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Foreword

In the history of structural engineering, safety with respect to collapse, rather than
stress admissibility, turns out to be the main worry of several pioneers. In the eigh-
teenth century the Saint Peter dome in Rome and the highest spire of the Milan
cathedral (with the “Madonnina” on its top) have been structures investigated for
restoration (by Poleni and Boscovich, respectively, both primarily mathematicians)
from a standpoint and by a graphical-computational procedure which can be re-
garded as anticipations of limit analysis methods.

Another memorable event might be regarded as a contribution of limit structural
analysis to the solution of crucial social problems: the design of the Morison shelters
for protection of British families against V2 bombs during one of the most tragic pe-
riods of the Second World War; such design was due to the research team of Sir John
Baker in Cambridge. In those years, early forties, two other circumstances occurred
in the United States with consequences fruitful also for the development of the di-
rect methods: at Brown University, Providence RI, the successful research stream
on structural mechanics centered on plasticity was starting under the guidance of
Prager; almost simultaneously, linear (and later nonlinear) mathematical program-
ming was developed in Stanford, by George Dantzing and his team, initially in terms
of algorithms for optimization of American navy strategies. Later a productive con-
vergence occurred between mathematical programming and elastoplastic structural
mechanics, particularly as for direct methods and their practical applications.

Limit analysis and its generalization to shakedown analysis after the mid of the
last century have been one of the most fruitful developments of structural mechanics,
simultaneously and interactively with another fast growth in applied science, namely
finite element and other methods for computer simulations of physical phenomena,
particularly of inelastic responses of structures to external actions.

Each important scientific research area exhibits a flourishing era, characterized
by intensive activities and fast growth. Such era for direct methods of limit and
shakedown analyses grew with contributions provided by several internationally ac-
knowledged research leaders; obviously they are well known to all research workers
in applied mechanics and, therefore, they are not considered in this brief foreword.
Here I take the liberty to mention with gratitude only some of them, with whom
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vi Foreword

I had opportunities of personal meetings and pleasant interactions before our in-
ternational scientific community lost them: Drucker, Symonds, Koiter, Massonnet,
Sawczuk, König, Martin; in my country Capurso, Ceradini, Gavarini.

But direct methods still represent a fertile research field, still attractive and fash-
ionable, with challenges still open to fruitful and synergistic convergence of struc-
tural mechanics, mathematical developments, computational techniques and not
only structural engineering, but also diverse technologies. Evidence of such clos-
ing remark is provided by this book and by the Athens conference which originated
it, and by the sequence of recent meetings and papers collections on direct meth-
ods. Colleagues from various research institutions, who promote such initiatives on
direct methods and successfully contribute to them, do deserve, in my opinion, the
appreciation of the international community of theoretical and applied mechanics.

Giulio MaierTechnical University (Politecnico), Milan, Italy



Preface

Civil and mechanical engineers are to a large extent concerned with safety- and life
assessment of structures under thermo-mechanical loading which may cause severe
inelastic straining. This task is virtually impossible to perform following cumber-
some and time consuming evolutionary methods which, additionally, require the
complete knowledge of the loading history. Mostly, however, only variation inter-
vals of the loads are known. Thus, it is important to be able to produce margins
of safe service conditions for structures, as well as for structural material, against
excessive inelastic deformations.

Methods that aim towards this end, avoiding step-by-step analysis, are called
Direct Methods. They are non-evolutionary, and although such methods have ex-
isted for some time, they are attracting an increasing interest from scientists and
researchers, based on new mathematical formulations and new developments on
numerical analysis.

The present volume contains the most recent advances on these methods. It is the
outcome of the third international workshop that was held in Athens on February
2012, following the successful first and second workshops in Aachen in 2007 and
Lille in 2009. The event, which attracted more than 30 scientists from 6 countries,
was organized by the National Technical University of Athens and was hosted by
the Onassis Cultural Center.

The papers in the book are arranged in the order of their appearance in the work-
shop and their contributions are in the fields of Structural and Soil Mechanics as well
as Material Science. All the contributed papers have undergone a rigorous review
process before acceptance for publication.

We would like to thank all the scientists that have participated in this book for
the high quality level of their work.

We would also like to express our thanks to Professor Giulio Maier, of the Tech-
nical University of Milan, for his kindness to foreword this book.

Konstantinos Spiliopoulos
Dieter Weichert

Athens, Greece
Aachen, Germany

vii



Contents

Finite Element Limit Analysis and Porous Mises-Schleicher Material . . 1
Franck Pastor, Joseph Pastor, and Djimedo Kondo

Limit Analysis: A Layered Approach for Composite Laminates . . . . . . 23
Aurora Angela Pisano, Paolo Fuschi, and Dario De Domenico

Shakedown Analysis of Kinematically Hardening Structures in
n-Dimensional Loading Spaces . . . . . . . . . . . . . . . . . . . . . 57
Jaan-Willem Simon

Computation of Bounds for Anchor Problems in Limit Analysis and
Decomposition Techniques . . . . . . . . . . . . . . . . . . . . . . . . 79
J.J. Muñoz, N. Rabiei, A. Lyamin, and A. Huerta

Shakedown Analysis of Reissner-Mindlin Plates Using the Edge-Based
Smoothed Finite Element Method . . . . . . . . . . . . . . . . . . . . 101
Thanh Ngo.c Trần and M. Staat
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Finite Element Limit Analysis and Porous
Mises-Schleicher Material

Franck Pastor, Joseph Pastor, and Djimedo Kondo

Abstract By using the kinematic approach of limit analysis (LA) for a hollow
sphere whose solid matrix obeys the von Mises criterion, Gurson (J. Eng. Mater.
Technol. 99:2–15, 1977) derived a macroscopic criterion of ductile porous medium.
The relevance of such criterion has been widely confirmed in several studies and in
particular in Trillat and Pastor (Eur. J. Mech. A, Solids 24:800–819, 2005) through
numerical lower and upper bound formulations of LA. In the present paper, these
formulations are extended to the case of a pressure dependent matrix obeying the
parabolic Mises-Schleicher criterion. This extension has been made possible by the
use of a specific component of the conic optimization. We first provide the basics
of LA for this class of materials and of the required conic optimization; then, the
LA hollow sphere model and the resulting static and mixed kinematic codes are
briefly presented. The obtained numerical bounds prove to be very accurate when
compared to available exact solutions in the particular case of isotropic loadings.
A second series of tests is devoted to assess the upper bound and approximate cri-
terion established by Lee and Oung (J. Appl. Mech. 67:288–297, 2000), and also
the criterion proposed by Durban et al. (Mech. Res. Commun. 37:636–641, 2010).
As a matter of conclusion, these criteria can be considered as admissible only for a
slight tension/compression asymmetry ratio for the matrix; in other words, our re-
sults show that the determination of the macroscopic criterion of the “porous Mises-
Schleicher” material still remains an open problem.
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1 Introduction

The criteria for yielding of ductile porous materials, proposed by Gurson [8], are
based on limit analysis (LA) of a hollow sphere or cylinder obeying the von Mises
criterion and subjected to uniform strain rate boundary conditions. In his analysis,
Gurson used a LA kinematical approach to obtain an upper bound to the exact so-
lution of the hollow sphere model and to the strength of isotropic porous materials
which is shown later to correspond to microstructures of the type Hashin Composite
Spheres Assemblages (see for instance [12]). In the context of isotropy, the Gur-
son approach has been extended in several directions among which that allowing to
investigate analytically porous materials with matrix exhibiting pressure sensitive
behavior (see among others, [5, 7, 9, 13, 15]).

On the other hand, using a finite element discretization of a unit cell, both static
and kinematical methods of LA have been developed to obtain rigorous lower and
upper bounds and assess Gurson’s criteria for cylindrical as well as spherical cavi-
ties in [6] and [21]. Using these numerical approaches, the yield function of a porous
material with cylindrical voids was studied first; it was shown that Gurson criterion
is approximate and does not exhibit the corner that the exact criterion displays in the
plane strain case. However, the Gurson criterion for materials containing spherical
cavities appears to be satisfactory [32], although it does not account for possible dis-
symmetry (with respect to the hydrostatic axis) associated with third stress invariant
effects [31].

It is worth noticing that the above mentioned LA based numerical approaches
lead to rigorous lower and upper bounds of the macroscopic criterion and allow
a posteriori verification of these bounds from the final optimal solution. Conse-
quently, their use to assess existing theoretical yield functions of porous media is
intrinsically relevant. Obviously, such assessment is crucial for confidence in the
formulation of constitutive relations based on these yield functions, in the perspec-
tive of structural computations.

This paper is focused on a class of materials for which the pressure-sensitive
parabolic criterion of Mises-Schleicher [27] is used, see for example [14, 30],
and [3] for a detailed comparison with experimental data. Following [4], this cri-
terion well represents the strength differential between uniaxial compression (σC )
and uniaxial tension (σT ) which has been observed for many polycristalline materi-
als and geomaterials. Moreover the absence of an apex (as in the Drucker-Prager and
Coulomb case) around the minimum value of I1 (= trσ), which agrees with exper-
imental observations [28], constitutes an advantage from a physical and numerical
point of view. This explains that recent papers have investigated the influence of the
porosity for such materials. Therefore, in the present paper, analytical Gurson-like
macroscopic criteria for spherically porous media with Mises-Schleicher matrix will
be assessed by using original LA techniques.

The paper is organized as follows. Section 2 presents the main features of the LA
theory and completes the expressions needed by the LA methods; a brief description
of these methods is given afterwards, ending with a summary of the mixed kine-
matic approach and of the specific conic optimization which has allowed to solve
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the final optimization problem. In Sect. 3, the micro-macro hollow sphere model is
detailed with its 3D finite element discretizations of stress and velocity fields to ob-
tain the macroscopic criterion in terms of average macroscopic stresses. In Sect. 3.3
is presented the implementation of the static approach, which leads to an original
rotated quadratic cone formulation. Section 3.4 briefly presents the also original
mixed kinematic formulation, with discontinuous velocity fields, which leads also
to a rotated cone formulation that bypasses the singularity problem when dm be-
comes null in an element, or a fortiori when the special case of von Mises criterion
is considered.

Section 4 recalls the criteria given in the above mentioned papers of the literature
that will be assessed in the present work. In Sect. 5, the obtained numerical bounds
in the case of hydrostatic loadings are validated first by comparison to available an-
alytical solution (see for instance [15]). Finally, for general loadings, the available
criteria of Lee and Oung [13] and of Durban et al. [5] are assessed by comparing
them to the numerical bounds; to this end we consider two porosities and two rep-
resentative tensile and compressive strengths (σT , σC ) ratios which characterize the
Mises-Schleicher material.

2 Summary of Limit Analysis for Mises-Schleicher Material

In this section, the basic principles of Limit Analysis (LA) for the Mises-Schleicher
material and the resulting methods are recalled, ending with the specific formulation
of the conic algorithm used to solve the resulting optimization problems.

2.1 General Limit Analysis and Mises-Schleicher Material

According to [25], a stress tensor field, σ , is said to be admissible if it is both stati-
cally admissible (SA), i.e., satisfies equilibrium equations, stress vector continuity,
and stress boundary conditions and plastically admissible (PA), i.e., f (σ ) ≤ 0,
where f (σ ) is the convex plasticity criterion. In the present problem we consider
the yield condition given by F. Schleicher [27] (see also [14, 33] for an application
to composite materials, or [10] for a plane stress study):

f (σ ) = σ 2
eq + 3ασ0σm − σ 2

0 ≤ 0; σeq =
√

3

2
σd : σd (1)

where σd is the deviatoric part of σ and σm the main (also called hydrostatic) stress;
α and σ0 are related to the tensile yield stress σT and to the absolute yield stress in
compression σC (with σC ≥ σT ) by

α = (σC − σT )/σ0; σ0 = √
σCσT . (2)
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Similarly, a strain rate tensor field, d , is admissible if it is both kinematically admis-
sible (KA, i.e., it is derived from a piecewise continuous velocity vector field u, with
bounded discontinuities [u], such that the velocity boundary conditions are fulfilled)
and plastically admissible (PA), i.e., the following associated flow rules (3a), (3b)
are satisfied

d = λ
∂f

∂σ
, λf (σ ) = 0, λ ≥ 0, f (σ ) ≤ 0; (3a)

[u] = ξ
∂fdisc

∂T
, ξfdisc(T ) = 0, ξ ≥ 0, fdisc(T ) ≤ 0, (3b)

where d is the strain rate tensor, [u] the velocity jump across the discontinuity sur-
faces, and T = (σn, σnt ) the corresponding stress vector acting on them. The defi-
nitions (3a), (3b) lead to the so-called plastic admissibility condition (PA condition)
that d and [u] must verify to be plastically admissible, i.e. at least one stress tensor σ
or stress vector T (such that f (σ ) = 0 and fdisc(T ) = 0, respectively) can be asso-
ciated to them. Let us recall that the criterion fdisc(T ) results from the projection
of the plasticity criterion f (σ ) on the (n, t) Mohr plane associated to the velocity
discontinuity surface of normal n, which results for the present material:

fdisc(T ) = σ 2
nt + ασ0σn − σ 2

0
1 + α2

3
≤ 0. (4)

If (3a) and (3b) are fulfilled, the quantities σ : d and T · [u] become, respectively,
the convex unit dissipated powers πvol(d) and πdisc([u]), i.e.:

πvol(d) = σ : d; πdisc

([u])= T · [u]. (5)

Finally, denoting dm the average value of the strain rate tensor d , for the Mises-
Schleicher material the PA conditions resulting from (3a), (3b) read:

dm ≥ 0; [un] ≥ 0, (6)

and the unit dissipated powers become:

πvol(d) = σ0dm

α
+ ασ0

4

d2
eq

dm
, (7)

πdisc

([u])= σ0(1 + α2)

3α
[un] + ασ0

4

[ut ]2

[un] , (8)

where deq =
√

2
3dd : dd and dd the deviatoric part of d .

Let us point out that relation (4) and its consequences in (6) and (8) are origi-
nal; they will allow to check a posteriori the admissibility of the optimal velocity
field and the corresponding dissipated power along the discontinuities of the mixed
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numerical problem described in Sect. 2.3. It is also worth noting that the use of rela-
tions (7) and (8) in a classic kinematic method may lead to singularities during the
optimization process.

Let us assume now that the virtual power of the external loads Pext can be written
as the scalar product of a loading p-vector Q = Q(σ) (linear in σ , with σ SA), and
a generalized velocity p-vector q = q(u) (linear in u, with u KA) the components
of which are called kinematic parameters. The vectors Q and q are also assumed
to be linear in their respective arguments, such assumption being always verified in
usual cases and in the present problem. The virtual power theorem then reads:

Pext = Q · q =
∫
V

σ : ddV +
∫
Sdisc

T · [u]dS = P, (9)

where V is the volume of the mechanical system, Sdisc the union of the velocity
discontinuity surfaces; let us note that P becomes the so-called dissipated power
Pdiss when the fields (σ,T ) and (d, [u]) are also PA and associated, respectively.

Basically, a solution of the LA problem is a pair (σ,u) where the fields σ and u

are both admissible and associated by the normality rule. In this case, the loading
vector corresponding to the field σ is a limit load Qlim of the mechanical system. It
can be proved that the admissible loading vectors Q, i.e., corresponding to an admis-
sible field σ , belongs to a convex set K whose boundary ∂K is the locus of the limit
loads Qlim. The vector q complies with normality to ∂K , i.e. the maximum dissipa-
tion principle is verified in terms of Q and q . However, solving the LA problem by
the determination of the above mentioned pair (σ,u) is rarely possible; fortunately,
the solution can be bracketed by using the so-called lower and upper bound methods
of LA, more precisely the following static and kinematic approaches.

2.2 The Classic Static and Kinematic Approach of LA

The main goal of limit analysis is thus the determination of ∂K which corresponds
to the searched plasticity criterion in the present study. Classically, the limit loads
can be found or approached using two dual optimization methods.

The first one is the static method which is in terms of stresses and leads to a lower
bound of the admissible loads. The final problem to be solved reads:

Qlim = (
Qd

1 , . . . , λ0Q
d
i , . . . ,Q

d
n

); (10a)

λ0 = max
{
λ,Q(σ) = (

Qd
1 , . . . , λQ

d
i , . . . ,Q

d
n

)}
(10b)

where the stress tensors σ are admissible, and Qd is a fixed admissible loading
vector. Relations (10a), (10b) hold when all admissible fields σ can be taken into
account, which is not the case in general. Then, by varying the direction of Qd , a set
of admissible Q, located near or on ∂K , are obtained: the smallest convex envelope
of the corresponding points in K is an inner approach of the boundary ∂K , i.e. a
lower bound to the exact macroscopic criterion investigated in the following.
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The second method, involving only the displacement velocities as variables, is
the classic kinematic (or upper bound) method. Let us assume that the velocity
field u is qd -admissible, i.e., u is admissible and verify q(u) = qd , where qd is
a fixed value of q . This kinematic approach of LA consists in obtaining the planes
orthogonal to the vectors qd and tangent to ∂K by solving the following minimiza-
tion problem:

Q ·qd = min
u qd -admissible

(∫
V

πvol

(
d(u)

)
dV +

∫
Sdisc

πdisc

([u])dS = Pdiss(u)

)
, (11)

for various values of qd . Therefore, the classic method needs the analytical expres-
sions of the unit dissipated powers πvol(d) and πdisc([u]). As it can be seen in
(7), (8), some difficulties may arise when a non-linear optimization algorithm is
used which needs Jacobian and Hessian matrices.

In fact, here also, relation (11) holds when all admissible fields u can be consid-
ered, which is rarely possible. In practice, a set of planes exterior or tangent to ∂K

is obtained: the domain defined by the intersection of the corresponding half spaces
constitutes an outer approach of the boundary ∂K , i.e. an upper bound to the exact
macroscopic criterion.

2.3 The Mixed Kinematic Approach of LA

On the other hand, a so-called mixed kinematic formulation was pioneered by An-
derheggen and Knopfel [2] in the continuous case and materials with linearized yield
criteria. This formulation needs only the plasticity criterion as characteristic data of
the material, here the analytic yield functions (1) and (4), and the above mentioned
singularities of the dissipated powers (7) and (8) are then bypassed. Various exten-
sions of the existing mixed algorithms to the discontinuous velocity case (see also
[11]) were successfully experienced in the references [18, 22] for structural plane
strain problems with von Mises and Gurson homogeneous materials and in [24] for
the hollow spheroid problem with an anisotropic Hill matrix.

These formulations are here extended to the 3D-case and for a pressure-
dependent matrix obeying the Mises-Schleicher yield condition; up to our knowl-
edge, it is the first time that the LA numerical techniques are applied to such prob-
lems. This lack in the literature is probably due to the need of a specific large scale
non linear optimization code if the problem is not cast into a rotated quadratic cone
programming one as here.

Let us now consider a KA virtual velocity field u. The virtual power principle
(VPP) states that the stress tensor fields σ and the load vector Q are in equilibrium
if, for any KA u, Eq. (9) is verified. The mixed formulation of [18] and [23] can be
modified as:



Finite Element Limit Analysis and Porous Mises-Schleicher Material 7

max
Q,σ,σ ′ F = Q · qd (12a)

s.t.
∫
V

σ : ddV +
∫
Sd

(
σ ′ · n) · [u]dS = Q · q(u) ∀KAu, (12b)

f (σ ) ≤ 0, f
(
σ ′)≤ 0, (12c)

where σ is the stress tensor inside the 3D finite elements, and σ ′ the stress tensor
specific to the discontinuity surfaces whose set is denoted Sd .

The previous formulation gives the exact solution if any velocity and stress fields
could be taken into account. This is not always the case when a discretization of
the mechanical system in finite elements is considered, giving in fact only estimates
of the limit loads. Then, to preserve the rigorous kinematic (or upper bound) char-
acter of the final result, we will need to modify the numerical implementation of
the virtual power principle (12b) on the basis of convexity properties when taking
into account the contribution of the discontinuities. In this study, the finite element
formulations of both problems (10a), (10b) and (12a)–(12c) are solved using the
specific method briefly presented in the following section.

2.4 Summary of the Second Order Conic Programming Method
(SOCP)

Let us first indicate that conic programming is a recent and very active research
subdomain of convex optimization. For more details the reader is, for example, re-
ferred to [29]. Let us consider now the convex programming problems with linear
objective function whose convex constraints can be written as x ∈ C , where x is the
variable vector and C a non empty convex cone. Since conic programming is a sub-
set of nonlinear convex programming and a generalization of linear programming,
the optimization problem to be solved reads:

min cT x

s.t. Ax = b,

x ∈ C

(13)

with A ∈ R
m×n, c, x ∈ R

n, b ∈ R
m. One of the specific features of the conic pro-

gramming codes is to solve the problems where C is defined by a product of the
following cones C n+2:

C n+2 =
{
x ∈ R

n+2

∣∣∣∣∣
n∑

j=1

x2
j ≤ 2xn+1xn+2

}
, xn+1 ≥ 0, xn+2 ≥ 0. (14)

With the cone (14) the resulting optimization problem is called rotated quadratic
cone programming problem. Among the existing commercial codes, the most effi-
cient is the code MOSEK, developed by E. Andersen [16], which allows to solve very
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large scale optimization problems. Its applications in mechanics began about ten
years ago, but always for solving classic limit analysis problems which involves von
Mises or Drucker-Prager criterion where C is defined by a product of the Lorentz
cones L n+1 :

L n+1 =
{
x ∈ R

n+1

∣∣∣∣∣
(

n∑
j=1

x2
j

) 1
2

≤ xn+1

}
. (15)

3 The Mises-Schleicher Hollow Sphere Model

3.1 Statement of the Mechanical Problem

Let us consider as elementary cell a sphere cavity of radius a embedded in a con-
centric sphere cell of radius b (see Fig. 1). The solid matrix is assumed to be
isotropic, homogeneous, and obeys the Mises-Schleicher yield condition. We con-
sider now the mechanical micro-macro problem and denote by Σ and E the macro-
scopic stress and strain rate symmetric tensors, respectively. These quantities are
defined by averaging their microscopic counterparts over the cell of volume V . Un-
der the uniform strain rate boundary conditions allowing the macro-homogeneity
Hill-Mandel lemma to be verified (i.e. ui = Eijxj on the external boundary) the
power Pext = ∫

∂V
σijnjuidS of the external loads leads to:

Pext = VΣijEij . (16)

From (16), the p components Qi of the loading vector Q (see Sect. 2.1) can be de-
fined as the six components of the tensor Σ , and the qi as the corresponding com-
ponents of E. In fact, depending on the results we are searching for, more relevant
definitions of the Q and q vectors can be chosen. Here, the LA loading parame-
ters and their associated generalized velocities, such that (16) remains verified, are
chosen as follows:

Q1 = Σm = tr(Σ)

3
; Q2 = Σxx + Σyy

2
− Σzz; (17)

Q3 =
√

3

2
(Σxx − Σyy); Q4 = Σyz; Q5 = Σzx; Q6 = Σxy; (18)

q1 = tr(E); q2 = 2

3

(
Exx + Eyy

2
− Ezz

)
; (19)

q3 = 1√
3
(Exx − Eyy); q4 = 2Eyz; q5 = 2Ezx; q6 = 2Exy. (20)

From these definitions, the external power Pext here reads:

Pext = VQ · q. (21)
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Fig. 1 The hollow sphere model

The stress components represent the loading vector Q in terms of LA and the cor-
responding macroscopic strain rates define the associated generalized velocity vec-
tor q of Sect. 2, with p = 6. The locus ∂K corresponds then to the investigated
macroscopic criterion, further denoted g∗(Q), of the porous material.

To compare with available analytical results, we search for the projection of
g∗(Q) on the (Σm,Q2) plane by optimizing Q2 for fixed average stresses Σm, the
other stress components defined in (18) being free. Then ∂g∗

∂Qi
= 0 = qi for i ≥ 4, and

∂g∗
∂Q3

= 0 = q3 since the macroscopic material complies with the normality rule in
terms of q and Q relatively to g∗. As a final result, loadings can be restricted to the
principal macroscopic strain rates E (as well as Σ from the macroscopic isotropy)
with q3 = 0 = Exx −Eyy . Moreover, from the isotropy of the macroscopic material,
we also impose, although this is not mandatory, Σxx − Σyy = 0 = Q3. Indeed, as
expected, when non imposed a priori, the axisymmetry of loading is always verified
in the optimal solutions, giving by the way a good control of the mesh quality. Note
that the macroscopic equivalent stress Σeq is, in the present case, linked to Q2 by:

Σ2
eq = 3

2
Σd : Σd = Q2

2 + Q2
3 = Q2

2 = (Σxx − Σzz)
2, (22)

where Σd is the deviatoric part of Σ .
Let us remark that Σeq , even for axisymmetric loadings, has not the status of a

loading parameter Qi(σ ) as they are defined in Sect. 2; hence it cannot be used as
it is when using the LA methods. Moreover, it is worth noting that, in the present
problem, the optimal lower and upper bounds presented in terms of (Q1,Q2) are
also bounds for the fully 3D loading case, since the resulting axisymmetric loading
is also a 3D loading. This is not always the case when the results are presented in
terms of (Σeq,Σm), using Σeq = |Q2| from (22) since Q3 is zero. For example,
the optimal positive and negative Q2 of the real macroscopic criterion, for the same
fixed Q1 = Σm, are slightly different in absolute value (except on the axis as ex-
pected), with a maximum of 2 % in the present tests, as shown in [31] for the porous
von Mises material.
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Fig. 2 General view and Oxz plane of a 896-tetrahedron mesh (f = 0.1)

3.2 The Finite Element Discretization

First is summarized the meshing technique adapted from the one presented in [32],
resulting in a common discretization for the static and kinematic codes. From the
above mentioned discussion, one eighth of the hollow spheroid is meshed into tetra-
hedral elements as shown in Fig. 2. This mesh respects the symmetries of the prob-
lem since the coordinate planes are equivalent concerning the distribution of ele-
ments, giving rise to a well-posed numerical problem. Each triangle of a polyhedral
surface n is the top basis of a prism whose the bottom basis is the corresponding
triangle of the surface n − 1, and so on until the cavity boundary. Each prism is
divided into two tetrahedrons and three pyramids and each pyramid is divided into
four tetrahedrons. Hence, each prism is meshed using 14 tetrahedral elements. For
example the mesh of Fig. 2 involves 4 concentric layers of 4 × 4 prisms each, re-
sulting finally in 896 tetrahedrons.

Since the FEM “nodal” stress or velocity variables are located at each apex of the
tetrahedrons (and not at the nodes of usual FEM meshes), discontinuities in terms of
stress or velocity are allowed across any element side; this feature has been proved
to be crucial in the static approach (see [17, 20] and for the kinematic one [1]). For
example, in the von Mises matrix case, if we consider continuous FEM fields (i.e.
without any inter-element discontinuity) in the present 3D-model, no feasible solu-
tion is found under a isotropic (or hydrostatic) loading. These discontinuity sides are
automatically detected by searching for the tetrahedron sides having their apices lo-
cated at the same points; a special care is paid to verify the coherence of the normal n
(defined from the description of the side apices) with the description of the discon-
tinuities, taking into account that tensile normal stresses are positively counted (see
Fig. 3). This point is important in the kinematic case since the velocity discontinuity
must have the same direction as the outer normal to the plasticity criterion in the
Mohr plane.
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Fig. 3 A typical kinematic
discontinuity side:
[ui ] = u2 − u1,
[uj ] = u4 − u3,
[um] = u6 − u5

3.3 Implementation of the Static Method

In this subsection we first explicit the Mises-Schleicher criterion; then, we present
the static approach implementation. In a (x, y, z) reference frame, the Mises-
Schleicher criterion (1) reads:

(
σxx + σyy

2
− σzz

)2

+ 3

4
(σxx − σyy)

2 + 3
(
σ 2
yz + σ 2

zx + σ 2
xy

)

≤ σ0
(
σ0 − α(σxx + σyy + σzz)

)
. (23)

After an obvious change of variables, criterion (23) can be written as a rotated
quadratic cone constraint (14) in the form required by the optimizer MOSEK, i.e.:

5∑
j=1

x2
j ≤ 2x6x7. (24)

Concerning the numerical implementation of the static approach, the local stress
field is chosen as linearly varying with x, y, z in each tetrahedral element, and repre-
sented by a 6-component tensor σ for each vertex of this tetrahedral element. Conse-
quently, this stress field can be discontinuous across any element boundary. Finally,
to reduce the size of the constraint matrix of the numerical problem, a change of
variables σ → (x0, x1, . . . , x5) is performed, where x0 = trσ and x1 to x5 defined
from (24), so that only the definitions of x6 = σ0/2 and x7 = σ0 −αtr(σ ) are needed
as new constraints (and new auxiliary variables) for each tetrahedron vertex.

To get a statically and plastically admissible microscopic stress field, the fol-
lowing conditions are implemented in the final form of a matrix of linear equality
constraints:

• Definition of the macroscopic stress components Σxx , Σyy , Σzz as averages
of the corresponding microscopic ones i.e., three linear conditions.

• Definition of Q1 = Σm, Q2, Q3 as functions of the previous ones, i.e., three
linear conditions.

• In each element, from the linearity of the stress variation, the equilibrium equa-
tions, σij,j = 0, generate three linear conditions.

• Continuity conditions: the stress vector is continuous across every discontinuity
surface; each discontinuity triangle generates nine linear conditions.
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• Boundary conditions: on the triangles belonging to the cavity boundary, the com-
ponents of the stress vector Ti = σijnj are null at each apex of each triangle
(whose normal is n), here also generating nine linear conditions per triangle.

• Symmetry conditions: the microscopic tangential stresses are null at the triangle
apices of the coordinate planes, i.e., six linear conditions for each triangle of these
planes.

To enforce the stress field to be plastically admissible, the criterion (23) is imposed
at each apex of the tetrahedron; hence, due to its convexity, the criterion is fulfilled
anywhere in the element. For each tetrahedron the four conic inequalities are directly
handled by MOSEK by indicating the names of the variables xj involved in (24).

Concerning the functional to be optimized, Σm is given successive desired values
and Q2 is minimized; when Σm is close to its maximum value, Q2 is fixed and Σm

is optimized for better convergence of the optimization process. The final result
is a rotated quadratic cone programming problem, which is one of the features of
MOSEK; the optimal solution gives a rigorous lower bound to the exact solution of
the FEM model; this lower bound character is systematically verified by a post-
analysis of the optimal stress field given by the optimizer. It is worth noting that,
in all tests, the best values of Σeq , for fixed Σm, are obtained for negative Q2, i.e.
by minimizing Q2 in fact. This point proves here also a slight influence of the third
stress invariant of the macroscopic stress tensor, as in [31].

3.4 Implementation of the Mixed Kinematic Method

As said yet, the mesh is elaborated as in the static case. First, we examine the con-
tribution of the continuous velocity fields to the VPP expression (9); the role of
inter-element discontinuities will be discussed in the next subsection.

3.4.1 Contribution of the Element Velocity Fields

A three-component nodal vector {u} is located at each apex of the tetrahedron, and
the velocity u is assumed to vary linearly, giving rise to a constant strain rate {d} in
the element. To the global vector of these velocities are added q1, q2, q3 in order to
form the final virtual vector {u}. Then, a single stress tensor {σ } is assigned at each
tetrahedron. Thus, from its definition, the external power reads:

Pext = V q · Q = V {q}T {Q} = {u}T V [β]{Q} (25)

where {q} = [β]T {u}.
Inside the element k, the strain rate {d} is defined by the classic equation:

{d}k = [B]k
{
un
}
, (26)
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where the vector {un} collects the twelve degrees of freedom of the element. Then
the VPP reads:

{u}T V [β]{Q} =
∑
k

Vk{d}Tk {σ } ∀ {u} KA, (27)

where Vk denotes the volume of the tetrahedron k. Using Eq. (26), and after the
assembly of the elements, the relationship (27) gives rise to the following variational
system:

{u}T [−[α]{σ } + V [β]{Q}]= 0 ∀ {u} KA, (28)

where the matrix [α] results from the assembly of the submatrices [α] = Vk[BT ]
calculated for each element k in (27).

3.4.2 Contribution of the Velocity Discontinuities

According to [26], a discontinuity surface element (of normal n) can be assimilated
to a thin zone where the appropriate static and kinematic variables are respectively
the stress vector T ′ = σ ′ · n and the velocity jump vector [u] which are associated
by the normality law relatively to the fnt (T

′) criterion, or, equivalently (see [26]),
where the corresponding σ ′ and d ′ = [un]n ⊗ n + 1

2 [ut ](n ⊗ t + t ⊗ n) can be
associated relatively to f (σ ′).

The second left hand side term of (12b) becomes the dissipated power πdisc([u])
when the optimal solution is reached (see [18, 23]), so we can use the convexity of
πdisc since the velocity jump [u] varies linearly along the discontinuity side. Hence
an auxiliary stress tensor σ ′ is assigned at each apex i, j , m of the triangular dis-
continuity side Sijm, and the integral on this side can be upper bounded by writing:

∫
Sijm

(
σ ′ · n) · [u]dS

≤ Aijm

({[u]}T
i

[
σ ′
i

]{n} + {[u]}T
j

[
σ ′
j

]{n} + {[u]}T
m

[
σ ′
m

]{n})/3, (29)

where Aijm is the area of Sijm whose the normal is n. Using these bounds gives rise
to a matrix [α′] in an analogous manner than in the previous subsection.

Finally the resulting numerical form of the mixed problem (12a)–(12c) is the
following:

Max {qd}T {Q} (30a)

s.t. −[α]{σ } − [
α′]{σ ′}+ V [β]{Q} = 0, (30b)

f (σ ) ≤ 0; f
(
σ ′)≤ 0 (30c)

+KA conditions. (30d)
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At this stage, it is worth recalling that the optimal velocities components are the val-
ues of the dual variables associated to the rows of the final matrix [−α,−α′], which
are available in the optimal solution given by the code MOSEK, or the interior point
optimizer of [19]. Note also that there is no restriction to the allocated stress tensors,
except the verification of the criterion; then, for any non-zero velocity field (and the
corresponding strain rates and velocity jumps) an associated PA stress tensor can be
found. Consequently, from Hill’s maximum work principle, the upper bound charac-
ter is preserved with the above selected formulation. Here also, the optimal solutions
are post-analyzed by using the Mises-Schleicher results of Sect. 2.1.

3.4.3 Formulation of the KA Conditions

From the variational formulation (28) leading to the final problem (30a)–(30d), let
us define three supplementary lines (constraints) whose associated virtual variables
are Exx,Eyy,Ezz (and three columns for the associated macroscopic stresses), so
that the ui = Eijxj conditions on the boundary here reads ux = Exxx, uy = Eyyy,
uz = Ezzz. Hence, for example for the first relation, in an additional column (located
after the real variables) we initialize to 1 and −x the components of the column cor-
responding to the virtual variable ux and to the virtual variable Exx , respectively.
Since this additional column does not appear in the functional, the desired relation
will be verified in the optimal solution, as it can be verified from the Karush-Kuhn-
Tucker optimality conditions. When, as here, the chosen kinematic parameters qi are
an invertible combination of Exx,Eyy,Ezz (represented by a non-singular square
matrix A, for example), the above coefficients x, y, z are dispatched on the three
additional lines (associated now to the qi ), according to the inverse of A. A simi-
lar technique is used to impose the null symmetry values to the required velocity
components of the planes x = 0, y = 0 and z = 0.

This original technique gives rise to a better conditioning of the final matrix and
avoids to have to renumber the rows when using the condensation technique of [23].

4 Analytical Yield Criteria of Porous Materials with
Mises-Schleicher Matrix

As previously mentioned, Lee and Oung [13] studied ductile porous media with
a Mises-Schleicher matrix by performing limit-analysis of a hollow sphere. Dur-
ban et al. [5] investigated the same problem by means of a simple statically deter-
mined procedure. More recently, Monchiet and Kondo [15] derived exact solutions
for isotropic loadings. In this section, we briefly recall the analytical yield criteria
of [13] and [5] that will be assessed; the porosity is denoted f .

Indeed, by studying the hollow sphere problem in a manner analogous to that of
Gurson (for the von Mises matrix case), Lee and Oung found the following upper
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bound to the real criterion:

Σ2
eq + f

4
(3Σm)2 + 3ασ0(1 − f )Σm − (1 − f )2σ 2

0 = 0. (31)

Then, they proposed the following approximate criterion:

(
Σeq

σ0

)2

+ 2f cosh

(
3Σm

2σ0

)
+ 3α(1 − f )

σm

σ0
− (

1 + f 2)= 0. (32)

By following a practical procedure consisting in expanding yield function in powers
of porosity ratio f , Durban et al. obtained a macroscopic porous Mises-Schleicher
criterion whose parameters are determined by taking advantage of the static solu-
tions of the hollow sphere model under hydrostatic loading; the resulting approxi-
mate expression reads:

(
Σeq

σ0

)2

+2f

(
1+G

√
1 + α2 cosh

G

α

)
−2αfG sinh

G

α
+3α

Σm

σ0
− (

1+f 2)= 0,

(33a)
where

G =
√

1 − 3α
Σm

σ0
+ α2 −

√
1 + α2. (33b)

As already noted by the authors, (32) and (33a), (33b) reduce to the Gurson expres-
sion when α tends to zero, while (31) does not meet this expected property.

5 Numerical Tests

5.1 Comparison with Exact Results for Isotropic Loadings

Monchiet and Kondo [15] have confirmed that the Σm solutions of Lee and
Oung [13] (obtained by limit equilibrium considerations) are exact LA solutions by
exhibiting associated admissible stress and velocity fields, following an approach
already used by Thoré et al. [31] for Drucker-Prager and Coulomb matrices. These
exact solutions are considered here for a first validation of the numerical bounds that
we derived by means of the above mentioned static and (mixed) kinematic codes.
Tables 1 and 2 give the corresponding values for isotropic tensile and compressive
loadings, respectively; six decimal are reported.

The analytical values were obtained by solving with MATLAB the following equa-
tions given in [13, 15] for Σm ≥ 0:

ln

[−α +√
1 + α2 − 3αΣm/σ0

−α +
√

1 + α2]

]
+ 1

α

√
1 + α2 − 3αΣm/σ0 − 1

α

√
1 + α2 = lnf,

(34)
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Table 1 Comparison of the present bounds to exact solution Σm/σ0 for isotropic tensile loadings

α 0 0.2 0.4 0.6 0.8 1.0

3D-kine 1.537747 0.985438 0.651860 0.468268 0.361183 0.292810

[15] 1.535057 0.984299 0.651539 0.468153 0.361131 0.292782

3D-stat 1.526208 0.981093 0.650016 0.467134 0.360237 0.292016

Table 2 Comparison of the present bounds to exact solution Σm/σ0 for isotropic compressive
loadings

α 0 0.2 0.4 0.6 0.8 1.0

3D-kine −1.537747 −2.291437 −3.182374 −4.159597 −5.190714 −6.256271

[15] −1.535057 −2.285464 −3.172361 −4.144888 −5.170962 −6.231292

3D-stat −1.525985 −2.269164 −3.142363 −4.101975 −5.113655 −6.109577

and for Σm ≤ 0:

ln

[
α +√

1 + α2 − 3αΣm/σ0

α +
√

1 + α2]

]
− 1

α

√
1 + α2 − 3αΣm/σ0 + 1

α

√
1 + α2 = lnf.

(35)
The numerical bounds are mainly obtained with a 14 × 14 × 14 prism mesh

resulting in 990,587 linear constraints, 264,796 conic constraints, and 2,127,191
variables for the mixed kinematic code; the problem is solved in about 700 seconds
of CPU time (with one thread) on an Apple iMac-i7 with 16 gigabytes of RAM. The
static problem with that mesh (1,117,600 linear and 153,664 conic constraints with
1,229,319 variables) needs about 1100 seconds of CPU time.

From these tests, it can be firstly noted that the exact solution is always located
between the numerical bounds, even when these bounds are very close to each other.
Secondly, due to the remarkable efficiency of MOSEK, the solving CPU times are
very low, given the large scale of the generated optimization problems. Finally, re-
garding the high performance in terms of bounds, and these first validations of the
proposed numerical procedure, it should be noted that the presence of discontinu-
ities everywhere plays a crucial role in both static and kinematic results.

In the following tests, owing to the very small difference between positive and
negative optimal values of Q2, for the same fixed Q1 = Σm, we will present for
conciseness only the results for the negative Q2, which are here a bit larger than the
positive ones in absolute value. As it will be seen, this has no consequence about
assessing the available criteria.
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Fig. 4 Present bounds versus [13] and [5] results for σC/σT = 1.1, f = 0.1 (σ0 = 1)

5.2 Comparison with Lee-Oung [13] and Durban [5] Results

In [13] the authors have considered several cases of σC/σT , with more details for
σC/σT = 1.1 corresponding to α = 0.1/

√
1.1. Therefore we have investigated this

case, and σC/σT = 2 which corresponds to α = 1/
√

2; the porosity is set to 0.1
and 0.01.

5.2.1 Case σC/σT = 1.1

In Fig. 4 are represented the present static and kinematic bounds together with the
results of Lee and Oung, and Durban et al., for σc/σT = 1.1. It can be seen, first,
that the numerical bounds are very close each other. As indicated by the authors
themselves, the upper bound of Lee and Oung is clearly not efficient, particularly
for high triaxiality loadings. The criterion of Lee and Oung and of Durban are close
on a large part of the loading domain, but the Lee and Oung criterion violates the
static bound for high compressive loadings. This confirmed the observation made
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Fig. 5 Present bounds vs. [13] and [5] results for σC/σT = 1.1, f = 0.01 (σ0 = 1)

by [15] on the poor performance of the Lee and Oung criterion when compressive
hydrostatic loadings are considered.

For f = 0.01, from Fig. 5 the same remarks can be made, but the differences
between both criteria are amplified as well as the violation of the static bound for the
Lee and Oung criterion. At this stage, we could conclude that the Durban criterion
can be selected.

5.2.2 Case σC/σT = 2

The results for σc/σT = 2 (strong asymmetry) are plotted in Figs. 6 and 7; it can be
seen that the numerical static and kinematic bounds still remain close with a better
performance for f = 0.1, more or less expected since the mesh is the same for both
porosity cases. Curiously, the results present an inversion between the Lee and Oung
upper bound and the Durban et al. criterion. This proves that, for high asymmetry
ratio, the Lee and Oung criterion, as well as that proposed by Durban (even if this
one does not violate the static bounds) cannot be considered relevant.
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Fig. 6 Present bounds vs. [13] and [5] results for σC/σT = 2, f = 0.1 (σ0 = 1)

6 Conclusion

In the present paper, we present original finite element formulations of the static and
kinematic methods of Limit Analysis of a hollow sphere with a Mises-Schleicher
matrix, both in the three-dimensional case. The resulting optimization problems are
cast into the so-called rotated quadratic cone optimization, which are solved us-
ing the excellent commercial code MOSEK. The static and kinematic mixed codes
appear very efficient in all tests, both in terms of computational speed and of accu-
racy of the solutions which were systematically verified by post-analysis. First, for
isotropic loadings, the corresponding closed form solutions of Lee and Oung, con-
firmed as exact LA solutions by [15], allow to validate the present numerical bounds
in this particular case. Then, the comparison with the upper bound and the criterion
of Lee and Oung [13] confirms that both expressions are relevant for tensile and low
compressive loadings, but not in highly compressive loading cases. Moreover, the
Lee and Oung criterion noticeably violates the numerical static bounds when the
tensile/compressive strength asymmetry is not small and for compressive loadings.
This is not the case with the Durban [5] closed-form expression, but this criterion
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Fig. 7 Present bounds vs. [13] and [5] results for σC/σT = 2, f = 0.01 (σ0 = 1)

strongly overestimates the real solution for compressive loadings when the above
mentioned asymmetry is high. Finally, it can be concluded that the question of the
determination of a satisfactory analytical criterion for a ductile porous medium with
a Mises-Schleicher matrix still remains open.
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Limit Analysis: A Layered Approach
for Composite Laminates

Aurora Angela Pisano, Paolo Fuschi, and Dario De Domenico

Abstract The present contribution summarizes the results of recent studies carried
on by the authors in the last few years concerning the evaluation of the load bearing
capacity of single- and multi-pin joints in composite orthotropic plates. The prob-
lem, tackled via limit analysis, employs a Tsai-Wu-type yield surface and a non
standard treatment of limit analysis approach. Upper and lower bounds to the real
peak load value are evaluated by two FE based numerical procedures predicting
also the joint failure mode. The whole procedure is implemented at lamina level so
taking into account some of the through thickness effects on the joint strength capa-
bilities. A wide number of experimental findings, coming from laboratory tests on
real prototypes and available in the relevant literature, is considered to validate, by
comparison, the expounded methodology.

1 Premises and Main Assumptions

Limit analysis plays an eminent role among the theoretical and numerical methods
aimed at predicting the load bearing capacity of structures or structural elements. It
also becomes very effective and attractive for the design of many modern industrial
prototypes often manufactured with materials whose constitutive behaviour does not
have a well defined mathematical description. In composite laminates, for example,
the available constitutive models are often affected by values of material parameters
hardly identifiable via experimental tests so that, in such a context, results obtained
via a step-by-step post-elastic analysis may be useless for applications of engineer-
ing interest. Nevertheless, even in those cases where the constitutive behavior is well
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settled, limit analysis can be used as a preliminary/first design tool: once a good pro-
totype is individuated for a specific problem, sophisticated post elastic FE analysis
or experimental laboratory tests can be performed for a deeper and exhaustive un-
derstanding of its mechanical behaviour with a considerable saving of efforts either
economic or time consuming.

The classical approaches of limit analysis rely upon mathematical programming
procedures which have progressed significantly in recent years (see e.g. [15, 16, 19,
20, 35, 36, 40]). A number of contributions in this field (see e.g. [41] and references
therein) adopt however a different approach whose basic assumption is that limit
state solutions may be developed from sequences of elastic (linear) analyses easy
to handle via any commercial finite element code. In this context a numerical FE-
based approach has been recently proposed by the authors to a peculiar problem of
orthotropic composite laminates, namely the evaluation of the load bearing capacity
of pinned-joint composite plates with single- or multi-pin fastenings [24–27]. This is
a topical problem in the composite realm as witnessed by the number of recent paper
on the subject, more than 700 papers are listed in the work of Mackerle [21] which
provides an interesting review of finite elements methods applied for the analysis
of joints; remarkable reviews are also the ones given in [6, 10, 31, 37]. For design
purposes, Researchers are mainly interested in determining the effects on joints fail-
ure strength and failure modes of some peculiar geometrical parameters such as: the
ratios between hole-distance from the free plate edge to hole-diameter, or the one
between the plate-width to hole-diameter or, also, the relative distances between fas-
tener holes as well as their spatial distribution within the plate [2–4, 9, 12–14, 22].

The results of a research carried on in the last few years and concerning the anal-
ysis of mechanically fastened joints in multi layers composite plates are expounded
in the following. Details, and deeper explanations are given in the papers [24–27] to
which the Reader could refer for more information. In particular, two well known
FE procedures have been rephrased: (i) the Linear Matching Method, conceived by
Ponter and Carter [28], (see also [8]), has been used to compute an upper bound to
the peak load multiplier; (ii) the Elastic Compensation Method, due to Mackenzie
and Boyle [18], has been employed to evaluate a lower bound to the peak load multi-
plier. The former, considering a structure made by a fictitious linear viscous material
with elastic parameters spatially varying, allows to construct a collapse mechanism
and eventually to evaluate an upper bound to the peak load. The latter, grounding on
a stress redistribution procedure pursued by a sequence of elastic analyses in which
highly loaded regions are systematically weakened, produces an admissible stress
field suitable for a lower bound evaluation.

The assumption of a Tsai-Wu-type yield surface for composite laminates [7, 34,
38, 39] allows one to locate stress states at which the material has exhausted its
strength capabilities. The further assumption of a non-associate flow rule makes
the whole methodology of general applicability following a nonstandard approach
[17, 30]. Limit analysis is used indeed to evaluate the strength capability of the joint
by evaluating upper and lower bounds bracketing the real peak load value.

The main novelty of the authors’ recent studies hereafter summarized, is related
either to the extension of the mentioned FE procedures in the realm of anisotropic
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composites and, in general, non associative materials or, also, to their non trivial
implementation at layer laminate level. The latter peculiarity reveals undoubtedly
more burdensome computations but, as witnessed by the obtained results, allows
to take into account the stacking sequence of the laminate. Some of the through-
thickness effects depending on the number of the laminae the laminate is made with
as well as the effects of fiber orientations within each lamina can indeed be handled
with good accuracy. To this aim higher order shell-type multilayered finite elements
have been used, performing all the relevant operations at the Gauss points of each
element layer (lamina).

In order to verify the reliability of the proposed procedure, checking its ability
of bracketing the real (experimentally detected) peak load, a considerable number
of experimental tests at rupture, available in the literature [2, 12–14, 22], have been
numerically reproduced. The possibility of localizing the collapse zone so predicting
the related failure mode has been also investigated highlighting the potentialities of
the layer by layer implementation. In conclusion, the proposed procedure seems to
guarantee, at least for the studied problem, a great accuracy for different laminate
lay-ups and different joint geometries establishing an effective design tool useful to
avoid expensive trials on real prototypes.

2 Limit Analysis and Constitutive Assumptions

2.1 The Limit Analysis Problem

Following the kinematic theorem of the limit analysis, considering a body of vol-
ume V , for a given distribution of compatible strain rates ε̇j , say ε̇cj , an upper bound
to the (collapse) peak load multiplier is given by:

PUB =
∫
V
σ

y
j ε̇

c
jdV∫

∂Vt
p̄i u̇

c
i d(∂V )

(1)

where: ε̇cj = λ̇∂f/∂σj are the components of the outward normal to the yield surface

f (σj ) = 0 (with λ̇ > 0 scalar multiplier); PUB denotes the upper bound load mul-
tiplier (for simplicity only surface forces, p̄i , acting on the external portion of the
body ∂Vt , are considered); σy

j are the stresses at yield associated to the compatible
strain rates ε̇cj ; u̇c

i are the related displacement rates. The set (ε̇cj , u̇
c
i ) indeed defines

a collapse mechanism.
On the other hand, the static theorem of limit analysis states that if at every point

within V exists a stress field σ̃j which satisfies the condition f (σ̃j ) ≤ 0 and in
equilibrium with the applied load P p̄ for a certain value of P , say PLB , then PLB

is a lower bound to the limit load multiplier.
Two remarks appear necessary to focus what will be expounded in the next sec-

tions.
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Remark 1 For nonstandard materials, see e.g.: [17, 30, 32, 33], the Radenkovic’s
first and second theorems state that (after [17]): every value of the limit load for
a body made of a nonstandard material is located between two fixed boundaries
defined by the values of the limit loads for two corresponding standard materials.
The hypothesis of a nonstandard constitutive behavior assumed next will then imply
to search for an upper and a lower bound to the (collapse) peak load of the joint.

Remark 2 The two numerical procedures, expounded in Sects. 3 and 4, play two
distinct roles as specified in the following. The Linear Matching Method (LMM) is
naturally related to the kinematic approach of limit analysis being able to construct
a compatible collapse mechanism. It then gives an upper bound, PUB , to the peak
load multiplier. The Elastic Compensation Method (ECM) is indeed strictly related
to the concept of stress redistribution aimed at producing an admissible stress field.
It is then related to the static approach of limit analysis furnishing a lower bound,
PLB , to the peak load multiplier.

2.2 Constitutive Assumptions

By hypothesis, the constitutive behaviour of the composite laminate obeys to a
second-order tensor polynomial form of the Tsai-Wu failure criterion [39] having
the following analytical form:

F11σ
2
1 + F22σ

2
2 + F66σ

2
6 + 2F12σ1σ2 + F1σ1 + F2σ2 = 1, (2)

where:

F1 := 1

Xt

+ 1

Xc

; F2 := 1

Yt

+ 1

Yc

; F11 := − 1

XtXc

;

F22 := − 1

YtYc

; F66 := − 1

S2
; F12 := −1

2

√
F11F22;

(3)

with Xt , Xc the longitudinal tensile and compressive strengths respectively; Yt , Yc

the transverse tensile and compressive strengths respectively and S the longitudi-
nal shear strength; moreover, as usual for composite structures, 1 and 2 denote the
principal directions of orthotropy in plane stress case while σ6 ≡ τ12. In Eqs. (3)
the compressive strengths Xc and Yc have to be considered intrinsically negative.
The quadratic form given by Eq. (2) defines an admissible stress states domain:
points within the domain locate stress states pertaining to an orthotropic linear elas-
tic behaviour of the material; points lying on the domain boundary locate stress
states at which the material has exhausted its strength capabilities. The Tsai-Wu-
type surface, in the quadratic form adopted allows one to apply the standard rules of
transformation, invariance and symmetry, and locates an ellipsoid in the stress space
which is assumed as yield surface for the orthotropic material considered. Moreover,
the orthotropy of the composite laminates infers the general assumption of non as-
sociativity so, as noted above, the peak load values of the analyzed specimens will
be located by the determination of upper and lower bounds.
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Remark 3 On taking into account the previous Remark 1 and the strict convexity
of the Tsai-Wu-type yield surface the postulated non associativity can be treated
following the Radenkovic approach and, in this case, the assumed yield surface can
itself play the double role of inner and outer surface.

3 The Linear Matching Method (LMM)

3.1 Fundamentals

An upper bound to the (collapse) peak load multiplier can be evaluated by the LMM
which furnishes all the ingredients entering Eq. (1) namely: the kinematic fields
ε̇cj , u̇

c
i , and the associated stresses at yield (with respect to the yield surface (2)),

i.e. σy
j . To this aim an iterative procedure, involving a sequence of linear FE-based

analyses, is performed on the structural element assumed as made of an orthotropic
linear viscous fictitious material with spatially varying moduli and subjected to a
distribution of imposed initial stresses. At each iteration, the fictitious moduli are
then adjusted and the initial stresses are varied so that the computed fictitious linear
stresses are brought on the yield surface at a fixed strain rate distribution. This allows
one to define a collapse mechanism (strain and displacement rates (ε̇cj , u̇

c
i )), the

related stresses at yield σ
y
j and eventually, by Eq. (1), allows to evaluate a PUB . All

the above can be geometrically interpreted as given in next subsection for a quick
understanding.

3.2 Linear Matching Method and FE Procedure

The fundamental steps of the LMM are schematically shown in Fig. 1 where
a fictitious linear viscous solution, computed at a generic Gauss point (GP) in-
side a generic layer of a generic finite element, is represented in the stress space
(σ1, σ2, σ6). In particular, denoting with apex (0) the values of fictitious material pa-
rameters and initial stresses at iteration k, and with apex (∗) those at iteration k + 1,
the fictitious solution computed at k is displayed by a stress point, located by the
stress vector σ e , lying on the complementary dissipation rate equipotential surface
W [E(0)

j , ν
(0)
12 , σ̄

(0)
j ] = const pertaining to the fictitious material. Such solution is also

displayed, in terms of linear viscous strain rates, i.e. by the outward normal, ε̇ej , to
W = const at σ e

j . The related u̇e
i being the compatible displacement rates. At iter-

ation k + 1, the material moduli and the initial stresses are varied (assigning them
the starred values), in such a way that ε̇ej can be interpreted as ε̇cj , the latter being
the strain rate at collapse at the current GP. The above operation simply implies to
find a (stress) point of assigned normal (ε̇ej = ε̇cj ) belonging either to the yield sur-
face or to a “modified” complementary dissipation rate equipotential surface, say
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Fig. 1 Matching procedure
at a GP in the FE mesh:
(·)(0) = values at iteration k;
(·)(∗) = values at iteration
k + 1

W [E(∗)
j , ν

(∗)
12 , σ̄

(∗)
j ] = const, where the starred quantities define indeed the modified

W = const at k + 1. The corresponding stresses, σ Y , are then “stresses at yield”,
the related displacement rates the “incipient displacements at collapse”. This op-
eration, which also explains the name of the method, the surface W matches the
yield surface at a point of given normal, is performed at each GP of the FE mesh
and obviously violates the global equilibrium conditions. The stresses at yield, eval-
uated by matching, do not satisfy equilibrium with the loads acting at iteration k;
this essential condition is indeed assured at the end of an iterative process. To this
concern, a sufficient condition for convergence is given in [29] and is not reported
for brevity.

Moreover, grounding on the formal analogy between the linear viscous problem
and the linear elastic problem (see e.g. [23]), the fictitious linear viscous solution
(in rate form) can, in practice, be computed as a fictitious linear elastic solution
(in finite form), W playing the role of complementary energy potential of the ficti-
tious material. The FE analysis is then achievable as a linear elastic analysis by any
commercial FE code.

4 The Elastic Compensation Method (ECM)

4.1 Fundamentals

A lower bound to the peak load multiplier can be evaluated via the ECM aimed at
constructing an admissible stress field suitable for the evaluation of a PLB . As the
previous procedure, the ECM is also an iterative procedure involving sequences of
linear elastic FE-based analyses in which highly loaded regions of the structure are
systematically weakened by reduction of the local modulus of elasticity. Precisely,
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Fig. 2 ECM procedure at
three generic layers belonging
to elements # 1, #2 and #3 in
the FE mesh

a sequence of linear elastic FE analyses is carried out in which, for a given load
value, the elastic moduli are reduced within “critical regions” of the structure iden-
tified by the elements where the stresses attain values greater than the yield one.
This allows one to define a maximum admissible stress value in the whole structure
and for the given load. Increased values of loads are then considered in the subse-
quent sequences of analyses till further load increase do not allow the maximum
stresses to be brought below yield by the reduction (or redistribution) procedure. A
PLB load multiplier can be easily evaluated at last admissible stress values attained
for a maximum acting load in the spirit of the static approach of limit analysis.

4.2 Elastic Compensation Method and FE Procedure

Also in this case, the fundamental steps of the ECM are schematically shown. In
Fig. 2 the solution pertaining to an elastic analysis carried on the structure for a
given (arbitrary) fixed load level PD is displayed in terms of elastic stress vectors
evaluated at three generic layers of three generic FEs in the mesh. The latter, for
simplicity, are denoted by elements #1, #2 and #3. In particular, with reference to
the stress space (σ1, σ2, σ6), the value σ e

#e denotes the stress vector representing the
average elastic stress computed within a layer of element #e (its components are
simply the averaged values of the stress components measured at the GPs of the
layer); σ Y

#e denotes the corresponding stress at yield (on the Tsai-Wu-type surface)
measured on the direction σ e

#e/|σ e
#e|.

For the fixed load PD a sequence of FE elastic analyses is carried out on the
structure such that, at the i-th iteration (analysis) of the sequence, within the FEs
layers where |σ e

#e| > |σ Y
#e| the elastic moduli of the layer are reduced according to:

E
(i)
#ej := E

(i−1)
#ej

[ |σ Y
#e|(i−1)

|σ e
#e|(i−1)

]2

. (4)
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Among all the σ e
#e in the mesh, the “maximum stress”, i.e. the stress point farthest

away from the Tsai-Wu type surface, say σR (coincident with σ e
#3 in Fig. 2), is

detected, σ Y
R being the corresponding stress at yield (measured on the direction

σR /|σ Y
R|). The iterations (analyses) are carried out inside the given sequence until

this maximum stress in the whole mesh σR just reaches (is below) its yield value
σ Y

R , and this by the above reduction or redistribution procedure. Further sequences
of elastic analyses are then carried on, each one with an increased value of PD ,
and the reduction procedure repeated till further load increases do not allow the σR

stress to be brought below yield. A lower bound to the collapse load multiplier can
then be computed as:

PL := ∣∣σ Y
R

∣∣ PD

|σR| . (5)

Concerning the evaluation of a lower bound via the ECM, it is worth to mention
the remarkable works of Staat and Co-workers (see e.g. [35, 36]), where the effec-
tiveness of the ECM is analyzed through a comparative study with respect to other
optimization procedures. In [40] a better performance of the so called primal-dual
procedure with respect to the ECM is also shown. The results obtained in the above
quoted papers, all concerning von Mises type materials, show, at least for the cases
there addressed, that the ECM is too conservative. Such assertion deserves surely
further investigations also in the present context even if, for the mechanical prob-
lem herein tackled and the material utilized, at least for the analyzed cases, such
drawbacks seem do not appear.

5 Layer-by-Layer Formulation

5.1 FE Modeling and Assumptions

From a numerical point of view, both iterative procedures are driven by a Fortran
main program which utilizes the results of elastic analyses of the examined struc-
tural element carried out using the commercial FE code ADINA [1]. In the discrete
model, the number of FEs is chosen taking into account the geometry of the mod-
eled test and with the aim to obtain an enough accurate elastic FE solution. To this
end, as general rule, a finer mesh is always employed around the fastener holes
and a preliminary sensitive study on the elastic solution is performed for each dif-
ferent considered geometry. Moreover, when the analyzed specimens are made by
quasi-isotropic laminates, isoparametric shell elements with 16 nodes and 16 GPs
per element are utilized in the mesh, while, when dealing with laminates with a
general stacking sequence, higher order isoparametric multilayered shell elements
with 16 nodes per element, referred as DISP 16 in the quoted code, are employed.
In particular, the employed multilayered shell elements are an extension to the case
of composite laminates of mixed interpolated tensorial components (MITC) fam-
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ily of plates and shell elements (see e.g. [11]). The modelling of the sublaminate
is so entrusted to the element’s layers endowed with 16 (on the top) plus 16 (on
the bottom) Gauss points. For each element layer a proper material axes system
is fixed and an order 2 Gauss integration is performed in the layer thickness. The
number of layers per element is, obviously, chosen equal to the numbers of the lam-
inae the analyzed laminate is made with. In Fig. 3(a) the modeling assumptions,
namely the transition from the real stacking sequence of the laminate to the layers’
element with the proper definition of the layer material axes system, are sketched.
For both procedures, as shown in Fig. 3(b), the updating and/or reduction of the
elastic moduli is carried into effect at each GP of the element (or of the layer for the
multilayer shells) but, on taking into account that a unique set of Ej—i.e. a unique
(orthotropic) material—has to be assigned to each single element layer, the modi-
fied moduli are averaged within the single element layer at the beginning of each
FE analysis.

Finally, to simulate the presence of the rigid pins, two different schemes have
been adopted. The first, used for single-pin fastenings, assumes a cosine load normal
distribution to approximate the pressure exerted by the pin on the inner hole surface.
The second, used for multi-pin fastenings, assumes boundary conditions of contact
type between the pins and the fastener holes. In particular, the constrain function
method (see e.g. [5] and references therein), available in the ADINA code, is used.
The method requires the definition of a target line (the pin contour) and the definition
of a contactor line (the fastener hole contour in the laminate) such that no material
overlap between them can occur during the deformation process, while the contactor
line can scroll or leave the target line.

5.2 Iterative Schemes for Upper and Lower Bounds Evaluation

5.2.1 Flow-Chart of the LMM Iterative Procedure

• Initialization
Knowing the strength values of the orthotropic material (Xc; Xt ; Yc; Yt ; S); assign
to all FEs layers an initial set of fictitious elastic parameters and initial stresses
such that the complementary energy equipotential surface is homothetic to the
Tsai-Wu type surface, i.e.:

E
(0)
1 = 1/(2F11); E

(0)
2 = 1/(2F22); E

(0)
6 = 1/(2F66);

ν
(0)
12 = −f12

√
F11/

√
F22;

σ̄
(0)
1 = αTW/

√
F11; σ̄

(0)
2 = βTW/

√
F22; σ̄

(0)
6 = 0;

αTW and βTW being the X, Y coordinates of the Tsai-Wu type ellipsoid centre,
while F11, F22 and F66 are functions of the strength values. Set also: k = 1,
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Fig. 3 Modeling assumptions: (a) definition of material axes at element layer following the stack-
ing sequence; (b) sketch of the LMM and the ECM carried into effect at element layer

P
(k−1)
UB = P

(0)
UB = 1 (for k = 1, P (0)

UB can be any arbitrary value) and compute the
constant Ω = 1 + α2

TW + 2f12αTWβTW + β2
TW for later use.

• Start iterative procedure
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• Start elements loop
• Start layers loop

step # 1: perform a fictitious elastic analysis with elastic parameters E
(k−1)
j ,

ν12 = ν
(0)
12 , initial stresses σ̄j = σ̄

(0)
j and with loads P

(k−1)
UB p̄i (p̄i := reference

loads), computing a fictitious elastic solution at Gauss points of each layer,
namely: ε̇e(k−1)

j , u̇(k−1)
i , σ e(k−1)

j .
step # 2: compute the constant value of the complementary potential energy:

W̄ (k−1) = 1

2
σ

e(k−1)
j ε

e(k−1)
j

step # 3: compute the homothety ratio, namely

Γ (k−1) =
{ √

Ω/W̄ (0) for k = 1√
W̄ (k−2)/W̄ (k−1) for k > 1

step # 4: evaluate stresses at yield:

σ
Y(k−1)
1 = [

1 − Γ (k−1)] αTW√
F11

+ Γ (k−1)σ
e(k−1)
1 ;

σ
Y(k−1)
2 = [

1 − Γ (k−1)] βTW√
F22

+ Γ (k−1)σ
e(k−1)
2 ;

σ
Y(k−1)
6 = Γ (k−1)σ

e(k−1)
6

step # 5: set ε̇
c(k−1)
j = ε̇

e(k−1)
j , u̇c(k−1)

i = u̇
e(k−1)
i and evaluate the upper bound

multiplier

P
(k)
UB =

∫
V
σ

Y(k−1)
j ε̇

c(k−1)
j dV∫

∂Vt
p̄i u̇

c(k−1)
i d(∂V )

• End layers loop
• End elements loop

step # 6: check for convergence

∣∣P (k)
UB − P

(k−1)
UB

∣∣≤ TOL

{
YES ⇒ EXIT

NOT ⇒ CONTINUE

• Start elements loop
• Start layers loop

step # 7: compute the E
(k)
j distribution accomplishing the matching at each GP

of each layer to be utilized at next iteration, namely:

E
(k)
j = E

(k−1)
j

[
Γ (k−1)]2

, j = 1,2,6

step # 8: average the updated E
(k)
j values within each element layer.

• End layers loop
• End elements loop

set k = k − 1 and GOTO step #1
• End iterative procedure
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5.2.2 Flow-Chart of the ECM Iterative Procedure

• Initialization
Assign to all FEs layers the material elastic parameters, i.e.:

E
(0)
1 ; E

(0)
2 ; E

(0)
6 ; ν12;

set also: k = 1, PD = 1 (for k = 1, PD can be a design load value).
• Start iterative procedure
• Start elements loop
• Start layers loop

step # 1: perform an elastic analysis with material parameters E
(k−1)
j , ν12 and

loads PDp̄i (p̄i := reference loads), computing the stresses at Gauss points of
each layer, namely: σ e(k−1)

j .
step # 2: average the stress values inside each element layer so computing the
stress vector σ e

#e and the corresponding stress at yield σ Y
#e .

step # 3:

IF PD = 1
update the young moduli within the current layer according to:

E
(k)
#ej := E

(k−1)
#ej

[ |σ Y
#e|(k−1)

|σ e
#e|(k−1)

]2

(Eq. (4)),

ELSE
update the young moduli within the current layer according to the above equa-
tion (Eq. (4)) only when: ∣∣σ e

#e

∣∣(k−1)
>
∣∣σ Y

#e

∣∣(k−1)

ENDIF

step # 4: detect the “maximum stress” σR in the whole mesh (i.e. whose corre-
sponding stress point is the one farthest away from the Tsai-Wu type surface) and
evaluate the pertinent stress at yield σ Y

R

• End layers loop
• End elements loop

step # 5: check if compensated stress σR just reaches (is below) the yield value

|σR| > ∣∣σ Y
R

∣∣
{

YES ⇒ GOTO step # 8

NOT ⇒ CONTINUE

step # 6: compute a lower bound as:

PL := ∣∣σ Y
R

∣∣ PD

|σR|
step # 7: set PD > PL, set also k = 1 and GOTO step # 1 to perform a new
sequence of elastic analyses
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step # 8:

IF

|σR|(k) ≥ |σR|(k−1)

set PL = PD of the previous sequence and EXIT
ELSE
set k = k − 1 and GOTO step #1 to start a new elastic analysis
ENDIF

• End iterative procedure

6 Numerical Versus Experimental Findings

6.1 Pinned Joints in FRP Plates: Single- and Multi-hole Fasteners

As already pointed out in the previous sections, the expounded numerical proce-
dures have been validated by reproducing a considerable number of experimental
tests for load bearing capacity experimental evaluation available in the literature and
concerning single- as well as multi-pin joints composite plates. Four main different
configurations have been considered. For all the examined cases, overall 177, the
proposed approach has been applied to predict either the upper and lower bounds to
the joint peak load value or the joint failure modes. In all cases, due to the symmetry
of loading, geometry and material with respect to the longitudinal axis y of the plate,
only half of the mechanical problem shown in Figs. 4 and 5 has been considered.

In particular, the first configuration refers to a multilayer composite laminate with
a single hole, like the one sketched in Fig. 4 where geometrical, boundary and load-
ing conditions are specified. In this first case, to simulate the action of the pin inside
the hole a cosine load normal distribution Ti is assumed with P applied reference
load, assumed equal to 1 kN, ni the unit vector normal to the inner hole surface
and ϑ a clockwise angle varying in the range [−π/2,π/2]. The numerical study
has involved six different lay-ups (specimen-type), each one with eight different
geometries excepted for the sixth specimen-type where seven different geometries
have been analyzed, so considering 47 different specimens. For these 47 specimens,
the experimental findings are the ones given by Okutan Baba [22] and Aktas and
Dirikolu [2]. For benefit of clarity, the 6 layer stacking sequences (LSS), identify-
ing 6 different specimen types, are listed in Table 1 together with the thickness of
the laminate and the diameter of the fastener hole. Moreover, Table 2 shows the
mechanical parameters of the two types of unidirectional laminae forming the ex-
amined laminates, i.e. glass-fiber/epoxy and carbon/epoxy. Specimens belonging to
this first configuration have been analyzed either following a single layer approach,
with 16 nodes single layer shell elements, or using higher order isoparametric mul-
tilayered shell elements, referred as DISP 16 in the ADINA code. The number of
elements has been varied from 250 to 330 depending on the considered geometry.
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Fig. 4 Schematic representation of a single-pin-loaded composite rectangular plate: (a) fixture
test for load bearing capacity evaluation; (b) mechanical model, boundary and loading conditions

Fig. 5 Schematic representation of the multi-pin joints composite plate: (a) fixture test for load
bearing capacity evaluation; (b) mechanical model

Configurations second, third and fourth, concern multi-pin joints plates. In these
cases, the plate is subjected to a tensile load distribution (equivalent to a global
load Q) acting on the plate mid-plane and applied to one edge. Also in these cases
a reference load of global value equal to Q = 1 kN has been assumed (the PUB and
PLB multiplier are numerically coincident with the predicted peak load value for
all the run examples). The pins, assumed rigid, react to the applied load inducing
high level of stresses around the fastener holes. A schematic representation of the
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Table 1 Layer stacking sequence (LSS) and geometrical properties of the single-hole specimens

Specimen type Material LSS t (mm) D (mm)

A glass-fiber epoxy [0°/±45°]S 4.4 5

B glass-fiber epoxy [90°/±45°]S 4.4 5

C glass-fiber epoxy [00/90°/0°]S 3.3 5

D glass-fiber epoxy [900/0°/90°]S 3.3 5

E glass-fiber epoxy [±45°]2S 4.8 5

F carbon epoxy [90°/±45◦/0°]S 2.64 6.35

Table 2 Mechanical
parameters of the
unidirectional laminae
forming the composite
laminates with a single-pin
joint

aAfter Okutan Baba [22]
bAfter Aktas and Dirikolu [2]

Glass-fiber epoxya

Elastic moduli (GPa)
and Poisson ratio

E1 E2 G12 v12

44 10.5 3.74 0.36

Strength (MPa) Xt Xc Yt Yc S

800 350 50 125 120

Carbon epoxyb

Elastic moduli (GPa)
and Poisson ratio

E1 E2 G12 v12

88 8.8 2.8 0.28

Strength (MPa) Xt Xc Yt Yc S

811 457.7 47.3 109.5 132

multi-pin joints fixture test together with the corresponding mechanical model is
given in Fig. 5. The latter shows the distributed edge load as well as the shaded rigid
pins fixed to the external world. As said in Sect. 5.1 boundary conditions of contact
type are assumed between the pins and the fastener holes. With reference to Fig. 5:
W and t are the width and thickness plate respectively; the length G indicates the
distance between two parallel holes; K their distance from the longer edge; M the
distance between two serial holes in the y direction; F the distance between two
generic holes in the y direction. Finally, L and E are the distances between the
inner and outer holes from the plate edges respectively.

In detail, the second configuration refers to a [0◦/90◦/±45◦]S laminate with a
three pins joint tested in the technical report of Karakuzu et al. [14]. Referring again
to Fig. 5, the three holes are located in the positions 1, 2, 3. Each glass-epoxy lam-
ina, forming the composite laminate, is characterized by the mechanical properties
reported in Table 3, while the geometrical parameters are: L = 90 mm, t = 1.7 mm,
D = 5 mm; finally, the distance K is equal to 10 mm. For this specimen type, 45
different geometries were tested with values of the ratio E/D ranging from 1 to 5,
ratio G/D ranging from 3 to 5 and considering also three different ratios for F/D,
namely: 2, 4, 6. A number of elements ranging from 544 to 662 has been used for
this configuration together with the proposed layered approach.

The third configuration refers to a woven glass/vinylester laminate with two serial
pins joint tested in the paper of Karakuzu et al. [12]. The two holes are located in the
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Table 3 Mechanical
parameters utilized for the
numerical simulations of
composite laminates with
multi-pins joints

aAfter Karakuzu et al. [14]
bAfter Karakuzu et al. [12]

Glass/epoxy laminaa

Elastic moduli (GPa)
and Poisson ratio

E1 E2 G12 v12

38 8 4 0.27

Strength (MPa) Xt Xc Yt Yc S

687 223 74 109 78

Glass/vinylester laminateb

Elastic moduli (GPa)
and Poisson ratio

E1 E2 G12 v12

20.77 20.77 4.13 0.09

Strength (MPa) Xt Xc Yt Yc S

395 260 395 260 75

positions 3 and 4 of Fig. 5. The mechanical properties of the laminate are reported in
Table 3, while its geometrical parameters are: L = 85 mm, t = 2.8 mm, D = 5 mm.
For this specimen type, 40 different geometries were tested considering the ratios
W/D = 2,4 and M/D and E/D variable from 2 to 5 and from 1 to 5, respectively.
In this case the FE models utilized had a number of 16 nodes single layer shell
elements varying from 275 to 530.

Finally, the fourth configuration refers again to a woven glass/vinylester lami-
nate but with two parallel pins joint (see e.g. Karakuzu et al. [13]). With reference
to Fig. 5 the two holes are located in the positions 1 and 2. In this case the geomet-
rical and mechanical parameters of the laminate are the same of configuration three,
while the 45 different geometries considered are obtained by varying the ratio K/D

from 2 to 4, the ratio E/D from 1 to 5, and considering the ratios M/D = 2,4,5.
For this specimen type a FE modelling involving 16 nodes single layer shell ele-
ments has been again employed with a number of elements variable from 448 to
725.

6.2 Peak Load Prediction

For sake of synthesis, the obtained numerical results are organized in diagram for-
mat. In particular Figs. 6, 7 report, for the 6 specimen types related to the first
laminate configuration, the comparison between the experimental findings and the
numerical predictions in terms of peak load. Each Figure reports different couples
of E/D and W/D ratios, the pertinent experimentally detected values of peak load
and the predicted values, in terms of upper and lower bounds, given by the layer-
by-layer and equivalent layer formulation of LMM and ECM. Precisely, the plots
given in Fig. 6 refer to E/D = 4 and W/D variable, while the plots in Fig. 7 refer
to W/D = 4 and E/D variable. The upper bound values predicted by the proposed
layer-by-layer limit analysis are always above, or are practically coincident with
the experimental ones. The same is definitely not true for the single layer treatment
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Fig. 6 Peak load values for fixed ratio E/D = 4; comparison between experimental data, dashed
lines with asterisk marker, and values predicted by LMM and ECM respectively. (a) Specimen
type A; (b) Specimen type B; (c) Specimen type C; (d) Specimen type D; (e) Specimen type E;
(f) Specimen type F

where the evaluated upper bounds appear far, and even below, from the experimen-
tal values. Analogously, the lower bounds evaluated with the layer-by-layer analyses
are closer (from below) to the experimental values than the ones given by the single
layer treatment, too much conservative. As expected, good accuracy is attained by
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Fig. 7 Peak load values for fixed ratio W/D = 4; comparison between experimental data, dashed
lines with asterisk marker, and values predicted by LMM and ECM respectively. (a) Specimen
type A; (b) Specimen type B; (c) Specimen type C; (d) Specimen type D; (e) Specimen type E;
(f) Specimen type F

both single and layer-by-layer procedures when dealing with laminate lay-ups of
the type [±45◦]ns , as the one of specimen E of Figs. 6(e) and 7(e), for which the
anisotropy of each layer is mitigated by the sequence itself. The average relative
errors, computed as the absolute value of the difference between the experimental
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Table 4 Average relative
error of the peak load values
computed with the
layer-by-layer and the single
layer approach

Specimen type LMM LM̂M ECM EĈM

A 0.29 0.34 0.17 0.36

B 0.29 0.19 0.17 0.23

C 0.20 0.23 0.12 0.28

D 0.07 0.29 0.08 0.32

E 0.33 0.92 0.20 0.39

F 0.15 0.49 0.06 0.34

Fig. 8 Peak load values of the multi-layer specimens [0◦/90◦/±45◦]S for F/D = 2.
(a) G/D = 3; (b) G/D = 4; (c) G/D = 5; (d) Plot of the relative error given by the two pro-
cedures

and the numerical detected peak load values over the experimental ones, are shown
in Table 4 for the layered analysis and for the single layer one. As it appears the
range of the computed load values bracketing the real one is, by far, more accurate
for the layered approach.

With reference to the second configuration (a three holes joint), Figs. 8, 9 and
10 report the comparison between the experimental findings and the numerical pre-
dictions in terms of peak load for fixed values of F/D and different values of E/D

and G/D. In addition, Figs. 8(d), 9(d) and 10(d) give the relative errors of the nu-
merically predicted PUB and PLB with respect to the corresponding experimentally
detected values.
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Fig. 9 Peak load values of the multi-layer specimens [0◦/90◦/±45◦]S for F/D = 4.
(a) G/D = 3; (b) G/D = 4; (c) G/D = 5; (d) Plot of the relative error given by the two pro-
cedures

Fig. 10 Peak load values of the multi-layer specimens [0◦/90◦/±45◦]S for F/D = 6.
(a) G/D = 3; (b) G/D = 4; (c) G/D = 5; (d) Plot of the relative error given by the two pro-
cedures
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Fig. 11 Peak load values of the specimens with two serial fastener holes for W/D = 2.
(a) M/D = 2; (b) M/D = 3; (c) M/D = 4; (d) M/D = 5; (e) Plot of the relative error given
by the two procedures

For the third configuration (joint with two serial pins), the experimental and pre-
dicted peak load values are reported in Figs. 11, 12 for fixed values of W/D and
different values of E/D and M/D.
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Fig. 12 Peak load values of the specimens with two serial fastener holes for W/D = 4.
(a) M/D = 2; (b) M/D = 3; (c) M/D = 4; (d) M/D = 5; (e) Plot of the relative error given
by the two procedures

Finally Figs. 13, 14 and 15 report the experimental and predicted peak load val-
ues for the two parallel pins joint (fourth configuration), for fixed values of M/D

and different values of E/D and K/D.
By inspection of the obtained results, in 23 over the 177 examined cases the ex-

perimental peak value lies outside the range numerically predicted, such cases are
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Fig. 13 Peak load values of the specimens with two parallel fastener holes for M/D = 2.
(a) K/D = 2; (b) K/D = 3; (c) K/D = 4; (d) Plot of the relative error given by the two pro-
cedures

Fig. 14 Peak load values of the specimens with two parallel fastener holes for M/D = 4.
(a) K/D = 2; (b) K/D = 3; (c) K/D = 4; (d) Plot of the relative error given by the two pro-
cedures
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Fig. 15 Peak load values of the specimens with two parallel fastener holes for M/D = 5.
(a) K/D = 2; (b) K/D = 3; (c) K/D = 4; (d) Plot of the relative error given by the two pro-
cedures

simply wrong predictions of the adopted methodology. A threefold reasons induced
the authors to accept such circumstance: (i) the overall percentage of wrong pre-
dictions is about 13 %, i.e. a low value from an engineering point of view; (ii) the
relative error, also in such cases, is very low; (iii) the wrong predictions are mainly
concerned, in 21 over 23 cases, the upper bound to the peak load value, a value not
directly affecting the design choices as the lower bound does. The PLB being in
practice always correct. Nevertheless, further investigations to this concern might
be necessary.

Finally, Fig. 16 shows, for eight of the 177 analyzed specimens (i.e. two for each
different laminate configuration considered), the plots of the upper and the lower
bounds to the peak load versus the iterations number. In all cases a monotonic and
rapid convergence of the methods is assured by a condition for convergence given
in Ponter et al. [29]. Such circumstance, essential for any iterative based procedure,
is met in all the examined cases but here is not reported for brevity.

The proposed methodology seems, at least for all the examined specimens, defi-
nitely able to predict, with good accuracy, the peak load of a multi-pin joints lami-
nate.
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Fig. 16 Values of the upper (PUB ) and lower (PLB ) bounds to the collapse load multiplier versus
iteration number. LMM prediction, solid lines with rectangular markers; ECM prediction, solid
lines with triangular markers; collapse experimental threshold, finer dashed lines. (a) and (b): mul-
tilayer specimens E3 and A3 with single fastener hole; (c) and (d): multilayer specimens with
three fastener holes; (e) and (f): woven specimens with two serial fastener holes; (g) and (h): wo-
ven specimens with two parallel fastener holes
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Table 5 Failure modes:
experimental data against
predicted ones for the
multi-layer specimens with
one fastener hole

aAfter Okutan Baba [22]

LSS E/D W/D LMM expa

[90°/±45°]S 5 5 B B

[90°/0°/90°]S 4 3 B B

[0°/90°/0°]S 2 5 S S

[0°/90°/0°]S 2 4 S S

[±45°]2S 3 4 B N

Table 6 Failure modes:
experimental data against
predicted ones for the
multi-layer specimens
[0◦/90◦/±45◦]S with three
fastener holes

aAfter Karakuzu et al. [14]

E/D G/D = 3 G/D = 4 G/D = 5

LMM expa LMM expa LMM expa

F/D = 2

1 S/S/B S/S/B S/S/B S/S/B S/S/B S/S/B

2 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

3 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

4 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

5 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

F/D = 4

1 S/S/B S/S/B S/S/B S/S/B S/S/B S/S/B

2 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

3 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

4 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

5 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

F/D = 6

1 S/S/B S/S/B S/S/B S/S/B S/S/B S/S/B

2 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

3 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

4 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

5 B/B/B B/B/B B/B/B B/B/B B/B/B B/B/B

6.3 Failure Modes Prediction

In order to gain a deeper comprehension of the mechanical joint behaviour, be-
side the evaluation of the peak load it is of equally importance the prediction of
the joint failure mode. Typically, with reference to a single fastener/pin hole, three
main/primary failure modes can be individuated (bearing, net-tension, shear-out),
other modes (tear-out, cleavage, . . .) being a combination of them, also called sec-
ondary modes. When a multi-pin fastening is considered the real failure modes can
be more complex for the mutual interaction of the fastenings affected by their ge-
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Table 7 Failure modes: experimental data against predicted ones for the woven specimens with
two serial fastener holes

E/D M/D = 2 M/D = 3 M/D = 4 M/D = 5

LMM expa LMM expa LMM expa LMM expa

W/D = 2

1 N/N N/N N/S N/N N/S N/N N/– N/N

2 N/– N/– N/– N/– N/– N/– N/– N/–

3 N/– N/– N/– N/– N/– N/– N/– N/–

4 N/– N/– N/– N/– N/– N/– N/– N/–

5 N/– N/– N/– N/– N/– N/– N/– N/–

W/D = 4

1 B/SN B/S B/S B/S B/S B/S B/S B/S

2 BS/BS B/B B/BS B/B B/BS B/B B/BS B/B

3 B/B B/B B/BN B/B B/B B/B B/B B/B

4 B/BN B/B B/BN B/B B/B B/B B/B B/B

5 B/BN B/B B/BN B/B B/B B/B B/B B/B

aAfter Karakuzu et al. [12]

Table 8 Failure modes:
experimental data against
predicted ones for the woven
specimens with two parallel
fastener holes

aAfter Karakuzu et al. [13]

E/D K/D = 2 K/D = 3 K/D = 4

LMM expa LMM expa LMM expa

M/D = 2

1 S S S S S S

2 S BN S BS S BS

3 BS BN BS BS BS BS

4 BNS BN BS BS BS BS

5 BN BN B B B B

M/D = 4

1 S S S S S S

2 S B S B S B

3 B B B B B B

4 B B B B B B

5 B B B B B B

M/D = 5

1 S S S S S S

2 S B S B S B

3 B B B B BS B

4 B B B B B B

5 B B B B B B
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Fig. 17 Pin-loaded plate of Fig. 4: (a) predicted collapse mechanism of bearing type obtained for
specimen #E4 with W/D = 4; (b) predicted collapse mechanism of net-tension type for specimen
#E4 with W/D = 3 against experimental one (after Okutan Baba [22])

Fig. 18 Pin-loaded plate of Fig. 4: (a) predicted collapse mechanism of bearing type against ex-
perimental one for specimen #D7; (b) predicted collapse mechanism of shear-out type against
experimental one for specimen #C2 (after Okutan Baba [22])

ometrical distribution (see e.g. [37]) and the possibility of a numerical prediction
becomes more important.

The prediction of the failure mode is herein pursued numerically making use of
the LMM which builds the collapse mechanism the joint exhibits when the loads
attain their peak value or, more exactly, they reach the evaluated upper bound value
to such peak. The obtained results are organized either in tabular or in band plots
format. In particular, Tables 5, 6, 7 and 8 report the comparison between the experi-
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Fig. 19 Three-pins-loaded plate of Fig. 5. Failure modes predicted by numerical simulations
against experimentally detected ones (after Karakuzu et al. [14]): (a) Shear-out at outer holes and
Bearing at inner hole for F/D = 2, G/D = 3, E/D = 1; (b) Bearing at outer and inner holes for
F/D = 2, G/D = 3, E/D = 4

mental findings and the numerical predictions in terms of collapse/failure modes for
all the geometries analyzed, all grouped with respect to the four considered config-
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Fig. 20 Two-serial pins-loaded plate of Fig. 5. Failure modes predicted by numerical simulations
against experimentally detected ones (after Karakuzu et al. [12]): (a) Net-tension at inner hole and
no failure at outer hole for W/D = 2, M/D = 4, E/D = 4; (b) Net-tension at inner hole and
bearing at outer hole for W/D = 3, M/D = 4, E/D = 5; (c) Bearing at inner hole and bearing
at outer hole for W/D = 4, M/D = 4, E/D = 5; (d) Bearing at inner hole and shear-out at outer
hole for W/D = 5, M/D = 4, E/D = 1

urations. In the above tables, as usual in the relevant literature, the symbol B means
bearing, N net-tension, S shear-out, while when more symbols appear separated by
slash (/) the first refers to the failure mode of the outer hole the second to that of the
inner hole; eventually the symbol (–) means that no failure occurred at the consid-
ered hole.

In Figs. 17–21 the photographs of some tested specimens, at the joint failure
stage, are reported together with the band plots, on the FE mesh, of the node dis-
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Fig. 21 Two-parallel pins-loaded plate of Fig. 5. Failure modes predicted by numerical simula-
tions against experimentally detected ones (after Karakuzu et al. [13]): (a) Shear-out for K/D = 4,
M/D = 4, E/D = 1; (b) Bearing for K/D = 4, M/D = 4, E/D = 5; (c) Bearing and Shear-out
for K/D = 3, M/D = 2, E/D = 3; (d) Bearing and net-tension for K/D = 2, M/D = 2,
E/D = 4
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placement rates components (in y and z directions) at collapse. The latter, evaluated
at last converged iteration of the LMM procedure, locate the distribution of the dis-
placement rates the real structure exhibits at a state of incipient collapse, i.e. the
one attained when the loads reach their peak value or, the computed upper bound
value on it. Such distribution furnishes the searched failure mode but, obviously,
only from a qualitative point of view; what it is meaningful is, in practice, only the
direction of the computed displacement rates. By inspection of these figures it can
be stated that the present procedure seems able to predict, in a quite good manner,
the three multi-pin joints basic failure modes of bearing, shear-out and net-tension.

7 Concluding Remarks

The results of recent studies, concerning a design methodology based on numerical
limit analysis and aimed at the evaluation of the load bearing capacity of single- and
multi-pin joints in orthotropic composite laminates, have been presented.

The proposed methodology uses two numerical methods for limit analysis: the
Linear Matching Method and the Elastic Compensation Method. The lack of as-
sociativity, postulated for the adopted Tsai-Wu-type yield criterion for orthotropic
laminates, obliges to search for an upper and a lower bound to the joint peak load
multiplier, the former pursued by the LMM, the latter by the ECM.

Both methods have been rephrased and adapted to the assumed yield criterion
and to a layered treatment of the tackled mechanical problem. It is worth noting
that the limit analysis carried out at lamina level, taking into account the stacking
sequence of the laminate, appears very effective to deal with many of the through-
thickness effects influencing the joint behaviour. Such layered formulation is indeed
of general applicability.

The results, obtained for a remarkable number of tests on real prototypes, show
a good ability of the expounded methodology to bracket the peak load detected via
laboratory tests; a fairly good skillfulness to localize the collapse zone and to predict
the related collapse mode; a good performance of the layered approach when dealing
with different joint geometries and laminate lay-ups.

Such information are definitively very useful, at least at a preliminary stage of
a design process. Concerning the tackled problem for example, limit analysis can
be used for some design choices either related to the laminate setting, e.g. better
lay-up, or appropriate components, for example, or the joint setting, in terms of
fastener holes distribution, holes dimensions, ratios between fasteners and laminate
geometrical parameters, etc. Once a good prototype has been settled more accurate
and expensive numerical analyses or experimental tests can be carried out on it
with considerable saving of money and time. Extension of such approach to other
problems of engineering interest seem straightforward.
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Shakedown Analysis of Kinematically
Hardening Structures in n-Dimensional Loading
Spaces

Jaan-Willem Simon

Abstract Determining the load bearing capacity is essential for the design of engi-
neering structures subjected to varying thermo-mechanical loadings. The according
computations can be carried out most conveniently by using shakedown analysis. In
order to obtain realistic results, however, limited kinematical hardening needs to be
taken into account. Moreover, it is necessary to consider arbitrary numbers of load-
ings leading to n-dimensional loading spaces. Even so, the numerical tools available
for shakedown analysis are—up to now—restricted to either perfectly-plastic ma-
terial behavior or to a maximum of two independently varying loadings. Thus, the
aim of this paper is to present a numerical procedure, which allows the considera-
tion of limited kinematical hardening in n-dimensional loading spaces. The method
is based on the lower bound shakedown theorem by Melan, which has been ex-
tended to limited kinematical hardening by use of a two-surface model. To solve
the resulting nonlinear optimization problem, which is typically characterized by
a large number of variables and constraints, an interior-point algorithm is imple-
mented. Finally, the potential of the procedure is shown by application to a flanged
pipe subjected to three independently varying thermal and mechanical loadings ac-
counting for different yield stress to ultimate stress ratios.

1 Introduction

Determining the load bearing capacity is essential for the design of engineering
structures subjected to varying thermo-mechanical loadings. This is a demanding
task if the loads exceed the structure’s elastic limit and problems of practical rele-
vance are considered. In principle, two different methods can be used for this, the
conventional step-by-step methods or so-called direct methods.

In the step-by-step methods, the loading path is divided into sufficiently small
loading steps and a full analysis of the evolution of stresses and strains is carried out
for each step. Besides the question of running time, the most obvious disadvantage
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of these methods is the fact that the exact knowledge of the complete loading history
is essential for the calculation, which is not realistic in many cases.

This disadvantage can be overcome by the use of direct methods [26, 32, 78,
79]—comprising limit and shakedown analysis. Here, the loading path needs not to
be given deterministically but only its bounding envelope. The basement of direct
methods is constituted by the theorems of Koiter [25] and Melan [37, 38]. In the
present work, the statical approach by Melan is used, which gives a lower bound
of the loading factor. From practical point of view, the determination of the lower
bound is of special interest because it leads in principle to conservative solutions.

Since in many engineering applications the materials exhibit kinematical hard-
ening, the latter needs to be incorporated into the procedure in order to obtain re-
alistic results. The statical shakedown theorem in its original formulation is valid
for elastic-perfectly plastic continua as well as for unlimited kinematical hardening
ones. Notably, accounting for only unlimited kinematical hardening does not cover
incremental collapse but solely alternating plasticity, see e.g. [26, 27, 53, 81].

Thus, accounting for limited (or bounded) kinematical hardening is inevitable,
and consequently has been addressed by several authors in the field of shakedown
analysis, e.g. [13, 16, 20, 35, 43, 47–52, 57, 64–67, 76]. The first explicit formu-
lation for limited kinematical hardening materials has been given by Weichert and
Groß-Weege [76], who introduced a two-surface model. Almost at the same time,
Stein and coauthors proposed another approach based on an overlay model [65–
67], which leaded to an equivalent formulation. Later, Heitzer [24] showed how to
transfer these approaches one to the other.

However, Melan’s theorem leads to nonlinear optimization problems, which are
typically characterized by large numbers of variables and constraints. In the present
work, these optimization problems are solved via the widely used interior-point
method [14, 15, 56, 80]. Commonly used codes based on interior-point methods are
IPOPT [72–74], LOQO [6, 18, 69] and KNITRO [11, 75]. Comparative studies can
be found in e.g. [7, 40, 72] and a valuable commented overview of existing opti-
mization codes is given in [39]. In addition, in the last years the program MOSEK

[3, 4] came into the picture of direct methods and has been applied for both (piece-
wise) linear and second-order conic problems, e.g. [8, 17, 29, 33, 46, 68] at least for
reference solutions.

All of the above mentioned programs have already proven their abilities and ro-
bustness. Nonetheless, independent interior-point algorithms have been developed
by several authors, e.g. [1, 21, 28, 30, 44, 45, 70, 71]. Compared to the above men-
tioned general codes, these algorithms are distinguished by problem-tailored solu-
tion strategies. This is extremely important especially in field of direct methods,
because of the usually high number of variables and subsidiary conditions.

It should be mentioned, that a variety of alternative methods have been developed
in recent years. For example, in [82] an eigen-mode method has been proposed,
whereas the so-called Linear Matching Method has been suggested in [54, 55]. Fur-
ther, a bipotential approach has been invented in [9, 10], and a homogenized method
has been examined e.g. in [31]. In addition, in [5, 42] a piece-wise linearization of
the yield surface is presented, while a strain-driven strategy is given in [17]. More
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recently, a new direct method has been suggested in [63], in which the cyclic nature
of the expected residual stress distribution at the steady cycle is investigated.

In any case, in the present paper, the convex optimization problem resulting from
the statical shakedown theorem is solved via the interior-point algorithm IPSA re-
cently developed by the author, which is especially tailored to shakedown analysis
problems for von Mises-type materials. Founded on a previous interior-point al-
gorithm IPDCA [1, 22, 23], which has been developed for elastic-perfectly plastic
engineering problems with either one or two varying loads, the new algorithm is dis-
tinguished by a particularly problem-oriented solution strategy [58–60]. Moreover,
IPSA is capable to solve shakedown problems with n-dimensional loading spaces
[62], such that the examined structures can be subjected to arbitrary numbers of
loadings. This is important, because only few other methods can deal with more
than two loadings, see e.g. [34].

In addition, limited kinematical hardening has already been introduced for two-
dimensional loading spaces [61]. In this paper, an extension of this algorithm is pre-
sented, such that limited kinematical hardening can be considered in n-dimensional
loading spaces. The method’s potential is illustrated by application to a numerical
example. In particular, the shakedown domain for a flanged pipe subjected to three
independently varying thermo-mechanical loads is presented.

2 Lower Bound Shakedown Analysis

The current formulation is based on the statical shakedown theorem by MELAN

[38]. This states that a structure will shake down, if there exists a time-independent
residual stress field ρ̄(X), such that the yield condition f [σ (X, t)] ≤ 0 is satisfied
for any loading path in the considered loading domain at any time t and in any
point X of the structure. For the mathematical formulation, the total stress σ (X, t)

is decomposed into an elastic stress σE(X, t) and a residual stress ρ(X, t) induced
by the evolution of plastic strains

σ (X, t) = σE(X, t) + ρ(X, t). (1)

Here, σE(X, t) denotes the stress state, which would occur in a fictitious purely
elastic reference body under the same conditions as the original one. Clearly, the
residual stresses satisfy the equilibrium condition, which can be transferred to a
system of linear equations using the principle of virtual work, as shown e.g. in [19]

NG∑
r=1

Cr · ρ̄r = 0. (2)

Hereby, the system has been discretized using the finite element method (FEM)
and thus the stresses are approximately evaluated in the GAUSS points r ∈ [1,NG].
The equilibrium matrices Cr depend on the geometry and the chosen element type.
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Fig. 1 Kinematical
hardening considered as
translation of the yield
surface in stress space

The kinematical boundary conditions are taken into account considering the virtual
displacements to be kinematical admissible.

Let the considered body be subjected to NL varying loads. Then, the accord-
ing loading domain is polyhedral with NC = 2NL corners. As shown in [26], it is
sufficient to only consider these corners to ensure shakedown for all possible load-
ing paths inside of the loading domain. Then, introducing the loading factor α > 1,
Melan’s statical shakedown theorem can be formulated as an optimization problem:

(PMelan) αSD = maxα

NG∑
r=1

Cr · ρ̄r = 0, (3a)

f
(
ασ

E,j
r + ρ̄r , σY,r

)≤ 0, ∀j ∈ [1,NC], ∀r ∈ [1,NG]. (3b)

3 Accounting for Limited Kinematical Hardening

In order to take into account the limited kinematical hardening we use the two-
surface model proposed by WEICHERT and GROSS-WEEGE [76]. The kinematical
hardening is considered as a rigid body motion of the yield surface in stress space,
which is described by the six-dimensional vector of back-stresses π representing the
translation of the yield surface’s center, Fig. 1. Through the introduction of a second
surfaces corresponding to the ultimate stress σH , the motion of the yield surface is
bounded.

Thereby, the total stresses are divided into the back stresses π and the reduced
stresses υ , which are responsible for the occurrence of plastic strains

σ (X, t) = π(X, t) + υ(X, t). (4)
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As before, the total stresses are decomposed, σ
j
r = ασ

E,j
r + ρ̄r . In an analogous

manner, the reduced stresses υ
j
r can be formulated, keeping in mind that the back

stresses are time-independent and thus not dependent on the considered corner j of
the loading domain, because the bounding surface is fixed in stress space

υ
j
r = σ

j
r − π̄ r = ασ

E,j
r + ρ̄r − π̄ r . (5)

Thereby, Melan’s theorem accounting for limited kinematical hardening reads as
follows:

(
PH

Melan

)
αSD = maxα

NG∑
r=1

Cr · ρ̄r = 0, (6a)

∀j ∈ [1,NC], ∀r ∈ [1,NG]:
fH

(
ασ

E,j
r + ρ̄r , σH,r

)≤ 0, (6b)

fY

(
ασ

E,j
r + ρ̄r − π̄ r , σY,r

)≤ 0. (6c)

4 Solution with Interior-Point Method

For a clear presentation, the problem is rewritten in the following form. To achieve
this, several transformations are necessary, which are not in the scope of this paper
but can be followed in [59, 60]

(
PH

IP

)
minf (x) = −α

AH · x = 0, (7a)

cH (x) ≥ 0, (7b)

cY (x) ≥ 0, (7c)

x ∈ Rn. (7d)

The problem (PH
IP ) consists of n variables, merged to the solution vector x, mE

equality constraints, represented by the affine linear system equation (7a), and 2mI

nonlinear concave inequality constraint equations (7b) and (7c). The equality con-
straints can be interpreted as equilibrium condition for the residual stress equations
(2), whereas the inequality constraints represent the yield and the bounding condi-
tion Eqs. (6b) and (6c), respectively. The inequality constraints are converted into
equality constraints by introducing slack variables wH ∈ RmI and wY ∈ RmI . More-
over, split variables y ∈ Rn and z ∈ Rn are used in order to avoid numerical insta-
bilities due to the unboundedness of the solution vector Eq. (7d). Then, applying
the interior-point method the objective function is perturbed by logarithmic barrier
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terms, which penalize directions leading outside of the feasible region. Thereby, the
barrier parameter μ is introduced, which is tending to zero during the iteration.

fμ(x,y,z,wH ,wY )

= f (x) − μ

[
n∑

i=1

log(yi) +
n∑

i=1

log(zi) +
mI∑
j=1

log(wH,j ) +
mI∑
j=1

log(wY,j )

]
. (8)

The resulting optimization problem can then be expressed as follows:
(
PH

μ

)
minfμ(x,y,z,wH ,wY )

AH · x = 0, (9a)

cH (x) − wH = 0, (9b)

cY (x) − wY = 0, (9c)

x − y + z = 0, (9d)

wH > 0, wY > 0, y > 0, z > 0 (9e)

Since the underlying optimization problem (PH
IP ) is convex and regular, the

KARUSH-KUHN-TUCKER condition is both necessary and sufficient, which states
that the solution is optimal if the Lagrangian LH of the problem possesses a saddle
point

LH = fμ(x,y,z,wH ,wY ) − λE · (AH · x) − λH · (cH (x) − wH

)
− λY · (cY (x) − wY

)− s · (x − y + z), (10)

where λE ∈ RmE , λH ∈ RmI+ , λY ∈ RmI+ and s ∈ Rn+ are appropriate Lagrange multi-
pliers. Thereby, the saddle point condition reads as follows:

∇xLH =∇xf (x) − AT
H · λE − CT

H (x) · λH − CT
Y (x) · λY − s = 0, (11a)

∇yLH = − μY−1 · e + s = 0, (11b)

∇zLH = − μZ−1 · e − s = 0, (11c)

∇wH
LH = − μW−1

H · e + λH = 0, (11d)

∇wY
LH = − μW−1

Y · e + λY = 0, (11e)

∇λE
LH = − (AH · x) = 0, (11f)

∇λH
LH = − (

cH (x) − wH

)= 0, (11g)

∇λY
LH = − (

cY (x) − wY

)= 0, (11h)

∇sLH = − (x − y + z) = 0 (11i)

where: CH (x) = cH (x)∇x ∈ RmI×n and CY (x) = cY (x)∇x ∈ RmI×n.
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For consistency during the iteration, the new variable r = −s is introduced into
Eq. (11c). Both of these variables are tending to zero during the iteration. In addi-
tion, Eqs. (11b)–(11e) are multiplied by the matrices Y , Z, WH and WY , respec-
tively. Merging all variables of the problem to the vector Π, the resulting system of
optimality conditions can be expressed by the function FH

μ (Π):

FH
μ (Π) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∇xf (x) + AT
H · λE + CT

H (x) · λH + CT
Y (x) · λY + s

μe − Y · S · e
μe − Z · R · e

μe − WH · ΛH · e
μe − WY · ΛY · e

AH · x
cH (x) − wH

cY (x) − wY

x − y + z

r + s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

(12)
Equation (12) constitutes a system of nonlinear equations, which will be lin-

earized using the NEWTON method. The variables Πk+1 of the subsequent iteration
step k + 1 are computed from the variables Πk of the previous one k and the step
values �Πk :

Πk+1 = Πk + Υk�Πk, (13)

where Υk denotes a matrix of damping factors, which is introduced for numerical
reasons. The step values �Πk are determined from the following linearized system
of equations

J (Πk) · �Πk = −∇ΠLH (Πk) where: J (Πk) = ∇ΠLH (Π)∇Π |Π=Πk
. (14)

The Jacobian J (Π) of the function FH
μ (Π) can be expressed as follows:

J (Π) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇2
xLH 0 0 0 0 −AT

H −CT
H (x) −CT

Y (x) −In 0
0 S 0 0 0 0 0 0 Y 0
0 0 R 0 0 0 0 0 0 Z

0 0 0 ΛH 0 0 WH 0 0 0
0 0 0 0 ΛY 0 0 WY 0 0

−AH 0 0 0 0 0 0 0 0 0
−CH (x) 0 0 ImI

0 0 0 0 0 0
−CY (x) 0 0 0 ImI

0 0 0 0 0
−In In −In 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −In −In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)
The system Eq. (14) is reduced by successive elimination of those equations,

which involve diagonal matrices. After substituting the variables �s, �r , �y, �z,
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�wH and �wY , the following system remains:

⎛
⎜⎜⎝

−(∇2
xLH + E1) AT

H CT
H (x) CT

Y (x)

AH 0 0 0
CH (x) 0 EH 0
CY (x) 0 0 EY

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

�x

�λE

�λH

�λY

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

d1
d2

dH
3

dY
3

⎞
⎟⎟⎠ . (16)

The right-hand side values are as follows:

d1 = ∇xf (x) − AT
H · λE − CT

H (x) · λH − CT
Y (x) · λY − s + E1 · b1, (17a)

d2 = −AH · x, (17b)

dH
3 = −cH (x) + μΛ−1

H · e, (17c)

dY
3 = −cY (x) + μΛ−1

Y · e (17d)

where:

b1 = x + z + μ
(
R−1 − S−1) · e + R−1 · Z · s, (17e)

E1 = (
S−1 · Y + R−1 · Z)−1

, (17f)

EH = WH · Λ−1
H , (17g)

EY = WY · Λ−1
Y . (17h)

5 Numerical Aspects

The new algorithm has already been presented in [59], and some numerical aspects
have been discussed in [60]. Here, only the most important issues are briefly reca-
pitulated. The algorithm’s mode of operation is illustrated in Fig. 2.

As one can see, there exist two different iterations:

• The outer iteration is the major loop in Fig. 2, where in each iteration step the
barrier parameter μ is reduced in accordance with the update-rule. Thereby, dur-
ing the outer iteration process, μ is a sequence tending to zero.

• The inner iteration is the minor loop in Fig. 2, which ensures that the approximate
solution of the linearized system is in the close proximity of the exact solution,
such that the KKT conditions are satisfied sufficiently accurate.

Since the full Newton step �Πk computed from Eq. (14) may happen to be too
large, it has to be damped in these cases. This is done by a linesearch procedure,
which actually is a third iteration within the outer and the inner one.
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Fig. 2 Sketch of the algorithm’s mode of operation

5.1 Starting Point Strategy

The choice of an admissible starting point is a critical issue when using interior-
point methods. Fortunately, this does not hold for the specific problem considered
here, because any solution vector x representing a stress state within the elastic
limit domain is admissible. Thus, the initial solution vector x0 is computed from
the elastic limit stresses and the back-stresses are initialized with zeroes. In order to
stay inside of the strict interior of the elastic domain, these values are multiplied by
the constant factor α0 = 0.995.

x0 = x(σ = α0σ el). (18)

With this choice for the initial solution vector, the condition Eq. (9a) is satisfied
a priori. The other variables can be fitted such that the remaining conditions from
Eq. (12) are satisfied as well. Note, that one of the variables can be chosen arbitrarily.
Moreover, the condition r = −s cannot be satisfied by any choice of positive r0
and s0. This condition is necessary to enforce r and s to be sequences tending to
zero during the iteration, though. Except of this, the starting point Π0 is feasible.

5.2 Damping of the Newton Step

The full Newton step �Πk computed from Eq. (14) may happen to be too large in
the sense that one or more of the Lagrange multipliers, the slack or the split variables
become negative. Since these have to be nonnegative by definition, the Newton step
is damped in these cases.
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For this reason, the damping factors αi are introduced, which are merged into
the diagonal matrix Υ k in Eq. (13). In principle, damping factors can be defined
for each of the variables separately. Nonetheless, it is common practice in linear
and nonlinear programs to use two different values αP for the primal variables ΠP

and αD for the dual variables ΠD

ΠP = [x,y,z,wY ,wH ]T , (19a)

ΠD = [λE,λY ,λH , s, r]T . (19b)

The two according sets of enforced nonnegative variables are denoted by
Π∗

P = [y,z,wY ,wH ]T and Π∗
D = [λY ,λH , s, r]T , respectively

Π∗
P = [y,z,wY ,wH ]T , (20a)

Π∗
D = [λY ,λH , s, r]T . (20b)

Then, the damping factors for the nonnegativity condition read as follows:

α̃P = max
{
ᾱ
∣∣Π∗

P + ᾱ�Π∗
P ≥ 0; Π∗

P = [y,z,wY ,wH ]T }, (21a)

α̃D = max
{
ᾱ
∣∣Π∗

D + ᾱ�Π∗
D ≥ 0; Π∗

D = [λY ,λH , s, r]T }. (21b)

In order to prevent hitting the boundary, these values are multiplied by the con-
stant factor α0 = 0.995.

Damping of the Newton step with the nonnegativity condition may still not be
sufficient, because it is possible that the resulting step values do not lead to a descent
direction in both the infeasibilities and the objective function. In order to ensure that
the computed direction is a decreasing one, the following merit function Φμ,ν is
introduced for a linesearch procedure. The term in squared brackets [.] is optional
but should be used in order to avoid the Maratos effect [36]

Φμ,ν(Π) = fμ(x,y,z,wY ,wH ) + ν

2

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

A · x
cY (x) − wY

cH (x) − wH

x − y + z

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

2

+ [
(A · x) · λE

]
. (22)

Here, ν denotes the penalty parameter, which is updated if necessary in each
iteration step before the linesearch starts.

With help of the linesearch, the supplementary damping factor αT is determined.
Starting from the initial value 1, the factor αT is halved as often as is necessary
such that the Armijo condition Eq. (23) is satisfied. As proposed in e.g. [75], this
reduction is carried out in dependence of the primal values only. For the Armijo-
factor we set β = 10−3

Φμ,ν(Π + ᾱ�Π) ≤ Φμ,ν(Π) + βᾱΦ ′
μ,ν(Π;�Π)

where: ᾱ = αT α0α̃P . (23)
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Table 1 Dimensions in mm
Length L 386.9

Inner radius Ri 60.0

Outer radius Ra,1 68.1

Outer radius Ra,2 77.8

Outer radius Ra,3 90.5

Once the value αT is determined, the total damping factors can be calculated.

αP = αT α0α̃P , αD = αT α0α̃D. (24)

Concerning the penalty parameter ν, a new update-rule is used, which has been
recently developed by the author. It is based on the necessary condition of a decreas-
ing direction, Φ ′(Π;�Π) < 0. For details, the reader is referred to [59].

5.3 Update-Rule of the Barrier Parameter

Once the inner iteration has converged, the barrier parameter μ has to be updated.
For this, a modification of the update-rule given in [2] is used, which takes into
account the distance from the solution.

IF (μ̄i < 0.1μk): if
(
μk < 10−4): μk+1 = min

{
0.85μk;10 · (0.85)k+2σ μ̄o

}
else: μk+1 = min

{
0.85μk;10 · (0.85)k+σ μ̄o

}
ELSE: μk+1 = min

{
0.95μk;10 · (0.95)kμ̄o

}

where: μ̄i = 1

θ
max

{
scaled infeasibility(μ)

}
and μ̄o = μ̄i |μ=0.

(25)

The maximum scaled infeasibility can be taken from the computation of the
break conditions. As suggested in [2], we use σ = 5.

6 Numerical Example

The proposed method was applied to a flanged pipe with three different outer radii,
see Fig. 3(a), already considered by MOUHTAMID [41] and WEICHERT et al. [77].
Both the dimensions as well as the material data were adopted from [41], see Ta-
bles 1 and 2. The FEM-analysis was carried out with the software package ANSYS

using the isoparametric hexahedral solid element solid45. Taking advantage of the
system’s rotational symmetry—as shown in Fig. 3(b)—the applied mesh consisted
of 265 elements and 678 nodes, where one element across the thickness was used.
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Fig. 3 System, model and equivalent elastic stresses for the flanged pipe

Table 2 Thermal and
mechanical characteristics Young’s modulus [MPa] 2.0 × 105

Yield stress [MPa] 200

Poisson’s ratio 0.3

Density [kg/m3] 7.9 × 103

Thermal conductivity [W/(m·K)] 15

Specific heat capacity [J/(kg·K)] 500

Coefficient of thermal expansion [1/K] 1.6 × 10−5

6.1 Two-Dimensional Loading Space

To validate the method, the system was first investigated in a two-dimensional
loading space. In particular, the pipe was subjected to an internal pressure p and
an axial force Q, which varied independently in the ranges p ∈ [0;pmax] and
Q ∈ [0;Qmax], respectively. In order to compute the elastic stresses presented in
Figs. 3(c) and 3(d), the arbitrary values p = 10 MPa and Q = 113.097 kN were ap-
plied, respectively.

As a result of the shakedown analysis, Fig. 4 presents: the elastic domain and
twice the elastic domain (dotted lines); the shakedown domains without considera-
tion of hardening for the yield stress σY = 200 MPa (solid line), and for multiples of
the yield stress σ ∗

Y,1 = 1.25σY and σ ∗
Y,2 = 1.5σY (dash-dot lines); the shakedown do-

mains including hardening with different values of ultimate stresses σH,1 = 1.25σY

and σH,2 = 1.5σY (solid lines); the shakedown domain with unlimited kinematical
hardening (solid line). Both axes are scaled to the according value p0 = 28.85 MPa
and Q0 = 416.7 kN, respectively, for perfectly plastic material behavior.
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Fig. 4 Results of shakedown analysis of the flanged pipe

In all cases—both the perfectly plastic and the hardening one—the two mecha-
nisms of alternating plasticity and incremental collapse can be clearly distinguished:
In case of predominating axial force, all shakedown curves coincide with the one for
unlimited hardening, indicating that alternating plasticity is decisive here. Hence, no
influence of hardening can be observed.

By contrast, failure is due to incremental collapse in the regime of predominating
internal pressure, where the limited kinematical hardening leads to an increase of
the according shakedown domains in direct proportion with the ratio σH/σY . Thus,
the hardening curves (solid lines) coincide with the corresponding none-hardening
ones with premultiplied yield stress (dash-dot lines) in this range. In all cases, the
two curves pass into each other seamlessly.

It should be noticed, that the unlimited hardening curve does only accord partly
with double the elastic domain. Even so, it is frequently stated in the literature, that
these curves have to accord in the whole domain, which simply is wrong. In fact,
they have to coincide only at the axis intercepts. In the remaining domain, they
may—but do not must—be the same.

For validation, in Fig. 5 the results obtained by the new method are compared
to those reported in [41], which have been computed on the basis of the augmented
Lagrangian method using the program LANCELOT [12]. In general, matching of the
results is satisfying, especially for limited kinematical hardening with σH = 1.5σY .
However, slight differences exist resulting from different elastic solutions. These can
be explained by the use of different meshes. In particular, the maximum equivalent
stress under axial force is 106.465 MPa in [41], whereas the current calculation
yields 100.143 MPa.
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Fig. 5 Comparison with results from MOUHTAMID [41]

6.2 Three-Dimensional Loading Space

To illustrate the influence of hardening in a three-dimensional loading space, a
temperature load �T ∈ [0;�Tmax] was applied additionally. The according FEM-
analysis was carried out in two steps: (1) using the hexahedral thermal element
solid70, the body temperature distribution was computed resulting from prescribed
temperature bounding conditions of Ti = 100 K and To = 20 K at the inner and the
outer surface of the pipe, respectively, see Fig. 6(a); (2) based on the body tempera-
ture distribution, nodal temperature loadings were defined for the structural analysis
with element solid45, leading to the equivalent elastic stress distribution shown in
Fig. 6(b).

Noteworthy, in the whole calculation, all material parameters were assumed to
be temperature-independent. Furthermore, only steady-state processes were consid-
ered.

Applying the proposed algorithm, the three-dimensional shakedown domain was
computed for elastic-perfectly plastic material, see Fig. 7. Further, the influence of
limited kinematical hardening was investigated by calculations with different ulti-
mate stresses: σH = 1.1σY (Fig. 8 and blue dash-dot line), σH = 1.25σY (Fig. 9 and
blue dashed line), and σH = 1.5σY (Fig. 10 and black dash-dot line). Subsequently,
the domain was determined for unlimited hardening (Fig. 11 and black solid line).

As in the two-dimensional case, the two mechanisms alternating plasticity and
incremental collapse can be clearly distinguished. To highlight this, all computed
points leading to alternating plasticity are marked by red circles.

In the regime of predominating temperature, all shakedown domains coincide,
which implicates alternating plasticity to be decisive. Here, hardening does not af-
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Fig. 6 Body temperature
distribution and resulting
equivalent elastic stresses

Fig. 7 Three-dimensional shakedown domain without hardening

fect the solution. By contrast, an influence of hardening can be observed in the
regime of predominating axial force. While incremental collapse leads to failure in
the elastic-perfectly plastic case as well as when considering limited hardening with
σH = 1.1σY , further increasing the ultimate stress has no impact, because alternat-
ing plasticity occurs starting from σH = 1.2σY . Finally, when the internal pressure is
superior, hardening enlarges the shakedown domain in direct proportion with the ra-
tio σH/σY in all calculations with limited hardening. Only for unlimited hardening,
its effect its restricted and alternating plasticity appears.
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Fig. 8 Three-dimensional shakedown domain with hardening σH = 1.1σY

Fig. 9 Three-dimensional shakedown domain with hardening σH = 1.25σY

Closing, the characteristic numerical details are reported in Table 3. As one can
see, the number of iterations is not as much affected as the running time. Moreover,
in the considered example, the number of loadings has a larger impact than the
hardening, even though the numbers of variables and constraints are comparable.
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Fig. 10 Three-dimensional shakedown domain with hardening σH = 1.5σY

Fig. 11 Three-dimensional shakedown domain with unlimited hardening

7 Conclusion

In this paper, a method to compute the shakedown factors of engineering structures
subjected to varying thermal and mechanical loadings has been presented using the
lower bound approach. The method allows for taking into account limited kinemat-
ical hardening by application of a two-surface model, where both the yield and the
bounding surface are described by the von Mises criterion. Further, it is capable of
considering arbitrary numbers of thermal and mechanical loadings. The method’s
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Table 3 Influence of hardening on numerical details

2 independent loads 3 independent loads

Perfectly plastic Hardening Perfectly plastic Hardening

n 44521 86921 86921 171721

mE 33834 65634 76234 150434

mI 8480 16960 16960 33920

∅ Iterations 400 481 2318 3017

∅ CPU-time [s]a 48 57 295 837

aDell Precision T7500 with Xeon E5620-processor with 2400 MHz and 12 GB RAM

potential has been illustrated by application to a numerical example from the field
of power plant engineering.

Acknowledgements I cordially thank Prof. Dieter Weichert for the fruitful discussions and the
support, which made this work possible.
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Computation of Bounds for Anchor Problems
in Limit Analysis and Decomposition Techniques
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Abstract Numerical techniques for the computation of strict bounds in limit anal-
yses have been developed for more than thirty years. The efficiency of these tech-
niques have been substantially improved in the last ten years, and have been suc-
cessfully applied to academic problems, foundations and excavations. We here ex-
tend the theoretical background to problems with anchors, interface conditions, and
joints. Those extensions are relevant for the analysis of retaining and anchored walls,
which we study in this work. The analysis of three-dimensional domains remains
as yet very scarce. From the computational standpoint, the memory requirements
and CPU time are exceedingly prohibitive when mesh adaptivity is employed. For
this reason, we also present here the application of decomposition techniques to
the optimisation problem of limit analysis. We discuss the performance of different
methodologies adopted in the literature for general optimisation problems, such as
primal and dual decomposition, and suggest some strategies that are suitable for the
parallelisation of large three-dimensional problems. The proposed decomposition
techniques are tested against representative problems.
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1 Introduction

1.1 Limit Analysis Problem

According to the lower (primal) and upper (dual) bound theorem of limit analysis,
the bearing capacity of a structure is equal to (i) the maximum load factor λ∗ under
equilibrium conditions and with plastically admissible stresses σ (i.e. they belong
to a set B), or alternatively, to (ii) the minimum dissipation energy D(v) of a kine-
matically admissible velocity field v. Mathematically, the resulting bearing capacity
has the structure of a saddle point problem that can be written as [6],

λ∗ = min
�(v)=1

max
σ∈B

a(σ ,v)=λ�(v)

a(σ ,v) (1)

where the linear form �(v) is the power dissipated by the external loads, while the
bilinear form a(σ ,v) is the internal dissipated power. For a given domain Ω , sub-
jected to external surface load g and body load f , these forms are explicitly given
by:

�(v) =
∫
Ω

f · v dΩ +
∫
∂Ω

g · v dΓ,

a(σ ,v) =
∫
Ω

σ : ε(v) dΩ +
∫
Γ

σ : (�v� ⊗̄n
)
dΓ

with Γ the (unknown) region of Ω where the velocity is discontinuous, �v� the
velocity discontinuity, and n the normal vector at this discontinuity. The operator ⊗̄
is the symmetrised dyadic product such that a⊗̄b = 1

2 (a ⊗ b + b ⊗ a) (see also [16]
for equivalent definitions of discontinuous velocities). The saddle point problem or
min max problem can be also rewritten as,

λ∗ = max
σ∈B

a(σ ,v)=λ�(v),∀v

λ (2)

= min
�(v)=1

D(v) (3)

where the dissipated energy D(v) is defined by,

D(v) = max
σ∈B

a(σ ,v)=λ�(v)

a(σ ,v).

Equations (2) and (3) are the primal and dual form of the saddle point problem
in (1). From the dual form in (3), it turns out that the velocities must be associated,
that is, that ε(v) ∈ ∂B and �v� ⊗ n ∈ ∂B, with ∂B the sub-gradient of set B.

The analytical saddle point problem in (1) is illustrated in Fig. 1(a). A stress field
such that σ ∈ B and for which the equilibrium condition a(σ ,v) = λ�(v),∀�(v)
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Fig. 1 Illustration of saddle point problem for the (a) analytical solution of limit analysis prob-
lem, (b) lower bound discrete limit analysis problem, and (c) upper bound discrete limit analysis
problem

is satisfied everywhere is so-called a statically admissible stress space. Simi-
larly, a velocity field such that �(v) = 1 and for which the associative conditions
�v� ⊗ n,ε(v) ∈ ∂B is satisfied everywhere is so-called a kinematically admissible
space. The saddle point problem in (1) states that the bearing capacity (or maximum
load factor) of a structure is equal to the internal dissipated energy of a statically
admissible stress space σ ∗ and a kinematically admissible velocity space v∗.

1.2 Discrete Upper and Lower Bound Formulations

By choosing an appropriate discrete statically admissible space (σLB,vLB) that
satisfies the maximisation conditions in (1), and a kinematically admissible space
(σUB,vUB) that satisfies the minimisation conditions in (1), we can construct strict
bounds of the load factor λ∗ as,

λLB = a
(
σLB,vLB

)≤ λ∗ ≤ a
(
σUB,vUB

)= λUB.

A schematic of discrete spaces (σLB,vLB) and (σLB,vLB) that satisfy those
conditions are given in Fig. 2. The reader is referred to [12, 13] for a justification
of those spaces. When resorting to them, the saddle point problem is consequently
modified, as illustrated in Figs. 1(b)–(c). The max min problem in (1) turns into a
lower bound problem when the first pair of spaces is used, and into an upper bound
problem when the second pair is used.

Therefore, after using these interpolation spaces (σUB,vUB) and (σLB,vLB) in
the exact optimisation problem in (2) or (3), we are able to compute exact upper and
lower bounds of the optimal factor λ∗. In particular, the lower bound problem turns
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Fig. 2 Interpolation spaces
for the lower and upper bound
problem. Symbols at nodes
denote a elementwise linear
space, while symbols at the
center of the element denote
elementwise constant space

into the following form,

λLB = max
σUB

λ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Āeq1σLB + λF eq1 = 0,

Āeq2σLB = 0,

Āeq3σLB + λF eq3 = 0,

σLB,e
i ∈ B, e = 1, . . . ,Ne, i = 1, . . . , nsd + 1

(4)

whereas the upper bound problem reads,

λUB = min
vUB

D
(
vUB

)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

l(vUB) = 1

−ε(vUB,e
i ) ∈ ∂B∗, e = 1, . . . ,Ne, i = 1, . . . , nsd + 1,

−�vUB �
ξ
j ⊗̄nξ ∈ ∂B∗, ξ = 1, . . . ,Nξ , j = 1, . . . , nsd

(5)

where nsd is the number of space dimensions, and the three block equations in (4)
correspond respectively to the intra-element equilibrium, the inter-element equilib-
rium, and the Neumann boundary conditions. The vectors σLB and vUB contain
the collection of all nodal stresses σLB,e

i of element e, and the velocities vUB,e
i and

v
UB,ξ
j for each node i of element e or each node j of edge ξ , respectively.

The problems above can be solved efficiently using available optimisation pro-
grams [1, 17, 18]. Moreover, for the usual plasticity criteria such as von Mises
or Mohr-Coulomb in two dimensions, we can apply linear transformations of the
stress variables that turn the membership conditions σ ∈ B into second order cones
(SOC), which can be handled by the mentioned optimisation software. After apply-
ing in such transformations, the optimisation problems above turn into,

λLB = max
x

λ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aeq1x + λF eq1 = beq1,

Aeq2x = 0,

Aeq3x + λF eq3 = beq3,

xLB,e
i ∈ K , e = 1, . . . ,Ne, i = 1, . . . , nsd + 1,
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Fig. 3 Subdivision of a triangular element in 2D (a) and tetrahedron in 3D (b), when their ele-
mental gap contribution �λa is larger than a pre-defined threshold

λUB = min
vUB

b · vUB (6)

s.t.

⎧⎨
⎩

l(vUB) = 1
vUB,e
i ∈ K ∗, e = 1, . . . ,Ne, i = 1, . . . , nsd + 1,

�vUB �
ξ
i ⊗̄nξ ∈ K ∗, ξ = 1, . . . ,Nξ , i = 1, . . . , nsd

with K a second order cone, and K ∗ the dual cone of K [4].

1.3 Mesh Adaptivity

The optimum values of the lower and upper bound problem can be used to compute
a set of elemental and edge contributions to the total gap, which are defined by
[7, 13]:

�λe =
∫
Ωe

σUB : ε(vUB
)
dΩ +

∫
Ωe

∇ · σLB · vUB dΩ −
∫
∂Ω

σLBn · vUB dΓ,

�λξ =
∫
Γ ξ

σUB,ξ · �
vUB

�
dΓ −

∫
Γ ξ

σLBn · �
vUB

�
dΓ.

These bound gaps satisfy the properties, λUB − λLB = ∑
e �λe + ∑

ξ �λξ ,

�λe ≥ 0 and �λξ ≥ 0, which make them good candidates to estimate the errors
of the lower and upper bound solution. These quadratures are obtained only if ap-
propriate quadratures are employed to compute the integrals: Gauss quadrature for
all the terms excepting the first integral in �λξ (see [14] for the justification of this).
We have used them to design an adaptive remeshing strategy employed in the results
Sect. 4. Any element or edge with a gap contribution higher than a certain threshold
will be subdivided according to the pattern shown in Fig. 3.

2 Extension to Anchors, Joints and Frictional Interfaces

We will develop next specific conditions for common interface conditions encoun-
tered in geomechanics. In all cases we add specific constraints that preserve the
strictness of the bounds. The studied and implemented situations are:



84 J.J. Muñoz et al.

1. Interface material that splits two different materials with specific admissibility
criterion for the common boundary.

2. Duplicated edges: in two-dimensional applications, it may convenient to overlap
materials or structural elements such as ties or anchors. In these situations, it is
required to have edges that joint one element on one side and two elements, B
and B ′, on the other side.

3. Modelling of joints such as articulated joints in anchors and anchor-wall inter-
face.

We briefly describe how to include in each case the corresponding constraints in
the optimisation problem (see [15] for further details).

2.1 Interface Conditions

Specific admissibility conditions for the stresses can be introduced by adding new
nodal variables σ I

i at the interface, with new membership sets BI , that are different
from the two materials at each side of the interface. These new nodal variables
are equivalent to extending the spaces given in Sect. 1.2, and adding equilibrium
constraints such as, (

σA
i − σB

i

) · n = 0, i = 1,2, (7)(
σA

i − σ I
i

) · n = 0, i = 1,2 (8)

and adding the following membership constraints at the interface,

σ I
i ∈ BI , i = 1,2. (9)

The vector n is the normal to the interface edge or face in 3D. Some of admissible
sets that may be employed in common problems are depicted in Fig. 4. We also note
that the nodal velocities at the two edges between A and B , indicated in Fig. 4(a)
with circles, correspond in fact to the Lagrange multipliers associated with these
constraints: the velocities at one edge are associated with Eq. (7) while those at the
other edge correspond to Eq. (8).

Figure 5 shows the usual admissible domain BI for the stresses at the interfaces.
The criteria in Fig. 5(c) has been included for completeness reasons, but it is unreal-
istic and has not practical interest. The subscript σN and σT denote the normal and
tangential components of the traction vector σ · n at the interface. In our implemen-
tation, we impose admissibility domains for the stress tensors σ I , which imply the
usual admissibility conditions for the traction vectors σ I · n.

2.2 Duplicated Edges

The modelling of two-dimensional problems with anchors, ties or reinforcements
can be achieved by superimposing the latter elements onto the soil elements. This
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Fig. 4 Discrete spaces
considered for the lower (a)
and upper (b) bound
problems when modelling
interfaces

Fig. 5 Interface conditions:
Rough interface, equal to soil
properties (a), rough with no
tension (b), smooth interface
(c), and smooth with no
tension (d)

is an idealisation of the real three-dimensional situation. We consider the two-
dimensional plane strain analysis with additional superimposed elements (reinforce-
ments, ties or anchors) that are analysed in plane-stress and connected to the soil.
We have modelled the structural elements as solid elements and not linear elements,
which prevents the presence of point loads and therefore allows us to preserve the
strictness of the bounds.

Computationally, we need to deal with edges where the soil elements on side A

are connected to two types of elements: other soil elements (with variables B) and
those superimposed elements that model the structural elements (with variables B ′).
Figure 6 shows such an edge in the lower and upper bound formulation. We will call
those edges as duplicated edges.

In the lower bound formulation, we need to modify the equilibrium constraints
of the edges, which now read,

(
σA

i − σB
i − σB ′

i

) · n = 0, i = 1,2

where σA
i , σB

i an σB ′
i are respectively the nodal stresses at sides A, B nd B ′. Since

there is one equilibrium equation per common node, each duplicated edge requires
two nodal velocities, as indicated with circles in Fig. 6(a).

In the upper bound formulation, the dissipation power at the edge corresponds
to the sum of the power dissipated between elements A and B , and the dissipated
power between elements A and B ′. Formally, the total dissipation power at the edge
correspond to the sum of two integrals along the common edge:

aξ (σ ,v) =
∫
Γ ξ

σA−B · (vB − vA
)
dΓ +

∫
Γ ξ

σA−B ′ · (vB ′ − vA
)
dΓ.

This expression of the dissipated power is equivalent to extending the stress space
at the edges with two superimposed linear stress spaces, σA−B and σA−B ′

, indicated
by two pairs of squares in Fig. 6(b). By imposing that each one of the four nodal
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Fig. 6 Discrete spaces
considered for the lower (a)
and upper (b) bound
problems when modelling
duplicated edges. Elements B

and B ′ are geometrically
superimposed

variables is admissible, that is:
{

σA−B
i ∈ BI ,

σA−B ′
i ∈ BI ,

i = 1,2,

with BI the admissible set for the interface conditions, the admissibility of the
corresponding velocity jumps vA

i − vB
i and vA

i − vB ′
i is ensured, and therefore the

strictness of the upper bound is guaranteed. The nodal velocities are indicated with
circles in Fig. 6(b).

2.3 Joints

Some of the practical problems in limit analysis include anchors, ties or other struc-
tural elements that are connected through joints. In this case, the kinematic con-
straints must be included in the exact problem described in Sect. 1.1, and also mod-
elled in such a way that the strictness of the bounds is preserved. In the lower bound
formulation, the presence of joints is modelled by including solely a point-to-point
equilibrium condition, that is,

∫ (
σA − σB

) · ndΓ = 0, (10)

which replaces the equilibrium along the whole edge between elements. In the upper
bound problem, the construction of a kinematically admissible space for the veloc-
ities is constructed by constricting the relative displacements of the joints in such a
manner that only rotations with respect to the joint centre are allowed. Formally, this
is achieved by replacing the associative velocity field at the joint by the following
constraint in the upper bound problem in (5):

�v�1 + �v�2 = 0. (11)

Figure 7 shows a schematic of the stress and velocity spaces employed for the
modelling of the joints in the lower and upper bound problem. We point out that
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Fig. 7 Rotational joint and
discrete spaces considered for
the lower (a) and upper (b)
bound problem

the joint is without friction, since no dissipated energy is associated to the relative
rotation at the joint. This is computational made explicit by not imposing any equi-
librium relation associated to the rotations in Eq. (10), and imposing exactly the
kinematic relation in (11), i.e. the associated Lagrangian multiplier (variable sJ in
Fig. 7) is free.

3 Decomposition Techniques

In order to reduce the memory requirement of realistic three dimensional problems
we propose a decomposition of the optimization problems, which is based on the
ideas explained in [5, 8]. While the decomposition techniques for optimisation prob-
lems is a relatively recent topic, its application to limit analysis and other plasticity
problems has found far less attention [11]. We also refer the reader to [10], where
alternative decomposition techniques of the limit analysis problem has been intro-
duced. We here first briefly describe some of the general ideals of decomposition of
optimisation problems.

3.1 Decomposition of Optimisation Problems

3.1.1 Primal Decomposition

To illustrate the decomposition techniques, we state the following linear optimiza-
tion problem:

cT x∗ = min
x

cT x

Ax = b,

x ≥ 0,

(12)

whose dual reads,

bT y∗ = max
y

bT y

AT y ≤ c.
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The primal decomposition consists on rewriting the problem (12) as:

min
x1,x2

cT1 x1 + cT2 x2

A1x1 + A2x2 = b,

x1 ≥ 0, x2 ≥ 0.

(13)

In other words, we split the primal x variable as x = (x1,x2). The problem above
is equivalent to:

min
t

min
x1,x2

cT1 x1 + cT2 x2

A1x1 = b

2
+ t,

A2x2 = b

2
− t,

x1 ≥ 0, x2 ≥ 0, t is free.

(14)

Given a fixed value of t , the optimum value may be obtained as a result of the inner
minimums,

fi(t) = min
xi

cTi xi

Aixi = b

2
+ (−1)i+1t,

xi ≥ 0 (i = 1,2),

(15)

so called sub-problems or slave problems and the following master problem:

min
t

f1(t) + f2(t), (16)

which only depends on the global variable t . The Lagrangian function of problem
(14) is given by:

L(x1,x2;y1,y2,w1,w2)

= cT1 x1 + cT2 x2 + yT
1

(
b

2
+ t − A1x1

)
+ yT

2

(
b

2
− t − A2x2

)
− wT

1 x1

− wT
2 x2

= cT1 x1 + yT
1

(
b

2
− A1x1

)
+ cT2 x2 + yT

2

(
b

2
− A1x1

)
+ tT (y1 − y2)

= L1(x1, t;y1,w1) + L2(x2, t;y2,w2),
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with

Li(xi , t;yi ,wi ) = cTi x1 + yT
i

(
b

2
+ (−1)i+1t − A1x1

)
− wT

i xi (i = 1,2).

It then follows that we can rewrite the optimum primal objective cT x∗ as,

cT x∗ = cT1 x∗
1 + cT2 x∗

2 = min
t

2∑
i=1

min
xi

max
yi ,wi

Li(xi , t;yi ,wi ).

After observing the equation above, we have that ∇tL = (y1 −y2), and therefore
we can update the master variables with the following descent method,

tk+1 = tk − αk
(
yk

1 − yk
2

)= tk + αk
(
yk

2 − yk
1

)
, (17)

where y1 and y2 are the sub-gradient of functions f1 and f2 respectively. αk is a
step length that can be chosen in any of the standard ways [3].

3.1.2 Dual Decomposition

We recall the same problem in (13). Dual decomposition for this example is straight-
forward. We form the Lagrangian function as follows:

L(x1,x2,y,w1,w2)

= cT1 x1 + cT2 x2 + yT

(
b

2
− A1x1 + b

2
− A2x2

)
− wT

1 x1 − wT
2 x2

=
(

cT1 x1 + yT

(
b

2
− A1x1

)
− wT

1 x1

)

+
(

cT2 x2 + yT

(
b

2
− A2x2

)
− wT

2 x2

)
,

so we can minimize over x1 and x2 separately given the dual variable y, to find
g(y) = g1(y) + g2(y) where g(y) is given as,

g(y) = min
x1,x2

L(x1,x2,y,w1,w2) = min
x1,x2

L1(x1,y,w1) + L2(x2,y,w2).

In order to find g1(y) and g2(y), respectively, we solve the following two sub-
problems:

g1(y) = min
x1≥0

cT1 x1 + yT

(
b

2
− A1x1

)
= min

x1≥0

(
cT1 − AT

1 y
)
x1 + yT b

2
,

g2(y) = min
x2≥0

cT2 x2 + yT

(
b

2
− A2x2

)
= min

x2≥0

(
cT2 − AT

2 y
)
x2 + yT b

2
.
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The master algorithm updates y based on sub-gradient as follows:

y = y + β

(
b

2
− A1x1 + b

2
− A2x2

)
= y + β(b − Ax), (18)

where β is a step length that can be chosen in any of the standard ways [3].

3.1.3 Bender’s Decomposition

One of the main disadvantages of the previous decomposition is the update of the
master variables. Since the minimised/maximised functions are non-smooth, the up-
dated in (17) and (18) is not always optimal. For this reason, we have also studied
the implementation of Bender’s decomposition [2, 9]. The latter may be applied to
the simple form of the linear problem in (14) as the solution of the following two
sub-problems,

min
xi

cTi xi

Aixi = b

2
+ (−1)i+1t,

xi ≥ 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

i = 1,2 (19)

and the solution of the following master problem:

min
α,t

α1 + α2

0 ≥
(

b

2
+ (−1)i+1t

)
· yp

i , p = 1, . . . , pk,

αi ≥
(

b

2
+ (−1)i+1t

)
· yq

i , q = 1, . . . , qk.

(20)

The first and second sets of inequalities in (20) are respectively so-called fea-
sibility cuts or optimality constraints, where y

p
i and y

q
i are the whole set optimal

dual variables and extreme rays of the dual problem of (19) computed up to iteration
k = pk + qk . Further details on the Bender’s decomposition may be found in [8].

3.2 Decomposition of Limit Analysis Optimisation Problem

The decomposition techniques described in Sect. 3 are here adapted to optimiza-
tion problem encountered in limit analysis. When applying these ideas, it must be
taken into account the particular structure of the lower and upper bound optimiza-
tion problems. Indeed, the objective function is only formed by the load factor in the
lower bound problem, the constraints correspond to the equilibrium constrains, as a
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Fig. 8 Decomposition of the
global domain of a limit
analysis problem (left) into
two domains, with the
fictitious Neumann boundary
shaded (right)

function of the stress variables which belongs to a non-linear set. As explained in
Sect. 1 the constraints become linear equations of variables that belong to second-
order cones. In the sequel we apply the decomposition technique described to the
lower bound (LB) problem in limit analysis.

3.2.1 Decomposition of LB Problem

The decomposition of LB problem corresponds to splitting the nodal stress variables
σ into two sets σ 1 and σ 2, which in turn is also equivalent to splitting the variable
x into two variables x1 and x2. In this case, the constrains may be decomposed like
in the primal technique, by using additional traction variables t between domains,
as depicted in Fig. 8. In other words we split our domain in two sub-problems with
local variables xi , and a master(global) variable t that in the LB problem corre-
sponds to the internal tractions between the sub-domains. Such variables may be
seen as a (non-proportional) fictitious Neumann condition. We next deduce in detail
the decomposed form of the lower bound optimisation problem.

As described in Sect. 1, equation Āeq1σ + F eq1 = 0 in (4) is related to the equi-
librium constraint, which can be decomposed into two separate equations as follows:

Āeq1,1σ 1 + λF eq1,1 = 0,

Āeq1,2σ 2 + λF eq1,2 = 0.
(21)

When the vector σ is split into two vectors σ 1 and σ 2, the domain of the problem
is also split into two parts with a common boundary that couples some of the two set
of variables. This means that the vectors σ 1 and σ 2 may be decomposed into two
vectors σ 1 = (σ 1,1,σ 1,2) and σ 2 = (σ 2,1,σ 2,2) such that the vectors σ 1,1 and σ 2,2
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are coupled through the inter-element equilibrium constraints as follows:

Āeq2,1σ 1 = 0,

Āeq2,2σ 2 = 0,

B̄eq2,1σ 1 + B̄eq2,2σ 2 = 0.

(22)

We note that the last equation in (22) is a complicating constraint. The equation
Ā3σ + λF eq3 = 0 is separable and can be in turn decomposed as,

Āeq3,1σ 1 + λF eq3,1 = 0,

Āeq3,2σ 2 + λF eq3,2 = 0.
(23)

Consequently, after applying the linear transformation to variable σ i , we can
rewrite the optimisation problem in (6) as,

min
x1,x2,λ

−λ

Aeq1,ixi + λF eq1,i = beq1,i , i = 1,2,

Aeq2,ixi = 0, i = 1,2,

Aeq3,ixi + λF eq3,i = beq3,i , i = 1,2,

Beq2,1x1 + Beq2,2x2 = 0,

x1 ∈ K1, x2 ∈ K2; λ free.

(24)

The last equation in the previous optimisation problem (24) is a complicating
constraint of the local variables x1 and x2, while the variable λ can be regarded as
a global variable. In order to decompose the problem in (24) we first introduce a
variable t such that

Beq2,1x1 = t .

Then we can rewrite the optimisation problem in the following form:

min
t,xi ,λ

−λ

Aeq1,ixi + λF eq1,i = beq1,i ,

Aeq2,ixi = 0,

Aeq3,ixi + λF eq3,i = 0,

Beq2,ixi = ( − 1)i+1t,

xi ∈ Ki, t, λ free (i = 1,2)

(25)

Note that since the complicating constraint in optimisation problem (25) is built
through the common boundary, the coupling constraint can be interpreted as ficti-
tious Newman condition for each sub-domain.
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By introducing new variables t i (i = 1,2), we can rewrite our problem in the
following form:

min

(
−λ1

2

)
+
(

−λ2

2

)
,

Aeq1,ixi + λiF
eq1,i = beq1.i ,

Aeq2,ixi = 0,

Aeq3,ixi + λiF
eq3,i = beq3,i ,

Beq2,ixi = ( − 1)i+1t i ,

t1 = t2,

λ1 = λ2.

Let Ci (i = 1,2) be local constraints that are defined as follows:

Ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
t i ,x

i , λi
}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Aeq1,ixi + λiF
eq1,i = beq1,i ,

Aeq2,ixi = 0,

Aeq3,ixi + λiF
eq3,i = beq3,i ,

Beq2,ixi = t i ,

xi ∈ Ki, t i , λi free.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In the above problem, t1, λ1, t2, λ2 are public variables and x1,x2 are pri-
vate variables. Let us collect all the public variables together into one variable
y = (t1, λ1, t2, λ2) = (y1,y2) where y1 = (t1, λ1),y2 = (t2, λ2). If we introduce
a vector z that gives the common values of the public variables, then we can express
the coupling constraints as y = Ez where E is a matrix with components equal to
zero or one, that is:

z =
{

t

λ

}
, yi = Eiz where Ei =

[
I 0

0 1

]
, y = Ez where E =

[
E1

E2

]
.

Let us set fi(xi ,yi ) = f (xi , t i , λi) = −λi

2 (i = 1,2). Then our problem has the
followings form:

min
x,y,z

f1(x1,y1) + f2(x2,y2)

(x1,y1) ∈ C1, (x2,y2) ∈ C2,

yi = Eiz, i = 1,2,

x = (x1,x2), y = (y1,y2), yi = (t i , λi) (i = 1,2),

(26)
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with variables xi ,yi , and z. We then have a problem that is separable for fixed
values of z.

3.2.2 Primal Decomposition of LB Problem

In primal decomposition, at each iteration we fix the vector z and we fix the public
variables as yi = Eiz. The problem is now separable. Each sub-problem can sepa-
rately find optimal values for its local variables xi . Let us denote qi(yi ) = qi(Ez)

the optimal value of the sub-problem

qi(yi ) = min
xi

fi(xi ,yi )

(xi ,yi ) ∈ Ci (i = 1,2),

with variable xi , as a function of yi . The original problem (26) is equivalent to the
primal master problem

min
z

q(z) = q1(E1z) + q2(E2z),

with variable z. In order to find a sub-gradient of q , denoted by g, we find gi ∈
∂qi(yi ) (which can be done separately), and then compute g as,

g = ET
1 g1 + ET

2 g2.

3.2.3 Dual Decomposition of LB Problem

We form the partial Lagrangian of problem (26),

L(x,y,z,v) = f1(x1,y1) + f2(x2,y2) + vT (−y + Ez)

= (
f1(x1,y1) − vT

1 y1
)+ (

f2(x2,y2) − vT
2 y2

)+ vT Ez,

where v is the Lagrangian multiplier associated with y = Ez. To find the dual func-
tion, we first minimize over z, which results in the condition ET v = 0. In other
words

q(v) = q(v1,v2)

= min
x1,x2,y1,y2

min
z

(
f1(x1,y1) − vT

1 y1
)+ (

f2(x2,y2) − vT
2 y2

)+ vT Ez

(x1,yi ) ∈ Ci (i = 1,2),

then

q(v) = q(v1,v2) = min
x1,x2,y1,y2

(
f1(x1,y1) − vT

1 y1
)+ (

f2(x2,y2) − vT
2 y2

)
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ET v = 0,

(xi ,yi ) ∈ Ci (i = 1,2).

We define qi(vi ), (i = 1,2) as the optimal value of the sub-problems (i = 1,2),

qi(vi ) = min
xi ,yi

(
fi(xi ,yi ) − vT

i yi

)

(xi ,yi ) ∈ Ci,

(27)

as a function of vi . A sub-gradient of qi at vi is just −yi , an optimal value of yi in
the sub-problem (27). Therefore the dual of the original problem (26) is

max q(v) = q1(v1) + q2(v2)

ET v = 0,

with variable v. We can solve this dual decomposition master problem using a pro-
jected sub-gradient method. The projection onto the feasible set {v|ET v = 0}, is
given by the following operator:

I − E
(
ET E

)−1ET .

4 Numerical Results

4.1 Bearing Capacity of Anchors

The extensions described in Sect. 2 have been employed to test the pull out capacity
of multi-belled anchors. The linearity of the limit tension with respect to the number
of bells has been verified.

Five different anchor/soil conditions have been employed: rough (same proper-
ties as the soil), smooth (no resistance to shear), no tension condition, rough con-
dition with no tension, and smooth condition with no-tension. Although the mech-
anisms do not significantly depend on these conditions, the pull out capacity does,
and has been shown to be much larger for rough conditions. On the other hand,
while for clay materials (zero internal friction angle, but non-zero cohesion) the
failure mechanism is localised around the anchor (see Fig. 9(a)), in other sand ma-
terials the slide-lines propagate up to the soil surface (see Fig. 9(b)). The computed
limiting height agrees satisfactorily with experimental results and other numerical
models that use incremental plasticity [15].

4.2 Retaining Walls

The maximum height of a simply supported and anchored retaining wall has been
computed using the techniques explained in Sect. 2. Figure 10 shows the dissipation
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Fig. 9 Dissipation energy of double bell anchor. (a) Clay soil, with sliding conditions and no
tension at the anchor-soil interface. (b) Sand soil with internal friction angle φ = 20◦, and rough
interface conditions with no tension

Fig. 10 Contour plot of the dissipation power on an anchored wall. Left: domain without the wall.
Right: zoom on the domain surrounding the anchor. Interface soil-anchor and soil-wall conditions
are rough with no tension

power of an anchored wall, with a zoom on the region surrounding the anchor. For
an anchor length equal to the height of the wall, the collapse mechanism surround
the whole wall-anchor system, while for longer anchors, the mechanism tends to be
localised around the anchor. Figure 11 shows the mesh obtained after 4 successive
iterations. As it can be observed, the smaller elements localise in the regions with
higher dissipation power and at the slidelines.

The tests have been run for different ratios of d/h where h = free wall height,
and d = total height of the wall. The collapse of the wall was obtained for a certain
factor λ of the gravity acceleration. As the ratio h/d is increased, the value of λ

was decreasing. The limiting free height is the value for which λ = 1. The plots in
Figure 12 show the evolution of λ, and indicate the limiting ratios for different wall
conditions and admissibility conditions of the wall-soil and anchor-soil interfaces.
These values agree with some experimental values published in [19].
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Fig. 11 Upper bound
velocities of anchored wall
with the resulting mesh after
4 meshing strategies

Fig. 12 (a) Upper and lower bound of the bearing capacity of a retaining wall with a rough in-
terface with no traction. (b) Bounds for the anchored wall with different anchor-soil conditions.
Horizontal axis corresponds to the ratio d/h, while the values in the vertical axis corresponds to
the factor multiplying the gravity acceleration at collapse

4.3 Decomposition Techniques

We have applied the dual decomposition technique described in Sect. 3.2.3 with
dynamic step size [3] to the LB problem using a mesh with 128 elements and 1537
primal variables (see Fig. 13(a)). The domain is subjected to a horizontal traction
field at the right boundary, and to a fully homogeneous Dirichlet conditions on its
left boundary.

Figure 13(b) shows the evolution of the upper and lower bounds of the LB op-
timization problem, which after successive iteration converges to the exact value
λ∗ = λLB = 2. The algorithm converges to tolerance of 10−3 for the relative differ-
ence of upper and lower bound, the number of master iterations are between 10 and
15.
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Fig. 13 (a) Domain and mesh employed in the decomposition analysis of the lower bound prob-
lem. The domain is subjected to a homogeneous Dirichlet conditions (zero velocities) at the left
boundary, and a horizontal tensile traction at the right boundary. (b) Evolution of the upper and
lower bound of the optimal solution of the LB limit analysis problem when using a variable step–
size in the dual decomposition method

5 Conclusions

We have presented some recent extension of the lower and upper bound formulation
of limit analysis for problems with specific frictional interfaces, duplicated edges
and joints. Such extensions are motivated by the limit analysis of practical problems
with anchors and other structural elements.

We have also described how the optimisation problems that current computa-
tional limit analysis encounters may be decomposed for its eventual parallelisation.
Although only simple domains problems with limited number of elements have been
analysed, the methodology presented here is general and may be applied for more
general problems. This generalisation, and other techniques are currently under in-
vestigation.
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Shakedown Analysis of Reissner-Mindlin Plates
Using the Edge-Based Smoothed Finite Element
Method

Thanh Ngo.c Trần and M. Staat

Abstract This paper concerns the development of a primal-dual algorithm for limit
and shakedown analysis of Reissner-Mindlin plates made of von Mises material.
At each optimization iteration, the lower bound of the shakedown load multiplier is
calculated simultaneously with the upper bound using the duality theory. An edge-
based smoothed finite element method (ES-FEM) combined with the discrete shear
gap (DSG) technique is used to improve the accuracy of the solutions and to avoid
the transverse shear locking behaviour. The method not only possesses all inherent
features of convergence and accuracy from ES-FEM, but also ensures that the total
number of variables in the optimization problem is kept to a minimum compared
with the standard finite element formulation. Numerical examples are presented to
demonstrate the effectiveness of the present method.

1 Introduction

In practical engineering, the calculation of the load carrying capacity for structures
has been a problem of great interest to many designers. In the early 20th century, it
could be relatively easily obtained by limiting the stress intensity at a certain point
of the structure equal to the yield stress of the material. This implies that structural
failure occurs at initiating local plastic flow. However, many materials, for example
the majority of metals, exhibit distinct, plastic properties. Such materials can deform
considerably without breaking, even after the stress intensity attains the yield stress.
This implies that if the stress intensity reaches the critical (yield) value, the structure
does not necessarily fail or deform extensively. To this case, elastic-plastic structural
analysis becomes more general and is capable of providing the much needed safety
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evaluation capability for enhanced diagnosis of aging infrastructure and the eco-
nomical and safe design of new structures. Among the plasticity methods, Limit
and Shakedown Analysis (LISA) seems to be the most powerful one. In Europe
LISA have been developed as direct plasticity methods for the design and the safety
analysis of severely loaded engineering structures, such as nuclear power plants and
chemical plants, offshore structures, etc. [18]. Annex B of the new European pres-
sure vessel standard EN 134453 is based on LISA (European standard, 2005-06),
thus indicating the industrial need for LISA software.

Limit analysis of plates and slabs has been studied analytically [8, 14] and nu-
merically [3, 5, 10]. In this work, the limit load was studied either by the lower
bound approach which is based on the static theorem or by the upper bound ap-
proach which is based on the kinematic theorem. Tran et al. [19] developed a kine-
matic formulation for the shakedown analysis of thin plates and shells using the
exact Ilyushin yield surface and nonlinear programming. Recently, a primal-dual al-
gorithm for shakedown analysis of Kirchhoff plates made of von Mises material has
been developed using DKQ plate elements [20]. It has been pointed out by the au-
thor that duality theory is indeed a very effective approach for shakedown analysis
of structures.

After more than half a century of development, the finite element method (FEM)
has become a very powerful technique for numerical simulations in engineering and
science. However, when using finite element software, one frequently encounters
problems with mesh generation. For accuracy reasons, one wants to use quadrilateral
or hexahedron elements, but such a mesh is quite difficult to generate and requires a
number of manual operations to cut the domain into proper pieces. In searching for
alternatives, Liu et al. have introduced the strain smoothing technique [6] into the
FEM formulating a cell/element-based smoothed finite element method (SFEM or
CS-FEM) [11] and a node-based smoothed finite element method (NS-FEM) [13].
It was shown that the SFEM achieves more accurate results and a higher conver-
gence rate than FEM without increasing computational costs. More important, as
no mapping or coordinate transformation is involved in the SFEM, its elements are
allowed to be of arbitrary shape and the problem of mesh distortion can be avoided
when using SFEM.

CS-FEM is formulated using smoothing domains located inside the elements
and proven effectively in solving 2D solid mechanics problems by using a proper
number of smoothing cells in each element (for example four smoothing cells). The
CS-FEM has also been extended to plate and shell structures [15, 16]. NS-FEM uses
node-based smoothing domains associated from the predefined parts of all adjacent
elements around the node. It can provide upper bound solutions in the strain energy
and is also immune to volumetric locking naturally. However, the NS-FEM was
found temporally unstable, and cannot be applied directly to dynamic problems.
To overcome such a temporal instability, the edge-based smoothed finite element
method (ES-FEM) has been recently proposed for analyses of solid 2D mechanics
problems [12] and has then been extended for static, free vibration and buckling
analyses of Reissner-Mindlin plates using triangular elements [17]. In that method,
ES-FEM was incorporated with the discrete shear gap (DSG) technique [2] together
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with a stabilization technique [1] in order to avoid the transverse shear locking and to
improve the accuracy of the numerical solution. With T3 elements ES-FEM has been
applied succesfully to probabilistic limit and shakedown analysis of 2D structures
[21].

This paper presents a numerical algorithm for shakedown analysis of Reissner-
Mindlin plates made of von Mises material. The algorithm is based upon a primal-
dual approach in which the lower bound of the shakedown load multiplier is calcu-
lated simultaneously with the upper one through a dual problem. The edge-based
smoothed finite element method (ES-FEM, [13]) and the DSG technique [2] were
used for the discretization of the problem domain. This technique has been recently
developed by Nguyen-Xuan et al. [17] in order to avoid the transverse shear locking
and to improve the accuracy of the numerical solution of Reissner-Mindlin plates.
Several benchmark plate problems in literature are investigated to test the perfor-
mance of the method in which the thickness of the plate varies from very thick to
very thin (below the Kirchhoff limit). Numerical examples demonstrate that the pro-
posed method not only exhibits excellent convergence and accuracy of solutions, but
also ensures that the total number of variables in the optimization problem is kept
to a minimum compared with the standard finite element formulation.

2 Governing Equations of Mindlin Plates

Consider a plate whose mid-surface occupies a closed area Ω with static boundary
∂Ωσ and kinematical boundary ∂Ωu as shown in Fig. 1. Let t be the plate thick-
ness, σy,E and ν the uniaxial yield stress, Young’s modulus and Poisson’s ratio of
the material, respectively. The normalized vectors of moments m, shear forces s,
curvatures κ and shear strains γ can be defined as

m = 1

M0

⎛
⎝Mxx

Myy

Mxy

⎞
⎠ , s = 1

S0

(
Sxx

Syy

)
,

κ = 1

κ0

⎛
⎝κxx

κyy
2κxy

⎞
⎠ , γ = 1

γ0

(
γxz
γyz

)
,

(1)

in which M0 = σyt
2/4, S0 = σyt, γ0 = σy(1 − ν2)/E,κ0 = 4γ0/t are normalized

quantities. Note that κ0 is defined by assuming the relation M0κ0 = S0γ0 to hold.
The non-dimensional stress and strain resultant vectors are introduced as follows

σ̂ = [
m s

]T
, ε̂ = [

κ γ
]T

. (2)

We denote the nodal variables of the plate element by q = [w θx θy ]T and load-
ing g = [0 0 p ]T acting on the plate where w is the transverse displacement; θx, θy
are the rotations around the y- and x-axes; and p is the transverse load. Using the
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Fig. 1 Plate subjected to
transverse load

stress and strain resultant vectors introduced above, the equilibrium conditions of
plates can be written as follows

Rσ̂ − g = 0, R =

⎡
⎢⎢⎣
M0

∂
∂x

0 M0
∂
∂y

S0 0

0 M0
∂
∂y

M0
∂
∂x

0 S0

0 0 0 S0
∂
∂x

S0
∂
∂y

⎤
⎥⎥⎦ . (3)

The kinematic relations can also be expressed by

ε̂ = Lq, L =

⎡
⎢⎢⎣

0 0 0 1
γ0

∂
∂x

1
γ0

∂
∂y

1
κ0

∂
∂x

0 1
κ0

∂
∂y

− 1
γ0

0

0 1
κ0

∂
∂y

1
κ0

∂
∂x

0 − 1
γ0

⎤
⎥⎥⎦

T

. (4)

The von Mises yield condition in the space of stress resultants takes the form

f (σ̂ ) =
√

σ̂ T Pσ̂ − 1 = 0, (5)

in which the matrix P is composed of moment and shear force components Pb and
Ps as follows

P =
[

Pb 0
0 Ps

]
, Pb =

⎡
⎣ 1 −1/2 0

−1/2 1 0
0 0 3

⎤
⎦ , Ps =

[
3 0
0 3

]
. (6)

The plastic dissipation function per unit area of the plate is defined as

Dp(κ̇, γ̇ ) = M0

√
κ̇T Qbκ̇ + 16

t2
γ̇ T Qs γ̇ = M0κ0

√
˙̂εT Q ˙̂ε, (7)
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where

Q = P−1 =
[

Qb 0
0 Qs

]
,

Qb = (
Pb
)−1 =

⎡
⎢⎣

4/3 2/3 0

2/3 4/3 0

0 0 1/3

⎤
⎥⎦ , Qs = (

Ps
)−1 =

[
1/3 0

0 1/3

]
.

(8)

3 The Edge-Based Smoothed Discrete Shear Gap Triangular
Element (ES-DSG3)

Similar to the FEM, the ES-FEM also uses a mesh of elements. When 3-node trian-
gular elements are used, the shape functions used in the ES-FEM are also identical
to those in the FEM, and hence the displacement field in the ES-FEM is also en-
sured to be continuous on the whole problem domain. However, in the ES-FEM the
strains are “smoothed” over local smoothing domains. These local smoothing do-
mains are constructed based on edges of the elements such that Ω =⋃Ned

i=1 Ω
(i) and

Ω(i) ∩Ω(j) = ∅ for i �= j , in which Ned is the total number of edges of all elements
in the entire problem domain. For triangular elements T3, the smoothing domain
Ω(i) associated with the edge i is created by connecting two end-points of the edge
to centroids of adjacent elements as shown in Fig. 2. The smoothed strains over the
smoothing domain Ω(i) are defined by

ε̃i = 1

A(i)

∫
Ω(i)

ε̂(x)dΩ, (9)

where A(i) is the area of the smoothing domain Ω(i). Let a point on the problem
domain Ω be identified by a vector variable x. In terms of nodal variable vectors
qI , the smoothing strain vector ε̃i can be written as

ε̃i =
N

(i)
n∑

I=1

B̃I (xi )qI , (10)

where N
(i)
n is the total number of nodes of elements containing the common edge i.

For inner edges (see Fig. 2) N
(i)
n = 4, for boundary edges N

(i)
n = 3. B̃I (xi ) is the

smoothed strain matrix on the domain Ω(i) which is calculated numerically by an
assembly process similar to the standard FEM

B̃(xi ) =
N

(i)
n∑

I=1

B̃I (xi ) = 1

A(i)

N
(i)
e∑

j=1

1

3
AjBj , (11)

in which N
(i)
e ,Aj ,Bj are the number of elements, the area and the strain matrix

of the j th element around the edge i, respectively. For inner edges (see Fig. 2)
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Fig. 2 Division of the
domain into triangular
elements and smoothing cells
Ω(k) connected to edge k of
triangular elements

N
(i)
e = 2, for boundary edges N

(i)
e = 1. The matrix Bj is exactly the strain matrix

of the T3 element in the standard FEM. When linear elements are used, the entries
of Bj and therefore of B̃I (xi ) are also constants.

For thick plate elements, the strain-displacement matrix B and material matrix D
are composed of moment and shear force components Bb,Db and Bs ,Ds as follows

B =
[

Bb

Bs

]
, D =

[
Db 0
0 Ds

]
. (12)

The moment components Bb and Db are defined similarly to the standard T3
plate elements. In order to avoid the transverse shear locking, the stabilized DSG
technique proposed by Bischoff and Bletzinger [1] is used to formulate the shear
force components Bs and Ds to give a so-called edge-based smoothed discrete shear
gap T3 element (ES-DSG3). Details of the formulations of Bs and Ds can be found
in Nguyen-Xuan et al. [17].

The stiffness matrix of the smoothing domain Ω(i) is calculated by

K̃(i) =
∫
Ω(i)

B̃T
I DB̃I dΩ = A(i)B̃T

I DB̃I , (13)

and the global stiffness matrix is then assembled from all domain stiffness matrices
K̃(i) by a similar process as in the FEM.

4 Shakedown Analysis of Mindlin Plates

4.1 Lower Bound Formulation

Consider a convex polyhedral load domain L and a special loading path consisting
of all load vertices P̂k (k = 1, . . . ,m) of L. The convex property of the load domain
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and yield function allow us to replace the time-dependent stress field σ̂ (x, t) by its
values calculated at load vertices σ̂ (x, P̂k). Let the fictitious elastic stress resultant
vector be σ̂E and a statically admissible time-independent stress resultant field be ρ̄.
Based on the static shakedown theorem, the lower bound shakedown load multiplier
α− can be found from a constrained maximization problem as follows

α− = maxα

subjected to:
{

Rρ̄(x) = 0 in Ω,

f (ασ̂E
(x, P̂k) + ρ̄(x)) ≤ 0 ∀k = 1,m; in Ω.

(14)

The first constraint in (14) ensures that the equilibrium of the residual stress
field ρ̄ is fulfilled. The second constraint means that the actual stress resultant field
σ̂ = ασ̂E + ρ̄ does not anywhere violate the yield condition in (5). Using ES-FEM
to discretize the weak form of the equilibrium equations and the yield condition, the
maximization problem (14) can be reformulated as

α− = maxα

subjected to:

⎧⎪⎪⎨
⎪⎪⎩

Ned∑
i=1

A(i)B̃T
i ρ̄i = 0,

f (ασ̃E
ik + ρ̄i ) ≤ 0 ∀i = 1,Ned,∀k = 1,m

(15)

in which σ̃E
ik is the fictitious elastic stress resultant vector on the smoothing domain

i at load vertex P̂k .

4.2 Upper Bound Formulation

Let � ˙̂ε denote the strain resultant rates accumulated over the loading cycle which
goes through all load vertices P̂k of L, thus we have � ˙̂ε = ∑m

k=1
˙̂εk . At each load

vertex, the kinematical condition may not be satisfied, however the accumulated
strains over a load cycle � ˙̂ε must be kinematically compatible i.e. � ˙̂ε = Lq̇. Ac-
cording to the kinematic theorem of shakedown, the upper bound shakedown load
multiplier α+ may be formulated by the following form

α+ = min
m∑

k=1

∫
Ω

Dp( ˙̂εk)dΩ

subjected to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� ˙̂ε =
m∑

k=1

˙̂εk = Lq̇ in Ω,

m∑
k=1

∫
Ω

M0κ0σ̂
E
(x, P̂k)

T ˙̂εkdΩ = 1,

(16)
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in which the second constraint is the normalization of the external power of loading.
By using ES-FEM and the plastic dissipation defined in (7), the discretized form of
the minimization problem (16) is rewritten as

α+ = min
m∑

k=1

Ned∑
i=1

A(i)M0κ0

√
˙̃εT
ikQ ˙̃εik

subjected to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑
k=1

˙̃εik = B̃i q̇ ∀i = 1,Ned,

m∑
k=1

Ned∑
i=1

A(i)M0κ0 ˙̃εT
ikσ̃

E
ik = 1.

(17)

Note that when m = 1, i.e. the loads are constant, the formulations (15) and (17)
reduce to those of limit analysis.

5 Duality Between Lower and Upper Bounds

The minimum and maximum problems resulting from the static and kinematic the-
orems presented above are actually dual. To prove this duality, we first introduce
some new notations

ėik = A(i)Q1/2 ˙̃εik, tik = M0κ0
(
Q−1/2)T σ̃E

ik, B̂i = A(i)Q1/2B̃i , (18)

so that these following relations hold

Q1/2Q−1/2 = I, Q = (
Q1/2)T Q1/2. (19)

Introducing these new notations into Eq. (17) gives (primal problem)

α+ = min
m∑

k=1

Ned∑
i=1

M0κ0

√
ėTik ėik

subjected to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑
k=1

ėik − B̂i q̇ = 0 ∀i = 1,Ned,

m∑
k=1

Ned∑
i=1

ėTiktik − 1 = 0.

(20)

Now, we can write the Lagrangian for the primal problem (20)

L =
Ned∑
i=1

{
m∑

k=1

M0κ0

√
ėTik ėik −βT

i

(
m∑

k=1

ėik − B̂i q̇

)}
−α

(
m∑

k=1

Ned∑
i=1

ėTiktik −1

)
, (21)
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with the Lagrange multipliers βi,α. The duality between the upper and lower
bounds is proven through the two following propositions.

Proposition 1 If there exists a finite solution α+ for the upper bound shakedown
load multiplier (20), then α+ has its dual form as

α+ = max
βi ,α

α

subjected to:

⎧⎪⎪⎨
⎪⎪⎩

Ned∑
i=1

B̂T
i βi = 0, (a)

‖βi + tikα‖ ≤ M0κ0. (b)

(22)

Proof By using the Lagrangian introduced in (21), the dual problem of the primal
problem takes the form

max
βi ,α

(
min
ėik ,q̇

L
)
. (23)

Since a finite solution for the problem (20) exists, the two constraints in (20) are
affine, the objective function in (20) is convex, thus according to the strong duality
theorem, there exists no gap between primal and dual problems. It follows that

min
h(ėik ,q̇)=0

m∑
k=1

Ned∑
i=1

M0κ0

√
ėTik ėik = max

βi ,α

(
min
ėik ,q̇

L
)
, (24)

in which h(ėik, q̇) = 0 stands for two linear constraints in (20). The Lagrangian in
(21) may be rewritten as

L =
Ned∑
i=1

m∑
k=1

(
M0κ0ėik√

ėTik ėik
− βi − tikα

)T

ėik +
Ned∑
i=1

βT
i B̂i q̇ + α. (25)

Note that in Eq. (25) we accepted a convention that if the vector norm of the

strain rate ‖ėik‖ is equal to zero, then M0κ0ėTik ėik/
√

ėTik ėik = 0. Since there is no
gap between the primal and dual problems, it is required that for any solution set of
Lagrange multipliers βi,α, the Lagrange dual function g(β i , α) = minėik ,q̇ L must
have a finite value. To fulfill this, the following system must be satisfied

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
M0κ0ėik√

ėTik ėik
− βi − tikα

)T

ėik ≥ 0 ∀ėik, (a)

Ned∑
i=1

βT
i B̂i q̇ = 0 ∀q̇. (b)

(26)
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Otherwise the following situation may occur

g(βi , α) = min
ėik ,q̇

L → −∞, (27)

which of course violates the strong duality theorem. Taking the system (26) into
(25) leads to the conclusion

g(βi , α) = min
ėik ,q̇

L = α. (28)

The condition (16b) is equivalent to

Ned∑
i=1

B̂T
i βi = 0. (29)

Furthermore, we can prove that the condition (26a) is equivalent to the following
inequality constraint

‖βi + tikα‖ ≤ M0κ0 ∀i, k. (30)

Firstly, if the inequality (30) holds, then the Cauchy-Schwartz inequality permits
us to write

(βi + tikα)T ėik ≤ ‖βi + tikα‖ · ‖ėik‖ ≤ M0κ0‖ėik‖ = M0κ0

√
ėTik ėik ∀ėik, (31)

which is equivalent to the condition (26a). Secondly, if on the contrary we find a set
(βi, α) satisfying

‖βi + tikα‖ >M0κ0, (32)

we can always choose a strain rate vector ˜̇eik such that the angle between this vector
and the vector b = βi + tikα is equal to zero, or bT ˜̇eik = ‖b‖ · ‖˜̇eik‖. It follows that

bT ˜̇eik = ‖b‖ · ‖˜̇eik‖ >M0κ0‖˜̇eik‖ = M0κ0

√
˜̇eTik ˜̇eik = M0κ0

˜̇eTik ˜̇eik√
˜̇eTik ˜̇eik

, (33)

or (
M0κ0 ˜̇eik√

ėTik ėik
− βi − tikα

)T

˜̇eik < 0, (34)

which violates the condition (26a). Equalities (28), (29) and inequality (30) con-
clude our proof. �

Proposition 2 If there exists a finite solution α+ for the upper bound shakedown
load multiplier (20), then the static formulation (15) is exactly the dual problem of
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the kinematic problem (20) such that

α+ = min
h(ėik ,q̇)=0

m∑
k=1

Ned∑
i=1

M0κ0

√
ėTik ėik = max{∑Ned

i=1 A(i)B̃T
i ρ̄i=0

f (ασ̃E
ik+ρ̄i )≤0

α = α−. (35)

Proof The left-hand side of the inequality (22b) can be rewritten as

‖βi + tikα‖ = ∥∥βi + M0κ0
(
Q−1/2)T σ̃E

ikα
∥∥

=
∥∥∥∥M0κ0

(
Q−1/2)T [ (Q1/2)T βi

M0κ0
+ σ̃E

ikα

]∥∥∥∥
= M0κ0

{[
(Q1/2)T βi

M0κ0
+ σ̃E

ikα

]T

× Q−1/2(Q−1/2)T [ (Q1/2)T βi

M0κ0
+ σ̃E

ikα

]}1/2

= M0κ0

{[
(Q1/2)T βi

M0κ0
+ σ̃E

ikα

]T

Q−1
[
(Q1/2)T βi

M0κ0
+ σ̃E

ikα

]}1/2

. (36)

Using (5), (7), (8) and (36), the inequality (22b) now becomes

f
(
ασ̃E

ik + ρ̄i

)≤ 0, (37)

with ρ̄i = (Q1/2)T βi/M0κ0. Substitute B̂i by B̃i from (18) and then (Q1/2)T βi by
M0κ0ρ̄i in (22a), one has

Ned∑
i=1

B̂T
i βi =

Ned∑
i=1

A(i)B̃T
i

(
Q1/2)T βi = M0κ0

Ned∑
i=1

A(i)B̃T
i ρ̄i = 0 (38)

or
Ned∑
i=1

A(i)B̃T
i ρ̄i = 0. (39)

Equality (39) and inequality (37) conclude our proof. �

The vector ρ̄i = (Q1/2)T βi/M0κ0 can be interpreted as the time-independent
residual stress resultant vector: the value of this vector is calculated on each smooth-
ing domain, independently of load vertices or, in other words, independently of time.
On the other hand, the Lagrange multiplier α represents the lower bound shakedown
load factor.

Based on the duality between lower and upper bounds, an iterative primal-dual
optimization algorithm was proposed to calculate both the upper and lower bounds
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of the shakedown load of plates. Firstly, we can write the Karush-Kuhn-Tucker
(KKT) optimality conditions of the Lagrangian in (21) as follows

∂L

∂ ėik
=
(
M0κ0

ėik√
ėTik ėik

)
− βi − αtik = 0,

∂L

∂q̇
= βT

i B̂i = 0, (40)

∂L

∂α
=
(

m∑
k=1

Ned∑
i=1

ėTiktik − 1

)
= 0.

By using the Newton’s method to solve the optimality conditions (40) and after
some manipulations, we get the following system of linear equations

Kdq̇ = −Kq̇ + f1 + f2(α + dα), (41)

where

K =
Ned∑
i=1

B̂T
i E−1

i B̂i ,

f1 = −
Ned∑
i=1

B̂T
i E−1

i

m∑
k=1

M−1
ik (β i + αtik)

ėTik ėik√
ėTik ėik + ε2

0

,

f2 =
Ned∑
i=1

B̂T
i E−1

i

m∑
k

M−1
ik

√
ėTik ėik + ε2

0tik, (42)

Mik = M0κ0I + (β i + αtik)
ėTik√

ėTik ėik + ε2
0

,

Ei =
m∑
k

M−1
ik

√
ėTik ėik + ε2

0

and ε2
0 is a small positive number, e.g. 10−20. The system (41) can be considered

as the linear system arising in purely elastic computations with the global stiffness
matrix K and the elastic matrix E−1

i . At each optimization iteration, by solving this
system we will get the incremental vector of nodal variables dq̇ and then the incre-
mental vectors d ėik , dβi and dα. The vectors dq̇, d ėik , dβi and dα are actually
Newton directions which assure that a suitable step along them will lead to a de-
crease of the objective function of the primal problem (20) and to an increase of
the objective function of the dual problem (22). Iterating these steps a stable set of
q̇, ėik , βi and α is obtained satisfying all conditions in (20) and (22). A detailed
explanation of the primal-dual algorithm can be found in Vu et al. [22].
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Fig. 3 Geometrical dimensions (a) and FE-mesh (b) of rectangular plate with eccentric square
cutout

6 Validations

In this section, two numerical examples are presented to evaluate the performance
of the proposed method. Two plates that have different slenderness ratios, subjected
either to uniform out-of-plane pressure loading or concentrated load are considered.
In all examples, the structures are made of elastic-perfectly plastic material and 3-
node triangular element T3 is used to discretize the structural domains. For each test
case, some existing analytical and numerical solutions found in literature are briefly
represented and compared.

6.1 Rectangular Plate with Eccentric Square Cutout

Consider a rectangular plate of thickness t with an eccentric square cutout subjected
to an out-of-plane uniform pressure as depicted in Fig. 3(a). This problem was ex-
amined previously using the adaptive element-free Galerkin method, kinematic limit
analysis and the Kirchhoff plate assumptions [9]. All external and internal edges of
the plate are simply supported or built-in and the pressure p can be constant or vary
within a range p ∈ [0,pmax]. The plate is modelled by 1152 T3 elements (Fig. 3(b)).

Figure 4 depicts the convergence of the upper and lower bounds of the plastic
collapse and shakedown load multipliers, given in dimensionless form pab/M0,
for the case of a simply supported plate with the slenderness ratio b/t = 40. The
lower and upper bounds are nearly stationary after 5 optimization iterations for both
limit and shakedown analyses. The normalized plastic collapse load factor is 48.684
which is comparable with 51.45 obtained by Le [9]. Solutions for the corresponding
Reissner-Mindlin plate are not found in literature.

The plastic collapse and shakedown loads of the plate are calculated for the dif-
ferent boundary conditions with several plate slenderness ratios, and presented in
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Fig. 4 Convergence of
plastic collapse and
shakedown load factors of a
rectangular plate

Fig. 5 Plastic collapse and
shakedown loads of a
rectangular plate

Fig. 5. In all cases, only one value is presented since the lower bound is identi-
cal with the upper one and the results are normalized with pab/M0. It is seen that
the performance of the proposed method is effective and free of locking when the
slenderness ratio becomes very large.

6.2 Rhombic Plates

The next example involves rhombic plates under an out-of-plane uniform load p.
Geometry and FE mesh are shown in Fig. 6. This problem was previously studied
either analytically by Mansfield [14] or numerically by Capsoni and Vicente da
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Fig. 6 Geometrical dimensions (a) and FE-mesh (b) of a rhombic plate

Table 1 Limit loads of thin rhombic plates subjected to a uniform pressure (pr2/M0) with 2r/t =
20

α(◦) Simply supported Clamped

Kirchhoff, upper
bound, [3]

Reissner-Mindlin Kirchhoff, upper
bound, [3]

Reissner-Mindlin

30 5.140 4.807 9.757 9.359

45 5.609 5.403 10.596 10.488

60 5.966 5.827 11.394 11.303

75 6.197 6.019 11.893 11.799

90 6.278 6.278 12.062 11.928

Silva [4] using the Kirchhoff plate assumptions. All edges of the plate are simply
supported or built-in and the uniform load p can be constant or varying within a
range p ∈ [0,pmax].

We consider first thin rhombic plates with the slenderness ratio 2r/t = 20. Nu-
merical limit analysis for the different skewness angles α was carried out and the
results are collected in Table 1 and compared with the least upper bounds obtained
by Capsoni and Vicente da Silva [4]. It is seen that our numerical solutions are al-
ways smaller than those of Capsoni and Vicente da Silva (the maximum difference
is 6.5 % and 4.1 % for α = 30◦) except for the case of simply supported edges with
α = 90◦, in which they are identical. This difference may be interpreted by the two
following observations: (1) The solutions obtained by Capsoni and Vicente da Silva
are pure upper bounds and (2) for skew plates (α �= 90◦), the bending moments at
obtuse corners tend to zero for the Reissner-Mindlin plate while they tend to infinity
for the Kirchhoff plate as pointed out by Häggblad and Bathe [7].

Figure 7 depicts the convergence of the upper and lower bounds of the plastic
collapse and shakedown load multipliers, given in dimensionless form pr2/M0, for
the case of simply supported plate with α = 60◦.
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Fig. 7 Convergence of
plastic collapse and
shakedown load factors of
rhombic plate

Fig. 8 Plastic collapse and
shakedown loads of rhombic
plate with skewness angles
α = 60◦

Choosing the rhombic plate with the skewness angle α = 60◦, we study now the
performance of the present method for several plate slenderness ratios. The graph
in Fig. 8 shows the normalized plastic collapse and shakedown loads calculated for
different boundary conditions. We may also see that the results are nearly unchanged
even if the thickness of the plate becomes very small (below the Kirchhoff limit).
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Progress in Plastic Design of Composites

Min Chen and Abdelkader Hachemi

Abstract In this paper, the lower-bound of direct methods is applied to fiber re-
inforced metal matrix periodic composites. Three boundary conditions for the lo-
calization problem are discussed and the influence of hardening matrix material is
studied. Furthermore, in combination with homogenization theory, plastic material
parameters are predicted by using yield loci fitting on the macroscopic limit stress
domain. The proposed approach is validated through a numerical example of unidi-
rectional periodic composites with square fiber patterns.

1 Introduction

To predict safe service conditions of structures or structural elements made of het-
erogeneous materials under variable loads beyond elasticity is a challenging task
in civil and mechanical engineering. There are two major difficulties: to consider
variable loads with unknown evolution in time and to determine the effective ma-
terial properties. The former difficulty can be overcome by direct methods (DM),
namely limit and shakedown analysis. Limit analysis only requires the load range,
and shakedown analysis needs the envelope of the independent loads [13]. There-
fore, the application of DM to composites arose many interests these years. To solve
the latter difficulty, multi-scale modeling method and homogenization theory are in-
volved [27]. Either using the lower-bound [14, 23, 33, 34] or upper-bound [3, 21, 22]
approach, periodic composites are investigated at the representative volume element
(RVE) level with the elastic perfectly plastic material properties of each phase.

DM has been formulated for structures assuming elastic perfectly plastic material
behavior. However, work-hardening occurs most notably for ductile materials, like
metals. Thus DM for plasticity models with hardening has also been investigated for
long time [15, 16, 18, 20, 32], where the studied objects are homogeneous global
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structures [2, 19, 25]. In this work, we applied the lower-bound approach of DM to
periodic composites with the consideration of work-hardening.

As the global effective material properties are concerned, in [7], homogenized
elastic parameters are obtained basing on the homogenization theory and the con-
stitutive laws of elastic materials. The plastic properties are only studied for the
composites under plane stress case by using yield loci fitting. Here, the predictions
for unidirectional periodic composites are discussed.

The numerical tools required for the lower-bound approach are the finite-element
method and non-linear optimization. To reduce the scale of optimization problem,
non-conforming three-dimensional finite elements are used to discretize the RVE,
and the interior-point-algorithm based optimization tool (IPOPT) [29, 31] together
with the pre-programming language AMPL [11] are used.

2 Direct Methods Applied to Composites

2.1 Elements of Homogenization Theory

For periodic heterogeneous media, two different scales are adopted: the macroscopic
(or global) scale and the mesoscopic (or local) scale. The homogenization method
describes the relation between these two scales mainly by two stages: localization
and globalization [27].

With x and ξ as the global and local coordinates (Fig. 1), respectively, the fol-
lowing relationship holds:

ξ = x

δ
, (1)

δ is a small scale parameter, which determines the size of the representative volume
element (RVE). It plays an important role in studying the heterogeneous material,
especially for non-uniform structures. For a heterogeneous material with periodic
distribution, the smallest possible unit is normally defined as the RVE. The macro-
scopic strain E and stress Σ are linked to mesoscopic strain ε and stress σ by:

E(x) = 1

V

∫
V

ε(ξ)dV = 〈
ε(ξ)

〉
, (2)

Σ(x) = 1

V

∫
V

σ (ξ)dV = 〈
σ (ξ)

〉
. (3)

Here, 〈·〉 stands for the averaging operator. In DM for periodic heterogeneous mate-
rials, the macroscopic stress is decomposed as [34]:

Σ = 1

V

∫
V

(
ασE + ρ̄

)
dV = 1

V

∫
V

ασE dV + 1

V

∫
V

ρ̄ dV with
1

V

∫
V

ρ̄ dV = 0

(4)
where α is the safety factor, σE is the purely elastic stress field and ρ̄ is the time-
independent residual stress field.
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Fig. 1 Homogenization theory

2.2 Boundary Conditions

One of the difficulties in the localization problem lies in introducing appropriate
boundary conditions. Usually, three types of boundary conditions are considered on
the local scale [1, 27].

Strain approach Uniform strain is imposed on ∂V ,

u = E · ξ on ∂V . (5)

Stress approach Uniform stress is imposed on ∂V ,

σ · n = Σ · n on ∂V . (6)

Periodicity Constraints are required for both fields.

• The stress vectors on the opposite sides have the same value but opposite direc-
tion,

σ · n anti-periodic. (7)

• The local strain can be split into an overall strain E and a fluctuating field εper,
where the average of εper over RVE vanishes,

ε(u) = E + ε
(
uper)= E + εper, (8)

〈
εper〉= 0. (9)

In the numerical implementation, to carry out the strain approach, uniform dis-
placement is imposed on the boundary, see Fig. 2(L). For Stress approach, besides
the uniform stress imposed on the boundary, one degree of freedom of the boundary
is coupled in order to maintain the periodic deformation, as shown in Fig. 2(M).
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Fig. 2 Boundary conditions

Fig. 3 Deformations of the
non-periodic RVE under
different boundary conditions

These two approaches are normally suitable for the periodic RVE, while the third
one is more realistic, especially for non-periodic unit cell. Figure 2(R) describes the
constraints for periodicity method:

u′
i − ui + ud

i = 0 (10)

here, u′
i and ui are the displacements of the relative opposite periodic node pairs and

ud
i is the macroscopic displacement. Figure 3 illustrates the deformations of a non-

periodic RVE under pure thermal loading by using strain approach and periodicity
approach, respectively.

The common ground in these three approaches is the consistent deformation of
boundaries. The strain energies, by using different boundary conditions, are ordered
in the following way [27]:

E : d̂hom : E ≤ E : dhom
per : E ≤ E : d̃hom : E. (11)

d̂hom, dhom
per and d̃hom are the 4th order tensors of elastic stiffness, under uniform

stress, periodicity and uniform strain, respectively, which depend on the micro vari-
able ξ .

The objective studied in this work is the periodic composites under mechanical
loading, and the strain approach was adopted as the boundary condition. The local-
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ization of the elastic mechanical problem can be written as [14]:

Pstrain =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divσE = 0 in V ,

σE = d : (E + εper) in V ,

σE · n anti-periodic on ∂V ,

uper periodic on ∂V ,

〈ε〉 = E.

(12)

The residual stress field ρ̄ should satisfy the self-equilibrium condition and peri-
odicity conditions:

Pres
strain =

{
divρ̄ = 0 in V ,

ρ̄ · n anti-periodic on ∂V .
(13)

Anti-periodicity means that either σE ·n or ρ̄ ·n has opposite values on opposite
sides of ∂V . Periodicity of uper indicates that the displacements at two opposite
points of the boundary are the same. For strain approach, we assume that uper = 0
and εper = 0.

2.3 Finite Element Discretization

In order to satisfy the equilibrium conditions for the elastic stress σE and time-
independent residual stress ρ̄ in weak form, the principle of virtual work, demanding
that the external virtual work equals to the internal virtual work for unrelated but
consistent displacements and strains, is used:∫

V

{δε}T {ασE + ρ̄
}
dV =

∫
∂V

{δu}T {p}dS +
∫
V

{δu}T {f}dV. (14)

Here, δε is the virtual strain, and δu is the virtual displacement. p and f are
surface force and body force, respectively. For periodic heterogeneous materials,
the external loads can be either macroscopic stresses Σ or macroscopic strains E.
The left side of Eq. (14) implies that the discretization here has to be carried out
for the purely elastic stress field σE and the residual stress field ρ̄. Since the scale
of the optimization problem is mainly determined by the type and the number of
finite elements, the choice of a proper element type is very important. In this work,
a non-conforming solid element was applied in the limit and shakedown analysis of
composites because of its accuracy and efficiency [5].

The lower-bound problem of DM for periodic composites with elastic perfectly
plastic material model can be formulated finally as the following mathematical pro-
gramming:

max α

{ [C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σY i) ≤ 0, i ∈ [1,NGS]. (15)
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α is the load factor, Pk is the vertices of load envelope and NGS is the number of
Gaussian points and σY is the yield strength. F is the von Mises yield criterion.

2.4 Large Scale Optimization

The lower-bound approach of DM applied to a real structure or structural element
will lead usually to a large scale optimization problem. To solve such kind of prob-
lem, there are many optimization algorithms and corresponding software pack-
ages, like LANCELOT [9], which is based on an augmented Lagrangian method,
and IPDCA (Interior Point with DC regularization Algorithm), which is based on
interior-point method and especially designed for shakedown problems. The effi-
ciency of IPDCA was proved in [17]. However, the present version is suitable for
elastic perfectly plastic material model. Another user-developed software package is
IPSA [24, 25], which is also based on interior-point method. The additional selective
algorithm makes the application of DM on large structures possible. In this work,
AMPL+IPOPT are adopted as the numerical solver [4]. AMPL (A Modeling Lan-
guage for Mathematical Programming) is a comprehensive and powerful algebraic
modeling language for linear and nonlinear optimization problems with discrete or
continuous variables [11]. IPOPT, short for “Interior Point OPTimizer” is an open
software library for large scale nonlinear optimization of continuous systems [30].

3 Hardening Material Models

DM with hardening has been investigated for long time, however, the studied objects
are only homogeneous global structures [2, 19, 24].

Here, the lower-bound approach of DM for periodic composites with the con-
sideration of hardening matrix is applied on the RVE. The material model for the
fiber is assumed as elastic perfectly plastic. Some abbreviations used in this work
are introduced in Table 1.

3.1 Isotropic Hardening

The isotropic hardening material model assumes that the yield surface increases in
size, but keeps its shape. The subsequent yield surface and initial yield surface have
the same center, as shown in Fig. 4.

The lower-bound approach of DM with isotropic hardening matrix can be for-
mulated as:

max α

⎧⎪⎨
⎪⎩

[C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σ

f
Y i) ≤ 0, i ∈ [1,NGSF],

F (ασE
j (Pk) + ρ̄j , σ

m
Uj ) ≤ 0, j ∈ [1,NGSM]

(16)
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Table 1 Abbreviations of some terms

Term Meaning

NE Number of elements

NK Number of nodes

NGE Number of Gaussian points of each element (in this work, NGE = 8)

NGSF Number of Gaussian points for Fiber

NGSM Number of Gaussian points for Matrix

NGS Number of total Gaussian points, NGS = NGE × NE = NGSF + NGSM

NL Number of load vertices: NL = 1, limit analysis; NL = 2n, shakedown anal-
ysis. n is the number of independent loads

Fig. 4 Isotropic hardening

Fig. 5 Unlimited kinematic
hardening

where σm
Uj is the ultimate strength for the matrix. Superscript ‘m’ and ‘f’ indicate

matrix and fiber respectively.

3.2 Unlimited Kinematic Hardening

The kinematic hardening model allows the yield surface to translate, without chang-
ing its shape, as shown in Fig. 5. π is the time-independent back stress. The dis-
cretized formulation of the lower-bound problem for the linear unlimited kinematic
hardening condition is:

max α

⎧⎪⎪⎨
⎪⎪⎩

[C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σ

f
Y i) ≤ 0, i ∈ [1,NGSF]

F(ασE
j (Pk) + ρ̄j − π̄ j , σ

m
Yj ) ≤ 0, j ∈ [1,NGSM]

(17)
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Fig. 6 Limited kinematic
hardening

Fig. 7 Conditions a and b in
limited kinematic hardening

where π̄ is the back stress field. It is important to note that, for matrix with unlim-
ited kinematic hardening, there is no optimal solution for limit analysis, since the
ultimate strength of the material is infinite.

3.3 Limited Kinematic Hardening

To overcome the shortcoming of the unlimited linear kinematic hardening material
model, two-surface model of limited kinematic hardening has been introduced [32],
as shown in Fig. 6. With the consideration of the linear limited kinematic hardening,
the lower bound problem has an analogous discretized form like unlimited kine-
matic hardening. Moreover, due to the back stress limitation, there is an additional
inequality constraint, as shown in (18a) or (18b).

max α

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[C]{ρ̄} = 0,

F (ασE
i (Pk) + ρ̄i , σ

f
Y i) ≤ 0, i ∈ [1,NGSF],

F (ασE
j (Pk) + ρ̄j − π̄ j , σ

m
Yj ) ≤ 0, j ∈ [1,NGSM],

F (ασE
j (Pk) + ρ̄j , σ

m
Uj ) ≤ 0, (a)

or F(π̄ j ,σ
m
Uj − σm

Yj ) ≤ 0. (b)

(18)

As shown in Fig. 7, Eq. (18a) indicates that the subsequent yield surfaces stays
always inside the bounded loading surface [32]. Equation (18b) means that motion
of the origin center of the subsequent yield surface is bounded by the back stress
surface [26]. The mathematical equality of both conditions is proved in [19]. Never-
theless, the obtained optimized value of back stresses under the two conditions are
slightly different [6].
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Table 2 Sizes of optimization problem with different material models

Material model No. Var No. Eq No. Ineq.

Elastic-perfectly plastic 6NGS + 1 3NK + 9NE NL × NGS

Isotropic hardening 6NGS + 1 3NK + 9NE NL × NGS

Unlimited kinematic hardening 6NGS + 6NGSM + 1 3NK + 9NE NL × NGS

Limited kinematic hardening (a) 6NGS + 6NGSM + 1 3NK + 9NE NL × (NGS + NGSM)

Limited kinematic hardening (b) 6NGS + 6NGSM + 1 3NK + 9NE NL × NGS + NGSM

With the assumption that the material model of fiber is elastic, the material model
of matrix is elastic-perfectly, isotropic hardening, unlimited kinematic hardening
and limited kinematic hardening, respectively, the sizes of static shakedown problem
are shown in Table 2.

4 Failure Criterion for Composites

Every material has certain strength, expressed in terms of stress or strain, beyond
which the structure fractures or fails to carry the load. For heterogeneous materials,
consisting of two or more phases, the determination of failure criteria is in fact
one of the most important issues in the design process. Some phenomenological
failure criteria that use experimental data to determine material constants have been
proposed, like maximum stress theory, maximum strain theory, distortional energy
(Tsai-Hill) criterion, Tsai-Wu criterion, Hashin’s criterion and so on [28].

In this section, a general method to identify material parameters for a given fail-
ure criterion for composites is proposed and discussed.

4.1 Definition of Homogenized Stress

The effective elastic material properties related to different fiber distributions and
volume fractions, are predicted with the aid of homogenization theory and mechan-
ical constitutive law [4], which can be generally described as:

Σ = dhom : E, (19)

dhom are the homogenized elasticity tensor.
Homogenized plastic material properties can be determined experimentally or

numerically. Although the results from experiments are generally more accurate,
the cost is normally very high and only the strength in one or more principle di-
rections may be obtained. Through the numerical method, we provide a rough but
complete prediction of plastic properties after neglecting some defects caused in the
manufacturing process.
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In our former work, the yield criterion of periodic composites under plane stress
case are discussed [7]. Firstly, three states during the failure are defined [8, 12]:

• Onset of plasticity (Homogenized elastic stress): ΣEL = αEL〈σE〉.
• Shakedown state (Homogenized shakedown stress): ΣSD = αSD〈σE〉.
• Limit state (Homogenized limit stress): ΣLM = αLM 〈σE〉.

〈σE〉 is the homogenized macroscopic stress of purely elastic stress field. Based
on limit homogenized macroscopic stress domain, there are two possibilities to de-
rive the yield criteria:

• To find the best fitted mathematical formulation;
• To identify the related parameters by using existing yield criteria.

The former approach seems quite difficult because of the uncertainty of the number
of parameters. Therefore, the latter is adopted to seek a feasible solution. Since
the studied object in the numerical example is the unidirectional fiber reinforced
periodic composites, whose global material behavior can be treated as an orthotropic
one, Hill’s yield criterion is hypothesized to fit the limit domain.

However, the stress components, either in micro-/mesoscropic level σij or in
macroscopic level Σij depend on the orientation of the coordinate system. Never-
theless, there are certain invariants associated with every tensor. The three principle
stresses are calculated through the characteristic equation:

σ 3 − I1σ
2 + I2σ + I3 = 0, (20)

I1, I2 and I3 are the first, second, and third stress invariants, respectively.

4.2 Projection into π -Plane

In principle stresses, Hill’s yield criterion is written as:

F(σ2 − σ3)
2 + G(σ3 − σ1)

2 + H(σ1 − σ2)
2 = 1 (21)

with:

F = 1

2

(
1

Y 2
+ 1

Z2
− 1

X2

)
,

G = 1

2

(
1

Z2
+ 1

X2
− 1

Y 2

)
, (22)

H = 1

2

(
1

X2
+ 1

Y 2
− 1

Z2

)
.

Here X,Y and Z are axial strengths of the orthotropic material. σ1 = σ2 = σ3 is
defined as the hydrostatic axis, σ1 + σ2 + σ3 = 0 is named as π -plane or deviatoric
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Fig. 8 Illustration of two
coordinate systems

plane. Hill’s yield surfaces in principal stress coordinate circumscribes an ellipse
column around the hydrostatic axis.

Let (x1–y1–z1) and (x2–y2–z2) denote the original principle stress and trans-
formed coordinate systems, respectively. As shown in Fig. 8, z2 is coincident with
the hydrostatic axis.

(x2–y2–z2) can be achieved using a specific sequence of intrinsic rotations (mo-
bile frame rotations), whose values are called the Euler Angles of the target frame.
Here we use “y-convention”, i.e. (Z,Y ′,Z′′):

• Rotate the x1y1z1 -system about the z1-axis (Z) by angle ϕ;
• Rotate the current system about the new y-axis (Y ′) by angle θ ;
• Rotate the current system about the new z-axis (Z′′) by angle φ.

⎧⎨
⎩

x1
y1
z1

⎫⎬
⎭= T

⎧⎨
⎩

x2
y2
z2

⎫⎬
⎭ . (23)

T is the rotation matrix,

Tx1y1z1 =
⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎞
⎠
⎛
⎝cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎞
⎠
⎛
⎝cosφ −sinφ 0

sinφ cosφ 0
0 0 1

⎞
⎠ . (24)

Here, ϕ = π
4 , θ = tan−1(

√
2) and φ = −π

4 .
Let: ⎧⎨

⎩
σ1
σ2
σ3

⎫⎬
⎭= T

⎧⎨
⎩

γ1
γ2
γ3

⎫⎬
⎭ ,

the projection of Hill criterion into π -plane is:

(F +1.866H +0.134G)γ 2
1 +(F +0.134H +1.866G)γ 2

2 +(G−2F +H)γ1γ2 = 1.
(25)

Equation (25) implies that the projection of Hill criterion onto π -plane is an ellipse.
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Fig. 9 Projection of the von
Mises yield criterion

4.2.1 Homogeneous Material

For homogeneous material, X = Y = Z, i.e. F = G = H , which leads to the von
Mises yield criterion, as shown in Eq. (26). It is a special case of Hill’s yield criterion
and there is only one parameter to determine:

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 − 2σ 2

Y ≤ 0. (26)

If the von Mises criterion is projected to π plane, Eq. (25) can be written as:

γ 2
1 + γ 2

2 = C with C = 1

3F
= 2

3
σ 2
Y . (27)

The projection of the von Mises yield criterion on (σ1, σ2)-plane and π -plane is
shown in Fig. 9, and the ellipse from Hill’s criterion becomes a circle.

4.2.2 Transversely Homogeneous Material

For transversely homogeneous material, with the assumption Y = Z, i.e. G = H ,
Eq. (25) can be written as:

(F + 2H)γ 2
1 + (F + 2H)γ 2

2 + (2H − 2F)γ1γ1 = 1. (28)

There is two parameters to determine. From Eq. (22), we may obtain:

F = 1

2

(
2

Y 2
− 1

X2

)
; G = H = 1

2

(
1

X2

)
. (29)
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Rewrite Eq. (29):

X = 1√
2H

; Y = 1√
F + H

. (30)

An ellipse in general position can be expressed parametrically as the path of a
point (x(t), y(t)), where:

x(t) = xc + a cos(t) cos(ψ) − b sin(t) sin(ψ),

y(t) = yc + a cos(t) cos(ψ) + b sin(t) sin(ψ).
(31)

Here, (xc, yc) is the center of the ellipse, ψ is the angle between the X-axis and the
major axis of the ellipse, parameter t varies from 0 to 2π , a and b are major and
minor radii, respectively.

In the case of transversely homogeneous material, xc = yc = 0 and ψ = π
4 . Sub-

stitute the known value into Eq. (31), we get:

(
x + y√

2a

)2

+
(
x − y√

2b

)2

= 1 =⇒
(

1

2a2
+ 1

2b2

)
x2 +

(
1

2a2
+ 1

2b2

)
y2 +

(
1

a2
− 1

b2

)
xy = 1. (32)

Comparing Eqs. (28) and (32), we get:
⎧⎪⎪⎨
⎪⎪⎩

F + 2H = 1

2a2
+ 1

2b2
,

H − F = 1

2a2
− 1

2b2

=⇒

⎧⎪⎪⎨
⎪⎪⎩

H = 1

3a2
,

F = 1

2b2
− 1

6a2
.

(33)

4.2.3 General Orthotropic Material

For the general orthotropic material, there are three parameters to determine. Equa-
tion (31) can be written as a general implicit ellipse equation:

c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 = 0. (34)

In our case, c4 = c5 = 0 and c6 = −1. Comparing Eqs. (25) and (34), we get the
following three equations:

⎧⎪⎨
⎪⎩

F + 1.866H + 0.134G = c1,

F + 0.134H + 1.866G = c2,

G − 2F + H = c3.

(35)

In conclusion, the methodology to determine the yield criterion of unidirectional
fiber reinforced periodic metal matrix composites is:
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1. Calculation of limit macroscopic stresses based on homogenization theory;
2. Calculation of stress invariants;
3. Projection of principle stresses into π plane;
4. Ellipse fit using least squares criterion;
5. Parameters determination of yield criterion.

5 Numerical Examples

Take the square patterned unidirectional fiber reinforced periodic metal matrix com-
posites as an example, the RVE is shown in Fig. 10, with perfect interface. The fiber
ratio is 40 %. Because of symmetry, the quarter of the RVE is used for the finite
element analysis (see Fig. 11), with the dimension lx = ly = 50 mm. The RVE is
subjected to two independent uniform displacement loadings, U1∗ = U2∗ = U0 =
0.02 mm.

The material properties of each phase are shown in Table 3, with the assumption
that each phase is isotropic.

8-node non-conforming elements are applied for the calculation of purely elastic
stress field σE and the self-equilibrated constant matrix [C]. Since the unidirec-
tional fiber reinforced composites can be treated as plane strain case, all degrees of
freedoms in the fiber direction are fixed, i.e. there is no displacement deformation
in the fiber direction. AMPL+IPOPT are used as the optimization tool.

Besides the limit load factor αLM and the shakedown load factor αSD , the elastic
load factor αEL and the alternating plastic load factor αAP are also calculated for
the comparison in this work. The elastic load factor αEL under two independent
loads L1 and L2 is defined as:

max αEL F
(
ασ i

E(Pk), σY i

)≤ 0, i ∈ [1,NGS], k = 1 (36)

where the load vertex P1 indicates the combination of L1 and L2.
The alternating plasticity load factor αAP under two independent loads L1 and

L2 can be simplified as follows:

max αAP

{
F( 1

2α[σE
i (L1) + σE

i (L2)], σY i) ≤ 0,

F ( 1
2α[σE

i (L1) − σE
i (L2)], σY i) ≤ 0, i ∈ [1,NGS]. (37)

Figure 12 shows the different load domains of the considered example, assuming
that both phases have elastic perfectly plastic material behavior.

Considering the hardening, the shakedown domains for different matrix mate-
rial models are shown in Fig. 13. We observe that the shakedown domain with
isotropic hardening is only enlarged compared to the elastic perfectly plastic model.
The shakedown domain with unlimited kinematic hardening is bounded by the al-
ternating plasticity load domain.

If the RVE is under loading U1 = U2, the shakedown load factors of elastic
perfectly plastic, limited kinematic hardening and unlimited kinematic hardening
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Fig. 10 Square patterned
periodic composites

Fig. 11 Finite element model

Table 3 Material properties
Al/Al2O3

E (GPa) ν σY (MPa) σU (MPa)

Matrix(Al) 70 0.3 80 120

Fiber(Al2O3) 370 0.3 2000

Fig. 12 Load domains of periodic composites with the fiber volume fraction 40 % under plane
strain case, with EL: elastic load factor; SD: shakedown load factor; LM: limit load factor and AP:
alternating plasticity load factor. (L) Displacement domain; (R) Macroscopic stress domain

have the same value, as shown Fig. 13. However, the mechanisms are obviously
different. For example, under loading U1 = U2 = −αSDU0, the equivalent stress
fields obtained under different material models are shown in Fig. 14.
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Fig. 13 Shakedown domains
of all material models, with
SD-ElasPer: elastic perfectly
plastic; SD-IsoHard: isotropic
hardening; SD-LKHard:
Limited kinematic hardening;
SDH-ULKHard: Unlimited
kinematic hardening

Although based on the same elastic stress field σE , the residual stress fields ρ̄

and back stress fields π̄ , obtained from the optimization programming, are quite
different. For the elastic perfectly plastic material model, obviously there is no back
stress field. Nevertheless, the total equivalent stress fields of these three different
material models are similar.

Figure 15 shows us merely the limit domains with elastic perfectly plastic and
limited kinematic hardening material models, since there is no bound for limit load
of matrix with unlimited kinematic hardening.

According to the limit displacement domain of the elastic perfectly plastic mate-
rial model, with the aid of homogenization approach and stress invariant theory, the
macroscopic principle stresses domain is obtained, as shown in Fig. 16(L), which is
projected into π -plane afterwards, see Fig. 16(R). Based on the least square fitting
method, the obtained parameters of Hill’s criterion are as follow:

Major axis of ellipse: a = 241.8306; Minor axis of ellipse: b = 67.7779.

From Eqs. (33) and (30), we get the axial strength of the unidirectional periodic
composites:

X = 296.1808 MPa = 3.70σm
Y ; Y = Z = 94.6217 MPa = 1.18σm

Y .

According to the micromechanics of unidirectional composites [10], the effective
yield tensile strength in fiber direction is defined as:

ΣX
Y = ηmEmεc + ηfEfεc. (38)

Indices ‘f’ and ‘m’ represent fiber and matrix, respectively. εc is the critical strain
defined by:

εc = min

{
σm
Y

Em
,
σ f
Y

Ef

}
. (39)



Progress in Plastic Design of Composites 135

Fig. 14 Different stress fields under different material models: (L) Elastic perfectly plastic mate-
rial model; (M) Limited kinematic hardening material model; (R) Unlimited kinematic hardening
material model

Therefore, the effective yield strength based on micromechanics is:

ΣX
Y = 217.14 MPa = 2.17σm

Y .

The maximum tensile stress criterion is:

Σ t
Y = 1 − νm

kσ (1 + νm)(1 − 2νm)
(σmt − εrmEm) (40)
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Fig. 15 Limit domains, with
LM-ElasPer:elastic perfectly
plastic; LM-LKHard: Limited
kinematic hardening

Fig. 16 Yield criterion fitting: (L) Homogenized stresses (Σ1-Σ2) domain; (R) Hill’s yield crite-
rion fitting based on the projection into π plane

where, index ‘t’ means the transverse direction. εrm is the radial maximum residual
strain, which is approximated to zero in our case. kσ is the stress concentration
factor, with the definition:

kσ = σmax

σp

, (41)

σp is the outer force that is applied on the RVE or mesoscopic components. Accord-
ing to the numerical result, kσ is around 1.15. Therefore, the effective transverse
yield strength based on micromechanics is:

ΣY
Y = ΣZ

Y = 93.65 MPa = 1.17σm
Y .

When compared with the analytical results from microscopic mechanics, we ob-
serve that the predicted strength in transverse direction matches well. However, the
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numerical value of the strength in fiber direction is bigger than the analytical one.
The possible reason lies in the too restrict constraints in the numerical analysis: the
degrees of freedom in fiber direction are completely fixed which leads to a greater
homogenized elastic stress in fiber direction. Nevertheless, the advantages of nu-
merical methods are obvious, which consist in the possibility to consider the fiber
distributions, imperfect bounded interfaces, or other types of composites, instead of
the unidirectional one.

6 Conclusions

In this paper, the lower-bound approach of DM is applied on periodic composites,
including hardening material models for the matrix. As expected, for isotropic hard-
ening, the shakedown domain is enlarged with the same shape as elastic perfectly
plastic one. For unlimited kinematic hardening, there is no bound for the limit load
and shakedown domain is bounded by alternating plasticity. Two yield surfaces of
limited kinematic hardening model provide more realistic solutions. Furthermore, in
combination with homogenization theory, plastic material parameters are predicted
by using yield surface fitting on the macroscopic limit homogenized stress domain.
However, the present work is based on the assumption that fiber and matrix have
perfect interfaces. The debonding failure will be studied in the further work.
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The Residual Stress Decomposition Method
(RSDM): A Novel Direct Method to Predict
Cyclic Elastoplastic States

Konstantinos V. Spiliopoulos and Konstantinos D. Panagiotou

Abstract Instead of approaching the steady state behavior of an elastic–perfectly
plastic structure, under cyclic loading, through time consuming incremental time-
stepping calculations, one may alternatively use direct methods. A common feature
of these methods is to estimate directly these cyclic states, profiting, thus, big sav-
ings in computer time. The elastic shakedown is the most important, in terms of
structural safety, cyclic state. Most of the existing methods address this state through
the solution of an optimization problem. In this work, a novel direct method that has
a more physical understanding and may predict any cyclic steady stress state is ex-
posed. The method is based on the expected cyclic nature of the residual stress distri-
bution at the steady cycle. Having evaluated the elastic stress part of the total stress
to equilibrate the external load, the unknown residual stress part is decomposed into
Fourier series, whose coefficients are evaluated iteratively by satisfying compatibil-
ity and equilibrium with zero loads at time points inside the cycle. A computation-
ally simple way to account for plasticity is considered. The procedure converges
uniformly to a residual stress field which is either constant, marking the loading to
be below the elastic shakedown limit, or to a cyclic residual stress field, from which
possible alternating plasticity or ratcheting conditions may be realized. The proce-
dure is formulated within the finite element method. A von Mises yield surface is
typically used. Examples of application to a truss and a two dimensional plate under
plane stress or strain are discussed.

1 Introduction

Nowadays structures are continuously designed to withstand repeated thermo-
mechanical loading that forces them to enter the plastic regime. Such loading con-
ditions are encountered either in civil or mechanical engineering. Typical examples
of such structures are buildings and bridges under seismic loading on the one hand
and nuclear reactors and aircraft gas propulsion engines on the other.
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The life cycle assessment of such a structure constitutes an important task for a
structural engineer. However, the long term response of a structure, subjected to a
given thermo-mechanical loading which exhibits inelastic time independent plastic
strains, is quite complex, because of the need to perform lengthy and expensive in-
cremental calculations, especially for structures with a high degree of redundancy.
In the case that the long term response turns out to be a stabilized state there are pro-
cedures called direct methods, which may lead directly to these states. Scleronomic
or rheonomic stable materials guarantee the existence of such states [1]. Thus direct
methods search for this asymptotic state right from the start of the calculations.

The most well known cyclic state is the elastic shakedown. The search for this
state is based on the lower [2] and upper bound [3] shakedown theorems of plasticity.
The formulation of these problems is normally done using mathematical program-
ming (MP). One may refer to various such procedures like a nonlinear Newton-type
algorithm [4] or the interior point methods (e.g. [5, 6]).

There are also very few approaches that are not based on MP. Internal param-
eters are introduced in [7] which characterize local inelastic mechanisms. Another
procedure is the Linear Matching Method (LMM) [8] which is a generalization of
the elastic compensation method [9] and is based on matching a linear problem to a
plasticity problem. A sequence of linear solutions, with spatially varying moduli, is
generated that provide upper bounds that monotonically converge to the least upper
bound.

The method was further extended beyond shakedown, for loadings that can be
decomposed into constant and time varying components, so as to provide an upper
bound estimation of the ratchet boundary [10].

Besides the knowledge of safety margins, it is important to be able to determine
the long-term effects on a structure for a given cyclic loading. For this purpose, an
alternative to the cumbersome incremental procedure is a method called Direct Cy-
cle Analysis (DCA) originally suggested in [11] and implemented in the commercial
program Abaqus [12]. The main assumption of the method is that the displacements
at the steady cycle will become cyclic. The method is quite involved and appears
to be a mixture of an incremental and an iterative procedure. The displacements
are decomposed into Fourier series whose coefficients are evaluated in an iterative
way by linking them with the coefficients of the Fourier series of the out-of-balance
load vector. This vector is evaluated as in an incremental procedure, and static ad-
missibility is enforced by leading it to zero. The procedure seems to be suited for
the cases of alternating plasticity but fails to converge for loadings that are close to
ratcheting as also mentioned in [12] since, because of its main assumption, it can’t
predict such a case.

A new direct method to predict any long-term cyclic state of an elastic-perfectly
structure under a given cyclic loading was quite recently suggested [13]. The method
focuses on the cyclic nature of the residual stresses at the steady state. The method
has been called Residual Stress Decomposition Method (RSDM) and is based on
decomposing the residual stresses in Fourier series inside a cycle of loading. The
decomposition of the residual stresses, so as to find a simplified way to predict
creep cyclic steady stress states, was originally proposed in [14].
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In the RSDM the coefficients of the Fourier series are evaluated in an iterative
way by integrating the residual stress rates over the cycle. By satisfying equilibrium
and compatibility at time points inside the cycle one may evaluate these rates. Plastic
effects are accounted for by adding the elastic and the residual stress at the cycle
points. If the sum exceeds the yield surface, the plastic strain rate may be represented
by the stress in excess of the yield surface. This excess stress provides then input for
iteration. If the plastic strain rates stabilize, in the form of a converged residual stress
vector, the procedure stops. One can easily distinguish any of the three different
cases, shakedown, alternating plasticity or ratcheting. A one-dimensional truss and
a two-dimensional plate with a hole under plane stress have demonstrated in [13] the
application of the procedure. For the plate, results are, in the present work, extended
to include plane strain conditions. The whole approach is shown to be stable and
computationally efficient, with uniform convergence.

2 Cyclic Steady-States

Let us consider a body of volume V and surface S. On one part of S we have zero
displacement conditions and on the other part of the surface a cyclic loading of the
form (1) is applied.

P(t) = P(t + nT ) (1)

where P(t) is the set of loads that act on S; t is the time point inside the cycle, T is
the period of the cycle, n = 1,2, . . . , denotes the number of full cycles. Bold letters
are used, herein, to denote vectors and matrices.

Let us suppose that our structure is made of an elastic-perfectly plastic material.
At any time point τ = t/T inside the cycle the structure will develop a stress field
σ (τ ) which may be decomposed into an elastic part σ el(τ ), that equilibrates the ex-
ternal loading P(τ ) assuming a completely elastic behavior, and a self-equilibrating
residual stress part ρ(τ ) that is due to inelasticity. Therefore:

σ (τ ) = σ el(τ ) + ρ(τ ). (2)

An analogous decomposition holds for the strain rates:

ε̇ = ėel(τ ) + ε̇r (τ ). (3)

The residual strain rate itself may be decomposed into an elastic and a plastic
part [15]. Thus the final compatibility equation is expressed as:

ε̇ = ėel(τ ) + ε̇el
r (τ ) + ε̇pl(τ ). (4)

The elastic strain rates are related to the stress rates through the elasticity ma-
trix D, whereas the plastic strain rate vector through the gradient of the flow rule:

σ̇ el(τ ) = D · ė,

ρ̇(τ ) = D · ε̇el
r ,

ε̇pl = λ · ∂f

∂σ

(5)
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where f is the yield surface.
Based on the Drucker’s stability postulate for rheonomic or scleronomic materi-

als it may be proved [16] that there always exists an asymptotic cyclic state that the
stresses and strain rates stabilize and become periodic with the same period of the
cyclic loading.

Depending on the amplitude of the load three different asymptotic states may be
realized, based on the existence or not of the plastic strain rates:

(a) Elastic shakedown, meaning ε̇pl → 0.
(b) Plastic shakedown, meaning ε̇pl �= 0, but

∫ T

0 ε̇pldt = 0.

(c) Ratcheting, meaning ε̇pl �= 0, and
∫ T

0 ε̇pldt �= 0.

3 The Residual Stress Decomposition Method (RSDM)

Since the elastic stress under a cyclic load is cyclic, a cyclic steady stress state
renders the residual stress distribution to be also cyclic. One may thus exploit this
cyclic nature, decompose the residual stresses into Fourier series, and try to find the
unknown Fourier coefficients. In this way we may write:

ρ(τ ) = 1

2
a0 +

∞∑
k=1

{
cos(2kπτ) · ak + sin(2kπτ) · bk

}
. (6)

Differentiating the above with respect to τ one may write the following expres-
sion for the derivative:

ρ̇(τ ) = 2π
∞∑
k=1

{−k sin(2kπτ) · ak + k cos(2kπτ) · bk

}
. (7)

Making use of (7) and the orthogonality properties of the trigonometric functions
one may get expressions for the Fourier coefficients of the cosine and sine series in
terms of the residual stress derivatives:

ak = − 1

kπ

∫ 1

0
sin(2kπτ) · ρ̇(τ )dτ,

bk = 1

kπ

∫ 1

0
cos(2kπτ) · ρ̇(τ )dτ.

(8)

A more involved formula proves to be needed for the constant term, which uses
the information at the beginning and at the end of the cycle [13]:

1

2
a0,e =

(
1

2
a0,b +

∞∑
k=1

ak,b

)
−

∞∑
k=1

ak,e +
∫ 1

0
ρ̇(τ )dτ (9)

where the subscripts b and e denote the beginning and the end of the cycle respec-
tively. As seen from Eqs. (8) and (9), because of (7), there is an implicit dependence
of the Fourier coefficients and thus an iterative scheme may be used to estimate
them, once the residual stress derivatives are calculated.
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Fig. 1 Estimation of plastic
straining (von Mises yield
surface)

To find these derivatives one seeks to satisfy compatibility and equilibrium at
some predefined time points inside the cycle. To this end we assume that our struc-
ture is discretized with finite elements (FEs). Using the rates of displacements of the
nodes of the FE mesh one may write:

ε̇ = B · ṙ. (10)

From Eqs. (4) and (5) we may write:

ρ̇ = D · (ε̇ − ėel − ε̇pl). (11)

Since the strain rates are kinematically admissible, the residual stress rates are
self-equilibrated, and fixed supports have been assumed, one may write, for a virtual
strain field δε̇, using the Principle of Virtual Work (PVW):∫

V

δε̇T · ρ̇dV = 0. (12)

Combining (10), (11) and (12), we end up with:(∫
V

BT · D · BdV

)
· ṙ =

∫
V

BT · σ̇ eldV +
∫
V

BT · D · ε̇pldV (13)

or equivalently:

K · ṙ = Ṙ +
∫
V

BT · D · ε̇pldV (14)

where K is the stiffness matrix, Ṙ is the rate vector of the external forces acting on
the structure at the cycle time τ .

Plastic straining will occur whenever the total stress (Eq. (2)) exceeds the yield
surface (Fig. 1). In such a case, the returning back on the yield surface will be,
according to the closest point projection [17], along the vector

−→
CB, with the plastic

strain rate ε̇pl directed along
−→
BC. We use, instead, the vector

−→
CA which is −σ p. This

vector is a ‘radial return’ type of mapping along the known
−→
OC. It may be easily

determined, especially for a von Mises yield surface. It is an equivalent measure for
the plastic straining in the sense that they either both exist or not.
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3.1 Numerical Procedure

An iterative procedure has been written that updates the Fourier coefficients inside
an iteration [13].

Firstly we solve for the external loading and its cycle rate assuming elastic be-
havior, and obtain, for each cycle point τ , the elastic stress σ el(τ ) and the elastic
stress rate σ̇ el(τ ) at each Gauss point (GP) of a continuum finite element.

Let us suppose that after the completion of the iteration (μ) an estimate of the
distribution of the Fourier coefficients a(μ)

0 ,a(μ)
k ,b(μ)

k has been made. The following
steps are now followed:

1. For a specific cycle point τ we compute ρ(μ)(τ ), at each GP, using (6):

ρ(μ)(τ ) = 1

2
a(μ)

0 +
∞∑
k=1

{
cos(2kπτ) · a(μ)

k + sin(2kπτ) · b(μ)
k

}
. (15)

2. Evaluate at each GP the total stress σ (μ)(τ ), using (2):

σ (μ)(τ ) = σ el(τ ) + ρ(μ)(τ ). (16)

3. Calculate whether, at each GP, σ̄ (μ)(τ ) > σY . In such a case compute σ
(μ)
p (τ ):

ξ = σ̄ (μ)(τ ) − σY

σ̄ (μ)(τ )
⇒ σ (μ)

p (τ ) = ξ · σ (μ)(τ ). (17)

4. Assemble for the whole structure the rate vector of the nodal forces Ṙ′(τ ), which
is the r.h.s. of Eqs. (13)–(14):

Ṙ′(τ ) = Ṙ(τ ) +
∫
V

BT · σ (μ)
p (τ )dV . (18)

5. Solve the following iterative form of Eq. (14) and obtain ṙ(μ)(τ ):

Kṙ(μ)(τ ) = Ṙ′(τ ). (19)

6. Evaluate at each GP the residual stress derivative rates, using (11):

ρ̇(μ)(τ ) = DBṙ(μ)(τ ) − σ̇ el(τ ) − σ (μ)
p (τ ). (20)

7. Repeat the steps 1–6 for all the assumed cycle points.
8. Perform a numerical integration over the cycle points and update the Fourier

coefficients, making use of Eqs. (8) and (9):

a(μ+1)
k = − 1

kπ

∫ 1

0

{[
ρ̇(μ)(τ )

]
(sin 2kπτ)

}
dτ,

b(μ+1)
k = 1

kπ

∫ 1

0

{[
ρ̇(μ)(τ )

]
(cos 2kπτ)

}
dτ,

a(μ+1)
0

2
= −

∞∑
k=1

a(μ+1)
k + a(μ)

0

2
+

∞∑
k=1

a(μ)
k +

∫ 1

0

[
ρ̇(μ)(τ )

]
dτ.

(21)
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9. From the updated Fourier coefficients evaluate the updated distribution of the
residual stresses, at all the Gauss points, using (15), and check the convergence
through their norms at the end of the cycle:

‖ρ(μ+1)(1)‖2 − ‖ρ(μ)(1)‖2

‖ρ(μ+1)(1)‖2
≤ tol (22)

where tol is a specified tolerance.

If (22) holds, the procedure stops as we have reached a cyclic stress state (cs),
and ρ(μ) = ρ(μ+1) = ρcs; otherwise we go back to step 1 and repeat the process.

Once a cyclic stress state has been attained, we look at σ cs
p = σ

(μ)
p = σ

(μ+1)
p ,

which was evaluated during the last iteration. We may determine the nature of the
obtained solution, for each GP, by evaluating the following integral over the cycle:

αi =
∫ 1

0
σ cs
p,i(τ )dτ (23)

with i spanning all the components of σ cs
p (τ).

Depending on the values of αiwe may have:

(a) If αi �= 0, a state of ratcheting exists at this GP. If αi = 0, we check the value of
σ cs
p,i(τ ) for every cycle point τ .

(b) If σ cs
p,i(τ ) �= 0, the Gauss point is in a state of reverse plasticity, since this must

hold for pairs of cycle points of equal value but of alternating sign.
(c) If σ cs

p,i(τ ) = 0, the point has remained either elastic or has developed an elastic
shakedown state.

For the case of all the Gauss points being either elastic or in a state of elastic
shakedown, our structure, under the given external loading, will also shake down.
On the other hand, if sufficient GPs are in a state of ratcheting, at the steady state,
our structure will undergo incremental collapse. This, numerically, may be easily
proved here, through the singularity of the stiffness matrix, which can be evaluated
just at the end of the converged steady cycle, by zeroing the elasticity matrix D at
the ratcheting GPs.

4 Application Examples

The method is applied to two structures one being a one dimensional and the other a
two dimensional plate element with a hole under plane stress or plane strain condi-
tions. A value of 10−4 for the tolerance proved quite accurate to stop the iterations.

4.1 Pin Jointed Framework

The truss structure (Fig. 2) that consists of five members, whose properties are listed
in Table 1, was chosen as a first example of application of the proposed method.
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Fig. 2 Five bar truss example

Table 1 Properties of the
truss elements Element Areas (cm2)

1 1.806

2 30.825

3 24.940

4 34.583

5 27.908

Material data was assumed as E = 0.21 × 105 kN/cm2, σy = 36 kN/cm2, whereas
L = 200 cm.

A simple two node plane truss element was used to analyze the structure. The
only change that needs to be applied in the numerical procedure, presented for the
continuum, is to use the axial stress in each bar, for this one-dimensional problem,
instead of the effective stress used for the continuum.

The truss was subjected to concentrated cyclic loads F0 and Fc which are applied
at nodes 3 and 4 respectively. Two cases of loading have been considered which lead
to different cyclic steady states.

(a) The first cyclic loading case has the following variation with time:

Fc(t) = 100 sin(2πt/T ), F0 = 400 kN.

The procedure predicts that the structure will shakedown. The constant in time
steady state residual stress may be seen in Fig. 3(a). In Fig. 3(b) one may also see
the distribution of the total stress, for bar 1, inside the cycle, where nowhere the
yield stress is exceeded. Analogous behavior is observed, of course, for all the other
bars.
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Fig. 3 Steady state stress
distributions inside a cycle for
element 1 (load case
a—shakedown): (a) residual
stress, (b) total stress

(b) The second cyclic loading case has the following variation with time:

Fc(t) = 200 sin(2πt/T ), F0 = 200 kN.

For this loading case the RSDM predicts that the structure is going to suffer
from alternating plasticity. In Fig. 4 one may see the uniform convergence of the
procedure towards the final steady state.

The distribution of the cyclic residual stress predicted for the middle bar 1 inside
the steady cycle may be seen in Fig. 5. The procedure shows that in the steady
state the middle bar suffers plastic strain rates, of alternating nature. These strains
spread within the time intervals [0.169, 0.362] and [0.638, 0.851], inside the cycle,
rendering the total plastic strain over the cycle (parameter α1—expression (23), also
equal to the total area under the curve, Fig. 6) equal to zero.

The results for both the two loading cases agree well with those in [18].

4.2 Plate with a Central Hole

The second example of application is the classical problem of a square plate having a
circular hole in its center. The plate is subjected to two biaxial uniform loads applied
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Fig. 4 Convergence of the
iterative procedure—truss
example (load case b)

Fig. 5 Predicted steady state
residual stress distribution for
element 1 inside a cycle (load
case b—alternating plasticity)

Fig. 6 Predicted σ cs
p (t)

distribution at steady state
inside a cycle for element 1
(load case b—alternating
plasticity)

at the edges of the plate. Due to the symmetry of the structure and the loading, only
one quarter of the plate is considered.

The boundary conditions as well as its finite element mesh discretization are
shown in Fig. 7. The ratio between the diameter d of the hole and the length L of
the plate is equal to 0.2. Also the ratio of the depth of the plate and its length is
equal to 0.05. Ninety-eight, eight-noded, isoparametric elements with 3 × 3 Gauss
integration points were used.

The material data used was: Young’s modulus E = 0.21 × 105 kN/cm2, Pois-
son’s ratio ν = 0.3 and yield stress σy = 36 kN/cm2.

Both plane stress and plain strain conditions have been examined as the proce-
dure 3.1 may be applied to both of them.
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Fig. 7 The geometry,
loading, and the finite
element mesh of a quarter of
a plate

Fig. 8 Residual stress
distribution at GP 2 inside a
cycle at steady state under
plane stress and plane strain
conditions (load case
a—shakedown)

The same vectors σ = {σxx σyy σxy σzz }T and ρ = {ρxx ρyy ρxy ρzz }T may be
utilized at a GP for both cases. For each of the two cases the corresponding 3 × 3
elasticity matrix D should be used. As far as the fourth element of the stress vector
is concerned, for the plane stress problem σ el

zz, ρzz = 0. The same holds for their
derivatives.

For a plane strain problem, on the other hand, we should have σ el
zz = ν(σ el

xx +σ el
yy),

ρzz = ν(ρxx + ρyy). The same, of course, holds for their derivatives. The non exis-
tence of the corresponding out of plane plastic strain is assured by setting σp,zz = 0.

Three different loading cases were taken into account, which lead the structure to
either shakedown, reverse plasticity or ratcheting. Results are plotted for the gener-
ally most highly stressed points of the plate GP 1 or GP 2, depending on the loading
case.

(a) The first cyclic loading case has the following variation with time:

Py(t) = 0.65σy sin2(πt/T ), Px(t) = 0.

The predicted by the procedure behavior for the structure is a shakedown state
and this complies with the fact that this loading is below the shakedown boundary
estimated in [19]. In Fig. 8 the computed by the RSDM steady-state residual stress
distribution is plotted for the GP 2, for both plane stress and plane strain conditions.
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Fig. 9 Effective total stress
distribution at GP 2 inside a
cycle at steady-state (load
case a—shakedown), plane
stress and plane strain
condition

Fig. 10 Convergence of the
iterative procedure (load
case a—shakedown)

This residual stress distribution is unique and will be the same with the one that
would be predicted from an incremental step-by-step analysis, e.g. [12] (see also
examples in [13]). The total stress distribution for this point is plotted in Fig. 9. In
Fig. 10 one may also see the convergence towards the final steady states.

(b) The second cyclic loading case has the following variation with time:

Py(t) = 0.7223σy sin2(πt/T ), Px(t) = 0.

The value of this load, at many cycle points, is in excess of the shakedown limit
computed by using a plane stress modeling, and below the shakedown limit assum-
ing a plane strain condition [19]. The present numerical procedure (RSDM) also
shows that this loading will lead the plate to shakedown for plane strain, but as-
suming plane stress conditions the loading leads some GPs to reverse plasticity. So,
for the plane strain case, in Figs. 11, 12 one may see the computed by the RSDM
steady-state residual stress distribution for the GP 2 and its effective total stress
distribution, respectively.

On the other hand, for plane stress modelling, we plot, for the most strained
point GP 2, the variation of the yy component of the excess stress vector σ cs

p , which
has the biggest values from the three components (Fig. 13). We may see that plas-
tic straining occurs, alternately, inside the time intervals [0, 0.04], [0.45, 0.55] and
[0.96, 1] at the steady cycle.
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Fig. 11 Residual stress
distribution at GP 2 inside a
cycle at steady-state (load
case b—shakedown), plane
strain case

Fig. 12 Effective total stress
distribution at GP 2 inside a
cycle at steady-state (load
case b—shakedown), plane
strain case

Fig. 13 Predicted cyclic
steady-state distribution of
the yy component of the
stress vector at GP 2 (load
case b—alternating
plasticity), plane stress case

(c) The third cyclic loading case involves two loads, one constant in time and one
varying with time:

Py(t) = 0.5σy sin2(πt/T ), Px(t) = 0.93σy.

This loading, at many cycle points, is above the ratcheting boundary. The results
for GP 1, assuming plane strain conditions, may be seen in Fig. 14, where plastic
straining of the same positive sign inside the cycle intervals [0, 0.11] and [0.89, 1]
at the steady cycle is observed. On the other hand, with a plane stress modeling,
one may observe that plastic strains of the same positive sign appear during the
whole cycle (Fig. 15). For both cases the xx direction of the component of the excess
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Fig. 14 Predicted cyclic
steady-state distribution of
the xx component of the
stress vector at GP 1 (load
case c—ratcheting), plane
strain condition

Fig. 15 Predicted cyclic
steady-state distribution of
the xx component of the
stress vector at GP 1 (load
case c—ratcheting), plane
stress condition

stress vector σ cs
p , which has the biggest values from the three components, is plotted.

This ratcheting behavior is observed also for quite a few GPs around the structure,
which definitely constitutes incremental collapse mechanisms for both plane strain
and plane stress conditions that may be seen in Figs. 16, 17 respectively. We may
observe that we have a much more spreading of ratcheting for the case of plane
stress than for the case of plane strain.

In Fig. 18 one may see the convergence of the RSDM for this loading case, for
both plane stress and plain strain conditions.

Reviewing the examples considered herein, we note that, within the adopted tol-
erance, the number of iterations ranged from a minimum of 80 for the case of reverse
plasticity of the truss example, to a maximum number of 740 for the case of ratch-
eting of the plate example, under plane strain. The total CPU-time required to solve
this last example was just 260 s, using an Intel Core i7 at 2.93 GHz with 4096 MB
RAM.

The number of time points inside the cycle should be enough so that it may ad-
equately represent the applied loading. Fifty time points inside the cycle were used
for all the examples considered herein. Three terms of the Fourier series were found
enough to represent the residual stress decomposition. The RSDM procedure proved
to be quite stable, no matter which asymptotic behavior was reached. Another im-
portant fact of the computational efficiency of the approach is that the stiffness ma-
trix needs to be decomposed once and for all at the start of the calculations.
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Fig. 16 Ratcheting
mechanism—RSDM (plane
strain condition)

Fig. 17 Ratcheting
mechanism—RSDM (plane
stress condition)

Fig. 18 Convergence of the
iterative procedure (load
case c)
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5 Concluding Remarks

The Residual Stress Decomposition Method (RSDM) is a direct method that proves
to be a simple and efficient procedure to estimate the long-term effects of the cyclic
loading on a structure. For a given time history of this loading it may equally predict
any possible steady state either it is elastic shakedown or alternating plasticity or
ratcheting.

The method, although currently developed for elastic-perfectly plastic material
and the von Mises yield surface, has the potential of extension to other types of
behavior and yield surfaces.

It also appears to have the potential to provide safety margins for a cyclic loading
the exact history of which is not known, but only its variation ranges, and work is
being done towards this direction.
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Use of Layout Optimization to Solve Large-Scale
Limit Analysis and Design Problems

Matthew Gilbert, Colin C. Smith, Samuel J. Hawksbee, and Andrew Tyas

Abstract Direct methods can be used to rapidly verify the safety of solid bodies
and structures against collapse, and also to assist engineers wishing to rapidly iden-
tify structurally efficient designs for a specified load carrying capacity. Layout opti-
mization is a direct method that can be used to solve very large-scale problems when
adaptive solution schemes are employed, and the same underlying mathematical for-
mulation is applicable to both analysis and design problems. Here the truss layout
optimization formulation is applied to various benchmark design problems and the
discontinuity layout optimization formulation applied to various plane strain limit
analysis problems. It is observed that highly accurate solutions can be obtained,
close to known analytical solutions. Finally future directions in the field of layout
optimization are briefly considered.

1 Introduction

To verify the safety of solid bodies and structures against collapse, engineers have
traditionally had to rely either on simplistic hand type calculations, or on signif-
icantly more complex computational tools which identify the collapse state in an
indirect, iterative, manner. Such computational tools can be unreliable and often
require large amounts of computer time and/or high levels of operator expertise.
Additionally, in many engineering disciplines the initial design stage is carried out
in an ad-hoc manner, with ‘engineering intuition’ often used to identify structurally
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efficient designs. Direct analysis and design methods can potentially address both
these issues, and similarities between analysis and design formulations can be ex-
ploited. Thus for example, a general integrated analysis and design framework has
been recently developed at the University of Sheffield, allowing a range of potential
applications to be explored. Highly efficient interior point linear programming (LP)
solvers are used in conjunction with an adaptive solution scheme to allow large-scale
problems to be solved.

A focus on both analysis and design problems also permits similarities in the un-
derlying mathematical formulations to be studied in more detail. This led the authors
to realize that the truss layout optimization design technique, developed almost half
a century ago [5], could be modified so as to provide a powerful new direct anal-
ysis method for plasticity problems: discontinuity layout optimization [27]. In this
chapter, both these direct methods will be described, with a simple adaptive solution
scheme used to allow large-scale problems to be treated. The research has led to in-
dustrial applications (e.g. [6]), and the highly accurate solutions that can be obtained
has allowed new analytical solutions to be identified for old problems.

2 Adaptive Solution Scheme

In the context of direct methods, an adaptive solution scheme entails initially solving
a simplified ‘reduced’ problem and then successively adding (or modifying) vari-
ables and/or constraints to improve the solution (sometimes termed ‘column gen-
eration’ or ‘cut generation’ in the context of LP [2]). It might be argued that the
use of an adaptive solution scheme impinges on the ‘directness’ of a direct method,
since iteration is required; however in reality iteration is required in almost all nu-
merical solution schemes (e.g. interior point methods1 involve iteration [31]) and
the purpose of the solution scheme presented here is simply to increase the size of
limit analysis and design problems that can be solved using available computational
resources.

2.1 Basic Algorithm

Before considering concrete examples, the basic adaptive solution algorithm used
herein will be stated:

1. Formulate initial reduced problem.
2. Obtain a solution to the reduced problem using LP.
3. Loop through each element, checking for violations. Record violations in a list.

1Note that adaptive model refinement procedures will generally be most effective when interior
point methods are used. This is because the collapse fields generated are more ‘physically correct’
[1] than when extreme-point methods, such as the traditional Simplex method, are used.
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4. Sort list to identify largest violations, and use these to refine the reduced problem.
5. Repeat from step 2 until the violation list is empty.

The ‘violations’ listed in step 3 may be violations of a yield surface or perhaps
violation of a virtual strain limit in the case of a truss layout optimization problem.

2.2 Example: Stability of Rigid Blocks

To illustrate how an adaptive solution scheme can be applied, the centuries old prob-
lem of assessing the stability of assemblages of rigid blocks will initially be consid-
ered. Such problems have been considered in the context of masonry structures by
workers throughout history, notably Coulomb [15], and more recently Heyman [14]
and Livesley [20]. A characteristic of these problems is the presence of disconti-
nuities in pre-defined locations (i.e. at the joints), so that assessing their stability
is much simpler, at least from a limit analysis perspective, than comparable contin-
uum problems. However, behaviour at discontinuities may be non-linear, potentially
making obtaining a numerical solution time-consuming, unless an adaptive solution
scheme is employed.

Several rigid block formulations have been proposed; here a simple equilibrium
formulation similar to that first proposed by Livesley [20] will be presented.

2.2.1 Standard Equilibrium Formulation

Consider a weakly bonded assemblage of rigid blocks, comprising n blocks and m

discontinuities between blocks. With the equilibrium limit analysis formulation the
usual goal is to establish the maximum factor λ on one or more live loads in the
system subject to equilibrium and yield constraints:

maxλ

subject to:

Bq − λfL = fD, (1)

NT q ≤ g,

where B is a (3n × 3m) equilibrium matrix and q and f are respectively 3m and 3n
vectors of forces at discontinuities and block loads. Also qT = {N1,M1, S1,N2,M2,

S2, . . . ,Nm,Sm,Mm} and where Ni , Mi and Si are respectively the normal force,
shear force and moment acting at discontinuity i (i = 1 . . .m), f = fD + λfL, where
fD and fL are respectively vectors of dead and live loads acting on blocks. N and g
depend on the adopted yield criteria, which for an individual discontinuity i can be
expressed as follows:

NT
i qi ≤ gi (2)
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Fig. 1 Adaptive solution
example: (i) linear and (ii)
non-linear yield criteria

or, in expanded form for a joint where friction and/or rocking failure may occur as:⎡
⎢⎢⎢⎢⎣

1 tanφi 0

−1 tanφi 0

0 li/2 1

0 li/2 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎣ Si

Ni

Mi

⎤
⎦≤

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (3)

where li represents the length of each discontinuity, which is assumed to have angle
of friction φi . The LP variables are therefore the discontinuity forces Si , Ni and Mi

and the live load factor λ.

2.2.2 Example: Modelling Compressive Failure at Hinge Points

A practical limitation of the standard equilibrium formulation of Eq. (1) is that it
is implicitly assumed that the constituent blocks are rigid and incompressible, such
that hinging of two adjacent blocks about an extreme point is possible. In N −
M space the corresponding yield criteria is labelled (i) in Fig. 1, whereas more
realistic behaviour, which corresponds to a compressive stress block of finite depth,
is labelled (ii).

This kind of problem would traditionally have been approached by adopting a
piecewise linear approximation of the non-linear yield criteria, with perhaps 12,
24 or even 48 planes used to circumscribe the yield surface. More recently, use of
second order cone programming has been favoured for problems which can be ex-
pressed in this form (e.g. [21]). However, an alternative is to use ‘cut generation’ to
iteratively refine the yield surface. This has the advantage that: (i) only LP needs to
be used to obtain a solution, and (ii) it is comparatively computationally inexpen-
sive (a solution can typically be obtained in only a few iterations). Furthermore, as
will be evident, the same basic approach can if necessary also be applied to more
complex, non-convex, problems.

Figure 2 shows a solution obtained for a three span masonry arch railway bridge;
the computed compressive stress block depths are indicated on the figure. To ob-
tain a solution, additional constraints were added at each iteration in the adaptive
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Fig. 2 Adaptive solution example: hinged failure mechanism of three span masonry viaduct

solution scheme. In this case three iterations were required to obtain a solution of
the required accuracy, and the peak number of yield constraints required was less
than 500. In contrast had 24 fixed planes been used to circumscribe the yield surface
the number of yield constraints involved would have exceeded 3000, and the accu-
racy of the solution would have been lower. (The analysis was undertaken using the
LimitState:RING software [18].)

2.2.3 Example: Modelling Non-associated Friction

As mentioned earlier, the same basic algorithm can also be applied to more com-
plex, non-smooth, optimization problems. For example, consider the use of a non-
associated friction model between blocks, which is usually considered more phys-
ically reasonable than the ‘saw-tooth’ friction model implicitly associated with
Eq. (1).

To achieve this, the yield constraints in N −S space can be rotated to achieve the
level of dilatancy required (since ‘flow’ will always be normal to the yield surface
when using an LP formulation), and then successively updated according to the
magnitude of the normal force N until a converged solution is obtained. Though the
solutions obtained are approximate, and have no formal status within the context of
plasticity theory, it has been shown that these are comparable to solutions obtained
using much more complex procedures [9], and that large problems can be tackled,
as for example illustrated in Fig. 3. (Note that in this case the solution was obtained
by changing the positions of existing linear yield constraints, rather than by adding
new linear yield constraints.)

3 Layout Optimization of Trusses

Truss layout optimization involves finding the most efficient arrangement of truss
bars capable of transmitting a given load or loads to defined support points. In the
classical ‘ground structure’ method [5], the design domain is discretized with nodes
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Fig. 3 Adaptive solution
example: collapse of wall
modelled with non-associated
friction and subject to
in-plane pseudo-static seismic
load, after [9]

Fig. 4 Stages in truss layout optimization procedure: (a) starting problem (point load applied
remote from support); (b) discretization of design domain using nodes; (c) interconnection of nodes
with potential truss bars; (d) identification of optimal subset of potential bars using optimization
(giving the optimal truss layout)

interconnected by bars, from which an optimal arrangement can subsequently be
found. Stages in the procedure are indicated in Fig. 4.

The simplest design objective is to minimise the total volume (or mass) of
the truss, whilst ensuring equilibrium is satisfied at each node, and also ensuring
that limiting stresses in each bar are not exceeded. This is often termed the ‘fully
stressed’ (or ‘plastic’) layout optimization problem, which can be solved using LP;
the formulation will be outlined in the next section.
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3.1 Truss Optimization: Mathematical Formulations

Consider a planar design domain which is discretized using n nodes and m potential
connections (truss bars). The classical ‘equilibrium’ plastic truss layout optimization
formulation for a single load case is defined in Eq. (4) as follows:

min V = cT q

subject to:

Bq = f, (4)

q ≥ 0,

where V is the total volume of the structure, qT = {q+
1 , q−

1 , q+
2 , q−

2 , . . . , q−
m },

and q+
i , q−

i are the tensile and compressive internal forces in bar i (i = 1 . . .m);
cT = {l1/σ1, l1/σ1, l2/σ2, l2/σ2, . . . , lm/σm}, where li and σi are respectively the
length and yield stress of bar i. B is a suitable (2n × 2m) equilibrium matrix and
fT = {f x

1 , f
y

1 , f x
2 , f

y

2 , . . . , f
y
n } where f x

j and f
y
j are the x and y components of

the external load applied to node j (j = 1 . . . n). The presence of supports at nodes
can be accounted for by omitting the relevant terms from f, together with the cor-
responding rows from B. This problem is in a form which can be solved using LP,
with the bar forces in q being the LP variables.

An equivalent kinematic formulation can be derived using duality principles:

max V = fT u (5)

subject to:

BT u ≤ c (6)

where uT = {ux
1, u

y

1, u
x
2, u

y

2, . . . , u
y
n}, and where ux

j and u
y
j are the x and y compo-

nents of the virtual displacements of node j . In this case the nodal displacements in
u are the LP variables.

3.2 Adaptive Solution Scheme for Trusses

For the aforementioned truss optimization procedure to produce accurate results, it
is essential that a bar connection can be made between any pair of nodes (using
the prescribed nodal discretization). This is because if a partially connected ground
structure is employed then a non-optimal solution may be identified, as demon-
strated in Fig. 5. Unfortunately, the number of bars in a ‘fully-connected’ problem
comprising n nodes, will be n(n − 1)/2, which means that the problem becomes
intractable for only moderately large problems. For example, a 2D problem with
a square design domain discretized using 100 × 100 nodes would generate a total
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Fig. 5 Simple truss layout optimization problem (after [7]): (a) design domain [1 unit × 2 units],
loading and support conditions; (b) minimal connectivity ground structure containing 11 bars;
(c) optimal solution for ground structure [b], volume = 3.36603; (d) full connectivity ground
structure containing 15 bars, including overlapping bars; (e) optimal solution for ground structure
[d], volume = 2.63397 (limiting compressive and tensile strengths taken as unity)

of approx. 100 million LP variables when using the formulation given in Eq. (4),
which would be difficult to solve directly using a standard desktop PC.

Thus referring to the basic adaptive algorithm described in Sect. 2.1, it is de-
sirable to commence with an initial problem which has limited initial connectivity
(Step 1), and to then use violation of the dual constraint, Eq. (6), in Step 3 as a
means of producing a list of additional bars likely to improve the solution (Step 4).
The procedure continues (Step 4→Step 2) until the violation list is empty. The final
solution is provably equal in terms of volume to that which would have been ob-
tained had the corresponding fully connected ground structure problem been solved
instead; further details are provided in [7].

3.3 Example: Point Load Between Pin/Roller Supports

To illustrate the adaptive solution scheme in the context of truss layout optimiza-
tion, a problem first studied by Michell [22] was considered in [8]. The problem
comprises a 2×1 design domain discretized using 30×15 nodal divisions. A fixed
pin is present at the lower left corner and a pin and roller (free in the x direction)
is present at the lower right corner. A unit point load is applied centrally at the bot-
tom of the domain and the allowable stresses in compression and tension are both
taken as unity. The fully connected ground structure for this domain would have
over 122,760 frame bars. Instead, using the adaptive solution scheme described, the
initial ground structure has only adjacent connectivity, with 1845 frame bars. At
each iteration the number of bars which can be added is for efficiency here limited
to 10 % of those present in the initial ground structure, with those most violating
Eq. (6) having priority for admission during a given iteration.

Figures 6(a)–(l) show the optimal solutions for each successively expanded
ground structure. The final solution, shown in Fig. 6(l) is identical to that obtained



Use of Layout Optimization to Solve Large-Scale Limit Analysis and Design 165

Fig. 6 Point load between pin/roller supports example: optimal layouts at each iteration in the
adaptive solution procedure (after [8])

when an initially fully connected ground structure is used but the computational ef-
fort required is considerably less. Additionally, when adaptivity was used, the peak
number of LP variables present was 5766, compared with 245,520 when an initially
fully connected ground structure was employed.

3.4 Example: Point Load Between Fixed Pins

Here all design parameters are identical to those in the previous example problem
except that both supports are now fixed pins and the design domain has a much finer
nodal discretization, using 180×180 nodal divisions, with half the nodal spacing in
the y direction. This corresponds to a fully connected ground structure containing
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Fig. 7 Point load between fixed pins example: 180 × 180 nodal division solution (after [8])

over 526 million potential members. The reported optimal volume of 2.57176 [8] is
just 0.037 % higher than the known exact value of 1 + π/2. The solution is shown
in Fig. 7; this problem took approximately 15 hours to solve when using hardware
available in 2003 [8], and is still computationally intractable today when using a
fully connected ground structure.

3.5 Example: Uniform Load Between Fixed Pins

The primary focus of researchers in the field of structural optimization over the past
few decades has been on problems involving point loads. For example, cantilevers
with tip loads have been especially popular (e.g. see [17]), and more recently the
‘three forces problem’ has attracted interest, e.g. see [28].

However, problems involving uniformly distributed loads are often of practical
interest, and were considered in the 1970s by Hemp [13] and his co-workers at
Oxford. A key issue is that obtaining analytical solutions for any ‘Michell truss’
problem is generally already difficult, but more so when uniform loads are present.
Fortunately the precision of the solutions now obtainable using layout optimization
is such that they can now be used to help identify new analytical solutions, or to
check the range of applicability of existing ones.

Thus the uniform load between fixed pins problem originally considered by
Hemp [13] has recently been revisited numerically (after Pichugin et al. [23]). Fig-
ure 8(a) shows a numerical solution for the problem (comprising 180 × 252 nodal
divisions, and involving approx. 1.048 × 109 potential truss bars). By considering
various ratios of limiting tensile and compressive stresses it was found that the orig-
inal analytical solution proposed by Hemp, which was known not to be optimal in
general, is in fact optimal when the limiting compressive and tensile stresses are
unequal, provided the ratio of limiting tensile to compressive stresses falls below a
certain threshold value (0.417785). This solution is shown in Fig. 8(b).
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Fig. 8 Uniform load between fixed pins example: (a) numerical solution for σ+ = σ− case;
(b) exact analytical solution for σ+ = 0.417785σ− case (limiting ratio for vertical hangers) (after
[23])

3.6 Example: Uniform Transmissible Load Between Fixed Pins

The final example provides perhaps the clearest indication of the power of truss
layout optimization techniques, showing that the technique can be used in ‘scientific
discovery’. The example is essentially identical to the preceding one except that the
uniform loads are now free to migrate vertically to their optimal point of application
(so-called ‘transmissible’ loading). Although this type of loading requires a slight
change to the formulation (i.e. modification of Eq. (4)), it can still be treated using
LP (see [4] for details).

When a layout optimization is performed the outcome is surprising. Whereas it
might be expected that the optimal form is a parabolic arch (or suspended cable),
a form first identified by Christiaan Huygens in the 17th century, in fact a more
complex structure, comprising a central parabolic section and networks of truss bars
in the haunch regions, is identified. The corresponding optimal volume is marginally
less than that of the optimal parabolic arch (0.3425 % less when using 41,783 nodes
and 530,712,246 potential bars [4]). It was subsequently found that a parabolic arch
could be identified, but only when the limiting tensile stress was prescribed to be
significantly less than the limiting compressive stress (the numerical solution was in
this case within 0.0071 % of the volume of the optimal parabola).
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Fig. 9 Uniform transmissible load between fixed pins example: analytical solution [30]

Significantly, the numerical solution obtained provided the stimulus to explore
this problem analytically. The exact analytical solution, found to be 0.3495 % lighter
than the lightest parabolic arch, is shown in Fig. 9 (after [30]).

Whilst the examples of ‘trusses’ shown here are primarily of academic interest,
in that the optimal structures are highly refined discrete versions of optimal con-
tinua, the approach offers two important practical applications. Firstly, the layout
optimization approach can quickly and accurately establish an absolute minimum
volume for a given problem. Secondly, it is possible, without losing the linear char-
acter of the problem, to change the formulation to include practical considerations,
such as joint penalties to simplify the structure, the use of multiple load cases, or the
inclusion of stability load cases to ensure that the optimal structure is not in unstable
equilibrium (e.g. see [29]).

4 Discontinuity Layout Optimization

Smith and Gilbert [27] observed that there existed an analogy between the optimal
layout of truss bars in a 2D truss structure and the optimal layout of slip-line discon-
tinuities in a plane strain plastic collapse mechanism, assuming a weightless Tresca
material was involved. This led to the formulation of a new limit analysis procedure,
termed ‘discontinuity layout optimization’ (DLO) [27].

4.1 Discontinuity Layout Optimization: Kinematic Formulation

The kinematic form of the DLO equations can be presented as follows:

min λfTL d = −fTDd + gT p (7)



Use of Layout Optimization to Solve Large-Scale Limit Analysis and Design 169

subject to:

Bd = 0, (8)

Np − d = 0, (9)

fTL d = 1, (10)

p ≥ 0 (11)

where λ is the unknown load factor at collapse, fD and fL are vectors containing
respectively specified dead and live loads acting at discontinuities, d contains dis-
placements along the discontinuities, p is a vector of plastic multipliers and g con-
tains the corresponding dissipation coefficients. B is a suitable compatibility matrix
containing direction cosines and N is a suitable flow matrix.

Though this formulation has similarities with the corresponding truss optimiza-
tion formulation, it also includes additional terms that are not directly analogous.
These include live and dead loads in Eq. (7), a flow rule in Eq. (9) that permits mod-
elling of frictional problems, and a term to exclude trivial zero solutions, Eq. (10).

For a typical translational cohesive-frictional plane-strain plastic analysis prob-
lem: dT = {dT

1 ,dT
2 , . . . ,dT

m} = {s1, n1, s2, n2, . . . , nm}, where si and ni are the rel-
ative shear and normal displacements at discontinuity i; gT = {c1l1, c1l1, c2l2, . . . ,

cmlm}, where li and ci are respectively the length and cohesive shear strength of
discontinuity i.

In the same way that force equilibrium is enforced at nodes for the truss op-
timization problem, kinematic compatibility is enforced at the nodes in DLO as
illustrated in Figs. 10 and 11, where αi and βi are respectively x-axis and y-axis
direction cosines for truss bar or discontinuity i. Thus the contribution of a given
discontinuity i to the global compatibility constraint Eq. (8) can be written as:

Bidi =

⎡
⎢⎢⎣

αi −βi

βi αi

−αi βi

−βi −αi

⎤
⎥⎥⎦
[
si
ni

]
. (12)

Similarly, when the Mohr-Coulomb failure criteria is used the local plastic flow
constraint for discontinuity i can be written as:

Nipi − di =
[

1 −1
tanφi tanφi

][
p1
i

p2
i

]
−
[
si
ni

]
= 0 (13)

where Ni is a local plastic flow matrix, pi is a vector containing plastic multipliers
p1
i , p2

i , where p1
i , p2

i ≥ 0, and where φi is the angle of friction of the material.
The discontinuity displacements in d and the plastic multipliers in p are the vari-

ables in the optimization problem, which can be solved using LP when the Tresca
or Mohr-Coulomb failure criteria are used.

Stages in the DLO procedure are outlined diagrammatically in Fig. 12. In the
kinematic formulation compatibility at nodes is explicitly enforced. However, when
discontinuities crossover one another at non-nodal points, it can be shown that com-
patibility is implicitly enforced.
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Fig. 10 Equilibrium at
(unloaded) node in a truss
(see Eq. (4)).

∑5
i=1 αiqi = 0,∑5

i=1 βiqi = 0

Fig. 11 Compatibility at a
node in a sliding mechanism
(translation only, see Eq. (8)).∑5

i=1 αisi = 0,∑5
i=1 βisi = 0

4.2 Body Forces

Body forces that arise in plane strain limit analysis problems have no obvious anal-
ogy in truss optimization problems. However they may readily be included in the
problem formulation [11, 26, 27]. For example, the body force contribution made
by discontinuity (slip-line) i to the fD term in Eq. (7) due to horizontal and vertical
accelerations ax and ay respectively, can be written as follows:

fTDidi = {
aymi

[
βi αi

]+ axmi

[
αi −βi

]}[ si
ni

]
(14)

where mi is the total mass of material lying vertically above slip-line i. The left and
right hand terms in the curly brackets represents the work done by the vertical and
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Fig. 12 Stages in DLO procedure: (a) starting problem (surcharge applied to block of soil close
to a vertical cut); (b) discretization of soil using nodes; (c) interconnection of nodes with potential
discontinuities; (d) identification of critical subset of potential discontinuities using optimization
(giving the layout of slip-lines in the critical failure mechanism) (after [10])

horizontal movements of material lying vertically above the slip-line. (A vertical
strip has been chosen arbitrarily; the actual direction does not matter as long as it
is consistent throughout the problem. Also, for conventional plastic collapse prob-
lems subjected to gravity, ax = 0 and ay = −g, where g is the acceleration due to
gravity.)

4.3 Discontinuity Layout Optimization: Equilibrium Formulation

Duality principles can be used to derive the dual of Eqs. (7) to (11), which is an equi-
librium formulation. Thus for a planar body discretized using m nodal connections
(slip-line discontinuities) and n nodes this may be stated as follows [27]:

max λ (15)

subject to:

BT t + λfL − q = −fD, (16)

NT q ≤ g (17)

where tT = {tx1 , ty1 , tx2 , ty2 , . . . , tyn } and where txj and t
y
j can be interpreted as x and

y direction equivalent nodal forces acting at node j (j = 1 . . . n), corresponding in
a work sense to ux

j and u
y
j respectively, and where q is here a vector of shear and

normal forces acting on discontinuities, i.e. qT = {S1,N1, S2,N2, . . . ,Nm}, where
Si and Ni represent respectively the shear and normal force acting on discontinuity
i (i = 1 . . .m). The LP variables are therefore txj , tyj , Si , Ni and the live load factor
λ. The objective is thus to maximize λ whilst ensuring that the yield condition is not
violated along any potential discontinuity.

The required equilibrium constraint can alternatively be written for a potential
discontinuity i interconnecting nodes A and B as follows:

BT
i ti + λfLi − qi = −fDi (18)
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or, in expanded form as:

[
αi βi −αi −βi

−βi αi βi −αi

]
⎡
⎢⎢⎢⎢⎣

txA

t
y
A

txB

t
y
B

⎤
⎥⎥⎥⎥⎦+ λ

[
f s

Li

f n
Li

]
−
[
Si

Ni

]
= −

[
f s

Di

f n
Di

]
. (19)

The required yield constraint can also be written for a potential discontinuity i as
follows:

NT
i qi ≤ gi (20)

or, in expanded form for the Mohr-Coulomb yield condition as:[
1 tanφi

−1 tanφi

][
Si

Ni

]
≤
[
ci li
ci li

]
(21)

where here tensile forces are taken as positive.
Duality principles mean that values for txj , tyj , Si and Ni are available even if the

primal problem is actually formulated and solved. Thus the required yield constraint
Eq. (21) can easily be checked for a potential discontinuity i which is not presently
represented in the current LP problem. The yield constraint is checked by firstly
rearranging Eq. (19) so that the shear and normal force acting on the potential dis-
continuity between nodes A and B can be obtained from the solution of the last LP
problem, using values of the internal nodal forces txA, tyA, txB , tyB and load factor λ:

[
S̃i

Ñi

]
=
[

αi βi −αi −βi

−βi αi βi −αi

]
⎡
⎢⎢⎢⎢⎣

txA

t
y
A

txB

t
y
B

⎤
⎥⎥⎥⎥⎦+ λ

[
f s

Li

f n
Li

]
+
[
f s

Di

f n
Di

]
(22)

where S̃i and Ñi are identical to Si and Ni respectively, except that they are not
LP variables. Using the newly computed values of S̃i and Ñi , the yield constraint
Eq. (21) can be checked for violation for the potential discontinuity. When using an
adaptive solution scheme, this checking process can be repeated at each iteration for
all potential discontinuities, with any violating discontinuities becoming candidates
for admission to the expanded LP problem at the next iteration (i.e. in step 3 of the
adaptive solution scheme presented in Sect. 2.1).

4.4 Example Problems

To illustrate the accuracy and range of applicability of the DLO procedure, this will
now be applied to various example problems.
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4.4.1 Punch Indentation of a Block of Finite Depth

Consider a block of Tresca material of depth h and strength k resting on smooth
base and indented by a flat punch of width 2a, where the block has a finite width
� 2a. Chakrabarty [3] has solved this problem over a range of h/a ratios using
slip-line fields. For h/a < 4.77, Chakrabarty’s slip-line solutions are of the form
presented in Fig. 13(a) (also showing the problem geometry). For h/a > 8.77, the
Prandtl mechanism becomes critical and the average bearing pressure q remains at
k(2 +π) with increasing h/a. A comparative study over the full range of h/a ratios
considered by [3] has been undertaken using a commercial software implementation
of DLO, LimitState:GEO [19]. A number of models with different h/a ratios have
been constructed and solved. Taking advantage of symmetry only the righthand side
of the problem domain was considered and the target number of nodes in these
models was set at 2000.

For h/a < 4.77, good agreement was found between the slip-line fields of [3] and
the mechanisms obtained using DLO (see Figs. 13(a) and (b)). For 4.77 < h/a <

8.77, values of q/2k still compare favourably, but the slip-line fields of [3] and the
mechanisms from DLO no longer agree. For h/a > 8.77, DLO also identifies the
Prandtl mechanism, considered in more detail in the next section. Values of q/2k
obtained using DLO also compare favourably with [3] across the full range of h/a

ratios, as demonstrated by Fig. 13(c).

4.4.2 Punch Indentation of a Block of infinite Depth

Now consider a block of Tresca material of strength k and infinite depth and in-
dented by a flat punch of width 2a, where the block is constrained by rigid supports
along the left, right and bottom edges. Providing the rigid supports are not too close
to the punch, this leads to the well known Prandtl problem. Two scenarios are con-
sidered here, the first involving the standard case of a punch applied remote from
the rigid supports, the second involving a punch applied adjacent to one of the rigid
supports. The latter case is of interest since the problem can be shown to be directly
analogous to the truss optimization problem considered in Sect. 3.4. Results for a
variety of nodal discretizations are shown in Table 1.

As expected, the results for the punch applied close to the edge of block are
identical to those for the centrally applied punch. It is also notable that, even for rel-
atively coarse nodal discretizations, highly accurate results can be obtained (within
1 % of the known analytical solution of 2 + π ), with the singularities at the edge
of the punch automatically identified. Figure 14 shows a sample predicted collapse
mechanism, with the rigid blocks of material lying between slip-line discontinuities
identified and then displaced to aid interpretation.

4.4.3 Combined End and Side Extrusion

Consider the combined end and side extrusion problem shown in Fig. 15. In this
problem, the plate on the right hand side moves into a block of Tresca material of
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Fig. 13 Punch indentation of a block of finite depth example

strength k, resulting in an average pressure p on the plate. In order to satisfy the
incompressibility condition, material must escape from the vessel via the single end
hole and two side holes shown. Johnson et. al. [16] solved this problem, assuming
equal widths for all three holes, using slip-line theory. (Note that Johnson’s results
[16] are reproduced in Chakrabarty’s well-known textbook [3].) The assumed slip-
line field limits the geometries that can be considered. The geometries considered
in [3] can be identified in Fig. 16 by reading of the relevant d/h ratio for a given
H/h ratio. A comparative study was undertaken for a number of H/h ratios using
the appropriate d/h value from Fig. 16. In the DLO analysis, the number of nodes
was fixed to be approximately 1000. Taking advantage of symmetry only the top
half was considered.
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Fig. 14 Punch indentation of
a block of infinite depth
(90×30 nodal division DLO
solution), showing predicted
mode of deformation

Table 1 Punch indentation
of a block of infinite depth:
DLO results

asolution from Sect. 3.4,
taking q = 2V

Punch position Nodal divisions DLO (q/k) Diff (%)

Central 45 × 15 5.17344 0.425

90 × 30 5.15408 0.243

180 × 60 5.14719 0.109

Edge 30 × 15 5.17344 0.425

60 × 30 5.15408 0.243

120 × 60 5.14719 0.109

180 × 180a 5.14352a 0.037a

In Fig. 15, a representative mechanism obtained using DLO is presented. As
demonstrated in Fig. 16, extremely good agreement was found between the p/2k
values obtained from the slip-line analysis [16] and DLO. However, unlike standard
slip-line analysis theory, DLO is able to handle arbitrary geometries and is thus
much more flexible.

4.4.4 Bearing Capacity of Sand Layer over Clay

The case of a strip footing of width B resting on a sand layer of thickness D, internal
friction angle φ, unit weight γ , which in turn is underlain by a deep bed of clay of
undrained shear strength cu is used to illustrate the capability of the DLO method
to model combined cohesive-frictional problems. It is required that the short-term
stability of the footing is assessed, with the sand layer assumed to be fully drained
and the clay bed undrained.

Shia et al. [24] have investigated this problem over a range of the problem pa-
rameters using finite element limit analysis (FELA). An illustrative example for the
case of φ = 40◦, D = B , and cu/γB = 5 is presented in Fig. 17. A DLO analysis
was undertaken using a nodal spacing of B/40. This gave a predicted collapse load
V/γB2 = 29.19, which compares well with the lower and upper bounds of 26.59
and 30.54 respectively obtained by Shia et al. [24]. (For clarity the mechanism pre-
sented in Fig. 17 was obtained with a nodal spacing of B/20.)
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Fig. 15 Combined end and
side extrusion example: DLO
mechanism for d/h = 1.712
and H/h = 10.50

Fig. 16 Combined end and
side extrusion example:
comparison of results from
[3] and DLO

5 Future Research Directions

Although layout optimization techniques were first developed almost half a century
ago [5], there appears to have been comparatively little research in the field until
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Fig. 17 Bearing capacity of
sand layer over clay example:
a rigid footing of width B

founded on a sand layer of
depth D = B , angle of
shearing resistance φ = 40◦,
unit weight γ overlying clay
of strength cu/γB = 5
(symmetrical half space
model)

relatively recently. This means that there are still many potentially fruitful avenues
to explore. For example, the problems described in this chapter all assume the pres-
ence of straight-line connections (e.g. truss bars or slip-line discontinuities) between
nodes. However, different kinds of connections can potentially be used. Thus in two-
dimensions curved connections could instead be used, perhaps to model truss bars
optimally shaped to carry their own self-weight, or to model the curved slip-lines
associated with rotational collapse mechanisms. Another possibility is to consider
surface connections, which may represent shell elements in a design context, or po-
tential surface discontinuities in a three-dimensional limit analysis context. Initial
investigations into the latter have already begun and this will therefore be consid-
ered further in the next section.

5.1 3D Discontinuity Layout Optimization

In plane strain, DLO is capable of obtaining accurate solutions for problems involv-
ing arbitrary, often complex, geometry and boundary conditions as has been demon-
strated in the previous section. Adaptive techniques allow highly accurate solutions
to be obtained at moderate computational expense. A natural progression is to apply
the technique to more challenging and computationally expensive three-dimensional
problems. In three-dimensions, the analogy with truss optimization breaks down
(i.e. truss elements remain linear but discontinuities are now planar). However, a
three-dimensional formulation is still possible. This three-dimensional formulation
can be viewed as analogous to an optimization problem involving seeking an op-
timum structure comprising intersecting shell elements (e.g. a honeycomb). The
changes necessary to the plane strain formulation for three-dimensional analysis
can be summarized as follows (after [12]):

1. Potential discontinuities must now be polygonal rather than linear in form.
2. Three variables per potential discontinuity are now necessary to fully specify

the change in velocity at each potential discontinuity (one normal and two shear
components). dT now becomes {s11, s12, n1, s21, s22, n2, . . . , nm}, where si1 and
si2 are the two shear components of change in velocity across discontinuity i.

3. The resultant of the shear components at each discontinuity must now be cal-
culated in order to find the energy dissipated. This can be done using a conic



178 M. Gilbert et al.

Fig. 18 Deformed mechanism, obtained using DLO, for rough based square punch (showing a
quarter of the square punch)

constraint, sir ≥
√
s2
i1 + s2

i2; where sir is the resultant shear change in velocity

across discontinuity i. pT now becomes {s1r , s2r , . . . , srm}.
4. gT now equals {c1a1, c2a2, . . . , cmam}, where ai is the area of discontinuity i.
5. Compatibility is now conveniently enforced along each edge rather than at each

node.
6. A cone programming solver can now be conveniently used to obtain the mini-

mum.

An initial investigation [12] using a non-adaptive formulation considered the inden-
tation of a semi-infinite Tresca continuum by a square perfectly rough punch (see
Fig. 18). Despite the use of relatively coarse nodal discretizations, a bearing capac-
ity factor equal to 6.102 could be obtained, which compares well with the best upper
bound solution in the literature of 6.051, obtained by [25] using FELA. Future work
will concentrate on developing a suitable adaptive solution scheme, allowing finer
nodal discretizations to be considered.

6 Conclusions

Layout optimization techniques were developed almost half a century ago, but are
now the subject of renewed interest. When suitable adaptive solution schemes are
employed, layout optimization techniques can be applied to large-scale problems.
This means that very accurate solutions can be obtained relatively rapidly, poten-
tially allowing new-insights into the optimal forms of structures to be obtained.
The inherent similarities between limit analysis and limit design problem formu-
lations also means that methods originally developed for the design of trusses can
be adapted to identify the critical layout of discontinuities in solids (discontinuity
layout optimization, DLO). DLO is a powerful and flexible technique which is now
finding use in industry, clearly demonstrating its practical usefulness.
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Macroscopic Modeling of Porous Nonassociated
Frictional Materials

Long Cheng, Géry de Saxcé, and Djimedo Kondo

Abstract The aim of this work is to propose a macroscopic plastic model for
“Porous nonassociated Drucker-Prager”-type materials, using homogenization tech-
niques and the hollow sphere model proposed by Gurson (J Eng Mater Technol
99:2–15, 1977) for von Mises solid matrix. In the first part, we determine analyti-
cally the plastic limit state of a hollow sphere with a Drucker-Prager matrix and sub-
jected to hydrostatic loading. For the associated case, the collapse is complete with
a unique regime. For the nonassociated cases, we consider weaker solutions (partial
collapse and regime change). Nevertheless, we show that the collapse is complete
and exhibits a single regime. Consequently, the collapse stress field and the limit
load do not depend on the value of the dilation angle, as confirmed by numerical
simulations. This result has been already obtained by Maghous et al. (Eur J Mech A,
Solids 28:179–188, 2009) by means of a modified second moduli approach. In Gur-
son’s footsteps, Guo et al. (J Mech Phys Solids 56:2188–2212, 2008) proposed a
macroscopic model for porous solid with pressure-sensitive dilatant matrix obeying
to the normality law (associated material). The second part of the paper is a first
attempt to extend Guo’s model to the nonassociated materials. Using the concept of
bipotential, we proposed a two-fields variational approach to deduce a macroscopic
model.
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1 Introduction

The present work must be considered as a first attempt to propose a macroscopic
plastic model for “Porous nonassociated Drucker-Prager”-type materials, using ho-
mogenization techniques. In a famous paper [35], Gurson derived an upper bound
limit analysis approach of a hollow sphere and a hollow cylinder having a von Mises
solid matrix. Several extensions of Gurson’s model have been further proposed in
the literature, the probably most important developments being those accounting
for void shape effects [32, 33, 54]. Other extensions are concerned by the plas-
tic anisotropy [2, 55] or take into account the plastic compressibility of the matrix
through associated Drucker-Prager model in the perspective of applications to poly-
mer and cohesive geomaterials [1, 41, 42, 52].

In the first part (Sect. 2), we consider the hollow sphere subjected to the particu-
lar case of hydrostatic loading. This part is a direct extension of a recent paper [60]
dedicated to the same problem but here with the nonassociated flow rule. Classi-
cal bound limit analysis theorems have been generalized to the class of implicit
standard materials, i.e. with a nonassociated flow rule represented with a bipoten-
tial [9, 24]. In the spirit of Gurson’s paper, a trial velocity field is built by adding
linear terms to the exact one for hydrostatic loading. The goal of this part is to de-
termine such an exact field. In limit analysis, the most simple solutions are smooth
with a single plastic regime covering the whole body but, generally speaking, it
is a priori expected that limit state solutions may involve some field discontinu-
ities compatible with the continuum mechanics principles [17, 58]. In particular,
the collapse may be incomplete and/or exhibits distinct regimes in subdomains. For
nonassociated Drucker-Prager model, the collapse stress field is statically and plas-
tically admissible. Then the limit load for the nonassociated model is a priori less
than the limit load for the corresponding associated model (i.e. with the normality
rule and the same friction angle). As a matter of fact, although exact solutions do
not exist up to now for such class of problems, numerical simulations show that
for classical soil mechanics applications (bearing capacity of a strip footing, sta-
bility of foundations and tunnels), the limit load of the nonassociated case is re-
ally strictly less than the one of the corresponding associated case [3, 18, 39]. In
the hollow sphere problem, we consider the event of such weaker solutions but
we conclude to the impossibility of incomplete collapse and more than one plas-
tic regime. The paradoxical consequence is the nonsensitivity of the limit load to
the dilatancy angle. This theoretical result which has been already obtained by [52]
through a non-linear homogenization technique is confirmed by numerical simula-
tions.

In the second part, we tackle the general case of combined hydrostatic and devi-
atoric loadings. Roughly speaking, a constitutive law in Mechanics is a relationship
between dual variables. The constitutive laws of the materials can be represented,
as in Elasticity, by a univalued mapping or, as in Plasticity, can be generalized
in the form of a multivalued mapping. But this representation is not necessarily
convenient. When the graph is maximal and cyclically monotone, we can model it
thanks to a convex and lower semi-continuous function φ, called a superpotential (or



Macroscopic Modeling of Porous Nonassociated Frictional Materials 183

pseudo-potential), such that the graph is the one of its subdifferential ∂φ. The func-
tion φ and its Fenchel conjugate one φ∗ verifies for any couple of dual variables
Fenchel’s inequality. The dissipative materials admitting a superpotential of dissi-
pation are often qualified as standard [36] and the law is said to be a normality law,
a subnormality law or an associated law.

However, several models proposed these last decades, particularly in Plasticity,
are nonassociated. For such laws, the second author introduced in [20, 21] a suitable
modelization based on the bipotential, a function b of both dual variables, convex
and lower semicontinuous in each argument and satisfying a cornerstone inequality
saying that for any couple of dual variables the value of the bipotential is greater than
or equal to their duality pairing. When equality holds, the couple is said extremal.
In a mechanical view point, the extremal couples are the ones satisfying the con-
stitutive law. Materials admitting a bipotential are called implicit standard materials
(ISM) because the constitutive law is a subnormality law but the relation between
the dual variables is implicit. The classical standard materials correspond to the par-
ticular event of the bipotential being separated as the sum of a superpotential and
its conjugate one. In this sense, the cornerstone inequality of the bipotential gen-
eralizes Fenchel’s one. The existence and construction of a bipotential for a given
constitutive law is discussed in [11, 12, 14].

Linked to the structural mechanics and in particular with the Calculus of Varia-
tion, the bipotential theory offers an elegant framework to model a broad spectrum
of nonassociated laws. Examples of such nonassociated constitutive laws are:

• in soil mechanics, non-associated Drucker-Prager [3, 8, 22, 24, 39] and Cam-Clay
models [23, 62],

• the nonlinear kinematical hardening rule for cyclic Plasticity [5–7, 21, 53] and
Viscoplasticity [37],

• Lemaitre’s coupled damage law [4],
• the coaxial laws [26, 61],
• Coulomb’s friction law [9, 21, 22, 24, 25, 28–31, 38, 40, 44],
• the blurred constitutive laws [13, 15].

A complete survey can be found in [26]. In the previous works, robust numerical
algorithms were proposed to solve structural mechanics problems.

The limit analysis is a general method to determine the plastic collapse of struc-
tures under proportional loading [58], particularly in soil mechanics [17, 18], but it
is restricted to associated plasticity (with normality law). The classical presentation
of the nonassociated plasticity is based on a yield function and a plastic potential.
The bipotential offers an alternative formulation opening naturally into a variational
formulation, paving the way to an extension of limit analysis techniques to nonas-
sociated laws [8, 9, 16, 24, 62]. Extension of this method to the repeated variable
loading is called shakedown theory and its extension to the ISM by the bipotential
approach was also considered in [6–8, 10, 26].
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2 First Part: The Exact Analytical Solution for the Pure
Hydrostatic Loading

2.1 Problem Formulation

We consider a hollow sphere made up of a spherical cavity embedded in a homoth-
etic cell of a rigid-plastic isotropic and homogeneous material with nonassociated
Drucker-Prager model. The inner and outer radii are respectively denoted a and b,
giving the void volume fraction f = (a/b)3 < 1. The hollow sphere is subjected to
a uniform hydrostatic stress q upon its external boundary and a uniform pressure p

upon the cavity boundary. Accounting for the central symmetry of the problem, the
spherical coordinate (r, θ,ϕ) are used, r being the radius, θ the inclination angle, ϕ
the azimuth one, and all the fields are depending only on r .

The velocity components vθ and vϕ are null. The strain rate tensor d has three
non-vanishing components given with respect to the radial velocity vr by:

drr = dvr

dr
, dθθ = dϕϕ = vr

r
. (1)

There is no kinematic boundary conditions but the velocity field vr(r) must be con-
tinuous anywhere.

The stress tensor σ has three nonvanishing components, σrr , σθθ = σϕϕ and, in
absence of body forces, satisfies the radial equilibrium equation:

dσrr

dr
+ 2

σrr − σθθ

r
= 0, (2)

with static boundary conditions:

σrr(a) = −p, σrr(b) = q. (3)

According to the mechanics of continua, some discontinuities of σθθ and σϕϕ may
occur when r varies but the radial stress σrr(r) must be continuous anywhere.

Drucker-Prager model is considered with the yield criterion:

F(σ ) = σe + 3ασm − σ0 = 0, (4)

where σe is the equivalent stress of Von Mises, σm the mean stress, σ0 > 0 the
cohesion stress of the material and α the pressure sensitivity factor related to the
friction angle φ by:

tanφ = 3α.

The nonassociated flow rule:

d = λ
∂G

∂σ
, (5)

is given by the plastic potential:

G(σ ) = σe + 3βσm − σ0,
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where β depends on the dilatancy angle ψ through:

tanψ = 3β.

Moreover, the plastic multiplier must be nonnegative:

λ ≥ 0. (6)

Of course, for the particular event ψ = φ hence F = G, the normality rule is re-
covered and the plasticity model is associated. Without loss of generality, we can
assume that:

0 ≤ β ≤ α <
1

2
, (7)

or equivalently 0 ≤ ψ ≤ φ < 56◦18′. In practice, these conditions are fulfilled by
the geomaterials and other pressure sensitive dilatant materials. Experimental data
can be found for polymers, high strength steels and aluminium in [34].

2.2 Plastic Limit State

The equivalent stress reads:

σe = 1√
2

√
(σrr − σθθ )2 + (σθθ − σϕϕ)2 + (σϕϕ − σrr)2.

The mean stress is:

σm = 1

3
(σrr + σθθ + σϕϕ). (8)

The flow rule (5) takes the form:

drr = λ

(
β + 1

2σe

(2σrr − σθθ − σϕϕ)

)
,

dθθ = λ

(
β + 1

2σe

(2σθθ − σϕϕ − σrr)

)
.

Owing to σθθ = σϕϕ , the equivalent stress is reduced to:

σe = |σrr − σθθ | = ε(σθθ − σrr), (9)

with the following convention to distinguish the plastic regimes:

• ε = +1 if σrr ≤ σθθ ,
• ε = −1 if σθθ ≤ σrr .

Considering (9) and once again σθθ = σϕϕ , one obtains:

drr = λ(β − ε), dθθ = dϕϕ = λ

(
β + ε

2

)
. (10)
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Eliminating the velocity between the two equations (1), one obtains:

drr = d

dr
(rdθθ ).

Eliminating the strain rate components between the previous relations leads to:

dλ

dr
+ 3λ

sεr
= 0,

where we put for convenience sε = 1 + 2εβ . The general solution is:

λ(r) = λεr
− 3

sε . (11)

Combining (10) with (1) leads to:

vr(r) = Kεr
1− 3

sε , (12)

where

Kε =
(
β + ε

2

)
λε. (13)

As usual, due to the nature of the limit load problem, the kinematical fields are
defined up to a positive factor.

Let us now discuss the existence of solutions with discontinuities:

• Suppose that there exist adjoining spherical shells which have distinct plastic
regimes corresponding respectively to ε and −ε. The continuity of the velocity
field at the interface of radius r0 entails:

K−ε = Kεr
−3( 1

sε
− 1

s−ε
)

0 .

Assuming that Kε and K−ε do not vanish, they should have the same sign,
and the plastic multiplier should be positive. However, under the condition (7),
λε = Kε/(β + ε

2 ) and λ−ε = K−ε/(β − ε
2 ) have opposite signs, which is absurd

because, accounting for (11), condition (6) would be violated in one of these
regimes. Thus no change of regime is allowed at the limit state.

• Finally, let us suppose that the collapse is not complete. The plastic multiplier
field is identically null in a nonplastified spherical shell, hence so is the velocity
field because of (11), (12) and (13). It is absurd to assume the existence of a
plastic yielding adjoining shell because the continuity of the velocity field at the
interface would force the velocity field to vanish in the yielding shell. Hence the
collapsed must be complete.

Next, the corresponding statical solution is presented. Considering (8), (9) and once
again σθθ = σϕϕ , the yield function reads:

F(σ ) = ε(σθθ − σrr) + α(σrr + 2σθθ ) − σ0 = 0.

It follows:

2(σθθ − σrr) = 3γε(H − σrr), (14)
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where γε = 2α/(2α + ε) and H = σ0/3α = σ0/ tanφ > 0. Due to the condition (7),
the sign of γε coincides with that of ε. Combining with the equilibrium equation (2)
gives:

dσrr

dr
+ 3γε(σrr − H)

r
= 0.

The solution satisfying the boundary condition (3)1 is:

σrr(r) + p

H + p
= 1 − f γε

(
b

r

)3γε
. (15)

The limit hydrostatic stress is given by (3)2 as function of the porosity:

q + p

H + p
= 1 − f γε . (16)

It can be verified that γε , σrr and (q +p) have the same sign ε . In short, the solution
is defined by the limit load (16) and, in the interval a ≤ r ≤ b, by the collapse fields
of plastic multiplier (11), velocity (12) and radial stress (15). The stress field and
limit loads do not depend on the dilatancy angle and they are identical to the ones of
the associated case with same friction angle, previously obtained in [60] when the
pressure vanishes. Only the collapse mechanism is dilatancy angle dependent. This
insensitivity of the limit load to the dilatancy angle agrees with the model recently
proposed by [52].

For the variational model that will be presented in the second part, it is convenient
to determine also the mean stress field (8). From (14), we obtain:

2σθθ = (2 − 3γε)σrr + 3γεH.

Taking into account this last relation, σθθ = σϕϕ and (15), it comes:

σm(r) = 1

3α

[
σ0 − (σ0 + 3αp)

f γε

sε

(
b

r

)3γε]
. (17)

In the second part, to lighten the notations, the subscript ε will be erased.

2.3 Numerical Results

In this section, the previous analytical solution is compared to numerical data ob-
tained from Finite Element Method (FEM) results. An axisymmetric model of the
spherical shell, as shown in Fig. 1, is considered and 1500 quadratic axisymmetric
elements are used. Hence, the numerical analysis will be carried out by means of the
2D-FEM code [43, 59] developed in LML (Mechanics Laboratory of Lille, France)
for incremental analysis of elastoplatic materials with nonassociated flow rule and
in small deformations. The radial displacement is fixed on the plans ABCD of sym-
metry, the vertical and horizontal displacements of the lateral boundaries AB and
CD are also fixed, and a uniform radial displacement is imposed upon the external
boundary BC, while the internal boundary DA is free of stress.
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Fig. 1 Hollow sphere model: Geometry of the elementary cell and boundary conditions

A reference case, denoted Case 1, is firstly defined in which the associated flow
rule is applied with the following parameters: a = 0.585 m, b = 1 m (f ≈ 0.2002),
φ = ψ = 30◦, E = 500 MPa, ν = 0.2 and σ0 = 1 MPa. Then, in order to verify
the precision of the proposed model in nonassociated cases, two other simulations
(denoted Cases 2 and 3) are performed with two different values of ψ (15◦ and 0◦),
both under compression and traction conditions.

Figure 2 displays the FEM results of Cases 1 to 3, where the materials possess
the same porosity (f ≈ 0.2002) but different dilation angles. ξ (r) denotes the ra-
dial displacement and the limit stress is the asymptotic value. The limit loads of
associated case (ψ = φ = 30◦) and nonassociated ones (φ = 30◦, ψ = 15◦ and 0◦),
as expected, have almost the same value with very small differences of the order
1 %. The differences between the reference analytical solution and the finite el-
ement ones are rather small and can be attributed to numerical errors due to the
discretization. However, the FEM points of these three lines in this figure do not
coincide entirely. In other words, as the displacements imposed upon the external
boundary being the same, the ones at the internal boundary are not. Therefore, the
limit load of nonassociated Drucker-Prager porous material does not depend on the
dilation angle, whereas the collapse mechanism does. More details can be found
in [19] concerning the sensitivity of the proposed model with respect to the porosity
and Young’s modulus.

3 Second Part: Variational Formulation for Combined
Hydrostatic and Deviatoric Loadings

3.1 More About the Nonassociated Drucker-Prager Model

Excepted for the apex of Drucker-Prager cone (σe = 0, σm = σ0/3α ) where σe is
not differentiable, the plastic strain rate is given by the nonassociated flow rule:

d = ε̇p
∂G

∂σ
= ε̇p

(
3s

2σe

+ β1
)
, (18)
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Fig. 2 Comparison of numerical limit loads between associated (ψ = 30◦) and nonassociated
cases (ψ = 15◦ and 0◦) with fixed friction angle (φ = 30◦) and porosity (f ≈ 0.2002)

where σ is Cauchy stress tensor, s the deviatoric stress, 1 the unit tensor. the scalar
ε̇p is defined as:

ε̇p =
∣∣∣∣23e : e

∣∣∣∣
1/2

with e the deviatoric part of d . The plastic dilatancy is given by:

trd = 3βε̇p. (19)
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This suggests introducing:

H(d) = βε̇p − dm.

The plastic flow rule (18) is completed at the apex by the condition:

H(d) ≤ 0

while, because of (19), H(d) = 0 at the other points of the yielding surface (called
regular points).

3.2 Bipotential Formulation

In previous papers, the second author proposed a new modeling of the nonassociated
constitutive laws based on the concept of bipotential [20, 21]. With the previous
notations, the bipotential of nonassociated Drucker-Prager model is equal to:

b(d,σ ) = σ0

α
dm + (β − α)

(
3σm − σ0

α

)
ε̇p, (20)

when F(σ ) ≤ 0 and H(d) ≤ 0, equal to +∞ otherwise. First of all, let us recall
a basic concept of convex analysis, the subdifferential of a function φ in a point x

which is the (possibly empty) set:

∂φ(x) = {
y | ∀x′, φ

(
x′)− φ(x) ≥ (

x′ − x
) : y}. (21)

For more details on convex analysis, the reader is referred for instance to [27, 56,
57]. The main properties of the bipotential are:

(a) b is convex and lower semicontinuous in each argument.
(b) For any d ′ and σ ′ we have

b
(
d ′,σ ′)≥ d ′ : σ ′. (22)

(c) For d and σ we have the equivalences:

σ ∈ ∂b(·,σ )(d) ⇐⇒ d ∈ ∂b(d, ·)(σ ) ⇐⇒ b(d,σ ) = d : σ . (23)

In a mechanical point of view, the bipotential represents the plastic dissipation
power (by volume unit) and (23) is the constitutive law. The couples (d,σ ) for
which ones equivalence (23) holds are called extremal couples. For the prove of the
equivalence in the case of the nonassociated Drucker-Prager model, the reader is re-
ferred to [24]. Materials admitting a bipotential are called implicit standard materials
(ISM). Accounting for the definition (21) of the subdifferential and the cornerstone
inequality (22), the constitutive law (23) reads [12, 14, 15, 44]:

min
d ′

(
b
(
d ′,σ

)− d ′ : σ )= min
σ ′

(
b
(
d,σ ′)− d : σ ′)= 0. (24)
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It is worth remarking that, with respect to the previous minimization problems, the
bipotential has the required convexity properties. Let us show how to recover sim-
ply the plastic yielding condition F(σ ) = 0 by the bipotential formalism. The first
minimization problem becomes:

min
H(d)≤0

(
b0(d,σ ) − d : σ )= 0,

where b0 is the finite part of the bipotential, given by (20). Relaxing the kinematical
condition H(d) ≤ 0 by use of Lagrange’s multiplier λ, this constrained minimiza-
tion problem is transformed into an equivalent saddle-point problem

max
λ≥0

min
d

(
L(d,σ , λ) = b0(d,σ ) − d : σ + λH(d)

)= 0,

where the Lagrangian is:

L(d,σ , λ) = σ0

α
dm + (β − α)

(
3σm − σ0

α

)
ε̇p − (

σeε̇
p + 3dmσm

)+ λ
(
βε̇p − dm

)
.

Its stationarity with respect to ε̇p and dm gives:

σe = (β − α)

(
3σm − σ0

α

)
+ βλ,

3σm = σ0

α
− λ.

Eliminating λ between these relations leads to the plastic criterion:

F(σ ) = σe + 3ασm − σ0 = 0.

In a similar way, it is possible to recover the plastic flow rule (18) at a regular
point. The second minimization problem in (24) becomes:

min
F(σ )≤0

(
b0(d,σ ) − d : σ )= 0.

Relaxing the plastic yielding condition F(σ ) ≤ 0 by use of Lagrange’s multiplier
λ∗, this problem is transformed into an equivalent saddle-point problem

max
λ∗≥0

min
σ

(
L∗(d,σ , λ∗)= b0(d,σ ) − d : σ + λ∗F(σ )

)= 0,

where the Lagrangian is:

L∗(d,σ , λ∗)= σ0

α
dm + (β − α)

(
3σm − σ0

α

)
ε̇p − (e : s + 3dmσm)

+ λ∗(σe + 3ασm − σ0).

Its stationarity with respect to s and σm gives:

e = λ∗ 3s

2σe

, (25)

(β − α)ε̇p − dm + αλ∗ = 0. (26)
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From (25) we obtain λ∗ = ε̇p . Eliminating λ∗ in (26) leads to the kinematical con-
dition:

H(d) = βε̇p − dm = 0,

that allows recovering the nonassociated flow rule (5):

d = e + dm1 = ε̇p
(

3s

2σe

+ β1
)
.

For the treatment of the apex, the reader is referred to [39].

3.3 Variational Formulation and Limit Analysis

Unlike the classical presentation of the nonassociated constitutive laws by means
of the yield function and the plastic potential, the bipotential formulation naturally
opens into a variational formulation, paving the way to an extension of limit anal-
ysis techniques to nonassociated laws. We present it directly in the framework of
homogenization of porous material, considering a reference elementary volume or
macro-element V composed of a matrix VM made of an ISM and a void Vf sub-
jected to a uniform hydrostatic pressure p. The macro-element V is enclosed by
surface S and the void Vf by Sf . The macroscopic stress Σ and strain rate D are
defined as volume averages of their microscopic counterpart σ and d :

Σ = V −1
∫
V

σdV, D = V −1
∫
V

ddV.

The set of kinematical admissible velocity fields is defined in the following sense:

Ka = {
v s.t. v(x) = D.x on S

}
.

The associated strain rate field is d(v) = grads v. The set of statically admissible
stress fields is:

Sa = {σ s.t. divσ = 0 in VM and σ = −p1 in Vf }.
The set of admissible couples is the product A = Ka × Sa and the set of extremal
ones is:

E = {
(v,σ ) s.t.

(
d(v),σ

)
is extremal in VM

}
.

The homogenization problem consists in determining the set A × E of admissible
and extremal fields. Accounting for its strong nonlinear nature, this problem has
in general no closed analytical solution. We present now an equivalent variational
formulation, more appropriate for simple approximations, thanks to relevant choice
of trial fields and minimization procedure. Let us consider an admissible couple
(v,σ ). Thus, by Hill’s lemma, one has:

D : Σ = V −1
∫
V

d(v) : σdV = −V −1
∫
Vf

d(v)dV : p1 + V −1
∫
VM

d(v) : σdV,
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D : Σ = −V −1
∫
V

d(v)dV : p1 + V −1
∫
VM

d(v) : (σ + p1)dV .

Then, for any admissible couple, it holds:

D : (Σ + p1) = V −1
∫
VM

d(v) : (σ + p1)dV . (27)

This suggests introducing the following two field functional:

B
(
v′,σ ′)= V −1

∫
VM

(
b
(
d
(
v′),σ ′)+ d

(
v′) : p1

)
dV − D : (Σ + p1),

called the bifunctional. As previously said, we are interested for homogenization
purpose in finding the admissible and extremal couples (v,σ ). In fact, they are so-
lutions of the simultaneous minimization problems:

B(v,σ ) = min
v′∈Ka

B
(
v′,σ

)= min
σ ′∈Sa

B
(
v,σ ′)= 0. (28)

Indeed, if (v′,σ ′) is admissible, relation (27) and (22) entail:

B
(
v′,σ ′)= V −1

∫
VM

(
b
(
d
(
v′),σ ′)− d

(
v′) : σ ′)dV ≥ 0.

In particular, this occurs for admissible couples (v′,σ ), (v,σ ′), (v,σ ) and moreover,
in the last case, because of (23):

B(v,σ ) = 0.

In short, one has for all admissible fields v′ ∈ Ka and σ ′ ∈ Sa :

B
(
v′,σ

)≥ B(v,σ ) = 0 and B
(
v,σ ′)≥ B(v,σ ) = 0,

which proves (28).
Now, let us discuss some relevant aspects of the variational principles for rigid

perfectly plastic materials such as the one described in the previous sections. The
set of plastically admissible velocity and stress fields are respectively defined as:

Kp = {
v s.t. H

(
d(v)

)≤ 0 in VM

}
,

Sp = {
σ s.t. F (σ ) ≤ 0 in VM

}
.

The sets of licit velocity and stress fields are respectively Kl = Ka ∩ Kp and Sl =
Sa ∩ Sp while we considered the finite valued functional:

B0
(
v′,σ ′)= V −1

∫
VM

(
b0
(
d
(
v′),σ ′)+ d

(
v′) : p1

)
dV − D : (Σ + p1).

Hence, the variational homogenization problem becomes:

B0(v,σ ) = min
v′∈Kl

B0
(
v′,σ

)= min
σ ′∈Sl

B0
(
v,σ ′)= 0. (29)

For rigid perfectly plastic, because b0 is positively homogeneous of order one in d ,
there is a trivial kinematical solution to the previous problem where v and D vanish.
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The limit analysis approach consists in finding nontrivial solutions qualified as col-
lapse mechanisms. It is expected that there exist only under an equality condition on
Σ that can be interpreted as the equation of the yielding surface in the macroscopic
model.

It is worth noting that if both D and Σ are chosen arbitrarily, there is in general
no solution to the problem (29). In a practical point of view, it is more convenient
for instance to fix only Σ and to find D and v satisfying the first minimization
problem in (29). Introducing Lagrange’s multiplier field x �→ λ(x), this constrained
minimization problem is transformed into an equivalent saddle-point problem

max
λ≥0

min
v∈Ka

(
L (v,σ , λ) = B0(v,σ ) + V −1

∫
VM

λH(d)dV

)
.

Following [34], we perform a first approximation by imposing Lagrange’s multiplier
field to be uniform in VM :

max
λ≥0

min
v∈Ka

(
L (v,σ , λ) = B0(v,σ ) + λV −1

∫
VM

H(d)dV

)
,

that is equivalent to minimize the bifunctional B0 under the relaxed kinematical
condition:

V −1
∫
VM

H(d)dV = 0. (30)

Satisfying the kinematical condition only in an average sense but not locally any-
where in VM is a strong approximation but leading to easier calculations. As con-
sequence of the approximation, it is crucial to remark that the minimum of B0 may
not be expected to be zero. Nevertheless, in the spirit of Ladevèze’s method of the
error on the constitutive law [45–51], its value for the minimizer can be used as a
variational error estimator [30]. The minimum principle allows obtaining the “bet-
ter”solution within the framework imposed by the approximations.

Introducing the macroscopic strain rate of the void and equivalent strain rate,
respectively defined by:

Dvoid = V −1
∫
Vf

ddV, �(v) = V −1
∫
VM

ε̇pdV,

condition (30) reads:

β�(v) − 1

3
tr(D − Dvoid ) = 0.

Introducing, as in [34], the normalized macro-stress tensor:

T = Σ + p1
σ0 + 3αp

,

and accounting for (20), the normalized bifunctional is:

B̄0(v,σ ) = B0(v,σ )

σ0 + 3αp
= 1

3α
tr(D − Dvoid) +

(
1 − β

α

)
�̂(v,σ ) − D : T ,
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where:

�̂(v,σ ) = V −1
∫
VM

σ0 − 3ασm

σ0 + 3αp
ε̇pdV . (31)

Introducing the normalized multiplier λ̄ = λ/(σ0 + 3αp), the normalized La-
grangian is:

L̄ (v,σ , λ̄) = L (v,σ , λ)

σ0 + 3αp
,

L̄ (v,σ , λ̄) =
(

1

α
− λ̄

)
1

3
tr(D − Dvoid ) + λ̄β�(v) +

(
1 − β

α

)
�̂(v,σ ) − D : T .

(32)

3.4 Hollow Sphere Model with Nonassociated Drucker-Prager
Type Matrix

We consider a hollow sphere made up of a spherical void embedded in a homoth-
etic cell of a rigid-plastic isotropic and homogeneous material with nonassociated
Drucker-Prager model. The inner and outer radii are respectively denoted a and b,
giving the porosity f = (a/b)3 < 1. Accounting for the central symmetry of the
problem, the cylindrical coordinates (ρ,φ, z) are used, ρ and φ being the polar
radius and angle, z the height with respect to the Oxy plane.

In order to limit the errors due to approximations, we hope the macroscopic
model to be exact at least for the pure hydrostatic case. Taking into account the
expression (12) of the velocity field obtained in the first part for the pure hydrostatic
loading, the following trial velocity field is chosen:

v = C0

(
b

r

)3/s̃

(ρeρ + zez) + C1ρeρ + C2zez,

with r = √
ρ2 + z2, s̃ = 1 + 2εβ where ε is the sign of C0. The first term is the so-

lution (12) of the pure hydrostatic case. As in Gurson’s model [35] and its extension
to pressure sensitive dilatant materials [34], it is completed by two linear terms to
capture the shear effects. In this last paper, the macro-strain rate is shown to be:

D = C01 + C1(eρ ⊗ eρ + eφ ⊗ eφ) + C2ez ⊗ ez, (33)

Dvoid = C0f
γ̃ 1 + f

[
C1(eρ ⊗ eρ + eφ ⊗ eφ) + C2ez ⊗ ez

]
, (34)

with γ̃ = 1 − s̃−1. Introducing the ratio:

ω̃ = 2C0

s̃De

,
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the macroscopic equivalent strain rate is [34]:

�(v) = De

∫ 1

f

J (ζ )
√

1 + ω̃2x−2/s̃dx,

with

J (ζ ) = 1

2

∫ π

0

√
1 + 1

2

(
3 cos2 θ − 1

)
ζ sin θdθ,

where

ζ = 2ω̃x−1/s̃

1 + ω̃2x−2/s̃
sign(C1 − C2), | ζ |≤ 1.

On the other hand, the bifunctional depends on the stress field only through σm.
Under condition (7), the following trial stress field is chosen as the solution (17) of
the pure hydrostatic case, without additional terms:

σm(r) = 1

3α

[
σ0 − (σ0 + 3αp)

f γ

s

(
b

r

)3γ ]
,

where s = 1 + 2εα and γ = 1 − s−1. Introducing this expression into (31) gives:

�̂(v,σ ) = V −1 f
γ

s

∫
VM

(
b

r

)3γ

ε̇pdV = f γ

s
I (γ ),

where

I (γ ) = De

∫ 1

f

x−γ J (ζ )
√

1 + ω̃2x−2/s̃dx. (35)

It is worth noting the particular case:

�(v) = I (0).

The function J (ζ ) is smooth over the compactly supported domain with extreme
values Jmax = J (0) = 1 and Jmin = J (−1) = 0.962. Following [35], this
function is taken to be equal to unity, that reduces (35) to:

I (γ ) = De

∫ 1

f

x−γ
√

1 + ω̃2x−2/s̃dx. (36)

Accounting of (33) and (34), the normalized Lagrangian is:

L̄ (v,σ , λ̄) =
(

1

α
− λ̄

)[
(1 − f )Dm − (

f γ̃ − f
)
C0

]

+ λ̄β�(v) +
(

1 − β

α

)
�̂(v,σ ) − (DeTe + 3DmTm),

where � and �̂ depends on C0 and De . With simplified notations for partial deriva-
tives, its stationarity with respect to De, Dm and C0 gives:

Te = λ̄β�,De +
(

1 − β

α

)
�̂,De , (37)
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3Tm =
(

1

α
− λ̄

)
(1 − f ), (38)

λ̄β�,C0 +
(

1 − β

α

)
�̂,C0 −

(
1

α
− λ̄

)(
f γ̃ − f

)= 0. (39)

From (39), we deduce the expression of the multiplier:

λ̄ =
1
α
(f γ̃ − f ) + (

β
α

− 1)�̂,C0

f γ̃ − f + β�,C0

.

Eliminating it in (37) and (38) leads to:

Te = (f γ̃ − f )[β
α
�,De + (1 − β

α
)�̂,De ] + (1 − β

α
)β(�,C0�̂,De −�,De�̂,C0)

f γ̃ − f + β�,C0

,

(40)

3Tm = (1 − f )

β
α
�,C0 + (1 − β

α
)�̂,C0

f γ̃ − f + β�,C0

. (41)

3.5 Limit Cases

Let us examine the particular cases of pure hydrostatic and deviatoric loadings.

• Purely hydrostatic case: |ω̃| = +∞ �⇒ De = 0. The integral (36) is:

I (γ ) = |ω̃|De

∫ 1

f

x−γ−s̃−1
dx = 2|C0|

s̃

1 − f γ̃−γ

γ̃ − γ
.

Then, it holds:

�(v) = I (0) = C0

β

(
1 − f γ̃

)
, �̂(v,σ ) = C0

β − α

(
f γ − f γ̃

)
,

f γ̃ − f + β�,C0 = 1 − f.

Finally, the macro-stress is given by (40) and (41):

Te = 0, 3Tm = 1

α

(
1 − f γ

)
, (42)

that was expected with respect to the exact result (16) determined in the first part.
The solution is the same as for the corresponding associated case [34].

• Purely deviatoric case: ω̃ = 0 �⇒ C0 = 0. The integral (36) is:

I (γ ) = De

∫ 1

f

x−γ dx = De

1 − f 1−γ

1 − γ
.

Then, it holds:

�(v) = I (0) = De(1 − f ), �̂(v,σ ) = De

(
f γ − f

)
,
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f γ̃ − f + β�,C0 = f γ̃ − f.

Finally, the macro-stress is given by (40) and (41):

Te = 1 − f +
(

1 − β

α

)(
f γ − f

)
, Tm = 0. (43)

When the flow rule is associated, we recover the result obtained in [34]. Never-
theless, the accuracy of (43) is poor for strong lack of associativity. The weakness
of this model is that we use the expression (17) of the mean stress deriving from
the solution in the pure hydrostatic case. We are currently working to improve
the trial stress field by introducing additional terms into (17) and working on the
stress principle.

4 Conclusion

Unlike currently observed in other problems, in the one of the hydrostatically loaded
hollow sphere the limit load and collapse stress field for the nonassociated cases
are the same as for the corresponding associated case. This event may appear at
first glance paradoxical. The key point is the strong condition of central symmetry
which is very restrictive and prevents field discontinuities generally allowed by the
continuum mechanics. Thus only complete solution with a unique plastic regime
is considered and it is necessarily identical to the one of the associated case. The
general case of combined hydrostatic and deviatoric loadings is in progress. The
first elements of the corresponding theory are exposed in Sect. 3.
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Direct Evaluation of the Post-Buckling Behavior
of Slender Structures Through a Numerical
Asymptotic Formulation

Giovanni Garcea, Antonio Bilotta, Antonio Madeo, and Raffaele Casciaro

Abstract The analysis of slender structures, characterized by complex buckling
and postbuckling phenomena and by a strong imperfection sensitivity, is heavily pe-
nalized by the lack of adequate computational tools. Standard incremental iterative
approaches are computationally expensive and unaffordable, while FEM implemen-
tation of the Koiter method is a convenient alternative. The analysis is very fast, its
computational burden is of the same order as a linearized buckling load evaluation
and the simulation of different imperfections costs only a fraction of that needed
to characterize the perfect structure. In this respect it can be considered as a direct
method for the evaluation of the critical and post-critical behaviour of geometri-
cally nonlinear elastic structures. The main objective of the present work is to show
that finite element implementations of the Koiter method can be both accurate and
reliable and to highlight the aspects that require further investigation.

1 Introduction

A global evaluation of the structural collapse safety of slender elastic structures
should consider all possible loadings, including the deviations due to load imper-
fections and geometrical defects. Standard path-following approaches, aimed at re-
covering the equilibrium path for a single loading case and assigned imperfections,
are not suitable for this purpose. In fact in order to perform a reliable structural
safety assessment the nonlinear analysis should be performed with respect to all
possible imperfection shapes. The consequent computational burden can be very
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high particularly if no reliable information about the worst imperfection shapes is
available.

The asymptotic approach, derived as a finite element implementation [1–5, 7, 11,
12, 21, 22, 29, 30, 32–36] of the Koiter nonlinear theory of elastic stability [25], can
be a convenient alternative as it provides an effective and reliable strategy for pre-
dicting the initial post-critical behavior in both cases of limit or bifurcation points
[8, 27, 28]. The implementation of the asymptotic approach as a computational tool,
as will be shown, is quite easy and its total computational burden remains of the or-
der as that required by a standard linearized stability analysis. It provides the initial
post-buckling behavior of the structure, including modal interactions and jumping-
after-bifurcation phenomena. Moreover, once the analysis has been performed, the
presence of small loading imperfections or geometrical defects can be taken into
account in a postprocessing phase with a negligible computational extra–cost, so
allowing an inexpensive imperfection sensitivity analysis (e.g. see [9, 27]). It is also
possible to extract information about the worst imperfection shapes [10, 31], and
it can be used to improve the imperfection sensitivity analysis or for driving more
detailed investigations through specialized path-following analysis (see [8, 10] and
references therein). From this point of view we can affirm that in the field of geomet-
rically nonlinear elastic structures, the Koiter asymptotic method works as a direct
method suitable to evaluate the critical and post-critical behaviour of structures and
in this sense it is similar to direct methods for limit and shakedown analysis.

The asymptotic analysis can provide a very accurate recovery of the equilib-
rium path, as it is confirmed by numerical testings and theoretical investigations [6]
but requires great care in both the mechanical modeling [15, 16] and its finite ele-
ment implementation. As will be shown in the paper accuracy cannot be obtained
by an inappropriate finite element interpolation due to the occurrence of interpo-
lation locking phenomena in the evaluation of the energy variation terms used to
reconstruct the post-critical behaviour [8, 28]; by an inappropriate format used in
the control variables that can produce extrapolation locking phenomena [13, 18]) or
by the use of non objective structural models [15, 16].

The paper is organized as follows: Sect. 2 presents the local analysis and some
definitions, Sect. 3 presents the asymptotic method and its finite element implemen-
tation, Sect. 4 discusses all the aspects regarding the FEM implementation and the
accuracy, Sect. 5 gives some numerical results show the potential of the method and
finally Sect. 6 summarizes the discussion and suggests possible extensions.

2 Local Analysis

Adopting the same functional notation as the paper of Budiansky [7] we consider a
hyperelastic structure subjected to an assigned load, p[λ], which is linear with a λ

parameter (p[λ] = λp̂) and described by its potential energy Π[u] in terms of stress
and displacement here denoted by u. Equilibrium implies the condition

Π ′δu := Φ ′[u]δu − λp̂δu = 0, ∀δu ∈ T (1)



Direct Evaluation of the Post-Buckling Behavior of Slender Structures 205

where Φ[u] is the strain energy, p[λ]u the external work, U the manifold of the ad-
missible configurations and T its tangent space (the prime stands for the Frechèt’s
differentiation with respect to u). Usually (and conveniently) the configuration is
described making U a linear manifold, so T becomes independent from u.

Equation (1) defines a curve (it may be composed of several separate branches)
in the space (u, λ), called equilibrium path that can be expressed in a parametric
form in terms of a suitable abscissa ξ = g[u,λ]

{
u = u[ξ ],
λ = λ[ξ ] (2)

selected so that ξ = 0 gives the known equilibrium point (u0, λ0). The aim of
the asymptotic analysis is the evaluation of the equilibrium path starting from this
known configuration usually assumed corresponding to λ0 = 0, exploiting an im-
plementation of the Koiter approach to elastic stability [25] in a FEM context.

2.1 Asymptotic Expansion in a Regular Point

The solution process, based on a fourth-order expansion of the potential energy in
terms of λ and ξ , is briefly summarized in the following (more details can be found
in [8, 13, 18, 27, 28] and references therein).

Denoting by a dot the derivative with respect to ξ and assuming the equilibrium
path is analytical in the vicinity of ξ = 0 (see [8]), the Taylor expansion of Eq. (2)
is ⎧⎪⎪⎨

⎪⎪⎩
u[ξ ] = u0 + u̇0ξ + 1

2
ü0ξ

2 + 1

6
...
u0ξ

3 + · · · ,

λ[ξ ] = λ0 + λ̇0ξ + 1

2
λ̈0ξ

2 + 1

6

...
λ0ξ

3 + · · ·
(3)

where a subscript denotes the point in which the quantities are evaluated and
(u̇0, λ̇0), (ü0, λ̈0), etc are the tangent, curvature etc. of the equilibrium path in ξ = 0.
Expressing Eq. (1) using the parametrization in Eq. (2) we obtain a function of the
real variable ξ , its Taylor expansion in ξ = 0 furnishing

(
Φ ′[u[ξ ]]− λ[ξ ]p̂)δu = (

Φ ′
0 − λ0p̂

)
δu

+ ξ
(
Φ ′′

0 u̇0 − λ̇0p̂
)
δu

+ 1

2
ξ2(Φ ′′

0 ü0 + Φ ′′′
0 u̇2

0 − λ̈0p̂
)
δu

+ 1

6
ξ3(Φ ′′

0
...
u0 + 3Φ ′′′

0 u̇0ü0 + Φ ′′′′
0 u̇3

0 − ...
λ0p̂

)
δu + · · ·

(4)
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where Φ ′
0 ≡ Φ ′[u0], Φ ′′

0 ≡ Φ ′′[u0], etc.
Equation (4) is a polynomial that has to be zero for each value of ξ , this means

that all the coefficients, i.e. the derivative of Eq. (4) with respect to ξ to a given
order, has to be zero. We obtain, in this way, the perturbation equation at each order

(
Φ ′′

0 u̇0 − λ̇0p̂
)
δu = 0,(

Φ ′′
0 ü0 − λ̈0p̂

)
δu = −Φ ′′′

0 u̇2
0δu,(

Φ ′′
0

...
u0 − ...

λ0p̂
)
δu = −(

3Φ ′′′
0 u̇0ü0 + Φ ′′′′

0 u̇3
0

)
δu,

. . . = . . .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∀δu ∈ T (5)

with the perturbation equation of order zero not reported because it is verified “a
priori” by the equilibrium point (u0, λ0).

In order to solve (5) in a point where the operator Φ ′′[u0] is not singular, i.e. a
regular point, we have to add to Eqs. (5) the normalization condition, that is the def-
inition of the abscissa introduced to parametrize the equilibrium curve, ξ := g[u,λ],
whose asymptotic expansion gives

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g′
0u̇0 + ĝ0λ̇0 = 1,

g′
0ü0 + ĝ0λ̈0 = −g′′

0 u̇
2
0 − ˆ̂g0λ̇

2
0 − 2ĝ′

0λ̇0u̇0,

g′
0
...
u0 + ĝ0

...
λ0 = −g′′′

0 u̇3
0 − ˆ̂̂

g0λ̇
3
0 − 3g′′

0 u̇0ü0 − 3ĝ′
0ü0λ̇0,

− 3ĝ′
0u̇0λ̈0 − 3 ˆ̂g0λ̇0λ̈0 − 3 ˆ̂g′

0u̇0λ̇
2
0 − 3ĝ′′

0 u̇
2
0λ̇0

(6)

where a hat denotes the derivative with respect to λ. Equations (5) and (6) allow us
to define the necessary asymptotic quantities unequivocally.

The solution of the initial nonlinear problem is then reduced to the solution of a
sequence of linear problems that define, at each order, the asymptotic terms of that
order

(u̇0, λ̇0) →
{
Φ ′′

0 u̇0δu − λ̇0p̂δu = 0, ∀δu,
g′

0u̇0 + ĝ0λ̇0 = 1,

(ü0, λ̈0) →
{
Φ ′′

0 ü0δu + Φ ′′′
0 u̇2

0δu − λ̈0p̂δu = 0, ∀δu,
g′

0ü0 + ĝ0λ̈0 = −g′′
0 u̇

2
0 − ˆ̂g0λ̇

2
0 − 2ĝ′

0λ̇0u̇0

. . .

(7)

This is an important feature of the method which decouples each order from the next
one and allows the asymptotic expansion to be stopped at the desired order.
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Fig. 1 Limit and bifurcation
points of the equilibrium path

2.2 Asymptotic Expansion in a Critical Point

The equilibrium path can present either limit points or bifurcations, both types being
critical points because the second variation of the strain energy, i.e. the tangent to
the equilibrium path, is singular. Denoting a critical point by (uc, λc), there exists at
least one critical mode v̇c such that

Φ ′′
c v̇cδu = 0, ∀δu ∈ T . (8)

Let us now consider the single mode case, i.e. dim(ker(Φ ′′
c )) = 1. The perturbation

equations (7) with respect to the critical point can be written, as well as the regular
point case. Due to the singularity of Φ ′′

c in order to verify the first of Eq. (7) for
δu = v̇c, the satisfaction of the following Fredholm orthogonality condition on the
first order perturbation equation is required:

λ̇cp̂v̇c = 0. (9)

Equation (9) is verified in both cases of λ̇c = 0, i.e. a limit point for the loads, and
of p̂v̇c = 0 i.e. a bifurcation point (see Fig. 1).

2.2.1 Limit Point

In this case the tangent to the equilibrium path, (u̇c, λ̇c), is unequivocally defined
from the first condition (7). In particular the solution assumes the following expres-
sion

u̇c = βv̇c, λ̇c = 0 (10)

where the values of β are defined by the normalization condition

β
(
g′
cv̇c

)= 1.

With a similar procedure it is also possible to show how the curvature (üc, λ̈c) is
unequivocally defined. This means that a limit point behaves, with respect to the
asymptotic expansion, like a regular point.
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2.2.2 Bifurcation Point

When pv̇c �= 0 using the first of Eqs. (7) and due to the singularity of Φ ′′
c , the tangent

has the following expression

u̇c = λ̇cûc + βv̇c (11)

where ûc is a particular solution of the equation

Φ ′′
c ûcδu − p̂δu = 0, ∀δu ∈ T (12)

and βv̇c is the solution of the homogenous equation (8).
Now the normalization condition is no longer sufficient to evaluate the solution

because we need to evaluate both β and λ̇c. Also in this case we can use the Fred-
holm condition applied to the perturbation equation of the second order, evaluated
for δu = v̇c, that is

0︷ ︸︸ ︷
Φ ′′

c ücv̇c + Φ ′′′
c u̇2

c v̇c − λ̈c

0︷︸︸︷
p̂v̇c = 0 ⇒ Φ ′′′

c u̇2
c v̇c = 0. (13)

After substitution of u̇c from (11) we have the second order polynomial equation

λ̇2
cΦ

′′′
c û2

c v̇c + 2λ̇cβΦ
′′′
c ûcv̇

2
c + β2Φ ′′′

c v̇3
c = 0 (14)

that, together with the normalization condition linear in λ̇c and β

λ̇c

(
g′
cûc + ĝc

)+ βg′
cv̇c = 1, (15)

gives the two values of the tangent. The condition pv̇c = 0 then detects a bifurcation
point characterized by two different equilibrium paths with two different tangents.

For a given value of β we can define, from Eq. (14) two values of λ̇c . A particular
case occurs when, with an appropriate selection of the parametrization, one of the
tangents is characterized by the value β = 0. In this case Eq. (14) and condition
λ̇c �= 0, require that:

Φ ′′′
c û2

c v̇c = 0.

The two tangents are then

{
u̇(1)
c = ûc,

λ̇(1)
c = 1,

⎧⎪⎨
⎪⎩

u̇(2)
c = λ̇(2)

c ûc + βv̇c,

λ̇(2)
c = −1

2
β

Φ ′′′
c v̇3

c

Φ ′′′
c ûcv̇c

with β defined by the normalization condition. For the first tangent we have

λ̇c = ∂λ[ξ ]
∂ξ

∣∣∣∣
ξ=0

= 1 (16)
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that is a path parameterized with ξ = λ and for which all the higher order deriva-
tives of λ with respect to ξ are zero. The discussion can be easily extended to the
curvature (see [8]).

2.2.3 Path Representation on a Bifurcation Point

The previous discussion allows a different rewriting of the two paths passing through
a simple bifurcation point. From a simple extension of the first order asymptotic
expansion we use, the two solutions can be expressed as

{
λ[ξ ] = λc + ξ λ̇c + · · · ,
u[ξ,λ] = uf [λ] + v[ξ ]

(17)

with the fundamental path, that is the initial path followed by the structure starting
from λ = 0, defined as

uf [λ] = uc + (λ − λc)ûc

parameterized in λ and obtained from (17) by setting ξ = 0 while the bifurcated
path,

v[ξ ] = ξ v̇c + 1

2
ξ2v̈c + · · ·

intersects uf in the bifurcation point. With this choice ξ measures the distance be-
tween u and uf and can be selected as

ξ = 〈u − uf , v̇c〉 ≈ ξ 〈v̇c, v̇c〉 + 1

2
ξ2〈v̇c, v̈c〉 + · · · (18)

where 〈·, ·〉 represents a given scalar product. Equation (18) at the first order fur-
nishes a normalization condition for v̇c while at the second order an orthogonality
condition between v̇c and v̈c.

3 The Asymptotic Method

In this section an asymptotic algorithm capable of treating single or multiple, also
not coincident, bifurcations and of considering the effects of a nonlinear precritical
behaviour is presented. Further details can be found in [16–28].

3.1 The Fundamental Path

Let us start by considering a structure without external imperfections, for which
uf [λ] can be evaluated using the asymptotic equations (5) in a regular point assum-
ing ξ = λ. To simplify the exposition, the reference equilibrium point (u0, λ0) is
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assumed to be coincident with the origin

uf [λ] = λû + 1

2
λ2 ˆ̂u + 1

6
λ3 ˆ̂̂

u + · · · .

The perturbation equations which allow the evaluation of û, ˆ̂u ect., are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Φ ′′

0 û − p̂
)
δu = 0,

(
Φ ′′

0
ˆ̂u + Φ ′′′

0 û2)δu = 0,

(
Φ ′′

0
ˆ̂̂
u + 3Φ ′′′

0 û ˆ̂u + Φ ′′′′
0 û3)δu = 0,

∀δu ∈ T . (19)

As ξ = λ, Eq. (16) holds and a critical point on uf will be a bifurcation point.
Following Koiter a structure that has an analytic path in λ will be called perfect.

3.2 The Bucklings Loads and Modes

Along the fundamental path uf [λ] we search for the buckling condition (8), i.e.

Φ ′′[uf [λi]
]
v̇iδu = 0 ∀δu ∈ T , i = 1 . . .m. (20)

Equation (20) can be linearized near a suitable reference point uc = uf [λc] not
necessarily coincident with a bifurcation point to give the m buckling loads and
modes

Φ ′′[uf [λ]]≡ {
Φ ′′

c + (λ − λc)Φ
′′′
c û

f
c

}
v̇iδu = 0 ∀δu ∈ T . (21)

Equation (21) also furnishes the following natural orthogonality condition for
modes v̇i

Φ ′′′
c û

f
c v̇i v̇j = 0 ∀i, j = 1 . . .m. (22)

3.3 The Complete Equilibrium Path

The space of admissible displacements T is decomposed into a subspace V which
is spanned by a finite number of modes v̇i and in a complementary (usually the
orthogonal complement) space W such that

T = V ⊕ W , V ∩ W = {0} (23a)

where ⊕ denotes the direct sum and we select V so that Φ ′′
c is definite positive

on W . This means that V could be generically selected but it is necessary to include
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all the directions of singularity of Φ ′′
c . The natural choice for V is to use all the

buckling modes v̇i obtained by means of Eq. (21)

V :=
{
v : v =

n∑
i=1

ξi v̇i , ξi ∈R

}
(23b)

where ξi are scalar coefficients. From now on we also assume the following defini-
tion for W

W = {
w : Φ ′′′

c û
f
c v̇iw = 0,∀v̇i

}
. (23c)

Equations (23a) ensure that any δu ∈ T can be decomposed as

δu = δv + δw with δv ∈ V , δw ∈ V . (23d)

The equilibrium path is obtained by adding the fundamental path and the bifur-
cated one. Using the decomposition in Eqs. (23a)–(23d) we obtain

u[ξk, λ] = uf [λ] + v[ξk] + w[ξk, λ] with w ∈ W , v ∈ V (24)

where the orthogonal correctives w are functions of λ and ξk . We also assume that
in uf [λc] we have ξk = 0.

Introducing the admissible configurations (24) into the equilibrium equation we
obtain a scalar function of ξk and λ

r[ξk, λ] := (
Φ ′[u[ξk, λ]]− λp̂

)
δu (25)

that using the decomposition in Eqs. (23a)–(23d) becomes

r(α)[ξk, λ] ≡ (
Φ ′[u[ξk, λ]]− λp̂

)
δuα = 0

{
δu0 ∈ W ,

δuk = v̇k, k = 1 . . .m
(26)

where from now on Greek indexes go from 0 to m while the Roman ones from 1
to m and the index zero denotes quantities in W . The residual equation for α = 0,
expressed in asymptotic form, will be used to evaluate a polynomial expression for
w[λ, ξi] that is then substituted in the remaining equations for α = 1 . . .m, these
ones also being expressed in asymptotic form, to obtain the equilibrium equations.

3.3.1 Asymptotic Expansion from an Equilibrium Point

Let uf [λ] be a true equilibrium path. Equations (26) could be expanded from ξi = 0
and λ = λc, i.e. from uc = uf [λc]

r(α)[ξk, λ] = r(α)c + ∂r(α)

∂ξi

∣∣∣∣
c

ξi + ∂r(α)

∂λ

∣∣∣∣
c

(λ − λc) + ∂2r(α)

∂ξi∂λ

∣∣∣∣
c

ξi(λ − λc)
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+ 1

2

∂2r(α)

∂λ2

∣∣∣∣
c

(λ − λc)
2 + 1

2

∂2r(α)

∂ξi∂ξj

∣∣∣∣
c

ξiξj + · · · = 0 (27)

where rαc = rα[uf [λc]] = 0.
Denoting with a pedex k the derivative with respect to ξk we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂r(α)

∂ξi
= Φ ′′

c (v̇i + ẇi)δuα,

∂r(α)

∂λ
= (

Φ ′′
c

(
û
f
c + ŵc

)− p̂
)
δuα,

∂2r(α)

∂λ∂ξi
= (

Φ ′′
c

ˆ̇wi + Φ ′′′
c

(
û
f
c + ŵc

)
(v̇i + ẇi)

)
δuα,

∂2r(α)

∂λ2
= (

Φ ′′
c

( ˆ̂wc + ˆ̂uf
c

)+ Φ ′′′
c

(
û
f
c + ŵc

)2)
δuα,

∂2r(α)

∂ξi∂ξj
= (

Φ ′′
c ẅij + Φ ′′′

c (v̇i + ẇi)(v̇j + ẇj )
)
δuα.

(28)

Due to Eqs. (19) we obtain from the second and the fourth equation of (28) for α = 0
that

∀v̇0 ∈ W

{
Φ ′′

c ŵδu0 = 0 ⇒ ŵ = 0,

Φ ′′
c

ˆ̂wδu0 = 0 ⇒ ˆ̂w = 0

that is all the derivatives of w[ξ,λ] with respect to λ are zero.
The first of equations (28), using the bifurcation condition (21) becomes

Φ ′′
c v̇kδu0 = (λk − λc)Φ

′′′
c û

f
c v̇kδu0 (29)

that furnishes ẇk = 0 due to the definition of W . The same occurs for ˆ̇wc = 0 while
we obtain

(
Φ ′′

c ẅij + Φ ′′′
c v̇i v̇j

)
δu0 = 0 ∀v̇0 ∈ W . (30)

We obtain then

w[λ, ξk] = 1

2

∑
i,j

ξiξj ẅij

that can be introduced in Eq. (27) for α = 1 . . .m to evaluate the equilibrium path.
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3.4 Asymptotic Expression from an Extrapolated Path

Now we consider the case in which uf [λ] is known in asymptotic fashion using
Eq. (19) evaluated in the origin and retaining the linear term only

uf [λ] = λû

this means that for our treatments uc = λcû and û
f
c = û. Equilibrium equation (25)

can be expressed in Taylor series starting from uf [λ] as follows

(
Φ ′[u[ξk, λ]]− λp̂

)
δuα ≈ (

Φ ′[uf [λ]]− λp̂
)
δuα

+ (
Φ ′′[uf [λ]](v[ξk] + w[ξk, λ]))δuα

+ 1

2

(
Φ ′′′[uf [λ]](v[ξk] + w[ξk, λ])2)

δuα

+ 1

6

(
Φ

′′′′[
uf [λ]](v[ξk] + w[ξk, λ])3)

δuα. (31)

Letting

p̃[λ]δuα = (
Φ ′[uf ]−λp̂

)
δuα ≈

(
1

2
λ2Φ ′′′

b û2v̇b + 1

6
λ2(λ−3λb)Φ

′′′′
b û3

)
δuα (32)

be the equilibrium residual along the fundamental path and performing again an
asymptotic expansion of the remaining terms of (31) starting now from uc we obtain
the following function of λ and ξk

r(α)[ξk, λ] =
(
p̃[λ] + ξiΦ

′′
b v̇i + Φ ′′

bw[ξk, λ] + (λ − λb)ξiΦ
′′′
b ûv̇i

+ (λ − λb)Φ
′′′
b ûw[ξk, λ] + 1

2
ξi(λ − λb)

2Φ ′′′′
b û2v̇i

+ 1

2
(λ − λb)

2Φ ′′′′
b û2w[ξk, λ]

+ 1

2
Φ ′′′

b

(
ξiξj v̇i v̇j + w[ξk, λ]2 + 2ξi v̇iw[ξk, λ])

+ 1

2
(λ − λb)Φ

′′′′
b û

(
ξiξj v̇i v̇j + w[ξk, λ]2 + 2ξi v̇iw[ξk, λ])

+ 1

6
Φ ′′′′

b

(
ξi v̇i + w[ξk, λ])3 + · · ·

)
δuα = 0 (33)

where the convention of summing on the repeated index has been used.
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From the condition r(0)[ξk, λ] = 0 and deleting high order terms in the expansion
we obtain the following expression for w[λ, ξk]

w[ξk, λ] = 1

2

(
λ2 ˆ̂w +

m∑
i,j=1

ξiξkẅij

)
(34)

where {(
Φ ′′

c
ˆ̂w + Φ ′′′

c û2)δu0 = 0,(
Φ ′′

c ẅij + Φ ′′′
c v̇i v̇j

)
δu0 = 0,

∀δu0 ∈ W . (35)

Substituting the definition in Eq. (34) in Eqs. (33) and recalling Eq. (21) we
obtain the asymptotic expression for the equilibrium equations for α = 1 . . .m

μk[λ] + (λk − λ)ξk − λb

(
λ − λb

2

) m∑
i=1

ξiCik + 1

2

m∑
i,j=1

ξiξjAijk

+ 1

2
(λ − λb)

2
m∑

i=1

ξiB00ik

+ 1

2
(λ − λb)

m∑
i,j=1

ξiξjB0ijk + 1

6

m∑
i,j,h=1

ξiξj ξhBijhk = 0, k = 1 . . .m (36)

where the following scalar quantities have been defined

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μk[λ] = 1

2
λ2Φ ′′′

b û2v̇k + 1

6
λ2(λ − 3λb)Φ

′′′′
b û3v̇k,

Aijk = Φ ′′′
b v̇i v̇j v̇k,

Bijhk = Φ ′′′′
b v̇i v̇j v̇hv̇k − Φ ′′

b (ẅij ẅhk + ẅihẅjk + ẅikẅjh),

B00ik = Φ ′′′′
b û2v̇i v̇k − Φ ′′

bw00ẅik,

B0ijk = Φ ′′′′
b ûv̇i v̇j v̇k,

Cik = Φ ′′
b

ˆ̂wẅik

(37)

where the implicit imperfection factors μk correspond to a consistent 4th-order
expansion of the unbalanced work on the fundamental path (i.e. μk[λ] := (λp̂ −
Φ ′[λû])v̇k).

3.4.1 External Imperfections

When analyzing a structure, it is difficult to characterize its geometry and loads ex-
actly it being affected by a random distribution of small external imperfections. The
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presence of these, while preserving the general behaviour of the structure, changes
some aspects of its response and often causes a reduction in the carrying capacity
(imperfection sensitivity).

The presence of small additional imperfections expressed by a load εq q̃[λ] and/or
an initial displacement εuũ can be easily considered in the asymptotic analysis.
Once introduced in the equilibrium equation (26) and performing the expansion
they only affect Eq. (36). In particular we only need to add the additional terms (see
[8, 27, 28])

μl
k[λ] := −εq̃[λ]v̇k, μ

g
k [λ] := λΦ ′′′

c ûũv̇k (38)

that is, the imperfection term μk[λ] is modified to:

μk[λ] = 1

2
λ2Φ ′′′

c û2v̇k + 1

6
λ2(λ − 3λc)Φ

′′′′
c û3v̇k + μl

k[λ] + μ
g
k [λ]. (39)

3.5 Attractive Path Theory and Imperfection Sensitivity Analysis

The aim of the imperfection sensitivity analysis is to link the presence of geometri-
cal and load imperfections to the reduction in the limit load. For structures present-
ing coupled buckling even a small imperfection in loading or geometry can mean
a marked reduction in collapse load with respect to the bifurcation load. So an ef-
fective safety analysis should include an investigation of all possible imperfection
shapes and sizes to recover (albeit in a statistical sense) the worst case.

The asymptotic approach provides a powerful tool for performing this exten-
sive investigation. In fact, the analysis for a different imperfection only needs to
update the imperfection factors μ

g
k [λ] and μl

k[λ] through Eq. (38) and solve once
more the nonlinear system (36). Even if this system, collecting all the nonlinear
parts of the original problem, proves to be highly nonlinear and some care has to
be taken in treating the occurrence of multiple singularities, its solution through a
path-following process is relatively easy because of the small number of unknowns
involved.

However, exhaustive results can only be obtained in a statistical context link-
ing the distribution probability of the imperfection to that of the load. An effective
imperfection sensitivity analysis can be performed by a Monte-Carlo statistical tech-
nique, where both the magnitude and the form of the imperfections are treated as
random variables. The analysis is then performed by taking the additional imperfec-
tion factors in the form

μl
k[λ] + μ

g
k [λ] = λ

(
q̃[λ] − Φ ′′′

c ûũv̇k
) := λμ̄k, (40)

and producing a random sequence of imperfection vectors μ̄ = {μ̄1, μ̄2, . . . , μ̄m},
modeling possible small deviations in the loads and in the geometry of the struc-
ture, and repeating a path-following solution of (36) for each of these. By a statisti-
cal treatment of the obtained results we obtain the probability distribution function
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for the limit load multiplier and all the other useful statistical information. This so-
lution process, we call full analysis, can be considered as a standard approach for
imperfection sensitivity analysis (see [10]). The number of repetitions needed to ob-
tain statistically reliable results increases (quite) exponentially with the number m

of the buckling modes and for large m can become very expensive. The imperfection
sensitivity analysis can however be performed in a simple and efficient way when a
criterion for defining the (few) “significant” imperfection forms exists.

3.5.1 The Radial Path Directions

A large number of different imperfections (up to several thousands) has to be con-
sidered to obtain statistically significant results, so, while the analysis for a single
imperfection can be considered an easy task, the entire solution process performed
proves to be computationally expensive, especially when a large number of coupled
buckling modes have to be considered. We can, however, noticeably reduce the com-
putational effort by exploiting information given by the knowledge of the complete
set of attractive radial paths

ξi = tξ∗
i , i = 1 . . .m, t ∈R (41)

which are local minimizers for the cubic form

λ̇b := 1

2

m∑
i,j,h=1

Aijhξ
∗
i ξ

∗
i ξ

∗
h = min

(ξ∗
k )
,

m∑
i=1

ξ∗
i ξ

∗
i = 1 (42)

or for the quartic form

λ̈b := 1

3

m∑
i,j=1

Bijhkξ
∗
i ξ

∗
j ξ

∗
h ξ

∗
k = min

(ξ∗
k )
,

m∑
i=1

ξ∗
i ξ

∗
i = 1 (43)

on the unit hypersphere.
Attractive paths theory [10, 23, 24, 26, 31] can actually provide a helpful tool

for driving the analysis and reducing its total cost. In fact, it suggests that each
imperfect path obtained from the solution of (36) will be attracted by one of the
minimizing radial directions ξ∗ (see Fig. 10 in the numerical results section). Then,
an evaluation for the limit load associated to the single imperfection vector μ̄ can
be obtained by performing a series of different monomodal analyses, one for each
minimum radial path (41), and then taking the smallest value obtained for the limit
load within all directions. The single monomodal analysis is quite quick, so a large
number of different imperfections can be investigated rapidly with results, in terms
of limit load distribution, equivalent to that provided by a full analysis [10].

Furthermore, it is worth mentioning that, once the worst imperfection shapes
have already been obtained from an imperfection sensitivity analysis, a detailed
investigation can be performed through a specialized path-following analysis, taking
into account these imperfections.
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4 Accuracy and Efficiency in Finite Element Implementation of
the Asymptotic Analysis

In the following we present a numerical formulation of the method suitable for nu-
merical implementation using finite elements and discuss some aspects that are cru-
cial to achieve accuracy and efficiency.

4.1 FE Implementation of Asymptotic Method

Applying a FE interpolation u := L u, L being the interpolation operator and u the
vector collecting the discrete displacement and stress parameters, the asymptotic
analysis requires the following steps:

(i) The fundamental path is obtained introducing the linear extrapolation

uf [λ] := u0 + λû (44)

where û is the initial path tangent, solution of the linear vectorial equa-
tion

K0û = p̂ (45)

K0 being the stiffness matrix evaluated for u = u0 and p̂ the unitary load
vector, defined by the energy equivalencies

δuT K[u]u̇ = Φ ′′[u]u̇δu, δuT p̂ = p̂δu.

The solution of linear system (45) requires a standard factorization of
K0.

(ii) A cluster of buckling loads λi , i = 1 . . .m, and associated buckling
modes v̇i are obtained along uf [λ] exploiting the critical condition

K[λi]v̇i = 0, K[λ] := K[u0 + λû] (46)

This corresponds to a nonlinear eigenvalue problem which can be lin-
earized and solved using standard algorithms and exploiting matrix K−1

0 ,
already available from the previous step, to perform the iterations [9].

(iii) Letting λc be an appropriate reference value for the cluster, e.g. the
smallest of λi or their mean value, the asymptotic approximation for the
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required path is defined by the expansion

u[λ, ξk] := ub +
m∑

i=0

ξi v̇i + 1

2

m∑
i,j=0

ξiξjwij (47)

where the quadratic corrections wij ∈ W are obtained by the linear or-
thogonal equations

δwT (Kcwij + pij ) = 0, ∀w ∈ W (48)

with Kc := K[uf [λc]] and vectors pij defined as a function of modes v̇i

and i = 0 . . .m obtained by an element-by-element assembling process
using the energy equivalence

δwT pij = Φ ′′′
c δwv̇j v̇j .

The solution of linear system (48) can be conveniently obtained, as de-
scribed in [8, 9], through a Modified Newton-like iteration scheme ex-
ploiting K−1

0 as iteration matrix.
(iv) The energy terms in (37) being scalar quantities are evaluated as a sum,

at the element level, of the integrals of known functions.
(v) The equilibrium path is obtained by solving the algebraic nonlinear sys-

tem of m equations in the m + 1 variables ξ0, ξ1, . . . , ξm defined in
Eq. (36) using a path-following algorithm. Because of the small dimen-
sions of the system, this can be obtained very quickly using standard or
even specialized variants of the arc-length scheme.

The actual implementation of the asymptotic approach as a computational tool is
therefore quite easy in practice and its total computational burden, which is mainly
involved in the factorization of matrix K0, remains of the order of that required
by a standard linearized stability analysis. It provides the initial post-buckling be-
havior of the structure, including modal interactions and jumping-after-bifurcation
phenomena. Moreover, once the preprocessor phase of the analysis has been per-
formed (steps i to iv), the presence of small loading imperfections or geometrical
defects can be taken into account in the postprocessing phase (step v), by adding
some, easily computed, additional imperfection terms in the expression of μk[λ],
with a negligible computational extra-cost, so allowing an inexpensive imperfection
sensitivity analysis (e.g. see [13, 27]).

Imperfection sensitivity analysis can be simplified by evaluating all the minimum
directions of the cubic (42) and quartic forms (42) to obtain the worst imperfection
directions as discussed in Sect. 3.5.1. Today this is not a completely solved problem
and it can also be expensive. Nevertheless, relative minimum solutions can be (quite
easily) obtained by using the iterative scheme suggested in [31]. Furthermore for
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the case of symmetric buckling, problem (43) can be transformed into a non-convex
Quadratic Problem subject to linear constraints and solved using the strategy pre-
sented in [10].

4.2 On the Accuracy of the Asymptotic Formulation

The method, as will be shown in the numerical results section, is potentially capable
of furnishing accurate results if a series of modelling and implementation aspects
are carefully tuned. In the following we quickly present some of the sources of
inaccuracy referring readers to the references for a deeper discussion.

4.2.1 Interpolation Locking

In the asymptotic algorithm a locking phenomenon related to the discretization pro-
cess can arise from the evaluation of the fourth-order term

Bijhk = Φ ′′′′
c v̇i v̇j v̇hv̇k − Φ ′′

c (ẅij ẅhk + ẅihẅjk + ẅikẅjh)

that defines the initial curvature of the post-buckling path. The coefficients Bijhk

are obtained as the difference between two quantities derived from the fourth and
second variations. In compatible formulations the single term of this difference is,
usually, very large while the difference is small. The discretization error on the sin-
gle term could in this case be greater than the small results in their difference. Ob-
viously, the numerical response given by the asymptotic algorithm in this case is
completely unreliable.

The size of the error produced by this locking pathology depends on the finite ele-
ment interpolation functions and decreases for an appropriate balancing of the poly-
nomial functions used to describe each displacement component. The phenomenon
is particular evident for beam and plate structures where the buckling modes v̇i usu-
ally contain only flexural displacement components while ẅij only in plane or axial
ones. The locking is sanitized when a mixed finite element is used [8, 28].

Figure 2, which refers to a planar Euler rod case reports numerical results
for the post-buckling factor λ̈b = B1111 obtained for different values of the ratio
EAL2/EJ between the axial and the flexural stiffness, by using an element called
HC [28] that uses the same quadratic spline functions for both the transversal and
the axial components and standard beam elements (linear and cubic interpolation
for the axial and transversal displacements, respectively).

Note that, for EAL2/EJ = 1.2 × 105, 20 HC elements are sufficient to contain
the error in λ̈b at under 1 % while standard discretizations do not yield reliable
results even using a large number of elements. A mixed finite element completely
sanitizes this pathological phenomenon.
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Fig. 2 Locking in Euler rod case

4.2.2 Extrapolation Locking

Mixed or compatible formats, while completely equivalent in principle, behave very
differently when implemented in asymptotic but also in path-following solution
strategies. This is an important, even if frequently misunderstood, point in practical
computations which has been widely discussed in [8, 13, 14, 18, 19]. By referring
readers to these papers for more details, we only recall here that both numerical
strategies need function Φ and its Hessian K[u] to be appropriately smooth in its
controlling variables. In path-following analysis, this ensures a fast convergence of
the Newton iterative process; in asymptotic analysis, it implies that the higher-order
energy term neglected in expansion (33) be really irrelevant, allowing an accurate
recovery of the equilibrium path. We know that the smoothness of a nonlinear func-
tion strictly depends on the choice of the set of its control variables, that is on the
format of its description, and can change noticeably when referring to another, even
corresponding, set. As a consequence, the mixed and compatible format, even if re-
ferring to the same problem, can be characterized by a different smoothness and so
they behave differently in practice, when used within a numerical solution process.
Actually, the compatible format is particularly sensitive to what we call extrapo-
lation locking in [13, 18] which can produce a loss in convergence when used in
path-following analyses, or unacceptable errors in the path recovery in the asymp-
totic case. These inconveniences are easily avoided by changing to a mixed format.

4.2.3 Objective Structural Model

The asymptotic analysis makes great use of information attained from a fourth-
order expansion of the strain energy and then requires a fourth-order accuracy be
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guaranteed in the structural modeling. Small inaccuracies, deriving from geomet-
rical incoherencies in the higher-order terms of the expansion of the kinematical
laws or in its finite element representation, significantly affect the accuracy of the
solution and can make it unreliable. Structural models not affected by rigid body
motions or by changes in observer are then required. This aspect is more important
with respect to the path-following case where only the first variation needs to be
correctly evaluated.

With this aim the Implicit Corotational Method (ICM) has been proposed as a
tool to obtain geometrically exact nonlinear models for structural elements, such as
beams or shells, undergoing finite rotations and small strains starting from the so-
lutions for the 3D Cauchy continuum used in the corresponding linear modelings
(see [15, 16]). The main idea is to associate a corotational frame to each point of
the 3D continuum so allowing the motion in the neighbor of the point to be split
in a pure stretch followed by a pure rotation, according to the decomposition the-
orem. It is possible to show how, using the small strain hypothesis and rotation
algebra, the linear stress and linear strain fields, when viewed in this corotational
frame, can provide accurate approximations for the Biot nonlinear stress and strain
fields. Once the corotational rotation is appropriately defined, the local statics and
kinematics of the model are recovered from the linear solution as a function of the
stress/displacement resultants. Stress and strain fields are then introduced within a
mixed variational principle in order to obtain the constitutive laws directly in terms
of stress/strain resultants. This completes the ICM definition of the nonlinear model.

The nonlinear model so obtained retains all the details of the 3D linear solution,
including torsion/shear warping, while its objectivity is ensured implicitly. Further-
more, the use of the mixed formulation and the greater accuracy with which the ICM
recovers the stress field, allows an accurate description of the constitutive laws in
terms of resultants. ICM does not require any ad-hoc assumption about the structural
model at hand, nor depends on any particular parametrization of the rotation tensor,
but actually behaves as a black-box tool able to translate known linear models into
the corresponding nonlinear ones. Moreover, the direct use of a mixed (stress/strain)
description provides an automatic and implicitly coherent methodology for gener-
ating models free of the nonlinear locking effects previously discussed, in a format
directly suitable for use in FEM implementations.

The method was applied in [15] to derive 3D beam and plate nonlinear models
starting from the Saint Venànt rod and Kirchhoff and Mindlin-Reissner plate linear
theories, respectively. Some results obtained in [16] will be also given.

5 Numerical Results

Some results regarding the analysis of both 3D beams and plates are reported
and compared with particular reference to accuracy as previously discussed. In the
monomodal buckling tests, to compare the accuracy with known solutions, the fol-
lowing quantities, defining the postcritical tangent and curvature to the bifurcated
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N.elem. Out plane In plane 2D Beam(∗)
LC LS PM LC LS PM

λb 16 9.901 9.901 9.901 9.918 9.918 9.918 9.870
32 9.877 9.877 9.877 9.870 9.870 9.870
64 9.872 9.872 9.871 9.867 9.870 9.870

λ̈b

2λb
16 −0.354 0.020 0.145 0.166 1.03 0.166 0.125
32 −0.375 0.000 0.125 0.126 1.00 0.126
64 −0.375 0.000 0.125 0.125 1.00 0.125

Fig. 3 Euler beam: problem description and buckling and post-buckling parameters

path, have been introduced

λ̇b = −1

2

A111

A011
, λ̈b = −B1111 + 3λ̇bB0111 + 3λ̇2

bB0011

3A011
.

The results are compared with known analytical solutions and with the ones ob-
tained using the LC (Complete Lagrangian) and LS (Simplified Lagrangian) techni-
cal plate models already implemented in the code named KASP [13, 20]. An inde-
pendent analysis has also been made using the commercial code ABAQUS.

5.1 The Influence of the Structural Model

The test refers to the Euler beam shown in Fig. 3. The beam is analyzed forcing the
buckling to have in-plane or out-of-plane components only.

Despite its simplicity, when analyzed with an asymptotic approach, the problem
is taxing with regard to the accuracy of the structural model and its FEM discretiza-
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Fig. 4 Euler beam: out-plane and in-plane equilibrium paths

tion [16]. In Fig. 3 the values of the buckling loads and post-critical curvatures are
compared with the values obtained by using the Antman beam model and exact
interpolation functions. The ICM model recovers the analytical solution for suffi-
ciently fine grids exactly. The LC and LS models provide a correct answer for the
buckling load, but have a different post-buckling behavior in the in-plane or out-
of-plane analysis: LC agrees perfectly with the exact solution in the in-plane case,
whereas LS provides the wrong result λ̈/λb = 2, which is eight times greater; con-
versely, LS behaves better in the out-of-plane case, by providing the approximation
λ̈b/λb = 0, while LC gives a completely erroneous unstable postbuckling curvature
λ̈/λb = −0.75. The resulting paths in Fig. 4 show a good agreement with those
computed by path-following analyses.

5.2 Tests with a Nonlinear Precritical Behaviour

The tests shown in Figs. 5 and 6 are relative to structures characterized by a highly
nonlinear pre-critical behavior. For the shallow arch the first buckling load is ob-
tained at λ1 = 22 while for the hinged cylindrical shell the first two buckling loads
are equal to λ1 = 4.52 and λ2 = 7.11 respectively. In both cases the limit load is
almost a half of the minimum buckling value and is evaluated exactly as can be
observed by the comparison with the asymptotic and path-following (ABAQUS)
curve denoted respectively CR4 and SR8. It is worth of noting that only the implicit
imperfection acts on the structure.

5.3 Multimodal Buckling and Attractive Paths

The first test, whose geometry is reported in Fig. 7, deals with the multimodal anal-
ysis of space structures modelled as 3D beam assemblages. The 3D beam model
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Fig. 5 Shallow arch

Fig. 6 Hinged cylindrical shell

used is that reported in [17]. The equilibrium paths reported in Fig. 7, compared
with the results of a path-following analysis with ABAQUS, show the accuracy of
the asymptotic analysis.

The second test is the thin-walled beam in Fig. 8 modelled as a plate assemblage.
The model is that proposed in [15, 16] on the basis of the ICM and is denoted as
MP in the results. The results are compared with those of an ABAQUS analysis
using a path-following approach and of the technical plate models [13]. The greater
accuracy of the objective structural model is evident in Fig. 8 where the equilibrium
paths are depicted.

The third case regards a C-shaped cantilever beam subjected to a single force at
the free end reported in Fig. 9. In this case the strong modal interaction between
non near buckling loads also produce a highly unstable behaviour as shown by the
equilibrium path.

Finally the last test regards the Geodetic Dome modelled through a 3D truss
as proposed in [10]. In this case many locally coincident buckling modes inter-
act and the structure exhibits a very marked unstable behaviour. In Fig. 10, in the
modal space (ξk) different equilibrium paths, clearly converging along only one of
the minimum directions, are reported. The test shows how it is possible to perform
the sensitivity analysis in a simplified way along the predetermined quartic form
minimum directions.
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Fig. 7 3D tower: buckling modes and equilibrium paths

Fig. 8 T beam: buckling modes and equilibrium paths
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Fig. 9 C-shaped cantilever beam

Fig. 10 Geodetic dome: modal interaction between 20 critical modes

6 Conclusions

The paper deals with the numerical implementation of the Koiter asymptotic ap-
proach to directly evaluate the buckling and postbuckling behaviour of geometri-
cally nonlinear structures also in the case of multiple coincident buckling loads and
random loading and/or geometrical imperfections. Standard techniques, based on re-
peated path-following analyses, are useful for a thorough investigation of the struc-
tural behaviour with a single imperfection shape, but cannot be considered effective
tools to predict the safety factor for geometrically nonlinear problems. The asymp-
totic method, instead, appears to be an attractive alternative as it allows a reliable
analysis with computational costs similar to those required by a standard load buck-
ling prediction, while subsequent analyses for different imperfections are possible
only solving a nonlinear system of m equations, m being the number of buckling
loads considered. In this sense it can be considered as a direct method for predicting
the safety factor of geometrically nonlinear elastic structures. The method furnishes
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accurate results and also information about the worst imperfection shape if a series
of modelling and implementation aspects are carefully tuned. In particular it was
shown how the effects of the use of geometrically exact structural models and their
coherent finite element implementation are very relevant, while a mixed formulation
eliminates both interpolation and extrapolation locking phenomena.
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A Quasi-periodic Approximation Based Model
Reduction for Limit Analysis of Micropile
Groups

Zied Kammoun, Joseph Pastor, and Hichem Smaoui

Abstract The behavior of soils reinforced by micropile networks is still not fully
understood due to the lack of accurate modelling capabilities. Particularly, the com-
plex geometry of large soil-micropile systems makes accurate calculation of the
bearing capacity of the reinforced soil a computational challenge. This complexity
requires highly detailed and finely discretized models to achieve reasonable accu-
racy using direct numerical methods. Such models lead to large scale numerical
optimization problems that are hardly tractable using a personal computer.

In the present paper a model reduction method is made capable of solving the
numerical static limit analysis problem of soil reinforced by a group of micropiles
according to a 2D plane strain model. The method has been successfully applied to
the limit analysis problem of a soil reinforced by a large group of micropiles when
resources did not permit solution of the full model.

1 Introduction

A micropile is a pile with a small diameter (generally in the range 75 to 200 mm) and
high aspect ratio. Micropiles are used in soil reinforcement and foundation works
beneath existing buildings. The micropile technique was developed as early as 1952
by the Fondedile company under the authority of F. Lizzi [1]. Micropiles were used
for the first time in Italy in soil reinforcement of existing buildings and were then
named root piles (pali radice). Within the timeframe of half a century, the technique
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has been applied all over the world [4] with micropile groups counting as many as
1100 micropiles in a landmark example in Neuchâtel, Switzerland.

Nevertheless, the behaviour of micropile groups is still not well understood, par-
ticularly because of the complex geometry of large soil-micropile systems that chal-
lenged the development of accurate modeling methods.

Various approaches are used for predicting the bearing capacity of micropile
groups. Simplified analytical methods [3] are commonly used in engineering prac-
tice whereas elastoplastic analysis ([4] and [1]) is often applied in special applica-
tion and in research. Another alternative is limit analysis [7] by direct methods. The
merit of Limit Analysis (LA) is the rigorous underlying theoretical basis and the
high level of accuracy that may be achieved.

Because of their complex geometry, raisonably accurate prediction for micropile
groups of practical size by Limit Analysis requires finely discretized finite element
models leading to numerical optimization problems that are too large to be directly
tractable by available algorithms [7].

In an attempt to circumvent the problem size difficulty, different techniques have
been devised to reduce the size of the numerical Limit Analysis problem to be
solved. Among these techniques, homogenization methods [2] have been proposed.
While successful in reducing the computational effort these methods do not provide
a realistic description of the stress and strain fields in the heterogeneous medium,
especially near the boundaries of the reinforced zone. Domain decomposition is an-
other approach that is developed for solving large size LA problems. It converts
the original numerical LA problem into a sequence of smaller LA like subproblems
that are solved iteratively. This approach has proven to be successfull in solving
problems that are untractable when solved directly ([8] and [10]).

In this work, an alternative technique is presented that aims at reducing the size
of the numerical LA problem for uniformly spaced micropile groups by taking ad-
vantage of the periodicity of the geometry and structure of the reinforced zone. It
is inspired from the case of fiber reinforced composites which is suited to modeling
using periodic homogenization [5].

In this study, a two dimensional representation of the reinforced soil will be
adopted to reduce the numerical problem dimension. Extension to the three dimen-
sional problem will be possible because it is conceptually equivalent to the two
dimensional problem.

The paper begins with a brief presentation of limit analysis followed by a de-
scription of the proposed periodic reduction method. The method is then tested and
assessed by applying it to examples of soil-micropile systems.

2 Limit Analysis and the Static Method

According to Salençon (see [12, 13]), a stress tensor field σ is said to be statically
admissible (SA) if equilibrium equations, stress vector continuity, and stress bound-
ary conditions are verified. It is said to be plastically admissible (PA) if f (σ ) ≤ 0,
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where f (σ ) is the (convex) plasticity criterion of the material. A field σ that is SA
and PA here will be said to be (fully) admissible.

Similarly, a strain rate tensor field v is kinematically admissible (KA) if it is
derived from a continuous velocity vector field u such that the velocity boundary
conditions are verified. It is said to be plastically admissible (PA) if the flow rule (1)
is verified; the fields u and v, which are KA and PA, will be called admissible in the
following.

v = λ
∂f

∂σ
, f (σ ) = 0, λ ≥ 0. (1)

The so-called associated flow rule (1) (or normality law) characterizes the standard
material of LA. Equivalently, a standard material satisfies Hill’s maximum work
principle (MWP) [6], which states that:

(
σ − σ ∗) : v ≥ 0 ∀PA σ ∗. (2)

A solution to the LA problem is a pair of fields (σ, v) where σ and v are both
admissible and associated by the normality law. Classically, these solutions can be
found or approached using two optimization methods. The first one, involving only
the stresses as variables, is the static (or lower bound) method. The second one,
involving only the displacement velocities as variables, is the classical kinematical
(or upper bound) method.

Let us assume that the virtual power of the external loads can be written as
the scalar product of a loading vector Q ∈ R

n and a generalized velocity vector
q = q(u), linear in u. A loading process linearly associated with a statically admis-
sible stress field σ , Q = Q(σ), is said to be admissible. The set of these admissible
loadings forms a convex K in R

n and the n components of Q are called loading
parameters.

Finding the solution of the limit analysis problem consists in determining an
admissible field σ together with an admissible strain rate field associated to σ by
the normality law. In this case the loading Q(σ) is a limit loading of the mechanical
system. The set of the limit loadings is the boundary ∂K of the convex K : this
boundary can be approached by solving the following optimization problems:

Qlim = (
Qd

1 , . . . , λ0Q
d
i , . . . ,Q

d
n

)
, (3a)

λ0 = max
{
λ,Q(σ) = (

Qd
1 , . . . , λQ

d
i , . . . ,Q

d
n

)}
, (3b)

where σ is an admissible stress field and Qd a given admissible loading. Then, by
varying Qd it is possible to construct various points on ∂K : the smallest convex
envelope of these points gives an approximation of ∂K from inside. This is the
static, or lower bound method of LA, as it will be used here.
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3 Finite Element Formulation of the Static Problem

In the present work the problem is formulated in plane strain. The numerical static
method is used as it was defined and detailed in [11].

Let us consider a triangular finite element discretization of the mechanical vol-
ume V in the global frame (x, y); the stress field is chosen as linearly varying in
x, y coordinates in each triangular element and it can be discontinuous through any
element edge. In plane strain, the von Mises or Tresca criterion is written as:

f (σ ) =
√
(σx − σy)2 + (2τxy)2 ≤ 2c, (4)

where c is the cohesion of the material. It is worth noting here that the proposed
problem reduction method is valid for the Coulomb or Drucker-Prager criteria (pro-
vided the final optimization problem could be solved by efficient mathematical pro-
gramming techniques).

In order to ensure static and plastic admissibility of the stress solution field, the
following, briefly recalled conditions are imposed:

– In each element, the equilibrium equations σij,j + γi = 0 expressed in the Carte-
sian frame, where γ is the specific weight vector.

– Continuity conditions: the stress vector is continuous across a discontinuity line:
for each discontinuity segment of normal n, the continuity of the stress vector
Ti = σijnj is written at the apices defining this discontinuity segment.

– Boundary conditions: the stress vector verifies σijnj = T d
i at each apex of the

boundary element sides where the stress vector T d—linearly varying— is im-
posed.

– Definition of the functional from the power of external loads: for example, the
integral of the normal stresses in the case of the footing under an imposed normal
uniform velocity.

– Stress field plastic admissibility: imposed at each triangle apex. This ensures that
it is verified over the total domain from the linear variation of the stress in a
triangle and the convexity of the criterion (4).

By writing the criterion directly in the conic form V = 2c ≥ √
Y 2 + Z2, where V is

an auxiliary variable, the numerical optimization problem can be solved using the
conic programming code MOSEK [9] as in [14].

4 Quasi-periodic Reduction Method

In large micropile groups the micropiles are usually arranged in a regular pattern
with a periodic geometry and structure. When the loading is uniformly distributed
among the reinforcements the reinforced soil tends to respond in a periodic mode,
at least away from the boundaries of the reinforced zone. The proposed method
takes advantage of this periodicity to reduce the size of the numerical limit analysis
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Fig. 1 The problem of the
rigid footing under a central
force F

problem. It is inspired from the case of fiber reinforced composites for which a
successful periodic homogenization approach was developed in [5].

Figure 1 shows a typical soil-micropile group configuration with a reinforced
zone supporting a rigid foundation and the natural soil extending on its sides and
beneath, all the way down to a rigid substrate. To apply the reduction procedure the
domain is subdivided into three parts. The first is the central reinforced zone where
the behavior is assumed to be periodic, denoted zone I. The second, the edge zone,
denoted zone II, is a part of the reinforced soil separating the periodic zone from
the domain occupied by the natural soil. Finally, the rest of the soil represents the
zone III. Although geometrically and materialwise periodic, zone II (the transition
zone) is treated as non periodic.

A representative volume element (RVE) is constituted by a micropile and half
the width of soil on each side in addition to the underlying volume of soil.

Regardless of the number of micropiles it includes, the periodic zone is replaced
by a single periodic representative volume element (PRVE) fulfilling built-in peri-
odicity and inter-RVE continuity constraints.

The periodicity conditions imposed on the stress field are

σ lef t .n = σ right .n, (5)

where n is the normal to the right (or the left) side of the PRVE. As the npp periodic
RVEs are replaced by a PRVE, the loading FR of the reduced problem, equivalent
to the original load F (Figs. 2 and 3) is given by

FR = FT + npp.FP (6)

where FT is the load supported by zone II and FP is the load supported by the PRVE
in the reduced problem.

This results in a considerable reduction in problem size at the cost of an approxi-
mation error. Interestingly, the error is on the conservative side, preserving the lower
bound nature of the solution of the static problem. Edge zones are defined by a few
RVE’s on each side. The finite element mesh corresponding to these edge zones and
the natural soil (Zone III) remains unchanged. Furthermore, the detailed modeling
of the soil-micropile composite at the RVE level, both in the horizontal and vertical
directions, has the merit of accounting for the toe and lateral effects on the bearing
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Fig. 2 Load in initial
problem

Fig. 3 Load in reduced
problem

capacity. This is partly because the interaction effect between micropiles can be cap-
tured as a result of the full consideration of the soil layers underlying the reinforced
zone.

5 Numerical Examples

The method is applied to some examples of soil reinforcement by groups of mi-
cropiles. The optimization problem is solved using the conic programming code
MOSEK for both the direct problem, when possible, and the reduced problem, and
performance is compared.

The LA problem considered (Fig. 4) is that of a Tresca soil reinforced by a group
of np micropiles to support a weighless foundation slab of width b loaded at its
middle by a force F . The soil cohesion is C = 10 kPa and depth is H = 30 m.
The micropiles length is h = 20 m and width d = 0.2 m. The bearing capacity of
the foundation is determined as the maximum load F that, together with a stress
field σ , form a statically and plastically admissible pair. The associated numerical
optimization problem is denoted P0.
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Fig. 4 Example of a soil
reinforced with micropiles

Fig. 5 Reduced problem of
the considered example

In the reduced problem (Fig. 5), denoted P , Zone I is modeled using a single
PRVE and the load is defined as the sum of the loads supported by the RVEs in
Zone II and the load supported by the PRVE scaled up by the number of micropiles
belonging to Zone I. Since the solution for the reduced problem is admissible for
P0, it provides a lower bound for the original LA problem. By limiting the number
of transition micropiles to one on each side, the number of micropiles in the model
decreased from np to only 3.

5.1 Effect of Load Transmission Mode

To illustrate the influence of the load transmission mode from the slab to the rein-
forced soil the problem is considered with two alternative transmission mechanisms
and is modelled with the same degree of discretization. In the first, the foundation
is assumed to be supported solely by the micropiles. In the second, it is supposed to
rest on both the soil surface and the micropile tips. In both cases the kinematic and
static bounds of the bearing capacity are first determined by solving the direct prob-
lem for a reinforcement with nine micropiles (np = 9). Furthermore, a static bound
is estimated by solving the reduced problem resulting from the quasi-periodic ap-
proximation. Results are produced for a range of micropile spacings to assess the
effects of spacing and surface load transmission mode.

5.1.1 Foundation Supported Solely by the Micropiles

The limit load (load-bearing capacity) F of the reinforced soil is determined in this
case with the boundary conditions defined such that the load is carried only by the
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Table 1 Number of elements
for different values of
micropile spacing

Spacing 1.8 2.8 3.8 4.8 5.8 6.8 7.8 8.8

Elements (×1000) 110 126 141 156 171 134 – 149

Fig. 6 Influence of spacing on bearing capacity. Direct and reduced model solutions

micropiles. The limit load is calculated for different values of micropile spacing.
Figure 6 shows the limit load of the reinforced soil, calculated with different meth-
ods, as a function of spacing. The blue line represents the kinematic solution (upper
bound) of the reference problem. The red line represents the static solution (lower
bound) of the reference problem. The yellow line corresponds to the solution of the
reduced model problem.

The results for e < 6.8 were all obtained with the same degree of discretiza-
tion (elements size) which did not permit the direct solution beyond that spacing.
Therefore, the problems with e > 6.8 were solved with fewer, larger elements. It
should however be stated here that for the case e = 7.8 the results were not shown
because the case was simply not treated. The reason was that it was not possible to
create a regular mesh with the large element size because of the particular geomet-
rical dimensions of the reinforced soil. The number of elements for each spacing is
indicated in Table 1.

It may be noted from the results that:

– The reinforced soil bearing capacity increases with spacing for spacing under
6.8 m. Beyond this value the bearing capacity saturates and remains nearly in-
different to spacing. The saturation should reflect the vanishing of the interaction
among micropiles which tend to behave as isolated inclusions.

– The error between the direct static and the reduced model solution is relatively
small (less than 4.2 %).
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Fig. 7 Optimal stress field (direct solution)

The solution stress field is visualized in Fig. 7 for selected values of spacing. It
can be seen that, for small spacing, the behavior of the reinforced area is reminis-
cent of a block mechanism (Fig. 7(a)). For large spacing (Fig. 7(c)), the elementary
volumes tend to behave independently as if the micropiles were isolated. From the
stress field in Fig. 7(c) a pattern can be seen that is characterized by a localization
of the failure zone in a thin volume of soil surrounding the micropile.

5.1.2 Foundation Supported by Both the Soil and the Micropiles

The boundary conditions in this case are defined such that the load is carried at the
soil surface by both the micropiles and the intersticial soil. Figure 8 shows the limit
load calculated for different values of micropile spacing. It is observed that:

– The limit load always increases with spacing in contrast to the behavior observed
with the loading supported solely by the micropiles. The reduced model solution
increases linearly, whereas the direct static and kinematic limit load increases in
a slightly bilinear pattern.

– The error increases with spacing to 9 % at e = 8.8 m.

The solution stress field is visualized in Fig. 9 for the same selection of spacing
values. It shows that:

– For small spacing, the behavior of the reinforced zone is similar to that of a block
mechanism.
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Fig. 8 Limit load for different values of spacing

Fig. 9 Optimal stress field (direct solution)

– For large spacing, the behavior does not clearly reflect the assumption of periodic-
ity. The stress distribution for e = 8.8 in Fig. 9(c) looks more like that in Fig. 7(b)
(for e = 5) than the nearly periodic stress field shown in Fig. 7(c), obtained for
the same spacing e = 9 when the load is supported by the micropiles only.
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Fig. 10 Load distribution among elementary volumes

5.1.3 Results Interpretation

The details of the distribution of load among the elementary volumes are given in
Fig. 10 for e = 8.8 m. For a load supported by both the soil and the micropiles, the
distribution of the limit load obtained via the direct static solution shows significant
fluctuations compared to the uniform distribution typical of the reduced model so-
lution. The largest error on the load acting on an elementary volume is 17.65 %, it
occurs at the center of the reinforced soil surface. The second largest error is found
at the edge of the reinforced zone. These levels of errors are reasonable since they
should be larger than the error of 9 % relative to the total load which is actually the
integral of these elementary loads. For a load supported by the micropiles only, the
distribution of limit load obtained by the direct static solution is almost uniform as
expected since the micropiles have been shown to behave practically independently
and, thus, to fulfill the periodicity assumption. When spacing is small, the failure
occurs in a block mechanism mode regardless of the load transmission pattern. This
explains the closeness of the limit loads evaluated using the Direct and Reduced
formulations.

5.2 Effect of Micropile Number on Performance

To assess the performance gain of the reduction method for larger micropile group
sizes (Fig. 11) the limit analysis problem is solved using the Direct (i) Static and
(ii) Kinematic and the (iii) Reduced Model formulations with the number of mi-
cropiles varying from 1 to 31.
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Fig. 11 Example for large
number of micropiles

Table 2 Effect of micropile number

Nbr.
of
piles

Static Quasi-periodic Kinematic

Nbr elem. F (kN) CPU
(s)

Nbr elem. F (kN) CPU
(s)

Error
(%)

Nbr elem. F (kN) CPU
(s)

1 95760 419.7 249 – – – – 98100 432.9 1078

3 103320 1263.4 232 – – – – 114300 1304.7 1998

7 133560 2957.5 354 126000 2938.4 315 0.65 146700 3059.9 1845

9 148680 3800.3 204 126000 3779.2 273 0.56 162900 3944.1 1699

11 163800 4651.4 360 126000 4619.6 350 0.68 167160 4809.5 1948

15 194040 6342.8 402 126000 6301.0 352 0.66 197400 6580.7 1833

19 224280 8037.6 459 126000 7982.4 281 0.69 227640 8320.8 2299

21 239400 8884.6 446 126000 8822.9 257 0.69 – – –

31 – – – 126000 13026 327 – – – –

The boundary conditions are such that the load is carried by the micropiles only.
The same degree of discretization, i.e. in terms of size of finite elements, is used in
all the models. The reduced model counts 126,000 finite elements regardless of the
number of micropiles.

From the results, summarized in Table 2, it is seen that, as expected, the CPU
time required by the reduced model solution has no clear tendency to increase with
the number of micropiles, whereas the CPU time of the Direct solution increases
with it nearly proportionally.

For a reinforcement with 21 micropiles (Table 3) the mesh of the Direct problem
model amounts to 239,400 finite elements, nearly twice the number of elements in
the reduced model, and the consumed CPU time is almost double the CPU of the
reduced model solution for an accuracy gain of 0.7 %. This is the largest problem
for which the Direct solution was possible with the Mac Pro 3 GHz machine used
in this work.

For the same number of micropiles and using a finer mesh with 277200 elements
in the Direct problem model, the Direct solution fails to converge whereas the re-
duced model solution converges in twice the CPU time and improves the “reduced”
lower bound by 0.15 %.

The relative error between the Direct and the Reduced Model solutions is be-
tween 0.5 and 0.7 % and does not appear to increase with the number of micropiles.
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Table 3 Reinforcement with
21 micropiles Method Nbr of elements F (kN) CPU (s)

Static 239400 8884.6 446

Quasi-periodic 126000 8822.9 257

Quasi-periodic 277200 8835.9 530

Consequently, it may be concluded that the reduction method provides a fairly accu-
rate estimate for an unlimited number of micropiles within a nearly constant com-
putational effort.

6 Conclusion

A model reduction method is proposed to solve the numerical static limit analysis
problem of a composite medium, characterized by periodic reinforcement, embed-
ded in a homogeneous domain, while preserving the fineness of the Finite Element
description of the Representative Volume Element. The reduction method has been
successfully applied to the Limit Analysis of a soil reinforced by a large group
of micropiles when resources do not permit solution of the full model problem.
Numerical results demonstrate that the reduction method provides a fairly accurate
estimate of the limit load for an unlimited number of micropiles within a nearly con-
stant computational time. Significant differences in behavior and bearing capacity
are observed depending on the way the applied load is distributed between the soil
and the micropiles. When the load is supported solely by the micropiles the reduced
model results in terms of limit load of individual micropiles are very close to the
reference solution (in confirmation of the periodicity assumption). When the load is
supported by both the soil and the micropiles the error is larger than when only the
micropiles carry the load. In a future work the reduction method will be extended to
more general periodic representative volume elements by relaxing the symmetry re-
quirement and allowing some forms of controlled variability of the stress field in the
PRVEs. This will lead to more accurate solutions at the cost of a little extra compu-
tational effort. Another extension that might improve the accuracy of the reduction
method, consists in limiting the length of the RVE to the height of the micropile
allowing more degrees of freedom in the soil beneath the reinforced zone.
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The Anderson-Bishop Problem—Thermal
Ratchetting of a Polycrystalline Metals

A.R.S. Ponter and A.C.F. Cocks

Abstract The paper readdresses a theory of super-plastic behaviour induced by
cyclic temperature for certain classes of polycrystalline metals and composite mate-
rials, originally analyses by Anderson and Bishop in the 1950’s for polycrystalline
alpha uranium. The background to the original analysis and its subsequent history in
the literature is discussed. Two distinct phenomena are involved. The first is ratch-
etting due to a fluctuating residual stress field and commonly found in structural
analysis. The second form of ratchetting is due to the severe kinematic constraint on
the deformation of each crystal within a polycrystal. The Anderson Bishop analysis
did not take into account the former. Adopting the same kinematic assumptions as
these authors, new solutions are discussed for simplified polycrystalline models and
an isotropic polycrystal. These new solutions provide functional forms for material
behaviour that need to be taken into account in discussions of the phenomena by
material scientists.

1 Introduction

During the earlier phases of development of civil nuclear power in the UK, a num-
ber of phenomena were identified that arose from the unique and extreme conditions
materials and structures were required to withstand. For those with interest in Direct
Methods the best known example is Bree’s complete solution for a thermally cycled
tube [13]. Bree’s solution illustrates the nature of structural ratchetting whereas it
was observed within the earliest reactors that polycrystalline uranium exhibited two
interesting modes of strain growth that related to mechanisms occurring on the ma-
terial micro-scale. The first was Cottrell Creep resulting from neutron irradiation
and the second was cyclic strain growth due to temperature variations within the
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Fig. 1 Steel test specimen repeatedly temperature cycles through a phase change. From Green-
wood [5]

temperature range from room temperature to 668 °C, the range for which uranium
has the alpha crystal structure.

As the original work was carried out as part of the development of civil nuclear
reactors, the resulting reports [1, 2] were subject to the UK Official Secret Act and
received very limited circulation at the time. The symposium paper [3] summarised
their results, but the details of the analysis were not included. Subsequent workers
in the field seem to have relied predominantly on the brief appendix to Greenwood
and Johnsons [4] paper on the adaptation of the theory for metals that suffer a phase
change during thermal cycling.

The reports [1, 2] were declassified in the early 1980’s and may now be accessed
at the UK National Archive at Kew, London. The Archive has agreed to their general
availability and they may be obtained from the web-site listed in the foot-note to the
references.

In the following sections we discuss the two modes of behaviour discuss by An-
derson and Bishop and the nature of the analysis used.

1.1 Cottrell Creep

While under neutron irradiation, if a small stress �σ was applied to the polycrystal,
constant strain growth occurred in the direction of the stress. Tests on helical springs
under tension confirmed that the rate of strain growth ε̇ was given, experimentally,
by a relationship of the type

ε̇ = A
�σ

σy

İ (1)

where İ is a measure proportional to the neutron density, σy is the uniaxial yield
stress and A a material constant. The striking feature of this equation is the linearity
with stress. In modern terms, this would be regarded as a type of super-plasticity.
Because of the linearity with stress, very large strains may accumulate before neck-
ing of a sample occurs, of the type illustrated in Fig. 1. The first discussion of this
behaviour was first given by Alan Cottrell (see Anderson and Bishop [1]) and is
hence known as Cottrell Creep.
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Fig. 2 Hexagonal Close
Pack (HCP) crystalline
structure of Alpha Uranium

Individual alpha uranium crystals have an orthorhombic hexagonal close-pack
(HCP) structure, illustrated in Fig. 2. Unlike the other basic metallic crystal struc-
tures, the crystals are highly anisotropic and can show very differing properties in
the b direction, compared with those in the a and c directions. Under irradiation,
neutrons collisions displace atoms from their crystal position forming interstitials,
atoms in a higher energy state wedged between other atoms in the regular array.
These interstitials are capable of diffusing through the crystal under potential gra-
dients. They diffuse together to form new layers of atoms, wedged into the crystal
structure. The net effect on a single crystal is to cause a distortional permanent strain
rate that Cottrell modeled as:

ε̇
g
ij = ε̇g

⎡
⎣−1 0 0

0 1 0
0 0 0

⎤
⎦ (2)

where ε̇g is proportional to İ and the axis (x, y, z) = (b, a, c) with respect to the
crystal structure. In a polycrystal, the random orientation of adjacent crystals results
in an overall strain growth of zero as there is no preferred direction, provided the
b directions are completely randomly orientated. The strains resulting from Eq. (2)
are offset by plastic strain rate ε̇

p
ij , so that in a single crystal ε̇ij = ε̇

g
ij − ε̇

p
ij = 0 and

there is zero overall strain growth. The polycrystal is a seething mass of plastically
straining crystals. In their analysis Anderson and Bishop adopted the von Mises
yield condition with the associated Prantl-Reuss flow rule, following the same as-
sumptions as previously adoptd by Bishop and Hill [9]. Hence, with ε̇

g
ij prescribed

for each crystal, the state of stress at yield is also prescribed and assumed constant
within each crystal. Consider now applying an external small macro stress �Σij ,

�Σij =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦

Xi

�ΣX (3)

in this case referred to fixed external axis (X,Y,Z). The resulting macro strain rate,
as the polycrystal is isotropic, is given by

Ėij =
⎡
⎣1 0 0

0 −1/2 0
0 0 −1/2

⎤
⎦

Xi

ĖX. (4)

Anderson and Bishop assumed that all crystals experienced this same total strain
rate and that the stress in each crystal was constant within each crystal but varies
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Fig. 3 Schematic
representation of source of
strain growth in Cottrell
Creep. The imposition of the
macro strain rate Ėij causes a
movement of the yield point
by stress �σij

from crystal to crystal. Hence the circumstance within an individual crystal may be
understood from Fig. 3. The plastic strain ε̇

g
ij , Eq. (2) and the strain growth Eq. (4)

will not be consistent with each other when transformed to a common set of axes
(X,Y,Z). The imposition of Ėij causes the stress at yield to move around the yield
surface by an amount �σij defined by the flow law. The analysis consists of us-
ing the Prandl-Reuss flow rule to compare the states of stress resulting from plastic
strain rates ε̇

p
ij = −ε̇

g
ij and ε̇

p
ij = −ε̇

g
ij + Ėij and then expanding the difference for

small Ėx compared with ε̇g to obtain the stress difference at yield, �σij . The aver-
age of �σij over-all crystals then gives �Σx . Anderson and Bishop [1] complete
this analysis and obtain

Ėx = 5

2
√

3

�Σx

σy

ε̇g (5)

for �Σx small compared with σy . Although the authors do not consider condi-
tions of equilibrium formally, relying entirely on the kinematics of the situation,
conditions of equilibrium consistent with the kinematic assumptions may be easily
applied to the analysis using the Principle of Virtual Work yielding the identical
result (5) (see Ponter and Cocks [19]). Hence, within the limitations of the model,
result (5) may be regarded as correct, as it has been for the last 60 years.

1.2 Temperature Cycling of Alpha-Uranium

The authors [1, 3] then turn to the second case of interest. When a uranium poly-
crystal is subjected to cycles of temperature change �T in excess of a critical value
�Ts , in the absence of applied stress, a small amount of strain growth occurs. How-
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ever, if a macro-stress �ΣX , Eq. (3), is applied, a cyclic strain growth �Ex per
cycle occurs, given by the general form

�Ex = B

(
�Σx

E

)(
�T − �Ts

�Ts

)
(6)

where B is a numerical constant and E denotes Young’s modulus. Such behaviour
was also shown in test on helical springs suspended under weights. Although the
correlation was by no means exact the linearity with stress and the existence of a
critical temperature difference threshold was confirmed. Cottrell predicted the form
of Eq. (6) in a Note, now lost, on the basis of the behaviour of a two bar structure
(see below). Although the arguments he used were clearly suspect from the point
of view of mechanics, Anderson and Bishop were not entirely surprised to discover
that, on detailed analysis, Alan Cottrell was, again, correct.

The property of the crystal that gives rise to this phenomenon is the strongly
anisotropic thermal expansion coefficients. In terms of axis (x, y, z) = (b, a, c) local
to the crystal, the coefficients of thermal expansion are given by

αa = αc = 30 × 10−8 ◦C−1, αb = −5 × 10−8 ◦C−1. (7)

Alternatively these may be described by average and deviating components,

ᾱ = (αa + αb + αc)/3 = 55/3 × 10−8 ◦C−1, (8a)

�αij = (2/3)�α

⎧⎨
⎩

1 0 0
0 −1/2 0
0 0 −1/2

⎫⎬
⎭ , (8b)

�α = (αa − αb) = 35 × 10−8 ◦C−1. (8c)

The overall effect of this on the polycrystal when a temperature change of �T is
applied is an overall expansion, governed by the average coefficient ᾱ and incom-
patible volume conserving distortions within each crystal, deriving from the deviat-
ing component �αij . As these strains cannot remain compatible with neighbouring
crystals, linear elastic stresses are set up so that the net strain in each crystal re-
mains zero. Hence, by elementary arguments, the elastic stress σ̂ij in typical crystal,
in relation to (x, y, z) = (b, a, c) is given by

σ̂ij = σt

⎧⎨
⎩

1 0 0
0 −1/2 0
0 0 −1/2

⎫⎬
⎭ , (9)

where σt = 2E�α�T/(1 + ν). The elastic limit is then given by the von Mises
yield condition as 3/2σt = σy . A small amount of plastic strain then allows �T to
increase to a reverse plasticity limit where the elastic stress varies over a range of
twice yield and �T = �TS where,

σt = 2E�α�Ts/(1 + ν) = 4/3σy. (10)
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For �T > �Ts , a state of reverse plasticity is set up in each crystal and the poly-
crystal shows no cyclic strain growth. Each crystal suffers equal and opposite plastic
strains

�ε
p
ij = ±

⎧⎨
⎩

1 0 0
0 −1/2 0
0 0 −1/2

⎫⎬
⎭�εp. (11)

The question now arises: what is the growth of strain per cycle if a small external
constant stress �Σx is applied? Anderson and Bishop [1, 3] adopted a form of
analysis that closely follows that used for Cottrell Creep. They assumed that equal
strain increments occur at each extreme of the cycle, given by replacing Eq. (2)
by Eq. (11), but following the same averaging process. Again, the arguments are
entirely kinematic and the details of the internal stress are not considered. Their
analysis produced the answer

�Ex =
(
�Σx

E

)
32

27

(
�T − �Ts

�Ts

)
. (12)

This solution, and various adaptations, has been widely used over the intervening
years for a variety of other systems where internal thermal expansion strains occur.
Greenwood and Johnson [4] adapted this theory for cycling through phase changes,
and it is the Appendix to this paper that appears to be the main source for subsequent
authors in material science. The Anderson Bishop results are much quoted in the
literature (e.g. [5–8, 10–12]) and have been refined in terms of micro-models, see,
for example Leblond [6, 7] and Taleb and Sideroff [8]. Recently Greenwood [5]
has given a review of subsequent work in this area. Ratchetting in metal matrix
composites was identified by Daehn and Gonzalez-Doncel [11] as being a related
phenomenon and the functional form of the Anderson Bishop analysis was adopted.
Other related work on metal matrix composites is summarised by Clyne and Withers
[12]. There are certainly in excess of 100 papers in the literature which uses this
result and also use Anderson’s extension of the work to creep [2].

It should be emphasized that Anderson and Bishop did not regard their analy-
sis as a detailed realistic micro-model of the polycrystal. The assumption of a von
Mises yield condition is certainly appropriate for the overall behaviour of a poly-
crystal, but not necessarily appropriate for a single crystal. The model is essen-
tially phenomenological—describing in general terms the dependence of the strain
on governing quantities but probably not reliable in detail. Hence details of non-
compliance of the theory with experimental data has not been regarded as a barrier
to its use.

Those readers familiar with thermal loading problem of this nature may well have
already wondered if the Anderson Bishop analysis is the complete answer. Ratch-
etting in structures due to thermal cycling is common. Ponter and Cocks [14, 15]
looked at ratchet rates for such problems and derived relationships of a similar form
to (12). But the source of ratcheting in the structural cases came from a very differ-
ent mode of behaviour. The kinematic restrain argument of Anderson and Bishop
do not apply but ratcheting arises from changes in residual stress during the cycle,
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Fig. 4 Simple two bar
structure. The bars have equal
elastic and plastic properties
but unequal coefficients of
thermal expansion α1 and α2

allowing cyclic strain growth due to transfer of load from one part of the structure
to another. It is worth asking the question if both sources of ratchet strain growth
is present in this problem, that considered by Anderson and Bishop and the Bree-
like ratchetting of structures. A particular situation may easily be considered where
the Anderson Bishop strain growth does not apply, a two bar structure, and this is
discussed in detail in the next section.

2 A Two Bar Structure

Consider the simple structure shown in Fig. 4 where two differently orientated crys-
tals are constrained to equal strains in one direction. The bars have the same phys-
ical dimensions and have equal yield stresses and Young’s modulus E but unequal
coefficients of thermal expansion α1 and α2 > α1 in the direction of stress. It is im-
mediately obvious that the Anderson Bishop analysis method would predict that no
ratchetting occurs and their methodology is not applicable.

This type of problem is well known in structural mechanics. Indeed, numerical
methods for generating properties of the solution of such problems now forms stan-
dard components in the design of high temperature plant and is available for use in
the UK Life Assessment Method R5 [16–18]. It is, therefore, worthwhile looking
in detail at this simple two element problem to provide a common area between
structural mechanics and the Anderson Bishop analysis.

The elastic stresses due to applied load P = 2Aσp and temperature rise �T are
given by

σ1 = σp − σt , σ2 = σp + σt , where σt = E�α�T/2 (13)

and elastic limit is given by

σ2 = σp + σt = σy Elastic Limit. (14)

The full analysis for this problem is summarised in Table 1 where the complete solu-
tion is shown for conditions of elastic behaviour, shakedown, reverse plasticity and
ratchetting. The overall behaviour is summarised in the interaction diagram shown
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Table 1 Solutions for two bar structure of Fig. 4

Elastic σ̂i Constant ρ̄i Varying ρr
i Total σi

(a) Shakedown solution σ s
p + σt /2 = σy , σt ≤ 2σy , ρr

i = 0

T = T0 + �T

σ1

σ s
p + σt −σt /2 0 σ s

p + σt /2 = σy

T = T0 + �T

σ2

σ s
p − σt σt /2 0 −σy ≤ σ s

p − σt /2 ≤ σy

T = T0

σ1

σ s
p −σt /2 0 −σy ≤ σ s

p − σt /2 ≤ σy

T = T0

σ2

σ s
p σt /2 0 σ s

p + σt /2 = σy

(b) Ratchetting solution σ s
p + �σp + σt /2 ≥ σy , σt ≤ 2σy

T = T0 + �T

σ1

σ s
p + �σp + σt −σt /2 −�σp σ s

p + σt /2 = σy

T = T0 + �T

σ2

σ s
p + �σp − σt σt /2 +�σp −σy ≤ σ s

p + �σp − σt /2 ≤ σy

T = T0

σ1

σ s
p + �σp −σt /2 +�σp −σy ≤ σ s

p + �σp − σt /2 ≤ σy

T = T0

σ2

σ s
p + �σp σt /2 −�σp σ s

p + σt /2 = σy

(c) Reverse plasticity solution σp = 0, σt ≥ 2σy

T = T0 + �T

σ1

+σt −σt /2 +(σy − σt /2) +σy

T = T0 + �T

σ2

−σt σt /2 −(σy − σt /2) −σy

T = T0

σ1

0 −σt /2 −(σy − σt /2) −σy

T = T0

σ2

0 σt /2 +(σy − σt /2) +σy

(d) Ratchetting solution σt ≥ 2σy , σp = �σp

T = T0 + �T

σ1

�σp + σt −σt /2 +(σy − σt /2) − �σp +σy

T = T0 + �T

σ2

�σp − σt σt /2 −(σy − σt /2) + �σp σy ≥ −σy + 2�σp ≥ −σy

T = T0

σ1

�σp −σt /2 −(σy − σt /2) + �σp σy ≥ −σy + 2�σp ≥ −σy

T = T0

σ2

�σp σt /2 +(σy − σt /2) − �σp +σy

in Fig. 5. For σp + (1/2)σt ≤ σyeither purely elastic behaviour (E) or shakedown
(S) occurs. In excess of σp + (1/2)σt = σy ratchetting (R) occurs at a rate per cycle
give by

�εp = 4�σp/E (15)
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Fig. 5 Interaction diagram
for two bar structure, showing
the elastic (E), shakedown (S)
and ratchetting (R) regions

where �σp is the increase of σp either above the shakedown limit for σt ≤ 2σy or
above zero for σt > 2σy . The reverse plasticity region is reduced to the axis σp = 0
and σt > 2σy .

The solution shows that the ratchet strain �εp per cycle is obtained by sequential
plastic strain in each of the bars at separate instants during the cycle when the other
bar remains within the elastic range. The Anderson Bishop analysis is concerned
with behaviour for small σp for σt > 2σy where they predict a ratchet rate of the
general form, in the notation of this example

�εp = K(�T − �Ts)�σp/E (16)

where �Ts is the temperature difference corresponding to σt = 2σy . Note the pri-
mary difference between (15) and (16). We find, for the polycrystalline problem,
the solution consist of a combination of the two modes of behaviour exemplified by
Eqs. (15) and (16).

3 Polycrystalline Models

The two bar structure, despite its simplicity, shows all the characteristic modes of
behaviour of all such problems, but excludes the precise phenomenon identified by
Anderson and Bishop as the cause of ratchetting in alpha-uranium. As a result, the
behaviour of a polycrystal may be expected to show both forms of ratcheting. The
associated analysis is, therefore, rather more complex and will not be discussed in
detail here. Effectively the problem may be solved by combining the arguments of
Anderson and Bishop [1, 3] but taking into account the fact that the residual stress
within each crystal is not constant but varies. Plastic strains in reverse plasticity
will always occur at both ends of the cycle, but the additional plastic strains that
contribute to the ratchet mechanism when stress is applied may only occur at one
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Fig. 6 Interaction diagram
for three element model
showing the elastic (E),
shakedown (S) and
ratchetting (R) regions

instant in the cycle. A detailed analysis (Ponter and Cocks [19]) of the structure
of the problem shows this to be the case. Two models are considered. The first
simplifies the crystal structure by assuming that all crystals have their b direction
orientated along each of the axis of a fixed set of axis, a third in each direction. In
the following we refer to this as the three element model. This simplification allows
a more complete analytic solution than in the fully anisotropic case.

The full interaction diagram, for comparison with Fig. 5, is shown in Fig. 6 for the
three element model. There are many similarity, except that the shakedown bound-
ary at �T/�TS = 1, the reverse plasticity limit, meets the Σx/σy = 0 axis at a right
angle. This is associated with a rate of increase of ratchet strain with increases in
load beyond shakedown becoming zero. This is unlike the two bar structure, Fig. 5
where this angle is obtuse and the ratchet rate remains constant.

For �T/�TS > 1 both the three element model and the polycrystal model may
be evaluated for comparison with Anderson and Bishop. Although Anderson and
Bishop did not consider the three element model, the analysis with their assumptions
may easily be carried out. A comparison between all the solutions is shown in Fig. 7.

There a number of features of Fig. 7 of immediate interest. The solutions for
the three element and the fully isotropic models are very similar. This indicates that
analysis of the much simpler three element model provides a close approximation
to the more complex case, providing a useful route to future studies using more
complex behaviour, such as creep. The other, perhaps surprising, result is that the
solution that includes both ratcheting phenomenon gives lower ratchet rates than
the Anderson and Bishop analysis, which only includes one. The reason for this is
that Anderson and Bishop assumed that a contribution to the ratchet strain occurred
throughout the polycrystal at both extremes of the temperature cycle whereas, due
to changing residual stress fields, it only occurs at one extreme. Hence Anderson
and Bishop in this respect overestimated the ratchet strain but underestimated it by
leaving out conventional structural ratcheting. Note that at �T/�TS = 1the ratchet
rate is zero, whereas for the two bar structure it has a high value.
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Fig. 7 Comparison of
Anderson Bishop and present
analysis. Solid—polycrystal,
dashed—three element model

4 Conclusion

The Anderson Bishop [1–3] model for the linear plastic ratchetting of polycrystals
with anisotropic crystal thermal expansion properties when subjected to cyclic tem-
perature and Greenwood’s [4, 5] adaptation of the model for alloys cycled through
a phase change have remained unchallenged since the early 1960’s. Neither model
was put forward as an exact model of behaviour and various assumptions may be
challenged. Crystals were assumed to be isotropic in both their elastic and plastic
behaviour and satisfy the von Mises yield condition and associated perfectly plastic
flow condition. The total microstrain was assumed to remain the same as a uniform
macrostrain, although this has remained an assumption in subsequent work. The
material constants are assumed independent of temperature. The models should,
perhaps, be sufficient to demonstrate the relationship between the observed super-
plasticity behaviour and the micromechanical phenomena. Anderson and Bishop
[1–3] demonstrated that the phenomenon may be explained through the movement
of the yield point around the yield surface, constrained by overall kinematic con-
ditions and the associated flow law. They give a resulting equation (12) where the
accumulation of plastic strain for each cycle of temperature increases linearly with
applied stress and temperature variation. The purpose of this paper is to show that
a separate micromechanics phenomena also makes a contribution, the redistribution
of stress through a varying residual stress. This results in plastic ratchet strains, in
an individual crystal, occuring only at one extreme of the thermal cycle. Hence, at
the two extremes a proportion of the crystals suffer plastic strain growth while the
remainder remain elastic. At the opposing end of the cycle the reciprocal set of crys-
tals experience plastic ratchet strains. This behaviour may be demonstrated in a two
bar structure. The effect on the resulting prediction is to reduce the ratchet rate sig-
nificantly compared to the Anderson Bishop analysis as shown in Fig. 7. The new
solution shows a lower rate of ratchetting.
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The Anderson Bishop solutions were not expected to give close predictions of
behaviour and, of course, neither does this new solution Eq. (17), below (Ponter
and Cocks [19]). The primary purposes of this paper bring to the notice of those
workers in Direct Methods that this neglected ratchet phenomenon exists and remind
future workers in that if more detailed micromechanics is attempted of this class of
problems then phenomena associated with changing residual stress field exists. In
the three cases discussed here, the two bar structure, the three element problem and
the polycrystal problem, all the solutions have the same overall form (Ponter and
Cocks [19]):

�Ex =
(
�Σx

E

)
(�T − �Ts)/�Ts

(a + b(�T − �Ts)/�Ts)
(17)

where for:

Two Bar structure: a = 0, b = 1/4.
Three Element Model: a = 27/32, b = 1/4.
Polycrystal Model: a = 4/5, b = 0.244.
The Anderson Bishop model corresponds to b = 0.

The analysis does not include the effects of high temperature creep, the subject
of Anderson’s second report [2]. This problem is more complex and has not been
discussed in this paper. Creep strain rates vary very rapidly with temperature and it
seems likely that most of such problems will involve both plastic and creep strains
within the cycle of temperature, an aspect not considered by Anderson[2], indicating
that the creep problem may now be usefully looked at again, following the results
of this paper
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Recent Development and Application
of the Linear Matching Method for Design
Limits in Plasticity and Creep: An Overview

Haofeng Chen and Weihang Chen

Abstract Engineering design and integrity assessment of components under the
action of cyclic thermal and mechanical loading require the assessment of load his-
tories for which certain types of material failure do not occur. This involves the
determination of the shakedown limit, ratchet limits, plastic strain range concerning
fatigue crack initiation in a low cycle fatigue assessment, and creep fatigue interac-
tion.

In this paper a state-of-the-art direct method, the Linear Matching Method
(LMM), is summarized for the evaluation of these design limits in both plasticity
and creep. These have been solved by characterizing the steady cyclic state using a
general cyclic minimum theorem. For a prescribed class of kinematically admissible
inelastic strain rate histories, the minimum of the functional for these design limits
are found by either global minimization process or dual minimization process. The
applications of the LMM to three practical problems are outlined to confirm the ef-
ficiency and effectiveness of the method and demonstrate that Direct Methods may
be applied to a much wider range of circumstances than have hitherto been possible.

Keywords Plasticity · Creep · Direct methods · Cyclic loading · Shakedown ·
Ratchetting · Creep-fatigue interaction

1 Introduction

Imperfections in structures can arise in the initial production process, or during the
heat-treatment of the component, particularly during welding processes. These de-
fects or flaws are unavoidable within structure components, and they do not gen-
erally lead to an immediate failure. Failure modes occurring from these structures
are different from industry to industry, but mostly such failures result from the ap-
plication of cyclic loading with high temperature. In general, the lifetimes of these
components, operating at elevated temperatures, depend on the nature of plastic
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and creep deformation they experience. The first failure mode is mainly concerned
with the excessive plastic deformations associated with the phenomenon of plastic
collapse, shakedown and ratchetting, while the second is concerned with the creep
fatigue interaction. The ability to accurately model these behaviours of component
subjected to cyclic and variable loading conditions would provide a means of assess-
ing the remaining life of the structural components. Thus, the elastic-plastic-creep
response of a structure needs to be well understood when using it as a design con-
dition.

The determination of these design limits has attracted the attentions of many re-
searchers. The phenomena of shakedown and ratchetting associated with the steady
cyclic response have been researched and modeled extensively by plasticity theo-
rists, materials scientists, mathematicians and engineers. Since closed form solu-
tions of these design limits are very limited due to the complexity of the problem,
the numerical approaches play a key role for the assessment of these design limits
in plasticity.

One approach is to simulate the detailed elastic-plastic response of the struc-
ture for a specified cyclic load history, most commonly by the incremental Finite
Element Analysis (FEA) [1]. However, this method requires significant computer
time for complex structures, due to the reason of its investigation of any load cy-
cle. A relatively new cyclic analysis method, Direct Cyclic Analysis (DCA) [2], has
been developed to avoid excessive numerical expense associated with the incremen-
tal FEA. It has been recently incorporated into ABAQUS to evaluate the stabilized
cyclic behaviour directly. However, both the incremental FEA and DCA do not pre-
dict shakedown or ratchet limits directly. It can only be used to show whether elastic
shakedown, plastic shakedown or ratchetting occurs [3].

To define the shakedown and ratchet limits, alternative approach has been de-
veloped. It involves the application of numerical methods [4–9] for addressing the
structural response in structures subjected to both severe mechanical and thermal
loads. The assessments, provided from these new methods, have the potential of
providing results that combine the accuracy of non-linear FEA simulation meth-
ods [10, 11] with the efficiency of rules-based methods [12, 13]. These are direct
methods based upon a programming technique. Direct methods were incorporated
into finite element analysis in order to evaluate the shakedown limit. The material
model is considered to be elastic perfectly plastic, and the load domain including all
the possible load paths eliminates the necessity to know the detailed load history.
Such direct methods include; the mathematical programming methods [14–16], the
Generalized Local Stress Strain (GLOSS) r-node method [17], the Elastic Compen-
sation Method (ECM) [18], and the Linear Matching Method (LMM) [7, 19, 20].
Among these direct methods, the LMM is counted to be the method most amenable
to practical engineering applications involving complicated thermomechanical load
history. The LMM has been extensively applied to a range of problems [8, 19],
through various adaptations, extended to the calculation required for the UK as-
sessment procedure R5 [21] for the high temperature response of structures. The
LMM describes non-linear inelastic material behaviour by linear solutions where
the material coefficients vary both spatially and in time, which makes the method
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particularly flexible. The LMM has been regarded as an efficient and effective upper
bound programming method for which, in many circumstances, strict convergence
proofs may be constructed. In the past two years, the LMM has been further devel-
oped to account for the lower bound shakedown and ratchets limits, and investigate
more complicated cyclic problems. Moreover, the extensions of LMM have resulted
in the application of the method to high temperature creep behavior including the
effect of elastic follow-up [20], i.e. the evaluation of local creep damage due to the
relaxation of stress during creep dwell times.

There are four objectives leading to using the basics of these methods in this
study where limit in plasticity and creep are designed. The first objective is to ob-
tain a LMM approach used for more general purposes. This LMM must be able to
address to a wider class of problems and prospective procedures for lower and up-
per bound design limits. The second objective is to assess the cyclic response under
creep fatigue conditions by presenting a new numerical procedure. The third is the
examination and the improvement of convergence problems existing in the itera-
tive approach and the last objective is to validate the efficiency and effectiveness
of LMM while designing the limits in plasticity and creep. This validation is per-
formed on three typical practical problems. The first problem is; a defective pipeline
subjected to cyclic thermal loading and constant operating pressure. In the second
problem the effects of drilling holes on the ratchet limit and crack tip plastic strain
range for a central cracked plate subjected to constant tensile loading and cyclic
bending moment are investigated, and in the last one the cyclic structural responses
of a cruciform weldment under creep fatigue interaction is being addressed.

In the following sections, a general cyclic minimum theorem for perfect plastic-
ity and the application of the LMM for a particular class of problems for the design
limits in plasticity and creep will be described. This is followed by the discussion
of convergence and the application of three practical examples with numerical veri-
fications of the proposed methods.

2 Cyclic Behaviour

2.1 General Cyclic Problem

Consider a body with volume V and surface S, where the material is isotropic,
elastic-plastic and satisfies the von Mises yield condition. A cyclic history of tem-
perature λθ(x, t) occurs within volume V . A cyclic load history λP (x, t) is applied
over part of S, namely ST. Here λ denotes a scalar load parameter. On the remainder
of S, namely Su, zero displacements are maintained. Both load and temperature his-
tories have the same cycle time �t and, in the following, we are concerned with the
behaviour of the body in a typical cycle 0 ≤ t ≤ �t in a cycle state. For the problem
defined above the stresses and strain rates will asymptote to a cyclic state where

σij (t) = σij (t + �t), ε̇ij (t) = ε̇ij (t + �t). (1)
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This arbitrary asymptotic cyclic history may be expressed in terms of three com-
ponents, the elastic solution, a transient solution accumulated up to the beginning
of the cycle and a residual solution that represents the remaining changes within the
cycle. The linear elastic stress solution is denoted by λσ̂ij . The general form of the
stress solution is given by

σij (x, t) = λσ̂ij (x, t) + ρ̄ij (x) + ρr
ij (x, t) (2)

where ρ̄ij denotes a constant residual stress field in equilibrium with zero surface
traction on ST and corresponds to the residual state of stress at the beginning and
end of the cycle. The history ρr

ij is the change in the residual stress during the cycle
and satisfies;

ρr
ij (x,0) = ρr

ij (x,�t). (3)

It is worth noting that the arguments in this section do not explicitly call on
the properties of perfect plasticity and are therefore common to all cyclic states
associated with inelastic material behaviour.

2.2 Description of Design Limits in Plasticity and Creep Under
Cyclic Loading

2.2.1 Design Limits in Plasticity

One well-known illustration defining the plasticity limit of the structure under cyclic
load history is Bree interaction diagram [22, 23]. Bree [22, 23] developed theoret-
ical solutions for a simplified 2-dimensional model of a nuclear reactor fuel can.
In his model, constant pressure stress and cyclic temperature gradient was applied
across the can wall during start-up and shutdown. These theoretical solutions were
illustrated on Bree interaction diagram in order to provide different modes of mate-
rial behaviour for different cyclic loading conditions. These diagrams with various
cyclic loading combinations are helping the designers especially in their early stages
of design.

Figure 1 is the Bree diagram [22, 23], illustrating the responses for the case
of a fuel can subject to cyclic through-wall thermal stress and a constant internal
pressure. The ordinate and abscissa give normalised values of pressure and thermal
stress respectively, where the stresses have been normalised against the yield stress
of the material. The distinct feature on the interaction diagram is the separation of
the different modes of material behaviour. In this particular analysis, the diagram is
divided into four design regions, namely:

Pure Elastic Region In this region, it was found that the load level is sufficiently
small; the response is purely elastic, no permanent strains are induced, and the struc-
ture returns to its original configuration after each load application.
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Fig. 1 Bree diagram for
pressurized tube and thermal
loading [22, 23]

Elastic Shakedown Region In this region, the stresses are exceeding the yield
stress at the first few load cycles, which give rise to constant residual stress in the
structure such that in subsequent load cycles only elastic deformation occurs. The
constant residual stress field has caused the redistribution of the stresses within the
structure. This effectively has the effect of pulling the stress fields, the sum of the
elastic and residual stresses in to the yield surface.

Reverse Plasticity/Plastic Shakedown Region The transition to this region oc-
curs when the effective elastic stresses exceed twice the yield stress. This was made
possible with the accommodation of the time-varying residual stress field, causing
the stress distribution at the outer fibre of the plate, to exceed twice the yield stress.
When the structure exhibits reverse plasticity over each cycle, the positive plastic
strain in the first half of the load cycle followed by equal magnitude negative strain
in the second half, such that there is no accumulation of plastic strain during load
cycle. And the failure mechanism for plastic shakedown is low-cycle fatigue.

Ratchetting Region This region is best characterized by the breakdown of the
elastic, shakedown and reverse-plasticity conditions. In each cycle, plastic strains
accumulate over a significant volume of the plate, leading to structural failure from
the unlimited accumulation of plastic deformation and eventually incremental plas-
tic collapse.
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Fig. 2 The Hysteresis cycle
which provides the
information for fatigue and
creep damage

2.2.2 Design Limits in Creep Under Cyclic Loading

In the presence of creep, the response of the structure to cyclic loading changes
significantly. Interaction of plasticity and creep is the key feature of creep-fatigue
mechanism under cyclic loading condition with creep. Assessments must be carried
out to ensure avoidance of creep-fatigue failure by, creep rupture and cyclically en-
hanced creep. The term cyclically enhance creep refers to the threat of gross section
creep failure due to the accumulation of creep strains arising from the cyclic loading.
The life design limit under creep fatigue interaction can be defined by construction
of stress strain hysteresis loops since this hysteresis loop provides the information
of life damage due to fatigue and creep, and this information also is the key to an R5
V2/3 assessment. Figure 2 is the construction of the hysteresis cycle; it provides the
total strain range, �εtot from which the fatigue damage is calculated, and the start
of dwell stress, σ1 and creep strain, εcr from which the creep damage is calculated.

3 Minimization Processes of the Linear Matching Method

The strategy of locating each of above critical limits consists of defining an appro-
priate class of kinematically admissible strain rate histories ε̇cij then solving a corre-
sponding minimizing process for I (ε̇cij , λ) by considering the incremental form;

I
(
ε̇cij , λ

)=
N∑

n=1

In, (4a)

In
(
�εnij , λ

)=
∫
V

{
σn
ij�εnij − (

λσ̂ij (tn) + ρij (tn) + ρ̄ij

)
�εnij

}
dV, (4b)

ρij (tn) = ρ̄0
ij +

n∑
l=1

�ρij (tl), (4c)
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where ε̇cij is replaced by a sequence of increments of strain �εnij occurring at a
sequence of N times tn, n = 1 to N , during the cycle. The incremental minimization
of In(�εnij , λ) assumes that the prior history of the residual stress is known and

compatibility of the total elastic and plastic strain in the increment is used. ρ̄0
ij

is the
constant element of the changing residual stress ρij (tn) and represents as,

ρ̄0
ijM =

N∑
n=1

�ρij
n
1 +

N∑
n=1

�ρij
n
2 + · · · +

N∑
n=1

�ρij
n
M−1 (5)

where M represents the total number of cycles. In this section, the linear matching
processes for minimization of I (ε̇cij , λ) are summarized for both the shakedown and
ratchet limits.

3.1 Global Minimization for Shakedown Limit

The global minimization of I (ε̇cij , λ)makes use of the compatibility from the sum

of the increments of plastic strain over the cycle. When a set of increments �εnkij
at kth iteration are assumed known, a linear material can be defined so that linear
shear modulus μ̄nk ensures that the resulting deviatoric stress is at yield, i.e.

2

3
μ̄nkε̄

(
�εnkij

)= σ0 (6)

where ε̄ denotes the von Mises effective strain.
For shakedown problems, the changing component of residual stress vanishes,

i.e. ρr
ij = 0. Hence, the cyclic stress history for shakedown problem is given by

σij (x, t) = λσ̂ij (x, t) + ρ̄ij (x). (7)

A set of linear incremental relationships are then defined by

�ε
n(k+1) ′
ij = 1

2μ̄nk

[
λσ̂ ′

ij (tn) + ρ̄k+1 ′
ij

]
, �ε

n(k+1)
kk = 0 (8)

where the upper ‘dash’ refers to deviatoric components. Summing over the cycle
produces a relationship between the compatible strain�ε

(k+1)
ij = ∑

n �ε
n(k+1)
ij and

the constant residual stress ρ̄k+1
ij with an initial stress state;

�ε
(k+1) ′
ij = 1

2μ̄k

(
σ initial ′
ij + ρ̄k+1 ′

ij

)
, �ε

(k+1)
kk = 0 (9a)

where

1

μ̄k
=
∑
n

1

μ̄nk
and σ initial

ij = μ̄k
∑
n

λσ̂ij (tn)

μ̄nk
. (9b)

The solution of the continuum problem corresponding to Eqs. (9a), (9b) has the
property that I (�ε

(k+1)
ij , λ) ≤ I (�εkij , λ), which is proved by [6].
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3.2 Dual Minimization Process for Ratchet Analysis

We consider a structure subjected to a general cyclic load condition, which can
be decomposed into cyclic and constant components, i.e. σ̂ij (x, t) = σ̂�

ij (x, t) +
λσ̂F

ij (x). The calculation of the ratchet limit includes dual minimization processes,
the first an incremental minimization for the evaluation of a cyclic history of residual
stresses and plastic strain range in a stable cycle and the second a global minimiza-
tion for the ratchet limit due to an extra constant load. By decoupling the evaluation
of the changing residual stress and the constant residual stress in Eqs. (4a)–(4c),
the entire numerical procedure of ratchet analysis includes two steps [24]. The first
step is to calculate the history of the changing residual stress associated with the
applied cyclic load σ̂�

ij (x, t) and the corresponding plastic strain ranges for the low
cycle fatigue assessment. The second step is to locate the ratchet limit due to the
extra constant load λσ̂F

ij (x) as a conventional shakedown analysis where a constant
residual stress is evaluated by global minimization (Sect. 3.1) and the elastic stress
history is augmented by the changes in residual stress calculated in the first step.

The global minimization process for step 2 of ratchet analysis is as same as the
global minimization for shakedown limit in Sect. 3.1. Next a distinct minimization
process—incremental minimization is summarized for step 1 of ratchet analysis to
evaluate the changing residual stress ρr

ij and the associated plastic strain range cor-

responding to the cyclic component of the elastic stress σ̂�
ij .

3.2.1 Incremental Minimization for the Varying Residual Stress Field and
Plastic Strain Range

The incremental minimization of In(�εnij , λ) assumes the prior history of the resid-
ual stress is known and compatibility of the total elastic and plastic strain in the
increment is used. With an initial estimate of �εnij = �εnkij , a linear modulus is de-

fined by linear matching σ0 = 2/3μ̄nkε̄(�εnkij ), where the von Mises yield stress σ0
could be either constant or temperature-dependent.

An incremental linear equation is then defined;

�ε
T n(k+1) ′
ij = 1

2μ
�ρ

n(k+1) ′
ij + �ε

n(k+1) ′
ij , (10a)

�ε
T n(k+1)
kk = 1

3K
�ρ

n(k+1)
kk , (10b)

�ε
n(k+1) ′
ij = 1

2μ̄nk

{
σ̂�
ij (tn) + ρij (tn−1) + �ρ

n(k+1)
ij

}′
, (10c)

where the prior history of the residual stress is known, i.e.

ρij (tn−1) = ρij (t0) + �ρ1
ij + �ρ2

ij + · · · + �ρn−1
ij , ρij (t0) = ρ̄0

ij . (11)

The entire iterative procedure requires a number of cycles, where each cycle con-
tains N iterations associated with N load instances. The first iteration is to evaluate
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the changing residual stress �ρ1
ij associated with the elastic solution σ̂�

ij (t1) at the
first load instance. Define �ρij

n
m as the evaluated changing residual stress for nth

load instance at mth cycle of iterations, where n = 1,2, . . . ,N and m = 1,2, . . . ,M .
At each iteration, the above changing residual stress �ρij

n
m is calculated. When the

convergence occurs at the M th cycle of iterations, the summation of changing resid-
ual stresses at N time points must approach to zero (

∑N
n=1 �ρij

n
M = 0) due to the

stable cyclic response. Hence the constant residual stress ρij (t0) = ρ̄0
ij over the cycle

can also be determined by

ρ̄0
ij =

N∑
n=1

�ρij
n
1 +

N∑
n=1

�ρij
n
2 + · · · +

N∑
n=1

�ρij
n
M. (12)

The corresponding plastic strain magnitude occurring at time tn is calculated by

�εPij (tn) = 1

2μ̄n

(
σ̂� ′
ij (tn) + ρ′

ij (tn)
)

(13)

where μ̄n is the iterative shear modulus and ρij (tn) is the converged accumulated
residual stress at the time instant tn, i.e.

ρij (tn) = ρ̄0
ij +

n∑
k=1

�ρij
k
M. (14)

4 Evaluation of Upper and Lower Bound Limits

4.1 Upper Bound Shakedown and Ratchet Limit

Combining 0 ≤ I (�ε
(k+1)
ij , λ) ≤ I (�εkij , λ) and Eqs. (4a)–(4c), with ρij and ρ̄ij

eliminated Based upon the Koiter’s theorem [25] the upper bound shakedown limit
is given as,

I
(
�εij , λ

S
)=

∫
V

N∑
n=1

{
σn
ij�εnij − λSσ̂ij (tn)�εnij

}
dV ≥ 0, (15a)

i.e.

λS ≤
∫
V
(
∑N

n=1 σ
n
ij�εnij )dV∫

V
(
∑N

n=1 σ̂ij (tn)�εnij )dV
=

∫
V
(σy

∑N
n=1 ε̄(�εnij ))dV∫

V
(
∑N

n=1 σ̂ij (tn)�εnij )dV
= λS

UB. (15b)

Equation (15b) provides a monotonically reducing sequence of upper bound to
the shakedown limit, i.e. λS(k+1)

UB ≤ λ
S(k)
UB . It is worth noting that a limit load can be

calculated by Eq. (15b) as a special case of the shakedown analysis, where the cyclic
load condition reduces to monotonic load condition, i.e. N = 1.
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For the upper bound ratchet limit, the numerical technique can be accommodated
within the existing methods of shakedown analysis where the linear elastic solution
is augmented by the changing residual stress field, i.e.

σ̂ij = λσ̂ F̄
ij + σ̂�

ij (x, t) + ρij (x, t) (16)

where the history of the residual stress field ρij (tn) associated with the cyclic com-
ponent of the load history has been calculated by an incremental minimization pro-
cess (Sect. 3.2.1).

For the von Mises yield condition and the associated flow rule, an upper bound
ratchet limit multiplier can be obtained by

λR
UB =

∫
V

∑N
n=1 σyε̄(�εnij )dV − ∫

V

∑N
n=1(σ̂

�
ij (tn) + ρij (tn))�εnij dV∫

V
σ̂ F̄
ij (

∑N
n=1 �εnij )dV

(17)

which gives the capacity of the body subjected to a predefined cyclic load history
σ̂�
ij (tn) to withstand an additional constant load σ̂ F̄

ij before ratchetting takes place.

4.2 Lower Bound Shakedown and Ratchet Limit

Both the constant residual stress ρ̄ij (x) and varying residual stress ρr
ij (x, t) in

Eq. (2) for a stabilised load cycle have been calculated by incremental and global
minimization processes. Hence, based upon the lower bound theorem [26], a lower
bound of shakedown or ratchet limit can be constructed in the same upper bound
procedure by maximizing the lower bound load parameter λLB under the condition
where for any potentially active load/temperature path, the stabilised cyclic stresses
in Eq. (2) nowhere violate the yield condition.

As the upper bound iterative process provides a sequence of residual stress fields,
a sequence of lower bound at each iteration can be calculated by scaling the elastic
solution so that the cyclic stress everywhere satisfies yield. The lower bound of
shakedown limit multiplier can be described as:

λs
LB = maxλLB (18a)

s.t. f
(
λLBσ̂ij (x, t) + ρ̄ij (x)

)≤ 0. (18b)

The lower bound of ratchet limit multiplier can be written as:

λR
LB = maxλLB (19a)

s.t. f
(
λLBσ̂ F̄

ij + σ̂�
ij (x, t) + ρij (x, t) + ρ̄ij (x)

)≤ 0. (19b)

5 Numerical Procedures for the Creep Strain and Flow Stress

In the incremental minimization process (Sect. 3.2.1) where the plastic strain am-
plitudes are evaluated, σ0 (Eq. (6)) is adopted as the material yield stress. How-
ever, when the accumulated creep strain is calculated during the dwell period at the
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creep load time instance, σ0 in Eq. (6) needs to be replaced by the creep flow stress
σ0 = σ̄c. The creep flow stress is an implicit function of creep strain �ε̄c and resid-
ual stress �ρ̄cduring the creep dwell period. The detailed numerical procedures for
the evaluation of creep strain and flow stress are described in [27, 28] and these
processes are summarized as follows:

We assume a time hardening creep constitutive relation:

˙̄εc = Bσ̄n∗
tm

∗
(20)

where ˙̄εc is the effective creep strain rate, σ̄ is the effective von-Mises stress, t is the
dwell time, and B , m∗ and n∗ are the creep constants of the material. When m∗ = 0,
the time hardening constitutive equation becomes the Norton’s law.

During the relaxation process we assume, at each point in space that an elastic
follow up factor Z exists:

˙̄εc = −Z

Ē
˙̄σ (21)

where Ē = 3E/2(1 + v), E is the Young’s modulus and ˙̄σ = ˙̄σ(σij ).
Combining Eqs. (20) and (21) and integrating over the dwell time, we obtain

BĒ�tm
∗+1

Z(m∗ + 1)
= 1

n∗ − 1

{
1

(σ̄c)n
∗−1

− 1

(σ̄s)n
∗−1

}
(22)

where σ̄s is the effective value of the start of dwell stress, σ̄c is the effective value
of the creep flow stress, and σ̄c = σ̄ (σsij + �ρCij ). Integrating Eq. (21) gives the
effective creep strain during the dwell period �t as,

�ε̄ = −Z

Ē
(σ̄c − σ̄s). (23)

Combining Eqs. (22) and (23) and eliminating Z/Ē gives

�ε̄c = B(n∗ − 1)�tm
∗+1(σ̄s − σ̄c)

( 1
σ̄ n∗−1
c

− 1
σ̄ n∗−1
s

)(m∗ + 1)
. (24)

For the pure creep where σ̄s = σ̄c, the creep strain becomes:

�ε̄c = Bσ̄n∗
s �tm

∗+1

m∗ + 1
. (25)

The creep strain rate ˙̄εF at the end of dwell time �t is calculated by Eqs. (22)
and (24):

˙̄εF = B(σ̄c)
n∗
�tm

∗ = �ε̄c

�t

(m∗ + 1)

(n∗ − 1)

σ̄ n∗
c

(σ̄s − σ̄c)

(
1

σ̄ n∗−1
c

− 1

σ̄ n∗−1
s

)
. (26)

For the pure creep where σ̄s = σ̄c, the creep strain rate ˙̄εF becomes:

˙̄εF = B(σ̄s)
n∗
�tm

∗
. (27)
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Hence in the iterative process, we begin with current estimated σ̄ i
c , σ̄

i
s and use

Eqs. (24), (26) or (27) to compute a new value of the creep stress σ̄c = σ̄
f
c from

Eq. (28) to replace σ 0(tn) in the linear matching condition Eq. (6).

σ̄c =
( ¯̇εF
B�tm

∗

) 1
n∗
. (28)

6 Convergence Considerations

The necessary condition for convergence and the exact proof for upper bounds are
provided by [5, 6]. According to this study, in order to get convergent minimum
upper bound limits three conditions must be fulfilled as follows: (1) The material
yield surface must be convex; (2) The class of strain rates and the associated strain
increments guarantee that the minimum upper bound is limited with this class; (3)
The class of selected compatible strain distributions must be adequately extensive
to guarantee a satisfactory upper bound.

The first two conditions can be easily satisfied by an appropriate choice of a class
of linear materials. Condition (3) is vital to the implementation of the LMM within
a finite element scheme. Within the LMM, the equilibrium of the residual stress
field ρij relies on the class of displacement field �ui from which �εij is derived,
i.e. ρij is in equilibrium if and only if

∫
V
ρij�εij dV = 0. Hence, for a given finite

element mesh, the process will converge to the least upper bound associated with
the FE mesh and within this class of displacement field �ui . However, during the
FE implementation, the volume integration is not exact but usually depends upon
the Gaussian integration to give an exact integral. Hence a point-wise condition is
used to replace above equilibrium condition;∑

el

∑
k

wkρ
k
ij�εkij = 0 (29)

where wk are the Gaussian weighting factors at the Gauss integration points.
According to the lower and upper bound theorems, the LMM ensures that the

maximum lower bound will be less than the least upper bound. However, unlike
the strict convergence of the upper bound, the magnitude of lower bound may not
always increase monotonically with iterations. But upon convergence, the maximum
lower bound will equal to the least upper bound, where by equilibrium condition
(Eq. (29)) the matching condition is applied at Gauss points.

Due to the point-wise condition of equilibrium (Eq. (29)), whereas the deviation
from convergence at a few Gauss points has little effect on the upper bound which
is determined by volume integrals, the convergence of the upper bound in terms of
a particular number of significant figures may allow some deviation from conver-
gence locally. Hence the convergence of lower bound may be affected significantly
as it is determined by single Gauss point. Generally the upper bound converges
(monotonically) more quickly than the lower bound and the rate of convergence for
lower bound depends upon the characteristic of the problem and also the adopted FE
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model, such as the complexity of the geometry and boundary conditions, the mesh
arrangement, etc. For some cases where the lower bound converges very slowly, the
convergence is usually judged entirely in terms of the upper bound. Further investi-
gation of the convergence of the LMM iterative algorithms has been carried out and
a separate paper is being prepared for this context.

7 Examples of Applications

In this section, three practical examples of the LMM for differing applications are
provided to confirm the efficiency and effectiveness of the method; the behaviour
of a defective pipeline subjected to cyclic thermal loading and constant operating
pressure, the effects of drilling holes on the ratchet limit and crack tip plastic strain
range for a centre cracked plate subjected to constant tensile loading and cyclic
bending moment, and the cyclic structural responses of a cruciform weldment under
creep fatigue interaction.

7.1 Defective Pipelines Subjected to Cyclic Thermal Loading and
Constant Operating Pressure

Figure 3 gives a finite element model of a defective pipeline with four types of
slot, where the symmetry boundary conditions are applied to the half section of the
model. Such pipes are subjected to particular severe thermal loading, resulting in
the possibility of ratchetting or premature failure due to low cycle fatigue.

Figure 4 presents the calculated shakedown and ratchet limit interaction curve
for a pipeline with these four types of slots, which clearly shows the effect of part-
through slot on the shakedown and ratchet limits. It is observed that any part-through
slot significantly reduces the reverse plasticity limit of the pipeline due to the stress
concentration caused by the existence of the slot. It is also identified that at different
levels of cyclic thermal loading the ratchet limit boundary decreases sharply for a
defective pipeline with axial and large area slot and it remains almost constant for
small and circumferential slot, compared with a defect-free pipeline. Figure 4 fur-
ther shows that for the cases of axial and large area slots, the ratchet limit ends at
cyclic thermal loading points �θ = 4.1�θ0 and �θ = 5.5�θ0, respectively, which
indicates that when the cyclic thermal loading �θ beyond these cyclic thermal load-
ing limits (4.1�θ for axial slot and 5.5�θ for large area slot), any amount of con-
stant internal pressure will result in ratchetting.

A full discussion of the solutions including plastic strain range concerning the
fatigue crack initiation and verifications with ABAQUS detailed step-by-step anal-
ysis are given by [29]. This example demonstrates that, for these practical industrial
problems, the method is capable of providing solutions that are much more illumi-
nating than conventional analysis.
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Fig. 3 The finite element mesh for a pipeline with part-through slot: (a) small slot; (b) circumfer-
ential slot; (c) axial slot and (d) large area slot

Fig. 4 Shakedown and
ratchet limit interaction curve
for defect-free and defective
pipelines
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Fig. 5 Centre cracked plate with symmetric holes subjected to reversed bending moment range
�M and constant tension σ̄p

7.2 Centre Cracked Plate with Circular Holes

The second example concerns the effect of circular holes in a centre cracked plate
subjected to cyclic bending moment and constant tensile loading on the ratchet limit
and crack tip plastic strain range. Drilling holes in front of the crack tip is an effec-
tive way to arrest crack growth. However the optimum location and size of the holes
need to be researched to produce the smallest crack tip plastic strain range, i.e. the
best fatigue crack growth life, and to have the least reduction in ratchet limit.

The geometrical shape and cyclic loading history of the centre cracked plate with
symmetric drilled holes are shown in Fig. 5, where the half-crack length a is 500 mm
and the ratios W/a and L/a are both 2. The hole locations (X0, Y0) are referred to
a co-ordinate system X, Y , the origin of which is located at the crack tip. The centre
cracked plate is subjected to cyclic reversed bending moment with range �M and
constant uniaxial tension σ̄p . By applying symmetry conditions, a FE half symmetry
model was adopted (Fig. 6).

Figure 7 presents the calculated lower and upper ratchet limit and limit load in-
teraction diagram for the hole location at X/a = −1, Y/a = 0.3 and the diameter
of hole D = 100 mm, where the applied constant pressure in X-axis is normalized
with respect to the reference uniaxial tension σ̄po = 100 MPa, while the ampli-
tude of the reversed bending moment in Y -axis is normalized using the reference
bending moment range �M0 = 100 N mm. It can be seen that the ratchet limit and
the limit load curves do not coincide, which means that an increase in the loads
beyond the ratchet limit will not automatically cause plastic collapse. Any combi-
nation of loads which lies between these two boundaries will result in ratchetting.
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Fig. 6 FE half symmetry
model for centre cracked
plate with symmetric holes

Fig. 7 Ratchet limit and limit
load interaction curve with
hole location at X

a
= −0.1,

Y
a

= 0.3 (D = 100 mm)

As shown in Fig. 7, the accuracy of the lower and upper bound limit load boundary
obtained by the LMM has been verified by ABAQUS RIKS analysis. For the verifi-
cation of LMM lower and upper bound ratchet limit boundary the cyclic load points
D (�M = 1.6�M0, σ̄p = σ̄p0), and E (�M = 1.6�M0, σ̄p = 1.1σ̄p0), which are
just below and above the calculated upper bound ratchet limit boundary (Fig. 7),
respectively, are chosen for the step-by-step analysis in ABAQUS.

Figure 8 shows the plastic strain history at the crack tip for the cyclic loading D

and E calculated by ABAQUS step-by-step analysis. The calculated plastic strain
for the load case D settles to a stable cycle after about 5 load cycles showing a
reverse plasticity mechanism, and the load case E shows a strong ratchetting mech-
anism, with the plastic strain increasing at every cycle. This directly confirms the
accuracy of the predicted LMM lower and upper bound ratchet limits.

Optimization studies were performed further involving holes with different di-
ameters drilled at different locations. The study shown that the most significant
decrease in crack tip plastic strain range with least reduction in the ratchet limit
is identified for the hole size D = 150 mm at the optimum location X0/a = −0.1,
Y0/a = 0.3, which gives a 72 % reduction in the plastic strain range and does not
reduce the ratchet limit.
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Fig. 8 ABAQUS verification
of the ratchet limit for the
cyclic bending moment case
using detailed step by step
analysis

Fig. 9 Geometrical and analysis parameters of the cruciform weld specimens: (a) dimensions and
applied loading; (b) FE-mesh with designation of different materials, boundary conditions and
mechanical loading

A full discussion of the solutions is given by [30]. This example demonstrates
that the method is capable of providing accurate solutions to the crack structures.

7.3 Creep-Fatigue Analysis of a Cruciform Weldment

The LMM has been extended recently to directly evaluate steady-state cyclic re-
sponse of components with creep fatigue interaction taking into consideration,
which is able to generate both the closed and non-closed hysteresis loops, providing
details of creep strain and plastic strain range for creep and fatigue damage assess-
ments. This example shows a practical application of this method on a cruciform
weldment subjected to cyclic bending moment under creep condition.

Figure 9 describes the geometry of the weldment specimen and the applied
2D symmetric FE model of the specimen assuming a plane strain condition.
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Fig. 10 Results of creep-fatigue assessment in application to cruciform weldment and comparison
with experiments [31, 32]

A Ramberg-Osgood formulation was adopted to simulate cyclic stress strain re-
lationship, and a time hardening creep constitutive model was used to characterise
creep behaviour. In this creep fatigue damage assessment, the LMM was adopted to
evaluate a steady-state cyclic behaviour and to construct a saturated hysteresis loop.
Then obtained total strain range during the cycle was used to assess fatigue damage
combining R6 fatigue endurance curves [31]. The evaluated creep strain and stress
relaxation data were adopted to evaluate creep damage considering time fraction
rule and using the experimental creep rupture data. The final lifetime of the cruci-
form weldment was then obtained based on the calculated fatigue and creep damage
under creep-fatigue interaction conditions.

The detailed results of cruciform weldment creep fatigue assessment by the
LMM and comparisons with experimental solutions [32] are presented in Fig. 10.
Visual comparison of the observed and predicted in Fig. 10 for 3 variants of dwell
period �t shows that 9 of the 11 simulations accurately predict the experimen-
tal results. Therefore, it can be used for the formulation of an analytic assessment
model suitable for the fast estimation of lifetime for a variety of loading con-
ditions. The low computational effort required by the LMM compared to other
computational techniques makes it possible and relatively easy to extrapolate nu-
merical predictions for loading conditions not captured by the available experi-
ments.

A full discussion of the solutions and validations with experimental results are
given by Gorash and Chen [33]. This example demonstrates that, for such complex
industrial problems, the LMM is capable of providing lifetime related solutions that
are much more illuminating than conventional analysis.
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Fig. 11 Other applications (a) a heat exchanger tube plane (b) rolling contact problem (c) 90 pipe
bends (d) composite cylinder with a crosshole
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8 Other Applications

The stable and accurate results of the mentioned LMM on shakedown and ratchet
analysis have been confirmed in many industrial applications, including the prob-
lem of a heat exchanger tube plate subjected to severe cyclic thermal loading and
constant operating pressure (Fig. 11(a)) [8], the application to rolling contact prob-
lem (Fig. 11(b)) [34], shakedown and limit analysis of 90 pipe bends under internal
pressure, cyclic in-plane bending and cyclic thermal loading (Fig. 11(c)) [35], and
the shakedown analysis of a composite cylinder with a cross hole (Fig. 11(d)) [36]
and etc.

9 Conclusions

This study focuses on the performance of an elastic plastic body subjected to cyclic
loading. The design limits in plasticity and creep including shakedown limit, ratchet
limit, cyclic response under creep-fatigue interaction and plastic strain range re-
garding the fatigue crack initiation have been addressed in this study. The analysis
is performed by describing the steady cyclic state employing a general cyclic min-
imum theorem. In order to estimate the class of kinematically allowable strain rate
histories, the Linear Matching Method is used for obtaining the minimum of the
functional for these design limits. Three practical examples of the LMM are pro-
vided to confirm the efficiency and effectiveness of the method and demonstrate
that the LMM may be applied to a much wider range of circumstances than have
hitherto been possible.
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