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Abstract Instead of approaching the steady state behavior of an elastic–perfectly
plastic structure, under cyclic loading, through time consuming incremental time-
stepping calculations, one may alternatively use direct methods. A common feature
of these methods is to estimate directly these cyclic states, profiting, thus, big sav-
ings in computer time. The elastic shakedown is the most important, in terms of
structural safety, cyclic state. Most of the existing methods address this state through
the solution of an optimization problem. In this work, a novel direct method that has
a more physical understanding and may predict any cyclic steady stress state is ex-
posed. The method is based on the expected cyclic nature of the residual stress distri-
bution at the steady cycle. Having evaluated the elastic stress part of the total stress
to equilibrate the external load, the unknown residual stress part is decomposed into
Fourier series, whose coefficients are evaluated iteratively by satisfying compatibil-
ity and equilibrium with zero loads at time points inside the cycle. A computation-
ally simple way to account for plasticity is considered. The procedure converges
uniformly to a residual stress field which is either constant, marking the loading to
be below the elastic shakedown limit, or to a cyclic residual stress field, from which
possible alternating plasticity or ratcheting conditions may be realized. The proce-
dure is formulated within the finite element method. A von Mises yield surface is
typically used. Examples of application to a truss and a two dimensional plate under
plane stress or strain are discussed.

1 Introduction

Nowadays structures are continuously designed to withstand repeated thermo-
mechanical loading that forces them to enter the plastic regime. Such loading con-
ditions are encountered either in civil or mechanical engineering. Typical examples
of such structures are buildings and bridges under seismic loading on the one hand
and nuclear reactors and aircraft gas propulsion engines on the other.

K.V. Spiliopoulos (B) · K.D. Panagiotou
Department of Civil Engineering, Institute of Structural Analysis & Antiseismic Research,
National Technical University of Athens, Zografou Campus, Zografos 157-80, Athens, Greece
e-mail: kvspilio@central.ntua.gr

K. Spiliopoulos, D. Weichert (eds.), Direct Methods for Limit States in Structures and
Materials, DOI 10.1007/978-94-007-6827-7_7,
© Springer Science+Business Media Dordrecht 2014

139

mailto:kvspilio@central.ntua.gr
http://dx.doi.org/10.1007/978-94-007-6827-7_7


140 K.V. Spiliopoulos and K.D. Panagiotou

The life cycle assessment of such a structure constitutes an important task for a
structural engineer. However, the long term response of a structure, subjected to a
given thermo-mechanical loading which exhibits inelastic time independent plastic
strains, is quite complex, because of the need to perform lengthy and expensive in-
cremental calculations, especially for structures with a high degree of redundancy.
In the case that the long term response turns out to be a stabilized state there are pro-
cedures called direct methods, which may lead directly to these states. Scleronomic
or rheonomic stable materials guarantee the existence of such states [1]. Thus direct
methods search for this asymptotic state right from the start of the calculations.

The most well known cyclic state is the elastic shakedown. The search for this
state is based on the lower [2] and upper bound [3] shakedown theorems of plasticity.
The formulation of these problems is normally done using mathematical program-
ming (MP). One may refer to various such procedures like a nonlinear Newton-type
algorithm [4] or the interior point methods (e.g. [5, 6]).

There are also very few approaches that are not based on MP. Internal param-
eters are introduced in [7] which characterize local inelastic mechanisms. Another
procedure is the Linear Matching Method (LMM) [8] which is a generalization of
the elastic compensation method [9] and is based on matching a linear problem to a
plasticity problem. A sequence of linear solutions, with spatially varying moduli, is
generated that provide upper bounds that monotonically converge to the least upper
bound.

The method was further extended beyond shakedown, for loadings that can be
decomposed into constant and time varying components, so as to provide an upper
bound estimation of the ratchet boundary [10].

Besides the knowledge of safety margins, it is important to be able to determine
the long-term effects on a structure for a given cyclic loading. For this purpose, an
alternative to the cumbersome incremental procedure is a method called Direct Cy-
cle Analysis (DCA) originally suggested in [11] and implemented in the commercial
program Abaqus [12]. The main assumption of the method is that the displacements
at the steady cycle will become cyclic. The method is quite involved and appears
to be a mixture of an incremental and an iterative procedure. The displacements
are decomposed into Fourier series whose coefficients are evaluated in an iterative
way by linking them with the coefficients of the Fourier series of the out-of-balance
load vector. This vector is evaluated as in an incremental procedure, and static ad-
missibility is enforced by leading it to zero. The procedure seems to be suited for
the cases of alternating plasticity but fails to converge for loadings that are close to
ratcheting as also mentioned in [12] since, because of its main assumption, it can’t
predict such a case.

A new direct method to predict any long-term cyclic state of an elastic-perfectly
structure under a given cyclic loading was quite recently suggested [13]. The method
focuses on the cyclic nature of the residual stresses at the steady state. The method
has been called Residual Stress Decomposition Method (RSDM) and is based on
decomposing the residual stresses in Fourier series inside a cycle of loading. The
decomposition of the residual stresses, so as to find a simplified way to predict
creep cyclic steady stress states, was originally proposed in [14].
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In the RSDM the coefficients of the Fourier series are evaluated in an iterative
way by integrating the residual stress rates over the cycle. By satisfying equilibrium
and compatibility at time points inside the cycle one may evaluate these rates. Plastic
effects are accounted for by adding the elastic and the residual stress at the cycle
points. If the sum exceeds the yield surface, the plastic strain rate may be represented
by the stress in excess of the yield surface. This excess stress provides then input for
iteration. If the plastic strain rates stabilize, in the form of a converged residual stress
vector, the procedure stops. One can easily distinguish any of the three different
cases, shakedown, alternating plasticity or ratcheting. A one-dimensional truss and
a two-dimensional plate with a hole under plane stress have demonstrated in [13] the
application of the procedure. For the plate, results are, in the present work, extended
to include plane strain conditions. The whole approach is shown to be stable and
computationally efficient, with uniform convergence.

2 Cyclic Steady-States

Let us consider a body of volume V and surface S. On one part of S we have zero
displacement conditions and on the other part of the surface a cyclic loading of the
form (1) is applied.

P(t) = P(t + nT ) (1)

where P(t) is the set of loads that act on S; t is the time point inside the cycle, T is
the period of the cycle, n = 1,2, . . . , denotes the number of full cycles. Bold letters
are used, herein, to denote vectors and matrices.

Let us suppose that our structure is made of an elastic-perfectly plastic material.
At any time point τ = t/T inside the cycle the structure will develop a stress field
σ (τ ) which may be decomposed into an elastic part σ el(τ ), that equilibrates the ex-
ternal loading P(τ ) assuming a completely elastic behavior, and a self-equilibrating
residual stress part ρ(τ ) that is due to inelasticity. Therefore:

σ (τ ) = σ el(τ ) + ρ(τ ). (2)

An analogous decomposition holds for the strain rates:

ε̇ = ėel(τ ) + ε̇r (τ ). (3)

The residual strain rate itself may be decomposed into an elastic and a plastic
part [15]. Thus the final compatibility equation is expressed as:

ε̇ = ėel(τ ) + ε̇el
r (τ ) + ε̇pl(τ ). (4)

The elastic strain rates are related to the stress rates through the elasticity ma-
trix D, whereas the plastic strain rate vector through the gradient of the flow rule:

σ̇ el(τ ) = D · ė,

ρ̇(τ ) = D · ε̇el
r ,

ε̇pl = λ · ∂f

∂σ

(5)
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where f is the yield surface.
Based on the Drucker’s stability postulate for rheonomic or scleronomic materi-

als it may be proved [16] that there always exists an asymptotic cyclic state that the
stresses and strain rates stabilize and become periodic with the same period of the
cyclic loading.

Depending on the amplitude of the load three different asymptotic states may be
realized, based on the existence or not of the plastic strain rates:

(a) Elastic shakedown, meaning ε̇pl → 0.
(b) Plastic shakedown, meaning ε̇pl �= 0, but

∫ T

0 ε̇pldt = 0.

(c) Ratcheting, meaning ε̇pl �= 0, and
∫ T

0 ε̇pldt �= 0.

3 The Residual Stress Decomposition Method (RSDM)

Since the elastic stress under a cyclic load is cyclic, a cyclic steady stress state
renders the residual stress distribution to be also cyclic. One may thus exploit this
cyclic nature, decompose the residual stresses into Fourier series, and try to find the
unknown Fourier coefficients. In this way we may write:

ρ(τ ) = 1

2
a0 +

∞∑

k=1

{
cos(2kπτ) · ak + sin(2kπτ) · bk

}
. (6)

Differentiating the above with respect to τ one may write the following expres-
sion for the derivative:

ρ̇(τ ) = 2π

∞∑

k=1

{−k sin(2kπτ) · ak + k cos(2kπτ) · bk

}
. (7)

Making use of (7) and the orthogonality properties of the trigonometric functions
one may get expressions for the Fourier coefficients of the cosine and sine series in
terms of the residual stress derivatives:

ak = − 1

kπ

∫ 1

0
sin(2kπτ) · ρ̇(τ )dτ,

bk = 1

kπ

∫ 1

0
cos(2kπτ) · ρ̇(τ )dτ.

(8)

A more involved formula proves to be needed for the constant term, which uses
the information at the beginning and at the end of the cycle [13]:

1

2
a0,e =

(
1

2
a0,b +

∞∑

k=1

ak,b

)

−
∞∑

k=1

ak,e +
∫ 1

0
ρ̇(τ )dτ (9)

where the subscripts b and e denote the beginning and the end of the cycle respec-
tively. As seen from Eqs. (8) and (9), because of (7), there is an implicit dependence
of the Fourier coefficients and thus an iterative scheme may be used to estimate
them, once the residual stress derivatives are calculated.
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Fig. 1 Estimation of plastic
straining (von Mises yield
surface)

To find these derivatives one seeks to satisfy compatibility and equilibrium at
some predefined time points inside the cycle. To this end we assume that our struc-
ture is discretized with finite elements (FEs). Using the rates of displacements of the
nodes of the FE mesh one may write:

ε̇ = B · ṙ. (10)

From Eqs. (4) and (5) we may write:

ρ̇ = D · (ε̇ − ėel − ε̇pl). (11)

Since the strain rates are kinematically admissible, the residual stress rates are
self-equilibrated, and fixed supports have been assumed, one may write, for a virtual
strain field δε̇, using the Principle of Virtual Work (PVW):

∫

V

δε̇T · ρ̇dV = 0. (12)

Combining (10), (11) and (12), we end up with:
(∫

V

BT · D · BdV

)

· ṙ =
∫

V

BT · σ̇ eldV +
∫

V

BT · D · ε̇pldV (13)

or equivalently:

K · ṙ = Ṙ +
∫

V

BT · D · ε̇pldV (14)

where K is the stiffness matrix, Ṙ is the rate vector of the external forces acting on
the structure at the cycle time τ .

Plastic straining will occur whenever the total stress (Eq. (2)) exceeds the yield
surface (Fig. 1). In such a case, the returning back on the yield surface will be,
according to the closest point projection [17], along the vector

−→
CB, with the plastic

strain rate ε̇pl directed along
−→
BC. We use, instead, the vector

−→
CA which is −σ p. This

vector is a ‘radial return’ type of mapping along the known
−→
OC. It may be easily

determined, especially for a von Mises yield surface. It is an equivalent measure for
the plastic straining in the sense that they either both exist or not.
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3.1 Numerical Procedure

An iterative procedure has been written that updates the Fourier coefficients inside
an iteration [13].

Firstly we solve for the external loading and its cycle rate assuming elastic be-
havior, and obtain, for each cycle point τ , the elastic stress σ el(τ ) and the elastic
stress rate σ̇ el(τ ) at each Gauss point (GP) of a continuum finite element.

Let us suppose that after the completion of the iteration (μ) an estimate of the
distribution of the Fourier coefficients a(μ)

0 ,a(μ)
k ,b(μ)

k has been made. The following
steps are now followed:

1. For a specific cycle point τ we compute ρ(μ)(τ ), at each GP, using (6):

ρ(μ)(τ ) = 1

2
a(μ)

0 +
∞∑

k=1

{
cos(2kπτ) · a(μ)

k + sin(2kπτ) · b(μ)
k

}
. (15)

2. Evaluate at each GP the total stress σ (μ)(τ ), using (2):

σ (μ)(τ ) = σ el(τ ) + ρ(μ)(τ ). (16)

3. Calculate whether, at each GP, σ̄ (μ)(τ ) > σY . In such a case compute σ
(μ)
p (τ ):

ξ = σ̄ (μ)(τ ) − σY

σ̄ (μ)(τ )
⇒ σ (μ)

p (τ ) = ξ · σ (μ)(τ ). (17)

4. Assemble for the whole structure the rate vector of the nodal forces Ṙ′(τ ), which
is the r.h.s. of Eqs. (13)–(14):

Ṙ′(τ ) = Ṙ(τ ) +
∫

V

BT · σ (μ)
p (τ )dV . (18)

5. Solve the following iterative form of Eq. (14) and obtain ṙ(μ)(τ ):

Kṙ(μ)(τ ) = Ṙ′(τ ). (19)

6. Evaluate at each GP the residual stress derivative rates, using (11):

ρ̇(μ)(τ ) = DBṙ(μ)(τ ) − σ̇ el(τ ) − σ (μ)
p (τ ). (20)

7. Repeat the steps 1–6 for all the assumed cycle points.
8. Perform a numerical integration over the cycle points and update the Fourier

coefficients, making use of Eqs. (8) and (9):

a(μ+1)
k = − 1

kπ

∫ 1

0

{[
ρ̇(μ)(τ )

]
(sin 2kπτ)

}
dτ,

b(μ+1)
k = 1

kπ

∫ 1

0

{[
ρ̇(μ)(τ )

]
(cos 2kπτ)

}
dτ,

a(μ+1)
0

2
= −

∞∑

k=1

a(μ+1)
k + a(μ)

0

2
+

∞∑

k=1

a(μ)
k +

∫ 1

0

[
ρ̇(μ)(τ )

]
dτ.

(21)
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9. From the updated Fourier coefficients evaluate the updated distribution of the
residual stresses, at all the Gauss points, using (15), and check the convergence
through their norms at the end of the cycle:

‖ρ(μ+1)(1)‖2 − ‖ρ(μ)(1)‖2

‖ρ(μ+1)(1)‖2
≤ tol (22)

where tol is a specified tolerance.

If (22) holds, the procedure stops as we have reached a cyclic stress state (cs),
and ρ(μ) = ρ(μ+1) = ρcs; otherwise we go back to step 1 and repeat the process.

Once a cyclic stress state has been attained, we look at σ cs
p = σ

(μ)
p = σ

(μ+1)
p ,

which was evaluated during the last iteration. We may determine the nature of the
obtained solution, for each GP, by evaluating the following integral over the cycle:

αi =
∫ 1

0
σ cs

p,i(τ )dτ (23)

with i spanning all the components of σ cs
p (τ).

Depending on the values of αiwe may have:

(a) If αi �= 0, a state of ratcheting exists at this GP. If αi = 0, we check the value of
σ cs

p,i(τ ) for every cycle point τ .
(b) If σ cs

p,i(τ ) �= 0, the Gauss point is in a state of reverse plasticity, since this must
hold for pairs of cycle points of equal value but of alternating sign.

(c) If σ cs
p,i(τ ) = 0, the point has remained either elastic or has developed an elastic

shakedown state.

For the case of all the Gauss points being either elastic or in a state of elastic
shakedown, our structure, under the given external loading, will also shake down.
On the other hand, if sufficient GPs are in a state of ratcheting, at the steady state,
our structure will undergo incremental collapse. This, numerically, may be easily
proved here, through the singularity of the stiffness matrix, which can be evaluated
just at the end of the converged steady cycle, by zeroing the elasticity matrix D at
the ratcheting GPs.

4 Application Examples

The method is applied to two structures one being a one dimensional and the other a
two dimensional plate element with a hole under plane stress or plane strain condi-
tions. A value of 10−4 for the tolerance proved quite accurate to stop the iterations.

4.1 Pin Jointed Framework

The truss structure (Fig. 2) that consists of five members, whose properties are listed
in Table 1, was chosen as a first example of application of the proposed method.
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Fig. 2 Five bar truss example

Table 1 Properties of the
truss elements Element Areas (cm2)

1 1.806

2 30.825

3 24.940

4 34.583

5 27.908

Material data was assumed as E = 0.21 × 105 kN/cm2, σy = 36 kN/cm2, whereas
L = 200 cm.

A simple two node plane truss element was used to analyze the structure. The
only change that needs to be applied in the numerical procedure, presented for the
continuum, is to use the axial stress in each bar, for this one-dimensional problem,
instead of the effective stress used for the continuum.

The truss was subjected to concentrated cyclic loads F0 and Fc which are applied
at nodes 3 and 4 respectively. Two cases of loading have been considered which lead
to different cyclic steady states.

(a) The first cyclic loading case has the following variation with time:

Fc(t) = 100 sin(2πt/T ), F0 = 400 kN.

The procedure predicts that the structure will shakedown. The constant in time
steady state residual stress may be seen in Fig. 3(a). In Fig. 3(b) one may also see
the distribution of the total stress, for bar 1, inside the cycle, where nowhere the
yield stress is exceeded. Analogous behavior is observed, of course, for all the other
bars.
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Fig. 3 Steady state stress
distributions inside a cycle for
element 1 (load case
a—shakedown): (a) residual
stress, (b) total stress

(b) The second cyclic loading case has the following variation with time:

Fc(t) = 200 sin(2πt/T ), F0 = 200 kN.

For this loading case the RSDM predicts that the structure is going to suffer
from alternating plasticity. In Fig. 4 one may see the uniform convergence of the
procedure towards the final steady state.

The distribution of the cyclic residual stress predicted for the middle bar 1 inside
the steady cycle may be seen in Fig. 5. The procedure shows that in the steady
state the middle bar suffers plastic strain rates, of alternating nature. These strains
spread within the time intervals [0.169, 0.362] and [0.638, 0.851], inside the cycle,
rendering the total plastic strain over the cycle (parameter α1—expression (23), also
equal to the total area under the curve, Fig. 6) equal to zero.

The results for both the two loading cases agree well with those in [18].

4.2 Plate with a Central Hole

The second example of application is the classical problem of a square plate having a
circular hole in its center. The plate is subjected to two biaxial uniform loads applied
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Fig. 4 Convergence of the
iterative procedure—truss
example (load case b)

Fig. 5 Predicted steady state
residual stress distribution for
element 1 inside a cycle (load
case b—alternating plasticity)

Fig. 6 Predicted σ cs
p (t)

distribution at steady state
inside a cycle for element 1
(load case b—alternating
plasticity)

at the edges of the plate. Due to the symmetry of the structure and the loading, only
one quarter of the plate is considered.

The boundary conditions as well as its finite element mesh discretization are
shown in Fig. 7. The ratio between the diameter d of the hole and the length L of
the plate is equal to 0.2. Also the ratio of the depth of the plate and its length is
equal to 0.05. Ninety-eight, eight-noded, isoparametric elements with 3 × 3 Gauss
integration points were used.

The material data used was: Young’s modulus E = 0.21 × 105 kN/cm2, Pois-
son’s ratio ν = 0.3 and yield stress σy = 36 kN/cm2.

Both plane stress and plain strain conditions have been examined as the proce-
dure 3.1 may be applied to both of them.
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Fig. 7 The geometry,
loading, and the finite
element mesh of a quarter of
a plate

Fig. 8 Residual stress
distribution at GP 2 inside a
cycle at steady state under
plane stress and plane strain
conditions (load case
a—shakedown)

The same vectors σ = {σxx σyy σxy σzz }T and ρ = {ρxx ρyy ρxy ρzz }T may be
utilized at a GP for both cases. For each of the two cases the corresponding 3 × 3
elasticity matrix D should be used. As far as the fourth element of the stress vector
is concerned, for the plane stress problem σ el

zz, ρzz = 0. The same holds for their
derivatives.

For a plane strain problem, on the other hand, we should have σ el
zz = ν(σ el

xx +σ el
yy),

ρzz = ν(ρxx + ρyy). The same, of course, holds for their derivatives. The non exis-
tence of the corresponding out of plane plastic strain is assured by setting σp,zz = 0.

Three different loading cases were taken into account, which lead the structure to
either shakedown, reverse plasticity or ratcheting. Results are plotted for the gener-
ally most highly stressed points of the plate GP 1 or GP 2, depending on the loading
case.

(a) The first cyclic loading case has the following variation with time:

Py(t) = 0.65σy sin2(πt/T ), Px(t) = 0.

The predicted by the procedure behavior for the structure is a shakedown state
and this complies with the fact that this loading is below the shakedown boundary
estimated in [19]. In Fig. 8 the computed by the RSDM steady-state residual stress
distribution is plotted for the GP 2, for both plane stress and plane strain conditions.
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Fig. 9 Effective total stress
distribution at GP 2 inside a
cycle at steady-state (load
case a—shakedown), plane
stress and plane strain
condition

Fig. 10 Convergence of the
iterative procedure (load
case a—shakedown)

This residual stress distribution is unique and will be the same with the one that
would be predicted from an incremental step-by-step analysis, e.g. [12] (see also
examples in [13]). The total stress distribution for this point is plotted in Fig. 9. In
Fig. 10 one may also see the convergence towards the final steady states.

(b) The second cyclic loading case has the following variation with time:

Py(t) = 0.7223σy sin2(πt/T ), Px(t) = 0.

The value of this load, at many cycle points, is in excess of the shakedown limit
computed by using a plane stress modeling, and below the shakedown limit assum-
ing a plane strain condition [19]. The present numerical procedure (RSDM) also
shows that this loading will lead the plate to shakedown for plane strain, but as-
suming plane stress conditions the loading leads some GPs to reverse plasticity. So,
for the plane strain case, in Figs. 11, 12 one may see the computed by the RSDM
steady-state residual stress distribution for the GP 2 and its effective total stress
distribution, respectively.

On the other hand, for plane stress modelling, we plot, for the most strained
point GP 2, the variation of the yy component of the excess stress vector σ cs

p , which
has the biggest values from the three components (Fig. 13). We may see that plas-
tic straining occurs, alternately, inside the time intervals [0, 0.04], [0.45, 0.55] and
[0.96, 1] at the steady cycle.
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Fig. 11 Residual stress
distribution at GP 2 inside a
cycle at steady-state (load
case b—shakedown), plane
strain case

Fig. 12 Effective total stress
distribution at GP 2 inside a
cycle at steady-state (load
case b—shakedown), plane
strain case

Fig. 13 Predicted cyclic
steady-state distribution of
the yy component of the
stress vector at GP 2 (load
case b—alternating
plasticity), plane stress case

(c) The third cyclic loading case involves two loads, one constant in time and one
varying with time:

Py(t) = 0.5σy sin2(πt/T ), Px(t) = 0.93σy.

This loading, at many cycle points, is above the ratcheting boundary. The results
for GP 1, assuming plane strain conditions, may be seen in Fig. 14, where plastic
straining of the same positive sign inside the cycle intervals [0, 0.11] and [0.89, 1]
at the steady cycle is observed. On the other hand, with a plane stress modeling,
one may observe that plastic strains of the same positive sign appear during the
whole cycle (Fig. 15). For both cases the xx direction of the component of the excess
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Fig. 14 Predicted cyclic
steady-state distribution of
the xx component of the
stress vector at GP 1 (load
case c—ratcheting), plane
strain condition

Fig. 15 Predicted cyclic
steady-state distribution of
the xx component of the
stress vector at GP 1 (load
case c—ratcheting), plane
stress condition

stress vector σ cs
p , which has the biggest values from the three components, is plotted.

This ratcheting behavior is observed also for quite a few GPs around the structure,
which definitely constitutes incremental collapse mechanisms for both plane strain
and plane stress conditions that may be seen in Figs. 16, 17 respectively. We may
observe that we have a much more spreading of ratcheting for the case of plane
stress than for the case of plane strain.

In Fig. 18 one may see the convergence of the RSDM for this loading case, for
both plane stress and plain strain conditions.

Reviewing the examples considered herein, we note that, within the adopted tol-
erance, the number of iterations ranged from a minimum of 80 for the case of reverse
plasticity of the truss example, to a maximum number of 740 for the case of ratch-
eting of the plate example, under plane strain. The total CPU-time required to solve
this last example was just 260 s, using an Intel Core i7 at 2.93 GHz with 4096 MB
RAM.

The number of time points inside the cycle should be enough so that it may ad-
equately represent the applied loading. Fifty time points inside the cycle were used
for all the examples considered herein. Three terms of the Fourier series were found
enough to represent the residual stress decomposition. The RSDM procedure proved
to be quite stable, no matter which asymptotic behavior was reached. Another im-
portant fact of the computational efficiency of the approach is that the stiffness ma-
trix needs to be decomposed once and for all at the start of the calculations.
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Fig. 16 Ratcheting
mechanism—RSDM (plane
strain condition)

Fig. 17 Ratcheting
mechanism—RSDM (plane
stress condition)

Fig. 18 Convergence of the
iterative procedure (load
case c)
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5 Concluding Remarks

The Residual Stress Decomposition Method (RSDM) is a direct method that proves
to be a simple and efficient procedure to estimate the long-term effects of the cyclic
loading on a structure. For a given time history of this loading it may equally predict
any possible steady state either it is elastic shakedown or alternating plasticity or
ratcheting.

The method, although currently developed for elastic-perfectly plastic material
and the von Mises yield surface, has the potential of extension to other types of
behavior and yield surfaces.

It also appears to have the potential to provide safety margins for a cyclic loading
the exact history of which is not known, but only its variation ranges, and work is
being done towards this direction.
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