
Chapter 3
Equilibrium Calculation

Abstract The modelling of structure mechanics is a matter for finding equilibrium of
the structure. The Newton-Raphson method for equilibrium calculation is described.
This method is based on the nodes position, the forces on nodes, and the stiffness
matrix. Other methods of equilibrium calculation, the methods of Newmark and of
the energy minimisation, are described.

Keywords Equilibrium calculation ·Newton-Raphson method ·Newmark method ·
Energy minimisation method

3.1 Newton-Raphson Method

Finite element methods generally use the Newton-Raphson method [4] for the calcu-
lation of the equilibrium position of a mechanical structure. The equilibrium position
corresponds to that position of the structure in which the sum of forces equals 0. In
what follows a few simple examples are given to explain the method under three
cases: one dimension, two dimensions and several dimensions.

3.1.1 One Dimension

A spring (Fig. 3.1) equilibrium is reached when the weight is equilibrated by the
spring force. At this position the sum of forces equals 0. This position can be calcu-
lated using the Newton-Raphson method. In this example there is just one dimension:
the vertical position (x) of the mass relatively to the spring fixation which also equals
the length of the spring.

The spring equilibrium is calculated by writing the force on the mass: the weight
is −Mg (N), and the force of the spring is +K x−l0

l0
(N).
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Fig. 3.1 The equilibrium of
the spring is due to the mass
weight and the spring force

With

M : mass (kg),
g: acceleration of gravity (m/s2),
K : spring stiffness (N),
x : position of the mass along the spring axis relative to the fixed point of the spring (m),
x : length of the stretched spring (m).

In this example the stiffness is not constant in order to give a clearer explanation of
the Newton-Raphson method. K is equals to Ax . That means that longer the spring
is, the stiffer it is.

The sum of forces on the mass (curve on Fig. 3.2) is

F(x) = K
x − l0

l0
− Mg (3.1)

or, following the previous relations,

F(x) = Ax
x − l0

l0
− Mg (3.2)

Obviously at the equilibrium F(x) = 0. It is clear that this simple equation has
an analytical solution, which is

x =
√

l0 A (4gM + l0 A) + l0 A

2A
(3.3)

The Newton-Raphson method could be used to find the length of the spring (x)
at the equilibrium. This method requires knowing the force and the derivative of the
force relatively to the position.
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Fig. 3.2 Sum of forces on the mass function of spring length. Three Newton-Raphson iterations
starting at x = 2.8 m are displayed. The vector tangent at x0 is shown

The method is iterative and approximates the force curve by its tangent (shown in
Fig. 3.2). From a position (xk), the force (F(xk)) and the derivative of force (F ′(xk))
are calculated, and a new position (xk+1) can be found. This new position is generally
closer to the equilibrium and is calculated as follows:

xk+1 = xk + F(xk)

−F ′(xk)
(3.4)

Figure. 3.2 shows three iterations with an initial value x0 of the spring length of
2.8 m.

With:
The stiffness A = 1000 N/m,
The mass M = 10 kg,
The acceleration of gravity g = 9.81 m/s2,
The unstretched length of the spring l0 = 1 m.
The stretched length at the equilibrium is 1.09 m. That means that the spring

stretches 9 %.
After five iterations the equilibrium is reached or more exactly |F(x)| < 0.1N .

The Fig. 3.2 shows 3 iterations along the curve of force. Figure 3.3 represents the
reduction of the force residue (|F(x)|) with the five iterations.
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Fig. 3.3 Residue of force for each Newton-Raphson method iteration

3.1.2 Two Dimensions

In this section a simple example in two dimensions is given (Fig. 3.4): a spring
with two degrees of freedom, i.e., the horizontal (x) and the vertical (y) positions
of the mass relative to the spring fixation. The equilibrium of the system is due to
the position of the mass along the vertical and the horizontal. Figure 3.5 shows the

variation of the norm of the residue of force
(√

F2
x + F2

y

)
on the mass due to the

positions along x and y of the mass. The equilibrium point is noted by the largest
dot.

The stiffness (K ) of the spring is not constant: K is equal to Al. That means that
the longer the spring is, the stiffer it is. In this condition the horizontal and vertical
forces on the mass are due to the spring length and the weight of the mass:

Fx = T
x

l
(3.5)

Fy = T
y

l
− Mg (3.6)

With:

T = Al
l − l0

l0
(3.7)

l =
√

x2 + y2 (3.8)

In this case the derivative of the forces is calculated relatively to x and y:
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Fig. 3.4 Spring with two degrees of freedom: the vertical and horizontal positions of the mass.
The equilibrium is due to the mass weight and the spring force

Fig. 3.5 Norm of the force (Z =
√

F2
x + F2

y ) function of mass coordinates (X, Y ). The largest

dot is the equilibrium position. The smallest dots are the Newton-Raphson iterations starting at
x = 0.9 m and y = 1.9 m
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∂ Fx

∂x
= A

l − l0
l0

+ A
x2

ll0
(3.9)

∂ Fx

∂y
= A

xy

ll0
(3.10)

∂ Fy

∂x
= A

yx

ll0
(3.11)

∂ Fy

∂y
= A

l − l0
l0

+ A
y2

ll0
(3.12)

The Newton-Raphson method accesses the equilibrium solution through itera-
tions. At each iteration the new position is calculated by the following relation:

Xk+1 = Xk + F(Xk)

−F ′(Xk)
(3.13)

With:

Xk = xk

yk
(3.14)

F(Xk) = Fx (Xk)

Fy(Xk)
(3.15)

The ratio F(Xk )−F ′(Xk )
is the displacement h, such as F(Xk) = −F ′(Xk)h.

With these equations the equilibrium position is assessed (Fig. 3.5). Figure 3.6
represents the reduction of the force residue with the iterations.

3.1.3 Several Dimensions

3.1.3.1 Main Variables

The positions of the nodes are in vector X, the forces on the nodes are in vector F,
and the stiffness matrix is K ; xi and Fi refer to the same node along the same axis.

These variables are as follows:

X =

x1
x2
.

.

xn

(3.16)



3.1 Newton-Raphson Method 21

Fig. 3.6 Residue of force (
√

F2
x + F2

y ) for each Newton-Raphson method iteration

F =

F1
F2
.

.

Fn

(3.17)

K =

− ∂ F1
∂x1

− ∂ F1
∂x2

. . − ∂ F1
∂xn

− ∂ F2
∂x1

− ∂ F2
∂x2

. . − ∂ F2
∂xn

. . . . .

. . . . .

− ∂ Fn
∂x1

− ∂ Fn
∂x2

. . − ∂ Fn
∂xn

(3.18)

From these three variables the displacement vector (h) can be calculated by solving
the following system of linear equations:

hK = F (3.19)

3.1.3.2 Iterations

As mentioned earlier, the Newton-Raphson-method is an iterative one. The steps are
as follows:

From the position (Xk) of the nodes resulting from iteration k:
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Xk =

xk1
xk2
.

.

xkn

(3.20)

The force (Fk) on the nodes and the stiffness (Kk) matrix are calculated:

Fk =

Fk1
Fk2
.

.

Fkn

(3.21)

Kk =

Kk11 Kk12 . . Kk1n

Kk21 Kk22 . . Kk2n

. . . . .

. . . . .

Kkn1 Kkn2 . . Kknn

(3.22)

The node displacements (hk) are calculated:

hk Kk = Fk (3.23)

The new position of nodes is deduced:

Xk+1 = Xk + hk (3.24)

3.1.4 Singularity of the Stiffness Matrix

In some cases the stiffness matrix (K ) could be singular. In this case solving
hK = F (Sect. 3.1.3, p. 20) could lead to a very large displacement (hi >> 1)
and to divergence of the method.

An example can be shown with the unstretched horizontal bar of Fig. 3.7. This bar
has two extremities. If the first extremity (on the left on Fig. 3.7) has the horizontal
and vertical coordinates (0, 0), the position vector is:

X =
0
0
x3
0

(3.25)
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Fig. 3.7 This bar is articulated around its left extremity. A vertical force (F4) is applied on the right
extremity. This unstretched bar displays a zero stiffness along the vertical

With x3 �= 0
If the force on the second extremity is vertical, the force vector is:

F =
0
0
0
F4

(3.26)

With F4 �= 0

As we will see in Sect. 5.2 (p. 71) the stiffness matrix is:

K =
K11 0 −K11 0
0 0 0 0

−K11 0 K11 0
0 0 0 0

(3.27)

The matrix is singular. This is due to the derivative ∂ F4
∂x4

, which is equal to 0 in this
case of an unstretched horizontal bar. (i) If the bar is not horizontal this derivative
will not be equal to 0, because the derivative of the bar length will not equal 0. (ii)
If the bar is in tension (or compression), even horizontal, the derivative ∂ F4

∂x4
will not

equal 0 because the derivative of the tension direction is not equal to 0.
To avoid problems due to singularity, precautions are available, as described below.

3.1.4.1 Additional Stiffness

A simple way is to add an arbitrary value (α) along the diagonal of the stiffness
matrix, such that the previous matrix becomes:

K =
K11 + α 0 −K11 0

0 α 0 0
−K11 0 K11 + α 0

0 0 0 α

(3.28)

http://dx.doi.org/10.1007/978-94-007-6844-4_5
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The added value (α) could decrease along the Newton-Raphson iterations. This
added value (α) does not modify the equilibrium position, but only the way to reach
this equilibrium.

3.1.4.2 Additional Mechanical Behaviour

Another way to remove singularity is to add further mechanical behaviour. For exam-
ple, if this bar is in a fluid, air, or water, a vertical displacement will generate a drag
in the opposite direction, meaning that the components of the stiffness matrix K22
and K44 will be not equal to 0.

3.1.4.3 Displacement Limit

A displacement limit could be imposed to avoid too large a value:

hK = F (3.29)

if hi > limit hi = limit (3.30)

if hi ≤ limit hi = hi (3.31)

3.2 Other Resolution Methods

3.2.1 Newmark Method

The Newmark method is used to find the equilibrium position of a mechanical struc-
ture. The following example in one dimension explains the method in a simplified
way.

The method consists first in calculating forces on the structure, then calculating
the acceleration on the structure using the dynamic equation (F = Mγ ). From this
acceleration and using a time step, the speed and the new position of the structure
can be calculated [3].

For the example displayed in Fig. 3.1, the equilibrium calculation follows the path
shown in Fig. 3.8 with a time step of 0.04 s. Figure 3.9 shows the residue of force.
This calculation follows the Newmark explicit method [3].
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Fig. 3.8 Force on the mass function of spring length and Newmark explicit method iterations

Fig. 3.9 Residue of force for each Newmark explicit method iterations

3.2.2 Energy Minimization

This method consists of finding the position of the structure that leads to the minimum
of the energy. The energy involved here is the energy due to the conservative forces
only. A conservative force is a force that leads to a variation of energy between two
positions independent of the path between these two positions. The main conservative
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forces involved in marine structures are weight and tension in elastic cables and
netting twines.

In these cases the energy between two positions are quite simple to calculate:

EW = WΔh (3.32)

ET = 1

2
KΔx2 (3.33)

EW : energy due to the weight (J),
W : weight (N),
Δh: altitude variation between the two positions (m),
ET : energy due to the tension (J),
K : constant cable stiffness (N/m),
Δx : cable length variation between the two positions (m).

Some forces are not conservative, as in the case of drag force. In such case the
energy consumed by the drag depends on the path followed by the structure between
the two positions.

Due to non conservative forces, the method of minimization of energy is not quite
adapted to solve the equilibrium of marine structures. In case this method is used,
the drag forces could be transformed into constant force.
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