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Abstract

AlOx is the most typical barrier material in the early research of high tunneling

magneto-resistance (TMR) in magnetic tunnel junctions (MTJs) at room tem-

perature (RT). AlOx is easily formed by oxidizing a pre-deposited Al layer. The

MTJ with FM/I/FM sandwich core structure and the spin-dependent tunneling

transport properties drew a wide range of interest resulting the so far largest

magnetoresistance (MR) ratio of 81% at RT and 107% at 4.2 K in AlOx based

tunnel junction. The different types of Al-O barrier based MTJs are Sandwich-

Structured MTJ, Spin-Valve Type Pinned MTJ, Double Barrier Magnetic Tun-

nel Junction (DBMTJ), Half-Metal MTJ, Perpendicular Anisotropic MTJ, Dilute

Magnetic Semiconductors Composite MTJ, Superconductors Composite MTJ,

Granular Film Composite MTJ and Nano-Ring-Shaped MTJ. A lot of research

has been done in this field regarding its practical application in devices and

technology. Furthermore, the discovery of Spin-transfer torque (STT) effect is a

remarkable achievement in the development process and rapid emergence of

spintronics. This effect provides not only a new data writing strategy, but is also

consistent with the development trend of high density devices. To reduce the

critical switching current is the pursuing target both in lab and industry. The

important applications of Al–O based MTJs including Magnetic Read Heads,

Magnetic Sensors, Magnetic Random Access Memory (MRAM), Spin Transis-

tors and Field Effect Transistors, Magnetic Logic Devices and Memristors will

be discussed in details in this chapter to provide an advanced technological

understanding to the readers.

Introduction with Historical Background of Al–O Based MTJs

The core cell of a simplest magnetic tunnel junction (MTJ) is composed of an

insulating layer sandwiched between two magnetic layers. The tunnel resistances of

MTJ are different with respect to the relative orientation of magnetic moments of

the two ferromagnetic layers known as the tunneling magnetoresistance (TMR)

effect. In 1975, TMR effect was first observed by French scholar named Julliére in

Fe/Ge/Co multilayer [1], who proposed phenomenological model based on the

“ferromagnetic electrode (FM)/insulator (I)/ferromagnetic electrode (FM)” core

structure MTJ. The key points of Julliére’s model are: the TMR ratio is determined

by the spin polarization of two ferromagnetic electrodes and is irrelevant with the

insulator layer; and the spin of electrons are conserved during the tunnel process.

When the magnetic moments of two ferromagnetic electrodes are aligned parallel,

the electrons with majority-spin in one ferromagnetic electrode will tunnel into the
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unoccupied majority-spin sub-band in the other ferromagnetic electrode. Similarly

the electrons with minority-spin will tunnel into the unoccupied state of minority-

spin sub-band, which yield a lower tunnel magnetic junction resistance, as shown in

Fig. 1a. When the magnetic moments of two ferromagnetic electrodes are aligned

antiparallel, the electrons of majority-spin sub-band in one ferromagnetic electrode

can only tunnel into the unoccupied state of minority-spin sub-band in other

electrode and the electrons in minority-spin sub-band will only tunnel into the

unoccupied state of majority-spin sub-band, which limits the total number of

electrons participating in transport and results in a higher tunnel magnetic junction

resistance, as shown in Fig. 1b. Thus, within the Julliére’s model, the TMR ratio is

defined as: TMR = (GP�GAP)/GAP = 2P1P2/(1�P1P2), where GP and GAP are

conductances under parallel and antiparallel states, respectively, and Pi is the spin

polarization of ferromagnetic electrode i, which is defined as, Pi = (Di" � Di#)/
(Di" + Di#) where, Di" and Di# are density of states at Fermi level for the majority-

and minority- spins, respectively. Julliére’s model predicts that using high spin

polarization metal and metallic alloy materials could yield a large TMR ratio,

which agrees well with the earlier experimental results. However, limited by the

experimental conditions, during 1970s and 1980s, high quality MTJ multilayers

could not be obtained. No significant progress had been achieved and no room

temperature TMR effect was reported, so very less attention was paid on MTJ

during this 20 years.

The MTJ with FM/I/FM sandwich core structure and the spin-dependent tunnel-

ing transport properties drew a wide range of interest and in-depth study in both

experimental and theoretical research fields after the report of large TMR ratio of

majority-spin
subband

minority-spin
subband

F1

a b

I

E

Δex

(E)N (E)N (E)N (E)N (E)N (E)N (E)N (E)N
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Fig. 1 Schematic of electrons tunneling in FM/I/FM MTJs: (a) parallel and (b) antiparallel

magnetization orientations with the corresponding spin resolved density of the d states in ferro-

magnetic metals that have exchanged spin splitting Δex. Arrows in the two ferromagnetic regions

are determined by the majority-spin sub-band. Dashed lines depict spin conserved tunneling

(Reprinted with permission from [5]. Copyright (2004) by the American Physical Society)
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20 % at room temperature achieved independently in magnetic tunnel junction by

Miyazaki et al. [2] and Moodera et al. [3], where the amorphous aluminum oxide

(AlOx) was used as the barrier. So far, the largest magnetoresistance (MR) ratio of

AlOx based tunnel junction is 81 % and is discovered in ring-shaped MTJ with core

structure of CoFeB/Al–O/CoFeB [4], as indicated in Fig. 2b.

In the aspect of fabricating magnetic tunnel junction, much effort has been made

on optimizing the ferromagnetic electrode materials in order to gain a larger TMR.

Various magnetic materials were adopted as electrodes to explore the physical

properties and enlarge the potential applications of AlOx based tunnel junction.

Magnetic semiconductors like Ga(Mn,As) have been used as magnetic electrode in

hybrid MTJs [6, 7]. Superconductors as part of hybrid magnetic electrode are

adopted in superconductor-ferromagnet hybrid tunnel junction [8]. And magnetic

films with perpendicular magnetic anisotropy are also adopted as magnetic elec-

trode to fabricate perpendicular magnetic tunnel junction (p-MTJ).

Referring to the structure of MTJ, besides the single barrier MTJ (FM/I/FM),

double barrier tunnel junction (FM/I/FM/I/FM) also exhibits enhanced physical

properties with wide applications. In double barrier magnetic tunnel junction

(DBMTJ), oscillatory TMR and resonant tunneling is predicted for quantum well

states [9]. Experimentally, double barrier MTJs of pseudo-spin valve and spin valve

structures were first fabricated by Montaigne et al. [10] and Saito et al. [11],

respectively. Both of them examined bias dependence of TMR in the above

mentioned MTJs. New spin dependent transport phenomenon, know as Coulomb

blockade magnetoresistance (CBMR), was observed by inserting a discontinuous or

granular ferromagnetic layer in between double barriers of MTJ [12]. Besides the

double barrier tunnel junction, quantum well state and resonant tunneling could also

be observed in FM/NM/I/FM single barrier tunnel junction. In such configurations,

an appropriate non-magnetic metal layer is inserted between one ferromagnetic
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Fig. 2 (a) The large TMR at room temperature observed by Miyazaki et al. [2, 3] in MTJs using

amorphous aluminum oxide as barrier (Reprinted from [2]. Copyright (1995) with permission

from Elsevier). (b) TMR of 81 % at room temperature observed by Wei et al. [4] in ring-shaped

MTJ with core structure of CoFeB/Al–O/CoFeB (Reprinted with permission from [4]. Copyright

(2007), AIP Publishing LLC)

182 X.-F. Han



electrode and AlOx barrier. After multiple reflections at the FM/NM interface,

conduction electrons from the quantum well state of non-magnetic layer will tunnel

as a result of resonance. The TMR ratio will oscillate as a function of the thickness

of non-magnetic layer.

In 2004, Huai et al. observed the clear evidence of spin transfer torque in Al–O

based MTJs for the first time [13]. This work further verifies the spin transfer torque

effect predicted in nano- multilayered structures by early theorists [14, 15]. Spin

transfer torque is a new kind of quantum effect which have been distinguished from

the giant magnetoresistance (GMR) and TMR. The discovery of spin transfer

torque in MTJ not only provides a new approach to switch magnetization in thin

films by spin polarized current but also makes the design of high frequency

MTJ-based devices such as spin nano-oscillator and spin microwave detector

(Fig. 3).

Besides being used in various magnetic sensors, AlOx based magnetic tunnel

junction has played a landmark influence on the development of computer magnetic

read head and magnetic high-density storage technology. AlOx based MTJ is the

first class of elements successfully being used in magnetic random access memory

(MRAM) cell design and manufacture, for example the 1 M [16] and 16 M [17]

field-driven MRAM. Various spintronic devices such as spin transistor and mag-

netic logic devices based on AlOx barrier tunnel junctions are still being widely

proposed [18].

Growth and Fabrication of Al–O Based MTJ

In the research of the TMR effect, the micro-fabrication or nanofabrication of

multilayer-MTJs is crucial for the investigation of MTJs as well as the applications

of MTJ devices. The process of fabrication of AlOx based MTJ roughly consists of:

deposition of magnetic multilayer films, fabrication of MTJs using contact shadow

masks, fabrication of MTJs by photolithography combined with ion-beam etching,

Fig. 3 The development

road-map of single barrier

MTJ with AlOx, MgO, and

other barrier materials

5 TMR and Al-O Based Magnetic Tunneling Junctions 183



fabrication of nano-MTJs using electron beam lithography (EBL) combined with

ion-beam etching, fabrication of MTJs combined with focused ion beam (FIB),

oxidation of aluminum, and the thermal treatment of MTJs. In MTJs’ fabrication,

all of the steps, either depositing multilayer films or the subsequent micro-

fabrication, are related to the final device performance. The most crucial steps are

the deposition and oxidation of aluminum and the thermal treatment of MTJs. In

view of the chapter length, rather than giving the details of processing technology,

major emphasis has been given on the oxidation of aluminum and the thermal

treatment of MTJs.

In the early research of high TMR in MTJs at room temperature, AlOx is the most

typical barrier material. AlOx is formed by oxidizing a pre-deposited Al layer. In

previous experiments, the oxidation is usually carried out by natural oxidation [2, 3,

19–22] or plasma oxidation [4, 20, 23–27]. For natural oxidation, after the deposition

of Al film, Al is oxidized in the chamber filled with oxygen at a certain pressure. The

disadvantages of natural oxidation are: long time of oxidation, non-uniformity, low

TMR ratio, difficulty of controlling resistance area product (RA), and inadequacy for

large-scale industrialization. In comparison, plasma oxidation has the advantages of

short time process, uniformity, and adjustable pressure of oxygen and power. So

optimization of oxidizing condition is required for different equipments to obtain

high TMR ratio in MTJs. The plasma oxidation can be used for large-scale industri-

alization. The highest TMR ratio achieved so far, by plasma oxidation of AlOx barrier

in MTJs, is 81 % [4]. In addition to the two methods mentioned above, radical

oxidation [28] and ultraviolet light assisted oxidation [29–31] has also been proposed

previously. It is reported by Shimazawa et al. that the RA of MTJs can be decreased

and the breakdown voltage can be increased by radical oxidation [28]. By using an

ultraviolet light assisted oxidation process, it was observed that the bias voltage

dependence [29] is improved and impurities in the barrier can be reduced [30].

Figure 4a [32] shows the impact of different oxidation time on TMR ratio in

AlOx-based MTJs. With the increase in Al thickness, the TMR ratio first increases

and reaches a maximum value and then decreases again. This behavior of junction

corresponds over-oxidation to under-oxidization of the aluminum. It was observed

that both types of oxidizations can reduce the TMR ratio in MTJs. Therefore, proper

thickness and oxidation time is very crucial for fabricating MTJs with high TMR

ratio. Based on the average phase profile perpendicular to the barrier, as shown in

Fig. 4b–d, it is suggested that a sharp interface can be achieved in optimally

oxidized junctions [33].

Previous work has shown that the TMR in AlOx-based MTJs can be increased by

thermal annealing [20, 24, 25, 27, 34–40]. Parkin et al. suggested that the increased

MR during annealing is related to homogenization of the tunnel barrier or, more

likely, an improved interface with the ferromagnetic layer [20]. After reaching the

maximum, the TMR ratio decreases when temperature is continuously increased,

which is attributed to the oxidation of the ferromagnetic electrodes. The interdif-

fusion of Mn, from the antiferromagnetic IrMn layer used to pin the top electrode of

the junction, is also responsible for the structural changes at the ferromagnetic

layer/AlOx interface [25, 34, 35, 38].
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Types of Al–O Based MTJs

Sandwich-Structured MTJ

As mentioned above, sandwich structure (F/I/F) is essential for MTJ. In this

structure, the coercivities of top and bottom ferromagnetic layers are usually

designed to be different. Under an external magnetic field, the layer with smaller

coercivity will flip first, thus generating the antiparallel configuration of magnetic

moment and two resistance states can be formed.

In sandwich structure, the magnetic moment direction of the two FM electrodes

is not “fixed,” and so its thermo-stability and the magnetic anti-interference ability

is poor for applications. This sandwich structure is difficult to be used as the field-

driven magnetic sensor unit or MRAM due to the lack of one-to-one correspon-

dence between MR and applied external magnetic field. However, these sandwich

structured MTJs have another practical device application in which the
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Fig. 4 (a) TMR ratio versus Al thickness in Py/AlOx(t)/Py with wedge-shaped Al layers oxidized

for 30, 40, and 150 s (Reprinted with permission from [32]. Copyright (2002) by the American

Physical Society). The inset plots the maximum TMR ratio with a 1.26 nm uniform Al layer

oxidized for 40, 60, 90, and 120 s. Averaged phase shift profiles perpendicular to the barrier layer

in MTJs with (b) over-, (c) optimum-, and (d) underoxidized barriers (Reprinted with permission

from [33]. Copyright (2003), AIP Publishing LLC) [32, 33]
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magnetization can be switched by spin polarization current. Han et al. [41] prepared

nano-MTJs based on sandwich structure, and realized the current induced magne-

tization switching. They observed the relation curve between MR and spin polar-

ized current (R~I), which can be used in on-off type magnetic sensor or MRAM.

Moreover, current induced magnetization switching in perpendicular sandwich

structured MTJs was also observed [42]. The sandwich structure has many advan-

tages such as easy to prepare and optimize by heating process because of the

absence of antiferromagnetic pinning layer. Therefore, the diffusion of Mn atom

in normally used antiferromagnetic pinned layer can be avoided. This will result in

relatively higher MR in this kind of MTJs.

Spin-Valve Type Pinned MTJ

To overcome the weak thermo-stability and magnetic anti-interference ability in

sandwich structure, Dieny et al. [43] designed the pinned spin-valve MTJ in 1991

which brought a breakthrough in application ofMR structure. The spin valve magnetic

multilayer is comprised of [antiferromagnetic layer/ferromagnetic layer (pinned layer)/

non-magnetic metal layer or barrier layer/ferromagnetic layer (free layer)]. After the

discovery of MR effect at room temperature, the spin valve structures are widely used

in MTJs. In order to improve the stability of pinned FM electrode, artificial AFM

coupled structure [AFM/FM/NM metal/FM (pinned)/barrier/FM (free)] is normally

used. The main advantage of spin valve pinned structure is the improved sensitivity of

free layer to small external magnetic field. Moreover, FM electrode is pinned by

antiferromagnetic layers producing the better thermo-stability and magnetic anti-

interference ability. There is also a good correspondence between MR and applied

external magnetic field, which meet the requirement for device application.

Double Barrier Magnetic Tunnel Junction (DBMTJ)

The typical structure of double barrier magnetic tunnel junctions (DBMTJs) [9–11,

44–48] consists of AFM/FM/I/FM/I/FM/AFMmultilayer. The magnetic moment of

top and bottom FM electrodes are “pinned” by AFM. The middle FM layer is free,

and it is sandwiched between two insulator layers. The quantum well and the

resonant tunneling of spin carriers can be formed in the middle layer giving rise

to the rich physical properties of DBMTJs structure. Figure 5 shows the typical

M-H and R-H curves [44]; three features of loop can be observed which correspond

to three arrangements of magnetic moment of three FM layers. Low resistance state

can be achieved when the magnetic moment of all three FM layers are parallel,

whereas high resistance state corresponds to the antiparallel alignment between the

free layer and the two pinned layers. However, when the magnetization direction of

the free layer is parallel to the top pinned FM layer but antiparallel to the bottom

pinned FM layer, it shows the intermediate state.

186 X.-F. Han



Half-Metal MTJ

The half-metallic materials show 100 % spin polarization at Fermi energy, and so

high MR can be expected if they are used as FM electrodes. In 1997, Tanaka

et al. [49] initiated the research on Al–O based MTJs with half-metal electrodes. In

2003, Inomata et al. [50] achieved 16 % MR using half-metal Co2Cr0.6Fe0.4Al

(CCFA) as FM electrode in Al–O based MTJ (Fig. 6). Recently, Al–O and Mg–O

based MTJs with half-metal electrodes have attracted great research interests [51].

Perpendicular Anisotropic MTJ

In perpendicular anisotropic MTJs (p-MTJ), perpendicular anisotropic materials

are used as FM electrode. The thermal stability can be enhanced in this kind

of MTJ. Perpendicular anisotropy material based MTJs reduces the critical

spin polarized current density for magnetization switching. They are useful to

reduce the power consumption of device and show a good compatibility with

semiconductor technology. Since the year 2000, the research on perpendicular

anisotropy Al–O based MTJ has been reported [52–54]. In 2002, GdFeCo(50 nm)/

CoFe/Al2O3(2.2 nm)/CoFe/TbFeCo(30 nm) based MTJs were prepared by

Nishimura et al. [53] and 50 % MR ratio was obtained at room temperature, as

shown in Fig. 7.

However, the TMR ratio of perpendicular anisotropy MTJs is smaller than that

of in-plane anisotropy MTJs because the spin polarization of perpendicular

anisotropy FM thin-film material has relatively small spin-polarization at the

barrier interface, and the spin orbit coupling effect enhances the spin scattering

effects.
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Dilute Magnetic Semiconductors Composite MTJ

Semiconductors are the basic materials in world’s electronics industry and have been

studied for almost a century. In the past, the semiconductor material was used in

electronics based on the control of charge of the carriers without using the spin degree.
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Fig. 6 Magnetoresistance curve at RT for a spin-valve-type magnetic tunneling junction

consisting of CCFA(10 nm)/AlOx(1.8 nm)/CoFe(3 nm)/NiFe(5 nm)/IrMn(15 nm)/Ta(10 nm)

fabricated on a thermally oxidized Si substrate at RT. The upper right inset shows TMR curve

at 5 K, exhibiting 26.5 % TMR. Inset on the left-hand side is the temperature dependence of the

TMR for another sample with the same layer structure [50] (Copyright (2003) The Japan Society

of Applied Physics)
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If both the charge and spin can be controlled in semiconductors, the storage, logical

operation, and information communication in one material can be manipulated,

resulting in huge economic benefits. Freedom of spin degree in semiconductors can

be applied and/or observed by doping with transition metal.

Until now, many works about different kinds of magnetic semiconductors have

been reported. A ferromagnetic semiconductor (Ga,Mn)As with Curie temperature

TC as high as 110 K was first prepared using LT-MBE and reported in 1996 by

H. Ohno [6], later (Ga,Mn)As was extensively studied. Han and Zhao research

groups cooperatively reported the fabrication of MTJ based on (Ga,Mn)As/AlOx/

CoFeB hybrid structures [7]. Their results showed that junction resistance and TMR

ratio decreases rapidly with increasing sense current. However, the TMR ratio in

this structure is relatively small; the reason is that (Ga,Mn)As surface was oxidized,

which reduced the spin injection from CoFeB electrode in Al–O barrier layer. Han

and Zhao [55] have also used annealing and plasma cleaning method to reduce

and/or remove the surface oxidation thus achieving successfully the TMR ratio as

high as 101 % at 2 K in FM/semiconductor hybrid MTJ: Co40Fe40B20/AlOx/(Ga,

Mn)As. This is the largest TMR ratio reported in Al–O based FM/semiconductor

hybrid MTJs until now (Fig. 8).

Superconductors Composite MTJ

MTJs can be applied in magnetic read head, magnetic sensors, MRAM, STNO, and

in the probe of physical interaction, e.g., the influence of superconductivity on

magnetism. For a long time, people had great interest in the study of interplay

between magnet and superconductor. When the ferromagnetic and superconducting
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Fig. 8 Magnetic field dependence of TMR ratio at temperatures of 2, 5, 10, and 20 K. The closed
symbols and open symbols represent the field from 7 kOe to �7 kOe and from �7 kOe to 7 kOe,

respectively (Reprinted with permission from [55]. Copyright (2011), AIP Publishing LLC)
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materials are brought closer to each other, the FM material may produce strong

influence on superconductor because the interior exchange field in FM material can

break the superconductive order. Jiang et al. [56] found that Curie temperature of

superconducting film oscillates with the thickness of FM layer, in Nb(3)/(Gd(dGd)/
Nb(dNb))N/Gd(dGd)/Nb(3 nm) multilayer. However, in Ni(7)/Nb(ds)/Ni(7)/FeMn

(8)/Nb(2 nm) structure, the Curie temperature of superconducting film show big

difference when the magnetizations of the FM layers are parallel or antiparallel

[57]. One will ask, “since ferromagnetism can influence the behavior of supercon-

ductor, so can superconductivity generate influence to ferromagnetism?” The

answer is yes. Although some theoretical works indicated that the superconducting

coherence length (εF) is very short in ferromagnetic material, however, experiments

have already proved that the depth superconducting state function is longer than εF
[58, 59]. Recently, some experimental work reported that the superconductivity can

even change the magnetic properties of adjacent ferromagnetic layers [60–62]. In

2009, Y. M. Chang et al. [8] combined superconductor with free layer of MTJs.

Chang et al. utilized practically the proximity effect by bringing superconductor in

contact with the free layer in the structure: Nb(t)/CoFe(30)/Al–O(2.5)/CoFe(15)/
NiFe(10 nm) [8] (Fig. 9).

Granular Film Composite MTJ

The core structure of granular composite MTJ consists of top FM electrode, barrier

layer, and bottom FM electrode. However, the barrier is fabricated by an insulating

layer embedded with nano-particles. When the size of magnetic metal particles is in

Fig. 9 The plot of TMR ratio

with respect to temperature

for the S/MTJ sample with

tNb = 240 nm. Inset indicates
the resistance variation of the

Nb overlayer in the

neighborhood of the

superconducting phase

transition (Tc = 9.16 K)

(Reprinted with permission

from [7]. Copyright (2009) by

the American Physical

Society)
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nanometer range, the electron transport is not only spin-dependent but also exhibits

single electron charging effect due to the Coulomb blockade. Prominent TMR

effect may arise in these composite MTJs.

Before the discovery of TMR effect in MTJs, in 1972 Gittleman et al. observed

the magneto resistance in Ni–Si–O granular film [63]. In 1976, Helman and Abeles

also observed the magneto resistance in the same structure, and they indicated the

tunneling behavior between particles [64]. In 1995, Fujimori et al. observed 10 %

(20 %) MR at room (low) temperature in Co–Al–O granular film, and started the

research upsurge about granular films composite MTJs. Co–Al–O granular films

became an important research topic, and the transport properties were investigated.

Experiments confirmed that the electrons tunnel through Al–O barrier between Co

particles [65].

In the magnetic granular film, the metal particles are separated by insulating

medium, and electrons tunnel between metal particles. This tunneling process

involves several particles, sometimes, the transport of electrons need multiple

tunneling between the metal particle and its neighbor particles. For multiple

tunneling processes, there are two possible transport mechanisms: sequential

tunneling [66] and co-tunneling [67]. Sequential tunneling model implicates that

the tunneling of electrons is successive; while co-tunneling considers that if one

electron tunnels into one particle, another electron tunnels out form this particle at

the same time. When the particle size is small enough, the number of electrons

increased in particles will improve electrostatic energy of particles; when the

energy is bigger than bias and thermal disturbance, the tunneling process will be

inhibited and Coulomb blockade effect appears. The particle energy will increase

during every tunneling process in sequential tunneling, but the energy of system

will not increase in co-tunneling process. In early research on single-electron

transistor, people demonstrated that sequential tunneling will be suppressed and

co-tunneling process contribute to the electron transport. It can be deduced that

tunneling probability is large in the case of high temperature or high bias.

Takahashi et al. proved theoretically the co-tunneling between particles will result

in increased value of MR [68]. Experimentally, both sequential tunneling and

co-tunneling are found to exist in insulated granular films [65, 69].

Nano-Ring-Shaped MTJ

Solid rectangular or elliptical-shaped MTJs are usually used as the core unit in

conventional MTJs based magnetic sensors, MRAM, and spin nano-oscillators,

etc., due to the shape anisotropy that can be used to increase the thermal stability

of the device. However, there is stray field appearing along the edge of the long axis

in rectangular or elliptical-shape MTJs. Especially, when the unit size and separa-

tion distance in arrays become small, the stray field between free layer, reference

layer, and adjacent units will significantly increase. This increased stray field will

induce magnetic interference and magnetic noise which has a serious affect on the

device performance by limiting the increase of density of units. For nano-ring and
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nano-elliptical ring MTJs, free layer and reference layer were patterned into closed

circular ring by nanofabrication. As a result, closed magnetic moment will be

formed. This closed magnetic domain does not produce stray magnetic fields, and

the inter-coupling interference does not exist in adjacent storage units. Because of

its closed shape, nano-ring or nano-elliptical ring MTJs have better thermal stabil-

ity. In addition, it will eliminate demagnetizing field in two open ends in the

rectangular or ellipse-shaped nano-MTJs, so the critical switching current density

can be decreased in this structure.

Han’s group [41, 134] designed nano-ring MTJs by growing Ta(5 nm)/

Ru(10)/Ta(5)/Ni81Fe19(5)/Ir22Mn78(12)/CoFe(2)/Ru(0.9)/CoFeB(3)/Al(0.6-Oxide)/

CoFeB(2.5)/Ta(5)/Ru(6) multi-layers on Si(100)/SiO2 substrate using magnetic

sputtering method. Micro-nano processing was used to pattern nano-ring MTJs.

They successfully prepared nano-ring MTJs with outer diameter of 100 nm and

width of about 25 nm [41, 134]. Figure 10 shows the R-H curves of NR-MTJ

which show that the resistance is 2.8 kΩ (3.8 kΩ) when magnetic moment aligned

parallel (antiparallel), and the resulting TMR ratio is 36 % at room temperature.

Quantum Effects and Magnetoelectric Properties of Al–O
Based MTJ

Temperature and Bias Dependence of Magnetoresistance Effect

The tunnel magneto-resistance rely on the ferromagnetic electrodes, tunnel barrier,

and interface, especially its strong dependence on the temperature and bias. In most

of the cases, the TMR and tunnel resistance decreases with increase in temperature.

Shang and Moodera et al. [70, 71] suggested a spin-wave excitation model to

explain this phenomenon. They suppose that with the increase of temperature,

spin polarization P of magnetic electrodes obey the Bloch law which is given as

P(T) = P(0)(1�αT3/2). MacDonald [72] considered the variation of quasi-particles’

Fig. 10 (a) Scanning electron micrographs (SEMs) of nanoring MTJ arrays with outer diameter

D = 100 nm and ring width (W ) narrower than 30 nm. (b) Resistance versus magnetic field loops

for NR-MTJ sample with D = 100 nm, the temperature is 300 K (Reprinted with permission from

[134]. Copyright (2007), AIP Publishing LLC)
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spectral weight function with temperature to prove that the spin polarization and

saturation magnetization have the same temperature relation, i.e., P(T)/P(0) =
M(T)/M(0) and TMR(T) = TMR(T = 0)(1�AT3/2 + . . .). This model has been suc-

cessfully applied to MTJs composed of different electrodes and barriers [73–75].

Besides the spin-wave excitation model, inelastic scattering mechanism can also

result in the decrease of TMR with the increase in temperature. For example, Zhang

et al. [76] proposed the interfacial magnon assisted tunneling process and explained

the bias and temperature dependence of TMR; their model agrees well with the

experiments. Bratkovsky [77, 78] take into account the magnon, phonon, and

impurity scattering on equal footing to explain the temperature and bias depen-

dence. Vedyayev emphasizes the role of spin-flip scattering caused by magnetic

impurities in barrier [79]. The number of spin-flip electrons will increase with the

temperature, causing the reduction of TMR ratio.

MTJs are a kind of non-linear elements. The bias dependence in parallel and

antiparallel states shows different behavior. The bias dependence behavior of MTJs

is closely relevant to performance of spintronic devices and thus its bias properties

are not only important for the fundamental research but are also crucial from

application point of view. The TMR of almost all of the Al–O MTJs are found to

decrease with increasing values of bias voltage. The voltage at which the TMR

drops to half of its maximum value is termed Vhalf. It is an important parameter to

evaluate the quality of MTJs. Usually, for the device application, it is better to have

larger value of Vhalf. The V1/2 of about 200 mV [3, 71] was found in the early

experiments. Figure 11 shows the (a) bias dependence curve of TMR and (b) tunnel

conductance. The TMR decreases with the increase of bias voltage and zero bias

anomaly can also be observed in such cases. Recently, the V1/2 value achieved by

some groups exceeded 500 mV [80–82].
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In tunnel junctions, free electron models are usually used to describe the

conductance bias dependence. One of the most widely used models is Simmons’

tunneling model. In this model, the WKB approximation was used and the interac-

tion between electrons was neglected. When T ¼ 0K and V <<φ, the bias depen-
dence of conductance can be simplified into the following quadratic form:

G Vð Þ ¼ G0 1� 2C1

sΔφ
φ3=2

V þ 3C2

s2

φ
V2

� �
(1)

where,φ ¼ φ1 þ φ2ð Þ=2,Δφ ¼ φ1 � φ2,G0 ¼ C3

ffiffiffi
φ

p
s exp �1:025s

ffiffiffi
φ

pð Þ, C1, C2, and

C3 are constants: C1 ¼ 0:0854 m�1V�3=2, C2 ¼ 0:0984 m�2V�2, C3 ¼ 31:6 nm�1

V�3=2 . By fitting the equation, the effective height (φ), width (d ) as well as the

potential difference of barrier (φ1 � φ2) can be obtained.

Figure 12 is the fitting results for typical Al–O MTJs: IrMn(12)/CoFe(2)/Ru

(0.85)/CoFeB(3) /Al–O(1)/CoFeB(4 nm). The effective barrier thickness is 0.9 nm,

the effective barrier height for parallel and antiparallel state are 2.17 eV and 2.76

eV, respectively.

Following are some main features of the G-V curves: (1) both, parallel and

antiparallel conductances increase by increasing the voltage, (2) the antiparallel

conductance increases more quickly than the parallel conductance, resulting in the

decrease of TMR, especially in the range of �200 meV. Zhang et al. [76] proposed

a model suggesting that inelastic scattering by magnon excitations at the ferromag-

net/insulator interface controls the voltage dependence. In the presence of bias,

tunnel electrons with energies above the Fermi level, known as “hot electrons,” may

tunnel by emitting a magnon. With increase in the bias voltage, more magnons can

be emitted, resulting in the increased conductance and reduced TMR values. This

model is able to reproduce the zero bias anomalies in conductance and MR of

Fig. 12 (a) The energy band of MTJs under bias voltage. (b) The bias dependence of GP and GAP

in CoFeB/Al–O/CoFeB MTJs. The solid lines are the fitted results [83]
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MTJs. This model was used by Han et al. [84] who performed a careful analysis of

the conductance and MR as a function of voltage and temperature for Co75Fe25/

Al2O3/Co75Fe25 tunnel junctions. They also found that when the magnetizations of

electrodes are in different alignments, the cutoff energy of interface magnons is

anisotropic. The experimental data was better fitted by considering this anisotropic

cutoff energy. Later, the phonons contribution was added by Wu

et al. [85]. Bratkovsky et al. suggested the inclusion of the phonon and impurity

assisted process at high bias voltage [77, 78] (Fig. 13).

Magnon excitations are the main mechanism to investigate the bias properties.

However, in some special cases, other mechanisms, for example, the phonon

scattering by impurities, contribute as well [86–89]. Besides the contribution

from the inelastic tunneling, Davis et al., pointed out that the variation of electron

interface density of states is also an important factor for the bias dependence of

TMR [90–93].

Inelastic Electron Tunneling Spectroscopy (IETS) of MTJ

IETS is a powerful tool to investigate the inelastic tunneling process in MTJs, for

example, it helps in determining which excitation process plays a role in tunneling.

Moreover, density of the excitation will also be reflected from the IETS. Figure 14

shows different types of IETS corresponding to paramagnetic impurity, magnons,

and phonons. When paramagnetic impurities are present in the junctions, the

conductance will decrease with the increase of bias near the zero bias. Thus, a
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negative peak will appear in the IETS. When there are magnons or phonons,

additional scattering path will be opened and there will be positive peaks in

IETS. The relevant peak position reflects the magnons or phonons density of

states [94].

Moodera group found two main peaks appearing in TMR (V) curves in

Co/Al2O3/Ni80Fe20 MTJ. One of the peaks was located at 110 mV, visible at all

temperatures and the other one was located at 17 mV, only visible at liquid helium

temperature (as shown in Fig. 15). Both peaks were originated from the magnon

excitation. At the same time, in non-magnetic Al/Al–O/Al junction, Al–O phonon

peak can be found at around 100 mV.

Miyazaki’s group also observed a peak at 1.2 mV for parallel and antiparallel

states in Co/Al–O/Co MTJs. In order to obtain the magnetic contribution, the

authors subtracted the IETS data for different states [95]. In CoFe/Al–O/CoFe

MTJs [84], they also observed peaks at 5.86 � 1.0 mV for parallel and

19.5 � 1.0 mV for antiparallel at 4.2 K. In the low bias regime (lower than

200 mV), most research groups reached the same conclusions: the value of IETS

for antiparallel alignment should be larger than for parallel alignment. In Al–O

MTJs, the information of phonon can also be traced from the IETS. The peaks in

IETS that are arising from the phonons should have the same position, magnitude,

and half width for the two alignments, as shown in Fig. 16.

On the other hand, very sharp peaks in the IETS of magnetic tunnel junctions at

low bias closely resemble the derivative of the so-called zero-bias anomaly of

nonmagnetic tunnel junctions which is attributed to magnetic impurity scattering

rather than the magnon scattering mechanism [76, 96–98]. Wei et al. [99]

performed a series of systematic measurements in several different types of
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Fig. 14 The schematic illustrations of three type of IETS by: (a) impurity, (b) magnon, and (c)
phonon [94]
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MTJs. The measurements show that both types of scattering exist in all junctions.

The behavior attributed to magnetic impurity and magnon scattering show differ-

ences in the IETS. At low temperatures, it produces an IETS pattern consisting of

three flat plateaus with discontinuities at eV = �Ec, where Ec is the magnon

activation energy. Magnetic impurity scattering produces a logarithmic singularity

in the conductance which corresponds to two very sharp peaks near zero bias in the

IETS. In particular, in the antiparallel configuration scattering is dominated by

interface magnon scattering but magnetic impurity scattering is clearly visible in

the IETS. The authors withdraw some of the approximations and include both

Fig. 16 IETS of CoFeB/

Al–O/CoFeB MTJs at

T = 1.8 K; peaks at �4 mV

are originated from phonon

excitation and peaks at

�20 mV arise due to the

magnon excitation [83]
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magnon scattering and magnetic impurity scattering mechanisms. For example, the

contribution of magnetic impurity to the conductance is:

Gimpurity ¼ G2 � G3 F eVj j, Tð Þ þ 1

2
F eV þ Δj j,Tð Þ þ 1

2
F eV � Δj j,Tð Þ

� �
(2)

where, G2 is the conductance due to the second-order tunneling process and can be

viewed as a background conductance, and the G3F term is the third-order term that

yields the zero bias anomaly. Δ measures the exchange coupling strength between

the impurities and the electrodes.

The magnon contribution to the conductance is:

Gmagnon ¼ C �2kTln 1� e�EC=kT
h i

þ eVj j þ EC

e eVj jþECð Þ=kT � 1
þ eVj j � EC

1� e� eVj j�ECð Þ=kT

� �
(3)

where, EC is the lower cutoffs for the magnon energy.

From the analytical solution of the magnon scattering model, the authors found

that surface magnon scattering alone does not give rise to sharp peaks in the IETS.

Instead, the magnetic impurity coupled to the magnetic electrodes produced the

observed two peaks Fig. 17. The above model can be generated to include the

phonon contribution.

Quantum Well Effect in Al–O Based MTJ

Spin-polarized resonant tunneling is the fundamental physical mechanism which

is necessary for the development of highly functional devices such as spin tran-

sistors, etc. [100]. One of the simplest ways to realize spin-polarized resonant

tunneling is to insert a nonmagnetic (NM) metal layer between the insulating

tunnel barrier (I) and one of the two FM electrodes in an MTJ as shown in

Fig. 18. Spin-dependent reflections of the conduction electrons take place at the
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FM-NM interface (Fig. 1A) thus creating spin-polarized quantumwell (QW) states

in the NM layer [101, 102] and spin-polarized tunneling electrons will resonantly

pass through the NM layer. To date, the TMR ratio is usually found to decrease

monotonically with NM layer thickness. Although, a number of experimental

studies have been done, there are no reports on TMR oscillation being observed

by many researchers [103–105]. This can be attributed to the short electron mean

free path in poly-crystalline samples. In 2002, high quality Co(001)/Cu(001)/

Al–O/NiFe-MTJs have been fabricated by MBE by Yuasa et al. and a clear

oscillatory MR as a function of Cu thickness was observed [106]. The bottom

electrode Co(001)/Cu(001) is single crystal, Al–O is an amorphous barrier, and the

top NiFe electrode is poly-crystalline. As shown in the schematic diagram in

Fig. 18a, when two electrodes are in parallel alignment, the majority electrons in

NiFe electrodes tunnel across the junction and the minority electrodes will be

reflected back and forth at Cu/Co and AlOx/Cu interfaces. Consequently, the

quantum well states will be created in Cu. The energy band calculation for

fcc-Cu shown there are q1 and q2 scattering vectors which will produce two

periods 10.6 Å and 5.9 Å.

As shown in Fig. 19c, at T = 2 K and T = 300 K, the TMR shows obvious

oscillation as a function of Cu thickness. In some thickness range, the TMR

oscillate between positive and negative value. Figure 19a, b shows the MR curve

corresponding to the Cu thicknesses of 0 Å and 4.5 Å, respectively. The MR is

positive and remains normal when the thickness of Cu is 0 Å, while, the MR

becomes negative when the thickness of Cu is 4.5 Å. The fitted oscillation period is

11.4 Å which corresponds to the long period oscillation from the q1 vector. The

period of exchange coupling in Co(001)/Cu(001)/Co(001) structure, fabricated by

the same method, is also 11 Å. This proves that the oscillations arise from the

same q1 vector. In single crystalline MgO MTJs,the tunneling is coherent, thus

the MR oscillation caused by the insertion of non-magnetic layers will be easier

to be observed experimentally [107, 108] and the first-principles calculations

can be employed in order to clearly reveal the physical mechanism behind it

[109, 110].

Fig. 18 (a) Schematic diagram of Co(001)/Cu(001)/Al–O/NiFe MTJs. (b) Fermi surface of

fcc-Cu, when conduction electrons are confined in the [001]-direction, quantum well states with

scattering vectors q1 and q2 can be created (From [106]. Reprinted with permission from AAAS)
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Magnetoresistance Oscillation Effect in MTJ

Double barrier magnetic tunnel junctions (DBMTJs) have drawn much research

attention due to its rich physics and promising applications in spintronic devices. In

1997, Zhang et al. [105, 111, 112] used Slonczwski free electron model and transfer

matrix method to calculate the bias dependence of TMR in FM/I/FM/I/FMDBMTJ.

Their results show the tunnel conductance and TMR oscillation as a function of bias

voltage. Sheng et al., [9] used Landauer B€uttiker scattering method to study the

transport properties in DBMTJs and found the non-linear dependence of TMR on

bias voltage. Barnas et al. [113, 114] observed the MR oscillation due to the charge

effect in the middle magnetic layers. Later, Vedyayev et al. [115, 116] generated the
DBMTJ model to multiply DBMTJs and a pronounced oscillation was predicted.

One year after the predictions, a series of experimental progress was done. In

1998, Montaigne et al. [10] first reported the measurement of MR effect in

Co/AlOx/Co/AlOx/Ni80Fe20 DBMTJ. As shown in Fig. 20 (left), the TMR ratio is

around 11 % at room temperature which is lower than the value of 16 % in single

barrier MTJs. As shown in Fig. 20 (right), in single barrier MTJs, V1/2 is around
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0.26 V, but in DBMTJ it is larger than 0.8 V. In 2001, Saito et al. [10] investigated

the transport properties in IrMn/CoFe/AlOx/CoFe/AlOx/CoFe/IrMn structure. TMR

reaches to 42.4 % and half-width reaches to 872 mV after annealing at 300 K. In

almost all the reports, the TMR reported in DBMTJ is found to be lower than that of

single barrier MTJ. Han et al. [46, 47] suggested a possible explanation for this

phenomenon by micro-magnetic simulations. They pointed out that when current is

applied, the vortex domain wall (butterfly-shaped domain wall) will be present in

the middle magnetic layer. As a result, the perfect antiparallel state cannot be

achieved, resulting in the reduction of TMR in DBMTJs.

In 2003, Colis et al. [48] fabricated CoFe/AlOx/CoFe/AlOx/CoFe-DBMTJ. The

TMR ratio was 49.5 % at RT and V1/2 was 1.33. Zeng et al. [117] prepared

Co75Fe25/Al–O/Co75Fe25/Ni79Fe21/ Co75Fe25/Al–O /Co75Fe25 DBMTJ. They have

observed the TMR ratios of 29.4 % and 41 % at room temperature and at 4.2 K,

respectively. The bias dependence of conductance and TMR has also been
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investigated. As shown in Fig. 21, RAP and TMR show an oscillation with respect to

the bias voltage in theAP configuration.On the other hand, there is no visible oscillation

in the P configuration. The oscillation of the TMR ratio was attributed to arise from the

oscillation of the resistance in AP states. The oscillation period was 1.6 mV.
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They proposed that the observed effect may involve additional inelastic scatter-

ing mechanisms, more specifically the spin wave emissions in the middle ferro-

magnetic layer. In a single barrier MTJ, the spin accumulation at the two sides of

the electrodes contributes very little to the resistance because the barrier resistance

is much larger than the spin accumulation induced resistance [118]. However, an

assisted tunneling might occur if the spin accumulation can generate magnons or

spin waves in the middle layer because these excitations may assist the electron

tunneling from first barrier to the second one. The magnon assisted tunneling has

already been investigated in the study of the temperature and voltage dependence of

TMR [76, 84]. When the spin accumulation exceeds a critical value, such that the

difference of the chemical potentials between spin-up and spin-down channels

remains larger than the threshold of the spin wave gap, typically at about 1 meV,

magnons can be generated and the magnon-assisted tunneling contributes to the

tunnel conductance. In the P state, the spin accumulation is parallel to the local

moment, and thus the spin wave emission is prohibited by the spin angular

momentum conservation, i.e., the magnon-assisted tunneling is suppressed. This

mechanism is similar to the current driven spin-wave excitations mechanism

suggested by Berger et al. [119].

This research has drawn great interest of the scientific community and further

related work is in progress. It is promising that in the future, oscillatory MR can be

obtained with high values at the same time.

Spin-Scattering Effect and Spin-Flip Length in MTJ

The FM/I/NM/I/FM DBMTJs can be formed by replacing the middle ferromagnetic

metallic (FM) layer with the non-magnetic metals (NM). Zheng [120] and

Wilczynski et al. [121] studied the conductance and TMR in this type of DBMTJ

at zero bias and finite bias, respectively. Their results show tunneling current at zero

bias and TMR oscillations as a function of middle non-magnetic layer thickness.

High TMR can be achieved for a particular thickness range, as shown in Fig. 22.

The tunneling process involved here is the coherent tunneling in which the phase

of electrons is conserved. There is another tunneling process called “sequential

tunneling” that can also occur in DBMTJ. In the sequential tunneling process, the

tunneling can be considered to proceed in sequence. The electrons firstly tunnel into

the middle layer and then tunnel into the last electrode. In these two processes,

electrons lose their phase relation. In the sequential tunneling regime, some theo-

retical results [122–125] show that the measurable TMR of DBMTJ with NM

middle layer is possible only when the electrons have long relaxation time. For

coherent tunneling, electrons spend very short time in barrier and thus the spin

accumulation effect can be neglected.

One of the challenges in the physics of spin-based electronics, or spintronics, is

the study of spin-flip scattering and its effect on magnetotransport, in particular, on

spin injection and accumulation. Bratass et al. [123] studied the spin accumulation

effect in FM/I/NM/I/FM DBMTJ. TMR is found to be related to the spin
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accumulation in the middle layer. The TMR effect in DBMTJ can be used to

investigate the spin-flip process and to probe the spin-diffusion length in the middle

non-magnetic layers. Zeng et al. [124] fabricated CoFe(CoFeB)/AlO/Cu/AlO/CoFe

(or CoFeB) DBMTJ with Cu middle layer to investigate the spin-flip scattering.

Based on the free-electron model [125], the TMR of DBMTJ can be deduced from

the single barrier MTJ:

ΔR
R

¼ 1

2

GP � GAp

GAp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GP � GAp

p
γGs

(4)

where, GP and GAP are the parallel and antiparallel conductances of SBMTJ,

γ2 = 2RN, RN is the conductance of Cu/Al–O/Cu, and Gs is spin-flip conductance.

Figure 23 shows the bias voltage dependence of γGs extracted using Eq. (3) from

the TMR measurements for CoFeB DBMTJ sample with a Cu spacer layer of

0.5 nm thickness. The nonlinear voltage dependence agrees well with the theory.

The bias voltage dependence of γGs arises directly from the density of states of the

Cu layer. The spin-flip conductance γGs reaches the maximum at about

V = �0.14 V, when the transport window in the Cu layer reaches the nearest

QW. In Fig. 23, γGs was plotted for two sets of samples as a function of the

temperature. For both sets, γGs increases linearly with the temperature. The slopes

of the two lines differ by about a factor of 3, in proportion to the Cu layer

thicknesses of 0.5 nm and 1.4 nm for the two DBMTJ samples. The linear

temperature dependence and the scaling of the slope with the Cu thickness suggest

Fig. 22 Conductance and TMR as a function of NM thickness (a, Reprinted with permission from

[120]. Copyright (1999) by the American Physical Society; b, Reprinted from [121]. Copyright

(2000) with permission from Elsevier)
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that the bulk spin-flip scattering may arise from electron–phonon interaction. The

room temperature spin-flip length was fitted to be lsf (300 K) = 350 nm [128]. We

found that for the Cu = 0.5 nm sample, lsf (4.2 K) = 1.0 μm and for the Cu

= 1.4 nm sample, lsf (4.2 K) = 2.6 μm. These values are in agreement with the

diffusive regime measurement [128]. This new method can be used to probe the

spin diffusion length. It is critical for developing spintronic devices.

Spin-Dependent Coulomb Blockade Magnetoresistance

The spin-dependant phenomenon can be enhanced and novel physics may emerge

in this quantum dot or granular system due to the discrete energy level and charge

effect. Takanashi et al. [68] studied spin-dependent electron tunneling in ferromag-

netic junctions containing small metallic islands. The tunneling matrix elements

depend on the relative direction of magnetization of the island and electrodes.
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The dependence of the matrix elements amplifies the co-tunneling in the Coulomb

blockade regime. They showed that in single-electron ferromagnetic transistors, the

MR is strongly enhanced by the Coulomb blockade. Results provide a theoretical

basis for recent experiments on ferromagnetic single-electron transistors, ferromag-

netic double tunnel junctions, and ferromagnetic granular materials. Barnas

et al. [129] used perturbation method to study the transport of MTJs with magnetic

nano-dots. Their study shows that in the coulomb blockade regime, the

co-tunneling plays a crucial role in the bias dependence of TMR, which results in

the zero bias anomalies. In low bias, the TMR is suppressed, indicating that the

spin-flip process exists in the barrier. With the increase of bias, spin accumulation

reduces the spin-flip process resulting in the gradual increase of TMR. Fettar

et al. [130] studied the electric and magnetotransport properties of Co/Al2O3/Co/

Al2O3/(Co, Cu) double tunnel junctions, in which the intermediate Co layer is either

granular or percolated clusters and the top electrode is either Co or Cu. In granular

junctions, spin-dependent tunneling with Coulomb-blockade effect was observed.

The Coulomb blockade effect and the improvement of the antiparallel alignment at

low temperature resulted in enhancement of TMR effect.

In 2005, Yakushiji et al. [131] designed Al/Al–O/CoAlO granular/Co/Pt mag-

netic MTJs as shown in Fig. 24. At low temperature, TMR oscillates as a function of

bias. They simulate the bias dependence of TMR with different spin-relaxation time

of 1 ns, 10 ns, and 150 ns. By comparing the experiments and simulations, they

found that the TMR curve can be best fitted with 150 ns spin-relaxation time.

Theoretical analysis of the MR behavior clearly shows that the spin-relaxation time

in nanoparticles is highly enhanced in comparison with that in the bulk.

Zhang et al. [12] proposed the spin-dependent Coulomb blockade (CB) voltage

as a possible mechanism for producing very large MR. The spin dependence of the

CB voltage is realized through the coupling between the QDs due to spin-dependent

electron transport, as illustrated in Fig. 25a. As the inter dot conductance is

enhanced, the collection of the QDs acts together as a larger QD. This causes a

reduction in the CB voltage. When inter dot coupling is controlled by the magnetic

moments of the QDs, the Coulomb blockade magnetoresistance (CBMR) effect is

produced. The main theoretical formulas are given as follows:

GH Vð Þ
G0 Vð Þ ¼

λ0=λHð Þ2
ð1
xV

x4FH xð Þdx
ð1
xV

x4F0 xð Þdx
(5)

where, λH and λ0 are the effective mean size of nanodots with and without magnetic

field, FH and F0 are size distribution function of QDs, xV is the smallest size of QDs

which contributed to the conductance under bias V.

The mechanism proposed above is different than the previous considerations of

spin-dependent Coulomb blockade effect. In previous models, the Coulomb block-

ade voltage is assumed to be a constant and the MR arises from the spin-dependent

tunneling resistance between the electrodes and the quantum dots. In this model the
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Coulomb blockade voltage itself is spin dependent which leads to a much larger

MR. This CBMR effect can be realized in organic granular, MTJ, giant magneto-

resistance, and colossal magneto-resistance structures. As shown in Fig. 25b, Feng

et al. [132] observed over 10,000 %MR ratio in phase-separated La0.67Sr0.33MnO3/

SrTiO3/La0.67Sr0.33MnO3 MTJs. Quantitative agreement between the model and the

experiment for the bias voltage dependence was also observed. This CBMR effect

may be promising in designing high signal-to-noise ratio and low power consump-

tion spintronic devices in future.

Spin Transfer Torque Effect in MTJ

Spin-transfer torque (STT) effect is a milestone discovery in the development of

spintronics. STT will not only provide a new data writing strategy, but is also

consistent with the development trend of high density devices. To reduce the

critical switching current is the pursuing target both in lab and industry.
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In 2003, Liu et al. [133] observed current induced magnetic switching with the

current as high as tens of micro-Ampere in micro-magnetic tunnel junctions. But

this switching process cannot be explained only by the STT effect. The Oester field

is also important in this switching process. In 2004, Huai et al. [13] observed

obvious STT effect in Al–O MTJs, as shown in Fig. 26a, c are the R-H curves

(b) and (d) is the current induced switching curve for Al–O MTJs (left), the critical

switching current is 8 � 106 A/cm2.

Han et al. [41, 134] fabricated nano-ring magnetic tunnel junctions (NR-MTJ)

with 2.5 nm CoFeB free layer, 100 nm outer diameter, and 25 nm width. The MTJ

stack structure consists of Ta(5 nm)/Ru(10)/Ta(5)/Ni81Fe19(5)/Ir22Mn78(12)/CoFe(2)/

Ru(0.9)/CoFeB(3)/Al(0.6-oxide)/CoFeB(2.5)/Ta(5)/Ru(6). The spin-polarized current
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induced magnetic switching was investigated. Figure 27 shows the typical switching

curve ofNR-MTJ. Pulse current width of 500 nswas exerted on theNR-MTJ. After the

introduction of pulse current, 10 μA current was used to measure the resistance. The

STT produced by pulse current interact with themagnetic moment of free layer.When

the current density reaches the critical value, the free layer is switched. The critical

current for AP to P state is 425 μA and P to AP is 475 μA in this NR-MTJ.

Wei et al. [135] studied the current induced magnetic switching in sandwich

nano-ring magnetic tunnel junctions. Before each measurement, a 500 ns current

pulse was applied to the junctions and then 10 μA current was used to read the

resistance. This small measurement current did not affect the domain structure.

Repeating the process by increasing or decreasing the amplitude of current, the
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R-I curve can be obtained as shown in Fig. 28. The critical current for switching

from AP to P state is 1.1 mA and the corresponding current density is 6 � 106

A/cm2.

Wei et al. pointed out that the simulation shows a gradual change in resistance

just before switching near the parallel (antiparallel) resistance at positive (negative)

currents, while the experimental switching between parallel and antiparallel resis-

tances is abrupt. This discrepancy is due to an artifact in which the simulation was

carried out with a constant current density. When the current is near the switching

current, one of the layers is in a stable precessional state. Experimentally, the

resistance was measured after the pulsed current was switched off. Therefore, the

measured states returned to the parallel onion states. The current was turned off

after a certain time during the simulation, and the loop did not change gradually

because the precessional states returned to either the parallel or antiparallel state

(Fig. 28e).

When the current is applied perpendicular to the junctions, besides STT, the

current will exert a circular Oersted field. This field will result in complex multiple

switching in nano-ring shaped MTJs [136]. Wei et al. [137] studied the multiple

switching of NR-MTJ with 100 nm diameter under the combined action of spin-

polarized current and the Oersted field. They found that the switching process

depends mainly on the non-adiabatic STT, while the circular Oersted field plays a

supplementary role.

The Applications of Al–O Based MTJ

Applications of MTJs include hard drive read heads, magnetic random access

memories, spin field effect transistors, magnetic logic devices, magnetic sensors,

etc. Before 2004, investigations on MTJs and their applications mainly focused on

Al–O based MTJs. Studies on physics and applications of Al–O based MTJs not

Fig. 27 Spin-polarized

current induced switching of

nano-ring shaped magnetic

tunnel junctions (Reprinted

with permission from

[134]. Copyright (2007), AIP

Publishing LLC)
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only paved the way for magnetic electronics and spintronics, but also enormously

improved applications of MR materials and novel spintronic devices in information

industries. At the same time, investigations on Al–O MTJs laid the foundation for

MgO-based MTJs with even higher MR ratio and their applications.

Magnetic Read Heads

Read head, as an important component of hard disk drive, flies on the surface of

disk and converts the magnetic field in disk into electric signal. INESC reported in

2000 their first Al–O based MTJ read head which can be used to read information

recorded in a hard disk with an areal density of 100 Gbit/in2 [138]. In the same year,

Seagate Technology demonstrated their Al–O based read head [139]. MTJs can be

used as read head in hard disk drives if their resistance-area product is smaller than

10 Ωμm2 and magnetoresistance ratio is greater than 10 % ~ 20 %. Kobayashi

et al. [140] summarized developments of Al–O MTJs from 1995 to 2005 (as shown

in Fig. 29). Lower MR ratio of Al–O MTJs compared to that of MgO-based ones
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limit their usage in commercial ultrahigh areal density read heads. The first

commercial MTJ read head product released by Seagate Technology in 2005 was

based on MgO [141].

Magnetic Sensors

Al–O based MTJs can be used in various commercial magnetic sensors. Compared

to widely used semiconductor-based Hall devices, magnetic sensors based on MTJs

have irreplaceable advantages. MTJ based sensors also show higher sensitivity.

Ordinary commercial spin valve GMR sensors show an MR ratio of about 10 % at

room temperature and the sensitivity is usually not higher than 10 mV/Oe, even

when inserted into a bridge circuit. However, Al–O based spin valve shows MR

ratio of 50–80 % and hence higher sensitivity in detection of tiny magnetic fields

[142, 143], because of which MTJs are competitive in the field of magnetic sensor.

Particularly, the most important advantage of MTJs is that their sizes can be

patterned down to micrometers and even hundreds of nanometers. As a result,

MTJ sensors have high spatial resolution and can be used as biological sensors

[144–146].

Magnetic Random Access Memory (MRAM)

Another important application of TMR effect is to use the change of resistance

for non-violate information storage. Resistance difference of MTJs in their two

most stable magnetic configurations, i.e., parallel and antiparallel configurations,

can be used to store the two independent states in electronic information as 0 and 1.
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As a result, MTJ based on TMR effect can be used to develop novel random access

memories, i.e., magnetic random access memory (MRAM). MRAM takes the

advantages of low energy consumption, non-volatility, and can package informa-

tion accessing, transferring, processing, and storage into one chip (Fig. 30).

In the history of MRAM, Al–O based MTJ played a crucial role. MRAM has

attained a great progress thanks to researchers’ contributions. MRAM has devel-

oped from astroid MRAM, toggle MRAM, and thermal assisted MRAM which are

read and written by magnetic field, to spin-transfer MRAM and nano-ring MRAM

which are read and written by spin-polarized electric current [41]. Investigations in

recent years showed that MRAM based on spin-transfer torque has the potential to

develop MRAM with higher areal density and, hence, higher capacity, which is the

goal of companies all over the world. Up to now, the development of MRAM can be

illustrated by Fig. 31 [41].

In summary, along with continuous effort in investigations of spin-transfer

MRAM, it is not hard to predict that in the near future, spin-transfer MRAM with

high performance and high capacity would appear in commercial applications. The

progress of MRAM is covered in Part IX, Volume 2.

Spin Transistors and Field Effect Transistors

Spin transistor with memory and logic functions is one of the potential applications

of MR effect and its usage in future powerful integrated circuits has gained much

attention. Typical structures of spin transistor [147, 148] is shown in Fig. 32.

Voltage applied across MTJ is usually smaller than 0.5 V and the spin-dependent

scattering occurs near Fermi level. In contrast, collector electrode in spin transistor
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Fig. 30 Schematic graph of (a) field driven MRAM cell constructed from “1T + 1MTJ” structure

and (b) electric current driven spin transfer torque MRAM cell
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Fig. 31 Roadmap of MRAM demo device development for both the conventional Astroid or

Toggle design using magnetic-field-driving method and the novel STT-MRAM or nanoring

MRAM design using current-switching method based on one MTJ and one transistor structure

(Reprinted with permission from [41]. Copyright (2008), AIP Publishing LLC)
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collects hot electrons and energy differences between these hot electrons and Fermi

level is usually several volts. Electrons injected from emitter electrode are strongly

scattered spin-dependently in base electrode and finally these highly spin-polarized

electrons tunnel from collector electrode to semiconductor which is connected with

collector electrode. Therefore, spin polarized electrons injection into semiconduc-

tor can be realized [149].

Magnetic Logic Devices

Digital logic design using spin of electrons in magnetic materials is magnetic logic.

MTJs based on TMR effect have been widely used in data storage and magnetic

field sensor; however, their application in magnetic logic is still at beginning stage.

Das proposed a kind of spin magnetic logic [150] based on MR effect driven by

magnetic field in 2000. Two years later, Siemens demonstrated a kind of magnetic

logic element which can be renewed. Magnetic logic devices driven by spin-

polarized current is easy to fabricate and to control because of simple structure

and low power consumption [151, 152] (Fig. 33).

Memristors

In early 1971, Chua [153] firstly proposed the concept of memristor in theory. The

concept of memristor was proved in experiments by Stanley Williams Lab in 2008

[154]. Resistance of memristor depends on integral of voltage and current and the

history of applied voltage and current can be memorized by memristor. Electric field

induced resistance switching in oxides has been widely investigated and the mech-

anism was attributed to drift of oxygen atoms under bias electric field. MR effect and

electric field induced resistance switching can be observed in Al–O based and MgO

based MTJs at the same time. However, simultaneous observation of MR effect and

electric field induced resistance switching is on its beginning stage. Krzysteczko

Magnetic logic device based on nanoscale
MTJ with spin-polarized current driving

I Read in

I Read out

Capping layer
Soft FM layer
Barrier

Hard FM layer
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IA(+)
IA(−)
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Fig. 33 Schematic graph of

magnetic logic device based

on nano-scale MTJ with spin-

polarized current driving

[152]

5 TMR and Al-O Based Magnetic Tunneling Junctions 215



et al. [155] successfully observed MR effect and electric field induced resistance

switching in CoFeB/MgO/CoFeB MTJs. In their work, they observed MR ratio of

100 % and electric field induced resistance change of 6 %. For parallel and antipar-

allel magnetic configurations, electric field applied on MTJs can induce multi-

resistance state, as shown in Fig. 34, which can be used in multi-state data storage.

Summary and Prospects on Al–O MTJs

The discovery and development of Al–O magnetic tunnel junctions is a milestone

of great significance in magnetic tunnel junctions and spintronics. In 1995, the large

MR ratio at room temperature was reported for the first time in Al–O MTJ [2, 3]

after 20 years of remarkable achievements. Based on these achievements, the

progress on MgO-MTJs was started in 2001 [156–158]. Although, at present over

100 % TMR ratio can be obtained in Al–O MTJs [51] and over 600 % TMR ratio in

single crystalline MgO-MTJs [159] at room temperature, it is still possible to get

MTJs with higher TMR and better performance by searching new barrier and

magnetic electrode materials. For example, recently, spinel oxides AB2O4 [160]

have drawn much attention due to their rich electric and magnetic properties and

small lattice mismatch (<1 %) with typical ferromagnetic metallic electrode

materials such as Fe, Co, CoFeB, and Heusler alloy. In 2010, scientists in NIMS

have successfully fabricated Fe/MgAl2O4/Fe magnetic tunnel junctions. Prelimi-

nary results show that the MTJ has good magneto-electric performance. The TMR

exceeds 110 % at room temperature, the half-width is as high as 1 V [161]. By

carrying out first-principles calculations, Zhang et al. [162] found that several

Fig. 34 Simultaneous occurrence of resistive and magnetoresistive switching in CoFeB/MgO/

CoFeB MTJ. (a) A slight splitting of I-V curve can be observed for both magnetic states, which

demonstrates the presence of resistance switching. Since the curves are highly symmetric with

respect to the origin, only the first quadrant is shown. (b) The magnetoresistive switching of the

device characterized by a magnetic minor loop (Reprinted with permission from [155]. Copyright

(2009), AIP Publishing LLC)
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typical spinel oxides have the similar complex band like MgO. It is promising to get

high TMR inMTJ with this kind of spinel oxides, as shown in Fig. 35. The magnetic

electrodes with high spin-polarization, perpendicular magnetic anisotropy [163]

and low damping parameter [164] have important application value on the high

speed, low power consumption spintronic devices such as magnetic random access

memory and nano-oscillator, etc.

In conclusion, the Al–O based MTJ fabrication and its high TMR ratio observed

is not only a milestone discovery, its rich material and device applications is also a

very important constituent part in developing magneto-electronics and spintronics.
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1. Julliére M (1975) Tunneling between ferromagnetic films. Phys Lett A 54:225

2. Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction.

J Magn Magn Mater 139:L231

3. Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room

temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273

10a b

c d

MgO

ZnAl2O4

MgAl2O4

SiMg2O4

8

6

4

2

0

−2

Δ1

−4

−2.0 −1.5 −1.0 −0.5 0.0

E
ne

rg
y 

(e
v)

Im(k),
Re(k)

Imk Rek
0.5

10

8

6

4

2

0

−2

Δ1

−4

−2.0 −1.5 −1.0 −0.5 0.0

E
ne

rg
y 

(e
v)

Re(k)

Imk Rek
0.5

Im(k)

10

8

6

4

2

0

−2

Δ1

−4

−2.0 −1.5 −1.0 −0.5 0.0

E
ne

rg
y 

(e
v)

Re
Im

Imk Rek
0.5

10

8

6

4

2

0

−2

Δ1

−4

−2.0 −1.5 −1.0 −0.5 0.0

E
ne

rg
y 

(e
v)

Re(k)

Imk Rek
0.5

Im(k)

Fig. 35 The band structure of (a) MgO, (b) spinel MgAl2O4, (c) spinel ZnAl2O4, and (d) spinel
SiMg2O4 long [001] direction. The blue and black curves show the pure imaginary and real bands,

respectively. These spinel oxides have similar Δ1 spin-filter effect as MgO (Reprinted with

permission from [162]. Copyright (2012), AIP Publishing LLC)

5 TMR and Al-O Based Magnetic Tunneling Junctions 217



4. Wei HX, Qin QH, Ma M, Sharif R, Han XF (2007) 80 % TMR at room temperature for thin

Al–O barrier magnetic tunnel junction with CoFeB as free and reference layers. J Appl Phys

101:09B501
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