
Chapter 17
Analysis of Metallic Plume Image
Characteristics During High Power
Disk Laser Welding

Xiangdong Gao, Runlin Wang, Yingying Liu and Yongchen Yang

Abstract Metallic plume is an important phenomenon during high power disk
laser deep-penetration welding, which can reflect the welding quality. To study
this laser-induced plume characteristics and its relation to welding quality, an
extraviolet and visible sensitive high speed color camera was used to capture the
metallic plumes in a high-power disk laser bead on plate deep-penetration welding
of Type 304 austenitic stainless steel plates at a continuous laser power of 10 kW.
These captured digital images were firstly processed in RGB color spaces, and
then were transferred to the Hue-Saturation-Intensity (HSI) color spaces from the
RGB color spaces. The area of metallic plume was segmented and defined as
the plume eigenvalue. The fluctuation of weld bead width was used to evaluate the
welding stability. To monitor the plume behavior, a short-time Fourier transform
was applied to obtain the time–frequency characteristics of plume images. Also,
the hierarchical clustering was analyzed for the time–frequency characteristics of
plume images. The results of hierarchical clustering showed there existed rela-
tionship between the metallic plume area and welding quality, and the fitting curve
of clustering could reflect the fluctuation trend of the weld bead width effectively.

Keywords Disk laser welding � Hierarchical clustering � Image characteristics �
Metallic plume image � Short-time Fourier transform � Time–frequency analysis

X. Gao (&) � R. Wang � Y. Liu � Y. Yang
School of Electromechanical Engineering, Guangdong University of Technology,
510006 Guangzhou, China
e-mail: gaoxd666@126.com

R. Wang
e-mail: xdgao@hotmail.com

Y. Liu
e-mail: liu15045105965@126.com

Y. Yang
e-mail: gaoxd@gdut.edu.cn

H. K. Kim et al. (eds.), IAENG Transactions on Engineering Technologies,
Lecture Notes in Electrical Engineering 247, DOI: 10.1007/978-94-007-6818-5_17,
� Springer Science+Business Media Dordrecht 2014

225



17.1 Introduction

High power disk laser welding is a competitive welding method and is well known
for its high welding speed, good welding quality and deep penetration. In recent
years, the disk laser welding has been widely used in automotive production and
electronic industry. During a high power disk laser welding, a metallic plume
mixture is generated quickly from the surface of the welded material. This plume
mainly consists of the metal vapor and is one of the most important phenomenon
which can be used to monitor the laser welding quality. Research works have
shown that the metallic plume has negative effects on the energy transference
efficiency of the laser beam and the welding quality [1, 2]. There exists an internal
relationship between the plume characteristics and the welding status. To monitor
and control the welding quality in real-time, it is necessary to investigate the
metallic plume characteristics and its influences upon the weld quality.

In recent years, some researches such as spectroscopy, photoelectric signal
processing, acoustic signal processing, vision methods, and so on were performed
to study the dynamic behaviors of the metallic plume [3–6]. The holographic
interferometry was applied to study the laser-induced plume [7]. The Fourier
transform was used to analyze the acoustic signal of metal vapor and the time–
frequency was applied to study the plasma characteristics [8, 9]. These study
results showed that the density and the size of the plasma were related to the laser
power and beam focus position. There were relations between the metallic plume
and the weld quality. However, it is still difficult to find the exact relationship
between the characteristics of metallic plume and the weld quality.

In order to obtain more detailed dynamic information about metallic plume, the
high-speed photography was used to record the color images of metallic plume in a
high power disk laser welding process. High-speed photography is an effective
method and is widely used in the welding process, it can accurately capture and
monitor the instant information of metallic plume. The important characteristic
features of plumes could be extracted from these color images [10, 11]. Usually,
the more energy a weldment absorbs, the bigger the metallic plume is. Here, the
metallic plume area was used as the characteristic parameters, and the short-time
Fourier transform was applied to the area of metallic plume to obtain the time–
frequency characteristics of plume. Also, the hierarchical clustering was used to
analyze the plume characteristics and finally the clustering curves of metallic
plume area were plotted. Welding experimental results showed that in a definite
parameter combination, the 6th fitting curves of the metallic plume area frequency
characteristic clustering could effectively reflect the fluctuation trend of the weld
bead width.
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17.2 Experimental Apparatus and Plume Characteristic
Extraction

17.2.1 Experimental Apparatus

The schematic of a disk laser welding experimental apparatus is shown in
Fig. 17.1. The experimental system consisted of a TruDisk-10003 disk laser
welding equipment (laser power 10 kW), a Motoman 6-axis robot and a welding
experimental platform equipped with shielding gas (argon), servo motors and
fixing devices. An extraviolet and visible sensitive high speed color camera was
used to capture the metallic plume dynamic color images during a 10 kW high-
power bead-on-plate disk laser welding. The welding conditions are listed in
Table 17.1

17.2.2 Extraction of Plume Characteristics in RGB Space

The high-speed camera collected 2,400 frames RGB image of the metallic plume
within 1.2 s, and each frame image corresponded to a welding status. The top view
of a welded specimen is shown in Fig. 17.2. It can be seen that the middle part of

TruDisk-10003

Shielding gas

CameraComputer

Weldment

Laser head

RobotFig. 17.1 Experimental
apparatus of high power disk
laser welding

Table 17.1 Welding
experimental conditions

Welding apparatus TruDisk-10003

Laser power 10 kW
Spot diameter 480 lm
Laser wavelength 1,030 nm
Welding speed 4.5 m/min
Camera speed 2,000 frame/s
Image resolution 512 9 512 pixel
Size of weldment 150 9 100 9 10 mm
Weldment Type 304 austenitic stainless steel
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the weld seam is narrow and has poor quality. This region corresponded to
1,066–1,333 frame images. The captured plume images from 481 to 2,400 frames
were processed to study their characteristics. An original metallic plume color
image is shown in Fig. 17.3. It can be seen that the captured image includes the
information of metallic spatters, metallic plume and molten pool.

When the disk laser beam focused on a weldment, the laser energy was
transfered to the surface of weldment, the weldment melted immediately and the
metallic plume emerged. The area of metallic plume could reflect the absorptivity
of laser energy which reflected the welding quality. Thus, the metallic plume area
could be used as a characteristic parameter. In order to extract the plume char-
acteristics accurately and reduce calculation, metallic plume were tailored from an
original color image. The tailored RGB image is shown in Fig. 17.4.

The tailored plume image was turned to gray scale image. Due to random
interference signals in the welding, there were a lot of noises in the image when it
was recorded, the filtering was used to eliminate these noises. Commonly used
filtering methods are frequency filtering and spatial filtering. This experiment used
the spatial filtering to deal with the noises. Spatial filtering can be divided into
linear filtering and nonlinear filtering. Linear filtering is also called as mean fil-
tering, and is a low pass filter. Because the profile of image edge contains a lot of
high frequency information, so the boundary of image becomes fuzzy by using the
mean filtering eliminating the noises. Boundary is one of the most basic image
features and often carries much image information that is of great importance in
analyzing, describing and understanding an image.

Weld bead width
Image processing region

Fig. 17.2 Top view of a welded specimen of high-power disk laser welding

Metallic plume

Metallic spatters

Molten pool

Fig. 17.3 Original metallic
plume color image
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Wiener filtering and Median filtering are commonly used for nonlinear filtering
and they can not only filter all kinds of noises, but also protect the boundary
information such as edge and sharp corner. Wiener filtering characterized by the
feature of good recovery effect, low computation and good performance of noise
reduction, are widely used in image recovery. Wiener filtering was used in this
experiment. The experiment applied a group of filtering windows to conduct the
Wiener filtering processing, and the results are shown in Fig. 17.5. It is observed
from Fig. 17.5 that the filtering effect of 35 9 35 filtering window is best. It also
can be seen from Fig. 17.5c that the noises such as spatter, halo and so on were
filtered by Wiener filtering, the edge information was protected and the images
were clear.

Image segmentation is of importance in image processing. The accuracy of
image segmentation has a direct influence on the subsequent image refining and
recognition results. Image segmentation is based on the edge, shape, gray value
and position to divide an image into different kinds of regions, and separates the
target image from background. The commonly used method of image segmenta-
tion is threshold segmentation such as image binarization. When the gray scale of
target is greatly different from background and the layers of image are clear,
threshold segmentation can better detect the target. Threshold segmentation can
not only compress the data quantity, but also simplify the analysis and processing
steps. Therefore, in many cases, it is an indispensable image preprocessing pro-
cess, feature extraction and pattern recognition. Threshold segmentation method
principle can be described as follows. Lets an original grayscale image is f(x,y),
then a gray value T of original grayscale image f(x,y) can be found with some
certain criteria to divide image into two parts. The divided binary image is given
by

gðx; yÞ ¼ a f ðx; yÞ� T
b f ðx; yÞ\T

�
ð17:1Þ

Fig. 17.4 Tailored RGB
image of metallic plume
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The image belonging to different target region is defined by threshold value, so
the selection of optimal threshold T is the key for deciding the effect of threshold
segmentation. If the threshold value is too high, overmuch target points are
classified as the background falsely. If the threshold value is too low, the opposite
situation appears. Commonly used threshold selection method is P—tile method,
Otsu method, average gray method, the waterline threshold method, the maximum
entropy method and fuzzy set method and so on. Owing to the complex algorithm,
the latest methods like the maximum entropy method and fuzzy set method are not
applicable to this experiment. P—tile method, Otsu method, average gray method
and the waterline threshold method are applied and the results are shown in
Fig. 17.6. It can be observed from Fig. 17.6 that the size and morphology of the
metallic plume is the same with the Otsu image and it could meet the computing
requirement. After image segmentation, there were a lot of spatters in some
metallic plume images, and this would influence the extraction of plume charac-
teristics, so the image areas with less than 200 pixels were deleted and the final
metallic plume images could be obtained.

Fig. 17.5 Effect diagram of Wiener filter. a 15 9 15 filtering window. b 25 9 25 filtering
window. c 35 9 35 filtering window. d 45 9 45 filtering window. e 55 9 55 filtering window.
f 65 9 65 filtering window
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17.2.3 Extraction of Plume Characteristics in HSI Space

Color space has many description including RGB color spaces, HIS color space
plays an important role in image analysis. HSI color space uses the hue, saturation
and intensity to describe colors which have a better performance in scenery
cognitive than RGB color spaces. Here we used HSI method to process the plume
images. An original RGB image of metallic plume shown in Fig. 17.4 was tai-
lored. Then this tailored RGB image of metallic plume was converted to the HSI
image and is shown in Fig. 17.7. Respectively, H component, S component and
I component could be obtained from the mathematical formulas. H component is
given by

H ¼ h if B�G
360� h if B [ G

�
ð17:2Þ

Fig. 17.6 Image segmentation of laser-induced metallic plumes. a Average gray method. b P—
tile method. c Waterline threshold method. d Otsu method

Fig. 17.7 HSI image of
metallic plume

17 Analysis of Metallic Plume Image Characteristics 231



where

h ¼ arccos
1
2 ½ðR� GÞ þ ðR� BÞ�

½ðR� GÞ2 þ ðR� BÞðG� BÞ�1=2

( )
ð17:3Þ

S component is given by

S ¼ 1� 3
ðRþ Gþ BÞ ½minðR;G;BÞ� ð17:4Þ

I component is given by

I ¼ 1
3
ðR;G;BÞ ð17:5Þ

where R; G; B are three components of RGB color spaces.
H component image, S component image and I component image are shown in

Fig. 17.8. The central part of metallic plume absorbs more laser energy and has a
key influence on laser beam and welding. H component reflects the central part of
metallic plume which can be used to extract the plume characteristics. In the
H component image, the body of metallic plume is obviously different from black
background. The Otsu threshold segmentation was used to segment the metallic
plume. Setting global threshold 200 could remove the white spots and the metallic
plume was segmented. It can be observed that the segmented metallic plume
contains several small black holes. Through filling these holes, the final metallic
plume is achieved. The image processing procedure of metallic plume is shown in
Fig. 17.9. The plume area of whole metallic plume images were calculated, as
shown in Fig. 17.10.

The metallic plume area was used to study the plume characteristics. In this
experiment, the image processing methods of both RGB spaces and HSI spaces
were available, and from the curves it is difficult to find there existed the obvious
fluctuations of metallic plume area. Therefore, we considered applying the

Fig. 17.8 a H component image. b S component image and c I component image of metallic
plume
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methods of short-time Fourier transform and hierarchical clustering to investigate
the plume characteristics in HSI color spaces.

17.3 Short-Time Fourier Transform

17.3.1 Concept of Short-Time Fourier Transform

Short-time Fourier transform (STFT) can not only reflect the time-domain feature of
signals, but also present the spectrum of signals clearly. Its basic idea is that the
signal to be transformed is multiplied by a limited window function before the
Fourier transform is applied, and this window function is nonzero for only a short
period of time. This window slides along the time axis, resulting in a two-dimen-
sional representation of the signal. This can be mathematically written as [12]

Fig. 17.9 Schematic diagram of metallic plume image processing. a Binary image. b Segmented
image. c Final image
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Fig. 17.10 Curves of
metallic plume area with
Image sequences
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STFTZðt; f Þ ¼
Z 1
�1

zðtÞg�ðt � t0Þe�j2pftdt ð17:6Þ

where zðtÞ is the signal to be transformed and g�ðt � t0Þ is the window function
around t0: Through zðtÞg�ðt � t0Þ; the signal around t0 is obtained and the short-time
Fourier transform is just the Fourier transform of zðtÞg�ðt � t0Þ:

17.3.2 Window Function

The frequently-used window functions are Rectangular window, Gauss window,
Hanning window, Hamming window, Blackman window, Triangle window,
Cosine slope window, Index window and Bartlett-Hanning window. In welding
experiment, Gauss window, Hanning window, Hamming window and Bartlett-
Hanning window were applied to the short-time Fourier transform.

Suppose xðnÞ is the signal sequence and wðnÞ is a window function whose
length is N. The expression of the Gauss window is

wðnÞ ¼ e�
1
2ð

n�ðN�1Þ=2
rðN�1Þ=2 Þ

2

ð17:7Þ

where r B 0.5.
The expression of the Hanning window is

wðnÞ ¼ 0:5� 1� cos
2pn

N � 1

� �� �
ð17:8Þ

The expression of the Hamming window is

wðnÞ ¼ 0:53� 0:46 cos
2pn

N � 1

� �
ð17:9Þ

The expression of the Bartlett-Hanning window is

wðnÞ ¼ 0:42� 0:5 cos
2pn

N � 1

� �
þ 0:08 cos

4pn

N � 1

� �
ð17:10Þ

In order to improve the temporal resolution of short-time Fourier transform, the
length of window function should be as short as possible. At the same time, in
order to get a higher frequency resolution, the length of the window should be as
long as possible. In practical application, the length of the window function should
be adapted to the length of signal local smooth length [13]. In laser welding
experiment, the numerical values of length were set to be 64, 128, 256,
respectively.
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17.3.3 Analysis of Short-Time Fourier Transform

In short-time Fourier transform, the different window types, different window
length and different step length were chosen. The detailed combination parameters
are listed in Table 17.2.

Using the short-time Fourier transform, 4 9 3 9 3 = 36 groups of data were
obtained, in which the numbers of window types, length, step length were 4, 3, 3,
respectively. Taking a group of data for example, the parameters were Gauss, 64,
10. The window length was 64 and it slid along the time axis 186 times during the
short-time Fourier transform, so this group of data was a matrix whose size was
64 9 186. Figure 17.11 is a 3-D map of time–frequency information and
Fig. 17.12 is the contour map of time–frequency.

As mentioned above, the image sequence 1,066–1,333 frames corresponded to
the middle part of the weld bead. This region of weld bead was narrow and had
poor quality. Observing Figs. 17.11 and 17.12, there were not obvious charac-
teristics of 1,066–1,333 frames. For further study, the 50th, 70th, 110th frequency
curves were extracted to analyze their characteristics. These three groups of data
corresponded to three vertical lines, shown in Fig. 17.12. Figure 17.13 shows
these three frequency curves.

To distinguish these three frequency curves more effectively, their numerical
values of average, maximum, minimum, range, interquartile range (IQR), standard
deviation and sum were calculated. The range was what the biggest number minus
the smallest number. The IQR is the distance between the 75th percentile and the
25th percentile. The expression of standard deviation is

Table 17.2 Combination
parameters of short-time
Fourier transform

Window types Gauss, Hanning, Hamming,
Bartlett-Hanning

Length 64, 128, 256
Step length 1, 5, 10
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Frequency f(Hz) Image Sequence S (frame)

Fig. 17.11 3-D Map of
time–frequency of plume
area. Frequency f(Hz)
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s ¼ 1
n� 1

Xn

i¼1

ðxi � �xÞ2
 !1=2

i ¼ 1; 2; 3. . .n ð17:11Þ

where �x is the average value. All these eigenvalues are listed in Table 17.3.
It was found from Fig. 17.13 that three frequency curves had similar shapes.

These three curves could be distinguished from Table 17.3 effectively by seven
eigenvalues. Thus, these seven eigenvalues could represent different spectrum
curves at any time. Also, we used the statistical method to calculate all frequency
curve eigenvalues and analyze them by the Hierarchical clustering.

F
re

qu
en

cy

Image Sequence S(frame)

Fig. 17.12 Contour map of time–frequency of plume area
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Fig. 17.13 Curves of the 50th, 70th, 110th frequency of plume area signals. a The 50th group of
data. b The 70th group of data. c The 110th group of data
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17.4 Hierarchical Clustering

With the development of multivariate statistic analysis, the clustering analysis
method has been mature gradually and widely used in Biology, Economics,
Sociology, Demography and so on. The hierarchical clustering is the most
important method in clustering analysis. Its basic principle is that the two closest
observations are joined to create a node by calculating the distance or similar
coefficient between two observations. Subsequent nodes are created by pairwise
joining of observations or nodes based on the distance between them, until all the
nodes merge into a desired number of clusters. At the end, a tree structure can be
created by retracing which items and nodes are merged [14].

In order to decide which clusters should be combined or where a cluster should
be split, a measurement of dissimilarity between sets of observations is required. In
most methods of hierarchical clustering, this can be achieved by using an appro-
priate metric (a measure of distance between pairs of observations) and a linkage
criterion which specifies the dissimilarity of sets as a function of the pairwise
distances of observations.

Some commonly used distance metrics for hierarchical clustering are the Euclid
distance, Minkowski distance, City Block distance, Chebyshev distance, Mahal
distance, Lance distance and Cosine similarity. The linkage criteria determines the
distance between sets of observations as a function of the pairwise distances
between observations. There are a variety of linkage criteria between clusters.
Among them, three most popular ones are maximum or complete linkage, mini-
mum or single linkage, mean or average linkage [15]. In our welding experiments,
we defined the Euclid distance and the City Block distance as the distance metrics
and took minimum linkage for hierarchical clustering. The expression of Euclid
distance is

dð2Þij ¼
Xp

t¼1

xit � xjt

�� ��2
 !1=2

ð17:12Þ

The expression of City Block distance is

Table 17.3 Eigenvalues of different curves among Fig. 17.13 (unit:a.u)

Fig. 17.13a Fig. 17.13b Fig. 17.13c

Max value 39,922 47,275 42,242
Min value 573 815 107
Average 4,199 4,840 3,787
IQR 1,893 2,318 2,825
Range 39,348 46,459 42,134
Standard deviation 6,435 7,702 6,743
Sum 268,750 309,800 242,410
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dij ¼
Xp

t¼1

xit � xjt

�� ��
 !

ð17:13Þ

Mathematically, the minimum linkage is written as

Dpq ¼ minðdijÞ xi 2 Gp; xj 2 Gq ð17:14Þ

After the short-time Fourier transform, there were 36 groups of time frequency
test data. The statistics method was used to extract the seven defined eigenvalues,
then these eigenvalues were studied by clustering. The procedure of hierarchical
clustering is as follows. First, the Euclid distance and the City Block distance were
defined as the distance metrics, and the distance between observations were cal-
culated. Second, the minimum linkage was used to create a tree structure. Finally,
the discontinuous coefficients was set and the clustering tree was output. In this
experiment, the discontinuous coefficients were 0.5, 0.7 and 0.9, respectively.

Totally 36 9 2 9 3 = 216 groups of clustering data were obtained after cal-
culation. The characteristics of clustering data was analyzed by drawing the
clustering curves and curve-fittings. Using Bartlett-Hanning window whose length
was 256 and step value was 5 for the short-time Fourier transform, and the Euclid
distance, minimum linkage and discontinuous coefficient 0.9 for hierarchical
cluster, it was found that the fluctuation trend of 6th fitting of clustering curve was
similar to the 6th fitting curve of weld seam bead width. That means the 6th fitting
of the clustering curve could reflect the weld bead width changing trend effec-
tively. Figure 17.14 is the clustering curve based on the combination parameters
mentioned above, the dotted line is the 6th fitting curve of clustering curve.

Figure 17.15 shows a 6th fitting curve of the clustering curve contrasting to the
6th fitting curve of weld seam bead. In Fig. 17.15, the dotted line is the weld bead
width, the dot and dash line is the 6th fitting curve of weld bead width and the solid
line is the 6th fitting curve of the clustering curve. It can be seen that the solid line
and the dot and dash line have the consistent fluctuations. The 6th fitting curve of
the clustering curve could reflect the weld bead width change trend effectively.

Image sequence S(frame)

C
at

eg
or

y

Fig. 17.14 Fitting curve of
time–frequency clustering of
metallic plume area
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Experimental results have shown that the weld bead width can be evaluated by
using the time–frequency clustering of metallic plume area. It has provided a
method to monitor and evaluate the welding quality in real time during disk laser
welding by analyzing the time–frequency clustering of metallic plume area.

17.5 Conclusions

In a high power disk laser welding process, there exists a relation between the
metallic plume area and the weld bead width. The metallic plume area could be
calculated by using image processing techniques. It was found that the accurate
plume area could be obtained by processing the plume images in the RGB color
space and HSI color space.

The short-time Fourier transform could be applied to analyze the characteristics
of plume area and extract the eigenvalues for the hierarchical clustering. Using the
Bartlett-Hanning window whose length was 256 and step value was 5 for the short-
time Fourier transform, and the Euclid distance, minimum linkage and discon-
tinuous coefficient 0.9 for the hierarchical clustering, the 6th fitting curve of the
clustering curve and the 6th fitting curve of weld bead width had the similar
fluctuations. The 6th fitting of the clustering curve could reflect the weld bead
width changing trend effectively. Experimental results showed that the time–fre-
quency clustering of metallic plume area could be used to monitor and evaluate the
welding quality during high power disk laser welding.

Acknowledgments This work is an expanded version of the paper published at WCECS 2012 in
San Francisco, USA, October 24–26, 2012, and was supported in part by the National Natural
Science Foundation of China under Grant 51175095, in part by the Guangdong Provincial Natural
Science Foundation of China under Grants 10251009001000001 and 9151009001000020, and in
part by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant
20104420110001. Many thanks are given to Katayama Laboratory, Osaka University, Japan, for
their assistance of laser welding experiments.

C
at

eg
or

y

W
eld bead w

idth W
(pixel)

Image sequence S(frame)

Fig. 17.15 Description of
time–frequency clustering of
area and weld bead width

17 Analysis of Metallic Plume Image Characteristics 239



References

1. Khan MMA, Romoli L, Fiaschi M, Dini G, Sarri F (2011) Experimental design approach to
the process parameter optimization for laser welding of martensitic stainless steels in a
constrained overlap configuration. Opt Laser Technol 43(1):158–172

2. Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and
factors affecting weld penetration and welding defects. Phys Procedia 5(Part B):9–17

3. Liu L, Chen M (2011) Interactions between laser and arc plasma during laser–arc hybrid
welding of magnesium alloy. Opt Lasers Eng 49(9–10):1224–1231

4. Gao XD, Wang RL, Long GF, Katayama S (2012) Study of characteristics of plume based on
hue-saturation-intensity during high-power disk laser welding. ACTA Physica Sinica,
61(14):148103-1-8

5. Khaleeq-ur-Rahman M, Siraj K, Rafique MS, Bhatti KA, Latif A, Jamil H, Basit M (2009)
Laser induced plasma plume imaging and surface morphology of silicon. Nuclear
Instruments Methods Phys Res B 267(7):1085–1088

6. Sibillano T, Anocona A, Berdi V, Lugara PM (2005) Correlation analysis in laser welding
plasma. Opt Commun 251(1–3):139–148

7. Baik SH, Park SK, Kim CJ, Kim SY (2001) Holographic visualization of laser-induced plume
in plused laser welding. Opt Laser Technol 33(1):67–70

8. Jiang P, Chen WZ, Guo J, Tian ZL (2001) The FFT Analyze of the acoustic signal on plasma
in laser welding. Laser J 22(5):62–63

9. Molino A, Martina M, Vacca F, Masera G, Terreno A, Pasquettaz G, Angelo G (2009) FPGA
implementation of time-frequency analysis algorithms for laser welding monitoring.
Microprocessors Microsystems 33(3):179–190

10. Li G, Cai Y, WU Y (2009) Stability information in plasma image of high-power CO2 laser
welding. Opt Lasers Eng 47(9):990–994

11. Gao XD, Wang RL, Yang YC (2012) Time-frequency characteristics clustering of metallic
plume during high power disk laser welding, lecture notes in engineering and computer
science. In: Proceedings of The world congress on engineering and computer science 2012,
WCECS 2012, 24–26 Oct 2012, San Francisco, USA, pp 660–664

12. Wang X, Cheng P, Liang J (2011) Research of STFT time-frequency analysis algorithm and
its application in train vibration analysis. Noise Vibr Control 31(1):65–68

13. Ge Z, Chen Z (2006) MATLAB time-frequency analysis technology and its application. Posts
and Telecom Press, Beijing, pp 1–8

14. Du Z, Lin F (2004) A hierarchical clustering algorithm for MIMD architecture. Comput Biol
Chem 28(5–6):417–419

15. Zhang Q, Zhang Y (2006) Hierarchical clustering of gene expression profiles with graphics
hardware acceleration. Pattern Recogn Lett 27(6):676–681

240 X. Gao et al.


	17 Analysis of Metallic Plume Image Characteristics During High Power Disk Laser Welding
	Abstract
	17.1…Introduction
	17.2…Experimental Apparatus and Plume Characteristic Extraction
	17.2.1 Experimental Apparatus
	17.2.2 Extraction of Plume Characteristics in RGB Space
	17.2.3 Extraction of Plume Characteristics in HSI Space

	17.3…Short-Time Fourier TransformShort-Time Fourier Transform
	17.3.1 Concept of Short-Time Fourier TransformShort-Time Fourier Transform
	17.3.2 Window Function
	17.3.3 Analysis of Short-Time Fourier TransformShort-Time Fourier Transform

	17.4…Hierarchical ClusteringHierarchical clustering
	17.5…Conclusions
	Acknowledgments
	References


