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Abstract In this paper, the lower-bound of direct methods is applied to fiber re-
inforced metal matrix periodic composites. Three boundary conditions for the lo-
calization problem are discussed and the influence of hardening matrix material is
studied. Furthermore, in combination with homogenization theory, plastic material
parameters are predicted by using yield loci fitting on the macroscopic limit stress
domain. The proposed approach is validated through a numerical example of unidi-
rectional periodic composites with square fiber patterns.

1 Introduction

To predict safe service conditions of structures or structural elements made of het-
erogeneous materials under variable loads beyond elasticity is a challenging task
in civil and mechanical engineering. There are two major difficulties: to consider
variable loads with unknown evolution in time and to determine the effective ma-
terial properties. The former difficulty can be overcome by direct methods (DM),
namely limit and shakedown analysis. Limit analysis only requires the load range,
and shakedown analysis needs the envelope of the independent loads [13]. There-
fore, the application of DM to composites arose many interests these years. To solve
the latter difficulty, multi-scale modeling method and homogenization theory are in-
volved [27]. Either using the lower-bound [14, 23, 33, 34] or upper-bound [3, 21, 22]
approach, periodic composites are investigated at the representative volume element
(RVE) level with the elastic perfectly plastic material properties of each phase.

DM has been formulated for structures assuming elastic perfectly plastic material
behavior. However, work-hardening occurs most notably for ductile materials, like
metals. Thus DM for plasticity models with hardening has also been investigated for
long time [15, 16, 18, 20, 32], where the studied objects are homogeneous global
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structures [2, 19, 25]. In this work, we applied the lower-bound approach of DM to
periodic composites with the consideration of work-hardening.

As the global effective material properties are concerned, in [7], homogenized
elastic parameters are obtained basing on the homogenization theory and the con-
stitutive laws of elastic materials. The plastic properties are only studied for the
composites under plane stress case by using yield loci fitting. Here, the predictions
for unidirectional periodic composites are discussed.

The numerical tools required for the lower-bound approach are the finite-element
method and non-linear optimization. To reduce the scale of optimization problem,
non-conforming three-dimensional finite elements are used to discretize the RVE,
and the interior-point-algorithm based optimization tool (IPOPT) [29, 31] together
with the pre-programming language AMPL [11] are used.

2 Direct Methods Applied to Composites

2.1 Elements of Homogenization Theory

For periodic heterogeneous media, two different scales are adopted: the macroscopic
(or global) scale and the mesoscopic (or local) scale. The homogenization method
describes the relation between these two scales mainly by two stages: localization
and globalization [27].

With x and ξ as the global and local coordinates (Fig. 1), respectively, the fol-
lowing relationship holds:

ξ = x

δ
, (1)

δ is a small scale parameter, which determines the size of the representative volume
element (RVE). It plays an important role in studying the heterogeneous material,
especially for non-uniform structures. For a heterogeneous material with periodic
distribution, the smallest possible unit is normally defined as the RVE. The macro-
scopic strain E and stress Σ are linked to mesoscopic strain ε and stress σ by:

E(x) = 1

V

∫
V

ε(ξ)dV = 〈
ε(ξ)

〉
, (2)

Σ(x) = 1

V

∫
V

σ (ξ)dV = 〈
σ (ξ)

〉
. (3)

Here, 〈·〉 stands for the averaging operator. In DM for periodic heterogeneous mate-
rials, the macroscopic stress is decomposed as [34]:

Σ = 1

V

∫
V

(
ασE + ρ̄

)
dV = 1

V

∫
V

ασE dV + 1

V

∫
V

ρ̄ dV with
1

V

∫
V

ρ̄ dV = 0

(4)
where α is the safety factor, σE is the purely elastic stress field and ρ̄ is the time-
independent residual stress field.
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Fig. 1 Homogenization theory

2.2 Boundary Conditions

One of the difficulties in the localization problem lies in introducing appropriate
boundary conditions. Usually, three types of boundary conditions are considered on
the local scale [1, 27].

Strain approach Uniform strain is imposed on ∂V ,

u = E · ξ on ∂V . (5)

Stress approach Uniform stress is imposed on ∂V ,

σ · n = Σ · n on ∂V . (6)

Periodicity Constraints are required for both fields.

• The stress vectors on the opposite sides have the same value but opposite direc-
tion,

σ · n anti-periodic. (7)

• The local strain can be split into an overall strain E and a fluctuating field εper,
where the average of εper over RVE vanishes,

ε(u) = E + ε
(
uper) = E + εper, (8)

〈
εper〉 = 0. (9)

In the numerical implementation, to carry out the strain approach, uniform dis-
placement is imposed on the boundary, see Fig. 2(L). For Stress approach, besides
the uniform stress imposed on the boundary, one degree of freedom of the boundary
is coupled in order to maintain the periodic deformation, as shown in Fig. 2(M).
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Fig. 2 Boundary conditions

Fig. 3 Deformations of the
non-periodic RVE under
different boundary conditions

These two approaches are normally suitable for the periodic RVE, while the third
one is more realistic, especially for non-periodic unit cell. Figure 2(R) describes the
constraints for periodicity method:

u′
i − ui + ud

i = 0 (10)

here, u′
i and ui are the displacements of the relative opposite periodic node pairs and

ud
i is the macroscopic displacement. Figure 3 illustrates the deformations of a non-

periodic RVE under pure thermal loading by using strain approach and periodicity
approach, respectively.

The common ground in these three approaches is the consistent deformation of
boundaries. The strain energies, by using different boundary conditions, are ordered
in the following way [27]:

E : d̂hom : E ≤ E : dhom
per : E ≤ E : d̃hom : E. (11)

d̂hom, dhom
per and d̃hom are the 4th order tensors of elastic stiffness, under uniform

stress, periodicity and uniform strain, respectively, which depend on the micro vari-
able ξ .

The objective studied in this work is the periodic composites under mechanical
loading, and the strain approach was adopted as the boundary condition. The local-
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ization of the elastic mechanical problem can be written as [14]:

Pstrain =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divσE = 0 in V ,

σE = d : (E + εper) in V ,

σE · n anti-periodic on ∂V ,

uper periodic on ∂V ,

〈ε〉 = E.

(12)

The residual stress field ρ̄ should satisfy the self-equilibrium condition and peri-
odicity conditions:

Pres
strain =

{
divρ̄ = 0 in V ,

ρ̄ · n anti-periodic on ∂V .
(13)

Anti-periodicity means that either σE ·n or ρ̄ ·n has opposite values on opposite
sides of ∂V . Periodicity of uper indicates that the displacements at two opposite
points of the boundary are the same. For strain approach, we assume that uper = 0
and εper = 0.

2.3 Finite Element Discretization

In order to satisfy the equilibrium conditions for the elastic stress σE and time-
independent residual stress ρ̄ in weak form, the principle of virtual work, demanding
that the external virtual work equals to the internal virtual work for unrelated but
consistent displacements and strains, is used:

∫
V

{δε}T {
ασE + ρ̄

}
dV =

∫
∂V

{δu}T {p}dS +
∫

V

{δu}T {f}dV. (14)

Here, δε is the virtual strain, and δu is the virtual displacement. p and f are
surface force and body force, respectively. For periodic heterogeneous materials,
the external loads can be either macroscopic stresses Σ or macroscopic strains E.
The left side of Eq. (14) implies that the discretization here has to be carried out
for the purely elastic stress field σE and the residual stress field ρ̄. Since the scale
of the optimization problem is mainly determined by the type and the number of
finite elements, the choice of a proper element type is very important. In this work,
a non-conforming solid element was applied in the limit and shakedown analysis of
composites because of its accuracy and efficiency [5].

The lower-bound problem of DM for periodic composites with elastic perfectly
plastic material model can be formulated finally as the following mathematical pro-
gramming:

max α

{ [C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σY i) ≤ 0, i ∈ [1,NGS]. (15)
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α is the load factor, Pk is the vertices of load envelope and NGS is the number of
Gaussian points and σY is the yield strength. F is the von Mises yield criterion.

2.4 Large Scale Optimization

The lower-bound approach of DM applied to a real structure or structural element
will lead usually to a large scale optimization problem. To solve such kind of prob-
lem, there are many optimization algorithms and corresponding software pack-
ages, like LANCELOT [9], which is based on an augmented Lagrangian method,
and IPDCA (Interior Point with DC regularization Algorithm), which is based on
interior-point method and especially designed for shakedown problems. The effi-
ciency of IPDCA was proved in [17]. However, the present version is suitable for
elastic perfectly plastic material model. Another user-developed software package is
IPSA [24, 25], which is also based on interior-point method. The additional selective
algorithm makes the application of DM on large structures possible. In this work,
AMPL+IPOPT are adopted as the numerical solver [4]. AMPL (A Modeling Lan-
guage for Mathematical Programming) is a comprehensive and powerful algebraic
modeling language for linear and nonlinear optimization problems with discrete or
continuous variables [11]. IPOPT, short for “Interior Point OPTimizer” is an open
software library for large scale nonlinear optimization of continuous systems [30].

3 Hardening Material Models

DM with hardening has been investigated for long time, however, the studied objects
are only homogeneous global structures [2, 19, 24].

Here, the lower-bound approach of DM for periodic composites with the con-
sideration of hardening matrix is applied on the RVE. The material model for the
fiber is assumed as elastic perfectly plastic. Some abbreviations used in this work
are introduced in Table 1.

3.1 Isotropic Hardening

The isotropic hardening material model assumes that the yield surface increases in
size, but keeps its shape. The subsequent yield surface and initial yield surface have
the same center, as shown in Fig. 4.

The lower-bound approach of DM with isotropic hardening matrix can be for-
mulated as:

max α

⎧⎪⎨
⎪⎩

[C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σ

f
Y i) ≤ 0, i ∈ [1,NGSF],

F (ασE
j (Pk) + ρ̄j , σ

m
Uj ) ≤ 0, j ∈ [1,NGSM]

(16)
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Table 1 Abbreviations of some terms

Term Meaning

NE Number of elements

NK Number of nodes

NGE Number of Gaussian points of each element (in this work, NGE = 8)

NGSF Number of Gaussian points for Fiber

NGSM Number of Gaussian points for Matrix

NGS Number of total Gaussian points, NGS = NGE × NE = NGSF + NGSM

NL Number of load vertices: NL = 1, limit analysis; NL = 2n, shakedown anal-
ysis. n is the number of independent loads

Fig. 4 Isotropic hardening

Fig. 5 Unlimited kinematic
hardening

where σ m
Uj is the ultimate strength for the matrix. Superscript ‘m’ and ‘f’ indicate

matrix and fiber respectively.

3.2 Unlimited Kinematic Hardening

The kinematic hardening model allows the yield surface to translate, without chang-
ing its shape, as shown in Fig. 5. π is the time-independent back stress. The dis-
cretized formulation of the lower-bound problem for the linear unlimited kinematic
hardening condition is:

max α

⎧⎪⎪⎨
⎪⎪⎩

[C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σ

f
Y i) ≤ 0, i ∈ [1,NGSF]

F(ασE
j (Pk) + ρ̄j − π̄ j , σ

m
Yj ) ≤ 0, j ∈ [1,NGSM]

(17)
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Fig. 6 Limited kinematic
hardening

Fig. 7 Conditions a and b in
limited kinematic hardening

where π̄ is the back stress field. It is important to note that, for matrix with unlim-
ited kinematic hardening, there is no optimal solution for limit analysis, since the
ultimate strength of the material is infinite.

3.3 Limited Kinematic Hardening

To overcome the shortcoming of the unlimited linear kinematic hardening material
model, two-surface model of limited kinematic hardening has been introduced [32],
as shown in Fig. 6. With the consideration of the linear limited kinematic hardening,
the lower bound problem has an analogous discretized form like unlimited kine-
matic hardening. Moreover, due to the back stress limitation, there is an additional
inequality constraint, as shown in (18a) or (18b).

max α

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σ

f
Y i) ≤ 0, i ∈ [1,NGSF],

F (ασE
j (Pk) + ρ̄j − π̄ j , σ

m
Yj ) ≤ 0, j ∈ [1,NGSM],

F (ασE
j (Pk) + ρ̄j , σ

m
Uj ) ≤ 0, (a)

or F(π̄ j ,σ
m
Uj − σm

Yj ) ≤ 0. (b)

(18)

As shown in Fig. 7, Eq. (18a) indicates that the subsequent yield surfaces stays
always inside the bounded loading surface [32]. Equation (18b) means that motion
of the origin center of the subsequent yield surface is bounded by the back stress
surface [26]. The mathematical equality of both conditions is proved in [19]. Never-
theless, the obtained optimized value of back stresses under the two conditions are
slightly different [6].
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Table 2 Sizes of optimization problem with different material models

Material model No. Var No. Eq No. Ineq.

Elastic-perfectly plastic 6NGS + 1 3NK + 9NE NL × NGS

Isotropic hardening 6NGS + 1 3NK + 9NE NL × NGS

Unlimited kinematic hardening 6NGS + 6NGSM + 1 3NK + 9NE NL × NGS

Limited kinematic hardening (a) 6NGS + 6NGSM + 1 3NK + 9NE NL × (NGS + NGSM)

Limited kinematic hardening (b) 6NGS + 6NGSM + 1 3NK + 9NE NL × NGS + NGSM

With the assumption that the material model of fiber is elastic, the material model
of matrix is elastic-perfectly, isotropic hardening, unlimited kinematic hardening
and limited kinematic hardening, respectively, the sizes of static shakedown problem
are shown in Table 2.

4 Failure Criterion for Composites

Every material has certain strength, expressed in terms of stress or strain, beyond
which the structure fractures or fails to carry the load. For heterogeneous materials,
consisting of two or more phases, the determination of failure criteria is in fact
one of the most important issues in the design process. Some phenomenological
failure criteria that use experimental data to determine material constants have been
proposed, like maximum stress theory, maximum strain theory, distortional energy
(Tsai-Hill) criterion, Tsai-Wu criterion, Hashin’s criterion and so on [28].

In this section, a general method to identify material parameters for a given fail-
ure criterion for composites is proposed and discussed.

4.1 Definition of Homogenized Stress

The effective elastic material properties related to different fiber distributions and
volume fractions, are predicted with the aid of homogenization theory and mechan-
ical constitutive law [4], which can be generally described as:

Σ = dhom : E, (19)

dhom are the homogenized elasticity tensor.
Homogenized plastic material properties can be determined experimentally or

numerically. Although the results from experiments are generally more accurate,
the cost is normally very high and only the strength in one or more principle di-
rections may be obtained. Through the numerical method, we provide a rough but
complete prediction of plastic properties after neglecting some defects caused in the
manufacturing process.
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In our former work, the yield criterion of periodic composites under plane stress
case are discussed [7]. Firstly, three states during the failure are defined [8, 12]:

• Onset of plasticity (Homogenized elastic stress): ΣEL = αEL〈σE〉.
• Shakedown state (Homogenized shakedown stress): ΣSD = αSD〈σE〉.
• Limit state (Homogenized limit stress): ΣLM = αLM 〈σE〉.

〈σE〉 is the homogenized macroscopic stress of purely elastic stress field. Based
on limit homogenized macroscopic stress domain, there are two possibilities to de-
rive the yield criteria:

• To find the best fitted mathematical formulation;
• To identify the related parameters by using existing yield criteria.

The former approach seems quite difficult because of the uncertainty of the number
of parameters. Therefore, the latter is adopted to seek a feasible solution. Since
the studied object in the numerical example is the unidirectional fiber reinforced
periodic composites, whose global material behavior can be treated as an orthotropic
one, Hill’s yield criterion is hypothesized to fit the limit domain.

However, the stress components, either in micro-/mesoscropic level σij or in
macroscopic level Σij depend on the orientation of the coordinate system. Never-
theless, there are certain invariants associated with every tensor. The three principle
stresses are calculated through the characteristic equation:

σ 3 − I1σ
2 + I2σ + I3 = 0, (20)

I1, I2 and I3 are the first, second, and third stress invariants, respectively.

4.2 Projection into π -Plane

In principle stresses, Hill’s yield criterion is written as:

F(σ2 − σ3)
2 + G(σ3 − σ1)

2 + H(σ1 − σ2)
2 = 1 (21)

with:

F = 1

2

(
1

Y 2
+ 1

Z2
− 1

X2

)
,

G = 1

2

(
1

Z2
+ 1

X2
− 1

Y 2

)
, (22)

H = 1

2

(
1

X2
+ 1

Y 2
− 1

Z2

)
.

Here X,Y and Z are axial strengths of the orthotropic material. σ1 = σ2 = σ3 is
defined as the hydrostatic axis, σ1 + σ2 + σ3 = 0 is named as π -plane or deviatoric
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Fig. 8 Illustration of two
coordinate systems

plane. Hill’s yield surfaces in principal stress coordinate circumscribes an ellipse
column around the hydrostatic axis.

Let (x1–y1–z1) and (x2–y2–z2) denote the original principle stress and trans-
formed coordinate systems, respectively. As shown in Fig. 8, z2 is coincident with
the hydrostatic axis.

(x2–y2–z2) can be achieved using a specific sequence of intrinsic rotations (mo-
bile frame rotations), whose values are called the Euler Angles of the target frame.
Here we use “y-convention”, i.e. (Z,Y ′,Z′′):

• Rotate the x1y1z1 -system about the z1-axis (Z) by angle ϕ;
• Rotate the current system about the new y-axis (Y ′) by angle θ ;
• Rotate the current system about the new z-axis (Z′′) by angle φ.

⎧⎨
⎩

x1
y1
z1

⎫⎬
⎭ = T

⎧⎨
⎩

x2
y2
z2

⎫⎬
⎭ . (23)

T is the rotation matrix,

Tx1y1z1 =
⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎞
⎠

⎛
⎝cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎞
⎠

⎛
⎝cosφ −sinφ 0

sinφ cosφ 0
0 0 1

⎞
⎠ . (24)

Here, ϕ = π
4 , θ = tan−1(

√
2) and φ = −π

4 .
Let: ⎧⎨

⎩
σ1
σ2
σ3

⎫⎬
⎭ = T

⎧⎨
⎩

γ1
γ2
γ3

⎫⎬
⎭ ,

the projection of Hill criterion into π -plane is:

(F +1.866H +0.134G)γ 2
1 +(F +0.134H +1.866G)γ 2

2 +(G−2F +H)γ1γ2 = 1.

(25)
Equation (25) implies that the projection of Hill criterion onto π -plane is an ellipse.
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Fig. 9 Projection of the von
Mises yield criterion

4.2.1 Homogeneous Material

For homogeneous material, X = Y = Z, i.e. F = G = H , which leads to the von
Mises yield criterion, as shown in Eq. (26). It is a special case of Hill’s yield criterion
and there is only one parameter to determine:

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 − 2σ 2

Y ≤ 0. (26)

If the von Mises criterion is projected to π plane, Eq. (25) can be written as:

γ 2
1 + γ 2

2 = C with C = 1

3F
= 2

3
σ 2

Y . (27)

The projection of the von Mises yield criterion on (σ1, σ2)-plane and π -plane is
shown in Fig. 9, and the ellipse from Hill’s criterion becomes a circle.

4.2.2 Transversely Homogeneous Material

For transversely homogeneous material, with the assumption Y = Z, i.e. G = H ,
Eq. (25) can be written as:

(F + 2H)γ 2
1 + (F + 2H)γ 2

2 + (2H − 2F)γ1γ1 = 1. (28)

There is two parameters to determine. From Eq. (22), we may obtain:

F = 1

2

(
2

Y 2
− 1

X2

)
; G = H = 1

2

(
1

X2

)
. (29)
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Rewrite Eq. (29):

X = 1√
2H

; Y = 1√
F + H

. (30)

An ellipse in general position can be expressed parametrically as the path of a
point (x(t), y(t)), where:

x(t) = xc + a cos(t) cos(ψ) − b sin(t) sin(ψ),

y(t) = yc + a cos(t) cos(ψ) + b sin(t) sin(ψ).
(31)

Here, (xc, yc) is the center of the ellipse, ψ is the angle between the X-axis and the
major axis of the ellipse, parameter t varies from 0 to 2π , a and b are major and
minor radii, respectively.

In the case of transversely homogeneous material, xc = yc = 0 and ψ = π
4 . Sub-

stitute the known value into Eq. (31), we get:

(
x + y√

2a

)2

+
(

x − y√
2b

)2

= 1 =⇒
(

1

2a2
+ 1

2b2

)
x2 +

(
1

2a2
+ 1

2b2

)
y2 +

(
1

a2
− 1

b2

)
xy = 1. (32)

Comparing Eqs. (28) and (32), we get:
⎧⎪⎪⎨
⎪⎪⎩

F + 2H = 1

2a2
+ 1

2b2
,

H − F = 1

2a2
− 1

2b2

=⇒

⎧⎪⎪⎨
⎪⎪⎩

H = 1

3a2
,

F = 1

2b2
− 1

6a2
.

(33)

4.2.3 General Orthotropic Material

For the general orthotropic material, there are three parameters to determine. Equa-
tion (31) can be written as a general implicit ellipse equation:

c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 = 0. (34)

In our case, c4 = c5 = 0 and c6 = −1. Comparing Eqs. (25) and (34), we get the
following three equations:

⎧⎪⎨
⎪⎩

F + 1.866H + 0.134G = c1,

F + 0.134H + 1.866G = c2,

G − 2F + H = c3.

(35)

In conclusion, the methodology to determine the yield criterion of unidirectional
fiber reinforced periodic metal matrix composites is:
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1. Calculation of limit macroscopic stresses based on homogenization theory;
2. Calculation of stress invariants;
3. Projection of principle stresses into π plane;
4. Ellipse fit using least squares criterion;
5. Parameters determination of yield criterion.

5 Numerical Examples

Take the square patterned unidirectional fiber reinforced periodic metal matrix com-
posites as an example, the RVE is shown in Fig. 10, with perfect interface. The fiber
ratio is 40 %. Because of symmetry, the quarter of the RVE is used for the finite
element analysis (see Fig. 11), with the dimension lx = ly = 50 mm. The RVE is
subjected to two independent uniform displacement loadings, U1∗ = U2∗ = U0 =
0.02 mm.

The material properties of each phase are shown in Table 3, with the assumption
that each phase is isotropic.

8-node non-conforming elements are applied for the calculation of purely elastic
stress field σE and the self-equilibrated constant matrix [C]. Since the unidirec-
tional fiber reinforced composites can be treated as plane strain case, all degrees of
freedoms in the fiber direction are fixed, i.e. there is no displacement deformation
in the fiber direction. AMPL+IPOPT are used as the optimization tool.

Besides the limit load factor αLM and the shakedown load factor αSD , the elastic
load factor αEL and the alternating plastic load factor αAP are also calculated for
the comparison in this work. The elastic load factor αEL under two independent
loads L1 and L2 is defined as:

max αEL F
(
ασ i

E(Pk), σY i

) ≤ 0, i ∈ [1,NGS], k = 1 (36)

where the load vertex P1 indicates the combination of L1 and L2.
The alternating plasticity load factor αAP under two independent loads L1 and

L2 can be simplified as follows:

max αAP

{
F( 1

2α[σE
i (L1) + σE

i (L2)], σY i) ≤ 0,

F ( 1
2α[σE

i (L1) − σE
i (L2)], σY i) ≤ 0, i ∈ [1,NGS]. (37)

Figure 12 shows the different load domains of the considered example, assuming
that both phases have elastic perfectly plastic material behavior.

Considering the hardening, the shakedown domains for different matrix mate-
rial models are shown in Fig. 13. We observe that the shakedown domain with
isotropic hardening is only enlarged compared to the elastic perfectly plastic model.
The shakedown domain with unlimited kinematic hardening is bounded by the al-
ternating plasticity load domain.

If the RVE is under loading U1 = U2, the shakedown load factors of elastic
perfectly plastic, limited kinematic hardening and unlimited kinematic hardening
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Fig. 10 Square patterned
periodic composites

Fig. 11 Finite element model

Table 3 Material properties
Al/Al2O3

E (GPa) ν σY (MPa) σU (MPa)

Matrix(Al) 70 0.3 80 120

Fiber(Al2O3) 370 0.3 2000

Fig. 12 Load domains of periodic composites with the fiber volume fraction 40 % under plane
strain case, with EL: elastic load factor; SD: shakedown load factor; LM: limit load factor and AP:
alternating plasticity load factor. (L) Displacement domain; (R) Macroscopic stress domain

have the same value, as shown Fig. 13. However, the mechanisms are obviously
different. For example, under loading U1 = U2 = −αSDU0, the equivalent stress
fields obtained under different material models are shown in Fig. 14.



134 M. Chen and A. Hachemi

Fig. 13 Shakedown domains
of all material models, with
SD-ElasPer: elastic perfectly
plastic; SD-IsoHard: isotropic
hardening; SD-LKHard:
Limited kinematic hardening;
SDH-ULKHard: Unlimited
kinematic hardening

Although based on the same elastic stress field σE , the residual stress fields ρ̄

and back stress fields π̄ , obtained from the optimization programming, are quite
different. For the elastic perfectly plastic material model, obviously there is no back
stress field. Nevertheless, the total equivalent stress fields of these three different
material models are similar.

Figure 15 shows us merely the limit domains with elastic perfectly plastic and
limited kinematic hardening material models, since there is no bound for limit load
of matrix with unlimited kinematic hardening.

According to the limit displacement domain of the elastic perfectly plastic mate-
rial model, with the aid of homogenization approach and stress invariant theory, the
macroscopic principle stresses domain is obtained, as shown in Fig. 16(L), which is
projected into π -plane afterwards, see Fig. 16(R). Based on the least square fitting
method, the obtained parameters of Hill’s criterion are as follow:

Major axis of ellipse: a = 241.8306; Minor axis of ellipse: b = 67.7779.

From Eqs. (33) and (30), we get the axial strength of the unidirectional periodic
composites:

X = 296.1808 MPa = 3.70σm
Y ; Y = Z = 94.6217 MPa = 1.18σm

Y .

According to the micromechanics of unidirectional composites [10], the effective
yield tensile strength in fiber direction is defined as:

ΣX
Y = ηmEmεc + ηfEfεc. (38)

Indices ‘f’ and ‘m’ represent fiber and matrix, respectively. εc is the critical strain
defined by:

εc = min

{
σ m

Y

Em
,
σ f

Y

Ef

}
. (39)
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Fig. 14 Different stress fields under different material models: (L) Elastic perfectly plastic mate-
rial model; (M) Limited kinematic hardening material model; (R) Unlimited kinematic hardening
material model

Therefore, the effective yield strength based on micromechanics is:

ΣX
Y = 217.14 MPa = 2.17σm

Y .

The maximum tensile stress criterion is:

Σ t
Y = 1 − νm

kσ (1 + νm)(1 − 2νm)
(σmt − εrmEm) (40)
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Fig. 15 Limit domains, with
LM-ElasPer:elastic perfectly
plastic; LM-LKHard: Limited
kinematic hardening

Fig. 16 Yield criterion fitting: (L) Homogenized stresses (Σ1-Σ2) domain; (R) Hill’s yield crite-
rion fitting based on the projection into π plane

where, index ‘t’ means the transverse direction. εrm is the radial maximum residual
strain, which is approximated to zero in our case. kσ is the stress concentration
factor, with the definition:

kσ = σmax

σp

, (41)

σp is the outer force that is applied on the RVE or mesoscopic components. Accord-
ing to the numerical result, kσ is around 1.15. Therefore, the effective transverse
yield strength based on micromechanics is:

ΣY
Y = ΣZ

Y = 93.65 MPa = 1.17σm
Y .

When compared with the analytical results from microscopic mechanics, we ob-
serve that the predicted strength in transverse direction matches well. However, the
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numerical value of the strength in fiber direction is bigger than the analytical one.
The possible reason lies in the too restrict constraints in the numerical analysis: the
degrees of freedom in fiber direction are completely fixed which leads to a greater
homogenized elastic stress in fiber direction. Nevertheless, the advantages of nu-
merical methods are obvious, which consist in the possibility to consider the fiber
distributions, imperfect bounded interfaces, or other types of composites, instead of
the unidirectional one.

6 Conclusions

In this paper, the lower-bound approach of DM is applied on periodic composites,
including hardening material models for the matrix. As expected, for isotropic hard-
ening, the shakedown domain is enlarged with the same shape as elastic perfectly
plastic one. For unlimited kinematic hardening, there is no bound for the limit load
and shakedown domain is bounded by alternating plasticity. Two yield surfaces of
limited kinematic hardening model provide more realistic solutions. Furthermore, in
combination with homogenization theory, plastic material parameters are predicted
by using yield surface fitting on the macroscopic limit homogenized stress domain.
However, the present work is based on the assumption that fiber and matrix have
perfect interfaces. The debonding failure will be studied in the further work.
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