
Chapter 18
Accurate Spectral Estimation
of Non-periodic Signals Based
on Compressive Sensing
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Abstract In this work we propose a method based on compressive sensing (CS)
for estimating the spectrum of a signal written as a linear combination of a small
number of sinusoids. In practice one deals with signals with finite-length and so
the Fourier coefficients are not exactly sparse. Due to the leakage effect in the case
where the frequency is not a multiple of the fundamental frequency of the DFT, the
success of the traditional CS algorithms is limited. To overcome this problem our
algorithm transform the DFT basis into a frame with a larger number of vectors, by
inserting a small number of columns between some of the initial ones. The
algorithm takes advantage of the compactness of the interpolation function that
results from the ‘1 norm minimization of the Basis Pursuit (BP) and is based on the
compressive sensing theory that allows us to acquire and represent sparse and
compressible signals, using a much lower sampling rate than the Nyquist rate. Our
method allow us to estimate the sinusoids amplitude, phase and frequency.
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18.1 Introduction

The compressive sensing (CS) theory allows us to recover, sparse or compressible
signals, from a number of measurements M, much smaller than the length N of the
signal. Instead of acquiring N samples, compute all the transform coefficients,
discard the small ðN � KÞ and then encode the largest K, we can acquire a number
of random mixtures M proportional to the sparsity K. In CS we acquire and
compress the signal in one step.

The samples are obtained projecting x on a set of M vectors fUig 2 R
N, that are

independent of the signal, with which we can build the measurement matrix
U 2 R

M�N, with M\N. In matrix notation, the measurement vector y ¼ Ux.
To reconstruct the K-sparse signal x, we search for the sparsest coefficient

vector x, solving the problem:

ðP0Þ : min kxk0 : y ¼ Ux; ð18:1Þ

where kxk0 is the number of nonzero entries. This problem is combinatorial, and
so, to avoid this difficult we must use other approach. Since the matrix U is rank
deficient, and so it loses information, one can think the problem is impossible, but
it can be shown that if the matrix obeys the Restricted Isometry Property (RIP), we
can recover x exactly by solving the convex problem, which is the convex
relaxation of (P0) [1, 2]:

ðP1Þ : min kxk1 : y ¼ Ux; ð18:2Þ

where kxk1 ¼ Rjxij.
Essentially, the RIP requires that every set of less than K columns, approxi-

mately behaves like an orthonormal system. More precisely, let UT ,
T � f1; � � � ;Ng, be the M � jT j submatrix consisting of the columns indexed by T .
The K-restricted isometry constant dK of U is the smallest quantity such that

ð1� dKÞkxk2�kUT xk2�ð1þ dKÞkxk2 ð18:3Þ

for all the subset T � N, with jTj �K and coefficient sequences ðxjÞ; j 2 T .
To check if a given matrix U satisfies the RIP is a difficult task. Fortunately, it

can be shown that matrices with random entries drawn from certain probability
distributions will have the RIP with high probability [1].

The signal x, which is K-sparse or compressible, can be recovered by solving
the indeterminate system y ¼ Ux, by (P1), from only M�CK logðN=KÞ samples,
particularly with matrices U, with Gaussian entries [3].

The problem (P1) cannot be solved analytically, but can be reformulated as a
linear programming problem when the data is real, and as a second order cone
problem when the data is complex [4, 5]. In the complex case, kxk1 is neither a
linear nor a quadratic function of the real and imaginary components, and cannot

be reformulated as one: k x k1 ¼
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðxiÞ2 þ IðxiÞ2
q

In this case, the problem
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can be reformulated into second order cone programming, (SOCP), and solved
with algorithms implemented in the framework of Interior Point Methods, for
example using the CVX algorithm [6].

If a signal x can be written as a linear combination of K sinusoids, the signal
presents few non-zero spectral lines in the classical Fourier Transform sense, that
is, it is K-sparse in the frequency domain. However, in practical applications,
because we use finite N-length signals, the signal is sparse only if the frequencies
are multiples of the fundamental frequency 2p

N . Leakage limits the success of the
traditional CS algorithms. Here, we propose an iterative algorithm which find a
first approximate location of a sinusoid and then refine the sampling in frequency
around the neighborhood of this sinusoid up to a required precision. If several
sinusoids have to be found, the procedure iterate as many times as needed this
locale refinement.

The idea comes from the dual problem of fractional time-delay estimation, as
studied in the work of Fuchs and Deylon [7]: the true value of the frequency can
be obtained by BP between frequencies values having the higher values.

18.2 Spectral Estimation with Compressive Sensing

Consider W 2 C
N�N as the inverse of the DFT matrix. Then, if x is a time domain

discrete signal with length N, the DFT of x will be s ¼ W�1x. If x is observed using
random measurements, we have y ¼ Ux, and we can write the problem (P1), from
the Eq. (18.2):

min ksk1 : y ¼ UWs ¼ Hs; ð18:4Þ

The CS theory ensures that a signal that is sparse or compressible in the basis W
can be reconstructed from M ¼ OðK logðNKÞÞ linear projections onto a basis U that
is incoherent with the first, solving the problem (P1) using the Eq. (18.4), [8, 9].
Random matrices are largely incoherent with any fixed basis [10].

If x contains only sinusoids with frequencies multiples of 2p
N rad, then s will be a

sparse signal. Otherwise, s will be not sparse. If we apply the CS to solve this
problem, the recovered signal s will not be sparse, as we can see in the example
depicted in Fig. 18.1. The error is 0:5986 and even if we increase the number of
measurements, the error remains large, having a value of 0:4368 for M ¼ 80 and a
value of 0:2892 for M ¼ 150. Since the signal is not sparse we will need more
measurements to get a better result.

This comes from the fact that no column vector in the matrix W has a frequency
matching one of the frequencies present in the signal. The first idea is to expand
the matrix W, so that each frequency present in the signal is represented by a
column. We would have a redundant frame instead of the orthogonal basis of the
DFT. By increasing the frame size, signals with frequencies that are not multiples
of the fundamental frequency of the DFT become more compressible, resulting
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into a recovery performance improvement, but in return, the frame becomes
increasingly coherent, which leads to a decrease in performance recovery. So the
idea was to add only a small number of columns. If we know between which
columns of the W matrix, are the frequencies that are not multiples of the fun-
damental frequency, we can add columns to the matrix W, only in that interval, but
in CS we only have access to the signal y.

18.2.1 Problem of Fractional Time-Delay Estimation

The dual problem of the fractional frequency spectral estimate is the fractional
time-delay estimation. Fuchs and Deylon, in [11], presented an analytical
expression of the minimal ‘1-norm interpolation function which is independent of
the signal, to solve the problem to get an estimate of the delay s, having a
bandlimited signal xðtÞ, with a maximal sampling period h ¼ 1, which is given by
yðtÞ ¼ xðt � sÞ. One possibility is to seek the values sn in

yðtÞ ¼ xðt � sÞ ¼
X

n

xðt � nhÞsn:

An estimation of the delay s is determined from the maximum location of the
interpolating function which is given by
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Fig. 18.1 Spectrum of a signal with length N=1,024 composed of three sinusoids that are not
multiple of the fundamental frequency of the DFT, using the DFT and the CS using M ¼ 50
measurements
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wðtÞ ¼
X

k� 0

bk
/ðjtj � kÞ
jtj ; jtj 2 ½k; k þ 1

l
�;

with

/ðxÞ ¼ 1

CðxÞCð1l � xÞ
; x 2 ½0; 1

l
�;

bk ¼ ð�1Þk
Cðk þ 1

lÞ
Cðk þ 1Þ ;

where C is the standard gamma function. This reconstruction function is very
localised and as the oversampling factor, l, increases more localised it will be,
unlike what happens with the sinc function, which keeps the width of the main
lobe, as one can see in Fig. 18.2.

Since the minimal ‘1- norm reconstruction function is quite localised, the sn

values can be obtained by solving the minimal ‘1-norm problem

min ksnk1 : yðtÞ ¼
X

n

xðt � nhÞsn; h\1;

which is the BP.
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Fig. 18.2 ‘1-norm interpolating function with oversampling factors l ¼ 2 and l ¼ 5, compared
with the sinc function
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The problem we are dealing with is the dual of the problem studied by these
authors. If we have a signal with a frequency fi, which is a multiple of the
fundamental frequency of the DFT, we know that the DFT of the signal has a
maximum in the position of this frequency.

Looking to the frequency of the signal as the dual of the delay, the interpolating
function will have a maximum exactly in the same place, independently of the
considered l value. If we have a signal with a frequency fi, which is not multiple of
the DFT fundamental frequency, the signal is not sparse, therefore there are no
maximums. However, the interpolating function will have a maximum in
the position of the frequency, regardless of the amount of l which is considered. If the
signal has two frequencies that are not multiples of the fundamental frequency, the
interpolating function has two maximums, both between the values of the fre-
quencies with higher values obtained by BP. See the example depicted in Fig. 18.3.

Thus, one possible solution to our problem of knowing where the frequencies
are, is to apply the BP. Each of the frequencies in question, will be between the
position of the two frequencies multiple of the fundamental frequency, where BP
obtains maximum values.

If the frequencies are very close, a greater value of l must be used in order to
discover them. See Fig. 18.4.

The proposed algorithm starts by finding the first interval where BP obtains
maximum values. After that, we add columns among those corresponding to the
endpoints of the interval. Then, we choose the column position where is
the maximum value between the added columns, which is an estimation for the
position of the desired frequency. Therefore, to determine the approximated value
of another frequency, we expand the original matrix by adding that column. Then,
by applying again the BP we find another interval and we repeat the same
procedure.
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Fig. 18.3 Minimal l1 norm
using BP and using the l1
interpolating function
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This algorithm can be easily extended for more frequencies as shown in the
next section.

18.2.2 Proposed algorithm

We begin by calculating ŝ, which is the approximate value of s, solving the
minimisation ‘1-norm problem:

‘1 : min ksk1 : y ¼ Hs: ð18:5Þ

Then:

1. We will calculate the argmax of ŝ, smax;
2. The interval ½smax � 1; smax� or ½smax; smax þ 1� is chosen as the image nearest to

smax. Let’s call this interval [a,b];
3. We will add columns between the two extremes that correspond to the interval

considered in the previous point:

I :¼ 0
while (I\ Nmaxpoint and e[ error threshold)
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Fig. 18.4 Minimal l1 norm using BP and using the interpolating function with frequencies very
close, using two values of l
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a. I :¼ I þ 1
b. We will consider matrix W1, adding I columns to W. The I frequencies of

columns to add are given by: ðaþ ð1 : IÞ=ðI þ 1ÞÞ � 1.
c. We will calculate the ŝ values solving the problem 18.5 and considering the

matrix W1;
d. We will calculate the argmax of ŝ, only in the interval ½a; b�, which contain

the I added columns;
e. We will consider a new matrix, W2, from W, where in the interval ½a; b� is

added the column which corresponds to the argmax of the values obtained
in the previous point;

f. We will calculate the ŝ values, using the matrix W2;
g. We compute the value of e

4. W ¼ W2

5. We will repeat the steps from 1. to 4. as many times as the sparsity of the signal.

In the end we calculate the value x̂ ¼ Wŝ.

In this algorithm, we use the standard error, given by erro ¼ kx�x̂k
kxk . The stopping

criterion in the reconstruction of the approximate value for each frequency, e, i.e, the
criteria used to stop adding columns in the range ½a; b� is given by the difference
between the errors obtained in two consecutive iterations. In each iteration the error
is given by the sum of absolute values of ŝ excluding the K higher values, with K the
value of sparsity. If in the interval ½a; b�, on the step 3f., we add the column corre-
sponding to the frequency of the sinusoid, this error is very small [10].

18.3 Experimental Results

In our experiments we use signals of length N ¼ 1; 024 samples and all the signals
contain real-value sinusoids, with random frequencies. The amplitudes of each
frequency is 1 except in the experiment III.

18.3.1 Experiment I

In our first experiment, we apply the proposed algorithm to a signal containing
three real-value sinusoids, K ¼ 6, using M ¼ 100 measurements. Therefore we
can reconstruct the signal with an error of 0.0268, which had an initial error of
0.5275, see Fig. 18.5.

As shown in Fig. 18.6, the error decreases exponentially as we add columns in
the interval, so we can initialise the number of adding columns, step 1. of the
proposed algorithm, with a greater value than I ¼ 1. In our experiments we
initialised with I ¼ 650.
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18.3.2 Experiment II

Our second experiment compares the performance of the proposed algorithm for
signals with one, two and three frequencies. We verify that the number of mea-
surements we need for the same performance increases with the sparseness of the
signal. See Fig. 18.7.
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Fig. 18.5 The approximate value of s, first using CVX to solve the BP, and then with the
proposed algorithm in the first, second and third frequencies
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18.3.3 Experiment III

This experiment shows the behaviour of the proposed algorithm, when the
amplitudes of the signal frequencies are different. Figure 18.8 presents the result of
the signal recovery using our algorithm for a signal composed by three random
frequencies with amplitudes 1, 0.01 and 0.05. The proposed algorithm performs
better for different amplitudes, than Thresholding based algorithms, like Spectral
Iterative Hard Thresholding (SIHT) proposed by M. Duarte and et al. in [12], since
the Thresholding algorithms consider, in each iteration, only the K largest spectral
components, removing the others. With this approach, the smallest frequencies can
be discarded.
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Fig. 18.7 Performance of CS
signal recovery with the
proposed algorithm for
signals with one, two, three
and four frequencies which
correspond to K ¼ 2, K ¼ 4
and K ¼ 6 respectively. All
quantities are averaged over
400 independent trials
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18.3.4 Experiment IV

Our fourth experiment tests the robustness of the proposed algorithm to additive
noise in the measurements of a signal written as a linear combination of two and
three sinusoids. The error was evaluated for ten signal to noise ratios (SNR) and
the results are depicted in Fig. 18.9. As we can see, the proposed algorithm
performs quite well.

18.3.5 Experiment V

This experiment compares the performance of the proposed algorithm with two of
the algorithms proposed by M. Duarte and et al. in [3], which they called by
Spectral CS (SCS), Spectral Iterative Hard Thresholding (SIHT) using a heuristic
approximation and a Line Spectral Estimation (Root Music). See Fig. 18.10.

For the SIHT, the authors use an over-sampled DFT frame and a coherent-
inhibiting structured signal model, that inhibits closely spaced sinusoids, and the
classical sinusoid parameter estimation algorithm, periodogram. In our algorithm
we do not need to impose a model based, to inhibit the coherence of the frame,
because our interpolating function is very localised.
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Fig. 18.9 Performance of
signal recovery using the
proposed algorithm for a
signal composed by two and
three different frequencies
with 150 noisy
measurements. All quantities
are averaged over 100
independent trials
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18.3.6 Experiment VI

Our last experiment shows how the proposed algorithm behaves for two close
frequencies and compares its performance with the performance of the SIHT and
the Root Music algorithms. We have considered a fixed frequency, f1 and a second
frequency, f2 ¼ f1 þ d, where d ¼ ½0:1 : 0:1 : 1; 1:25 : 0:25 : 5:5�. As shown in
Fig. 18.11, our algorithm presents a better performance than the others.

Note that, although the errors are small for delta values smaller than 1, the
frequencies values can be very different from the correct ones, as we can see in
Table 18.1
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Fig. 18.10 Performance of
signal recovery using the
proposed algorithm, using the
SIHT implemented via
heuristic algorithm and using
the Root Music algorithm. All
quantities are averaged over
400 independent trials
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The results of the proposed algorithm were as it was expected, since the
minimal ‘1-norm interpolation function is very localised, unlike the minimal
‘2-norm interpolation function - the sinc function, as one can see in Fig. 18.12.

18.4 Conclusion

We have developed a new algorithm to estimate the spectral components in the
case of sparse finite-length signals. The algorithm uses a redundant frame, trans-
forming the DFT basis into a frame with a larger number of vectors, by inserting

Table 18.1 Recovered values obtained with the proposed algorithm, the Root Music algorithm
and the siht algorithm, using the fixed frequency f1 and f2 ¼ f1 þ d
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Fig. 18.12 Minimal ‘1-norm
using BP and using the
interpolating function with an
over sampling factor of l ¼ 9.
The dotted curve is the
minimal ‘2-norm
interpolating function: the
sinc function
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columns between some of the initial ones. The frame has a maximum of N þ K
vectors, with K the sparsity of the signal.

From the results can be seen that the proposed algorithm can recover the sparse
signals with an error smaller than 0:001, even for a signal with K ¼ 6.

Furthermore, it presents a good performance in the presence of noise. In
addition to this, it can deal with signals where the frequency amplitudes are very
different, overcoming other algorithms in this field. Moreover, the proposed
algorithm performs better than others that we have compared for the same signal
while using the same number of measurements.
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