
Chapter 4
The Triangular Finite Element for Netting

Abstract The modellings for netting are fully described. The usual modellings
based on numerical twines or globalization of twines are partly explained with their
limitations. These limitations have drove to the creation of the triangular finite ele-
ment for netting. This triangular element for netting is fully described. The forces
required for the equilibrium calculation are fully described, as well as the stiffness in
case of—twines elasticity,—hydrodynamic forces,—twine flexion,—mesh opening
stiffness,—fish catch pressure,—inertia,—buoyancy and weight.

Keywords Triangular finite element for netting · Twines tension in netting · Hydro-
dynamic forces on netting · Twine flexion in netting · Mesh opening stiffness of
netting · Fish catch pressure in cod-end

4.1 State-of-the-Art of Numerical Modelling for Nets

4.1.1 Constitutive Law for Nets

There is little or no published work on the constitutive law for nets. Only Rivlin
[23], to our knowledge, begins to express the stresses in a net surface, but only
under conditions of symmetrical deformation twine. If such constitutive law could
be defined, usual finite element softwares could be adapted for nettings.

4.1.2 Twine Numerical Method

The twine numerical method includes almost all the work on numerical modelling of
the net [2, 6, 9, 10, 11, 24]. The initial idea is simple: the twines of the net are modelled
by bars (called here numerical twines). Then a few adjustments are required.
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28 4 The Triangular Finite Element for Netting

The twines could be modelled by two bars to account for the shortening, which
appears as an angle between the bars. The twines could be modelled with a single bar,
but Young’s modulus in compression is almost zero to account for the shortening.
Given the large number of twines in some structures (up to one million), a numerical
bar refers to several true twines (Fig. 4.1). This is called globalization.

The major difficulty with this method of globalization lies in the description of
the net by numerical twines. Indeed, a structure is very often the assembly of several
panels of nets. Therefore, the creation of numerical twines in a panel will generate
nodes on its contour. These nodes are the basis for the creation of numerical twines
of the adjacent panel (Figs. 4.2 and 4.3).

Figure 4.2a shows four panels (50 by 50 meshes) whose numerical twines connect
perfectly (Fig. 4.2b): the nodes on the edges are perfectly aligned with the nodes of
the adjacent panels.

Figure 4.3a shows the same example, except that panel 1 is only 45 meshes hor-
izontally. In this case the nodes on the borders do not connect perfectly between
panels 4 and 1 (Fig. 4.3b), whereas the connections are perfect on the other three
seams. This approach requires facilities such modification of the design of the net-
ting panels. These facilities are not well described in the literature dedicated to this
method.

4.2 The Finite Element for Netting

Triangular elements have been developed to model the net (Fig. 4.4). A number of
approximations are made in these triangular elements, with the aim of calculating the
forces at the vertices of these elements. These are calculated based on the positions

Fig. 4.1 Control net 50 meshes high by 50 and 45 wide (a), with a ratio of globalization of 5 (b)
and 10 (c)
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Fig. 4.2 Structure of four panels of 50 by 50 meshes (a) discretized in numerical twines (b;
globalization ratio of 10): the connection between numerical nodes on the borders of panels is
perfect (black dots for the border between panels)

of the vertices. The basic assumption in modelling nets by triangular elements is that
the twines remain parallel. Under these conditions the twines of the same direction
have the same deformation. The second assumption is that the twines are modelled
as elastic rods.

One difficulty with the method of numerical globalized twines (or numerical
twines) was described earlier: nodes on the edges of the panels do not always coin-
cide perfectly (Fig. 4.3b). This difficulty disappears with triangular elements, since
the discretization of a netting panel is independent of the discretization of adjacent
panels, except on the border. The same panels of Fig. 4.3 are discretized in Fig. 4.5
with triangular elements. Panel 2 in (Fig. 4.5a) is discretized with large triangular
elements and in (Fig. 4.5b) with smaller elements. It is clear that triangular element
discretization is done very easily, unlike the numerical twines technique. This flexibil-
ity in the creation of triangular elements overcomes the cumbersome tool for creating
globalized twines. This burden results from many different cases to be processed and
consequently adjustments that sometimes make it impossible to fully describe the
structure to be studied with the method of numerical twines.
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Fig. 4.3 a Four netting panels 50 by 50 meshes except for panel 1, which has only 45 meshes
horizontally. b The globalization of 10 leads the nodes on the common border of panels 1 and 4 to
not connect perfectly: panel 1 has five nodes on its bottom border, while the top border of panel 4
has six nodes (black dots)

4.2.1 The Basic Method: Direct Formulation

The triangular finite element dedicated to diamond mesh nets is described here.
The triangular element is defined by its three vertices, which are connected to the

net. The coordinates of the vertices in number of twine vectors are then constant,
whatever the deformation of the triangle. Figure 4.6 shows an example. In this exam-
ple the coordinates in twine number of node 1 are 1.5 along the U twine and −3.5
along the V twine. It is clear that if the origin of coordinates in twine number changes,
the twine coordinates of nodes will change but will not affect the equilibrium position
of the net.

These twines are parallel inside the triangular element, which means that the sides
of the triangle (12, 23, 31) are linear combinations of twine vectors (U and V, cf.
Fig. 4.6). This point is the main foundation of the model. These combinations are as
follows:

12 = (U2 − U1)U + (V2 − V1)V (4.1)

13 = (U3 − U1)U + (V3 − V1)V (4.2)

12 (13): vector from vertex 1 (1) to vertex 2 (3).



4.2 The Finite Element for Netting 31
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Fig. 4.4 The diamond mesh (a) is decomposed into triangular elements (b). The approximation
in each triangle is that twines are parallel and therefore have the same deformation, and that the
twines are elastic

The two previous equations with two unknowns (U and V) then give the following:

U = V3 − V1

d
12 − V2 − V1

d
13 (4.3)

V = U2 − U1

d
13 − U3 − U1

d
12 (4.4)

With side vectors:

12 =
x2 − x1
y2 − y1
z2 − z1

(4.5)

13 =
x3 − x1
y3 − y1
z3 − z1

(4.6)
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Fig. 4.5 Case identical to Fig. 4.3. Although the netting in panel 1 has only 45 meshes horizontally,
the triangular element discretization is easy. The step size of panel 2 is larger in (a) than in (b)

Fig. 4.6 A triangular ele-
ment: the sides of the triangle
are linear combinations of
twine vectors (U and V). The
coordinates in twine number
are noted. The origin of theses
coordinates is the intersection
of U and V
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and
d = (U2 − U1)(V3 − V1) − (U3 − U1)(V2 − V1) (4.7)

xi , yi , zi : Cartesian coordinates of vertex i,
Ui , Vi : coordinates of vertex i in number of twines (twine coordinates).
The twine vectors (U, V) are calculated from the Cartesian coordinates (xi , yi ,

zi ) of the vertices of the triangular element.
It appears that nothing implies that the number of twine coordinates of the vertices

of the triangle consists of integers. Therefore, these coordinates can be real. This
implies that the vertices of the triangle are not necessarily located on knots of the net
(Fig. 4.4). Similarly, nothing prevents the triangle from being smaller than a mesh.
It appears that while the triangle does not contain any piece of twine of the net, d is
not null, and therefore the triangle contains twines and consequently a deformation
energy. In other words, the triangular finite element is a homogenization of the
mechanical properties of the net.

It also appears that every point of the twines belongs to only one triangular element
and still the same, regardless of the deformation of the net. Points on the contour of
a triangular element also belong to the neighbours.

4.2.2 Metric of the Triangular Element

The objective of the finite element method is to calculate the Cartesian coordinates
of the numerical nodes. These nodes are, for the netting, the vertices of the triangular
elements (Figs. 4.7 and 4.8a).

The nodes are fixed relative to the netting, which means that the coordinates of
the nodes in twines or meshes remain constant regardless of the netting deformation.

Figure 4.8b and c show an example of coordinates of a triangular element. Gen-
erally speaking, the mesh coordinates are used by the netting maker.

There are relations between the mesh coordinates and the twine coordinates, the
bases of which are noted in Fig. 4.8b and c.

The relations between the bases are the following:

u = U − V (4.8)

v = U + V (4.9)

This leads to:

U = u + v
2

(4.10)

V = v − u
2

(4.11)

u, v: mesh coordinates base,
U, V: twine coordinates base.
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Fig. 4.7 Two deformations of the same structure. The twines coordinates of vertices remain con-
stant. The twines coordinates of three vertices are noted. The dot is the origin of twines numbering.
Only 1 twine on 5 is drawn

(a) (b) (c)

Fig. 4.8 Triangular element: Cartesian coordinates (a), twines coordinates (b), and mesh coordi-
nates (c). The grey surface is a mesh surface (b)

This means that the relations between the twine coordinates and the mesh
coordinates of the node P are the following:

UP = uP + vP (4.12)

VP = vP − uP (4.13)

and

uP = UP − VP

2
(4.14)

vP = UP + VP

2
(4.15)



4.2 The Finite Element for Netting 35

Here, UP and VP are the twine coordinates, and uP and vP are the mesh
coordinates of the same node P . In these conditions the vector from origin to node
P could be written as follows:

OP = UP U + VP V (4.16)

OP = uP u + vP v (4.17)

Because the amplitude of a cross product of vectors is twice the surface of the
triangle made of these two vectors, the Cartesian surface of the triangular element
(in m2) is half the amplitude of the cross product of the side vectors of the triangular
element:

S = 1

2
|12 ∧ 13| (4.18)

The side vectors in Cartesian coordinates are as follows:

12 =
x2 − x1
y2 − y1
z2 − z1

(4.19)

13 =
x3 − x1
y3 − y1
z3 − z1

(4.20)

By the same way, the number of meshes, as defined in Fig. 4.8b, is

nbm = 1

4
|12 ∧ 13| (4.21)

with side vectors in twine coordinates:

12 =
U2 − U1
V2 − V1

0
(4.22)

13 =
U3 − U1
V3 − V1

0
(4.23)

The number of meshes in a triangular element is

nbm = 1

4
[(U2 − U1)(V3 − V1) − (U3 − U1)(V2 − V1)] = d

4
(4.24)



36 4 The Triangular Finite Element for Netting

Because there are two twines U and two twines V per mesh, the number of twines
U and V is calculated as follows:

nbU = d

2
(4.25)

nbV = d

2
(4.26)

Because there are also two knots per mesh, the number of knots in a triangular
element is

nbk = d

2
(4.27)

The surface (m2) of one mesh is calculated through the cross product of twines
vectors (U and V):

Ms = 2|U ∧ V| (4.28)

which is also the surface of the triangular element divided by the number of meshes
in the element:

Ms = S

nbm
(4.29)

In the case of Figs. 4.6 and 4.8, d = 38, the number of meshes is 9.5, the number
of U twines is 18, the number of V twines is 18, and the number of knots is 18.

4.3 The Forces on the Netting

4.3.1 Twine Tension in Diamond Mesh

The tensions in the twines are required to estimate the forces on the vertices due
to these tensions. In the hypothesis of linear elasticity, these tensions are deduced
from U and V, which have been previously calculated. In these conditions the twine
tensions are as follows:

Tu = E A
|U| − l0

l0
(4.30)

Tv = E A
|V| − l0

l0
(4.31)

E : Young’s modulus of the material (N/m2),
A : mechanical section of the twines U and V (m2),
lo : unstretched length of twine vectors (m).

The principle of virtual work is used here to calculate the forces on the vertices
due to the tension in the twines.
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The force component along X on vertex 1 of a triangular element is estimated
by considering a virtual displacement (∂x1) along the axis x of vertex 1. This
displacement leads to an external work:

We = Fx1∂x1 (4.32)

This displacement also induces a change in the length of mesh bars (∂|U| and
∂|V|), an internal work per twine ∂|U|Tu and ∂|V|Tv and therefore an internal work
for the triangular element:

Wi = (∂|U|Tu + ∂|V|Tv)
d

2
(4.33)

The principle of virtual work implies that the external work equals the internal
work, since the forces represent the tension in the twines. That gives for each com-
ponent of force on the three vertices:

Fx1 =
(

Tu
∂|U|
∂x1

+ Tv
∂|V|
∂x1

)
d

2
(4.34)

Fy1 =
(

Tu
∂|U|
∂y1

+ Tv
∂|V|
∂y1

)
d

2
(4.35)

Fz1 =
(

Tu
∂|U|
∂z1

+ Tv
∂|V|
∂z1

)
d

2
(4.36)

Fx2 =
(

Tu
∂|U|
∂x2

+ Tv
∂|V|
∂x2

)
d

2
(4.37)

Fy2 =
(

Tu
∂|U|
∂y2

+ Tv
∂|V|
∂y2

)
d

2
(4.38)

Fz2 =
(

Tu
∂|U|
∂z2

+ Tv
∂|V|
∂z2

)
d

2
(4.39)

Fx3 =
(

Tu
∂|U|
∂x3

+ Tv
∂|V|
∂x3

)
d

2
(4.40)

Fy3 =
(

Tu
∂|U|
∂y3

+ Tv
∂|V|
∂y3

)
d

2
(4.41)

Fz3 =
(

Tu
∂|U|
∂z3

+ Tv
∂|V|
∂z3

)
d

2
(4.42)

The derivatives ∂|U |
∂x1 ... ∂|V |

∂z3 can be calculated, as the equations relating to U , V
and Xi , Yi , Zi have already been described. This gives the following vectors force
for the three vertices:
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F1 = (V3 − V2)Tu
U

2|U| + (U2 − U3)Tv
V

2|V| (4.43)

F2 = (V1 − V3)Tu
U

2|U| + (U3 − U1)Tv
V

2|V| (4.44)

F3 = (V2 − V1)Tu
U

2|U| + (U1 − U2)Tv
V

2|V| (4.45)

The Newton-Raphson method, described earlier, requires the calculation of the
stiffness matrix, which is calculated from the derivatives of effort with respect to the
positions of the vertices of the triangular element. The 81 derivatives, that is to say,
by 9 by 9 component coordinates, are then the following:

The stiffness matrix:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∂ Fx1
∂x1

− ∂ Fx1
∂y1

. . . − ∂ Fx1
∂z3

− ∂ Fy1
∂x1

− ∂ Fy1
∂y1

. . . − ∂ Fy1
∂z3

. . . . . .

. . . . . .

. . . . . .

− ∂ Fz3
∂x1

− ∂ Fz3
∂y1

. . . − ∂ Fz3
∂z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.46)

The components are calculated as follows:

∂ Fw1

∂t
= E Au(V3 − V2)

2

[
∂Uw

∂t

(
1

n0
− 1

|U|
)

+ ∂|U|
∂t

Uw

|U|2
]

+ E Av(U2 − U3)

2

[
∂Vw

∂t

(
1

n0
− 1

|V|
)

+ ∂|V|
∂t

Vw

|V|2
]

(4.47)

∂ Fw2

∂t
= E Au(V1 − V3)

2

[
∂Uw

∂t

(
1

n0
− 1

|U|
)

+ ∂|U|
∂t

Uw

|U|2
]

+ E Av(U3 − U1)

2

[
∂Vw

∂t

(
1

n0
− 1

|V|
)

+ ∂|V|
∂t

Vw

|V|2
]

(4.48)

∂ Fw3

∂t
= E Au(V2 − V1)

2

[
∂Uw

∂t

(
1

n0
− 1

|U|
)

+ ∂|U|
∂t

Uw

|U|2
]

+ E Av(U1 − U2)

2

[
∂Vw

∂t

(
1

n0
− 1

|V|
)

+ ∂|V|
∂t

Vw

|V|2
]

(4.49)

With:
w = x, y, z,
t = x1, y1, z1, x2, y2, z2, x3, y3, z3.

The following derivatives are also required.
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The derivatives of the components of U are as follows:

∂Ux

∂x1
= ∂Uy

∂y1
= ∂Uz

∂z1
= V2 − V3

d
(4.50)

∂Ux

∂x2
= ∂Uy

∂y2
= ∂Uz

∂z2
= V3 − V1

d
(4.51)

∂Ux

∂x3
= ∂Uy

∂y3
= ∂Uz

∂z3
= V1 − V2

d
(4.52)

∂Ux

∂yi
= ∂Ux

∂zi
= ∂Uy

∂zi
= ∂Uy

∂xi
= ∂Uz

∂xi
= ∂Uz

∂yi
= 0 (4.53)

The derivatives of the components of V are the following:

∂Vx

∂x1
= ∂Vy

∂y1
= ∂Vz

∂z1
= U3 − U2

d
(4.54)

∂Vx

∂x2
= ∂Vy

∂y2
= ∂Vz

∂z2
= U1 − U3

d
(4.55)

∂Vx

∂x3
= ∂Vy

∂y3
= ∂Vz

∂z3
= U2 − U1

d
(4.56)

∂Vx

∂yi
= ∂Vx

∂zi
= ∂Vy

∂zi
= ∂Vy

∂xi
= ∂Vz

∂xi
= ∂Vz

∂yi
= 0 (4.57)

The derivatives of |U| follow:

∂|U|
∂x1

= V2 − V3

d2 [(x2 − x1)(V3 − V1) − (x3 − x1)(V2 − V1)] (4.58)

∂|U|
∂x2

= V3 − V1

d2 [(x2 − x1)(V3 − V1) − (x3 − x1)(V2 − V1)] (4.59)

∂|U|
∂x3

= V1 − V2

d2 [(x2 − x1)(V3 − V1) − (x3 − x1)(V2 − V1)] (4.60)

∂|U|
∂y1

= V2 − V3

d2 [(y2 − y1)(V3 − V1) − (y3 − y1)(V2 − V1)] (4.61)

∂|U|
∂y2

= V3 − V1

d2 [(y2 − y1)(V3 − V1) − (y3 − y1)(V2 − V1)] (4.62)

∂|U|
∂y3

= V1 − V2

d2 [(y2 − y1)(V3 − V1) − (y3 − y1)(V2 − V1)] (4.63)

∂|U|
∂z1

= V2 − V3

d2 [(z2 − z1)(V3 − V1) − (z3 − z1)(V2 − V1)] (4.64)

∂|U|
∂z2

= V3 − V1

d2 [(z2 − z1)(V3 − V1) − (z3 − z1)(V2 − V1)] (4.65)

∂|U|
∂z3

= V1 − V2

d2 [(z2 − z1)(V3 − V1) − (z3 − z1)(V2 − V1)] (4.66)
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The derivatives of |V| are shown below:

∂|V|
∂x1

= U2 − U3

d2 [(x2 − x1)(U3 − U1) − (x3 − x1)(U2 − U1)] (4.67)

∂|V|
∂x2

= U3 − U1

d2 [(x2 − x1)(U3 − U1) − (x3 − x1)(U2 − U1)] (4.68)

∂|V|
∂x3

= U1 − U2

d2 [(x2 − x1)(U3 − U1) − (x3 − x1)(U2 − U1)] (4.69)

∂|V|
∂y1

= U2 − U3

d2 [(y2 − y1)(U3 − U1) − (y3 − y1)(U2 − U1)] (4.70)

∂|V|
∂y2

= U3 − U1

d2 [(y2 − y1)(U3 − U1) − (y3 − y1)(U2 − U1)] (4.71)

∂|V|
∂y3

= U1 − U2

d2 [(y2 − y1)(U3 − U1) − (y3 − y1)(U2 − U1)] (4.72)

∂|V|
∂z1

= U2 − U3

d2 [(z2 − z1)(U3 − U1) − (z3 − z1)(U2 − U1)] (4.73)

∂|V|
∂z2

= U3 − U1

d2 [(z2 − z1)(U3 − U1) − (z3 − z1)(U2 − U1)] (4.74)

∂|V|
∂z3

= U1 − U2

d2 [(z2 − z1)(U3 − U1) − (z3 − z1)(U2 − U1)] (4.75)

4.3.2 Twine Tension in Hexagonal Mesh

The same technique for the diamond mesh netting is used for hexagonal ones. The
triangular element dedicated to the hexagonal mesh netting has the same assumption
as previously adopted: the three families of twines inside the element are parallel,
i.e., l, m, and n twine vectors, are parallel (Fig. 4.9).

The mesh base (shaded area in Fig. 4.9) is first defined. This base mesh is defined
as a parallelogram; its corners coincide with knots, and it includes two l twine vectors,
two m twine vectors, and two n twine vectors. This base mesh is also used to quantify
the number of meshes inside the triangular element. The vertices of the triangular
element then have coordinates in base meshes (U1, U2, U3, V1, V2, V3; Fig. 4.9).

Vectors U and V are the sides of the mesh base. There are linear relations between
these two vectors and the sides of the triangular element (arrows on Fig. 4.9):

12 = (U2 − U1)U + (V2 − V1)V (4.76)

13 = (U3 − U1)U + (V3 − V1)V (4.77)
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Fig. 4.9 Triangular element dedicated to the hexagonal mesh nets. The twine vectors are l, m, and
n. The number of meshes are noted for each vertex. The mesh base is in grey and is defined by
vectors U and V

The two previous equations give the following as in the case of diamond mesh
(see Sect. 4.2.1, page 30), namely:

U = V3 − V1

d
12 − V2 − V1

d
13 (4.78)

V = U3 − U1

d
12 − U2 − U1

d
13 (4.79)

With vectors of the sides of the mesh base:

12 =
x2 − x1
y2 − y1
z2 − z1

(4.80)

13 =
x3 − x1
y3 − y1
z3 − z1

(4.81)

and
d = (U2 − U1)(V3 − V1) − (U3 − U1)(V2 − V1) (4.82)
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xi , yi , zi : Cartesian coordinates of vertex i.

The number of base meshes in a triangular element is equal to d/2, the total
number twine vectors is 3d, the number of twine vectors l, m, or n is d, and the
number of nodes is 2d.

Tensions in twine vectors l, m, and n are now calculated. This is done by solving
the force balance of the twines. This is solved by writing the following equations:

(1) The base mesh definition leads to (Fig. 4.9) :

U = −m + 2n − l (4.83)

V = −m + l (4.84)

(2) The amplitude of tension in the twines gives:

|Tl | = E Al
|l| − l0

l0
(4.85)

|Tm | = E Am
|m| − m0

m0
(4.86)

|Tn| = E An
|n| − n0

n0
(4.87)

(3) The balance of tensions leads to:

Tl + Tm + Tn = 0 (4.88)

This gives six equations with six unknowns (l, m, n, Tl , Tm , Tn).

4.3.2.1 Equilibrium of the Joint Knot

The six previous equations can be reduced to the two that follow with two unknowns
(mx and my components of m), since the triangular element has been turned in the
plane XOY [17, 19]:

mx + Vx√
(mx + Vx )2 + (my + Vy)2

El Al

lo

[√
(mx + Vx )2 + (my + Vy)2 − lo

]

+ mx√
m2

x + m2
y

Em Am

mo

[√
m2

x + m2
y − mo

]

+ mx + Ux +Vx
2√(

mx + Ux +Vx
2

)2 +
(

my + Uy+Vy
2

)2

En An

no
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×
⎡
⎣
√(

mx + Ux + Vx

2

)2

+
(

my + Uy + Vy

2

)2

− no

⎤
⎦

= 0 (4.89)

my + Vy√
(mx + Vx )2 + (my + Vy)2

El Al

lo

[√
(my + Vy)2 + (my + Vy)2 − lo

]

+ my√
m2

x + m2
y

Em Am

mo

[√
m2

y + m2
y − mo

]

+ my + Uy+Vy
2√(

mx + Ux +Vx
2

)2 +
(

my + Uy+Vy
2

)2

En An

no

×
⎡
⎣
√(

my + Uy + Vy

2

)2

+
(

my + Uy + Vy

2

)2

− no

⎤
⎦

= 0 (4.90)

mx , my : components of m twine (m),
lo, mo, no: unstretched length of twines l, m, and n (m),
Ux , Uy , Vx , Vy : components of the sides of the mesh base (m; see Fig. 4.9),
El , Em , En : Young modulus of twines l, m, and n (Pa),
Al , Am , An : section of twines l, m, and n (m2).
These two equations describe the equilibrium of the joint knot of three twines in a

triangle, the sides of which are U+V
2 and V (Fig. 4.10). These equations are in newtons.

4.3.2.2 Approximation of the Equilibrium of the Joint

The analytical solution of the two previous equations has not been found. Therefore,
the following approximation has been made to simplify the equations. This approx-
imation is acceptable because the stretched lengths of the twines are close to the
unstretched length.

mx

|m| ≈ mx

mo
(4.91)

my

|m| ≈ my

mo
(4.92)
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Fig. 4.10 The three twines
are in the triangle defined by
U+V

2 and V (cf. Fig. 4.9)

With this approximation the two previous equilibrium equations are reduced to
the following:

(mx + Vx )
El Al

l2
o

(√
(mx + Vx )2 + (my + Vy)2 − lo

)
+ mx

Em Am

m2
o

(√
m2

x + m2
y − mo

)

+
(

mx + Ux + Vx

2

)
En An

n2
o

⎛
⎝
√(

mx + Ux + Vx

2

)2

+
(

my + Uy + Vy

2

)2

− no

⎞
⎠ = 0

(4.93)

(my + Vy)
El Al

l2
o

(√
(mx + Vx )2 + (my + Vy)2 − lo

)
+ my

Em Am

m2
o

(√
m2

x + m2
y − mo

)

+
(

my + Uy + Vy

2

)
En An

n2
o

⎛
⎝
√(

mx + Ux + Vx

2

)2

+
(

my + Uy + Vy

2

)2

− no

⎞
⎠ = 0

(4.94)

They are the complete form of the following:

lx
El Al

l2
o

(|l| − lo) + mx
Em Am

m2
o

(|m| − mo) + nx
En An

n2
o

(|n| − no) = 0 (4.95)

ly
El Al

l2
o

(|l| − lo) + my
Em Am

m2
o

(|m| − mo) + ny
En An

n2
o

(|n| − no) = 0 (4.96)

4.3.2.3 Newton-Raphson Method

The previous approximation has not been sufficient to reach the analytical solution.
The Newton-Raphson method is used to find a numerical solution [4].
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For each iteration the displacement h is searched to find the equilibrium:

hk = F(xk)

−F ′(xk)
(4.97)

xk+1 = xk + hk (4.98)

k: iteration number,
F: force on nodes,
x: position of nodes.
Here:

F =
{

lx
El Al

l2
o

(|l| − lo) + mx
Em Am

m2
o

(|m| − mo) + nx
En An

n2
o

(|n| − no) = F1

ly
El Al

l2
o

(|l| − lo) + my
Em Am

m2
o

(|m| − mo) + ny
En An

n2
o

(|n| − no) = F2
(4.99)

x =
{

mx

my
(4.100)

The derivative is:

F ′ =
∣∣∣∣ D11 D12

D21 D22

∣∣∣∣ . (4.101)

With:

D11 = −
[

E Al

l2
o

(
l − lo + l2

x

l

)
+ E Am

m2
o

(
m − mo + m2

x

m

)
+ E An

n2
o

(
n − no + n2

x

n

)]

(4.102)

D12 = D21 = −
[

E Al

l2
o

lx ly

l
+ E Am

m2
o

mx my

m
+ E An

n2
o

nx ny

n

]
(4.103)

D22 = −
[

E Al

l2
o

(
l − lo + l2

y

l

)
+ E Am

m2
o

(
m − mo + m2

y

m

)
+ E An

n2
o

(
n − no + n2

y

n

)]

(4.104)

With the previous conditions the displacement (h) can be calculated:

h =
⎧⎨
⎩

D22 F1−D12 F2
D22 D11−D12 D21

D22 F2−D21 F1
D22 D11−D12 D21

(4.105)

4.3.2.4 Forces on Nodes

The forces on the sides of the triangular element are calculated from the twine tension.
These forces are related to the number of twines through the sides of the triangle.



46 4 The Triangular Finite Element for Netting

This number of twines through each side can be calculated based on the number of
base mesh of each vertex.

The effort on the side along U of the base mesh (Fig. 4.9) is

FU = Tl − Tm (4.106)

The effort along V is
FV = −Tn (4.107)

Under these conditions, the effort on each side of the triangle can be deduced:

T12 = (U2 − U1)(Tl − Tm) + (V2 − V1)(−Tn) (4.108)

T23 = (U3 − U2)(Tl − Tm) + (V3 − V2)(−Tn) (4.109)

T31 = (U1 − U3)(Tl − Tm) + (V1 − V3)(−Tn) (4.110)

Here, Ti j is the effort on the side i j of the triangular element.
Each side effort is distributed on each end of this side as the twines are evenly

distributed along the sides of the triangle:

F1 = T12 + T31

2
(4.111)

F2 = T23 + T12

2
(4.112)

F3 = T31 + T23

2
(4.113)

F1, F2, and F3 are the forces on the three vertices of the triangular element due
to the tension in the twines.

The contribution of the stiffness matrix is not described here.

4.3.3 Hydrodynamic Drag

4.3.3.1 Introduction

The drag force on the netting is calculated in this model as the sum of the drag
force on each twine (U and V). This assumption is probably questionable, because
the drag on a twine alone is surely not exactly the same as the drag on this twine
among other twines as it is the case in a netting. Anyway, this assumption leads to the
calculation of the drag of each triangular element because for each the twines vectors
are known, as described earlier. The formulation for the twine vector drag is based
on the assumptions of Morrison adapted by Landweber and Richtmeyer [8, 22].
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Fig. 4.11 Normal (F) and
tangential (T) forces on a
twine due to the relative
velocity of water (c)

The drag amplitudes on the U twines used in the model (Fig. 4.11) are:

|F| = 1

2
ρCd Dl0 [|c|sin(α)]2 d

2
(4.114)

|T| = f
1

2
ρCd Dl0 [|c|cos(α)]2 d

2
(4.115)

The directions of the drag on the U twine vectors are:

F
|F| = U ∧ (c ∧ U)

|U ∧ (c ∧ U)| (4.116)

T
|T| = F ∧ (c ∧ F)

|F ∧ (c ∧ F)| (4.117)

F: normal drag (N ) on the U twines, following the assumptions of Landweber,
T: tangential drag (N ) on the U twines, Richtmeyer hypothesis,
ρ: density of water (kg/m3),
Cd : normal drag coefficient,
f : tangential drag coefficient,
D: diameter of twine (m),
l0: length of twine vector (m),
c: water velocity relative to the twine (m/s),
α: angle between the U twine and the water velocity (radians),
d/2 : number of U twine vectors in the triangular element.

In the equations of drag amplitude, the expressions |c|sin(α) and |c|cos(α) are
the normal and tangential projections on c along the U twine vector.

The drag on V twines for a triangular element are similar: U is replaced by V and
α by β.
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The length of twine vectors used in the formulation of drag amplitude can be
assessed by |U| for the U twines and by |V| for the V twines. That would mean
it takes into account the twine elongation. Generally speaking, a twine elongation
is associated with a diameter D reduction by the Poisson coefficient. Because this
Poisson coefficient is not taken into account in the present modelling, the twine
surface is approximated by Dl0, where D is the diameter of the twines and l0 is the
unstretched length of the twine vectors.

All parameters, including the angles α and β, are constant and known for each
triangular element. Therefore, the drag can be calculated for each triangular element.
The drag force for a triangular element is spread over the three vertices of the element
at 1/3 per vertex.

4.3.3.2 Definitions of the Variables

The Cartesian coordinates of the three nodes (1, 2, 3) of the triangular element (cf.
Fig. 4.12) follow:

1 =
x1
y1
z1

(4.118)

2 =
x2
y2
z2

(4.119)

3 =
x3
y3
z3

(4.120)

Fig. 4.12 Example of trian-
gular element. The drag forces
are calculated for U twines
and for V twines. The twine
coordinates are noted in this
example
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The twine coordinates of the three nodes (1, 2, 3) of the triangular element are as
follows:

1 = U1
V1

(4.121)

2 = U2
V2

(4.122)

3 = U3
V3

(4.123)

The vector current is

c =
cx

cy

cz

(4.124)

Generally speaking, cz is null.
It has been seen previously:

U = V3 − V1

d
12 − V2 − V1

d
13 (4.125)

V = U2 − U1

d
13 − U3 − U1

d
12 (4.126)

with sides vectors:

12 =
x2 − x1
y2 − y1
z2 − z1

(4.127)

13 =
x3 − x1
y3 − y1
z3 − z1

(4.128)

and
d = (U2 − U1)(V3 − V1) − (U3 − U1)(V2 − V1) (4.129)

The components of U twine vectors are as follows:

U =
Ux

Uy

Uz

(4.130)

U =
1
d [(V3 − V1)(x2 − x1) − (V2 − V1)(x3 − x1)]
1
d [(V3 − V1)(y2 − y1) − (V2 − V1)(y3 − y1)]
1
d [(V3 − V1)(z2 − z1) − (V2 − V1)(z3 − z1)]

(4.131)
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The angle between current and U is

cos(α) = c.U
|c||U| (4.132)

The components of V twine vectors are as follows:

V =
Vx

Vy

Vz

(4.133)

V =
1
d [(U2 − U1)(x3 − x1) − (U3 − U1)(x2 − x1)]
1
d [(U2 − U1)(y3 − y1) − (U3 − U1)(y2 − y1)]
1
d [(U2 − U1)(z3 − z1) − (U3 − U1)(z2 − z1)]

(4.134)

The angle between current and V is

cos(β) = c.V
|c||V| (4.135)

4.3.3.3 Stiffness of the Normal Force on the U Twines

The normal force on U twines is

F = |F| U ∧ (c ∧ U)

|U ∧ (c ∧ U)| (4.136)

That means that the x y and z components are as follows:

Fx = |F| Ex

|E| (4.137)

Fy = |F| Ey

|E| (4.138)

Fz = |F| Ez

|E| (4.139)

With:
E = U ∧ (c ∧ U) (4.140)

and

E =
Ex

Ey

Ez

(4.141)
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The x component of the derivative is

F′
x = |F|′ Ex

|E| + |F|E′
x |E| − Ex |E|′

|E|2 (4.142)

Which gives for the x y and z components:

F′
x = |F|′ Ex

|E| + |F|
|E|2

{
E′

x |E| − Ex

|E| (Ex E′
x + EyE′

y + EzE′
z)

}
(4.143)

F′
y = |F|′ Ey

|E| + |F|
|E|2

{
E′

y |E| − Ey

|E| (Ex E′
x + EyE′

y + EzE′
z)

}
(4.144)

F′
z = |F|′ Ez

|E| + |F|
|E|2

{
E′

z |E| − Ez

|E| (Ex E′
x + EyE′

y + EzE′
z)

}
(4.145)

For this assessment the derivative of E is required:

E′ = U′ ∧ (c ∧ U) + U ∧ (c ∧ U′) (4.146)

This leads to:

E′ = 2(U′.U)c − (U′.c)U − (U.c)U′ (4.147)

Which is:

E′
x = 2(U′.U)cx − (U′.c)Ux − (U.c)U′

x (4.148)

E′
y = 2(U′.U)cy − (U′.c)Uy − (U.c)U′

y (4.149)

E′
z = 2(U′.U)cz − (U′.c)Uz − (U.c)U′

z (4.150)

With:

U′.U = Ux U′
x + UyU′

y + UzU′
z (4.151)

U′.c = cx U′
x + cyU′

y + czU′
z (4.152)

U.c = Ux cx + Uycy + Uzcz (4.153)

The derivative of the amplitude of the normal force is

|F|′ = 1

2
ρCd Dl0|c|2

(
[sin(α)]2

)′ d

2
(4.154)

Which is

|F|′ = d

2
ρCd Dl0|c|2cos(α)sin(α)α′ (4.155)
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The derivative of α is

α′ = −1√
1 −

(
c.U

|c||U|
)2

[
c.U

|c||U|
]′

(4.156)

That gives

α′ = −1√
1 −

(
c.U

|c||U|
)2

[
c
|c| .
(

U
|U|
)′]

(4.157)

The derivative of the U twine direction is

(
U
|U|
)′

= U′|U| − U|U|′
|U|2 (4.158)

That means that the derivative of α is

α′ = −1√
1 −

(
c.U

|c||U|
)2

(
c
|c|
)

.

(
U′|U| − U|U|′

|U|2
)

(4.159)

or

α′ = −1

|U|2|c| sin α

{
|U|
[
cx U′

x + cyU′
y + czU′

z

]
− (c.U)|U|′

}
(4.160)

In this case U′
x is the component along x of U′.

The derivative of vector U is

U′ =
U′

x
U′

y
U′

z

(4.161)

Which is

∂Ux

∂x1
= ∂Uy

∂y1
= ∂Uz

∂z1
= 1

d
(V2 − V3) (4.162)

∂Ux

∂x2
= ∂Uy

∂y2
= ∂Uz

∂z2
= 1

d
(V3 − V1) (4.163)

∂Ux

∂x3
= ∂Uy

∂y3
= ∂Uz

∂z3
= 1

d
(V1 − V2) (4.164)
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∂Ux

∂y1
= ∂Ux

∂y2
= ∂Ux

∂y3
= ∂Ux

∂z1
= ∂Ux

∂z2
= ∂Ux

∂z3
= 0 (4.165)

∂Uy

∂z1
= ∂Uy

∂z2
= ∂Uy

∂z3
= ∂Uy

∂x1
= ∂Uy

∂x2
= ∂Uy

∂x3
= 0 (4.166)

∂Uz

∂x1
= ∂Uz

∂x2
= ∂Uz

∂x3
= ∂Uz

∂y1
= ∂Uz

∂y2
= ∂Uz

∂y3
= 0 (4.167)

On vector form and for the nine coordinates of the triangular element it is:

∂U
∂x1

=
V2−V3

d
0
0

(4.168)

∂U
∂y1

=
0

V2−V3
d
0

(4.169)

∂U
∂z1

=
0
0

V2−V3
d

(4.170)

∂U
∂x2

=
V3−V1

d
0
0

(4.171)

∂U
∂y2

=
0

V3−V1
d
0

(4.172)

∂U
∂z2

=
0
0

V3−V1
d

(4.173)

∂U
∂x3

=
V1−V2

d
0
0

(4.174)

∂U
∂y3

=
0

V1−V2
d
0

(4.175)

∂U
∂z3

=
0
0

V1−V2
d

(4.176)

The derivative of the norm of vector U is

|U|′ = UxU ′
x + UyU ′

y + UzU ′
z

|U| (4.177)
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This gives for the nine coordinates of the triangular element:

∂|U|
∂x1

= Ux (V2 − V3)

d|U| (4.178)

∂|U|
∂y1

= Uy(V2 − V3)

d|U| (4.179)

∂|U|
∂z1

= Uz(V2 − V3)

d|U| (4.180)

∂|U|
∂x2

= Ux (V3 − V1)

d|U| (4.181)

∂|U|
∂y2

= Uy(V3 − V1)

d|U| (4.182)

∂|U|
∂z2

= Uz(V3 − V1)

d|U| (4.183)

∂|U|
∂x3

= Ux (V1 − V2)

d|U| (4.184)

∂|U|
∂y3

= Uy(V1 − V2)

d|U| (4.185)

∂|U|
∂z3

= Uz(V1 − V2)

d|U| (4.186)

This leads to the derivatives of α (angle between c and U):

∂α

∂x1
= V3 − V2

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cx |U| − Ux

|U|c.U
]

(4.187)

∂α

∂y1
= V3 − V2

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cy |U| − Uy

|U|c.U
]

(4.188)

∂α

∂z1
= V3 − V2

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cz |U| − Uz

|U|c.U
]

(4.189)

∂α

∂x2
= V1 − V3

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cx |U| − Ux

|U|c.U
]

(4.190)

∂α

∂y2
= V1 − V3

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cy |U| − Uy

|U|c.U
]

(4.191)
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∂α

∂z2
= V1 − V3

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cz |U| − Uz

|U|c.U
]

(4.192)

∂α

∂x3
= V2 − V1

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cx |U| − Ux

|U|c.U
]

(4.193)

∂α

∂y3
= V2 − V1

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cy |U| − Uy

|U|c.U
]

(4.194)

∂α

∂z3
= V2 − V1

d|U|2|c|
√

1 −
(

c.U
|c||U|

)2

[
cz |U| − Uz

|U|c.U
]

(4.195)

4.3.3.4 Stiffness of the Tangential Force on the U Twines

The tangential force on U twines is

T = |T| F ∧ (c ∧ F)

|F ∧ (c ∧ F)| (4.196)

Following the definition of F1:

T = |T| [U ∧ (c ∧ U)] ∧ {c ∧ [U ∧ (c ∧ U)]}
| [U ∧ (c ∧ U)] ∧ {c ∧ [U ∧ (c ∧ U)]} | (4.197)

It follows that

T = |T| [(U.U)(c.c) − (U.c)2](U.c)U
|[(U.U)(c.c) − (U.c)2](U.c)U| (4.198)

or

T = |T| [|U|2|c|2 − (|U||c|cosα)2]|U||c|cosαU
|[|U|2|c|2 − (|U||c|cosα)2]|U||c|cosαU| (4.199)

and

T = |T| cos αU
| cos α||U| (4.200)

The x y and z components are as follows:

Tx = |T| cos αUx

| cos α||U| (4.201)

Ty = |T| cos αUy

| cos α||U| (4.202)
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Tz = |T| cos αUz

| cos α||U| (4.203)

The derivative of Tx is:

T′
x = |T|′ cos αUx

| cos α||U| + |T| (cos αUx )
′| cos α||U| − cos αUx (| cos α||U|)′

(| cos α||U|)2 (4.204)

T′
x = |T|′ cos αUx

| cos α||U|
+ |T|

| cos α||U| (cos αU′
x − sin αα′Ux )

− |T| cos αUx

(| cos α||U|)2

[
| cos α|Ux U′

x + UyU′
y + UzU′

z

|U| − cos α

| cos α| sin αα′|U|
]

(4.205)

T′
x = |T|′ Tx

|T| + |T|
| cos α||U| (cos αU′

x − sin αα′Ux )

− Tx

| cos α||U|

[
| cos α|Ux U′

x + UyU′
y + UzU′

z

|U| − cos α

| cos α| sin αα′|U|
]

(4.206)

T′
y = |T|′ Ty

|T| + |T|
| cos α||U| (cos αU′

y − sin αα′Uy)

− Ty

| cos α||U|

[
| cos α|Ux U′

x + UyU′
y + UzU′

z

|U| − cos α

| cos α| sin αα′|U|
]

(4.207)

T′
z = |T|′ Tz

|T| + |T|
| cos α||U| (cos αU′

z − sin αα′Uz)

− Tz

| cos α||U|

[
| cos α|Ux U′

x + UyU′
y + UzU′

z

|U| − cos α

| cos α| sin αα′|U|
]

(4.208)

The derivative of the amplitude of the tangential force is

|T|′ = f
1

2
ρCd Dl0|c|2([cos(α)]2)′ d

2
(4.209)

which is

|T|′ = −d

2
fρCd Dl0|c|2cos(α)sin(α)α′ (4.210)
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4.3.3.5 Stiffness of the Normal and Tangential Forces
on the V Twines

This evaluations are identical to the previous, but with V and β used in place of U
and α.

4.3.4 Twine Flexionin Netting Plane

The resistance to twine bending in the plane of the net is also called the mesh opening
stiffness (Fig. 4.13). In a first approximation, this stiffness is neglected, but the use
of steeper nets makes it necessary to take this mechanical phenomenon into account
in numerical models. Currently, only [15, 12] and the present model take this mesh
opening stiffness into account.

In the present model, the half angle (α) between the twine vectors (U and V) could
lead to a couple between twine vectors (U and V). This angle is calculated by

α = 1

2
acos

(
U.V

|U||V|
)

(4.211)

The couple on a knot due to the U twine is equilibrated by the couple of the V
twine; otherwise the knot would not be in equilibrium. These couples are approxi-
mated in the model by

Cu = −Cv = H(α − α0) (4.212)

Fig. 4.13 Demonstration
of mesh opening stiffness.
Deformation remains limited
despite the weight added to
the bottom of the net on (b)

(a) (b)
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where α0 is the angle between the unstressed twines (without couple on twines) and
H is the mesh opening stiffness (N.m/Rad).

This couple varies linearly with the angle. [12, 15] suggest another formulation,
since the twines are modelled as beams.

Forces at the vertices of the triangular element, mechanically equivalent to
themesh opening stiffness, are calculated using the principle of virtual work:

If ∂x1 is a virtual displacement along the x axis of vertex 1, then the external work
(We) is

We = Fx1∂x1 (4.213)

where Fx1 is the effort along the x axis at vertex 1 of a triangular element.
This displacement creates a change in angle α, and therefore an internal work

(Wi ):

Wi = d

2
(Cu∂α + Cv∂α) (4.214)

d = (U2 − U1)(V1 − V3) − (U3 − U1)(V1 − V2) (4.215)

where d/2 is the number of nodes in a triangular element.
Since the internal work is equal to the external work,

Fx1 = Cud
∂α

∂x1
(4.216)

This gives, for all the force components at the vertices of the triangular element,

Fwi = H(α − α0)d
∂α

∂wi
(4.217)

where w = x , y, and z, and i = 1, 2, and 3.
The derivative ∂α

∂wi
ofα relative to the coordinates wi of vertices, which is necessary

for calculating the forces, is

∂α

∂wi
=

Vwvi − Uwui − Uw(U.V)vi
|U|2 − Vw(U.V)ui

|V|2
2dsin(α)|U||V| (4.218)

where w = x , y, and z, and i = 1, 2, and 3.
The stiffness matrix (−F′(X)) is completed by calculating the derivative compo-

nent of efforts related to the coordinates of the vertices of the triangular element:

− ∂ Fwi

∂t j
(4.219)

where as above, w = x , y, and z, and i = 1, 2, and 3, and t = x , y, and z, and j = 1,
2, and 3.
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Fig. 4.14 The net bends
under its own weight, which
highlights the bending stiff-
ness of the net

4.3.5 Twine Flexion Outside the Netting Plane

To our knowledge, no numerical model, except the present one, takes into account
this mechanical property of the nets (Fig. 4.14). The angle between the U twine of a
triangle (Ua in Fig. 4.15) and its neighbour (Ub) is constant along the side common
to the two triangular elements. This angle quantifies the bending of the twine.

The bending stiffness of the U twine tends to keep the twine straight. The equation
governing the bending is as follows:

C = E I

ρ
(4.220)

C : bending couple on the U twine (Nm),
E I : flexural stiffness, which is Young’s modulus by inertia (Nm2),
ρ: radius of curvature of the U twine (m).

This couple is generated, in the present modelling, when two successive triangular
elements are bent or, more precisely, when the U twine is bent to the passage of a
triangular element with its neighbour. The couple will then generate forces on the
vertices (1, 2, 3, 4 in Fig. 4.15) on the two adjacent triangular elements. Obviously
the bending of the V twines also leads to a couple. In the following only the effect
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Fig. 4.15 Two triangular elements (134 and 243), the coordinates of which, in number of twines,
are noted. The angle between the twine vectors Ua and Ub leads to a bending couple between the
two triangular elements

of bending on the U twines is described; the bending on V twines has to be taken
into account in the same way.

The radius of the curvature is estimated from the average lengths of twine U in
each triangular element (Fig. 4.16). These average lengths are calculated using the
average number of twine vectors (Ua and Ub) by the U twine in the two triangular
elements (na and nb).

The twine vectors of the two triangular elements (see Sect. 4.2.1 p. 30) are as
follows:

Ua = V4 − V1

da
13 − V3 − V1

da
14 (4.221)

Va = U4 − U1

da
13 − U3 − U1

da
14 (4.222)
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Fig. 4.16 Profile view of the two triangular elements. The radius of curvature (ρ) is estimated from
the average length of twine vectors U in each triangle : naUa and nbUb

Ub = V3 − V2

db
24 − V4 − V2

db
23 (4.223)

Vb = U3 − U2

db
24 − U4 − U2

db
23 (4.224)

Ui , Vi : coordinates of vertex i in number of twines (twine coordinates).
With side vectors:

13 =
x3 − x1
y3 − y1
z3 − z1

(4.225)

24 =
x4 − x2
y4 − y2
z4 − z2

(4.226)

The numbers of twine vectors (Ua and Ub) for the U twines in the two triangular
elements are

da = (U3 − U1)(V4 − V1) − (U4 − U1)(V3 − V1) (4.227)

db = (U4 − U2)(V3 − V2) − (U3 − U2)(V4 − V2) (4.228)
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The average numbers of twine vectors (Ua and Ub) by U twine are calculated
from the number of twine vectors in the triangular elements and the length of the
common side in twine coordinates (V3 − V4):

na = da

2|V3 − V4| (4.229)

nb = db

2|V3 − V4| (4.230)

The radius of the curvature (ρ) is calculated from the circumscribed circle in the
triangle of sides naUa , nbUb and naUa + nbUb, as shown in Fig. 4.16. The side
lengths of the triangle are

A = |naUa | (4.231)

B = |nbUb| (4.232)

C = |naUa + nbUb| (4.233)

The equations of the triangle, which can be obtained in a mathematical com-
pendium, give the radius of curvature:

ρ = ABC

4S
(4.234)

where S and p, the surface and the half perimeter of the triangle, are

S = √p(p − A)(p − B)(p − C) (4.235)

p = A + B + C

2
(4.236)

The forces on the vertices (1, 2, 3 and 4) of the two triangularelements due to the
twine bending are calculated using the principle of virtual work. In case of the X
component of the force on vertex 1 (Fx1), a displacement (∂x1) is defined along X
axis of vertex 1. This displacement generates an external work:

We = Fx1∂x1 (4.237)

This movement also causes a variation of angle (∂α) between the twine vectors
(Ua and Ub) of the two triangular elements. This variation induces an internal work:

Wi = C∂α(V3 − V4) (4.238)

According to the principle of virtual work, these works are equal, which gives the
following:

Fwi = E I

ρ

∂α

∂wi
(V3 − V4) (4.239)
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w: directions x , y, and z,
i : vertices 1, 2, 3, and 4,
V3 − V4: number of twines involved in the bending.

The angle α between the two twine vectors (Ua and Ub) of the two triangular
elements is calculated with the dot product of twine vectors (Fig. 4.16):

cos(α) = Ua .Ub

|Ua ||Ub| (4.240)

The 12 derivatives of α relative to the coordinates of the vertices of the two
triangular elements ( ∂α

∂wi ) are therefore required to calculate the effort on the vertices.
They are as follows:

∂α

∂w1
= (V3 − V4)

(Ua .Ub)Uaw − Ubw|Ua |2
|Ua |3|Ub|dasin(α)

(4.241)

∂α

∂w2
= (V4 − V3)

(Ua .Ub)Ubw − Uaw|Ub|2
|Ub|3|Ua |dbsin(α)

(4.242)

∂α

∂w3
= (V4 − V1)

(Ua .Ub)Uaw − Ubw|Ua |2
|Ua |3|Ub|dasin(α)

+ (V2 − V4)
(Ua .Ub)Ubw − Uaw|Ub|2

|Ub|3|Ua |dbsin(α)

(4.243)
∂α

∂w4
= (V1 − V3)

(Ua .Ub)Uaw − Ubw|Ua |2
|Ua |3|Ub|dasin(α)

+ (V3 − V2)
(Ua .Ub)Ubw − Uaw|Ub|2

|Ub|3|Ua |dbsin(α)

(4.244)

Here, Uaw is the component along the w axis of Ua . In this case w is the axis
consisting of x , y, and z. Obviously, Ubw is the component along the w axis of Ub.

The efforts on the four vertices of the two triangular elements due to the bending
of the U twine between these two elements have been previously calculated.

The stiffness matrix (−F ′(X)) is completed by calculating the derivative of the
12 components of the forces relative to the 12 coordinates of the vertices of the two
triangular elements. The 144 components of this matrix are

− ∂ Fwi

∂t j
(4.245)

With, as above:
w: x , y, and z.
i : 1, 2, 3, and 4.

And more:
t : x , y, and z,
j : 1, 2, 3, and 4.
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4.3.6 Fish Catch Pressure

The mechanical effect of caught fish (Fig. 4.17) in a net is estimated by a pressure
[1]. This pressure is exerted directly on the triangular elements in contact with the
fish. In the case of water speed relative to that catch:

p = 1

2
ρCdv2 (4.246)

p: pressure of the catch on the net (Pa),
ρ: density of water (kg/m3),
Cd : drag coefficient,
v: current amplitude (m/s).

This pressure is then applied to the surface of the triangular element
(

12∧13
2

)
.

The resultant force is directed perpendicular to the triangular element. The effort on
each vertex is that force by 1/3.

F1 = 12 ∧ 13
2

p

3
(4.247)

F2 = 12 ∧ 13
2

p

3
(4.248)

F3 = 12 ∧ 13
2

p

3
(4.249)

With sides vectors:

Fig. 4.17 Measurement in a flume tank tests (cross) and numerical modelling (mesh) for a scale
(1/3) model of North Sea cod-end with 300 kg of catch
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12 =
x2 − x1
y2 − y1
z2 − z1

(4.250)

13 =
x3 − x1
y3 − y1
z3 − z1

(4.251)

That gives:

F1x = p

6
[(y2 − y1)(z3 − z1) − (z2 − z1)(y3 − y1)] (4.252)

F1y = p

6
[(z2 − z1)(x3 − x1) − (x2 − x1)(z3 − z1)] (4.253)

F1z = p

6
[(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)] (4.254)

The contribution of this effect to the stiffness matrix is calculated through the
derivatives of the forces. The derivatives of F1 is

F′
1 = (12′ ∧ 13 + 12 ∧ 13′) p

6
(4.255)

The derivatives of F1, F2, and F3 are identical:

∂F1

∂x1
= p

6

0
z3 − z2
y2 − y3

(4.256)

∂F1

∂y1
= p

6

z2 − z3
0

x3 − x2

(4.257)

∂F1

∂z1
= p

6

y3 − y2
x2 − x3

0
(4.258)

∂F1

∂x2
= p

6

0
z1 − z3
y3 − y1

(4.259)

∂F1

∂y2
= p

6

z3 − z1
0

x1 − x3

(4.260)

∂F1

∂z2
= p

6

y1 − y3
x3 − x1

0
(4.261)
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∂F1

∂x3
= p

6

0
z2 − z1
y1 − y2

(4.262)

∂F1

∂y3
= p

6

z1 − z2
0

x2 − x1

(4.263)

∂F1

∂z3
= p

6

y2 − y1
x1 − x2

0
(4.264)

4.3.7 Dynamic: Force of Inertia

The force of inertia is related to accelerations of the net and of the water particles
just around the net. The calculation is done for each triangularelement in three parts,
one for each vertex, since the acceleration is not constant over the entire surface of
each triangular element. Under these conditions, the parameters are local parameters
at each vertex, including the acceleration and the mass. The mass per vertex is
considered the third of the total mass of netting of the triangular element.

The force of inertia on each vertex of a triangular element mesh is estimated
by [7]:

Fi = Ma(γh − γ ) + ρV γh − Mγ (4.265)

Fi : inertial force on the vertex i (N),
Ma : added mass (kg) of 1/3 of the triangular element,
M : mass of 1/3 of the net (kg),
V : volume of 1/3 of the net (m3),
ρ : density of water (kg/m3),
γ : acceleration of the vertex (m/s2),
γh : acceleration of the water around the vertex (m/s2).

The vertex speed is calculated as follows:

v = x1 − x
Δt

(4.266)

The acceleration of the vertex is

γ = v1 − v
Δt

(4.267)

which gives

γ = x2 − 2x1 + x
Δt2 (4.268)
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In this case, the contribution to the stiffness matrix, from the derivative of this
inertia, is calculated by

− F ′ = −∂Fi

∂x
(4.269)

which leads to

− F ′ = (M + Ma)
∂γ

∂x
(4.270)

and

− F ′ = M + Ma

Δt2 (4.271)

With: x: position at t (m),
x1: position at t − Δt (m),
x2: position at t − 2Δt (m),
F ′: derivative of the force of inertia relative to the position (N/m),
Δt : time step (s).

4.3.8 Dynamic: Drag Force

The drag is related to the net and the relative speed of water particles just around
the net. The calculation is done for each triangular element in three parts, one for
each vertex, since this speed is not constant over the entire surface of each triangular
element. Under these conditions the local parameters at each vertex are the vertex
speed and one third of the number of twine vectors for the triangular element. The
calculation is done for twines U and V .

The formulation for the twine drag is based on the assumptions of Landweber
and Richtmeyer, as described earlier (Sect. 4.3.3, p. 46). The drag on the U twines
applied on vertex i of the triangular element takes into account 1/3 of the number of
U twine vectors in the triangular element. This drag is as follows:

|Fi | = d

6

1

2
ρCd Dlo(|ci |sin(θ))2 (4.272)

|Ti | = d

6
f

1

2
ρCd Dlo(|ci |cos(θ))2 (4.273)

Fi : normal force to the twines (N ) on vertex i, this expression coming from the
assumptions of Landweber,

Ti : tangential force (N) on vertex i, from Richtmeyer’s assumption,
ρ: density of water (kg/m3),
Cd: normal drag coefficient,
f : tangential coefficient,
D: diameter of twines U (m),
lo: length of twine vectors U (m),
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ci : amplitude of the relative velocity of the water at vertex i (m/s),
θ : angle between the twine vectors U and the relative velocity (radians),
d
6 : one third of the number of twine vectors U in the triangular element.

The angle θ between the twine vector U and the relative velocity is calculated by

cos(θ) = ci U
|ci ||U| (4.274)

The directions of the drag in case of twine vector U are as follows:

Fi

|Fi | = U
|U| ∧ ci ∧ U

|ci ||U| (4.275)

Ti

|Ti | = Fi

|Fi | ∧ ci ∧ U
|ci ||U| (4.276)

The drag amplitude on twines V is calculated following the same scheme.

4.3.9 Buoyancy and Weight

Buoyancy and weight are vertical forces (along the z axis, if it is the vertical axis).
Their expression is summed in the following:

Fz = dπ
D2

4
l0(ρnetting − ρ)g (4.277)

Fz : weight of the net once immersed (N),
d: number of twine vectors U and twine vectors V per triangular element,
ρ: water density (kg/m3),
ρnetting: net density (kg/m3),
D: diameter of twines (m),
g: gravity of the Earth (around 9.81 m/s2),
l0: length of twine vectors (m).

The length of the twine vectors is approximated by the unstretched twine vector
l0, since the elongation is generally quite small.

There is a contribution of this force to the stiffness matrix when the netting crosses
the water surface. In this case there is a variation of force with the immersion. This
contribution is not described here.
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Fig. 4.18 Comparison between simulations (net) and flume tank tests (crosses) of trawl cod-ends
[1]. Between 2.5 and 3.5 m the diameter is constant. This is due to contact between the nodes of the
net

4.3.10 Contact Between Knots

It happens quite frequently that the nets are so close that the nodes come into contact
with each other. This contact limits the closing of mesh (Fig. 4.18).

An effort similar to that described in Sect. 4.3.4 (p. 57) has been introduced to
take into account this feature. This effort appears only when the twines are close
enough, that is, when the angle between U and V twines is below a critical angle
(αmini ). This angle is related to the node size and mesh side as follows (Fig. 4.19):

αmini = 2 arcsin

[
knotsi ze

2meshside

]
(4.278)

αmini : limit angle of contact between twines (rad),
knotsi ze: size of the node (m),
meshside: side of the mesh or length of twine vectors (m).

The meshside could be the length of the twine vector along the U twine (|U|) or
the length of the twine vector along the V twine (|V|). To avoid this choice (between
|U| and |V|), this length can be approximated by the unstretched length l0 of the
twine vector.

A couple is generated between the twines if the angle between them is less than
the minimal angle:

{
C = H(α − αmini ) i f α <= αmini

C = 0 i f α > αmini
(4.279)

C : couple between the twines due to the contact between knots (Nm),
α: angle between twines U and V (rad),
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Fig. 4.19 The size of the knot limits the closure of the mesh. The minimal angle between twines
is due to the size of the knot and the side of the mesh (which is also the length of twine vector)

H : stiffness (Nm/Rad).

This stiffness is not well known. Therefore, arbitrary values can be used, such as
the following, proportional to the elongation stiffness of the twine (E A) (Fig. 4.19):

H = 1

100

mesh2
side E A

knotsi ze
(4.280)

A: section of the twine (m2),
E : Young’s modulus (Pa).

The forces on the vertices of triangular elements and the stiffness use the same
expressions as those described in Sect. 4.3.4 (p. 57).


	4 The Triangular Finite Element for Netting
	4.1 State-of-the-Art of Numerical Modelling for Nets
	4.1.1 Constitutive Law for Nets
	4.1.2 Twine Numerical Method

	4.2 The Finite Element for Netting
	4.2.1 The Basic Method: Direct Formulation
	4.2.2 Metric of the Triangular Element

	4.3 The Forces on the Netting
	4.3.1 Twine Tension in Diamond Mesh
	4.3.2 Twine Tension in Hexagonal Mesh
	4.3.3 Hydrodynamic Drag
	4.3.4 Twine Flexionin Netting Plane
	4.3.5 Twine Flexion Outside the Netting Plane
	4.3.6 Fish Catch Pressure
	4.3.7 Dynamic: Force of Inertia
	4.3.8 Dynamic: Drag Force
	4.3.9 Buoyancy and Weight
	4.3.10 Contact Between Knots



