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Abstract Engineering design and integrity assessment of components under the
action of cyclic thermal and mechanical loading require the assessment of load his-
tories for which certain types of material failure do not occur. This involves the
determination of the shakedown limit, ratchet limits, plastic strain range concerning
fatigue crack initiation in a low cycle fatigue assessment, and creep fatigue interac-
tion.

In this paper a state-of-the-art direct method, the Linear Matching Method
(LMM), is summarized for the evaluation of these design limits in both plasticity
and creep. These have been solved by characterizing the steady cyclic state using a
general cyclic minimum theorem. For a prescribed class of kinematically admissible
inelastic strain rate histories, the minimum of the functional for these design limits
are found by either global minimization process or dual minimization process. The
applications of the LMM to three practical problems are outlined to confirm the ef-
ficiency and effectiveness of the method and demonstrate that Direct Methods may
be applied to a much wider range of circumstances than have hitherto been possible.

Keywords Plasticity · Creep · Direct methods · Cyclic loading · Shakedown ·
Ratchetting · Creep-fatigue interaction

1 Introduction

Imperfections in structures can arise in the initial production process, or during the
heat-treatment of the component, particularly during welding processes. These de-
fects or flaws are unavoidable within structure components, and they do not gen-
erally lead to an immediate failure. Failure modes occurring from these structures
are different from industry to industry, but mostly such failures result from the ap-
plication of cyclic loading with high temperature. In general, the lifetimes of these
components, operating at elevated temperatures, depend on the nature of plastic
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and creep deformation they experience. The first failure mode is mainly concerned
with the excessive plastic deformations associated with the phenomenon of plastic
collapse, shakedown and ratchetting, while the second is concerned with the creep
fatigue interaction. The ability to accurately model these behaviours of component
subjected to cyclic and variable loading conditions would provide a means of assess-
ing the remaining life of the structural components. Thus, the elastic-plastic-creep
response of a structure needs to be well understood when using it as a design con-
dition.

The determination of these design limits has attracted the attentions of many re-
searchers. The phenomena of shakedown and ratchetting associated with the steady
cyclic response have been researched and modeled extensively by plasticity theo-
rists, materials scientists, mathematicians and engineers. Since closed form solu-
tions of these design limits are very limited due to the complexity of the problem,
the numerical approaches play a key role for the assessment of these design limits
in plasticity.

One approach is to simulate the detailed elastic-plastic response of the struc-
ture for a specified cyclic load history, most commonly by the incremental Finite
Element Analysis (FEA) [1]. However, this method requires significant computer
time for complex structures, due to the reason of its investigation of any load cy-
cle. A relatively new cyclic analysis method, Direct Cyclic Analysis (DCA) [2], has
been developed to avoid excessive numerical expense associated with the incremen-
tal FEA. It has been recently incorporated into ABAQUS to evaluate the stabilized
cyclic behaviour directly. However, both the incremental FEA and DCA do not pre-
dict shakedown or ratchet limits directly. It can only be used to show whether elastic
shakedown, plastic shakedown or ratchetting occurs [3].

To define the shakedown and ratchet limits, alternative approach has been de-
veloped. It involves the application of numerical methods [4–9] for addressing the
structural response in structures subjected to both severe mechanical and thermal
loads. The assessments, provided from these new methods, have the potential of
providing results that combine the accuracy of non-linear FEA simulation meth-
ods [10, 11] with the efficiency of rules-based methods [12, 13]. These are direct
methods based upon a programming technique. Direct methods were incorporated
into finite element analysis in order to evaluate the shakedown limit. The material
model is considered to be elastic perfectly plastic, and the load domain including all
the possible load paths eliminates the necessity to know the detailed load history.
Such direct methods include; the mathematical programming methods [14–16], the
Generalized Local Stress Strain (GLOSS) r-node method [17], the Elastic Compen-
sation Method (ECM) [18], and the Linear Matching Method (LMM) [7, 19, 20].
Among these direct methods, the LMM is counted to be the method most amenable
to practical engineering applications involving complicated thermomechanical load
history. The LMM has been extensively applied to a range of problems [8, 19],
through various adaptations, extended to the calculation required for the UK as-
sessment procedure R5 [21] for the high temperature response of structures. The
LMM describes non-linear inelastic material behaviour by linear solutions where
the material coefficients vary both spatially and in time, which makes the method
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particularly flexible. The LMM has been regarded as an efficient and effective upper
bound programming method for which, in many circumstances, strict convergence
proofs may be constructed. In the past two years, the LMM has been further devel-
oped to account for the lower bound shakedown and ratchets limits, and investigate
more complicated cyclic problems. Moreover, the extensions of LMM have resulted
in the application of the method to high temperature creep behavior including the
effect of elastic follow-up [20], i.e. the evaluation of local creep damage due to the
relaxation of stress during creep dwell times.

There are four objectives leading to using the basics of these methods in this
study where limit in plasticity and creep are designed. The first objective is to ob-
tain a LMM approach used for more general purposes. This LMM must be able to
address to a wider class of problems and prospective procedures for lower and up-
per bound design limits. The second objective is to assess the cyclic response under
creep fatigue conditions by presenting a new numerical procedure. The third is the
examination and the improvement of convergence problems existing in the itera-
tive approach and the last objective is to validate the efficiency and effectiveness
of LMM while designing the limits in plasticity and creep. This validation is per-
formed on three typical practical problems. The first problem is; a defective pipeline
subjected to cyclic thermal loading and constant operating pressure. In the second
problem the effects of drilling holes on the ratchet limit and crack tip plastic strain
range for a central cracked plate subjected to constant tensile loading and cyclic
bending moment are investigated, and in the last one the cyclic structural responses
of a cruciform weldment under creep fatigue interaction is being addressed.

In the following sections, a general cyclic minimum theorem for perfect plastic-
ity and the application of the LMM for a particular class of problems for the design
limits in plasticity and creep will be described. This is followed by the discussion
of convergence and the application of three practical examples with numerical veri-
fications of the proposed methods.

2 Cyclic Behaviour

2.1 General Cyclic Problem

Consider a body with volume V and surface S, where the material is isotropic,
elastic-plastic and satisfies the von Mises yield condition. A cyclic history of tem-
perature λθ(x, t) occurs within volume V . A cyclic load history λP (x, t) is applied
over part of S, namely ST. Here λ denotes a scalar load parameter. On the remainder
of S, namely Su, zero displacements are maintained. Both load and temperature his-
tories have the same cycle time �t and, in the following, we are concerned with the
behaviour of the body in a typical cycle 0 ≤ t ≤ �t in a cycle state. For the problem
defined above the stresses and strain rates will asymptote to a cyclic state where

σij (t) = σij (t + �t), ε̇ij (t) = ε̇ij (t + �t). (1)
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This arbitrary asymptotic cyclic history may be expressed in terms of three com-
ponents, the elastic solution, a transient solution accumulated up to the beginning
of the cycle and a residual solution that represents the remaining changes within the
cycle. The linear elastic stress solution is denoted by λσ̂ij . The general form of the
stress solution is given by

σij (x, t) = λσ̂ij (x, t) + ρ̄ij (x) + ρr
ij (x, t) (2)

where ρ̄ij denotes a constant residual stress field in equilibrium with zero surface
traction on ST and corresponds to the residual state of stress at the beginning and
end of the cycle. The history ρr

ij is the change in the residual stress during the cycle
and satisfies;

ρr
ij (x,0) = ρr

ij (x,�t). (3)

It is worth noting that the arguments in this section do not explicitly call on
the properties of perfect plasticity and are therefore common to all cyclic states
associated with inelastic material behaviour.

2.2 Description of Design Limits in Plasticity and Creep Under
Cyclic Loading

2.2.1 Design Limits in Plasticity

One well-known illustration defining the plasticity limit of the structure under cyclic
load history is Bree interaction diagram [22, 23]. Bree [22, 23] developed theoret-
ical solutions for a simplified 2-dimensional model of a nuclear reactor fuel can.
In his model, constant pressure stress and cyclic temperature gradient was applied
across the can wall during start-up and shutdown. These theoretical solutions were
illustrated on Bree interaction diagram in order to provide different modes of mate-
rial behaviour for different cyclic loading conditions. These diagrams with various
cyclic loading combinations are helping the designers especially in their early stages
of design.

Figure 1 is the Bree diagram [22, 23], illustrating the responses for the case
of a fuel can subject to cyclic through-wall thermal stress and a constant internal
pressure. The ordinate and abscissa give normalised values of pressure and thermal
stress respectively, where the stresses have been normalised against the yield stress
of the material. The distinct feature on the interaction diagram is the separation of
the different modes of material behaviour. In this particular analysis, the diagram is
divided into four design regions, namely:

Pure Elastic Region In this region, it was found that the load level is sufficiently
small; the response is purely elastic, no permanent strains are induced, and the struc-
ture returns to its original configuration after each load application.
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Fig. 1 Bree diagram for
pressurized tube and thermal
loading [22, 23]

Elastic Shakedown Region In this region, the stresses are exceeding the yield
stress at the first few load cycles, which give rise to constant residual stress in the
structure such that in subsequent load cycles only elastic deformation occurs. The
constant residual stress field has caused the redistribution of the stresses within the
structure. This effectively has the effect of pulling the stress fields, the sum of the
elastic and residual stresses in to the yield surface.

Reverse Plasticity/Plastic Shakedown Region The transition to this region oc-
curs when the effective elastic stresses exceed twice the yield stress. This was made
possible with the accommodation of the time-varying residual stress field, causing
the stress distribution at the outer fibre of the plate, to exceed twice the yield stress.
When the structure exhibits reverse plasticity over each cycle, the positive plastic
strain in the first half of the load cycle followed by equal magnitude negative strain
in the second half, such that there is no accumulation of plastic strain during load
cycle. And the failure mechanism for plastic shakedown is low-cycle fatigue.

Ratchetting Region This region is best characterized by the breakdown of the
elastic, shakedown and reverse-plasticity conditions. In each cycle, plastic strains
accumulate over a significant volume of the plate, leading to structural failure from
the unlimited accumulation of plastic deformation and eventually incremental plas-
tic collapse.
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Fig. 2 The Hysteresis cycle
which provides the
information for fatigue and
creep damage

2.2.2 Design Limits in Creep Under Cyclic Loading

In the presence of creep, the response of the structure to cyclic loading changes
significantly. Interaction of plasticity and creep is the key feature of creep-fatigue
mechanism under cyclic loading condition with creep. Assessments must be carried
out to ensure avoidance of creep-fatigue failure by, creep rupture and cyclically en-
hanced creep. The term cyclically enhance creep refers to the threat of gross section
creep failure due to the accumulation of creep strains arising from the cyclic loading.
The life design limit under creep fatigue interaction can be defined by construction
of stress strain hysteresis loops since this hysteresis loop provides the information
of life damage due to fatigue and creep, and this information also is the key to an R5
V2/3 assessment. Figure 2 is the construction of the hysteresis cycle; it provides the
total strain range, �εtot from which the fatigue damage is calculated, and the start
of dwell stress, σ1 and creep strain, εcr from which the creep damage is calculated.

3 Minimization Processes of the Linear Matching Method

The strategy of locating each of above critical limits consists of defining an appro-
priate class of kinematically admissible strain rate histories ε̇c

ij then solving a corre-
sponding minimizing process for I (ε̇c

ij , λ) by considering the incremental form;

I
(
ε̇c
ij , λ

) =
N∑

n=1

In, (4a)

In
(
�εn

ij , λ
) =

∫

V

{
σn

ij�εn
ij − (

λσ̂ij (tn) + ρij (tn) + ρ̄ij

)
�εn

ij

}
dV, (4b)

ρij (tn) = ρ̄0
ij +

n∑

l=1

�ρij (tl), (4c)
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where ε̇c
ij is replaced by a sequence of increments of strain �εn

ij occurring at a
sequence of N times tn, n = 1 to N , during the cycle. The incremental minimization
of In(�εn

ij , λ) assumes that the prior history of the residual stress is known and

compatibility of the total elastic and plastic strain in the increment is used. ρ̄0
ij

is the
constant element of the changing residual stress ρij (tn) and represents as,

ρ̄0
ijM =

N∑

n=1

�ρij
n
1 +

N∑

n=1

�ρij
n
2 + · · · +

N∑

n=1

�ρij
n
M−1 (5)

where M represents the total number of cycles. In this section, the linear matching
processes for minimization of I (ε̇c

ij , λ) are summarized for both the shakedown and
ratchet limits.

3.1 Global Minimization for Shakedown Limit

The global minimization of I (ε̇c
ij , λ)makes use of the compatibility from the sum

of the increments of plastic strain over the cycle. When a set of increments �εnk
ij

at kth iteration are assumed known, a linear material can be defined so that linear
shear modulus μ̄nk ensures that the resulting deviatoric stress is at yield, i.e.

2

3
μ̄nkε̄

(
�εnk

ij

) = σ0 (6)

where ε̄ denotes the von Mises effective strain.
For shakedown problems, the changing component of residual stress vanishes,

i.e. ρr
ij = 0. Hence, the cyclic stress history for shakedown problem is given by

σij (x, t) = λσ̂ij (x, t) + ρ̄ij (x). (7)

A set of linear incremental relationships are then defined by

�ε
n(k+1) ′
ij = 1

2μ̄nk

[
λσ̂ ′

ij (tn) + ρ̄k+1 ′
ij

]
, �ε

n(k+1)
kk = 0 (8)

where the upper ‘dash’ refers to deviatoric components. Summing over the cycle
produces a relationship between the compatible strain�ε

(k+1)
ij = ∑

n �ε
n(k+1)
ij and

the constant residual stress ρ̄k+1
ij with an initial stress state;

�ε
(k+1) ′
ij = 1

2μ̄k

(
σ initial ′

ij + ρ̄k+1 ′
ij

)
, �ε

(k+1)
kk = 0 (9a)

where

1

μ̄k
=

∑

n

1

μ̄nk
and σ initial

ij = μ̄k
∑

n

λσ̂ij (tn)

μ̄nk
. (9b)

The solution of the continuum problem corresponding to Eqs. (9a), (9b) has the
property that I (�ε

(k+1)
ij , λ) ≤ I (�εk

ij , λ), which is proved by [6].
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3.2 Dual Minimization Process for Ratchet Analysis

We consider a structure subjected to a general cyclic load condition, which can
be decomposed into cyclic and constant components, i.e. σ̂ij (x, t) = σ̂�

ij (x, t) +
λσ̂F

ij (x). The calculation of the ratchet limit includes dual minimization processes,
the first an incremental minimization for the evaluation of a cyclic history of residual
stresses and plastic strain range in a stable cycle and the second a global minimiza-
tion for the ratchet limit due to an extra constant load. By decoupling the evaluation
of the changing residual stress and the constant residual stress in Eqs. (4a)–(4c),
the entire numerical procedure of ratchet analysis includes two steps [24]. The first
step is to calculate the history of the changing residual stress associated with the
applied cyclic load σ̂�

ij (x, t) and the corresponding plastic strain ranges for the low
cycle fatigue assessment. The second step is to locate the ratchet limit due to the
extra constant load λσ̂F

ij (x) as a conventional shakedown analysis where a constant
residual stress is evaluated by global minimization (Sect. 3.1) and the elastic stress
history is augmented by the changes in residual stress calculated in the first step.

The global minimization process for step 2 of ratchet analysis is as same as the
global minimization for shakedown limit in Sect. 3.1. Next a distinct minimization
process—incremental minimization is summarized for step 1 of ratchet analysis to
evaluate the changing residual stress ρr

ij and the associated plastic strain range cor-

responding to the cyclic component of the elastic stress σ̂�
ij .

3.2.1 Incremental Minimization for the Varying Residual Stress Field and
Plastic Strain Range

The incremental minimization of In(�εn
ij , λ) assumes the prior history of the resid-

ual stress is known and compatibility of the total elastic and plastic strain in the
increment is used. With an initial estimate of �εn

ij = �εnk
ij , a linear modulus is de-

fined by linear matching σ0 = 2/3μ̄nkε̄(�εnk
ij ), where the von Mises yield stress σ0

could be either constant or temperature-dependent.
An incremental linear equation is then defined;

�ε
T n(k+1) ′
ij = 1

2μ
�ρ

n(k+1) ′
ij + �ε

n(k+1) ′
ij , (10a)

�ε
T n(k+1)
kk = 1

3K
�ρ

n(k+1)
kk , (10b)

�ε
n(k+1) ′
ij = 1

2μ̄nk

{
σ̂�

ij (tn) + ρij (tn−1) + �ρ
n(k+1)
ij

}′
, (10c)

where the prior history of the residual stress is known, i.e.

ρij (tn−1) = ρij (t0) + �ρ1
ij + �ρ2

ij + · · · + �ρn−1
ij , ρij (t0) = ρ̄0

ij . (11)

The entire iterative procedure requires a number of cycles, where each cycle con-
tains N iterations associated with N load instances. The first iteration is to evaluate
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the changing residual stress �ρ1
ij associated with the elastic solution σ̂�

ij (t1) at the
first load instance. Define �ρij

n
m as the evaluated changing residual stress for nth

load instance at mth cycle of iterations, where n = 1,2, . . . ,N and m = 1,2, . . . ,M .
At each iteration, the above changing residual stress �ρij

n
m is calculated. When the

convergence occurs at the M th cycle of iterations, the summation of changing resid-
ual stresses at N time points must approach to zero (

∑N
n=1 �ρij

n
M = 0) due to the

stable cyclic response. Hence the constant residual stress ρij (t0) = ρ̄0
ij over the cycle

can also be determined by

ρ̄0
ij =

N∑

n=1

�ρij
n
1 +

N∑

n=1

�ρij
n
2 + · · · +

N∑

n=1

�ρij
n
M. (12)

The corresponding plastic strain magnitude occurring at time tn is calculated by

�εP
ij (tn) = 1

2μ̄n

(
σ̂� ′

ij (tn) + ρ′
ij (tn)

)
(13)

where μ̄n is the iterative shear modulus and ρij (tn) is the converged accumulated
residual stress at the time instant tn, i.e.

ρij (tn) = ρ̄0
ij +

n∑

k=1

�ρij
k
M. (14)

4 Evaluation of Upper and Lower Bound Limits

4.1 Upper Bound Shakedown and Ratchet Limit

Combining 0 ≤ I (�ε
(k+1)
ij , λ) ≤ I (�εk

ij , λ) and Eqs. (4a)–(4c), with ρij and ρ̄ij

eliminated Based upon the Koiter’s theorem [25] the upper bound shakedown limit
is given as,

I
(
�εij , λ

S
) =

∫

V

N∑

n=1

{
σn

ij�εn
ij − λSσ̂ij (tn)�εn

ij

}
dV ≥ 0, (15a)

i.e.

λS ≤
∫
V
(
∑N

n=1 σn
ij�εn

ij )dV
∫
V
(
∑N

n=1 σ̂ij (tn)�εn
ij )dV

=
∫
V
(σy

∑N
n=1 ε̄(�εn

ij ))dV
∫
V
(
∑N

n=1 σ̂ij (tn)�εn
ij )dV

= λS
UB. (15b)

Equation (15b) provides a monotonically reducing sequence of upper bound to
the shakedown limit, i.e. λ

S(k+1)
UB ≤ λ

S(k)
UB . It is worth noting that a limit load can be

calculated by Eq. (15b) as a special case of the shakedown analysis, where the cyclic
load condition reduces to monotonic load condition, i.e. N = 1.
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For the upper bound ratchet limit, the numerical technique can be accommodated
within the existing methods of shakedown analysis where the linear elastic solution
is augmented by the changing residual stress field, i.e.

σ̂ij = λσ̂ F̄
ij + σ̂�

ij (x, t) + ρij (x, t) (16)

where the history of the residual stress field ρij (tn) associated with the cyclic com-
ponent of the load history has been calculated by an incremental minimization pro-
cess (Sect. 3.2.1).

For the von Mises yield condition and the associated flow rule, an upper bound
ratchet limit multiplier can be obtained by

λR
UB =

∫
V

∑N
n=1 σyε̄(�εn

ij )dV − ∫
V

∑N
n=1(σ̂

�
ij (tn) + ρij (tn))�εn

ij dV
∫
V

σ̂ F̄
ij (

∑N
n=1 �εn

ij )dV
(17)

which gives the capacity of the body subjected to a predefined cyclic load history
σ̂�

ij (tn) to withstand an additional constant load σ̂ F̄
ij before ratchetting takes place.

4.2 Lower Bound Shakedown and Ratchet Limit

Both the constant residual stress ρ̄ij (x) and varying residual stress ρr
ij (x, t) in

Eq. (2) for a stabilised load cycle have been calculated by incremental and global
minimization processes. Hence, based upon the lower bound theorem [26], a lower
bound of shakedown or ratchet limit can be constructed in the same upper bound
procedure by maximizing the lower bound load parameter λLB under the condition
where for any potentially active load/temperature path, the stabilised cyclic stresses
in Eq. (2) nowhere violate the yield condition.

As the upper bound iterative process provides a sequence of residual stress fields,
a sequence of lower bound at each iteration can be calculated by scaling the elastic
solution so that the cyclic stress everywhere satisfies yield. The lower bound of
shakedown limit multiplier can be described as:

λs
LB = maxλLB (18a)

s.t. f
(
λLBσ̂ij (x, t) + ρ̄ij (x)

) ≤ 0. (18b)

The lower bound of ratchet limit multiplier can be written as:

λR
LB = maxλLB (19a)

s.t. f
(
λLBσ̂ F̄

ij + σ̂�
ij (x, t) + ρij (x, t) + ρ̄ij (x)

) ≤ 0. (19b)

5 Numerical Procedures for the Creep Strain and Flow Stress

In the incremental minimization process (Sect. 3.2.1) where the plastic strain am-
plitudes are evaluated, σ0 (Eq. (6)) is adopted as the material yield stress. How-
ever, when the accumulated creep strain is calculated during the dwell period at the
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creep load time instance, σ0 in Eq. (6) needs to be replaced by the creep flow stress
σ0 = σ̄c. The creep flow stress is an implicit function of creep strain �ε̄c and resid-
ual stress �ρ̄cduring the creep dwell period. The detailed numerical procedures for
the evaluation of creep strain and flow stress are described in [27, 28] and these
processes are summarized as follows:

We assume a time hardening creep constitutive relation:

˙̄εc = Bσ̄n∗
tm

∗
(20)

where ˙̄εc
is the effective creep strain rate, σ̄ is the effective von-Mises stress, t is the

dwell time, and B , m∗ and n∗ are the creep constants of the material. When m∗ = 0,
the time hardening constitutive equation becomes the Norton’s law.

During the relaxation process we assume, at each point in space that an elastic
follow up factor Z exists:

˙̄εc = −Z

Ē
˙̄σ (21)

where Ē = 3E/2(1 + v), E is the Young’s modulus and ˙̄σ = ˙̄σ(σij ).
Combining Eqs. (20) and (21) and integrating over the dwell time, we obtain

BĒ�tm
∗+1

Z(m∗ + 1)
= 1

n∗ − 1

{
1

(σ̄c)n
∗−1

− 1

(σ̄s)n
∗−1

}
(22)

where σ̄s is the effective value of the start of dwell stress, σ̄c is the effective value
of the creep flow stress, and σ̄c = σ̄ (σsij + �ρCij ). Integrating Eq. (21) gives the
effective creep strain during the dwell period �t as,

�ε̄ = −Z

Ē
(σ̄c − σ̄s). (23)

Combining Eqs. (22) and (23) and eliminating Z/Ē gives

�ε̄c = B(n∗ − 1)�tm
∗+1(σ̄s − σ̄c)

( 1
σ̄ n∗−1

c

− 1
σ̄ n∗−1

s

)(m∗ + 1)
. (24)

For the pure creep where σ̄s = σ̄c, the creep strain becomes:

�ε̄c = Bσ̄n∗
s �tm

∗+1

m∗ + 1
. (25)

The creep strain rate ˙̄εF
at the end of dwell time �t is calculated by Eqs. (22)

and (24):

˙̄εF = B(σ̄c)
n∗

�tm
∗ = �ε̄c

�t

(m∗ + 1)

(n∗ − 1)

σ̄ n∗
c

(σ̄s − σ̄c)

(
1

σ̄ n∗−1
c

− 1

σ̄ n∗−1
s

)
. (26)

For the pure creep where σ̄s = σ̄c, the creep strain rate ˙̄εF
becomes:

˙̄εF = B(σ̄s)
n∗

�tm
∗
. (27)



268 H. Chen and W. Chen

Hence in the iterative process, we begin with current estimated σ̄ i
c , σ̄

i
s and use

Eqs. (24), (26) or (27) to compute a new value of the creep stress σ̄c = σ̄
f
c from

Eq. (28) to replace σ 0(tn) in the linear matching condition Eq. (6).

σ̄c =
( ¯̇εF

B�tm
∗

) 1
n∗

. (28)

6 Convergence Considerations

The necessary condition for convergence and the exact proof for upper bounds are
provided by [5, 6]. According to this study, in order to get convergent minimum
upper bound limits three conditions must be fulfilled as follows: (1) The material
yield surface must be convex; (2) The class of strain rates and the associated strain
increments guarantee that the minimum upper bound is limited with this class; (3)
The class of selected compatible strain distributions must be adequately extensive
to guarantee a satisfactory upper bound.

The first two conditions can be easily satisfied by an appropriate choice of a class
of linear materials. Condition (3) is vital to the implementation of the LMM within
a finite element scheme. Within the LMM, the equilibrium of the residual stress
field ρij relies on the class of displacement field �ui from which �εij is derived,
i.e. ρij is in equilibrium if and only if

∫
V

ρij�εij dV = 0. Hence, for a given finite
element mesh, the process will converge to the least upper bound associated with
the FE mesh and within this class of displacement field �ui . However, during the
FE implementation, the volume integration is not exact but usually depends upon
the Gaussian integration to give an exact integral. Hence a point-wise condition is
used to replace above equilibrium condition;

∑

el

∑

k

wkρ
k
ij�εk

ij = 0 (29)

where wk are the Gaussian weighting factors at the Gauss integration points.
According to the lower and upper bound theorems, the LMM ensures that the

maximum lower bound will be less than the least upper bound. However, unlike
the strict convergence of the upper bound, the magnitude of lower bound may not
always increase monotonically with iterations. But upon convergence, the maximum
lower bound will equal to the least upper bound, where by equilibrium condition
(Eq. (29)) the matching condition is applied at Gauss points.

Due to the point-wise condition of equilibrium (Eq. (29)), whereas the deviation
from convergence at a few Gauss points has little effect on the upper bound which
is determined by volume integrals, the convergence of the upper bound in terms of
a particular number of significant figures may allow some deviation from conver-
gence locally. Hence the convergence of lower bound may be affected significantly
as it is determined by single Gauss point. Generally the upper bound converges
(monotonically) more quickly than the lower bound and the rate of convergence for
lower bound depends upon the characteristic of the problem and also the adopted FE
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model, such as the complexity of the geometry and boundary conditions, the mesh
arrangement, etc. For some cases where the lower bound converges very slowly, the
convergence is usually judged entirely in terms of the upper bound. Further investi-
gation of the convergence of the LMM iterative algorithms has been carried out and
a separate paper is being prepared for this context.

7 Examples of Applications

In this section, three practical examples of the LMM for differing applications are
provided to confirm the efficiency and effectiveness of the method; the behaviour
of a defective pipeline subjected to cyclic thermal loading and constant operating
pressure, the effects of drilling holes on the ratchet limit and crack tip plastic strain
range for a centre cracked plate subjected to constant tensile loading and cyclic
bending moment, and the cyclic structural responses of a cruciform weldment under
creep fatigue interaction.

7.1 Defective Pipelines Subjected to Cyclic Thermal Loading and
Constant Operating Pressure

Figure 3 gives a finite element model of a defective pipeline with four types of
slot, where the symmetry boundary conditions are applied to the half section of the
model. Such pipes are subjected to particular severe thermal loading, resulting in
the possibility of ratchetting or premature failure due to low cycle fatigue.

Figure 4 presents the calculated shakedown and ratchet limit interaction curve
for a pipeline with these four types of slots, which clearly shows the effect of part-
through slot on the shakedown and ratchet limits. It is observed that any part-through
slot significantly reduces the reverse plasticity limit of the pipeline due to the stress
concentration caused by the existence of the slot. It is also identified that at different
levels of cyclic thermal loading the ratchet limit boundary decreases sharply for a
defective pipeline with axial and large area slot and it remains almost constant for
small and circumferential slot, compared with a defect-free pipeline. Figure 4 fur-
ther shows that for the cases of axial and large area slots, the ratchet limit ends at
cyclic thermal loading points �θ = 4.1�θ0 and �θ = 5.5�θ0, respectively, which
indicates that when the cyclic thermal loading �θ beyond these cyclic thermal load-
ing limits (4.1�θ for axial slot and 5.5�θ for large area slot), any amount of con-
stant internal pressure will result in ratchetting.

A full discussion of the solutions including plastic strain range concerning the
fatigue crack initiation and verifications with ABAQUS detailed step-by-step anal-
ysis are given by [29]. This example demonstrates that, for these practical industrial
problems, the method is capable of providing solutions that are much more illumi-
nating than conventional analysis.
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Fig. 3 The finite element mesh for a pipeline with part-through slot: (a) small slot; (b) circumfer-
ential slot; (c) axial slot and (d) large area slot

Fig. 4 Shakedown and
ratchet limit interaction curve
for defect-free and defective
pipelines
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Fig. 5 Centre cracked plate with symmetric holes subjected to reversed bending moment range
�M and constant tension σ̄p

7.2 Centre Cracked Plate with Circular Holes

The second example concerns the effect of circular holes in a centre cracked plate
subjected to cyclic bending moment and constant tensile loading on the ratchet limit
and crack tip plastic strain range. Drilling holes in front of the crack tip is an effec-
tive way to arrest crack growth. However the optimum location and size of the holes
need to be researched to produce the smallest crack tip plastic strain range, i.e. the
best fatigue crack growth life, and to have the least reduction in ratchet limit.

The geometrical shape and cyclic loading history of the centre cracked plate with
symmetric drilled holes are shown in Fig. 5, where the half-crack length a is 500 mm
and the ratios W/a and L/a are both 2. The hole locations (X0, Y0) are referred to
a co-ordinate system X, Y , the origin of which is located at the crack tip. The centre
cracked plate is subjected to cyclic reversed bending moment with range �M and
constant uniaxial tension σ̄p . By applying symmetry conditions, a FE half symmetry
model was adopted (Fig. 6).

Figure 7 presents the calculated lower and upper ratchet limit and limit load in-
teraction diagram for the hole location at X/a = −1, Y/a = 0.3 and the diameter
of hole D = 100 mm, where the applied constant pressure in X-axis is normalized
with respect to the reference uniaxial tension σ̄po = 100 MPa, while the ampli-
tude of the reversed bending moment in Y -axis is normalized using the reference
bending moment range �M0 = 100 N mm. It can be seen that the ratchet limit and
the limit load curves do not coincide, which means that an increase in the loads
beyond the ratchet limit will not automatically cause plastic collapse. Any combi-
nation of loads which lies between these two boundaries will result in ratchetting.
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Fig. 6 FE half symmetry
model for centre cracked
plate with symmetric holes

Fig. 7 Ratchet limit and limit
load interaction curve with
hole location at X

a
= −0.1,

Y
a

= 0.3 (D = 100 mm)

As shown in Fig. 7, the accuracy of the lower and upper bound limit load boundary
obtained by the LMM has been verified by ABAQUS RIKS analysis. For the verifi-
cation of LMM lower and upper bound ratchet limit boundary the cyclic load points
D (�M = 1.6�M0, σ̄p = σ̄p0), and E (�M = 1.6�M0, σ̄p = 1.1σ̄p0), which are
just below and above the calculated upper bound ratchet limit boundary (Fig. 7),
respectively, are chosen for the step-by-step analysis in ABAQUS.

Figure 8 shows the plastic strain history at the crack tip for the cyclic loading D

and E calculated by ABAQUS step-by-step analysis. The calculated plastic strain
for the load case D settles to a stable cycle after about 5 load cycles showing a
reverse plasticity mechanism, and the load case E shows a strong ratchetting mech-
anism, with the plastic strain increasing at every cycle. This directly confirms the
accuracy of the predicted LMM lower and upper bound ratchet limits.

Optimization studies were performed further involving holes with different di-
ameters drilled at different locations. The study shown that the most significant
decrease in crack tip plastic strain range with least reduction in the ratchet limit
is identified for the hole size D = 150 mm at the optimum location X0/a = −0.1,
Y0/a = 0.3, which gives a 72 % reduction in the plastic strain range and does not
reduce the ratchet limit.
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Fig. 8 ABAQUS verification
of the ratchet limit for the
cyclic bending moment case
using detailed step by step
analysis

Fig. 9 Geometrical and analysis parameters of the cruciform weld specimens: (a) dimensions and
applied loading; (b) FE-mesh with designation of different materials, boundary conditions and
mechanical loading

A full discussion of the solutions is given by [30]. This example demonstrates
that the method is capable of providing accurate solutions to the crack structures.

7.3 Creep-Fatigue Analysis of a Cruciform Weldment

The LMM has been extended recently to directly evaluate steady-state cyclic re-
sponse of components with creep fatigue interaction taking into consideration,
which is able to generate both the closed and non-closed hysteresis loops, providing
details of creep strain and plastic strain range for creep and fatigue damage assess-
ments. This example shows a practical application of this method on a cruciform
weldment subjected to cyclic bending moment under creep condition.

Figure 9 describes the geometry of the weldment specimen and the applied
2D symmetric FE model of the specimen assuming a plane strain condition.
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Fig. 10 Results of creep-fatigue assessment in application to cruciform weldment and comparison
with experiments [31, 32]

A Ramberg-Osgood formulation was adopted to simulate cyclic stress strain re-
lationship, and a time hardening creep constitutive model was used to characterise
creep behaviour. In this creep fatigue damage assessment, the LMM was adopted to
evaluate a steady-state cyclic behaviour and to construct a saturated hysteresis loop.
Then obtained total strain range during the cycle was used to assess fatigue damage
combining R6 fatigue endurance curves [31]. The evaluated creep strain and stress
relaxation data were adopted to evaluate creep damage considering time fraction
rule and using the experimental creep rupture data. The final lifetime of the cruci-
form weldment was then obtained based on the calculated fatigue and creep damage
under creep-fatigue interaction conditions.

The detailed results of cruciform weldment creep fatigue assessment by the
LMM and comparisons with experimental solutions [32] are presented in Fig. 10.
Visual comparison of the observed and predicted in Fig. 10 for 3 variants of dwell
period �t shows that 9 of the 11 simulations accurately predict the experimen-
tal results. Therefore, it can be used for the formulation of an analytic assessment
model suitable for the fast estimation of lifetime for a variety of loading con-
ditions. The low computational effort required by the LMM compared to other
computational techniques makes it possible and relatively easy to extrapolate nu-
merical predictions for loading conditions not captured by the available experi-
ments.

A full discussion of the solutions and validations with experimental results are
given by Gorash and Chen [33]. This example demonstrates that, for such complex
industrial problems, the LMM is capable of providing lifetime related solutions that
are much more illuminating than conventional analysis.
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Fig. 11 Other applications (a) a heat exchanger tube plane (b) rolling contact problem (c) 90 pipe
bends (d) composite cylinder with a crosshole
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8 Other Applications

The stable and accurate results of the mentioned LMM on shakedown and ratchet
analysis have been confirmed in many industrial applications, including the prob-
lem of a heat exchanger tube plate subjected to severe cyclic thermal loading and
constant operating pressure (Fig. 11(a)) [8], the application to rolling contact prob-
lem (Fig. 11(b)) [34], shakedown and limit analysis of 90 pipe bends under internal
pressure, cyclic in-plane bending and cyclic thermal loading (Fig. 11(c)) [35], and
the shakedown analysis of a composite cylinder with a cross hole (Fig. 11(d)) [36]
and etc.

9 Conclusions

This study focuses on the performance of an elastic plastic body subjected to cyclic
loading. The design limits in plasticity and creep including shakedown limit, ratchet
limit, cyclic response under creep-fatigue interaction and plastic strain range re-
garding the fatigue crack initiation have been addressed in this study. The analysis
is performed by describing the steady cyclic state employing a general cyclic min-
imum theorem. In order to estimate the class of kinematically allowable strain rate
histories, the Linear Matching Method is used for obtaining the minimum of the
functional for these design limits. Three practical examples of the LMM are pro-
vided to confirm the efficiency and effectiveness of the method and demonstrate
that the LMM may be applied to a much wider range of circumstances than have
hitherto been possible.
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