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Abstract The behavior of soils reinforced by micropile networks is still not fully
understood due to the lack of accurate modelling capabilities. Particularly, the com-
plex geometry of large soil-micropile systems makes accurate calculation of the
bearing capacity of the reinforced soil a computational challenge. This complexity
requires highly detailed and finely discretized models to achieve reasonable accu-
racy using direct numerical methods. Such models lead to large scale numerical
optimization problems that are hardly tractable using a personal computer.

In the present paper a model reduction method is made capable of solving the
numerical static limit analysis problem of soil reinforced by a group of micropiles
according to a 2D plane strain model. The method has been successfully applied to
the limit analysis problem of a soil reinforced by a large group of micropiles when
resources did not permit solution of the full model.

1 Introduction

A micropile is a pile with a small diameter (generally in the range 75 to 200 mm) and
high aspect ratio. Micropiles are used in soil reinforcement and foundation works
beneath existing buildings. The micropile technique was developed as early as 1952
by the Fondedile company under the authority of F. Lizzi [1]. Micropiles were used
for the first time in Italy in soil reinforcement of existing buildings and were then
named root piles (pali radice). Within the timeframe of half a century, the technique
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has been applied all over the world [4] with micropile groups counting as many as
1100 micropiles in a landmark example in Neuchatel, Switzerland.

Nevertheless, the behaviour of micropile groups is still not well understood, par-
ticularly because of the complex geometry of large soil-micropile systems that chal-
lenged the development of accurate modeling methods.

Various approaches are used for predicting the bearing capacity of micropile
groups. Simplified analytical methods [3] are commonly used in engineering prac-
tice whereas elastoplastic analysis ([4] and [1]) is often applied in special applica-
tion and in research. Another alternative is limit analysis [7] by direct methods. The
merit of Limit Analysis (LA) is the rigorous underlying theoretical basis and the
high level of accuracy that may be achieved.

Because of their complex geometry, raisonably accurate prediction for micropile
groups of practical size by Limit Analysis requires finely discretized finite element
models leading to numerical optimization problems that are too large to be directly
tractable by available algorithms [7].

In an attempt to circumvent the problem size difficulty, different techniques have
been devised to reduce the size of the numerical Limit Analysis problem to be
solved. Among these techniques, homogenization methods [2] have been proposed.
While successful in reducing the computational effort these methods do not provide
a realistic description of the stress and strain fields in the heterogeneous medium,
especially near the boundaries of the reinforced zone. Domain decomposition is an-
other approach that is developed for solving large size LA problems. It converts
the original numerical LA problem into a sequence of smaller LA like subproblems
that are solved iteratively. This approach has proven to be successfull in solving
problems that are untractable when solved directly ([8] and [10]).

In this work, an alternative technique is presented that aims at reducing the size
of the numerical LA problem for uniformly spaced micropile groups by taking ad-
vantage of the periodicity of the geometry and structure of the reinforced zone. It
is inspired from the case of fiber reinforced composites which is suited to modeling
using periodic homogenization [5].

In this study, a two dimensional representation of the reinforced soil will be
adopted to reduce the numerical problem dimension. Extension to the three dimen-
sional problem will be possible because it is conceptually equivalent to the two
dimensional problem.

The paper begins with a brief presentation of limit analysis followed by a de-
scription of the proposed periodic reduction method. The method is then tested and
assessed by applying it to examples of soil-micropile systems.

2 Limit Analysis and the Static Method

According to Salengon (see [12, 13]), a stress tensor field o is said to be statically
admissible (SA) if equilibrium equations, stress vector continuity, and stress bound-
ary conditions are verified. It is said to be plastically admissible (PA) if f(o) <0,
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where f (o) is the (convex) plasticity criterion of the material. A field o that is SA
and PA here will be said to be (fully) admissible.

Similarly, a strain rate tensor field v is kinematically admissible (KA) if it is
derived from a continuous velocity vector field u such that the velocity boundary
conditions are verified. It is said to be plastically admissible (PA) if the flow rule (1)
is verified; the fields u# and v, which are KA and PA, will be called admissible in the
following.

af
v=A—, f(o)=0, A>0. (D
do
The so-called associated flow rule (1) (or normality law) characterizes the standard
material of LA. Equivalently, a standard material satisfies Hill’s maximum work
principle (MWP) [6], which states that:

(a—a*):vzo VPA o *. 2)

A solution to the LA problem is a pair of fields (o, v) where o and v are both
admissible and associated by the normality law. Classically, these solutions can be
found or approached using two optimization methods. The first one, involving only
the stresses as variables, is the static (or lower bound) method. The second one,
involving only the displacement velocities as variables, is the classical kinematical
(or upper bound) method.

Let us assume that the virtual power of the external loads can be written as
the scalar product of a loading vector Q € R" and a generalized velocity vector
q = q(u), linear in u. A loading process linearly associated with a statically admis-
sible stress field o, Q = Q(0), is said to be admissible. The set of these admissible
loadings forms a convex K in R" and the n components of Q are called loading
parameters.

Finding the solution of the limit analysis problem consists in determining an
admissible field o together with an admissible strain rate field associated to o by
the normality law. In this case the loading Q (o) is a limit loading of the mechanical
system. The set of the limit loadings is the boundary dK of the convex K: this
boundary can be approached by solving the following optimization problems:

lemZ(Qil’v)\OQ?,” QZ)’ (3a)
ro=max{r, 0(0) = (04,....20¢,.... 09}, (3b)

where o is an admissible stress field and Q¢ a given admissible loading. Then, by
varying Q¢ it is possible to construct various points on dK: the smallest convex
envelope of these points gives an approximation of dK from inside. This is the
static, or lower bound method of LA, as it will be used here.
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3 Finite Element Formulation of the Static Problem

In the present work the problem is formulated in plane strain. The numerical static
method is used as it was defined and detailed in [11].

Let us consider a triangular finite element discretization of the mechanical vol-
ume V in the global frame (x, y); the stress field is chosen as linearly varying in
x, y coordinates in each triangular element and it can be discontinuous through any
element edge. In plane strain, the von Mises or Tresca criterion is written as:

(@) = (0x — 0y + 21y < 2, )

where c is the cohesion of the material. It is worth noting here that the proposed
problem reduction method is valid for the Coulomb or Drucker-Prager criteria (pro-
vided the final optimization problem could be solved by efficient mathematical pro-
gramming techniques).

In order to ensure static and plastic admissibility of the stress solution field, the
following, briefly recalled conditions are imposed:

— In each element, the equilibrium equations o;;, ; + 3; = 0 expressed in the Carte-
sian frame, where y is the specific weight vector.

— Continuity conditions: the stress vector is continuous across a discontinuity line:
for each discontinuity segment of normal n, the continuity of the stress vector
T; = o;jn is written at the apices defining this discontinuity segment.

— Boundary conditions: the stress vector verifies o;;n; = T¢ at each apex of the
boundary element sides where the stress vector 79—linearly varying— is im-
posed.

— Definition of the functional from the power of external loads: for example, the
integral of the normal stresses in the case of the footing under an imposed normal
uniform velocity.

— Stress field plastic admissibility: imposed at each triangle apex. This ensures that
it is verified over the total domain from the linear variation of the stress in a
triangle and the convexity of the criterion (4).

By writing the criterion directly in the conic form V =2¢ > /Y2 + Z2, where V is
an auxiliary variable, the numerical optimization problem can be solved using the
conic programming code MOSEK [9] as in [14].

4 Quasi-periodic Reduction Method

In large micropile groups the micropiles are usually arranged in a regular pattern
with a periodic geometry and structure. When the loading is uniformly distributed
among the reinforcements the reinforced soil tends to respond in a periodic mode,
at least away from the boundaries of the reinforced zone. The proposed method
takes advantage of this periodicity to reduce the size of the numerical limit analysis
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Fig. 1 The problem of the
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problem. It is inspired from the case of fiber reinforced composites for which a
successful periodic homogenization approach was developed in [5].

Figure 1 shows a typical soil-micropile group configuration with a reinforced
zone supporting a rigid foundation and the natural soil extending on its sides and
beneath, all the way down to a rigid substrate. To apply the reduction procedure the
domain is subdivided into three parts. The first is the central reinforced zone where
the behavior is assumed to be periodic, denoted zone I. The second, the edge zone,
denoted zone 1I, is a part of the reinforced soil separating the periodic zone from
the domain occupied by the natural soil. Finally, the rest of the soil represents the
zone III. Although geometrically and materialwise periodic, zone II (the transition
zone) is treated as non periodic.

A representative volume element (RVE) is constituted by a micropile and half
the width of soil on each side in addition to the underlying volume of soil.

Regardless of the number of micropiles it includes, the periodic zone is replaced
by a single periodic representative volume element (PRVE) fulfilling built-in peri-
odicity and inter-RVE continuity constraints.

The periodicity conditions imposed on the stress field are

Uleft.n :O.righl.n7 (5)

where 7 is the normal to the right (or the left) side of the PRVE. As the ), periodic
RVEs are replaced by a PRVE, the loading Fr of the reduced problem, equivalent
to the original load F (Figs. 2 and 3) is given by

Fr=Fr +np,.Fp (6)

where Fr is the load supported by zone II and Fp is the load supported by the PRVE
in the reduced problem.

This results in a considerable reduction in problem size at the cost of an approxi-
mation error. Interestingly, the error is on the conservative side, preserving the lower
bound nature of the solution of the static problem. Edge zones are defined by a few
RVE’s on each side. The finite element mesh corresponding to these edge zones and
the natural soil (Zone III) remains unchanged. Furthermore, the detailed modeling
of the soil-micropile composite at the RVE level, both in the horizontal and vertical
directions, has the merit of accounting for the toe and lateral effects on the bearing
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Fig. 2 Load in initial F
problem

1 Zone | 11

Fig. 3 Load in reduced F,=F_ +n,F,
problem
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capacity. This is partly because the interaction effect between micropiles can be cap-
tured as a result of the full consideration of the soil layers underlying the reinforced
zone.

5 Numerical Examples

The method is applied to some examples of soil reinforcement by groups of mi-
cropiles. The optimization problem is solved using the conic programming code
MOSEK for both the direct problem, when possible, and the reduced problem, and
performance is compared.

The LA problem considered (Fig. 4) is that of a Tresca soil reinforced by a group
of n, micropiles to support a weighless foundation slab of width b loaded at its
middle by a force F. The soil cohesion is C = 10 kPa and depth is H = 30 m.
The micropiles length is # = 20 m and width d = 0.2 m. The bearing capacity of
the foundation is determined as the maximum load F that, together with a stress
field o, form a statically and plastically admissible pair. The associated numerical
optimization problem is denoted Py.
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Fig. 4 Example of a soil F
reinforced with micropiles - ]
50 m .
. d=0.2 m
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Fig. 5 Reduced problem of F +7F,
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In the reduced problem (Fig. 5), denoted P, Zone I is modeled using a single
PRVE and the load is defined as the sum of the loads supported by the RVEs in
Zone II and the load supported by the PRVE scaled up by the number of micropiles
belonging to Zone 1. Since the solution for the reduced problem is admissible for
Py, it provides a lower bound for the original LA problem. By limiting the number
of transition micropiles to one on each side, the number of micropiles in the model
decreased from n, to only 3.

5.1 Effect of Load Transmission Mode

To illustrate the influence of the load transmission mode from the slab to the rein-
forced soil the problem is considered with two alternative transmission mechanisms
and is modelled with the same degree of discretization. In the first, the foundation
is assumed to be supported solely by the micropiles. In the second, it is supposed to
rest on both the soil surface and the micropile tips. In both cases the kinematic and
static bounds of the bearing capacity are first determined by solving the direct prob-
lem for a reinforcement with nine micropiles (n, = 9). Furthermore, a static bound
is estimated by solving the reduced problem resulting from the quasi-periodic ap-
proximation. Results are produced for a range of micropile spacings to assess the
effects of spacing and surface load transmission mode.

5.1.1 Foundation Supported Solely by the Micropiles

The limit load (load-bearing capacity) F of the reinforced soil is determined in this
case with the boundary conditions defined such that the load is carried only by the
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Table 1 Number of elements
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Fig. 6 Influence of spacing on bearing capacity. Direct and reduced model solutions

micropiles. The limit load is calculated for different values of micropile spacing.
Figure 6 shows the limit load of the reinforced soil, calculated with different meth-
ods, as a function of spacing. The blue line represents the kinematic solution (upper
bound) of the reference problem. The red line represents the static solution (lower
bound) of the reference problem. The yellow line corresponds to the solution of the
reduced model problem.

The results for e < 6.8 were all obtained with the same degree of discretiza-
tion (elements size) which did not permit the direct solution beyond that spacing.
Therefore, the problems with e > 6.8 were solved with fewer, larger elements. It
should however be stated here that for the case e = 7.8 the results were not shown
because the case was simply not treated. The reason was that it was not possible to
create a regular mesh with the large element size because of the particular geomet-
rical dimensions of the reinforced soil. The number of elements for each spacing is
indicated in Table 1.

It may be noted from the results that:

— The reinforced soil bearing capacity increases with spacing for spacing under
6.8 m. Beyond this value the bearing capacity saturates and remains nearly in-
different to spacing. The saturation should reflect the vanishing of the interaction
among micropiles which tend to behave as isolated inclusions.

— The error between the direct static and the reduced model solution is relatively
small (less than 4.2 %).
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Fig. 7 Optimal stress field (direct solution)

The solution stress field is visualized in Fig. 7 for selected values of spacing. It
can be seen that, for small spacing, the behavior of the reinforced area is reminis-
cent of a block mechanism (Fig. 7(a)). For large spacing (Fig. 7(c)), the elementary
volumes tend to behave independently as if the micropiles were isolated. From the
stress field in Fig. 7(c) a pattern can be seen that is characterized by a localization
of the failure zone in a thin volume of soil surrounding the micropile.

5.1.2 Foundation Supported by Both the Soil and the Micropiles

The boundary conditions in this case are defined such that the load is carried at the
soil surface by both the micropiles and the intersticial soil. Figure 8 shows the limit
load calculated for different values of micropile spacing. It is observed that:

— The limit load always increases with spacing in contrast to the behavior observed
with the loading supported solely by the micropiles. The reduced model solution
increases linearly, whereas the direct static and kinematic limit load increases in
a slightly bilinear pattern.

— The error increases with spacing to 9 % at e = 8.8 m.

The solution stress field is visualized in Fig. 9 for the same selection of spacing
values. It shows that:

— For small spacing, the behavior of the reinforced zone is similar to that of a block
mechanism.
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Fig. 8 Limit load for different values of spacing
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Fig. 9 Optimal stress field (direct solution)

— For large spacing, the behavior does not clearly reflect the assumption of periodic-
ity. The stress distribution for e = 8.8 in Fig. 9(c) looks more like that in Fig. 7(b)
(for e = 5) than the nearly periodic stress field shown in Fig. 7(c), obtained for
the same spacing e = 9 when the load is supported by the micropiles only.
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Fig. 10 Load distribution among elementary volumes

5.1.3 Results Interpretation

The details of the distribution of load among the elementary volumes are given in
Fig. 10 for e = 8.8 m. For a load supported by both the soil and the micropiles, the
distribution of the limit load obtained via the direct static solution shows significant
fluctuations compared to the uniform distribution typical of the reduced model so-
lution. The largest error on the load acting on an elementary volume is 17.65 %, it
occurs at the center of the reinforced soil surface. The second largest error is found
at the edge of the reinforced zone. These levels of errors are reasonable since they
should be larger than the error of 9 % relative to the total load which is actually the
integral of these elementary loads. For a load supported by the micropiles only, the
distribution of limit load obtained by the direct static solution is almost uniform as
expected since the micropiles have been shown to behave practically independently
and, thus, to fulfill the periodicity assumption. When spacing is small, the failure
occurs in a block mechanism mode regardless of the load transmission pattern. This
explains the closeness of the limit loads evaluated using the Direct and Reduced
formulations.

5.2 Effect of Micropile Number on Performance

To assess the performance gain of the reduction method for larger micropile group
sizes (Fig. 11) the limit analysis problem is solved using the Direct (i) Static and
(i) Kinematic and the (iii) Reduced Model formulations with the number of mi-
cropiles varying from 1 to 31.
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Fig. 11 Example for large F
number of micropiles l
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Table 2 Effect of micropile number
Nbr. Static Quasi-periodic Kinematic
Of Nbrelem. F (kN) CPU Nbrelem. F (kN) CPU Error Nbrelem. F (kN) CPU
piles (s) ® (@ (s)
95760 419.7 249 - - - - 98100 4329 1078
103320 12634 232 - - - - 114300 1304.7 1998

133560  2957.5 354 126000 29384 315 0.65 146700  3059.9 1845
148680  3800.3 204 126000  3779.2 273 0.56 162900  3944.1 1699
1 163800  4651.4 360 126000  4619.6 350 0.68 167160  4809.5 1948
15 194040  6342.8 402 126000  6301.0 352 0.66 197400  6580.7 1833
19 224280  8037.6 459 126000 79824 281 0.69 227640  8320.8 2299
21 239400  8884.6 446 126000 88229 257 0.69 - - -
31 - - - 126000 13026 327 - - - -

— 0 N W =

The boundary conditions are such that the load is carried by the micropiles only.
The same degree of discretization, i.e. in terms of size of finite elements, is used in
all the models. The reduced model counts 126,000 finite elements regardless of the
number of micropiles.

From the results, summarized in Table 2, it is seen that, as expected, the CPU
time required by the reduced model solution has no clear tendency to increase with
the number of micropiles, whereas the CPU time of the Direct solution increases
with it nearly proportionally.

For a reinforcement with 21 micropiles (Table 3) the mesh of the Direct problem
model amounts to 239,400 finite elements, nearly twice the number of elements in
the reduced model, and the consumed CPU time is almost double the CPU of the
reduced model solution for an accuracy gain of 0.7 %. This is the largest problem
for which the Direct solution was possible with the Mac Pro 3 GHz machine used
in this work.

For the same number of micropiles and using a finer mesh with 277200 elements
in the Direct problem model, the Direct solution fails to converge whereas the re-
duced model solution converges in twice the CPU time and improves the “reduced”
lower bound by 0.15 %.

The relative error between the Direct and the Reduced Model solutions is be-
tween 0.5 and 0.7 % and does not appear to increase with the number of micropiles.
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Table 3 Reinforcement with

21 micropiles Method Nbr of elements F (kN) CPU (s)
Static 239400 8884.6 446
Quasi-periodic 126000 8822.9 257
Quasi-periodic 277200 8835.9 530

Consequently, it may be concluded that the reduction method provides a fairly accu-
rate estimate for an unlimited number of micropiles within a nearly constant com-
putational effort.

6 Conclusion

A model reduction method is proposed to solve the numerical static limit analysis
problem of a composite medium, characterized by periodic reinforcement, embed-
ded in a homogeneous domain, while preserving the fineness of the Finite Element
description of the Representative Volume Element. The reduction method has been
successfully applied to the Limit Analysis of a soil reinforced by a large group
of micropiles when resources do not permit solution of the full model problem.
Numerical results demonstrate that the reduction method provides a fairly accurate
estimate of the limit load for an unlimited number of micropiles within a nearly con-
stant computational time. Significant differences in behavior and bearing capacity
are observed depending on the way the applied load is distributed between the soil
and the micropiles. When the load is supported solely by the micropiles the reduced
model results in terms of limit load of individual micropiles are very close to the
reference solution (in confirmation of the periodicity assumption). When the load is
supported by both the soil and the micropiles the error is larger than when only the
micropiles carry the load. In a future work the reduction method will be extended to
more general periodic representative volume elements by relaxing the symmetry re-
quirement and allowing some forms of controlled variability of the stress field in the
PRVEs. This will lead to more accurate solutions at the cost of a little extra compu-
tational effort. Another extension that might improve the accuracy of the reduction
method, consists in limiting the length of the RVE to the height of the micropile
allowing more degrees of freedom in the soil beneath the reinforced zone.
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