of devices that involve collinear magnets, i.e., magnets

being parallel or antiparallel to each other. Consequently, the conductance

matrices were 2 � 2 matrices. In order to model noncollinear magnetic systems

(such as the experiment discussed in the section “Coupling Spin Transport with

Magnetization Dynamics”), we now extend our conductances into 4 � 4 matrices

whereby a four-component voltage drop is related to a four-component current by a

[4 � 4] conductance matrix as Ic, I
z
s, I

x
s , I

y
s

� 	 ¼ Gse ΔVc,ΔVz
s,ΔV

x
s ,ΔV

y
s

� 	Tþ
Gsh 0,Vz

s,V
x
s ,V

y
s

� 	T
:
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Non-magnetic Channel
The four-component conductance matrices for a non-magnetic section can be

obtained by a simple extension of the two-component version and would look as

follows (ρ, resistivity; L, length; A, cross-sectional area; λsf, spin-flip length):

Gse
N ¼ A

ρL

1 0 0 0

0
L

λsf

� �
cosech

L

λsf

� �
0 0

0 0
L

λsf

� �
cosech

L

λsf

� �
0

0 0 0
L

λsf

� �
cosech

L

λsf

� �

0
BBBBBBBB@

1
CCCCCCCCA
:

Gsh
N ¼ A

ρL

0 0 0 0

0
L

λsf

� �
tanh

L

2λsf

� �
0 0

0 0
L

λsf

� �
tanh

L

2λsf

� �
0

0 0 0
L

λsf

� �
tanh

L

2λsf

� �

0
BBBBBBBB@

1
CCCCCCCCA
:

(9)

As we mentioned earlier, the reason for this simple extension is that a non-magnetic

material does not distinguish between the x-, y-, and z-components of the spin.

Ferromagnet (Bulk) Region
In the case of a ferromagnet, it is important to note that unlike a non-magnetic

material, it certainly distinguishes between the different directions of spin.

Fig. 14 Spin-circuit solution of the nonlocal spin-valve structure: as an example we plot the

dependence of the nonlocal resistance as a function of the interface resistance assuming all other

parameters to be the same. The spin-circuit simulation (code provided in Appendix) leads to

exactly the same result as the analytical expression (Eq. 8) derived by Takahashi et al. [26]
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Any spins that are not collinear to the easy axis of the magnet get randomized

within a few monolayers of entering the magnet [21], since the magnet tries to align

them along its easy axis. It is this exchange of angular momentum between the

noncollinearly incident spins and the magnet that results in a spin torque. From a

modeling perspective, this means that as long as the magnet is thicker than λsf of the
noncollinear components, we can split the magnet into two components: (i) the

interface (described in part C) and (ii) the bulk region.

For the bulk region, we can heuristically assume that the series conductance

corresponding to the noncollinear components is essentially zero. This is usually

valid for thicknesses greater than a few nanometers in such materials. The four-

component lumped conductance matrices for a magnet aligned along the “z”

direction are then given by

c z x y c z x y

Gse
F ¼ A

ρL

1 p 0 0

p p2 þ α cosech
L

λsf

� �
0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA; Gsh

F ¼

0 0 0 0

0
A

ρL

� �
α tanh

L

2λsf

� �
0 0

0 0 g0sf 0

0 0 0 g0sf

0
BBBB@

1
CCCCA:

α¼ 1� p2ð Þ L

λsf

� �
(10)

The upper left 2 � 2 quadrant remains the same as the two-component case earlier

for both the series and shunt matrices. The “x-” and “y-” components are set up to

reflect that any noncollinear component of spin current entering a magnet is

dissipated and can be numerically quantified by the current flowing through a

large shunt conductance GFM
sh connected to a virtual ground. In the shunt conduc-

tance matrix, we can heuristically set a large spin-flip conductance gsf
0 that can be

related to the relaxation time of transverse spins in the magnet. For modeling

purposes, this does not matter very much since any action related to the

noncollinear part takes place at the interface and does not appear in the bulk region.

A more in-depth discussion appears in [22]. Of course, this qualitative argument is

valid for a relatively thick magnet. In the case of a very thin magnet, the situation

might vary [42] since some of the noncollinear components of spin currents may

successfully traverse the magnet, and we may need a more detailed treatment for

obtaining an accurate model.

Channel-Magnet Interface Region
In order to describe transport across the interface from a non-magnetic material into

the first few monolayers of the magnet, we use a slightly different approach,

pioneered by Brataas et al. [21]. The components of the interface conductance

matrix can be derived from scattering theory to describe transport between a plane

inside the channel and a plane inside the magnet. Following the work in [21], we
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will show in Appendix B that for a magnet pointing in the “z” direction, scattering

theory leads to conductance matrices defined below in Eq. 11.

Gse
Int ¼

q2

h
M

1 P 0 0

P 1 0 0

0 0 0 0

0 0 0 0

0
BB@

1
CCA









c
z
x
y

; Gsh
Int ¼

q2

h
M

0 0 0 0

0 0 0 0

0 0 a b
0 0 �b a

0
BB@

1
CCA









c
z
x
y

: (11)

a � 1 and b � 0 are for ohmic interfaces,

where M is the number of conducting modes at the interface given byM ¼ k2f A=4π

and kf is the wave vector in the channel. A cursory observation of Eq. 11 shows

that the upper left quadrant is equivalent to the one obtained for a bulk magnetic

section (Eq. 10) with L << λsf. The shunt conductance matrix for the interface

contains components corresponding to the “x” and “y” direction and quantifies the

spin torque acting on the magnet. Since we do not wish to diverge into the theory of

spin torque, we will merely point out here that the diagonal elements refer to the

“Slonczewski” term, while the off-diagonal elements refer to the “field-like” term

for spin torque. Typically, for experiments involving ohmic interfaces between the

magnet and the channel, the field-like term is believed to be negligible [23], and if

the interface is a very clean one, we can assume that the interface conductance is

close to the ballistic limit. For treatment of more complex interfaces such as a

tunnel barrier with ferromagnetic insulator, we refer the reader to the detailed work

of [23] and references therein.

Basis Transformation for an Arbitrary Direction (m̂)
When modeling circuits involving noncollinear magnets, there is one additional

step we have to account for. We mentioned that Eqs. 10 and 11 were derived for a

magnet assuming that its easy axis lies in the “z” direction. As long as we are

dealing with just one magnet, it does not really matter what we consider as the “z”

axis. However, with multiple noncollinear magnets, where each one has its own “z”

direction (corresponding to the easy axis), it has to be ensured that the conductance

matrices for all the magnets are written in a single uniform basis. In practice, a

simple way to accomplish this is to initially construct the conductance matrices for

each magnet according to Eqs. 10 and 11 and subsequently perform a unitary

rotation operation to reflect the actual directions in which the magnets are pointing.

The operation looks as follows:

Gse
F m̂ð Þ ¼ U ẑ ! m̂ð Þ Gse

F ẑð Þ U† ẑ ! m̂ð Þ
Gsh

F m̂ð Þ ¼ U ẑ ! m̂ð Þ Gsh
F ẑð Þ U† ẑ ! m̂ð Þ (12)

where the rotation operator U is used to transform the conductance matrix from the

ẑ direction to m̂. The formulation of U is given by the Rodrigues rotation formula

and is derived as follows.
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In order to construct a general rotation matrix operator U m̂1 ! m̂2ð Þ that rotates
a vector along a direction m̂1 into one along a direction m̂2 separated by an angle θ, it
is convenient to first define a unit vector û that is perpendicular to the plane

containing m̂1 and m̂2 such that û ¼ m̂1 � m̂2= m̂1 � m̂2j j.
The rotation operator U is then given by

m̂1x̂

ŷ

ẑ

m̂2

m

m

û

U m̂1 ! m̂2ð Þ 	
1 0 0 0

0

0

0

u2z þ 1� u2z
� �

c uxuz 1� cð Þ � uys uyuz 1� cð Þ þ uxs
uxuz 1� cð Þ þ uys u2x þ 1� u2x

� �
c uxuy 1� cð Þ � uzs

uyuz 1� cð Þ � uxs uxuy 1� cð Þ þ uzs u2y þ 1� u2y

� �
c

0
BB@

1
CCA









c
z
x
y

:

A Coupled Spin-Transport/Magnetization-Dynamics Simulator

Once the spin circuit for a multi-magnet network has been set up as described in the

previous section, it provides the information to the magnets in the form of spin

currents. The circuit now has to be coupled to a magnetization-dynamics simulator

(Fig. 15), which determines how the magnetization of the magnets responds to input

spin information. This part of the model relates to how (spin) information is

processed in the nanomagnets, and the physical phenomenon responsible for this

processing is spin-torque switching. The formalism used here is the standard Landau-

Lifshitz-Gilbert (LLG) equation with the Slonczewski and field-like terms included

Fig. 15 LLG solver for the circuit in Fig. 1. In this chapter we will provide a simple code that

solves the LLG equation for magnets that are assumed to be monodomain and free of thermal noise

effects
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for spin torque. The magnets are assumed to be monodomain or single domain, since

we envision nanometer-sized magnets in realistic devices. We will briefly describe

the LLG block and show how to couple it to the spin-circuit model in this section.

LLG Solver for Magnetization Dynamics

The LLG solver computes the solution to the following dynamical equation, which

describes the instantaneous magnetization (m̂) in the presence of external pertur-

bation such as magnetic fields or spin currents.

1þ α2ð Þ dm̂
dt

¼ � γj j m̂� H
!� �

� α γj j m̂� m̂� H
!� �

þ τ
⇀þα m̂� τ

⇀� �
where τ

⇀¼ m̂� I
⇀
S � m̂

qNs
	 spin torque:

(13)

The above equation is written in CGS units and the assumption here is that the

magnet is monodomain and can be characterized by a single ( m̂ ). The fixed

parameters in the equation include the following: γ is the gyromagnetic ratio

(17.6 MHz/oersted), α is the Gilbert damping parameter (specific to each magnet

and determined from experiment), q is the charge of an electron, and Ns is the total

number of spins in the nanomagnet given by the relation Ns ¼ MsΩ=μB (Ms,

saturation magnetization; Ω volume; and μB, Bohr magneton).

H
!

represents the sum of the internal and external fields on the magnet. In the

absence of any external fields, there are still internal fields present, which are what

is responsible for keeping the magnetization pointing along the easy axis. For

example, a thin-film magnet oriented in the x-z plane with easy axis along Ẑð Þ is

characterized by H
!¼ HkmZẐ – Hdmyŷ representing the internal “uniaxial anisot-

ropy” and “out-of-plane demagnetizing” effective fields.

The last two terms relate to spin torque. I
⇀
s is the spin current provided by the spin

circuit, and the definition of τ clearly implies that only those components of I
⇀
s

perpendicular to m̂ contribute toward spin torque. Also this term indicates that the

effect of spin torque is greater when I
⇀
s is increased (Fig. 16) or Ns is reduced, i.e., by

making the magnet smaller [14].

0 5 10 15
−1

0

1

 Time (ns) 

m
z

Is
m̂3Isc 2Isc

1.3Isc

Fig. 16 LLG solver

describing spin-torque

switching. An increase in the

input spin current (denoted in

terms of the critical spin

current required for

switching) reduces the

switching time
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In the appendix we provide a code to reproduce (Fig. 16) by utilizing the implicit

ODE solver available in MATLAB to solve the LLG equation. The input to

the LLG block is an assumed constant spin current in the “–z” direction (easy

axis). As an example we consider three different magnitudes of the input current

expressed in terms of the critical spin current [43] required for spin-torque

switching about the easy axis of the magnet. The simulation shows that increasing

the spin current, above the critical value, reduces the switching time of the

magnet along its easy axis.

Coupling Spin Transport with Magnetization Dynamics

When coupling the spin-circuit block to the LLG block, the important point to note

is that the LLG equation is a dynamical one, while the spin-circuit block provides a

steady-state analysis of spin transport.

The way we approach the problem is that for every instant that the magnet is

turning, the instantaneous magnetization direction (m̂) is supplied to the spin-circuit
block (Fig. 17). This value of m̂ is used to update the conductance matrices

according to Eq. 12. The spin-circuit block then recalculates the spin currents

flowing into the magnet and supplies this back to the LLG block, which then

proceeds with the magnetization dynamics until the next time step and so forth.

This whole process of simultaneously solving the spin transport and magnetization

dynamics continues until the magnet settles to a preferred stable state. This

approach is very accurate when dealing with systems where the transit time of

spins within the transport channels is much shorter than the switching time of the

nanomagnet. For channels of a few 100 nm in length, this transport duration can be

in picoseconds, whereas present-day magnets switch close to 100 picoseconds at

best. However, if these times (spin transport and magnetization dynamics) become

comparable as this technology advances in the future, then one would have to

include a dynamical description of spin transport.

Experiment and benchmark: We will now illustrate how the coupled model

can be used to benchmark the experiment in Ref. [15]. This structure is physically

Spin Transport
(4-component spin circuit) 

Magnetization dynamics
(LLG)

m̂ (t )

m̂0

ˆ ˆIs0 (m0) Is (m)

m̂0

ˆIsI 0 (m0)

Initial 
Conditions

Fig. 17 Coupled spin-

transport/magnetization-

dynamics solver. The LLG

solver describes

magnetization at every time

instant m(t) as an input to the

spin circuit. The spin circuit

uses this value of m to update

the spin currents using a

steady-state analysis
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identical with the nonlocal spin valve that we analyzed earlier in section “Exam-

ple: Spin-Circuit Analysis of Nonlocal Spin-Valve Structures.” There is a

permalloy magnet injecting spin current into a copper channel. This spin current

flows toward the detector permalloy magnet and is measured as a charge voltage.

The magnets are connected to the external measurement circuit via gold leads.

Unlike the example discussed in section “Example: Spin-Circuit Analysis of

Nonlocal Spin-Valve Structures,” the magnets here are not entirely collinear

due to the presence of some random fluctuations as is expected in practice.

Consequently the nonlocal spin current exerts a spin torque on the detector

magnet. As the current from the external source is ramped up, the detector magnet

switches beyond a certain critical current Fig. 18. This switching behavior is

modeled by the LLG block, which models the x-axis of the experimental result.

The switching is reflected by a change in the sign of the nonlocal resistance

(y-axis), which is modeled by the spin-circuit block.

A MATLAB code demonstrating this coupled spin-transport/magnetization-

dynamics solution shown in Fig. 18 is included in the Appendix for the reader’s

reference. For the spin-circuit part, the inputs to the conductance matrices are the

material properties and physical dimensions of the structure, while the polariza-

tion of the magnets was adjusted to a value of ~0.5, which is in a reasonable range.

The conductance matrix for the magnet shown in the MATLAB code is a

combination of those for bulk magnet and the interface. Since the thickness of

the magnet places it in the diffusive regime, the series conductance is determined

Experiment

Is1 Is2

LLG LLG

−10 −5 0 5 10
−4

−2

0

2

4

V
/I 

(m
Ω

)

Ic (mA)

Theory

I

Fig. 18 Four-component spin-circuit solution of an experiment (Reproduced with permissions

from [14]) involving spin-torque switching in a nonlocal spin valve. The y-axis is the nonlocal

resistance, which requires the same analysis as in Example 1. However, the x-axis is indicative of

spin-torque switching, which is all about noncollinear spin currents and requires a four-component

spin-circuit analysis

32 Modeling Multi-Magnet Networks Interacting via Spin Currents 1305



by the bulk value. The shunt conductance on the other hand is determined by the

interface conductance matrix since all the noncollinear action takes place around

the interface.

Assuming that the magnets are initially oriented along ẑwith slight deviation due
to thermal fluctuation, the spin circuit computes the various currents in the struc-

ture. The spin currents I
⇀
s1 and I

⇀
s2 entering the magnets are fed to the LLG block,

which then computes the effect of these currents on the magnetization and returns

updated values of magnetization back to the spin-circuit block. This process

continues till the magnets stabilize to a final state.

Simulating Multi-Magnet Networks Interacting via Spin Currents

The real advantage of the coupled spin-circuit/LLG model becomes apparent when

we have to model networks of interacting magnets and have to describe their

magnetizations simultaneously in real time (Fig. 19).

Consider the example of a multi-magnet NAND logic gate implemented using

ASL [19]. This NAND architecture is quite different from standard CMOS-based

implementation as it is based on themajority logic functionality. The spin signals from

the inputs add up in an analogue fashion, and if the resultant is greater than a certain

threshold, the output magnet (M3) switches its magnetization. Although M3=NAND

(M1,M2), M3 has a third input (MV) which is what creates a majority. For the NAND

operation, MV is set to “0” while a NOR operation is achieved if it is set to “1.”

Simulations in (Fig. 19) show the dynamics of all the magnets for a particular

choice of inputs (both logic level high (1)), essentially illustrating one row of the

NAND gate truth table. The output magnet (M3) inverts the majority of the input

LLG

LLG

LLG

LLG

LLG

LLG

0 5
−1
0
1

0 5
−1
0
1

0 5
−1
0
1

0 5
−1
0
1

0 5
−1
0
1

0 5
−1
0
1

M1

M2 

M3  

M5  

M4  

Output   
Fanout 1

Fanout 2

0

1

11

0

1

M
V

Fig. 19 Coupled spin-transport/magnetization-dynamics simulator for multi-magnet networks.

The example shown here is a NAND gate implementation using ASL
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and goes to the “0” state. M3, in turn, inverts the fan-out magnets (M4, M5) clearly

showing the directed transfer of information from the input to the output to the

fan-out stages. How this directionality is achieved and the design parameters that go

into achieving basic ASL device level operation is explained in [13, 18]. Here we

just wish to illustrate the point that, once we have the basics of the coupled model in

place, it becomes a valuable tool for investigating circuit design involving several

magnets interacting together.

Conclusion

Information processing through spin-magnet systems is based on two key recent

advances, namely, (1) the demonstration of spin injection into metals and semi-

conductors from magnetic contacts and (2) the switching of a magnet by the

injected spins, which provide mechanisms for reading and writing, respectively.

However, for the purpose of performing logic-based computations, such read and

write, processes can be combined to implement large-scale circuits only if individ-

ual W-R units can be designed to exhibit a transistor-like gain and directivity. The

ASL concept represents a practical first step in this evolution from physical

principles of spin transport/magnetization dynamics to the design of logic devices.

In our earlier work, we have designed and analyzed such ASL circuits, and this

work has been extended toward ASL-based integrated circuit simulation frame-

works by other groups [44–49].

The purpose of this chapter is to describe in detail the experimentally

benchmarked coupled spin-circuit/magnetization-dynamics formalism that we

have developed for analysis of spin-magnet systems. Our modeling approach has

broad applicability to analyzing and providing guidelines to existing spin-valve

[24] and spin-torque [50] experiments. It can also be employed for designing other

experiments that could be more accessible on a shorter time frame, such as Ref. [51]

that proposes a new class of probabilistic experiments that could be performed with

stochastic spin-magnet circuits.
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Additional Information: Derivation of Spin-Circuit Model

A. Derivation of Lumped Representation of Spin Circuit

This appendix lists the derivation of the lumped π-network of conductance matrices

given by Eq. 5, i.e.,
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Ic

Is

� �
1

¼ Gse½ �2�2

ΔVc

ΔVs

� �
þ Gsh
� 	

2�2

0

Vs1

� �

where Gse ¼ 1

ρL

1 p

p p2 þ α cosech
L

λsf

� �0
@

1
A;

Gsh ¼ 1

ρL

0 0

0 α tanh
L

2λsf

� �0
@

1
A; α ¼ 1� p2

� � L

λsf

� �
;

(14)

which is obtained as an analytical solution to the spin diffusion equations given by

Eqs. 3 and 4. To do so let us first recap the spin diffusion equations given in the

matrix form as

d

dx

Vc

Vs

� �
¼ � 1

4

rþ �r�
�r� rþ

� �
Ic
Is

� �
(15)

d2

dx2
Vc

Vs

� �
¼ 0 �r�gsf

0 λ�2
sf

� �
Vc

Vs

� �
(16)

where λ2sf ¼ 1= rþgsf
� �

. The procedure is quite straightforward. Eq. 16 can be

solved for any section of length L (Fig. 20) with specified values of ΔVc and ΔVs

across its ends, and putting this solution back into Eq. 15 results in an expression for

the charge and spin currents (Ic and Is) at either ends in terms of the voltages given

by Eq. 7. The details of the procedure are given below.

Step 1 Solving Eq. 16

Row 1 of Eq. 16 determines the charge voltage an any point along the structure

Gse

Gsh Gsh

1

Vc

Vs

L

I2

2

Vc

Vs

I1Fig. 20 Two-component

lumped spin-circuit

representation for any section

of length “L”

1308 S. Srinivasan et al.



Vc ¼ Axþ B L� xð Þ � r�gsf

ð
dx

ð
dx Vs

¼ Axþ B L� xð Þ � r�gsf λ
2
sf

� �
Vs

¼ Axþ B L� xð Þ � PVs ∵r�gsf λ
2
sf ¼

r�
rþ

¼ P:

Here P refers to the effective polarization of the conducting section defined by

P ¼ gu � gd
gu þ gd

¼ rd � ru
rd þ ru

:

Solving for the constants A and B by plugging in the boundary conditions x=0
and x=L, respectively, we obtain

V1 ¼ BL� PVs1 and V2 ¼ AL� PVs2

∴Vc ¼ V2 þ PVs2ð Þ x
L
þ V1 þ PVs1ð Þ L� x

L
� PVs:

(17)

Similarly, the solution for row 2 of Eq. 16 gives the expression for the spin

voltage as

Vs ¼
Vs2sinh

x

λsf

� �
þ Vs1sinh

L� x

λsf

� �
sinh

L

λsf

� � : (18)

Step 2 Writing expressions for current from Eq. 15

Turning toward Eq. 15, one can also solve for the currents in the structure as

Ic ¼
�4 rþ

dVc

dx
þ r�

dVs

dx

� �
r2þ � r2�

; Is ¼
�4 r�

dVc

dx
þ rþ

dVs

dx

� �
r2þ � r2�

:

These expressions for current can be written in a more concise fashion using the

following algebraic simplifications:

4rþ
r2þ � r2�

¼ ru þ rd
rurd

¼ r�1
u þ r�1

d ¼ gu þ gd ¼ g

4r�
r2þ � r2�

¼ rd � ru
rurd

¼ r�1
u � r�1

d ¼ gu � gd ¼ Pg :

This leads to simplified expressions for current as

Ic ¼ �g
dVc

dx
þ P

dVs

dx

� �
; Is ¼ �g P

dVc

dx
þ dVs

dx

� �
: (19)
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Step 3 Plugging the results of Step 1 into Step 23

Differentiating Eq. 17 w.r.t “x”:

dVc

dx
¼ Vc2 � Vc1ð Þ

L
þ P

Vs2 � Vs1ð Þ
L

� P
dVs

dx
;

and substituting the result in Eq. 19, we can obtain a solution for the charge

current as

IC ¼ �g
Vc2 � Vc1ð Þ

L
þ P

Vs2 � Vs1ð Þ
L

� P
dVs

dx
þ P

dVs

dx

� �

¼ �g
Vc2 � Vc1ð Þ

L
þ P

Vs2 � Vs1ð Þ
L

� �

¼ 1

ρL
1 P½ � Vc1 � Vc2

Vs1 � Vs2

� �
:

(20)

Similarly the solution for the spin current is given as

IS ¼ �g P
Vc2 � Vc1ð Þ

L
þ P2 Vs2 � Vs1ð Þ

L
þ 1� P2
� � dVs

dx

� �
¼ 1

ρL
P P2
� 	 Vc1 � Vc2

Vs1 � Vs2

� �
� 1� P2

� �
ρ

dVs

dx
:

However, A4ð Þ ) dVs

dx
¼ 1

λsf

Vs2cosh
x

λsf

� �
� Vs1cosh

L� x

λsf

� �
sinh

L

λsf

� � :

∴Isjx¼0 ¼ 1

ρL
P P2
� 	 Vc1 � Vc2

Vs1 � Vs2

� �
þ 1� P2

� �
ρλsf

cosech
L

λsf

� �
0

Vs1 � Vs2

� �

þ 1� P2
� �

ρλsf
tanh

L

2λsf

� �
0

Vs1

� �
:

(21)

Grouping Eqs. 20 and 21, we can express the current flowing in the section as

Ic
Is

� �
¼ 1

ρL

1 P

P P2 þ 1� P2
� �
λsf =L
� � cosech

L

λsf

� �0
@

1
A Vc1 � Vc2

Vs1 � Vs2

� �

þ
0 0

0
1� P2
� �

ρλsf
tanh

L

2λsf

� �0
@

1
A 0

Vs1

� �

1310 S. Srinivasan et al.



or more concisely in the form of a π-network of series (Gse) and shunt (Gsh)

conductance matrices

Ic

Is

� �
1

¼ Gse½ �2�2

ΔVc

ΔVs

� �
þ Gsh
� 	

2�2

0

Vs1

� �

where Gse ¼ 1

ρL

1 p

p p2 þ α cosech
L

λsf

� �0
@

1
A; Gsh ¼ 1

ρL

0 0

0 α tanh
L

2λsf

� �0
@

1
A;

α ¼ 1� p2ð Þ L

λsf

� �
:

B. Derivation of Nonlocal Resistance of a Spin Valve

In this section we will provide a detailed analytical derivation of the expression for

the nonlocal resistance of a spin valve given by Eq. 8, i.e.,

RNL ¼�2RSNe
�L=λN

PT1
RT1

RSN

1�P2
T1

þ
Pf1

RF1

RSN

1�P2
f1

0
BB@

1
CCA�

PT2
RT2

RSN

1�P2
T2

þ
Pf2

RF2

RSN

1�P2
f2

0
BB@

1
CCA

1þ
2
RT1

RSN

1�P2
T1

þ
2
RF1

RSN

1�P2
f1

0
BB@

1
CCA� 1þ

2
RT2

RN

1�P2
T2

þ
2
RF2

RSN

1�P2
f2

0
BB@

1
CCA� e�2L=λN

:

(8)

The starting point is the conductance matrix [G]ckt for the entire nonlocal spin-
valve structure shown in Fig. 8, which can be set up as follows:

1 2 3 4 5 6 7

0 0 0 0 01

0 0 0 02

0 0 0 0 03

0 0 0 04

0 0 0 05

0 0 06

0 0 0 0 07

G0F2 + GF2

G0F2 + GF2 + GT2

−GF1

−GF2

−GF2

−GN2

−GN2

−GT2

−GN3

−GN3

−GT1

−GT2

−GF1

G0F1 +GF1 + GT1

G0F1 +GF1

GN1 + G0N1 + GN2 + G0N2 + GT1

GN3 + G0N3 + GN2 + G0N2 + GT2

GN3 + G0N3

−GT1

The subscripts F, T, and N correspond to sections of the ferromagnet, tunnel-barrier,

and non-magnetic channel, respectively, while the G and G0 refer to the

two-component series and shunt conductance matrices describing each of these

different sections. The inputs to each of these matrices are the material parameters

(resistivity and polarization) and physical dimensions (area, length, etc.) of these

different sections. The MATLAB code in Appendix C computes the various nodal

quantities for the entire structure by solving:
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I
⇀
1

0

⋮
0

8>><
>>:

9>>=
>>; ¼ Gdev½ �

V
⇀
1

V
⇀
2

⋮
V
⇀
7

8>>><
>>>:

9>>>=
>>>;:

The currents corresponding to nodes “2” through “7” are set to zero because of the

absence of external current sources. The nonlocal resistance is then given by

V3c � V7cð Þ=I1c . One can also compute the nonlocal resistance analytically from

[Gckt] and arrive at Eq. 8. In order to simplify such an analysis, it is useful to first

make a few simplifications with the two-component conductance matrices for the

different sections that enter [Gckt]. For example, a tunnel barrier has a very short

length along the transport dimension and consequently the term L=λsf ! 0. Under

this condition the tunnel barrier can be represented by

Tunnel barrier : GT ¼ gT
1 pT
pT 1

� �
; G0T ¼ 0½ �;

where gT is the total conductance of the barrier and pT is its effective spin

polarization. Similarly one can assume that the Ferromagnets in the nonlocal spin

valve are characterized by L=λsf 
 1 so that the conductance matrices can now be

represented by

Ferromagnet : GF ¼ gF
1 pF
pF p2F

� �
; G0F ¼ gF

0 0

0 1� p2F
� �

lF

� �
;

where lF ¼ L=λsf and gF, pF refer to the conductance and polarization, respectively.
In the case of a non-magnetic material, when L=λsf 
 1, the above equation

becomes

Non-magnetic channel : GN ¼ gN
1 0

0 0

� �
; G0N ¼ gN

0 0

0 lN

� �
;

where gN is the total conductance of the non-magnetic section and lN ¼ L=λsf .
Keeping these approximations in mind, we can start analyzing [Gckt] row by row

to obtain the voltage at each node in the device.

Detector Side
The goal is to obtain a relation for the measured voltage i.e., V3c � V7c:

1. Row 3 of [Gckt] implies that

G0F2 þ GF2½ � V3c

0

� �
� GF2½ � V4c

V4s

� �
¼ 0

) gF2
0 0

0 1� p2F2
� �

lF2

� �
V3c

0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ gF2
1 pF2
pF2 p2F2

� �
V3c � V4c

�V4s

� �
¼ 0
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giving the result

V3c ¼ V4c þ pF2V4s: (22)

2. Row 4 of [Gckt] implies that

� GF2½ � V3c

0

� �
þ G0F2 þ GF2 þ GT2½ � V4c

V4s

� �
� GT2½ � V6c

V6s

� �
¼ 0:

By substituting row 3 into the above equation, we can eliminate GF2, which gives

G0F2½ � V4c

V4s

� �
þ GT2½ � V4c � V6c

V4s � V6s

� �
¼ 0

which can then be simplified to give

V3c ¼ V6c þ Peff
2 V6s where Peff

2 ¼ gF2lF2 1� p2F2
� �

pT2 þ gT2 1� p2T2
� �

pF2
gF2lF2 1� p2F2

� �þ gT2 1� p2T2
� � :

(23)

Proof

gF2
0 0

0 1� p2F2
� �

lF2

� �
V4c

V4s

� �
þ gT2

1 pT2
pT2 1

� �
V4c � V6c

V4s � V6s

� �
¼ 0

0

� �

) V4c � V6cð Þ þ pT2 V4s � V6sð Þ ¼ 0 Ið Þ
and gF2 1� p2F2

� �
lF2V4s þ gT2 pT2 V4c � V6cð Þ þ V4s � V6sð Þf g ¼ 0 IIð Þ

Ið Þ in IIð Þ 	 gF2 1� p2F2
� �

lF2V4s þ gT2 1� p2T2
� �

V4s � V6sð Þ� � ¼ 0

) V4s ¼
gT2 1� p2T2
� �

gF2 1� p2F2
� �

lF2 þ gT2 1� p2T2
� �V6s IIIð Þ

Ið Þ ) V4c ¼ V6c � pT2 V4s � V6sð Þ

¼ V6c þ pT2
gF2 1� p2F2
� �

lF2

gF2 1� p2F2
� �

lF2 þ gT2 1� p2T2
� �V6s IVð Þ

IIIð Þ and IVð Þ in A1ð Þ lead to A2ð Þ :

3. Solving row 7 gives

G0N3½ � V7c

V7s

� �
þ GN3½ � V7c � V6c

V7s � V6s

� �
¼ 0

gN3
0 0

0 lN3

� �
V7c

V7s

� �
þ gN3

1 0

0 0

� �
V7c � V6c

V7s � V6s

� �
¼ 0

) V7c ¼ V6c Vð Þ:
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The result (V) can be arrived by simple inspection of the spin valve. Node

7 physically represents a floating node, so there is no charge current flowing in

between nodes 6 and 7. This means that V7c ¼ V6c and V7s ¼ 0.

Vð Þ in IVð Þ gives the net-detected voltage as V3c � V7cð Þ ¼ Peff
2 V6s: (24)

Let us now see how this detected voltage is related to the injected current.

Injector Side
4. Row 1 of [Gckt] allows us to relate the charge and spin currents by the relation

GF1½ � V1c � V2c

�V2s

� �
þ G0F1½ � V1c

0

� �
¼ I1c

I1s

� �

) gF1
1 pF1
pF1 p2F1

� �
V1c � V2c

�V2s

� �
¼ I1c

I1s

� �
(25)

) I1s ¼ pF1I1c (26)

This tells us that the spin current flowing through a long ferromagnet is just the

charge current times the polarization of the magnet.

5. Row 2 of [Gckt] gives the relation that

GT1½ � V2c � V1c

V2s

� �
þ G0F1½ � V2c

V2s

� �
þ GT1½ � V2c � V5c

V2s � V5s

� �
¼ 0

0

� �

B4ð Þ and B5ð Þ ) GT1½ � V2c � V5c

V2s � V5s

� �
þ G0F1½ � V2c

V2s

� �
¼ I1c

pF1I1c

� �
	 gT1

1 pT1
pT1 1

� �
V2c � V5c

V2s � V5s

� �
þ gF1

0 0

0 1� p2F1
� �

lF1

� �
V2c

V2s

� �
¼ I1c

pF1I1c

� �
:

(27)

which can be solved to obtain the relation

V2s ¼ g0T1
g0T1 þ g0F1

V5s þ pF1 � pT1ð Þ
g0T1 þ g0F1

I1c: (28)

where g0T1 ¼ gT1 1� p2T1
� �

and g0F1 ¼ gF1lF1 1� p2F1
� �

:

Proof We have from Eq. 26:

gT1 V2c � V5cð Þ ¼ I1c � pT1 V2s � V5sð Þ VIð Þ
pF1I1c ¼ gF1 1� p2F1

� �
lF1V2s þ pT1gT1 V2c � V5cð Þ þ gT1 V2s � V5sð Þ VIIð Þ

VIð Þ in VIIð Þ ) pF1I1c ¼ g
0
F1V2s þ pT1I1c þ g

0
T1 V2s � V5sð Þ same as B7ð Þ:
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6. A similar analysis of row 5 of [Gckt] with the Eq. 27 substituted in it gives

I1cP
eff
1 ¼ gNlN 1þ tanh lN=2ð Þð Þ þ geff1

h i
V5s þ V5s � V6sð ÞgN cosech lNð Þ (29)

where Peff
1 ¼ gF1lF1 1� p2F1

� �
pT1 þ gT1 1� p2T1

� �
pF1

gF1lF1 1� p2F1
� �þ gT1 1� p2T1

� � ;

geff1 ¼ gF1lF1 1� p2F1
� � � gT1 1� p2T1

� �
gF1lF1 1� p2F1

� �þ gT1 1� p2T1
� � :

Proof

GN1 þ G0N1 þ GN2 þ G0N2½ � V5c

V5s

� �
� GN2½ � V6c

V6s

� �
¼ GT1½ � V2c � V5c

V2s � V5s

� �

Note that : GN1 ¼ gN1
1 0

0 0

� �
; G0N1 ¼ gN1

0 0

0 lN1

� �
; ∵lN1 
 1:

But GN2 ¼ gN2
1 0

0 lN2cosech lN2ð Þ
� �

; G0N2 ¼ gN2
0 0

0 lN2tanh lN2=2ð Þ
� �

;

∵lN2 � 1

) gN1lN1 þ gN2lN2cosech lN2ð Þ þ gN2lN2tanh lN2=2ð Þ½ �V5s�
gN2lN2 cos ech lN2ð ÞV6s ¼ pF1I1c � gF1lF1 1� p2F1

� �
V2s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B6ð Þ
gN1lN1 ¼ gN2lN2 	 gNlN
) gNlN 1þ tanh lN2=2ð Þð ÞV5s þ gNlN cos ech lN2ð Þ V5s � V6sð Þ ¼ pF1I1c � g

0
F1V2s :

(30)

Eq. 27 in Eq. 30 leads to Eq. 29.

7. Finally we can couple the quantities from the injector and detector sides by

obtaining a relation between V5s and V6s from row 6 of [Gckt] as follows:

GN2 þ G0N2 þ GN3 þ G0N3½ � V6c

V6s

� �
� GN2½ � V5c

V5s

� �
� GN3½ � V7c

V7s

� �

¼ GT2½ � V4c � V6c

V4s � V6s

� �
:

Equating the terms corresponding to the spin currents, we get

gNlN 1þ tanh lN2=2ð Þð ÞV6s þ gNlN cos ech lN2ð Þ V6s � V5sð Þ
¼ gT2 pT2 V4c � V6cð Þ þ V4s � V6sð Þ½ �
¼ gF2lF2 1� p2F2

� �
V4s from Row 4

¼ geff2 V6s from IIIð Þ
(31)

32 Modeling Multi-Magnet Networks Interacting via Spin Currents 1315



where geff2 ¼ gF2lF2 1� p2F2
� � � gT2 1� p2T2

� �
gF2lF2 1� p2F2

� �þ gT2 1� p2T2
� � : Defining y2 ¼ geff2 = gNlNð Þ; Eq. 31

can be rearranged as

V6s ¼ V5s
1

sþ cþ y2s
; s 	 sinh lNð Þ; c

	 cosh lNð Þ : (32)

Eq. 32 in Eq. 29 gives

I1cP
eff
1 ¼ V5s geff1 þ gNlN

cþ s� 1

s
þ gNlN

cþ sþ y2s� 1

s cþ sþ y2sð Þ
� �

¼ V6s cþ sþ y2sð Þ geff1 þ gNlN
cþ s� 1

s
þ gNlN

cþ sþ y2s� 1

s cþ sþ y2sð Þ
� �

:

(33)

Nonlocal Resistance:We can now obtain the nonlocal resistance by combining the

expressions obtained for the injector (Eq. 24) and detector side (Eq. 33):

V3c � V7cð Þ
I1c

¼ 1

gNlN

Peff
2

cþ sþ y2s

Peff
1

geff1 =gNlN þ cþ s� 1

s
þ cþ sþ y2s� 1

s cþ sþ y2sð Þ
� �

¼ RSN
Peff
1 Peff

2 s

cþ sþ y1sð Þ cþ sþ y2sð Þ � 1

(34)

where RSN ¼ 1=gNlN is the resistance of the channel material over one spin

diffusion length, and y1 	 geff1 = gNlNð Þ.
Simplifying the above expression gives

V3c � V7cð Þ
I1c

¼ RSN
Peff
1 Peff

2 s

e2lN2 þ y1 þ y2ð ÞselN2 þ y1y2s
2 � 1

¼ RSN
Peff
1 Peff

2

e2lN2 � 1ð Þ=sþ y1 þ y2ð ÞelN2 þ y1y2s

¼ RSN
Peff
1 Peff

2

elN2 y1 þ y2 þ y1y2=2 þ 2ð Þ � e�lN2 y1y2=2

∴
V3c � V7cð Þ

I1c
¼ RSN

2Peff
1 Peff

2 e�lN2

y1 þ 2ð Þ y2 þ 2ð Þ � y1y2e
�2lN2

:

The above expression for the magnetoresistance is a concise representation of Eq. 8.

Expanding the various terms in the equation, we get
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V3c � V7cð Þ
I1c

¼ RSN
2e�lN2Peff

1 Peff
2 =y1y2

1þ 2=y1ð Þ 1þ 2=y2ð Þ � e�2lN2

¼ RSN

2e�lN2

gF1lF1 1� p2F1
� �

pT1 þ gT1 1� p2T1
� �

pF1
gF1lF1 1� p2F1

� �þ gT1 1� p2T1
� �" #

gNlNð Þ

gF1lF1 1� p2F1
� � � gT1 1� p2T1

� �
gF1lF1 1� p2F1

� �þ gT1 1� p2T1
� �" #

gF2lF2 1� p2F2
� �

pT2 þ gT2 1� p2T2
� �

pF2
gF2lF2 1� p2F2

� �þ gT2 1� p2T2
� �" #

gNlNð Þ

gF2lF2 1� p2F2
� � � gT2 1� p2T2

� �
gF2lF2 1� p2F2

� �þ gT2 1� p2T2
� �" #

1þ 2 gNlNð Þ
gF1lF1 1� p2F1

� � � gT1 1� p2T1
� �

gF1lF1 1� p2F1
� �þ gT1 1� p2T1

� �" #
0
BBBB@

1
CCCCA 1þ 2 gNlNð Þ

gF2lF2 1� p2F2
� � � gT2 1� p2T2

� �
gF2lF2 1� p2F2

� �þ gT2 1� p2T2
� �" #

0
BBBB@

1
CCCCA� e�2lN2

:

A straightforward simplification of this expression leads to the nonlocal resistance

given by

V3c �V7cð Þ
I1c

¼ RSN

2e�lN2
pT1

gT1 1� p2T1
� �

RSN

þ pF1
gF1lF1 1� p2F1

� �
RSN

 !
pT2

gT2 1� p2T2
� �

RSN

þ pF2
gF2lF2 1� p2F2

� �
RSN

 !

1þ 2

gT1 1� p2T1
� �

RSN

þ 2

gF1lF1 1� p2F1
� �

RSN

 !
1þ 2

gT2 1� p2T2
� �

RSN

þ 2

gF2lF2 1� p2F2
� �

RSN

 !
� e�2lN2

i.e.,

RNL ¼ V3c � V7cð Þ
I1c

¼ �2RSNe
�L=λN

PT1
RT1

RSN

1� P2
T1

þ
Pf1

RF1

RSN

1� P2
f1

0
BB@

1
CCA�

PT2
RT2

RSN

1� P2
T2

þ
Pf2

RF2

RSN

1� P2
f2

0
BB@

1
CCA

1þ
2
RT1

RSN

1� P2
T1

þ
2
RF1

RSN

1� P2
f1

0
BB@

1
CCA� 1þ

2
RT2

RN

1� P2
T2

þ
2
RF2

RSN

1� P2
f2

0
BB@

1
CCA� e�2L=λN

:

C. Derivation of Four-Component Interface Conductance Matrix

The conductance matrices in Eq. 11 describing the interface of the “z”-directed

ferromagnet (FM) and the non-magnetic channel (NM) were shown to be

Gse
Int ¼

q2

h
M

1 P 0 0

P 1 0 0

0 0 0 0

0 0 0 0

0
BB@

1
CCA









c
z
x
y

; Gsh
Int ¼

q2

h
M

0 0 0 0

0 0 0 0

0 0 a b
0 0 �b a

0
BB@

1
CCA









c
z
x
y

(11)
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where

q2

h
Ma 	

XM
j

1� r#r"�
� �þ 1� r"r#�

� �� 	
=2 and

q2

h
Mb

	
XM
j

i 1� r#r"�
� �� 1� r"r#�

� �� 	
=2:

These matrices can be derived from scattering theory and the details of this

derivation are listed below. The principle here is that one can calculate the trans-

mission and reflection probabilities for an electron wave function incident from a

plane inside the NM to a plane inside the FM as shown in the Fig. 21.

The relationship between the incoming and outgoing wave functions can be

written in terms of transmission (τ) and reflection (ρ) coefficients as

ψN
out

ψF
out

� �
¼ ρ τ

τ0 ρ0

� �
ψN
in

ψF
in

� �
:

The electron current flowing back into the NM region can be thought of as

iNout � q

h
ψN
out ψ

N
out†

� � ¼ q

h
ρψN

in ψ
N
in†ρ

† þ τψF
in ψ

F
in†τ

†
� �

¼ q

h
ρf Nρ† þ τf Fτ†
� �

:

The net current flowing across the interface from the NM to FM region is then given by

i ¼ iNout � iNin
¼ q

h
� f N � ρf Nρ†
� � þ τf Fτ†

h i
:

I II

(35)

In order to obtain the matrices in Eq. 11, we will now show how Eq. 35 can be

represented in the form

Fig. 21 Scattering theory

description for transport

across a FM-NM interface
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i
⇀n o ¼ Gse

int VN
� �� VF

� �� �þ Gsh
int VN
� �

:

The “f” in Eq. 35 is equivalent to the quasi-Fermi level for the electrons in the FM

and NM regions. In general, the spin current in the NM regions can be in any

direction (noncollinear) resulting in a “vector” form of f which can be then

represented by 2 � 2 matrix in density matrix representation:

f N ¼ f Nc þ f Nsz f Nsx � if Nsy
f Nsx þ if Nsy f Nc � f Nsz

 !
¼ f Nc Iþ σ

⇀ � f!N
s

� �
:

For the FM region, we assume that the FM is in the “z” direction and hence

f F ¼ f Fc I þ σzf
F
s

� �
:

The τ and ρ are also 2 � 2 matrices since they also include the spin nature of the

electron. For FM pointing in the “z” direction, these coefficients can be given by

τ ¼ t" 0

0 t#

� �
	 τcI þ σzτs ; ρ ¼ r" 0

0 r#

� �
	 ρcI þ σzρs (36)

where r", # and t", # are the reflection and transmission coefficients, respectively. In

Eq. 36 the charge component of ρ is given by ρc ¼ r" þ r#
� �

=2, while the spin

component is given by ρs ¼ r" � r#
� �

=2. Using these transformations, one can then

calculate the different components of the net current flowing across the interface

from Eq. 35 as

I 	 f N � ρf Nρ†
� �

¼ f Nc Iþ σ
⇀ � f!N

s

� �
� ρcI þ σzρsð Þ f Nc Iþ σ

⇀ � f!N
s

� �
ρ�cI þ σzρ�s
� �

and

II 	 τf Fτ† ¼ τcI þ σzτsð Þ f Fc I þ σzf
F
s

� �
τ�cI þ σzτ�s
� �

:

(36)

The rest of this derivation simply relates to the simplification of Eq. 36 to obtain the

conductance in terms of the reflection and transmission coefficients. To do so:

1. We first define some convenient parameters R, R’, T, P, and Q such that

R 	 r"r"� þ r#r#�
� �

=2; R0 	 r#r"� þ r"r#�
� �

=2

so that ρcρc
� ¼ r"r"� þ r#r#�

� �þ r#r"� þ r"r#�
� �

4
	 Rþ R0

2
and

ρ
⇀
sρ
⇀
s

� 	 R� R0

2
:

(37)
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This leads to the relation

ρcρc
� þ ρsρs

� ¼ R ; we can similarly define

τcτc� þ τsτs� ¼ T 3 Rþ T ¼ 1:

Define P 	 r"r"� � r#r#�
� �

=2; iQ 	 r#r"� � r"r#�
� �

=2

) ρcρs
� ¼ ẑ

r"r"� � r#r#�
� �þ r#r"� � r"r#�

� �
4

¼ ẑ
Pþ iQð Þ

2
:

(38)

This leads to the relation ρcρs
� þ ρc

�ρs ¼ P ; ρcρs
� � ρc

�ρs ¼ iQ :
2. Let us look at the first term “I” in Eq. 36

f N 	 f Nc Iþ σ
⇀ � f!N

s

� �
: (39)

And

ρf Nρ† ¼ ρcI þ σzρsð Þ f Nc Iþ σ
⇀ � f!N

s

� �
ρ�cI þ σzρ�s
� �

¼ ρcaþ ρsbð Þ þ σz aρs þ bρcð Þ þ σxf
N
sx þ σyf

N
sy

� �
ρcρ

�
c � ρsρ

�
s

� �
þi ρcρ

�
s � ρsρ

�
c

� �
σxf

N
sy � σyf

N
sx

� �

where we define

a ¼ ρ�c f
N
c þ ρ�s f

N
sz; b ¼ ρ�cf

N
sz þ ρ�s f

N
c :

Then it can be further simplified by noting: f Nsxx̂þ f Nsyŷ ¼ ẑ� f
!
N
s � ẑ

� �

ρf Nρ† ¼ ρcaþ ρsbð Þ þ σz aρs þ bρcð Þ� σ
! � ẑ� ẑ� f

!
N
s

� �
R0

þQσ
! � ẑ� f

!
N
s

� �
:

(40)

Grouping Eqs. 39 and 40:

f N � ρf Nρ† ¼ f Nc � ρca� ρsb
� �

Iþ
σ
⇀ � f

!
N
s � aρsẑ� bρcẑþ ẑ� ẑ� f

!
N
s

� �
R0 � Q ẑ� f

!
N
s

� �� �
: (41)

Similarly, the contribution from the term “II” in Eq. 36 can also be extracted as

τf Fτ† ¼ f Fc T � Pf Fsz
� �

I þ σz f Fs T � Pf Fc
� �

: (42)

The current operator, Eq. 35, is then:
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Iop ¼ q

h
f Fc T�Pf Fsz
� �

I� f Nc � ρca� ρsb
� �

I
� 	

þ q

h
σ
⇀ � f Fs T�Pf Fc
� �

ẑ� f
!

N
s � aρsẑ� bρcẑþ ẑ� ẑ� f

!
N
s

� �
R0 �Q ẑ� f

!
N
s

� �� �h i
:

(43)

3. Charge Currents
The net charge current can be obtained by

Ic ¼ Trace Iop
� � ¼ 2

q

h
T f Fc � f Nc
� �� f Fsz � f Nsz

� �
P

� �
: (44)

Here we notice that f Nc � ρca� ρs � b ¼ f Nc T � f NszP
� �

I:

The factor of 2 enters Eq. 44 due to taking trace over identity matrix.

4. Spin Currents
The spin current can be obtained by

I
⇀
S
¼ Trace Iop σ

!� �
¼ q

h
�2P f Fc � f Nc

� �
ẑþ 2T f Fsz � f Nsz

� �þ 2Q ẑ� f
!
N
s

� �
þ 2 1�R0ð Þ ẑ� ẑ� f

!
N
s

� �h i
:

(45)

Here we use:

f
!
N
s � aρsẑ� bρcẑþ ẑ� ẑ� f

!
N
s

� �
R0 � Q ẑ� f

!
N
s

� �� �
¼ f Nsz 1� Rð Þẑ� f Nc Pẑ� Q ẑ� f

!
N
s

� �
� 1� R0ð Þ ẑ� ẑ� f

!
N
s

� �
:

5. The overall currents can be grouped together from equations (44 and 45) as

IC ¼ q

h
2T f Fc � f Nc
� �� 2P f Fsz � f Nsz

� �� �
:

I
⇀
S ¼ q

h
�2P f Fc � f Nc

� �
ẑþ 2T f Fsz � f Nsz

� �þ 2Q ẑ� f
!

N
s

� �
þ 2 1�R0ð Þ ẑ� ẑ� f

!
N
s

� �h i
:

We would like to rewrite currents in terms of voltages. The above expressions are

for single energy level. We have to take into account all the energies involved in the

transport by integrating over the energy:

IC ¼ q

h

ð
2T f Fc � f Nc
� �� 2P f

!
F
s � f

!
N
s

� �
� ẑ

� �
dE

¼ q

h

ð
2T � @f

@E
μFc � μNc
� �� �

� 2P � @f

@E
μ
!F
s � μ

!N
s

� �� �
� ẑ

� �
dE:

Using �qV ¼ μ and at low temperature, the charge current
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IC ¼ q2

h
2T VN

c � VF
c

� �� 2P V
!
N
s � V

!
F
s

� �
� ẑ

� �
: (46)

Similarly, noting that at equilibrium, the occupation factor f
!

0
s ¼ 0

f
!

N
s ¼ f

!
N
s � f

!
0
s ¼ � @f

@E
μ
!N

s :

Then the spin current can be also written in form of voltage as

I
⇀
S ¼ q2

h
�2P VN

c �VF
c

� �
ẑþ 2T VN

sz �VF
sz

� �� 2Q ẑ� V
!

N
s

� �
� 2 1�R0ð Þ ẑ� ẑ� V

!
N
s

� �h i
:

(47)

This is the current per conducting mode. To compute the total current, the above

equation should be summed over all conducting modes. Here we also assume that

all the modes are decoupled and it leads to the following simplifications:

(i) The quantity T ¼ t"t"� þ t#t#�
� �

=2, which is the average of the transmission

probabilities of the up and down spins into the FM region for a single mode.

When T is integrated over all the conducting modes, it results in the net

interface conductance due to the up and down spins, i.e., q
2

h T ¼ g" þ g#
� �

=2.

Therefore, we can write down2 q2

h T 	 gwhere g is the interface conductance.

(ii) Similarly, after summing over modes �P ¼ � r"r"� � r#r#�
� �

=2 ! �P

¼ g" � g#
� �

=2. This can be expressed in terms of the interface conductance

“g” by noting that g" � g#
� �

¼ g"�g#ð Þ
g"þg#ð Þ g" þ g#

� �
	 pg where “p” is the

interface polarization, giving us the result �2 q2

h P 	 pg.

Using the simplifications (i) and (ii), the equations for current Eqs. 46 and 47

(after summing over modes) can now be concisely expressed in the matrix

form as

Ic
Iz
Ix
Iy

8>><
>>:

9>>=
>>; ¼

g pg 0 0

pg g 0 0

0 0
XM
j

2 1� Rj
0� � XM

j

2Qj

0 0 �
XM
j

2Qj

XM
j

2 1� Rj
0� �

0
BBBBBBBB@

1
CCCCCCCCA

ΔVc

ΔVz

VN
x

VN
y

8>><
>>:

9>>=
>>;:

The above matrix form is equivalent to Eqs. 102 and 103 of [21] by noting
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m
! ¼ ẑ; G" þ G# ¼ g;G" � G# ¼ pg

XM
j

1� Rj
0� � ¼ ReG"#;

XM
j

Qj ¼ ImG"#:

For a ballistic interface, we can assume that the interface conductance is g � q2

h M

where M is the total number of conducting modes at the interface. The matrix can

now be split into series and shunt sections as in

i
⇀n o ¼ Gse

int VN
� �� VF

� �� �þ Gsh
int VN
� �

:

Here

Gse
Int ¼

q2

h
M

1 P 0 0

P 1 0 0

0 0 0 0

0 0 0 0

0
BB@

1
CCA; Gsh

Int ¼
q2

h
M

0 0 0 0

0 0 0 0

0 0 a b
0 0 �b a

0
BB@

1
CCA

where
q2

h
Ma 	

XM
j

1� Rj
0� �

and
q2

h
Mb 	

XM
j

Qj:

D. MATLAB Scripts

% Example 1: Spin circuit description of a non-local spin
valve for Fig. 14

% Srikant Srinivasan, Supriyo Datta, Purdue University
clear all
%Constants (all MKS, except energy which is in eV)
q=1.6e-19;Z=zeros(2,2);
% Parameters
% note: R => rho*lambda_sf/A; L => L/lambda_sf
ii=0;
for X=-5:0.1:5

ii=ii+1; RT(ii)=X; RT1=10^X; RT2=10^X;% Tunnel
Resistance

PT1=0.2; PT2=0.2;% Polarization of Tunnel Contacts
RF=1e-2; LF1=100; LF2=100; PF1=0.05; PF2=0.05;% Ferro-

magnetic contacts
RN=1; LN1=100; LN2=1e-3; LN3=100;% Nonmagnetic Channel

% Ferromagnetic contacts
GF1 = ((1/RF/LF1)*[1 PF1;PF1 PF1*PF1])+(((1-PF1*PF1)/

RF)*[0 0; 0 . . .
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csch(LF1)]);
GF2 = ((1/RF/LF2)*[1 PF2;PF2 PF2*PF2])+(((1-PF2*PF2)/

RF)*[0 0; 0 . . .
csch(LF2)]);
G0F1 = ((1-PF1*PF1)/RF)*[0 0;0 coth(LF1)-csch(LF1)];
G0F2 = ((1-PF2*PF2)/RF)*[0 0;0 coth(LF2)-csch(LF2)];
% Normal channel
GN1 = (1/RN/LN1)*[1 0;0 LN1*csch(LN1)];
GN2 = (1/RN/LN2)*[1 0;0 LN2*csch(LN2)];
GN3 = (1/RN/LN3)*[1 0;0 LN3*csch(LN3)];
G0N1 = (1/RN)*[0 0;0 coth(LN1)-csch(LN1)];
G0N2 = (1/RN)*[0 0;0 coth(LN2)-csch(LN2)];
G0N3 = (1/RN)*[0 0;0 coth(LN3)-csch(LN3)];
% Tunnel resistances
GT1=(1/RT1)*[1 PT1;PT1 1];
GT2=(1/RT2)*[1 PT2;PT2 1];
% Conductance matrix from KCL
G = [G0F1+GF1 -GF1 Z Z Z Z Z;
-GF1 G0F1+GF1+GT1 Z Z -GT1 Z Z;
Z Z G0F2+GF2 -GF2 Z Z Z;
Z Z -GF2 G0F2+GF2+GT2 Z -GT2 Z;
Z -GT1 Z Z GN1+G0N1+G0N2+GN2+GT1 -GN2 Z;
Z Z Z -GT2 -GN2 GN3+G0N2+G0N3+GN2+GT2 -GN3;
Z Z Z Z Z -GN3 GN3+G0N3];
C = [1; PF1; zeros(12,1)];% Terminal currents
V=G\C; V=reshape(V,2,7);% Terminal voltages
Vout(ii)=V(1,3)-V(1,7);% Output voltage
%%% Takahashi and Maekawa formula (PRB. 67, 052409)
RF1=RF; RF2=RF;
Numer = 2*RN*exp(-LN2)*(PT1*RT1/RN/(1-PT1^2) + PF1*RF1/

RN/(1-PF1^2)). . .
*(PT2*RT2/RN/(1-PT2^2) + PF2*RF2/RN/(1-PF2^2));

denom = (1+ 2*RT1/RN/(1-PT1^2) + 2*RF1/RN/(1-PF1^2)). . .
*(1+ 2*RT2/RN/(1-PT2^2) + 2*RF2/RN/(1-PF2^2)) - exp

(-2*LN2);
Rnon_local(ii)=Numer/denom;
end
hold on
plot(RT,Vout/C(1),'r*');
plot(RT,Rnon_local,'bo');
set(gca,'linewidth',[3.0]);
set(gca,'Fontsize',[24]);
xlabel('log10(Tunnel resistance) –>')
ylabel('Output Voltage –>')
grid on
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%%% Example 2: Simple LLG solver to reproduce Fig. 16
%%% Behtash Behin-Aein, Angik Sarkar, Srikant Srinivasan,

Vinh Diep,
%%% Supriyo Datta Research group, Purdue University (2010)
clear all; clc
global hext hd alpha Is_conv
%%% LLG parameters
%%%%%%%%%%%%%%%%%%%%%%%
%%% Constants
%%%——————————
q=1.6e-19; % Coulombs
hbar=6.626e-34/2/pi; % Reduced Planck's constant (J-s)
mub=9.274e-21; % Bohr Magneton
alpha = 0.007; % Gilbert damping parameter
g = 1.76e7; % Gyromagnetic ratio [(rad)/(Oe.s)]
%%% Magnet Parameters (taken from experiment)
%%%—————————————————————————————————————————
Ms = 780; % Saturation Magnetization [emu/cm^3]
Ku2 = 3.14e4; % Uni. anisotropy constant [erg/cm^3]
V = (170*80*2)*1e-21; % Volume [cm^3]()
Hk = 2*Ku2/Ms ; % Switching field [Oe]
Hd = 4*pi*Ms; % Demagnetizing field [Oe]
Ns=Ms*V/mub % Number of spins in the magnet
%%% Converting magnet parameters into dimensionless quan-

tities. Note that
%%% in this code we transform the LLG equation into a

dimensionless
%%% equation by normalizing it to the time constant

1/(g*Hk).
hk = 1; % dimensionless uniaxial field
hd = Hd/Hk; % dimensionless demag field
hext=0; % Assume no external applied fields
tau_c = (1+alpha^2)/(g*Hk); % LLG time constant
% Conversion factor for Ampere spin current into dimension-

less input in
% LLG. The factor below is for the term Is/(q*Ns*g*Hk),

noting that
% g=2muB/hbar.
I_H_conv = hbar/2/q/(Ms*V*Hk*1e-7);
Isc = alpha*(1 + hd/2) * (Hk*Ms*V) * 1e-7 * 2*q/hbar;
% Isc= Estimated ampere spin current required for easy axis

switching
Is=-1.3*Isc; % Spin current (Amps) incident on magnet
% Is=-3*Isc; %Is=-2*Isc;
Is_conv=Is*I_H_conv;
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% switching_time=2*q*Ns/Is; %% Estimated switching time.
%%% Initial conditions of the simulation
mz=0.999; % Magnet slightly off easy axis due to, say,

thermal noise
m=[sqrt(1-mz^2) 0 mz]; %Magnet in the x-z plane
%%%%%%%%%%% Solving the LLG equation
options = odeset('RelTol',1e-8,'AbsTol',1e-9);
NanoS = 15; %% Duration in units of nano-seconds
t_span= [0 NanoS*1e-9]/tau_c; %% Dimensionless time span
[t,x]= ode113('LLGsolver_example2', t_span, m, options);
%%%%%%%%%% Plotting
figure(1)
hold on
%plot(t*tau_c/1e-9,x(:,1),'k-'); % m_x
%plot(t*tau_c/1e-9,x(:,2),'r-'); % m_y
h=plot(t*tau_c/1e-9,x(:,3),'b'); % m_z
axis([0 15 -1 1])
set(h,'linewidth',3.0)
set(gca,'Fontsize',30)
xlabel('Time (ns) ')
ylabel('m_z')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dmdt = LLGsolver_example2(t,m)
% Vinh Diep, Srikant Srinivasan, Deepanjan Datta, Supriyo

Datta Research group, Purdue University (2010)
global hd alpha Is_conv
H=[0*m(1) -hd*m(2) m(3)]; % Internal fields i.e. uniaxial

(along z) and demag(along x)
Is1=Is_conv*[0 0 1];
%%% Differential Equation for magnetization Dynamics
dmdt0=(-cross(m,H)-alpha*cross(m,cross(m,H)). . .
+cross(m,cross(Is1,m))+alpha*cross(m,Is1));
dmdt=dmdt0';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Example 3: Wrapper Code for reproducing the X and the Y

axis of Fig. 18
% Assume that the injector magnet is a fixed layer along a

reference
% direction 'z', which also corresponds to the transport

direction. The
% detector magnet is a free layer and is initially slightly

away from 'z'
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% by a few degrees.
% Angik Sarkar, Behtash Behin-Aein, Srikant Srinivasan,
% Supriyo Datta Research group, Purdue University (2010)
clear all; clc
global hd alpha I_H_conv1 I_H_conv2 Ic
Ic=5.5e-3; %Current at the injector from current source
%%% LLG parameters
%%%%%%%%%%%%%%%%%%%%%%%
%%% Constants
%%%——————————
q=1.6e-19; % Coulombs
hbar=6.626e-34/2/pi; % Reduced Planck's constant (J-s)
mub=9.274e-21; % Bohr Magneton
alpha = 0.007; % Gilbert damping parameter
g = 1.76e7; % Gyromagnetic ratio [(rad)/(Oe.s)]
%%% Magnet Parameters (taken from experiment)
%%%—————————————————————————————————————————
Ms = 780; % Saturation Magnetization [emu/cm^3]
Ku2 = 3.14e4; % Uni. anisotropy constant [erg/cm^3]
V1 = (170*75*20)*1e-21; % Volume [cm^3]
V2 = (170*80*4)*1e-21; % Volume [cm^3]
Hk = 2*Ku2/Ms ; % Switching field [Oe]
Hd = 4*pi*Ms; % Demagnetizing field [Oe]
Ns = Ms*V2/mub % Number of spins in the magnet
%%% Converting magnet parameters into dimensionless quan-

tities. Note that
%%% in this code we transform the LLG equation into a

dimensionless
%%% equation by normalizing it to the time constant

1/(g*Hk).
hk = 1; % dimensionless uniaxial field
hd = Hd/Hk; % dimensionless demag field
tau_c = (1+alpha^2)/(g*Hk); % LLG time constant
% Conversion factor for Ampere spin current into dimension-

less input in
% LLG. The factor below is the simplified version of the term
% Is/(q*Ns*g*Hk), noting that g=2muB/hbar.
I_H_conv1 = hbar/2/q/(Ms*V1*Hk*1e-7);
I_H_conv2 = hbar/2/q/(Ms*V2*Hk*1e-7);
Isc = alpha*(1+hd/2)/I_H_conv2;
% Isc= Estimated ampere spin current required for easy axis

switching
%%% Initial conditions of the simulation
mz1=1;
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m01=[-sqrt(1-mz1^2) 0 mz1]; %Injector magnet
mz2=0.99; % Detector magnet slightly off easy axis due to,

say, thermal noise
m02=[sqrt(1-mz2^2) 0 mz2]; %Magnet in the x-z plane
%%% Charge current: solving for a fixed number of input

current values
%%% since we already have an idea of where switching will

occur approximately
Icc=[-8 -5.6 -5.4 -5.3 -4.9 -4.5 -3 -1 1 3 4.5 4.9 5.1 5.4 5.6

8]*1e-3; Nd=length(Icc);
%%%%%%%%%%% Solving the LLG equation
options = odeset('RelTol',1e-8,'AbsTol',1e-9);
NanoS = 50; %% Duration in units of nano-seconds
t_span = [0 NanoS*1e-9]/tau_c; %% Dimensionless time span
[t,x]= ode113('LLGsolver', t_span, [m01 m02], options);
mdet_f=zeros(1,Nd);
mdet_r=zeros(1,Nd);
for count=1:Nd
%%%Forward sweep of current
Ic=Icc(count) % Injector current in Amps
[t,x]= ode113('LLGsolver', t_span, [m01 m02], options);
sz = size(t,1);
mdet_f(count)=x(sz,6) %forward sweep
%mz2=mdet_f(count);
%m02=[sqrt(1-mz2^2) 0 mz2];
[Rnl_f(count)]=SpinCircuit(x(sz,1:3), x(sz,4:6));
end
mz2=-0.99; % Detector magnet slightly off easy axis due to,

say, thermal noise
m02=[sqrt(1-mz2^2) 0 mz2]; %Magnet in the x-z plane
for count=1:Nd
%%%Reverse sweep of current
Ic = Icc(Nd-count+1) % Injector current in Amps
[t,x]= ode113('LLGsolver', t_span, [m01 m02], options);
sz = size(t,1);
mdet_r(Nd-count+1) = x(sz,6) %reverse sweep
%mz2 = mdet_r(count);
%m02 = [sqrt(1-mz2^2) 0 mz2];
[Rnl_r(Nd-count+1)]=SpinCircuit(x(sz,1:3), x(sz,4:6));
end
%%%%%%%%%% Plotting
figure(1) %Non-local resistance v.s. injector charge

current
hold on
plot(Icc,Rnl_f*1e3,'b','Linewidth',2); %forward sweep
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plot(Icc,Rnl_r*1e3,'r–','Linewidth',2); %reverse sweep
set(gca,'linewidth',3.0,'Fontsize',30)
ylabel('R_{15}(m\Omega)') % The non local V/I
xlabel('I_c (Amp)')
box on
figure(2) %Magnetization v.s. injector charge current
hold on
plot(Icc,mdet_f,'b','Linewidth',2); %forward sweep
plot(Icc,mdet_r,'r–','Linewidth',2); %reverse sweep
set(gca,'linewidth',3.0,'Fontsize',30)
ylabel('m_z')
xlabel('I_c (Amp)')
box on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dmdt = LLGsolver(t,m)
% Vinh Diep, Srikant Srinivasan, Deepanjan Datta, Supriyo

Datta Research group
global hd alpha I_H_conv1 I_H_conv2
m1 = m(1:3); m2 = m(4:6);
H1=[0*m1(1) -hd*m1(2) m1(3)];% Internal fields

i.e. uniaxial (along z) and demag(along x)
H2=[0*m2(1) -hd*m2(2) m2(3)];
[Rn1, Is1, Is2]=SpinCircuit(m1, m2);
%%% converting back to [x y z] basis
Is1=Is1([end-1 end end-2])*I_H_conv1; Is1=Is1';
Is2=Is2([end-1 end end-2])*I_H_conv2; Is2=Is2';
%%% Differential Equation for magnetization Dynamics
dm1dt=(-cross(m1,H1)-alpha*cross(m1,cross(m1,H1)). . .
+cross(m1,cross(Is1,m1))+alpha*cross(m1,Is1));
dm2dt=(-cross(m2,H2)-alpha*cross(m2,cross(m2,H2)). . .
+cross(m2,cross(Is2,m2))+alpha*cross(m2,Is2));
dmdt=[dm1dt'; dm2dt'];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Rnl, Is1, Is2]=SpinCircuit(m1,m2)
% 4-component Spin Circuit for the device in ref [Otani].
% Srikant Srinivasan, Purdue University Sept. 28, 2010
global Ic
zdir=[1 0 0]; % Unit vector along 'z', the basis convention

being [z x y]
m1=m1([end 1:end-1]);
m2=m2([end 1:end-1]);
% Constants (all MKS)
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q=1.6e-19; h=6.626e-34;
Z=zeros(4);
%%%%%%% Expt. Ckt. Parameters (SI units)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Magnet
PF1=0.49;PF2=0.49; %Magnet and Interface polarizations
AF1=170*75e-18; lF1=20e-9; % Area, thickness of Magnet 1
AF2=80*170e-18; lF2=4e-9; % Area, thickness of Magnet 2
lambdaF=5e-9; rhoF=17.1e-8; % Permalloy resistivity and

spin-flip length
RF1=lambdaF*rhoF/AF1; RF2=lambdaF*rhoF/AF2; %Parame-

ters of magnets
LF1=lF1/lambdaF; LF2=lF2/lambdaF; % Normalized magnet

length
kf=1.36e10; Modes=kf*kf/2/pi; % Modes including both

spins
RqF=h/q/q; % quantum of resistance per spin
% Channel
t=65e-9; AN=170e-9*t; % thickness, cross sectional area

of Channel
lambdaN=1e-6; rhoN=0.69e-8; RN=lambdaN*rhoN/AN; %

Copper
RN1=RN; RN2=RN; RN3=RN; % RN2=channel between inj. and

det. and RN1,3=overhanging regions
lN2=270e-9; LN2=lN2/lambdaN; LN1=10; LN3=10;
% Gold lead
lambdaG=1e-8;rhoG=7e-8;Rau=lambdaG*rhoG/AF1;Lau=10;
%%%%% Spin Ckt Description
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Conductances
% Non-magnetic channel
[GN1,G0N1]= G_4x4(RN1,LN1,0,0,0);
[GN2,G0N2]= G_4x4(RN2,LN2,0,0,0);
[GN3,G0N3]= G_4x4(RN3,LN3,0,0,0);
% Top Gold Contacts
[GA1,G0A1]= G_4x4(Rau,Lau,0,0,0);
[GA2,G0A2]= G_4x4(Rau,Lau,0,0,0);
% Ferromagnet Bulk
[GF1,G0F1]= G_4x4(RF1,LF1,PF1,0,0);
[GF2,G0F2]= G_4x4(RF2,LF2,PF2,0,0);
% Ferromagnetic Interfaces
[GBF1,G0BF1]= G_4x4(RqF/(Modes*AF1),0,PF1,1,0);
[GBF2,G0BF2]= G_4x4(RqF/(Modes*AF2),0,PF2,1,0);
G0F1=G0F1+G0BF1;G0F2=G0F2+G0BF2;
% if max(max(GBF1))<max(max(GF1))
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% % Ballistic limit
% GF1=GBF1; G0F1=G0BF1;
% else
% % diffusive limit
% G0F1=G0F1+G0BF1;
% end
% if max(max(GBF2))<max(max(GF2))
% % Ballistic limit
% GF2=GBF2; G0F2=G0BF2;
% else
% % diffusive limit
% G0F2=G0F2+G0BF2;
% end
U1=rotmat(zdir,m1);
GF1=U1*GF1*U1'; G0F1=U1*G0F1*U1';
U2=rotmat(zdir,m2);
GF2=U2*GF2*U2'; G0F2=U2*G0F2*U2';
% Non-local computation
% Conductance matrix
G=[G0A1+GA1 -GA1 Z Z Z Z Z;
-GA1 G0A1+GA1+G0F1+GF1 -GF1 Z Z Z Z;
Z -GF1 G0F1+GF1+GN2+G0N2+G0N1+GN1 -GN2 Z Z Z ;
Z Z -GN2 G0N2+GN2+G0F2+GF2+GN3+G0N3 -GF2 Z -GN3;
Z Z Z -GF2 GF2+G0F2+GA2+G0A2 -GA2 Z;
Z Z Z Z -GA2 GA2+G0A2 Z;
Z Z Z -GN3 Z Z GN3+G0N3];
C = [Ic;zeros(27,1)];% Terminal currents
V=G\C;V=reshape(V,4,7);% Terminal voltages
delV=V(1,6)-V(1,7); % Non-Local voltage measured
Rnl=delV/Ic; % Non-Local Resistance
IF1=GF1*(V(:,3)-V(:,2))+(G0F1)*V(:,3);% current enter-

ing FM1
IF2=GF2*(V(:,4)-V(:,5))+(G0F2)*V(:,4);% current enter-

ing FM2
Is1=-IF1(2:4); Is2=-IF2(2:4); % Electron spin current
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Gmat, G0mat] = G_4x4(R,L,P,eta,ang)
% This function generates a 4 component conductance matrix

for the various
% sections including Ferromagnet, tunnel barrier,

non-magnetic channel,
% Interface.
% Srikant Srinivasan, Purdue University (2010)
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% Inputs of this function are defined for each as:
%————————————————————————————————————————————————
% R=Spin resistance (i.e rho*lambda/A),
% L=Length normalized to spin diffusion length

i.e. L/lambda,
% P=polarization fraction in the range (-1,1),
% eta=ratio of (mixing conductance/series conductance),
% ang=mixing angle (Ratio of Slonczewski:Field-Like Spin

torque).
a=cos(ang);b=sin(ang);
% Setting up the Series (Gmat) and Shunt (G0mat) conduc-

tance matrices
% ———————————————————————————————————————————————————
Gmat=[1 P 0 0; P P^2 0 0; 0 0 0 0; 0 0 0 0];
if eta==0

% Individual Sections (eta>0 is defined for the
interface)

if L>0
if P==0

% Non Magnet
Gmat=(1/R/L)*(Gmat+ L*csch(L)*diag([0 1 1 1]));
G0mat=1/R*tanh(L/2)*diag([0 1 1 1]);

else
% Ferro Magnet
Gmat=(1/R/L)*(Gmat+(1-P^2)*L*csch(L)*diag([0 1

0 0]));
G0mat=(1-P^2)/R*tanh(L/2)*diag([0 1 0 0]);

end
else

%tunnel barrier (heuristic extension of 2 component)
Gmat=(1/R)*[1 P 0 0; P 1 0 0; 0 0 1 0; 0 0 0 1];
G0mat=[];

end
else

% FM/NM Interface conductance (based on derivation in
Appendix B)

Gmat=1/eta/R*[1 P 0 0; P 1 0 0; 0 0 0 0; 0 0 0 0];
G0mat=1/R*[0 0 0 0; 0 0 0 0; 0 0 a b; 0 0 -b a];

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function R = rotmat(a,b)
% Implementing Rodriguez rotation formula to transform the

conductance
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% matrix for a magnet aligned along a direction specified by
the vector 'a'

% to a direction specified by the vector 'b'
% Srikant Srinivasan, Purdue University (2010)
a=a/norm(a); b=b/norm(b);
c=dot(a,b); s=sqrt(1-c^2);
if s==0

% Initial and final vectors are collinear
u=[0 0 0];

else
u=cross(a,b)/norm(cross(a,b));

end
%%% Z,X,Y coordinate system
ux=u(2); uy=u(3); uz=u(1);
R=[1 0 0 0;

0 uz^2+(1-uz^2)*c uz*ux*(1-c)-uy*s uz*uy*(1-c)+ux*s;
0 uz*ux*(1-c)+uy*s ux^2+(1-ux^2)*c ux*uy*(1-c)-uz*s;
0 uz*uy*(1-c)-ux*s ux*uy*(1-c)+uz*s uy^2+(1-uy^2)

*c];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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