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Abstract

This chapter describes the theory of the giant magnetoresistance effect and the

tunneling magnetoresistance effect. Giant magnetoresistance and tunneling mag-

netoresistance arise when a magnetic field reorients the magnetization in different

regions of a specimen causing a change in electrical resistance. Typically these

regions are different ultrathin layers. Giantmagnetoresistance can occur inmetallic

multilayers. Two geometries are important. Current-in-plane GMR was the first

“spintronic” effect and was discovered in 1988. Current-perpendicular-to-plane

GMR was observed a few years later and is conceptually easier to understand than

current-in-plane GMR. In this chapter both of these phenomena are treated in a

semiclassical approximation. For current-in-plane GMR, it is necessary to treat the

transport as nonlocal. For current-perpendicular-to-plane GMR, a local approxi-

mation is often adequate. Tunneling magnetoresistance arises when quantum

mechanical tunneling between ferromagnetic electrodes through an insulating

layer depends on the relative orientation of the magnetizations of the two elec-

trodes. In this chapter, tunneling magnetoresistance is treated using the Landauer

approach which envisions ballistic electrons traveling between reservoirs with

given chemical potentials being transmitted or reflected by the insulating layer.

The tunneling current through the layer is carried by the evanescent states. The

properties of these evanescent states and how they join to those electronic states

near the Fermi energy of the electrodes for the majority and minority spin channels

can be important for the size of the tunneling magnetoresistance effect.

List of Abbreviations

AP Antiparallel

bcc Body-centered cubic

CIP Current-in-plane

CPP Current-perpendicular-to-plane

FERPS Free electrons with random point scatterers

FM Ferromagnetic

GMR Giant magnetoresistance

MR Magnetoresistance

MTJ Magnetic tunnel junction

P Parallel

SAF Synthetic antiferromagnet

TMR Tunneling magnetoresistance

XMCD X-ray magnetic circular dichroism
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Introduction

Magnetoresistance refers to a change in the resistance of a material or structure

caused by the application of a magnetic field. In this chapter we will discuss two

types of magnetoresistance that can occur in structures containing ferromagnetic

regions separated by nonmagnetic regions, giant magnetoresistance (GMR) and

tunneling magnetoresistance (TMR). One important function of the nonmagnetic

regions is to interrupt the short range interatomic exchange interactions that

align the magnetic moments of a ferromagnet. This allows the magnetization of

the different ferromagnetic regions to have different orientations. Figure 1 is

intended to indicate that the ferromagnetic and nonmagnetic regions can have

general shapes and distributions. It is more usual for the ferromagnetic and

nonmagnetic layers to be alternating layers as described in section “Two-Current

Model.”

GMR and TMR both occur when a change in the relative orientation of

the magnetization in different regions causes a change of the electrical resistance.

They differ in the type of material that separates the ferromagnetic regions.

For GMR, the separating material is metallic. For TMR the separating material

is insulating but very thin so that electrons can travel from one (metallic)

magnetic layer to another via quantum mechanical tunneling through the sepa-

rating layer.

Electron Spin

Magnetism is closely related to the angular momentum of charged particles. For

example, the familiar law of Biot-Savart gives the magnetic field caused by a

charged particle in motion in terms of its angular momentum relative to the

observation point. A collection of such moving charged particles can give rise to

a current distribution that generates a magnetic moment. For example, the persistent

currents associated with the orbital motion of electrons around a nucleus in an atom

generate a magnetic moment that is proportional to the net orbital angular momen-

tum. The proportionality constant, known as the orbital gyromagnetic ratio is

γ ¼ e= 2með Þ � 0:88� 1011C=Kg:
However, the translational (or orbital) motion of the electrons is not the only

source of angular momentum and magnetic moment in a material. In addition to the

orbital angular momentum associated with their motion around the nucleus, elec-

trons have an additional intrinsic angular momentum independent of any transla-

tional or orbital motion that we call “spin” angular momentum.

It is difficult to develop an accurate classical picture for electron spin. We could

imagine, for example, a classical electron as a spinning top. A spinning charged

object will certainly generate a magnetic moment, but the observed gyromagnetic

ratio for spin angular momentum is slightly greater than twice the gyromagnetic

ratio calculated for the orbital or translational electron motion. Accommodating this

observation within a classical picture of an electron as a spinning charge and mass

1 Theory of Giant Magnetoresistance and Tunneling Magnetoresistance 5



distribution would require the charge distribution to be different from the mass

distribution. Unfortunately for this classical picture, the electron seems to have no

discernable structure at all.

The spin and magnetic moment of the electron arise naturally from the Dirac

equation [1]. The intrinsic spin angular momentum of the electron is ℏ/2, and its

magnetic moment from the Dirac equation is eℏ/(2me). Thus, the gyromagnetic ratio

for the electron’s spin angular momentum is twice that for its orbital or translational

angular momentum (this factor is actually slightly greater (2.002319) due to correc-

tions from quantum electrodynamics). According to the laws of quantummechanics,

the angular momentum vector of a particle with spin ℏ/2 can be either aligned or

anti-aligned with an arbitrarily chosen quantization axis. We usually choose the

quantization axis to be in the z-direction and denote the electrons as up spin or down
spin depending on whether they are aligned or anti-aligned with it.

In atoms, the spin and orbital angular momentum are intimately coupled. Closed

electron shells in both atoms and solids are simple because both the total orbital and

total spin angular momentum for a filled shell vanishes. For the valence electrons of

atoms, quantum mechanics tells us how to add the angular momenta of the

individual electrons to get the total angular momentum and magnetic moment of

a particular atomic state, and there are Hund’s rules for determining which of these

states has the lowest energy.

In solids, the valence electrons interact with multiple ions and so no longer

experience a purely central potential with the consequence that the orbital angular

momentum is largely “quenched.” Experimental evidence for this “quenching” comes

from themeasuredmagnetic moments of transitionmetal ions in ionic solids and from

XMCD (X-ray magnetic circular dichroism) measurements in which the absorption

spectra of X-rays with left and circularly polarized light are compared. Analysis of

these spectra allows in favorable cases for the determination of both the spin and

orbital magnetic moments The detailed XMCD study of spintronic materials is

Fig. 1 GMR and TMR arise when a magnetic field reorients the magnetization in different

regions causing a change in electrical resistance
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presented in ▶Chap. 19, “Magnetic Dichroism Studies of Spintronic Structures”,

Part VII, by Liu et al. Usually, the spin-magneticmoment is observed to be at least one

order of magnitude larger than the orbital magnetic moment.

One important exception to this rule is materials which contain rare earth and

actinide atoms. These atoms have unfilled f-shells which are very near the nucleus

and shielded by the valence electrons from the electric fields produced by neigh-

boring atoms. Such electrons experience a nearly spherical potential and conse-

quently can have large orbital angular momentum. Even for these materials, it is

expected that the orbital angular momentum associated with the itinerant current

carrying electrons would be small.

Two-Current Model

The preceding paragraphs amount to a very long-winded way of saying that to a

very good approximation, one that is better for materials with small atomic num-

bers, many materials behave as if they are inhabited by two materials, one made up

of the up-spin electrons and the other by the down-spin electrons. The approxima-

tion of independent up- and down-spin electrons is not as accurate for materials

with high atomic numbers because the strong Coulomb field of the nucleus causes

the orbital velocity of the electrons to be high leading to a relativistic effect which

couples the orbital and spin angular momenta.

Thus, the key to understanding the GMR effect is that the electric current in a

GMR device is carried by two different types of electrons. In most materials there

are equal numbers of the two types of electrons when they are in equilibrium;

however, in ferromagnetic materials there will be more of one type than the other

leading to a net magnetic moment. In these materials, electrons having spin moment

along the direction of the total (net) magnetic moment of the material are called

majority spin (or up spin), while the other types with spin moment opposite the total

moment are called minority spin (or down spin).

The number of up-spin and down-spin electrons can change through [2] spin-flip

scattering from magnetic impurities that are not collinear with the electron spin,

through electron-electron scattering or through spin-orbit coupling. In the

3d-transition metal series, these effects can be relatively weak so that the assump-

tion of two separate conduction channels, one for each spin, with negligible

interaction between them, is often a good approximation.

Giant Magnetoresistance

Two basic geometries are used in practical implementations of giant magnetore-

sistance. Both use alternating layers of ferromagnetic and nonmagnetic materials.

For the current-in-plane (CIP) implementation, the electric current flows parallel to

the layers, and for the current-perpendicular-to-plane (CPP) implementation, the

electric current flows perpendicular to the layers (Fig. 2).

1 Theory of Giant Magnetoresistance and Tunneling Magnetoresistance 7
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CIP devices are usually easier to make. This geometry was used in the original

experiments by Fert et al. [3] and by Griinberg [4] which led to the 2007 Nobel

Prize in Physics. Fert’s team deposited a magnetic multilayer in which thin layers of

Fe alternated with thin layers of Cr. When they did their experiments in 1987, it had

recently been demonstrated that if the Cr layer thicknesses were within certain

ranges, the magnetization of alternate Fe layers would be antiparallel [2]. When

Fert’s team applied a magnetic field that forced the magnetization of all of the Fe

layers to align in a common direction, the resistance decreased by a factor of about

2. They described this very large change in resistance as a “giant” magnetoresis-

tance, which became the name of the phenomenon and is applied even when the

magnetoresistance is not so large.

The origin of the CIP-GMR effect is somewhat subtle and requires an under-

standing of transport that goes beyond the local version of Ohm’s law. The origin of

CPP GMR by contrast can be explained in simple terms, but the phenomenon has its

own subtleties. We shall see that a consistent theory of CPP GMR requires that we

include the scattering of electrons between the spin channels.

Experimentally, CIP GMR is easier to detect. Typically, the current flows in the

plane of a thin multilayered film. The primary challenge is making the layers

sufficiently thin compared to the mean free path of the electrons and controlling

the relative orientation of the magnetic moments in the ferromagnetic layers.

In contrast, the CPP geometry presents the additional challenge of measuring the

resistance of a film perpendicular to the layers. In order for the CPP structure to

produce a large enough signal, the resistance of the stack must be measurable in the

presence of the resistance of the leads and other parts of the circuit. Various

approaches have been used to detect and measure CPP GMR. One way is to reduce

the cross section of the layers to the nanometer range. Another way is to stack a

large number of layers in the sample, increasing the total thickness of the sample.

The difficulty with this approach is that as the number of layers is increased, it may

be harder to keep the spacer layer thickness uniform in order to maintain antifer-

romagnetic coupling across every spacer layer between neighboring ferromagnetic

Fig. 2 Different geometries

of GMR devices
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layers. A third approach uses superconducting leads to minimize their resistance

relative to the GMR part of the circuit. CPP GMR was successfully measured [5]

3 years after the initial discovery of CIP GMR.

Two-Current Model for a Homogeneous System

When a field is applied to a homogeneous material, the up- and down-spin electrons

will both contribute to the total current density, and over a scale much larger than

the electron mean free path, we can write Ohm’s law as

J5 σ" þ σ#
� �E: (1)

Multiplying by the area and writing the electric field, E, as the potential difference
divided by the thickness ΔV/t, we have

I ¼ σ" þ σ#
� �

AΔV=t (2)

which gives the unsurprising result that the resistance is given by the parallel

resistor formula

R ¼ ΔV
I

¼ 1

σ" þ σ#
� �A

t

¼ 1

1

R"
þ 1

R#

¼ R"R#
R" þ R#

: (3)

In other words, when the spin-flip scattering is neglected, and when we assume a

local relationship between current and field as implied by Eq. 1, the two spin

channels behave like two parallel conduction channels, each with its own resistance

R" and R#. For the CPP geometry, this provides the basis for a very simple

mechanism of GMR.

Parallel-Resistors-in-Series Model for CPP GMR
One type of CPP-GMR system consists of a stack of ferromagnetic/nonmagnetic

metallic layers. The nonmagnetic spacer layer has a carefully controlled thickness

that gives the antiferromagnetic coupling between the two ferromagnetic layers that

it separates. The structure may be repeated for as many periods as the fabrication

technique allows without losing the antiferromagnetic coupling across the spacer

layers.

As shown in Fig. 3, the resistors-in-series model for such a system is simply

a network of two parallel series of resistors, each series representing a spin

channel. If the nonmagnetic spacer layers are chosen correctly and have the correct

thickness, the magnetic configuration for zero applied magnetic field is an alter-

nating up-down alignment of the ferromagnetic layers. Assuming that all ferro-

magnetic layers have the same thickness and that there is an even number of

1 Theory of Giant Magnetoresistance and Tunneling Magnetoresistance 9



ferromagnetic layers, the resistances for the two spin channels are the same and are

given by

RAP
" ¼ RAP

# ¼ n

2
RF
" þ RF

#
� �

þ 2nRN; (4)

where the superscript AP stands for antiparallel. RF
" #ð Þ are the " (#) spin channel

resistance for a single ferromagnetic layer, RN is the total resistance for a single

spacer layer (2RN is the resistance for each spin channel), and n is the number of

bilayers including one ferromagnetic layer and a nonmagnetic spacer layer. The

total resistance of the stack is

RAP ¼ RAP
" RAP

#
RAP
" þ RAP

#
¼ n

4
RF
" þ RF

# þ 4RN

� �
: (5)

When a magnetic field is applied to align the moments in all of the ferromagnetic

layers, the resistance for each spin channel is different. Now we have

RP
" #ð Þ ¼ n RF

" #ð Þ þ 2RN

h i
; (6)

where the superscript P stands for parallel, indicating that the moments in all of the

ferromagnetic layers are now parallel to each other. The total resistance for P is

RP ¼ RP
"R

P
#

RP
" þ RP

#
¼ n

RF
" þ 2RN

h i
RN
# þ 2RN

h i
RF
" þ RF

# þ 4RN

: (7)

From Eqs. 5 and 7, we can obtain a simple relationship

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RAP � RP
� �

RAP
q

¼ n

4
RF
" � RF

#
��� ���: (8)

Fig. 3 Two-current circuit

model for a magnetic

multilayer in the CPP

geometry. The parallel or

aligned moment magnetic

configuration is shown
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It is often convenient to separate the effect of interface spin-dependent scattering

from the bulk resistance. To do this we replace the resistance, Rs, for each spin

channel in the ferromagnetic layer by the sum Rs + 2rswhere rs is the resistance at a
single interface. Then the above equation becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RAP � RP
� �

RAP
q

¼ n

4
RF
" � RF

#
��� ���þ n

2
r" � r#
�� ��: (9)

Multiplying by A on both sides, we finally obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RAP � RP
� �

RAP
q

A ¼ ρ" � ρ#
�� �� tF

tF þ tNð Þ Lþ nA

2
r" � r#
�� ��; (10)

where tF and tN are the thicknesses of single ferromagnetic and nonmagnetic layers,

respectively, RF
" #ð Þ ¼ ρ# "ð ÞtF=A, and L is the total thickness of the sample.

If the resistance of the spacer layers, RN, is negligible, we obtain a simple

expression for the CPP magnetoresistance

MR ¼ RAP

RP
� 1 ¼

RF
" � RF

#
� �2

4RF
"R

F
#

¼ ρ" � ρ#
� �2

4ρ"ρ#
¼ 1

4

ρ"
ρ#

þ ρ#
ρ"

� 2

 !
: (11)

Thus, in an ideal CPP-GMR sample, the magnetoresistance in this model is

simply a function of the resistivity ratio between the two spin channels of the

ferromagnetic layers. The larger the ratio of the resistivities of the two spin

channels, the larger the GMR.

One important result of the resistors-in-series model for CPP is the prediction

that the electrochemical potential for the two spin channels at the same point in

space can be different. This difference is largest in the AP configuration. To see

this, let us examine a trilayer whose spacer layer resistance RN is negligible. For the

AP configuration, the currents in the two spin channels are the same and each is

given by

I" ¼ I# ¼ V

RF
" þ RF

#
; (12)

where V is the total voltage across the trilayer. The electrochemical potential in the

spacer layer for the up (down)-spin electrons is

V" #ð Þ ¼ V � I" #ð ÞRF
" #ð Þ ¼

VRF
" #ð Þ

RF
" þ RF

#
: (13)

The potential difference between the two spin channels in the low-resistance spacer

layer which separates them is

1 Theory of Giant Magnetoresistance and Tunneling Magnetoresistance 11



V" � V# ¼ V
RF
# � RF

"
RF
" þ RF

#
: (14)

Another curiosity of the parallel-resistors-in-series model can be seen in the

parallel moment configuration. Let us suppose that the leads in Fig. 3 are

nonmagnetic. In this case we expect equal currents to be transported by the two

spin channels in the leads. However, that is clearly not the case for this model. We

will see in section “Spin-Flip Scattering and the Drift-Diffusion Model” how the

model can be extended to provide a more physical picture.

Although the parallel-resistors-in-series model for GMR gives us a quick and

simple picture that helps us understand the origin of GMR, it needs improvement in

two distinct ways. We will need to include spin-flip scattering to obtain a realistic

treatment of CPP GMR, and we will need to include the effects of a finite electron

mean free path to obtain any CIP GMR at all.

Spin-Dependent Resistivity of Ferromagnetic Metals
The discussion above makes it clear that one key to obtaining a GMR is choosing

materials with a large difference in the resistivities of the two spin channels in the

ferromagnetic layer. Because of differences in the electronic structure between the

two spin channels in ferromagnetic metals, their resistivities may be quite different

even if the scattering lifetimes are similar between the two channels. For clean films

at room temperature, the scattering is dominated by phonon scattering, whose

scattering rate is roughly proportional to the electron density of states at the

Fermi energy, which in turn is inversely proportional to the Fermi velocity for a

single band. Therefore, there is also a tendency for the scattering lifetime to be

approximately proportional to the Fermi velocity. Furthermore, because the elec-

tron mean free path l is the product of the Fermi velocity vF and the scattering

lifetime τ,

l ¼ vFτ; (15)

the fact that vF and τ tend to trend together magnifies the difference in the mean free

path between the two spin channels. This is indeed the case in Table 1, where we list

the typical values of the average Fermi velocity vF calculated from band structures,

the estimated mean free path l from experimental measurements, the electron-

scattering lifetime τ = l/vF, and the resistivity ρ per spin channel estimated from

an integration over the Fermi surface using the other parameters as input, for

ferromagnetic metals Fe and Co, as well as for nonmagnetic Cu. In this table we

see that there are significant differences between the majority and minority spin

mean free paths for both Fe and Co films. In the case of Co, this translates into a

very large difference in the resistivities of the two spin channels. Using Eq. 11 and

the values in Table 1, we estimate that the maximum CPP GMR that can be

achieved in an ideal Co/Cu multilayer is about

12 X. Zhang and W. Butler



MR � ρ" � ρ#
� �2

4ρ"ρ#
� 66%: (16)

Actual Co/Cu multilayers are far from ideal, and the measured MRs are signifi-

cantly less than this value.

The case of Fe is a little more complicated. The minority spin channel in Fe has a

longer mean free path. But this does not translate into a smaller resistivity. Instead,

the Fe majority spin has a smaller resistivity. This is because another factor plays

the opposite role and overwhelms the difference in the mean free path. Fe majority

spin has more bands than the minority spin. This translates into more conduction

channels and results into a smaller resistivity. However, the difference in the

resistivity as listed in Table 1 is not enough to give the amount of MR measured

in Fe/Cr multilayers. Using Eq. 11 and the values for Fe in Table 1, we find an MR

of only 2 %, far less than the 10 % observed in experiments. What are we missing?

The missing ingredient is the intermixing of Fe and Cr atoms. When Cr atoms

get into the Fe layer, they become strongly spin-dependent scattering centers. To

see qualitatively how Cr impurities scatter differently in the two spin channels, we

can simply count the number of valence electrons in each spin channel for Fe and

Cr. Because both Fe and Cr bulk metals have the bcc structure, they have nearly the

same band structure, with the difference in the position of the Fermi energy relative

to the majority and minority spin bands. We write the total number of valence

electrons per atom as

N ¼ N" þ N#; (17)

where the arrows indicate the number of electrons in the majority (") and the

minority (#) spin channels, and the total magnetic moment as

M ¼ N" � N#
� �

μB: (18)

The number of valence electrons for Cr is 6 and for Fe is 8, and the moments are

0 for Cr (neglecting its weak antiferromagnetism) and 2 μB for Fe, respectively.

From these values we find that both Cr and Fe have the same number of minority

Table 1 Typical values of average Fermi velocity vF, mean free path l, scattering lifetime t, and
resistivity r per spin channel in sputtered films of ferromagnetic metals. Also listed are the values

for nonmagnetic copper films. Mean free path data is from Ref. [39]

Metal vF (107 cm/s) l (Å) τ (10�15 s) ρ"(#) (μΩ cm)

Fe majority 3.3 15 4.5 49

Fe minority 4.1 21 5.1 65

Co majority 7.9 55 7.0 32

Co minority 2.7 6 2.2 141

Cu 10.7 300 28 4.6
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spin electrons (N# = 3), but very different numbers of majority spin electrons

(N" = 3 for Cr and 5 for Fe). Thus, for the down-spin electrons, the Cr atom

looks very similar to the Fe atom. This yields minimal scattering for electrons

and a low resistance. On the other hand, the majority spin potential for the Cr atom

is very different than that of the Fe atom; thus, a Cr impurity in Fe can cause strong

scattering in the majority spin channel, leading to a large resistance for the

majority spin.

Not all intermixing will increase GMR. In the case of Fe/Cu or permalloy/Cu

multilayers (permalloy is Ni80Fe20 alloy), significant intermixing near the interfaces

will produce magnetic impurities with loose spins, whose magnetic moment is not

aligned, neither parallel nor antiparallel to the moment of the ferromagnetic layer,

or even magnetic dead layers. Loose spins increase spin-flip scattering, and dead

layers introduce significant parasitic resistance. Both can reduce the GMR.

There is an interesting connection between GMR and the Slater-Pauling rule.

The Slater-Pauling rule [6, 7] pertains to 3d-transition metal alloys but has been

generalized to other alloy systems. It notes a tendency of bcc and related alloys of

3d-transition metals to prefer to have 3 electrons per atom in the minority spin

channel. This can lead to weak scattering in this channel as all of the 3d species

adjust their magnetic moments so that their d-bands are nearly degenerate. The

Slater-Pauling rule also notes a tendency for fcc-based alloys of 3d-transition

metals to adjust their magnetic moments so that the majority d-band is filled. This

can lead to weak scattering in the majority channel for these alloys because all

atoms will have approximately 5.3 electrons in the majority channel.

Limitation of the Parallel-Resistors-in-Series Model
Although the parallel-resistors-in-series model can successfully explain the exis-

tence of CPP GMR, neglecting the spin-flip scattering can sometimes lead to very

wrong predictions. Here we give an example of a widely used multilayer system for

which this model fails.

We have explained that in order to obtain a large CPP GMR in multilayer

systems, we want the zero field state be such that the moments in neighboring

magnetic layers are antiparallel to each other, in what we call an AP configuration.

This way when a small magnetic field is applied, it aligns the moment in all the

ferromagnetic layers into the same direction, in what we call a P configuration,

reducing the total resistance and resulting in the GMR effect. In a practical setup, it

is often difficult to keep the spacer layer thickness at exactly the optimal point to

ensure the antiferromagnetic coupling. Variations in the spacer layer thickness can

greatly diminish or even eliminate the GMR effect.

Many recent designs adopted an approach that uses a synthetic antiferromagnet

(SAF) [8]. The basic idea is to have one of the ferromagnetic layers (free layer)

rotate freely with the applied magnetic field and to have other ferromagnetic layers

stay fixed (reference layer). To remove the effect of the magnetic field on the

reference layer, two strongly antiferromagnetically coupled magnetic layers are

used. Because they always align opposite each other, the total magnetic moment

adds to zero. Thus, these two layers will not be rotated by the magnetic field.
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The free layer is usually a soft magnetic material such as the permalloy. The SAF

layer is a sandwich consisting of CoFe/Ru/CoFe. A typical stack of Py/Cu/CoFe/

Ru/CoFe (where Py stands for permalloy) would have the desired magnetic con-

figurations tunable by the applied magnetic field and would often show a few

percent magnetoresistance.

Let us now apply the parallel-resistors-in-series model to this system. For the

sake of simplicity, let us assume that the two CoFe layers in the SAF have the same

thickness and thus the same resistance. Let us also neglect the resistance of Ru and

Cu layers. The parallel (P) configuration is when the permalloy moment aligns with

the neighboring CoFe layer, and the AP configuration is when their moments are

oppositely aligned. The resistance for each spin channel in the P configuration is

RP
" #ð Þ ¼ RPy

" #ð Þ þ RCoFe
" #ð Þ þ RCoFe

# "ð Þ : (19)

For the AP configuration, the resistance is

RAP
" #ð Þ ¼ RPy

# "ð Þ þ RCoFe
" #ð Þ þ RCoFe

# "ð Þ : (20)

It is clear thatRAP
# ¼ RP

" andR
AP
" ¼ RP

#. Consequently, the total resistance R
P = RAP

and the parallel-resistors-in-series model predicts zero magnetoresistance for the

system with the SAF reference layer which is known experimentally to work very

well!

The problem is in the neglected spin-flip scattering. The Ru layer in the SAF

stack has a strong spin-orbit coupling. This causes a significant spin-flip term in the

Ru layer. The circuit model of two independent parallel paths is no longer valid.

Instead, there is a cross path mixing the two spin channels. Let us consider the

extreme case that the two spin channels are completely mixed inside the Ru layer,

i.e., τRu"# ¼ 0 . In this limit, the last CoFe layer does not play any role in the

magnetoresistance except for adding to an additional parasitic resistance term.

The stack Py/Cu/CoFe is similar to a trilayer spin-valve structure. Applying the

parallel-resistors-in-series model only to the trilayer, the magnetoresistance is

MR ¼
RPy
" � RPy

#
� �

RCoFe
" � RCoFe

#
� �

RPy
" þ RCoFe

"
� �

RPy
# þ RCoFe

#
� � : (21)

This example demonstrates that a complete theoretical description of the GMR

must include the effect of spin-flip scattering.

Spin-Flip Scattering and the Drift-Diffusion Model

As pointed out in section “Limitation of the Parallel-Resistors-in-Series Model,” a

useful theory of CPP GMR must include processes that return the spin densities to
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their equilibrium distributions in the presence of spin-flip scattering. A simple

model that does this was developed by Valet and Fert [9] who extended earlier

work by Johnson and Silsbee [10]. The Valet-Fert equations can be derived as an

approximation to the Boltzmann transport equation for an extended homogeneous

system. Application to layered systems requires additional approximations.

In this section we will obtain the Valet-Fert equations by a more heuristic

route. We saw in section “Parallel-Resistors-in-Series Model for CPP GMR”

that the up- and down-spin electrons can experience a different electrical potential

in CPP geometry. This comes about because different conductivities for the

up-spin and down-spin electrons lead to different Ohm’s law voltage drops. At

the same time, it is clear that the voltage-induced spin-dependent currents must

affect the density of the spins if we are to have equal spin currents in the leads and

unequal spin currents through the effective resistors of Fig. 3. The first Valet-Fert

equation is Ohm’s law applied to the individual spin channel microscopically, in

the form

Js ¼ σs
e
∇μs; (22)

where Js is the current density for spin s, σs is the spin-dependent conductivity, and
μs ¼ μs � eV is the local electrochemical potential for spin s. Thus, the spin-

dependent current in this generalization of Ohm’s law flows not only in response

to the microscopic electric field �∇V but also in response to a local accumulation

of spin density described by a spatially varying spin-dependent chemical potential,

∇μs.
Since electrons are neither created nor destroyed in an electrical circuit, in steady

state, the divergence of the total current vanishes, ∇ � J ¼ 0. However, if there is

spin-flip scattering, up spins can be converted into down spins and vice versa. The

continuity theorem tells us that

∇ � Js ¼ �e
@ns
@t

; (23)

where ns is the density of spins of type s. The density of electrons with spin swill be
given in terms of the Fermi function as

ns ¼ 1

V

X
k

f 0 Eks � μsð Þ; (24)

and its rate of change will be given in terms of the Fermi energy density of states, Ns

as

@ns
@t

¼ �
X
k

@f 0 Eks � μsð Þ
@Eks

@μs
@t

¼ Ns
@μs
@t

: (25)
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The rate of change of the chemical potentials depends on how far out of

balance they are (i.e., the magnitude of μs � μ�s), and on the rate of spin-flip

scattering 1/τsf,

@μs
@t

¼ � μs � μ�sð Þ
τsf

: (26)

One of the great advantages of Valet-Fert theory is its parsimonious usage of

material parameters. For a system with cubic symmetry, the Fermi energy density

of states, Ns, is related to the conductivity through

σs ¼ e2

3
v2Fsτs
� 	

Ns; (27)

where the semiclassical expression for the conductivity due to spin channels of an

isotropic or cubic system is

σs ¼ e2

3V

X
k

� @f 0 Esk � μð Þ
@Esk

v2skτsk; (28)

and the Fermi energy density of states is given by

Ns ¼ 1

V

X
k

� @f 0 Esk � μð Þ
@Esk

: (29)

Combining Eqs. 23, 24, 25, 26, and 27, we have

∇ � Js ¼ eNs
μs � μ�sð Þ

τsf
¼ σs

e

μs � μ�sð Þ
lsfs
� �2 (30)

where we have defined the spin-diffusion length for spin s, ls
sf, through lfss

� �2 ¼
v2Fsτs
� 	

τsf =3.
Insight into the meaning of the spin-diffusion length can be obtained through a

random walk argument. Assume that the mean time between scattering events that

change the electron’s momentum, but not its spin, is τs. In reality, this will depend

on k but we will ignore that for the present argument. If the magnitude of the Fermi

velocity is vFs, the mean distance that the electron travels between these momentum

scattering events is ls = vFsτs. We further assume, after each scattering event, the

electron goes off in a random direction completely independent of its direction

before the scattering event. This is seldom exactly true, but the error can be at least

partially compensated by adjusting the value of the momentum lifetime. We now

assume that there will occasionally be a scattering event that also flips the electron’s

spin. We can view this as a three-dimensional random walk problem in which we
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ask how far a random walker will get on the average taking n = τsf/τs steps of

length ls. The answer (root mean square of distance) is
ffiffiffiffiffiffiffiffi
n=3

p
ls which is equivalent

to the spin-diffusion length defined above.

Using Eq. 22, the continuity equation (charge density does not change in steady

state) becomes

∇2 σ"μ" þ σ#μ#
� � ¼ 0: (31)

Combining Eqs. 22 and 30, we can obtain

∇2 μ" � μ#
� � ¼ μ" � μ#

� � 1

l2sf"
þ 1

l2sf#

 !
: (32)

The Valet-Fert approximation consists of solving these last two equations for the

electrochemical potentials subject to boundary conditions of continuity at the

interfaces. We will derive the Valet-Fert equations more properly after we intro-

duce the Boltzmann transport equation.

For simplicity, let us consider a layered system with interfaces perpendicular to

the z-direction and assume that Eqs. 31 and 32 which were derived for a homoge-

neous system can be applied to this layered geometry. Equation 32 becomes

@2Δμ
@z2

¼ Δμ
l2sf

(33)

where Δμ ¼ μ" � μ#
� �

and 1=l2sf ¼ 1=l2sf" þ 1=l2sf# . The general solution to this

second-order differential equation is

Δμ ¼ Aexp z=lsf
� �þ Bexp �z=lsf

� �
: (34)

The corresponding solution to Eq. 31 is

σ"μ" þ σ#μ# ¼ Jzþ D; (35)

where J ¼ J" þ J# is the total current density. Solving the simultaneous Eqs. 34 and

35 will yield the values for μ" and μ# as functions of z.
For multilayers, one simply stitches the general solutions within each layer

together using boundary conditions which are the continuity of the current density

and the local electron chemical potential for each spin.

The FERPS Model

The understanding of current-in-plane or CIP GMR requires the combination of two

effects. First is the nonlocal conductivity in an inhomogeneous solid. Second is the
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spin-dependent scattering of electrons. A relatively simple model that can incorpo-

rate both effects and generate CIP GMR is the model of free electrons with random

point scatterers (FERPS) [11]. This model has been implicitly or explicitly assumed

for almost all theoretical works on the GMR that were not based on first-principles

electronic structure calculations. In this model one assumes that the scatterers are

points, that they are distributed randomly in space, and that there are many

scatterers within a region of space of volume ‘3 where ‘ is the electron mean free

path. Because point scatterers scatter isotropically and do not have the so-called

vertex corrections, the first assumption directly allows the use of a relaxation time

approximation, which neglects the “scattering-in” term of the Boltzmann equation

(sometimes known as the vertex corrections in quantum approaches). Even for

many real materials with nearly free-electron-like dispersion, the relaxation time

approximation for the impurity scattering is inaccurate. However, when the Fermi

energy falls in the d-bands so that the scattering is primarily between s and d states

or between two d states, the symmetries of the s and d wave functions are such that

the leading order in the vertex corrections tends to vanish. For such materials, the

relaxation time approximation may be reasonable.

The assumption of random point scatterers offers an additional simplification. It

keeps the effect of scattering local which makes it easier to speak in terms of a local

scattering rate or a local mean free path. The FERPS model is certainly a major

oversimplification, but it has tradition on its side, and it is sufficiently simple that

one may hope to see general features without getting lost in detail. It is also useful

for testing first-principles calculations which should be capable of giving the

FERPS results in the appropriate limit.

Nonlocal Conductivity
In the macroscopic model for electric conductivity in a metal, the conductivity is

always considered to be local. In other words, the electric field at position r would

cause a current density only at the same position, through the local version of the

Ohm’s law,

J rð Þ ¼ σ rð ÞE rð Þ: (36)

Although the two-current model using local conductivity is adequate to explain

CPP GMR (meaning that it gives plausible results), it is not adequate to explain the

phenomenon of CIP GMR. It is easy to show that the CIP GMR is exactly zero if the

conductivity is completely local.

In a magnetic multilayer, when the current flows within the plane of the layers,

the total current is the sum of the current in each layer. If the conductivity is entirely

local, then it is easy to show within the two-current model that no GMRwill emerge

even if there is spin-dependent conductance. For example, consider a ferromag-

netic/spacer/ferromagnetic trilayer. If the conductivity is entirely local, then the

current within each layer does not depend on the moment orientation of other

layers. When the moments of the two ferromagnetic layers are aligned parallel,

each spin channel has the total current
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Is ¼ I1s þ 1

2
I2 þ I3s; (37)

where s = " (#) indicates the spin channel and 1, 2, 3 indicates the layer. The total

current is the sum over both spin channels,

I ¼ I1" þ I1# þ I2 þ I3" þ I3#: (38)

When the moments are aligned antiparallel, the current in one of the spin channels

is

IAP" ¼ I1" þ 1

2
I2 þ I3#; (39)

and in the other spin channels is

IAP# ¼ I1# þ 1

2
I2 þ I3": (40)

The sum of Eqs. 39 and 40 is identical to the total current for parallel alignment,

Eq. 38. Thus, there would be no magnetoresistance if the conductivity is entirely

local.

The picture of a nonlocal conductivity can be understood if we imagine that an

electron is accelerated by an electric field at point r0 and flies through the solid for a
time τ (the relaxation time of the electrons) before being scattered by an impurity at

point r and dissipating its extra momentum. Chambers [12] presented a semiclas-

sical argument that the energy of an electron passing through point r at time t had its
energy modified by ΔE,

ΔE r, tð Þ ¼
ðt
�1

v0 t0ð Þ � eE r0ð Þe� t�t0ð Þ=τdt0; (41)

where v0 is the electron velocity at point r0 and time t0. Every electron will have a

similar equation due to the applied electric field. Assuming that the electrons were

initially in equilibrium before their energy was modified by the applied field, then the

distribution of all electrons can be described by a distribution function in the form

f r, v, tð Þ ¼ f 0 Eð Þ þ @f 0
@E

ΔE r, tð Þ; (42)

where f0(E) is the equilibrium distribution function which depends only on the

electron energy.

The current density is calculated from the average velocity of all electrons,

J rð Þ ¼ � e

V

X
v

vf r, v, tð Þ ¼ � e

V

X
v

v
@f 0
@E

ΔE r, tð Þ; (43)

20 X. Zhang and W. Butler



where V is the volume of the sample and we used
X

v
vf 0 Eð Þ ¼ 0. Substituting

Eq. 41 into this, we find

J rð Þ ¼ � e2

V

X
v

v
@f 0
@E

ðt
�1

v0 t0ð Þ � e r0 t0ð Þ½ �e� t�t0ð Þ=τdt0: (44)

The current density at position r depends on the electric field at position

r0 parametrically through the time variable t0. For free electrons in a

homogeneous medium, the factor @f0/@E is essentially a δ function at the Fermi

energy, and v=vF ¼ r� r0ð Þ=jr� r0j. The above expression can be reduced to

J rð Þ ¼ e2k2F
2πð Þ3ℏ

ð
d3R

RR

R2
� e r0ð Þe�R=‘; (45)

where R = r � r0 and ‘ = vFτ is the electron mean free path. In general, if the

scattering rate is not homogeneous, then the exponential factor e�(t � t0)/τ in Eq. 44

can be modified as e
�
ðt
t0
dt00=τ t00ð Þ

. The current density can be written in the form

J rð Þ ¼
ð
d3r0σ r, r0ð Þ � e r0ð Þ; (46)

where σ(r, r0) is the nonlocal conductivity tensor.

For layered structures, within the FERPS model, we can assume that the material

is uniform in the xy directions and drop the dependence on xy. The integration over
t0 can be converted to integration over z by dt0 ¼ dz0=jvj cos θ where θ is the angle

between the velocity v and the z-axis. We further have t� t0 ¼
ðz
z0
dz00=jvj cos θ .

Thus,

σ z, z0ð Þ ¼ e2m

2ℏ3

ðπ=2
�π=2

tan θdθvFvFe
�
ðz
z0
dz00=‘ z00ð Þ cos θ

; (47)

where ‘ z00ð Þ ¼ jvFjτ z00ð Þ.
We assume that the material properties are uniform within each layer. Thus, the

local electric field will have a layer index I instead of coordinate dependence r and

is written as EI. Similarly the scattering mean free path is ‘I, and the layer

conductivity is σIJ. The Camblong-Levy approximation [13] to the conductivity

of the multilayer can be obtained by integrating Eq. 47 over z0 and averaging over

z within the respective layers,

σIIxx ¼ σI 1þ 3

4

‘I
dI

� 1

2
þ 2E3

dI
‘I


 �
� 2E5

dI
‘I


 �� 
� �
; (48)
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and for I 6¼ J,

σIJxx ¼
3σI
4

‘J
dI

E3 ϕIJð Þ � E3 ϕI�1, J
� �� E3 ϕI, Jþ1

� �þ E3 ϕI�1, Jþ1

� ��
�E5 ϕIJð Þ þ E5 ϕI�1, J

� �þ E5 ϕI, Jþ1

� �� E5 ϕI�1, Jþ1

� ��
;

(49)

where σI ¼ e2k2F‘I=6π
2ℏ ¼ nIe

2τI=m, and the ϕIJ are defined by

ϕIJ ¼
ðzJ
zIþ1

dz

‘ zð Þ I < Jð Þ; (50)

where dI = zI + 1 – zI, and the functions En(x) are the exponential integrals defined
by

En xð Þ ¼
ð1
1

e�xt

tn
dt: (51)

The total conductance will be given by the sum of these nonlocal conductivities,

for example, a trilayer CIP-GMR film with total thickness, d; width, W; and

length along field direction, L, would have a different conductance for parallel

alignment,

GP ¼ Wd

L

X
I, J¼1, 2, 3

σIJxx ‘"1, ‘2, ‘
"
3

� �
þ σIJxx

�
‘#1, ‘2, ‘

#
3

�h i
; (52)

and antiparallel alignment,

GA ¼ Wd

L

X
I, J¼1, 2, 3

σIJxx ‘"1, ‘2, ‘
#
3

� �
þ σIJxx

�
‘"1, ‘2, ‘

#
3

�h i
: (53)

The above Camblong-Levy expressions [13], Eqs. 48 and 49, for the conductiv-

ity can also be derived from the Fuchs-Sondheimer theory [14, 15] using a

z-dependent lifetime τ(z) or in the multilayer case τI for layer I. Many other authors

have also come up with their own derivations of the semiclassical theory using

assumptions similar to the FERPS model. All these derivations are completely

equivalent. The truncation of the sum over σIJ in the case of a film with finite

thickness is equivalent to complete diffuse surface scattering which would be

modeled in Fuchs-Sondheimer theory by p = 0 in the boundary conditions at the

surfaces.

The conductivity calculated from the semiclassical theory agrees surprisingly

well [11] with the numerical evaluation of the Kubo formula, which is the formula

that yields the conductivity from a full quantum mechanical approach. Such

agreement justifies the use of the semiclassical Boltzmann transport equation for

modeling the GMR materials.
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When the conductivity is nonlocal, the current within each layer has a contri-

bution due to the field in other layers. Such contribution depends on the moment

orientation of both (or all if the term spans across many layers) layers and changes

when the moment configuration is changed. This term is the source of CIP GMR. In

the classical picture, the contribution consists of terms involving, for example, an

electron with a finite transverse momentum being accelerated in layer 1 by the

applied field, traveling across the spacer layer into layer 3, and contributing to the

current in layer 3 before getting scattered in that layer. Therefore, for GMR to arise,

the electron mean free path in the spacer layer must be long compared to its

thickness.

Semiclassical Theory of GMR for Real Materials

Quantitative comparison between theory and experiment requires the theory to go

beyond the FERPS model and use real band structures. However, for the most part,

quantum coherence effects such as quantum well states and other quantum inter-

ference effects are rarely apparent in GMR measurements. The reason for this may

lie in the fact that the wavelengths of the Fermi energy electronic states in transition

and noble metals are comparable to atomic sizes and therefore comparable to the

fluctuations in layer thicknesses in typical polycrystalline sputtered films. For this

reason, a full quantum mechanical theory for GMR is usually not necessary,

although this perspective may change if film quality improves significantly or if

some of the layers only have Fermi energy electron states with long wavelengths.

In this section we will follow a semiclassical approach. The electrons are

assumed to behave like classical particles within the context of transport, except

that they obey Fermi statistics (which implies that it is the Fermi energy electrons

that are important for transport) and that the relation between electron energy and

momentum and the transmission and reflection probabilities at interfaces are

calculated using quantum mechanics. The quantum mechanical parts of the calcu-

lation are performed assuming equilibrium. The transport part is calculated using

the Boltzmann transport equation.

Semiclassical Boltzmann Transport Equation
The electron distribution function, fs(k, r, t), is defined as the number of electrons

with given values of wave vector k and spin s, at position r and time t, a seven-

dimensional function (for each spin) measured in dimensionless units. In the

absence of applied fields, the electrons are at equilibrium, and the distribution

function is the equilibrium distribution function f 0 Eskð Þ ¼ 1þ exp Esk=kBTð Þ½ ��1
,

where the band energy Esk is measured from the Fermi energy. If an electric field is

applied, the distribution function will change, and if the field is not too large, the

system will reach a new steady state. The total change in the distribution function

(which vanishes in steady state) will consist of contributions from drift, field, and

scattering,
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df

dt
¼ 0 ¼ @f

@t

����
drift

þ @f

@t

����
field

þ @f

@t

����
momentum�scattering

þ @f

@t

����
spin�flip�scattering

: (54)

In this equation, the drift term describes the rate of change of the distribution

function due to the movement of electrons caused by their velocity; the field term

describes the rate of change of the distribution function due to the acceleration of

the electrons caused by the applied external field; the momentum scattering term

describes the change in the distribution function due to the scattering of electrons by

the imperfections in the lattice which change their momentum, but not their spin;

and the spin-flip scattering term describes the change in the distribution function

due to scattering processes which change spin.

From the definition of each term, we have the following for the rate of change of

fs:

@f s
@t

����
drift

¼ v kð Þ � ∇f s r, kð Þ (55)

@f s
@t

����
field

¼ @k

@t
� ∇k f s r,kð Þ ¼ �e

ℏ
e � ∇k f s r, kð Þ (56)

@f s
@t

����
momentum�scattering

¼
X
k0

Pkk0 f s r,k
0ð Þ � f s r, kð Þ½ � (57)

@f s
@t

����
spin�flip�scattering

¼
X
k0

Psf
kk0 f�s r,k

0ð Þ � f s r,kð Þ½ � (58)

Equation 56 uses Newton’s second law _p ¼ ℏ _k ¼ �eE� �
and the notation ∇k to

indicate a gradient in reciprocal space.

The effect of the field, E, on the steady-state distribution function, fs(r, k), is to
cause deviations from the equilibrium distribution that are limited to the vicinity of

the Fermi energy,

f s r, kð Þ ¼ f 0 �
@f 0 Esk � μ0ð Þ

@Esk
gs r,kð Þ: (59)

We write gs(r, k) as the sum of two parts, one that is independent of k and one

whose k-dependence is such that its average over the Fermi surface vanishes.

gs r,kð Þ ¼ μs rð Þ � μ0 þ gas r,kð Þ: (60)

We shall see that the second part arises naturally in the solution of the Boltzmann

equation for a homogeneous system and that the first part is needed to describe

cases such as CPP-GMR systems where there spin density can be different from its

equilibrium value.
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The field term can be simplified by noting that the explicit factor of E makes it

already first order in the field. Therefore, we need only to retain in ∇kf s r,kð Þ the
lowest nonvanishing order in E. Thus, ∇kf s r,kð Þ � ∇kf 0 Esk � μ0ð Þ . Additional
simplification of the field term can be obtained by using

∇kf 0 Esk � μ0ð Þ ¼ @f 0 Esk � μ0ð Þ
@Esk

∇kEsk ¼ @f 0 Esk � μ0ð Þ
@Esk

ℏvsk: (61)

Using these results, the drift, field, and scattering terms can be written as

@f

@t

����
drift

¼ � @f 0 Esk � μ0ð Þ
@Esk

v kð Þ � ∇ μs rð Þ þ gas r, kð Þ� �
(62)

@f

@t

����
field

¼ �e
@f 0 Eks � μ0ð Þ

@Eks
E � vks (63)

@f

@t

����
momentum�scattering

¼ @f 0 Esk � μ0ð Þ
@Esk

gas r,kð Þ
τsk

(64)

@f

@t

����
spin�flip�scattering

¼ @f 0 Esk � μ0ð Þ
@Esk

�μ�s rð Þ þ μs rð Þ þ gas r,kð Þ� � 1

τsfsk
(65)

Equations 64 and 65 depend on the additional approximations

X
k0

Pkk0
@f 0 Esk0 � μ0ð Þ

@Esk0
gas r,k0ð Þ ¼ 0 (66)

and

X
k0

Psf
kk0

@f 0 E�sk0 � μ0ð Þ
@E�sk0

ga�s r, k
0ð Þ ¼ 0: (67)

These are equivalent to assumptions that the momentum and spin-flip scattering

probabilities are isotropic since by construction

X
k0

@f 0 E�sk0 � μ0ð Þ
@E�sk0

ga�s r, k
0ð Þ ¼ 0: (68)

Setting the sum of terms Eqs. 62, 63, 64, and 65 to zero yields

vsk � ∇ μs rð Þ þ gas r,kð Þ� �þ ee � vsk � gas r,kð Þ 1

τsk
þ 1

τsfsk

 !
þ μ�s rð Þ � μs rð Þ

τsfsk
¼ 0:

(69)
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The spatial gradient of the chemical potential can be included in the field term by

introducing the electrochemical potential μs rð Þ ¼ μs rð Þ � eV rð Þwhich allows us to
write Eq. 69 as

vsk � ∇ gas r,kð Þ þ μs rð Þ� �� 1

τsk
þ 1

τsfsk

 !
gas r,kð Þ � μs rð Þ � μ�s rð Þ

τsfsk
¼ 0: (70)

If we multiply Eq. 70 by @f0(Esk –μ0)/@Esk and average over the Brillouin zone, the

terms proportional to vskμs and to gs
a(r, k) average to zero leaving

X
k

@f 0 Esk � μ0ð Þ
@Esk

vsk � ∇gas r,kð Þ þ μs rð Þ � μ�s rð Þ
τsfsk

" #
¼ 0: (71)

But this is just the Valet-Fert equation related to the continuity equation, Eq. 30,

because

∇ � Js ¼ e

V

X
k

@f 0 Esk � μ0ð Þ
@Esk

vsk � ∇gas r,kð Þ ¼ �eNs
μs rð Þ � μ�s rð Þ

τsfsk
: (72)

Similarly, if we multiply Eq. 70 by vskx@f 0 Esk � μ0ð Þ=@Eskð Þ and sum over the

Brillouin zone, the terms that survive give

X
k

@f 0 Esk � μ0ð Þ
@Esk

vskxg
a
s r, kð Þ 1

τsk
þ 1

τsfsk

 !
¼
X
k

@f 0 Esk � μ0ð Þ
@Esk

v2skx
@μs
@x

: (73)

If we assume that the scattering rates are uniform over the Fermi surface or (more

realistically) that their inverse can be replaced by a suitable average lifetime, Eq. 73

yields the other (“Ohm’s law”) Valet-Fert equation,

Jsx ¼ e

V

X
k

@f 0 Esk�μ0ð Þ
@Esk

vskxg
a
s r,kð Þ � e

V

X
k

@f 0 Esk�μ0ð Þ
@Esk

v2skx
@μs
@x

1

τsk
þ 1

τsfsk

 !�1

:

(74)

Assuming cubic symmetry, we can write this as

Js ¼ σs
e
∇μs rð Þ; (75)

where σs is given by the usual expression for the conductivity,

σs ¼ e2

3V

X
k

�@f 0 Esk � μ0ð Þ
@Esk

v2sk
1

τsk
þ 1

τsfsk

 !�1

: (76)
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These are just the Valet-Fert expressions that we found by more heuristic approach

in section “Spin-Flip Scattering and the Drift-Diffusion Model” with a slightly

modified expression for the spin-dependent electron lifetime.

All of the equations in this section have been obtained for a homogeneous

system in which spatial changes in the electronic structure are ignored. In applica-

tions, the assumption is made (often tacitly) that the electron mean free path is much

shorter than the layer thickness. This assumption may be reasonable for some

materials and structures.

An additional feature is often added to CPP-GMR models that employ Valet-

Fert theory, namely, the use of an additional spin-dependent interfacial resistance.

This is typically assumed to result from a thin intermixed interfacial layer, but could

also result from a spin-dependent voltage drop resulting from partial reflection of

electrons at the interface as discussed in the next section.

Boltzmann Equation for Current-in-Plane Geometry
If the system is composed of layers of different materials stacked along the z-
direction, it is often a good approximation to assume that we have two-dimensional

periodicity within each layer. If the layers are not too thin, we may also assume that

within each layer, we can use the electron dispersion relation appropriate to that

material in bulk. We would, of course, have to worry about obtaining the correct

relative placement of the energy bands because, in general, when two materials are

brought together, a dipole layer forms at the interface to balance the electrochem-

ical potentials and allow the materials to have their correct Fermi energies far from

the interfaces.

These approximations lead, then, to a model in which the band energies,

Einsk, and velocities, vinsk, within each layer are assumed to be those for a

perfect (infinite) crystal. Here, an additional index, i, has been added to label

the layer. The layers are separated by thin, interfacial regions that can be

described by transmission and reflection probabilities as we shall show in a later

section.

In this section we shall assume that the materials are homogeneous in the x and
y directions but that they vary (different materials, interfaces, boundaries, etc.) in

the z-direction. Because we have boundaries and interfaces, the distribution func-

tion will vary with z and will satisfy Eq. 70 specialized to our layered geometry,

vizsk
@

@z
þ 1

τis

� 

gis z,kð Þ ¼ �evisk � E: (77)

In Eq. 77, we have neglected the k-dependence of the lifetimes, and the “scattering-

in” term. We assume that the electric field is applied perpendicular to the z-direction
which yields the important simplification that the electric field is uniform so that

(at least in the absence of spin-orbit coupling) we do not have to worry about

spatially varying spin-dependent chemical potentials.
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The current density, however, will be z-dependent and is given by

Ji zð Þ ¼ e

V

X
sk

viskgis z,kð Þδ Eisk � μð Þ: (78)

In Eq. 78 we assume that the temperature is low enough that we can replace the

energy derivative of the Fermi function with a delta function. In evaluating the sum

over k = kx, ky, kz, we can take advantage of delta function in this layered geometry

by converting the sum over kz into an integral, i.e.,
X

kz
¼L

ð
dkz= 2πð Þ. Then we

can perform the integral over kz (for fixed k|| = kx, ky) using the δ-function
(suppressing the layer index, i) as

ð
dkzvskkkzgs z, kkkz

� �
δ Eskkkz � μ
� �

¼
X
n

gns z,kk
� �

vns kk
� �

ℏjvzns kk
� � j: (79)

Equation 79 requires some explanation. Consider Figures 4 and 5 which depict

calculated cuts through the Fermi surfaces of Cu and Co, respectively. Imagine that

we are integrating over kz for arbitrary specified values of kx and ky. It is clear from
these examples that as we vary kz from one side of the Brillouin zone to the other,

we will pass through the Fermi surface 2n times. For Figure 4 and the left panel of

Fig. 5, n is one for the chosen value of kx and any value of ky. For the right panel of
Fig. 5, n will depend on the value ky for which the integration over kz is being

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

k y

kz

Fig. 4 Cut through the

kx = 0 plane of the Fermi

surface of copper. The arrows
indicate the magnitude and

direction of the electron

velocity. ky and kz are given in
units of inverse Bohr radii
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performed. When kz crosses the Fermi surface, the argument of the delta function

passes through zero. As it passes through zero, we have

Eskkkz � μþ @Eskkkz

@kz
kz � kn�z
� � ¼ μþ ℏvzns kk

� �
kz � kn�z
� �

(80)

where kn�z indicates the value of kz(k||) on the nth sheet of the Fermi surface and

the � indicates whether the z-component of the Fermi velocity at this point is

positive or negative.

Using Eq. 79 in Eq. 78, we get

J zð Þ ¼ � e

2πA

X
nskk

gns z, kk
� �

vns kk
� �

ℏjvzns kk
� � j: (81)

It is important to note that for every value of k|| and n, there will be two states one

for which vz > 0 and another with vz < 0. This is true even if the Fermi surface

does not have mirror symmetry around the plane kz = 0, as occurs, for example, in

fcc Eq. 111. Using this result, we can write Eq. 81 as

Jz zð Þ ¼ � e

2πAℏ

X
nskk

gþns z,kk
� �� g�ns z, kk

� �� �
; (82)

where the superscript +(�) indicates the Bloch state with vþnsz kk
� �

> 0 and

v�nsz kk
� �

< 0
� �

and the notation g�ns z,kk
� �

stands for gns z,kk, kn�z
� �

.
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Boundary Conditions on Interfaces
To uniquely determine the solution to the Boltzmann equation, we need a proper set

of boundary conditions. For layered systems electrons traveling in the +z direction
satisfy a different boundary condition from those traveling in the �z direction. This
was first worked out for single-layer films by Fuchs [14], and the generalization to

multilayers [11, 13] is relatively straightforward.

In most cases, the transmission and reflection on the interfaces are coherent, and

the spin-flip scattering is also negligible. Therefore, in the discussion of the

boundary conditions, we temporarily drop the spin index, s, but add the layer

index, i. The boundary conditions on g�n z, kk
� �

are obtained by requiring particle

conservation at each of the interfaces. Since gþin z,kk
� �

and g�in z, kk
� �

represent the

distribution functions in layer i for electrons traveling in the +z and �z directions,
respectively, we can express the relationships between the distribution functions in

layers i and i + 1 (with interface at zi) in terms of the transmission Tþþ
i , T��

i

� �
and

reflection Tþ�
i ,T�þ

i

� �
probabilities of the interfaces. We use a convention illus-

trated in Figure 6 in which, for example,Tþ�
i k,k0ð Þ is the probability for a�z going

electron in Bloch state k0 incident on interface i to leave the interface going in the +z
direction in Bloch state k. Consider the flux of electrons leaving this interface

traveling in the +z direction (in layer i + 1),
X

n, kk
gþiþ1, n zkk

� �
. This flux is the sum

of the transmitted flux of +z going electrons from layer i and the reflected flux from
those electrons originally traveling in the �z direction in layer i + 1. A similar flux

conservation argument relates the�z going electron flux leaving the interface to the
incoming fluxes in the two layers,

T− −

T− +

T+ −

T+ +

Layer i Layer i+1
Fig. 6 Convention for the

transmission and reflection

probabilities
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gþiþ1, n zþi ,kk
� � ¼

XNR

n0, k0k

Tþ�
i nkk, n0k0k
� �

g�iþ1, n0 zþi ,k
0
k

� �
þ
XNL

n0,k0k

Tþþ
i nkk, n0k0k
� �

gþin0 z�i ,k
0
k

� �
g�in z�i ,kk
� � ¼

XNL

n0, k0k

T�þ
i nkk, n0k0k
� �

gþin0 z�i , k
0
k

� �
þ
XNR

n0,k0k

T��
i nkk, n0k0k
� �

g�iþ1, n0 zþi ,k
0
k

� �
: (83)

Here NL and NR denote the number of states on the left or right of the interface,

respectively, for a given value of kjj0 . If we assume that the layers have

two-dimensional periodicity, so that the momentum parallel to the interface is

conserved on transmission or reflection, the boundary conditions become

gþiþ1, n zþi ,kk
� � ¼

XNR

n0
Tþ�
i n, n0ð Þg�iþ1, n0 z

þ
i ,kk

� �
þ
XNL

n0
Tþþ
i n, n0ð Þgþin0 z�i ,kk

� �
g�in z�i , kk
� � ¼

XNL

n0
T�þ
i n, n0ð Þgþin0 z�i ,kk

� �
þ
XNR

j0
T��
i n, n0ð Þg�iþ1, n0 z

þ
i ,kk0

� �
: (84)
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going beam in that layer, g�iþ1,

and the transmitted part of

the right-going beam in layer

i, gþi
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The first of these relations is shown pictorially in Figure 7. The transmission and

reflection matrices can be calculated from the underlying electronic structure of the

layers and their interface [16]. Figures 8 and 9 show the transmission and reflection

probabilities for Bloch waves in copper incident on cobalt. The transmission and

reflection probabilities conserve electron flux. Thus, considering incident left- and

right-going waves of unit flux, respectively, we can derive the following conserva-

tion rules,

XNR

n

Tþþ
i n, n0ð Þ þ

XNL

n

T�þ
i n, n0ð Þ ¼ 1

XNL

n

T��
i n, n0ð Þ þ

XNR

n

Tþ�
i n, n0ð Þ ¼ 1;

(85)

and considering unit left- and right-going fluxes leaving the interface, we obtain
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XNL

n0
Tþþ
i n, n0ð Þ þ

XNR

n0
Tþ�
i n, n0ð Þ ¼ 1

XNR

n0
T��
i n, n0ð Þ þ

XNL

n0
T�þ
i n, n0ð Þ ¼ 1:

(86)

CIP GMR Using Realistic Electronic Structure
CIP GMR arises from the nonlocal nature of electrical conduction. A necessary

requirement for CIP GMR is that the electron mean free path be at least comparable

to the thicknesses of the layers. One contribution to CIP GMR can be thought of as

an effect similar to the effect of a boundary decreasing the conductivity. Consider a

three-layer system, e.g., a layer of copper sandwiched between two layers of cobalt.

Suppose that copper and cobalt matched perfectly in the majority channel. Then the

majority electrons, when the moments of the two cobalt layers are aligned, would

effectively see a film thickness equal to the sum of the thicknesses of the three

layers while the minority electrons would tend to be confined within the individual

layers because of the changes in electronic structure at the interfaces. When the

moments are anti-aligned, however, both of the spin channels would see effectively

two layers. This causes a difference in the total current and the giant

magnetoresistance.

In fact, of course, as indicated in Figures 4, 5, and 8, there is a difference between

cobalt and copper in the majority channel. The copper majority Fermi surface is

larger than that of cobalt. It holds 0.5 electrons while that of cobalt holds only 0.3.

A cut through the Fermi surfaces of copper and majority cobalt is shown in Figure 8.

The z-direction (perpendicular to the layers) is toward the top of the figure. The

directions perpendicular to this direction are in the plane of the layers. If the

interfaces are smooth on an atomic scale, then the component of the momentum

parallel to the interface (k||) does not change on reflection or refraction at an

interface. Thus, from Figure 8, it is clear that there are values of k|| for which states

exist in the copper but not in the cobalt. This means that these states cannot refract

into the cobalt; they must reflect back into the copper. This can lead to a significant

contribution to the GMR if the interface is sufficiently smooth because some of the

majority electrons can be “trapped” inside the copper where the resistance is

significantly lower for both spin channels than for cobalt. This “trapping” of the

electrons inside the copper layer is analogous to the trapping of light waves within a

waveguide [17]. Note from Fig. 14 that interfacial disorder is relatively ineffective

in reducing the specular reflection for values of k|| where total reflection occurs.

A calculation for the current density in a CIP cobalt|copper|cobalt spin valve

using realistic electronic structures is shown in Figures 10 and 11. Figure 10 shows

the majority and minority currents for both parallel ("", ##) and antiparallel ("#, #")
alignments. In this example, the scattering rate in the copper is chosen to give the

copper a resistivity of 3 μΩ cm, a typical value for sputter-deposited copper films at

room temperature. The scattering rates for cobalt were chosen to give it a resistance

of 15 μΩ cm which is also typical of sputtered films. A much higher scattering rate

1 Theory of Giant Magnetoresistance and Tunneling Magnetoresistance 33



was chosen for the minority than for the majority cobalt. It can be seen that the

current density is significantly higher in the copper than in the cobalt. It can be seen

from Figure 11 that the largest contributions to the giant magnetoconductance arise

from the copper spacer layer indicating the importance of the channeling effect.

Comparison of calculated and measured values of GMR for a series of cobalt-

copper spin valves with different thicknesses of the cobalt layers indicated the

existence of important contributions to GMR from both the channeling effect and

from the differences in bulk scattering rates for the majority and minority channels

of cobalt (Fig. 11).

Boltzmann Equation for CPP
When the system is inhomogeneous in the direction in which the field is applied,

there will be accumulation of spin and charges near the interfaces between the

layers. Leaving aside possible spin accumulation for the time being, charge accu-

mulation can be easily illustrated through the example of a system with a local but
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spatially varying conductivity σ(z) that depends on z, the direction which sustains a
current, J. The current density is related to the local electric field through the

conductivity,

J zð Þ ¼ σ zð ÞE zð Þ: (87)

In steady state, J(z) must be independent of z if charge is to be conserved. Thus, the
local field, E(z), must vary as J/σ(z). We can think of this local field as arising from

an applied field together with the fields due to the inhomogeneous distribution of

electrons that is set up by the current passing through the sample. The case with

both charge and spin accumulation was treated in section “Spin-Flip Scattering and

the Drift-Diffusion Model” using a model in which the electronic structure did not

change from one layer to the next.

Here we extend that model for the case in which the electronic structure of the

layers may differ. We begin with the Boltzmann equation, Eq. 70, specialized to our

geometry (Fig. 12),

vzsk
@

@z
gas z,kð Þ þ μs zð Þ� �� 1

τs
þ 1

τsfs


 �
gas z,kð Þ � μs zð Þ � μ�s zð Þ

τsfs
¼ 0: (88)

Just as in section “Semiclassical Boltzmann Transport Equation,” we can aver-

age this equation over the Fermi surface obtaining

@Jzs zð Þ
@z

¼ �eNs
μs � μ�s

τsfs
; (89)

while averaging after multiplying by vzsk gives

Jzs zð Þ ¼ σs
e

@μs
@z

: (90)
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Just as in section “Semiclassical Boltzmann Transport,” these two Valet-Fert

equations can be solved within each layer. However, the boundary conditions that

are used to connect solutions in different layers are now determined by the

transmission and reflection expressions derived in section “Boundary Conditions

on Interfaces.” As a consequence, it is not sufficient to calculate only the spin-

dependent currents and chemical potentials. It seems to be necessary to calculate

the entire distribution function. An important point that must be kept in mind in

applying the boundary conditions is that they must refer to the entire deviation

function, not simply the anisotropic part.

The Boltzmann equation together with the matching conditions at the boundaries

can be solved by an iterative process [18]. Figures 12 and 13 show the calculated

electrochemical potential, μ; for the majority and minority channels in the vicinity

of a copper-cobalt interface. The scattering rates are similar to those used for the

CIP calculations; the bulk resistivity of the copper is approximately 3 μΩ cm and

that of the cobalt is approximately 15 μΩ cm with a scattering rate about 15 times

higher for minority cobalt than for majority cobalt. The electrochemical potential

has been divided by the current density so that the plots yield

ð
dxρs zð Þ. Without

incorporating the actual band structures of the copper and cobalt in the Boltzmann

equation, one would simply obtain a straight line for each layer with the slope of the

line being its resistivity. Using the actual band parameters in the Boltzmann

equation leads to two main differences: (1) There is a discontinuity in the chemical

potential at the interface which is equivalent to an interfacial resistance. This

interfacial resistance is not due to intermixing or additional scattering at the

interface (although this effect can be included in the model if desired) but to the

mismatch of the bands across the interface which causes some of the electrons

incident on the interface to be reflected. (2) There are exponential terms in the

electrochemical potential in the vicinity of the interface that decay at a rate

comparable to the component of the mean free path perpendicular to the layers.
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The effect of these terms can be included as an additional interfacial resistance that is

added to the discontinuous contribution just described as is indicated in the dotted

lines of Figures 12 and 13. If this is done, however, it must be taken into consideration

that this additional contribution depends on the environment of the interface, e.g., the

proximity of other interfaces. The calculated interfacial resistances are comparable to

those observed [5] in cobalt-copper multilayers at low temperature.

Diffuse Interfacial Scattering

If the interface is disordered, the flux conservation rules must be extended to

include the scattering of electrons between different values of k||. Diffuse scattering

by interfaces and surfaces can be treated phenomenologically by including a

specularity parameter Si for each interface so that Eq. 84 becomes

gþ, jiþ1 zþi , kk
� � ¼ Si

XNR

j0
Tþ�
i j, j0ð Þg�, j0iþ1 zþi , kk

� �24
þ
XNL

j0
Tþþ
i j, j0ð Þgþ, j0i z�i , kk

� �35
g�, ji z�i , kk

� � ¼ Si
XNL

j0
T�þ
i j, j0ð Þgþ, j0i z�i , kk

� �24
þ
XNR

j0
T��
i j, j0ð Þg�, j0iþ1 zþi , kk0

� �35:

(91)

The value of Si is between zero and one. For purely specular scattering, i.e., a

perfectly clean interface where k|| is always conserved, Si = 1. In the other extreme,

for completely diffuse scattering Si = 0. Although Eq. 91 is technically consistent

with the spirit of the lifetime approximation, because it neglects all scatter-in terms

when Si < 1, it does not conserve flux. This does not cause a problem for CIP when

there is no net current flowing perpendicular to the interface and the current parallel

to the interface is still conserved. For CPP a scatter-in term has to be added to keep

the flux constant across the interface. There is no clear choice for the form of the

scatter-in term. In the case of isotropic scattering, one can add a term proportional

to the difference in the chemical potential on both sides of the interface.

The constant specularity parameter approach to diffuse scattering is not very

accurate and may not even be physical [11]. A model system in which there are

random point scatterers at the interface between two free-electron regions can be

solved in closed form in the weak scattering limit [19]. The result is a specularity

function that is strongly dependent on k|| and that is quite different for transmission

and reflection. The specularity function for transmission in this model is
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St kk
� � ¼ 1� 4π

ℏ
γn0

vLz kk
� �þ vRz kk

� � (92)

where γ is a measure of the interface roughness (γ is defined by the correlation

function of the random interfacial potential, V rð ÞV r0ð Þh i ¼ γδ r� r0ð Þδ zð Þ), n0 is the
Fermi energy DOS at the interface, and vL and vR are the electron velocities on the

right and left sides of the interface. Similarly, the specularity function for reflection

is

Sr kk
� � ¼ 1� 8π

ℏ
vLz kk
� �

γn0 0;Eð Þ
vLz kk
� �� �2 � vRz kk

� �� �2 : (93)

Note that within this model, interfacial disorder can only decrease the specular

transmission, but it can either decrease or enhance the specular reflection depending

on the velocities on either side of the interface. Specular transmission remains

symmetric in the sense that that transmission from left to right remains the same as

from right to left. Specular reflection, however, is no longer symmetric in the

presence of a disordered interface.

The specularity parameters calculated from Eqs. 92 and 93 are plotted both as

functions of kk/kF1 and kk/kF2 in Fig. 14, where kF1 and kF2 are the Fermi wave

vectors of the materials on two sides of the interface, respectively. Note that within

this model the diffuse scattering vanishes as kk ! kF1. Generally, however, the

10

8

6

4

2

0

2

4

6

8

10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1–
S

kx/kF1

kx/kF2

1–Sr

1–Sr

1–St

1–St

Fig. 14 1 – St and 1 – Sr in the effective mass approximation. The Fermi momentum, kF1
corresponds to 0.5 electrons per spin channel (e.g., as in Cu) while kF2 corresponds to 0.3 electrons
per spin channel (e.g., as in majority Co). The values of 1 – St and 1 – Sr are measured in terms of

the dimensionless parameter 2meγn0a/ℏ
2, where α is the lattice constant which is assumed to be fcc

38 X. Zhang and W. Butler



model predicts the effects of diffuse scattering to be significantly greater for the

reflected beam than for the transmitted beam.

Theoretical Approach for Spin-Dependent Tunneling

Julliere Model

The first model used to describe spin-dependent tunneling was proposed by Julliere

in 1975 [20]. In this model the spin-dependent tunneling conductance is described

in terms of a polarization, P, of electrons “tunneling from ferromagnetic metals,”

P ¼ n" � n#

n" þ n#
; (94)

thus

n"

n#
¼ 1þ P

1� P
; (95)

where n" and n# are some kind of the spin-polarized electron “density of states.”

The tunneling conductance is then assumed to be proportional to the product of

these “density of states” from the two electrodes,

GP ¼ C n"1n
"
2 þ n#1n

#
2

� �
(96)

GAP ¼ C n"1n
#
2 þ n#1n

"
2

� �
; (97)

where the subscripts P and AP indicate the parallel and the antiparallel alignments

of the magnetic moments in the two electrodes, 1 and 2 label the two electrodes, and

C is a constant independent of the moment alignment. The magnetoconductance is

then

GP � GA

GP
¼

n"1n
"
2 þ n#1n

#
2

� �
� n"1n

#
2 þ n#1n

"
2

� �
n"1n

"
2 þ n#1n

#
2

¼ 2P1P2

1þ P1P2

: (98)

This is the well-known Julliere formula for spin-dependent tunneling. It has been

widely used to rationalize measurements of magnetic tunnel junctions, in particular

to extract the values of spin polarizations P1 and P2 through the measurements of

magnetoresistance. However, it is clear that these polarizations are defined in terms

of n" and n# whose meaning is ambiguous. They cannot be the actual electron

density of states at the Fermi energy for ferromagnetic electrodes, where the

minority spin has a much greater density of states than the majority spin, opposite

of the spin polarization values extracted from tunneling experiments. It may be
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argued that the definition of the spin polarization parameter should include the

tunneling matrix element of the barrier. But then P is no longer a property of the

electrode alone. A proper treatment of spin-dependent tunneling must begin from

the tunneling theory.

Landauer Formula

Tunneling conductance can be calculated using a very simple but general result due

to Landauer [21] which relates the conductance to the probability of a Bloch

electron in one of the electrodes being transmitted through the barrier layer to the

opposite electrode. To understand the Landauer conductance formula, it is helpful

to consider two reservoirs for electrons connected by a sample as shown in Fig. 15.

If we imagine the left reservoir, with chemical potential μL, to be an emitter of right-

going electrons, we can write the current density of those electrons that leave the

reservoir on the left and enter the reservoir on the right as

Jþ ¼ e

2πð Þ3
ð
d3kvþz kð Þf E� μLð ÞTþ kð Þ (99)

where

Tþ kð Þ �
X
k0

Tþþ k,k0ð Þ (100)

is the transmission probability of an electron at energy E and momentum ħk and z is
the direction from reservoir L to reservoir R. In general the scattering within the

sample region may not conserve the momentum; thus, the incident wave vector

k and the exit wave vector k0 may not be the same, and the total transmission is

calculated by summing over all k0. For ballistic tunneling through epitaxial junc-

tions, the transverse component kk is conserved. The group velocity vþz kð Þ ¼ 1=ℏð Þ
@E=@kz which leads to

Jþ ¼ e

2πð Þ2
ð1
0

kkdkk

ð1
0

dkz
1

ℏ
@E

@kz
f E� μLð Þ

X
j

Tþ k, jð Þ,

¼ e

2πh

ð1
0

kkdkk

ð1
0

dE
X
j

Tþ kk, j
� �

f E� μLð Þ:
(101)

μL μR

Fig. 15 Two electron

reservoirs connected by a

conductor
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Here, the sum over j is needed because there will, in general, be more than one

Bloch state for a given value of kk. A line of reasoning similar to the one that led to

Eq. 101 leads to an expression for the current of electrons emitted in the �z
direction by the reservoir on the right which enter the reservoir on the left,

J� ¼ e

2πh

ð1
0

kkdkk

ð1
0

dE
X
j

T� kk, j
� �

f E� μRð Þ: (102)

Assuming time reversal invariance (to apply the time reversal argument rigorously,

we should reverse the moment directions as well as the electron directions. If we

ignore spin-orbit coupling, however, T+ = T� for the individual spin channels), we

can equate T+ and T�. We further neglect the energy dependence of the transmis-

sion probabilities. This allows us to write the net current as

J ¼ Jþ � J� ¼ e

2πh

ð1
0

kkdkk

ð1
0

dE
X
j

Tþ kk, j
� �

f E� μLð Þ � f E� μRð Þ½ �: (103)

For a small bias voltage and low temperature, the energy dependence of T+(kk, J)
within the transport window μL < E < μR (and a few kT both above and below) can

be neglected, and the integral over E can be carried out,

ð1
0

dE f E� μLð Þ � f E� μRð Þ½ � ¼ �kTln
1þ e� E�μLð Þ=kT

1þ e� E�μRð Þ=kT

� 
 ����1
0

¼ μL � μR: (104)

J ¼ e

2πh
μL � μRð Þ

ð1
0

kkdkk
X
j

Tþ kk, j
� �

: (105)

Taking the derivative with respect to V = (μL – μR)/e yields the Landauer conduc-
tance formula,

G ¼ e2

h

X
kk, j

Tþ kk, j
� �

: (106)

The physical interpretation of the Landauer conductance formula is that

the conductance is given by a sum over the transverse normal modes of the sample

(kk here). The conductance contributed by each normal mode is given by the proba-

bility that the electron in that transverse normal mode will be transmitted. Each normal

mode contributes a maximum conductance of e2/h. In addition to its use in describing
tunneling, it is also used extensively to describe electron transport through molecules.

Ballistic transport such as described by the Landauer conductance formula

neglects electron scattering except for that explicitly included in the transmission

probability. As we learned in problem 1, however, a conductor will have a nonzero

resistance and a finite conductance even if the electrons are transmitted without

scattering because the number of transverse normal modes is finite.
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The original Landauer formula has the ratio of transmission probability divided

by reflection probability (T/R) where we have only the transmission probability in

Eq. 106. It is now usually accepted that this additional factor of 1/R is present or not

depending on exactly how the measurement is performed, that is, on whether or not

one measures current and voltage using the same leads, as is assumed in the

derivation here, or whether a separate set of probes is used to determine the voltage

across the sample.

Spin-Dependent Tunneling in the Free-Electron Model

Layer-Wise Free-Electron Model
The theory of electron tunneling can be presented cogently in terms of a general

electronic structure. It is instructive, however, to have a specific electronic structure

in mind. This will allow us to perform calculations that will help us to understand

how the theory works in a concrete context. Once the principles are understood, it

should be straightforward (if tedious) to apply them to more accurate and detailed

representations of the electronic structure.

Given a one electron Hamiltonian, H, and its associated Schrödinger equation,

Hψ = Eψ, various techniques can be used to solve for the wave functions and

energy spectrum. Two of the simplest approximations for the electronic structure

are the free-electron model and the tight-binding model. In the free-electron model,

only the kinetic energy term of the Schrödinger equation is retained. The free-

electron model provides a reasonable representation of the energy bands in the

vicinity of the Fermi surface of certain metals, notably the alkali metals (e.g., Na, K,

Rb, Cs); some of the simple metals such as Al, Zn, and Cd; the conduction bands of

some semiconductors; and the noble metals (Cu, Ag, and Au). The free-electron

model is not well suited for describing the electronic structure of transition metals

except in special cases. One of these cases is the majority conduction bands of

Ni and Co. For ferromagnetic Ni and Co, the exchange interaction shifts the

majority bands down with respect to the minority bands so that the Fermi energy

intersects the majority bands above the d-bands so that the Fermi surface is a nearly

closed object resembling a sphere with eight small “necks.” The primary justifica-

tion for our use of the free-electron approximation is that it allows us to perform

simple calculations that help us to understand the more complicated systems that

are more relevant to experiment.

When two metallic layers are brought into contact, there will typically be a

transfer of electrons from one layer to the other. This transfer of charge is necessary

to equalize the Fermi levels of the two metals and results in a dipole layer that

resides near the interface. A similar charge rearrangement also occurs when a

metallic layer is interfaced with an insulator or semiconductor layer. For thick

insulator or semiconductors, a Schottky barrier can form that may extend for

hundreds of nanometers. The ultrathin insulating barrier layers in magnetic tunnel

junctions are typically only a few nanometers thick. Such a thickness is not

sufficient to build a Schottky barrier. Nonetheless, there is still an interface dipole
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layer due to the charge transfer between the metal and the barrier layer. Such effects

are neglected in a free-electron model. The change in potential at the interface is

simply treated as a step. Since the potential in the Schrödinger equation depends

only on z and not on x or y, we can write

� ℏ2

2m
∇2 þ V zð Þ

� 

ψ x, y, zð Þ ¼ Eψ x, y, zð Þ:

Because of the planar symmetry, we can separate variables by writing ψ(x, y,
z) = X(x)Y(y)Z(z). On substitution and division by ψ(x, y, z), we have

� 1

X

d2X

dx2
þ 1

Y

d2Y

dy2
þ 1

Z

d2Z

dz2


 �
¼ 2m

ℏ2
E� V zð Þ½ �:

The solutions for X(x) and Y(y) are simply X(x) = exp(�ikxx) and Y(y) = exp

(�ikyy). It would be equally valid to use sines and cosines, but we will use

exponentials because we will ultimately establish a correspondence between a

wave function proportional to exp(ikxx + ikyy + ikzz) and a semiclassical electron

with momentum ħk.
Using the solutions for X (x) and Y(y), our Schrödinger equation becomes

� 1

Z

d2Z

dz2
¼ 2m

ℏ2
E� V zð Þð Þ � k2x � k2y ;

where kx and ky are independent of z. The fact that kk ¼ kxx̂þ kyŷ does not change

between layers is called kk conservation. It results from our assumption that V(z)
depends only on z. If the interfaces between the layers are smooth, the component of

the electron’s momentum parallel to the interfaces does not change from one layer

to the next.

Let us assume that our system consists of layers in the z-direction and that the

potential is constant with value within each layer.

� @2

@z2
Z zð Þ ¼ 2m

ℏ2


 �
EF � VLð Þ � k2x � k2y

� 

Z zð Þ:

The solution within each layer is then trivial, Z zð Þ ¼ AeikzLz þ Be�ikzLz; where

Z zð Þ ¼ AeikzLz þ Be�ikzLzkzL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2

� �
EF � VLð Þ � k2x � k2y

r
. Because the x- and y-

components of the electron’s momentum, kx and ky, are conserved at the interfaces
between the layers, changes in kF due to a change in potential as the electron

moves between layers, it will be the z-component of the momentum that changes.

We will suppress the z subscript on kz and write k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2FL � k2x � k2y

q
¼ kFL cos θ,

where cos θ is the angle between the electron’s momentum and the normal to the

layers, i.e., the z-axis. It is easy to forget (and important to remember) in the
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following, however, that it is the z-component of the momentum that is

represented.

One-Dimensional Model for Spin-Dependent Tunneling
A very simple model for spin-dependent tunneling can be derived from a transmis-

sion problem through a one-dimensional tunnel barrier for free electrons. Suppose

that the wave vectors in three regions of space are k1 (left lead), iκ (barrier region),
and k2 (right lead), then the transmission coefficient for this barrier can be found

easily through matching the wave functions and their derivatives across the three

regions. We find

T ¼ 16k1κk2exp 2κdð Þ
κ k1 þ k2ð Þ 1þ exp 2κdð Þ½ �f g2 þ κ2 � k1k2ð Þ 1� exp 2κdð Þ½ �f g2 (107)

where d is the barrier thickness. In the limit of κd 	 1, T is simplified to

T ¼ 16k1κk2exp �2κdð Þ
κ2 þ k21
� �

κ2 þ k22
� � : (108)

In the free-electron model, the two spin channels have different wave vectors,

k" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF � V"

p
and k# ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF � V#

p
, at the Fermi level, where V"–V# is the

exchange splitting. Thus, the majority conductance for parallel alignment of the

moments on opposite sides of the barrier is found from Eqs. 108 and 106 using

k1 = k2 = k", and for the minority conductance k1 = k2 = k#,

GP ¼ 16
e

h
κexp �2κdð Þ k2"

κ2 þ k2"
� �2 þ k2#

κ2 þ k2#
� �2

264
375: (109)

The conductance for antiparallel alignment of the moments is obtained by

setting k1 = k", k2 = k#,

GAP ¼ 32
e

h
κexp �2κdð Þ k"k#

κ2 þ k2"
� �

κ2 þ k2#
� � : (110)

The tunneling magnetoresistance (TMR), defined as (GP – GAp)/GP, is given by

GP � GAP

GP
¼ 2 κ2 � k"k#

� �2
k" � k#
� �2

κ2 þ k"k#
� �2

k" þ k#
� �2 þ κ2 � k"k#

� �2
k" � k#
� �2 : (111)

The polarization of the tunneling electrons used in the Julliere model, applied to

free electrons, is simply that of the Fermi energy electrons, i.e.,
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P ¼ k" � k#
k" þ k#

: (112)

The TMR given by Eq. 111 cannot be easily reduced into a simple function of P as

in the Julliere formula, Eq. 98. However, if we define an effective polarization in

place of P, defined as

Peff ¼ P
κ2 � k"k#
κ2 þ k"k#

; (113)

then the TMR in Eq. 111 becomes

TMR ¼ P2
eff

1þ P2
eff

: (114)

This form resembles the original Julliere formula, Eq. 98, and is its generalization

to the free-electron model by Slonczewski [22]. However, now the conductance

ratio would depend on the type of tunnel junction. Although Slonczewski’s gener-

alization does provide a reasonable description of free-electron tunneling through a

step barrier, it is not simple to apply to experiment because the effective polariza-

tion Peff depends on both the ferromagnet moment alignment and the barrier height

and thus cannot be uniquely defined for each material.

Compared to the Julliere model which assumes that the barrier has no effect on

the TMR, the Slonczewski model is an improvement and accounts for some of the

effects of the barrier layer. However, the assumption of a single decay length for

wave functions of both spins in the barrier layer is a severe limitation that still limits

the achievable TMR to the spin polarization of the electrodes. An important

contribution to the TMR comes from the symmetry-filtering effect of the barrier

layer. Due to the symmetry-filtering effect, the TMR of epitaxial magnetic tunnel

junctions can reach an order of magnitude above what is predicted by the Julliere or

the Slonczewski models.

Lateral Symmetry of Bloch States in Electrodes

In the free-electron model for tunneling, the electrons are described as free elec-

trons, with the only major difference from true free-electron states in terms of an

effective mass not equal to the electron mass. When we use the free-electron model

with an effective mass to approximate an actual Bloch state in a solid, we choose

the effective mass such that the free-electron band dispersion is the same as the

dispersion of the Bloch state. Although the effective mass theory has been used

successfully for describing tunneling processes that do not involve the electron

spin, it is inadequate for describing spin-dependent tunneling. We will show what is

missing in the effective mass theory and why first-principles theory is needed for

making predictions in magnetic tunnel junctions.
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Symmetry of Bloch Wave Functions on a Square Lattice
If the Bloch state consists of mostly s (angular moment l = 0) atomic orbitals,

which is the case for vast majority of semiconductors, then the free-electron wave

function can also approximate the Bloch wave function. This explains why the

effective mass model is so successful for semiconductors. In semiconductors the

relevant electron bands to transport are mostly s-character. However, if the Bloch

state is made up of p or d electrons, then the free-electron wave function can differ

significantly from the actual Bloch electron wave function.

What affects the tunneling properties of electron states is the symmetry of the

Bloch wave function within the plane perpendicular to the direction of transport. In

this section we will examine this symmetry and the next section will show how the

symmetry affects tunneling. We choose the coordinate system such that the plane

is parallel to both the x and y directions. The wave function in the plane is simply

ψ(x, y). For the sake of discussion, let us also assume that this plane contains a

lattice with square symmetry and a lattice constant a. If we denote the Bloch wave

vector within the plane as (kx, ky), then the Bloch theorem for this two-dimensional

wave function is

ψ kxky x, yð Þ ¼ ukxky x, yð Þexp i kxxþ kyy
� �� �

; (115)

and ukxky is a periodic function. The free-electron effective mass model only takes

into account the exp i kxxþ kyy
� �� �

part of the wave function and treats ukxky as a

constant (Fig. 16).

In general, the periodic function ukxky can be expanded in terms of plane waves

on the two-dimensional reciprocal lattice Gn,

ukxky rð Þ ¼
X
n

anexp iGn � rð Þ: (116)

Terms corresponding to different reciprocal lattice vectors have different sym-

metries. The origin of the reciprocal lattice, G0 = 0, gives a constant ukxky. This is
the term that the free-electron effective mass model corresponds to.

The two different ways of describing the symmetry of the wave functions can be

connected by evaluating the overlap integral between them. For example, the

G0 = 0 wave function exp(iG0 � r) is the same as the s orbital which is 1. So the

cubic wave function with the lateral component described by G0 is predominantly

s-character. Along the cubic (001) direction, this wave function is called the Δ1

state. Within the two-dimensional plane, this wave function also has nonzero

overlap integrals with the pz and the d2z2�x2�y2 orbitals. So the Δ1 state is mostly

s-character but also contains some pz and d2z2�x2�y2 components.

Similarly, the first reciprocal lattice vectors, G1 = (�2π/a, 0) and (0, �2π/a),
give the antisymmetric plane-wave functions sin[(2π/a)x] and sin[(2π/a)y] and the

symmetric cos[(2π/a)x] and cos[(2π/a)y]. The antisymmetric pair has zero overlap

integrals with the s orbital but have nonzero integrals with the px and py orbitals.
These are called the Δ5 states. The symmetric pair has zero integrals with all of the
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s and p orbitals, but has nonzero integrals with thedx2 � y2 orbitals. These are theΔ2

states and are d character. Finally, one of the wave functions made from the second

reciprocal lattice vectors, G2 = (�2π/a, �2π/a), is sin[(2π/a)x] sin[(2π/a)y]. This
is the Δ20 state. It has no s or p component but has dxy component.

Different Decay Rates of Bloch States in Barrier Layer
Although experimentalists like to fit the measured tunneling current to a simple

free-electron model, such a model cannot correctly predict the spin dependence of

the tunneling current. For example, in such a model there can be only a single decay

rate for a given value of kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; and the tunneling current decays with the

barrier thickness, d, as exp(�2kd) whereκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2 V � Eð Þ þ k2k

q
. Because this decay

rate does not depend on the electron spin, the only possible spin dependence of the

tunneling current must come from the spin polarization of the density of states in

the electrodes. This prediction by the free-electron model does not agree with

experiments. The spin polarization of the tunneling current can be determined

experimentally by tunneling into superconductors. In the vast majority of the

cases, the tunneling current has been found to be dominated by the majority spin

electrons regardless of the spin polarization of the density of states, even in cases

such as nickel and cobalt whose minority density of states is an order of magnitude

larger than that of the majority. It turns out that the Bloch wave function symmetries

Δ1 Δ5

Δ2 Δ2�

Fig. 16 Symmetry of wave functions of a two-dimensional square lattice
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in the electrodes can lead to different decay rates in the barrier layer. Consequently

the barrier layer serves as a symmetry filter for tunneling electrons and only

selectively passes through electrons with high symmetry. Because of the different

wave function symmetries of the majority and minority electrons, symmetry filter-

ing in the barrier layer becomes spin filtering. This in turn becomes the fundamental

reason for very large tunneling magnetoresistance in epitaxial tunnel junctions

based on MgO barriers.

The basic physical reason that the different Bloch states decay at different rates

in the barrier is that they have different amounts of curvature in the plane parallel to

the interfaces. We have shown in the previous section that these oscillations

correspond to the two-dimensional reciprocal lattice vectors perpendicular to the

direction of tunneling. Assume for simplicity that the boundary conditions at the

edge of the barrier can be matched with the separable form ψ x, y, zð Þ ¼ ϕ x, yð Þexp
�κzð Þ. Then, for a wave function described by a two-dimensional reciprocal lattice

vector, ϕ(x, y) = aG exp[i(k|| + G) � r||], the decay perpendicular to a simple

barrier with potential V is given by

κ2 ¼ 2m

ℏ2
V � jkk þGj2: (117)

At each k||, there are as many different decay rates as are number of reciprocal

lattice vectors. At normal incidence, k|| = 0, the slowest decay rate corresponds to

G = 0 which for the square lattice is the Δ1 state. The larger the value of |G|, the

faster the decay rate. Because of the connection between the reciprocal lattice

vector in the plane-wave expansion and the s, p, d waves in the spherical harmonic

expansion, states that are primarily s-like which have little curvature decay the

slowest. p-like states will decay faster, and d-derived states, in particular, will be

disadvantaged in penetrating the barrier because of their higher curvature due to

additional nodes in the plane parallel to the barrier, requiring a plane-wave expan-

sion that contains primarily G2.

The notion of multiple decay rates in a spatially homogeneous barrier layer may

seem counterintuitive. To illustrate this more vividly, let us look at how electron

wave functions at the Fermi energy of Fe(001) decay through a vacuum barrier. For

this purpose, we calculate the modular square of the tunneling wave function with

the boundary conditions that correspond to a unit flux of incident electrons in a

single Bloch state on one side (left side in this case). For this calculation we choose

the barrier height relative to the Fermi energy to be approximately equal to the work

function in order to be an approximate representation of tunneling through vacuum.

The results displayed in Fig. 17 show three decay rates. The majority Δ1 state

(which has s, p, d character) decays as κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2 V � Eð Þ

q
, exactly as expected for

the simple barrier model. The other states, however, decay more rapidly. The

minority Δ2 (dx2 � y2 symmetry) and all of the Δ5 states ( px and py) symmetry

decay as κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2 V � Eð Þ þ G2

1

q
where G1 = 2π/a. The majority and minority Δ20
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states that have dxy symmetry decay as κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2 V � Eð Þ þ G2

2

q
withG2 ¼

ffiffiffi
2

p
2π=a.

G1 and G2 are simply the magnitudes of the first two reciprocal lattice vectors of the

two-dimensional lattice parallel to the interfaces.

The lateral symmetry of the Δ2 band and the Δ5 band relates to the same

reciprocal lattice vector G2. For tunneling through vacuum these two states

also see the same barrier height. Therefore, both states decay with the same rate

in vacuum. However, an insulating material such as MgO does not map to a

simple step barrier. As we will see next, the decay rates of electron wave functions

in a barrier layer are determined by the so-called complex band structure. The

complex bands in MgO for the Δ2 symmetry and for the Δ5 symmetry are

completely different. Thus, the decay rates of these two bands in MgO are also

different.

Symmetry Filtering in the Barrier Layer

Complex Band Structure of MgO (001)

The bandgap in the insulator layer can be accurately described by a two-band

model [23],

� 1

k2
¼ ℏ2

2m
 E1 � Eð Þ þ
ℏ2

2m
 E� E2ð Þ : (118)

The right-hand side of the equation is negative for E2 < E < E1, yielding an

imaginary k whenever E is inside the bandgap. This equation accurately describes

the dominant complex band of MgO along the (100) direction, as shown in Fig. 18.

The complex band structure of the barrier layer is directly related to the

tunneling conductance of a tunnel junction. The imaginary part of the wave vector

represents the rate of decay of the evanescent electron wave function inside the

barrier. In general, if the band dispersion is isotropic in k space, the transmission
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contains a factor exp(�2kd) where d is the thickness of the barrier and k can be

assumed to obey,

κ2 ¼ κ20 þ k2k; (119)

where k|| is the transverse wave vector (parallel to the interface) and k0 = ik is the
imaginary part of the wave vector for normal incidence. Accounting only for the

decaying of the wave function due to the complex wave vector, the conductance of

a single k can be assumed to be approximately

G kk
� � ¼ 2e2

h
exp �2κdð Þ: (120)

Such an assumption may not be very accurate in a real material. For now we

assume that it is qualitatively correct and use it to calculate the conductance. The

conductance is given by an integration over all k||,

G ¼ 2e2

h

1

2πð Þ2
ð1
0

exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20 þ k2k

q
d

� �
2πkkdkk: (121)

Integrating and keeping only the leading term in 1/d, we obtain

G ¼ 2e2

h

κ0
4πd

exp �2κ0dð Þ: (122)

Thus, the product Gd scales with the barrier thickness as a simple exponential

with an exponent of 2κ0. For thick barriers, the complex bands accurately predict

the thickness dependence of the tunneling resistance.
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Symmetry Filtering in MgO Barrier Layer at Normal Incidence

Let us first examine how electrons are transmitted through a MgO barrier layer if

they are incidentally perpendicular to the interface. Using the language of Bloch

wave vectors, these are the electrons whose kx and ky, the two components parallel

to the interface, are exactly zero. The decay rates of the electron wave functions are

determined by the complex band structure we just discussed. Because of the

two-dimensional lattice periodicity, during tunneling the crystal momentum paral-

lel to the layers k|| = (kx, ky) is conserved except that it may be changed by a

reciprocal lattice vector. Tunneling with the conservation of k|| in this manner is

called specular transmission. In Fig. 19, we show the density of tunneling states

associated with each of the Fe(001) Bloch states having k|| = 0 for an Fe/MgO/Fe

tunnel junction, similar to the plot for the vacuum barrier, Fig. 17.

At kk = 0, the lateral components of the wave functions in the electrodes from

the different bands have distinct symmetries. Not only their symmetries have to

match those inside the barrier layer, they must also match the symmetry on both

sides in order for electrons to be transmitted. When such matching of the symmetry

cannot be found on both electrodes, the transmission is zero even when the barrier
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layer admits such wave functions. Spin-dependent tunneling is thus achieved

through selective filtering of wave functions with different lateral symmetries and

by virtue of the fact that wave functions in the two spin channels do not have the

same symmetries.

As an example, we show in Fig. 19 the density of tunneling electron states for

an Fe/MgO/Fe junction. The top two panels show the plots when the moments of

the two Fe electrons are aligned parallel. In this case, the majority spin channel

(top left panel) has a Δ1 state with a large transmission probability, providing a

large tunneling current. The Δ5 electrons decay faster in the MgO layer, leading to

a smaller transmission. The Δ20 electrons decay extremely fast within MgO and

provide negligible tunneling current. The minority spin Fe (top right panel) does

not have Δ1 state, thus having a much reduced transmission. For the antiparallel

moment alignment, the left-hand side of the lower left panel shows that the Δ1

electrons of the majority bands readily enter the MgO where they decay slowly

with distance as predicted by the corresponding complex band of MgO. Once

these electrons exit the barrier and enter the right Fe electrode, however, because

there are no Fe minority Δ1 Bloch states at the Fermi energy, they continue to

decay within the right Fe electrode leading to zero transmission. On the other

hand, although the Δ5 electrons decay relatively rapidly in the MgO, because

there are minority spin Δ5 states in the right electrode, these electrons have a finite

transmission. Similarly, in the lower right panel of Fig. 19, the minority Δ2 state

decays as a Δ20 state within the MgO and continues to decay within the majority

Fe layer because there is no Δ2 state at the Fermi energy in majority Fe. Again, the

Δ5 electrons decay rapidly but can enter the minority Fe while the minority Fe Δ20

electrons decay extremely rapidly. In this manner, a large difference in the

transmission between the parallel and the antiparallel spin configurations is

established.

Because of the complete reflection of the Δ1 electrons at kk = 0, the maximum

conductance for antiparallel alignment does not occur exactly at kk = 0.

The “missing” of theΔ1 band within a certain energy range in the (100) direction

of the bcc metal is a common feature due to the hybridization of the “s-band” with
the d-bands. In the band structure of a typical bcc transition metal, the s-band starts
from the Γ point a few eV below the d-bands. Its energy rises rapidly with k until

it reaches the energy range of the d-bands. Near the bottom of this energy range, the

s-band hybridizes heavily with the d-bands, causing it to flatten out and end at

the Brillouin zone boundary. The part of the s-band above the energy range of the

d-bands can also be followed downward in energy. It is again highly dispersive

until it approaches the top of the energy range for the d-bands at which point it

flattens out and intersects the zone center at the Γ20 point. In the (001) direction, the
“s-band” has the Δ1 symmetry, and there is a range of energy over which there is no

Δ1 band. For bcc iron, the spin splitting is such that the majorityΔ1 band crosses the

Fermi energy, but there is no minority Δ1 band near the Fermi energy, while there

are d-bands crossing the Fermi energy in both spin channels.
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Ballistic Tunneling in Fe/MgO/Fe

The Landauer formula, Eq. 106, relates the conductance of a tunnel junction to the

sum of the transmission probabilities of the electron wave function over all values

of k||. Although the total transmission determines the tunneling conductance and the

magnetoresistance, the dependence of the transmission on k|| can also reveal

interesting physics about the spin-dependent tunneling process. In some cases,

such k|| dependence can manifest itself as unexpected barrier thickness dependence,

as we will see in this section in the cases of interference of tunneling states and

transmission through interface resonance states.

Majority Spin Transmission: Interference of Tunneling States

We begin our discussion by presenting the first-principles calculation with the layer

Korringa-Kohn-Rostoker (layer-KKR) method [16]. In this calculation the elec-

trode layers of Fe are fixed at the experimental lattice constant of 2.866 Å, and the

in-plane MgO lattice constant (along the [100] axis) is
ffiffiffi
2

p
times larger or 4.053 Å.

The out-of-plane MgO lattice spacing (along [001]) is fixed at 2.21 Å, the exper-

imental value [24]. The calculated transmission probability as a function of kk =
(kx, ky) for the majority spin channel, when the moment in both Fe electrodes is

aligned parallel to each other, is shown in Fig. 20 for 4, 8, and 12 layers of MgO.

The transmission has a peak centered at kk = 0. Comparing the three panels of

Fig. 20, we see clearly the increasing concentration of the transmission in the region

near kk = 0 as the insulating barrier layer is made thicker. This general feature is

expected from a barrier for which the transmission probability contains a factor exp

(�κd) where κ approximately follows Eq. 119. However, the detail of the depen-

dence of the transmission on kk is much more complex and deviates significantly

from Eq. 119, as is shown in Fig. 21 which plots the transmission probability as a

function of kx for ky = 0 and compares it against Eq. 119.

The most striking feature in Fig. 21 is that the kx dependence of the transmission

probability is oscillatory, indicating that there is wave interference within the

barrier. This oscillation is the result of the interference of two tunneling states

within the barrier layer, a phenomenon that occurs in a crystalline barrier but not in

vacuum or an amorphous barrier. This phenomenon was predicted and analyzed

theoretically [23] and later was used to explain the oscillatory dependence of the

magnetoresistance on the barrier layer thickness [25].

For interference to occur within the barrier layer, there has to be at least two

different complex bands at the same value of kk, and these bands must also decay at

exactly the same rate in the barrier. This indeed is the situation for certain values of

kk away from the normal incidence. The complex values of kz at the Fermi energy

are plotted as a function of kk in Fig. 22. The two states shown have the lowest value
of the imaginary part of kz and are therefore the most important for determining the
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transmission probability. The states are plotted as a function of kk along Γ to X. At
kx = 0, the two states shown are the Δ1 and one of the Δ5 states. As kx increases
from zero, their real part increases linearly from zero and is the same for both states.

At kxΔz � 0:59, the imaginary parts of the two states become equal and the real

parts bifurcate. Afterward, the imaginary part remains approximately constant.

Fig. 20 Majority spin transmission probability for 4, 8, and 12 layers of MgO and parallel

alignment of the moments in the Fe electrodes. Units for kx and ky are inverse Bohr radii
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The real parts of kzΔz for the two states reach n and 0, respectively, at the zone

boundary which occurs at kxΔz ¼ π=
ffiffiffi
2

p
.

We focus on the part of Fig. 22 where the two states have the same imaginary

part of kz. This is the region between kxΔz ¼ 0:59 and the zone boundary. Suppose

that a wave function is a linear combination of two decaying waves with the two

complex wave vectors depicted in this region,

ψ zð Þ ¼ Aeik1z þ Beik2z; (123)

then the electron density exiting the barrier is given by

ψ dð Þj j2 ¼ e�2κ kxð Þd Aj2þ�� ��B� ��2 þ 2Re A
Bð Þ cos kr1 kxð Þd � kr2 kxð Þd þ ϕ
� �g (124)

where k1
r and k2

r are the real parts of the two values of kz, κ is their common

imaginary part, and ϕ is the relative phase between the complex coefficients

A and B. Thus, the transmission is a damped oscillatory function of thickness and

is a purely oscillatory function of kx since κ is essentially independent of kx for
kxΔz > 0.59.

The interference between different tunneling states is a general phenomenon.

For any barrier material, the dispersion relation in the vicinity of the gap can be

expressed as a polynomial in cos kz Δz with real coefficients that depend on kx and
ky,

Ek ¼
X
n

An kx, ky
� �

cos kzΔzð Þn: (125)

Inside the bandgap, all solutions of kz for a given real Ek are complex and must be in

pairs, i.e., both kz and its complex conjugate are roots of Eq. 125. Now consider the

pair of roots with the smallest imaginary part, r = cos kz Δz and r
 ¼ cos k
zΔz.
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Defining s ¼ eikzΔz so that cos kzΔz ¼ sþ s�1ð Þ=2, the values of kzΔz can be found

from the equations,

s2 � 2rsþ 1 ¼ 0 (126)

and

s2 � 2r
sþ 1 ¼ 0: (127)

Each of these equations has two roots, s�1 ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p
, s�2 ¼ r
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
ð Þ2 � 1

q
.

Because sþ1 s
�
1 ¼ sþ2 s

�
2 ¼ 1, we know that only two of these roots will represent

decaying waves. Thus, if sþ1
�� �� < 1, it follows that the two decaying roots, sþ1 and sþ2 ,

have equal modulus,

e�Imk1zΔz ¼ sþ1 ¼j jsþ2
�� �� ¼ e�Imk2zΔz: (128)

Thus, the imaginary parts of kzΔz for these two solutions are equal. This would lead
to the observed interference effect.

In order for the interference effect to be observable experimentally as an

oscillation of the tunneling magnetoresistance, it is necessary that the decay rate

of the tunneling states that produce the interference effect to be the same as that of

the dominating tunneling state, which in the case of Fe/MgO/Fe is the Δ1 state. This

seems unlikely because all other states decay faster than the Δ1 state in ballistic

tunneling. It turns out that the effect of nonspecular (diffusive) tunneling produces a

scatter-in term which makes all states decay at the same rate within the barrier layer

[25]. Thus, the interference of the tunneling states can indeed be observed as an

oscillation of the tunneling conductance and TMR as a function of the barrier layer

thickness [24, 26].

Minority Spin Transmission: Tunneling Through Interface
Resonance States

The transmission probability for the minority spin channel for the parallel moment

alignment is shown in Fig. 23 for three different MgO layer thicknesses. The

dependence on kjj for the minority spin transmission is dramatically different

than for the majority spin. The minority spin transmission has a complicated,

sharply peaked structure with peaks away from kjj ¼ 0 . These peaks do not

correspond to anything in the bulk Fe electronic structure. Instead, they arise

from resonant states localized on the Fe/MgO interface.

The interface resonant states are similar to surface states in that both are electron

energy eigenstates localized at the boundaries of the material. The eigenstates of an

electron in a perfect crystal are the Bloch states which satisfy the Bloch periodic

boundary conditions. These states are described by a wave vector k which has to
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be real. Although there are also evanescent states that satisfy the Schrodinger

equation for a perfect crystal, these states are not physically acceptable solutions

because they diverge to infinity along one direction. At a surface or an interface,

however, the periodicity of the lattice is interrupted, and the evanescent states

become valid solutions for the material. These are the surface or interface states.

True surface states are orthogonal to the bulk Bloch states. There are also surface or

interface states that are coupled to the bulk Bloch states. These states are usually

called resonance states. Interface resonance states in a magnetic tunnel junction can

have a large impact on spin-dependent tunneling.

In general, the interface resonance states are needed to properly match the

boundary conditions for the electron wave functions across an interface. This is

because at a fixed energy, the Bloch states alone do not form a complete basis. The

collection of all Bloch states and evanescent waves (traveling or decaying) along a

single direction forms a 2D complete basis set. However, the boundary conditions

for an incident wave function include both the values of the wave function on a

plane and its normal derivative. To satisfy both boundary conditions, there needs to

be two independent complete basis sets. For example, consider a transmission

problem with a single Bloch wave function of the left electrode incident on a tunnel

barrier. In order to properly match the boundary conditions, we must use all

the evanescent waves inside the barrier, plus all of the left-traveling Bloch states

Fig. 23 Minority transmission probability for 4, 8, and 12 layers of MgO and parallel alignment

of the moments in the Fe electrodes. Units for kx and ky are inverse Bohr radii
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(i.e., reflected waves) and the evanescent waves on the electrode side, the latter

decaying into the electrode. Under certain conditions, these evanescent waves form

the interface resonance states. Written out explicitly, the boundary conditions are

matched as

ψL
kz,kkþG þ rψL

�kz,kkþG þ
X
G0

rGG0ψL
kkþG0 ¼

X
G0

tGG0ψB
kkþG0 ; (129)

where the three terms on the left-hand side are the incident wave, principal reflected

wave, and additional reflected wave components which include evanescent waves

in the left electrode, respectively. On the right-hand side we include only the

decaying evanescent waves into the barrier and omitted the growing evanescent

waves. For sufficiently thick barriers, the growing evanescent states into the barrier

can be neglected. The evanescent waves in the third term on the left-hand side are

the interface resonance states.

When the first two terms on the left-hand side of Eq. 129 have the same

symmetry as the leading evanescent wave on the right-hand side, the contribution

from other evanescent waves is small, and the transmission is essentially deter-

mined by the evanescent wave with the same symmetry as the incident wave. This

is usually the case for the majority spin channel. But when the dominating evanes-

cent wave function in the barrier layer matches poorly to the incident Bloch wave,

the third term in Eq. 129 becomes important. Which evanescent term on the

electrode side is the largest is determined entirely by the boundary conditions.

For some values of kjj, the largest evanescent term has a very large decaying wave

vector. As a result, the total wave function rises as a fast exponential toward the

interface. Because of the exponential nature of these evanescent states, any small

change in the boundary conditions can cause large changes in the total wave

function, making it a sensitive function ofkjj. Consequently the transmission plotted

in the reciprocal space appears to have very sharp peaks as characteristics of

interface resonance states.

The interfacial resonance state is important to the transmission because it yields

a huge wave function amplitude at the interface. However, it is only part of the

story. For example, in Fe/MgO/Fe the minority spin channel electron state density

as a function of kjj usually peaks at points along symmetry axes where the interface

resonance is the strongest. But the transmission is quite low at these points. The

second major factor determining the transmission is the wave function symmetry.

This is because the Bloch states along these symmetry axes have no s-character.

They can only couple to evanescent states in the MgO that decays rapidly. Very

slightly away from these symmetry axes, the wave function has significant

s-character and can couple to an evanescent state that decays slowly. Therefore,

the strongest transmission due to interface resonances usually occurs close to but

slightly off the symmetry axes, as shown in Fig. 23.

The transmission as a function of kjj for antiparallel alignment of the moments

(Fig. 24) shows a combination of the features observed in the majority and minority

channels. For thinner layers, the highest transmission is near the line ky = 0 in the
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two-dimensional zone where there is an interfacial resonance state. As the layers

become thicker, the highest transmission occurs closer to the origin of the

two-dimensional zone.

Thickness Dependence of the Tunneling Conductance

Although the dominant factor in the thickness dependence of the tunneling con-

ductance is the exponential factor exp �κdð Þ where κ is the imaginary part of the

complex band wave vector and d is the thickness of the barrier layer, the actual

thickness dependence is not simply an exponential function. The same simple

model, Eq. 119, of an isotropic complex band at the Γ point gives the conductance

for each spin channel in the form

G ¼ γA
e2

h

1

2πð Þ2
ð1
0

exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ κ20

q
d

� �
2πkkdkk: (130)

This equation works directly for the majority spin channel in RP. Neglecting the

contribution from the minority spin channel, we find

Fig. 24 Transmission probability for antiparallel alignment of the moments in the Fe electrodes
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RPA ¼ 8πh

γPe2
exp 2κ0dð Þ
1

d2
þ 2κ0

d

: (131)

Using γP as the only fitting parameter, this result fits the layer-KKR calculation of

RP very well, as shown in Fig. 25, except for the first two points where the minority

spin channel still contributes significantly to the total conductance. In order to make

this comparison more clearly, we first calculated the complex band structure at the

Fermi energy of the Fe electrodes for a bulk MgO lattice built using the self-

consistent potential of the middle MgO layer of an Fe/6MgO/Fe tunnel junction.

The complex band calculation yields κ0 ¼ 2:92 nm�1 for the Δ1 band at kjj ¼ 0.

This number is used as the baseline decay rate of the tunnel wave functions: the

baseline exponential factor exp(2κ0d ) was removed from the calculated total

tunneling conductance of the Fe/MgO/Fe tunnel junction as a function of the

MgO thickness, resulting in the plot of Fig. 25.

For the AP configuration, the Δ1 band at Γ point cannot enter the opposite

electrode. We modify the contribution to the conductance from kjj by multiplying a

factor 1� exp �αk2k
� �

, which suppresses the conductance at kjj ¼ 0, to mimic the

effect,

GAP ¼ γAPA
e2

h

1

2πð Þ2
ð1
0

exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ κ20

q
d

� �
1� exp �αk2k

� �h i
2πkkdkk: (132)

Integrating and assuming that ακ20 	 1, we find

RAPA ¼ 4πh

γAPe2
d2 þ ακ0d

ακ20
exp 2κ0dð Þ: (133)
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Fig. 25 Sheet resistance of

an Fe/MgO/Fe tunnel

junction as a function of MgO

thickness t, scaled by

exp �2κ0tð Þ. Layer-KKR
calculation (open circle, RP;

filled circle, RAP) is compared

to two experiments (open
diamond, RP from Ref. [24];

filled diamond, RAP from Ref.

[24]; plus, RP from Ref. [26];

cross, RAP from Ref. [26]).

The solid curves are fits to
layer-KKR results using

Eqs. 131 and 133
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The two parameters γAP and a are treated as fitting parameters when we compare

this formula to the layer-KKR calculation in Fig. 25. The agreement for RAP is very

well for large MgO thicknesses. At small thicknesses, the disagreement comes from

the interface resonance states which contribute significantly to the AP conductance

for thin MgO barriers.

The layer-KKR results are also compared to two experiments in Fig. 25. The

agreement for RP is surprisingly good, especially considering that there are no

adjustable parameters in the calculation. This agreement demonstrates two points.

First, the nonspecular scattering seems to have little effect on RP. Second, the local

density approximation (LDA) produces decay wave vectors at the Fermi energy

that are in excellent agreement with experiments. In other words, the bandgap error

in the LDA does not seem to affect the calculated tunneling current in the linear

response regime. The significantly larger resistance in experimental measured

samples for MgO thickness smaller than 1.5 nm is due to increased diffusive

scattering rates in these samples. On the other hand, the experiments disagree

with the calculated RAP by more than an order of magnitude. This difference arises

from diffusive scattering from defects inside the barrier and is not included in the

calculation.

Other Epitaxial Tunnel Junctions

The principle of spin-dependent tunneling by symmetry filtering within the barrier

layer is quite general for epitaxial tunnel junctions. Half-metallic ferromagnetic

electrodes (i.e., ferromagnets with states of only one spin channel at the Fermi

energy) are not required in order to obtain very large TMR. If one can achieve

sufficiently good two-dimensional periodicity within the barrier and near the

interface that kjj is reasonably well conserved, i.e., the scattering is mostly specular,

then one may take advantage of a class of electrode-barrier combinations in which

some of the states of one spin channel decay much more slowly in the barrier than

those of the other. There have been some works to explore different electrode

materials and barrier materials that can be used to achieve symmetry filtering. For

electrode materials, the requirements are that they must be ferromagnetic and that

they must be able to form epitaxial junctions with an insulator or a semiconductor.

Simple ferromagnetic materials include Fe, Co, and Ni. There are more complex

magnetic materials such as Heusler alloys which have also been studied.

Co(bcc)/MgO/Co(bcc) and FeCo/MgO/FeCo

Because it is much easier to find matching 2D lattices with the square symmetry

between a metal and an oxide, the best candidates for ferromagnetic electrodes are

ones with a cubic lattice. Iron is bcc at room temperature and below. Although the

bulk ground state for cobalt is hcp, thin cobalt bcc films can be grown epitaxially,
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and Co(bcc)/MgO/Co(bcc) magnetic tunnel junctions can also be made. Compared

to Fe/MgO/Fe junctions, cobalt junctions have certain advantages. First, cobalt is

less easy to oxidize than iron, so it is less likely to form an oxide layer on the

interface with MgO which can greatly diminish the spin-filtering effect. The second

advantage is that in bcc cobalt along the (100) direction, the majority bands and

minority bands are completely orthogonal to each other at the Fermi energy. In

order words, there are no common bands shared by the majority and minority spins.

This helps to enhance the spin-filtering effect in Co/MgO/Co junctions and can

potentially lead to higher TMR than in Fe/MgO/Fe.

The FeCo alloy combines the advantages of both iron and cobalt. On the one

hand, FeCo alloy has nearly as good selectivity as cobalt in terms of spin filtering.

On the other hand, FeCo has the ground state of B2 structure which is equivalent to

the bcc lattice of a pure material. Therefore, in practice it is much easier to grow

FeCo/MgO/FeCo junctions than Co(bcc)/MgO/Co(bcc) junctions. As we show

below, the FeCo electrodes also lead to higher TMR. Most of magnetic tunnel

junctions in use are based on FeCo electrodes (except for a small amount of boron

which makes the as-deposited electrode amorphous to improve the formation of

crystalline MgO during annealing).

The tunneling conductance for the three types of electrodes, bcc Fe(001), bcc

Co(001), and B2 FeCo(001), all using an eight atomic layer MgO(001) barrier, is

shown in Table 2. These calculations are done by integrating the transmission

probability over the entire two-dimensional Brillouin zone with 8256 kjj points in
1/8th of the zone. For the minority spin channel, interfacial resonance states

generate extremely sharp peaks as a function of kjj . The contributions from

these peaks are omitted because they are difficult to calculate accurately and are

usually absent under experimental conditions. These contributions would

have made the calculated TMR higher for the Co and FeCo electrodes because

they contribute to the minority spin conductance for parallel moment alignment

but do not contribute significantly to the antiparallel conductance. On the other

hand, for Fe/MgO/Fe the interface resonance states contribute to both the parallel

minority conductance and the antiparallel conductance and would lead to a

reduced TMR.

From Table 2 we can see that both Co/MgO/Co and FeCo/MgO/FeCo have even

larger TMR than Fe/MgO/Fe. The main reason for the larger TMR is that because in

Table 2 Tunneling conductivity (in 1/Om2) for all spin channels for the Co(bcc)/MgO/Co(bcc),

FeCo/MgO/FeCo, and Fe/MgO/Fe tunnel junctions. Each junction contains eight atomic layers of

MgO. Resonant state contributions to the minority spin channel are excluded

Junction material "" ## "#(#") σP/σAP
FeCo/MgO/FeCo 1.19 � 109 2.55 � 106 1.74 � 106 340.5

Co/MgO/Co 8.62 � 108 7.51 � 107 3.60 � 106 130.2

Fe/MgO/Fe 2.55 � 109 7.08 � 107 2.41 � 107 54.3
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Co/MgO/Co and FeCo/MgO/FeCo there are no Bloch eigenstates in the minority

spin channel with Δ1 symmetry in both materials, for the antiparallel spin align-

ment, all states are completely reflected atkjj ¼ 0. For bcc cobalt and bcc FeCo, no

minority Δ1 band crosses the Fermi energy, and the only band that crosses the

majority Fermi energy is a Δ1 band. This contrasts sharply with bcc iron for

which in addition to the Δ1 band, there are other bands in the majority channel

that cross the Fermi energy at kjj ¼ 0 . These additional bands have the same

symmetry as those in the minority channel, which allow the transmission through

the barrier.

The presence of some types of disorder may not greatly diminish the strong spin

filtering in tunnel junctions made of cobalt and FeCo electrodes. For strongly

magnetic alloys, i.e., those with filled majority d-bands, the moments are such

that the bands match extremely well in the majority channel. Therefore, kjj
conservation arguments can be applied to majority electrons. The problem will be

in the minority channel where the scattering is expected to be relatively strong.

Even there, however, the bcc Co and FeCo electrodes should offer the possibility

for relatively large TMR. Consider the case of antiparallel alignment. Majority

electrons injected from the left electrode will decay slowly in the MgO barrier.

When they encounter the right electrode, however, the (initially) Δ1 states that

would decay exponentially if the electrode were well ordered will continue do so

for several layers until diffuse scattering converts a significant fraction of the

surviving flux into symmetries that can propagate.

Experimentally, CoFe electrode was among the first electrodes used in magnetic

tunnel junctions. Unlike pure Fe electrode which usually needs to be grown through

MBE in order to ensure high-quality junctions, CoFe electrode can be grown using

the much cheaper sputtering method and can form good epitaxial junctions through

appropriate annealing. In addition, CoFe is less likely than pure Fe to oxidize and

form the FeO interface layer that often greatly diminishes the TMR. Parkin

et al. [27] made sputtered CoFe/MgO/CoFe junctions on an amorphous substrate

that reached 220 % TMR at room temperature.

Today the standard technique to grow CoFe/MgO/CoFe junctions is to start from

amorphous CoFeB. First a sandwich structure of CoFeB/MgO/CoFeB is deposited.

Then through annealing, (100) textured CoFe/MgO/CoFe junction is formed. The

advantage of starting from amorphous CoFeB is that it allows the junction to grow

easily on top of synthetic antiferromagnetic substrates [28]. Also because of its

amorphous lattice structure, CoFeB has a smaller strain with MgO than crystalline

CoFe. This reduces interface roughness and facilitates the growth of MgO(100).

During annealing, MgO(100) acts as a template for the crystallization of bcc CoFe

on both sides of the barrier layer [29]. The boron atoms diffuse very fast during

annealing and are generally believed to diffuse away leaving a clean CoFe/MgO

interface. There is also evidence that some of the boron atoms may diffuse into the

barrier layer [30, 31]. This could have an impact on the structure and electronic

properties of the barrier layer, which will be discussed later.
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Effect of Interlayers

Inserting interlayers between the electrodes and the barrier layer is a convenient

way to modify the properties of magnetic tunnel junctions. One motivation of

adding interlayers in particular is to prevent the formation of FeO on the interfaces

which is shown to be very harmful to high TMR. Naturally the inserted interlayer

would serve to separate the iron atoms from the oxygen atoms in the barrier layer.

Two of the popular choices for interlayer materials are cobalt and magnesium.

Other choices include silver and chromium. A common requirement for these

interlayers is that they do not alter the two-dimensional square symmetry of the

electrodes and the barrier layer.

Cobalt Interlayer
Because Co/MgO/Co and CoFe/MgO/CoFe junctions both have very large TMR,

cobalt is a natural choice for interlayers in Fe/MgO/Fe or CoFe/MgO/CoFe. First of

all, the electronic structure of the inserted cobalt layer is sufficiently close to that of

the iron or CoFe electrodes, in which it is not expected to negatively impact spin

filtering due to band symmetry. In addition, cobalt moments are more “robust” in

the sense that it is less likely to have “loose spins” on the interface due to roughness

than iron atoms. Furthermore, cobalt is more resistance to oxidization than iron. In

fact, even in the experiment nominally examining Co(bcc)/MgO/Co(bcc), the

thickness of the cobalt electrode layers is only four atomic layers thick [32, 33] in

order to retain the bcc structure. Therefore, such a structure is better described as an

Fe/Co/MgO/Co/Fe system containing cobalt interlayers.

Ideal epitaxial cobalt interlayer is predicted by first-principles calculation to

cause a number of effects [34]. The first effect of adding cobalt interlayers is that it

suppresses the interface resonance states due to the iron d-bands. This could boost

TMR if these interface resonance states contribute more conductance to the AP spin

configuration than to the P configuration. As more cobalt layers are added, the

quantum well states confined within the cobalt layers move across the Fermi energy

one by one, causing the tunneling conductance and TMR to oscillate with the

number of atomic cobalt layers. As far as the TMR is concerned, a single atomic

layer of cobalt seems to be the optimal thickness. A similar effect was also

predicted with a single atomic layer of silver interlayer [35]. For thicker cobalt

interlayers, interface resonances that correspond to cobalt d-bands start to appear.

These interface resonances tend to increase the minority spin and antiparallel

tunneling conductances, and consequently TMR decreases somewhat.

Magnesium Interlayer
Another special interlayer material is magnesium. An ultrathin magnesium layer is

often deposited on the iron electrode before depositing the MgO layer in order to

prevent the oxidization of the iron electrode which can greatly diminish the TMR.

In addition, the magnesium layer may also serve as a crystalline seed to improve the

texture of the MgO layer and the interface structure. Because magnesium does not
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have an intrinsic spin polarization, the concern is whether adding the magnesium

layer would reduce the TMR by reducing the spin polarization of the incoming

current. Experiments show that inserting one or two atomic layers of magnesium

have a moderate effect on the TMR, while significantly reducing the junction

resistance, the latter effect is believed to be caused by the prevention of FeO

forming on the interface.

First-principles calculation [36] shows that an ultrathin magnesium layer

inserted between iron and MgO preferentially transmits the Δ1 band electrons,

crucial for achieving large TMR. With a mono-atomic layer of magnesium,

although the TMR is lower than the ideal Fe/MgO/Fe junction, it is still signifi-

cantly higher than the junction with an FeO layer, which is likely to result from the

deposition process of MgO without first covering the iron electrode with

magnesium.

Interlayers also often produce quantum well states within them. These quantum

well states can lead to oscillations in the transmission as a function of interlayer

thickness and sometimes lead to negative TMR.

Reduced Symmetry Barrier Layer

Symmetry filtering is the reason for very high magnetoresistance in epitaxial

tunnel junctions. All of the tunnel junctions discussed so far in this chapter have

square symmetry. The MgO barrier preferentially filters Δ1 band electrons.

Another suggested cubic barrier material, SrTiO3, does not provide efficient

symmetry filtering. Thus, the electrode Fermi energy density of states is more

important in determining the tunneling conductance through SrTiO3. Conse-

quently tunneling current through SrTiO3 tends to have polarization similar to

that of the Fermi energy density of states of the electrodes. In the case of Fe or Co

electrodes, the minority density of states is much higher than the majority spin, so

the tunneling current has a negative spin polarization. This is indeed observed

experimentally.

For barrier layers that do not have cubic symmetry, can there still be efficient

symmetry filtering? It turns out that for many insulators the answer may be yes.

In order to keep the epitaxial relation between the electrodes and the barrier,

often the reduced symmetry of the barrier layer has to be such that its unit cell is a

multiple of the square unit cell of the (100) bcc electrode. For example, consider an

orthorhombic lattice with a rectangular unit cell whose side matches the bcc lattice

and the b side is twice of the bcc lattice. Obviously the evanescent wave functions

in such a barrier layer do not have cubic symmetry. The spin-filtering effect

depends on how these evanescent states couple to the cubic Δ1, Δ2, and Δ5 bands

in CoFe and how their decay rates are relative to each other. The Δ1 band

corresponds to the reciprocal lattice vector G0 = 0 which is unchanged for the

barrier layer. The corresponding evanescent wave in the barrier will likely have the

slowest decay rate of all the complex bands. The Δ5 band can be expressed as a
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linear combination of antisymmetric wave functions containing G1 (see section

“Lateral Symmetry of Bloch States in Electrodes”),

jΔ5i ¼ A sin 2π=að Þx½ � þ B sin 2π=að Þy½ �: (134)

The smallest reciprocal lattice vector along the x direction is �2π=a, 0ð Þ which is

the same as the wave vector along the x direction in the electrode, and

the corresponding antisymmetric evanescent state has the symmetry of

sin[(2π/a)x]. This gives us the first term in Eq. 134. The second term needs to be

matched from wave functions corresponding to the reciprocal lattice vectors along

the y direction. The first reciprocal lattice vector of the barrier layer is 0, � 2π=bð Þ
which is half ofG1 in CoFe. This state cannot match to the Δ5 band in the electrode.

The next reciprocal lattice vector is 0, � 4π=bð Þ which is the same as 0, � 2π=að Þ
and matches the second term in Eq. 134 perfectly. Thus, the Δ5 state in the

electrodes can be matched to a linear combination of the evanescent states

corresponding to the reciprocal lattice vectors 0, � 4π=að Þ and 0, � π=bð Þ. Because
of their larger transverse wave vectors, these states likely have faster decays in the

direction of transmission than the evanescent wave function that matches the Δ1

state. Therefore, if the unit cell of a reduced symmetry barrier layer is a multiple of

the square unit cell of the electrode, the wave functions can be matched so that there

is a likelihood that symmetry filtering will occur.

A class of materials that are being studied as barrier materials for magnetic

tunnel junctions are the spinal oxides [37]. The spinels are any of a class of oxides

of general formulation AB2O4. They usually form a cubic crystal, with the oxygen

atoms arranged in a cubic close-packed lattice and the cations A and B occupying

some or all of the octahedral and tetrahedral sites in the lattice. Examples of spinels

that are of interest as barrier materials for magnetic tunnel junctions include

MgAl2O4, ZnAl2O4, SiMg2O4, and SiZn2O4. These spinel oxides have much better

lattice match with the bcc Fe or CoFe electrodes. For example, the lattice of

MgAl2O4 rotated 45� produces a less than 1 % mismatch with bcc Fe along the

(001) direction, compared to the more than 3 %mismatch between MgO and bcc Fe

or CoFe electrodes. Due to the relatively large lattice mismatch between the bcc Fe

or CoFe with MgO, the epitaxial interface usually has a large lattice strain that is

likely to induce defects which in turn would reduce the TMR. Using spinel oxides

as the barrier layer can greatly eliminate this problem.

The (001) crystal plane in spinel oxides has the C2v symmetry. This is a different

symmetry than the MgO barrier. The complex bands along the [001] direction are

the eΔ1, eΔ2, eΔ3, and eΔ4 bands. These bands are listed along with the corresponding

bulk bands of bcc Fe along the [001] direction in Table 3. As one can see, the

complex bands in the spinels do not have a one-to-one correspondence to the Δ1,

Δ2, Δ20, and Δ5 bands defined by the C4v symmetry of the bcc electrodes. In

particular, the slowest decaying complex band in the spinel oxides, eΔ1 band,

matches to both Δ1 and Δ2 bands in the electrodes. However, that both Δ1 and Δ2

bands match to the same complex band in the spinel barrier layer does not destroy
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the symmetry-filtering effect as one would naively believe. It turns out that the

complex band eΔ1 has multiple branches. The branch that matches to theΔ1 band has

the smallest imaginary part, and the branch that matches to the Δ2 band, even

though it has the same symmetry, has a much larger imaginary part, as listed in

Table 3 for SiMg2O4. Therefore, the spinel oxides can indeed serve as barrier layers

that provide the symmetry filtering for spin-dependent tunneling.

Experimental measurement on single crystalline Fe/MgAl2O4/Fe MTJs found

over 110 % TMR ratio [38]. More importantly, these junctions produced large Vhalf

(bias voltage at which the TMR ratio is half of that at zero bias), ranging from 1.0 to

1.3 V, significantly greater than the typical values obtained fromMgO-based MTJs,

which is usually about 0.5 V. The reason for the improved Vhalf is also due to the

better lattice mismatch. For the MgO-based MTJs, the significant lattice strain at

the interfaces produces many dislocation defects [24]. These defects can lower the

magnon excitation energy which in turn lowers the TMR at finite voltages. By using

a barrier layer with a better lattice match, the magnon scattering is reduced and high

TMR is maintained to higher voltages.

Summary

Spin-dependent electron transport, specifically the phenomena of giant magnetore-

sistance and tunneling magnetoresistance, is amenable to a combination of semiclas-

sical Boltzmann transport theory and first-principles quantum mechanical treatment.

Current-in-plane giant magnetoresistance is discussed within a nonlocal semiclassical

transport approximation. It is shown that CIP GMR can be treated by solving the

Boltzmann transport equation for a multilayer system. The Boltzmann equation is

solved using electronic structures derived from first principles for each of the layers

and by taking into account the boundary conditions at the interfaces between the

layers. The non-locality of the transport is less critical for current-perpendicular-to-

plane GMR, but inclusion of the spin-diffusion length is critical. Spin-dependent

tunneling is treated using the Landauer approach. The symmetry of the evanescent

states in the insulating tunnel barrier can be used to obtain a giant TMR effect even

when the tunneling electrodes are not strongly spin-polarized at the Fermi energy.

Table 3 Fe and spinel band symmetries. The orbital composition is listed in parenthesis. The last

column shows the corresponding imaginary part of the wave vector for SiMg2O4 at the Fermi

energy of an Fe/SiMg2O4/Fe junction

Fe Rotate 45� Spinel Imk(2π/a)

Δ1 s, pzdz2ð Þ Δ1 eΔ1 spzdz2ð Þ 0.47

Δ2 dx2�y2
� �

Δ20 eΔ2 dxy
� �

1.86

Δ20 dxy
� �

Δ2 eΔ1 dx2�y2
� �

1.84

Δ5( pxpydzxdyz) Δ5 eΔ3 pxdzxð Þ, eΔ4 pydyz
� �

1.04
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