
Chapter 15
Adaptive Control System for Solution
of Fault Tolerance Problem

Yuri A. Vershinin

Abstract Adaptive control can provide desirable behavior of a process even
though the process parameters are unknown or may vary with time. Conventional
adaptive control requires that the speed of adaptation must be more rapid than that
of the parameter changes. However, in practice, problems do arise when this is not
the case. For example, when fault occurs in a process, the parameters may change
very dramatically. A new approach based on simultaneous identification and
adaptation of unknown parameters is suggested for compensation of rapidly
changing parameters. High dynamic precision adaptive control can be used for the
solution of a fault tolerance problem in complex and multivariable processes and
systems.
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Markov parameters � Mathematical model � Singular value decomposition

15.1 Determination of a Mathematical Model of a Process

A mathematical model of a process on a stationary regime can be found from the
sequence of Markov parameters using the classical Ho algorithm [1]. The Markov
parameters can be obtained from input–output relationships or more directly as an
impulse response of the system. It is well known that according to the theorem of
Kronecker the rank of the Hankel matrix constructed from the Markov parameters
is equal to the order of the system from which the parameters are obtained.
Therefore, by consistently increasing the dimension of the Hankel matrix C until
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rank Cr ¼ rank Crþ1

the order of the system can be obtained as equal to r. However, in practical
implementation, this rank-order relationship may not give accurate results due to
several factors: sensitivity of the numerical rank calculation and bias of the rank if
information about the process is corrupted by noise. This problem can be avoided
using singular value decomposition (SVD) of the Hankel matrix:

C ¼ USVT ; ð15:1Þ

where

UT U ¼ VT V ¼ I;

S ¼ diagðr1; r2; . . .; rl; rlþ1; . . .rnÞ:

Here U and V are orthogonal matrices. The diagonal elements of the matrix
S (the singular values) in (15.1) are arranged in the following order
r1 [ r2 [ � � � [ rn [ 0. Applying the property of SVD to reflect the order of a
system through the smallest singular value, the order of the system can be
determined with the tolerance required. From practical point of view a reduced
order model is more preferable. Taking into account that the best approximation in
the Hankel norm sense is within a distance of rlþ1, the model of order l can be
found. However, a relevant matrix built from Markov parameters of this reduced
order model should also be of the Hankel matrix. But it is not an easy matter to
find such a Hankel matrix for the reduced order process. A simpler solution,
although theoretically not the best, can be found from the least squares approxi-
mation of the original Hankel matrix [2–4]. The discrete time state-space reali-
zation of the process can be determined from the relationship between Markov
parameters and representation of the Hankel matrix through relevant controlla-
bility and observability matrices of the process:

C ¼

Cd

CdAd

CdA2
d

:
:

2
66664

3
77775

Ad AdBd A2
dBd : :

� �
¼ XE; ð15:2Þ

where

Ad is the system matrix,
Bd is the control matrix,
Cd is the output matrix,
X is the observability matrix,
E is the controllability matrix.
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15.2 The Adaptive Control System

Consider a continuous time single input—single output second order plant (a
process) given in the following canonical state space realization form:

_x ¼ Acxþ Bcu

y ¼ Ccx
; ð15:3Þ

where

Ac ¼
0 1

a1p a2p

� �
; Bc ¼

0
1

� �
; Cc ¼ c1p c2p½ �;

u is the control signal,
y is the output of the plant.

Assume that at the time t parameters a1p and a2p change dramatically due to a
fault in the system, but parameters c1p and c2p remain constant. The mathematical
model of plant (15.3) can be represented in the following form:

€xp ¼ ð�a2p þ Da2pðtÞÞ _xp þ ð�a1p þ Da1pðtÞÞxp þ u

yp ¼ �c2p _xp þ �c1pxp;

where

a1p ¼ �a1p þ Da1pðtÞ;
a2p ¼ �a2p þ Da2pðtÞ;

�a1p; �a2p; �c1p; �c2p are the nominal parameters (constant) of the plant,
Da1pðtÞ; Da2pðtÞ are the biases of the plant parameters (variable) from their
nominal values,
xp is the plant state,
yp is the plant output.

A desirable behavior of the plant can be determined by the following reference
model:

€xm ¼ a2m _xm þ a1mxm þ g

ym ¼ c2m _xm þ c1mxm
; ð15:4Þ

where

g is the input signal,
a1m; a2m; c1m; c2m are parameters of the model.
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In order to compensate for the plant parameters’ biases, a controller can be
used. The closed loop system with the controller is represented in the following
form:

€xp ¼ð�a2p þ Da2pðtÞÞ _xp þ ð�a1p þ Da1pðtÞÞxp

þ ð�k2 þ Dk2ðtÞÞ _xp þ ð�k1 þ Dk1ðtÞÞxp þ g;
ð15:5Þ

where

�k1; �k2 are the constant parameters of the controller,
Dk1ðtÞ; Dk2ðtÞ are the adjustable parameters of the controller.

The desirable quality of the process behavior can be obtained from the fol-
lowing relationships:

�k1 þ �a1p ¼ a1m

�k2 þ �a2p ¼ a2m:

According to Eqs. (15.4) and (15.5), the error equation is obtained as follows:

€e ¼ a2m _eþ a1meþ z2 _xp þ z1xp; ð15:6Þ

where

e ¼ xm � xp;

z1 ¼ Da1pðtÞ þ Dk1ðtÞ;
z2 ¼ Da2pðtÞ þ Dk2ðtÞ:

It can be seen from Eq. (15.6) that in order to achieve the desirable error e ? 0,
it is necessary to provide the following conditions:

z1 � 0; z2 � 0: ð15:7Þ

The conditions (15.7) can be achieved by adjusting parameters Dk1ðtÞ and
Dk2ðtÞ according to the following laws [5]:

D _k1ðtÞ ¼ rxp

D _k2ðtÞ ¼ r _xp;
ð15:8Þ

where r ¼ Pe.
The positive definite symmetric matrix P can be obtained from the solution of

the relevant Lyapunov equation. The main problem associated with algorithms
(15.8) is that all self-tuning contours are linked through the dynamics of the plant.
The consequence is that high interaction of each contour with others will occur.
This further results in poor dynamic compensation of plant parameters’ biases Daip

(i = 1, 2,…m), where m is a number of self-tuning contours. The idea of decou-
pling self-tuning contours from plant dynamics, based on simultaneous identifi-
cation and adaptation, is suggested for the solution of this problem with fault
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tolerance. This could considerably improve performance of the overall system,
especially for high dimension and multivariable plants and processes.

It can be shown [6, 7] that the self-tuning contours will be decoupled from the
plant dynamics if r can be formed such that:

r� ¼ €e� a2m _e� a1me:

In this case the following relationship can be obtained:

r� ¼ ðDa2pðtÞ þ Dk2ðtÞÞ _xp þ ðDa1pðtÞ þ Dk1ðtÞÞxp: ð15:9Þ

In order to solve Eq. (15.9) with two variable parameters, the following
approach is suggested: Multiply both parts of Eq. (15.9) by state variables xp and
_xp and integrate the resultant equations on the time interval (t1, t2), where:
t2 = t1 ? Dt. Taking the initial conditions as t1 = 0, Dki = 0, (i = 1, 2) the fol-
lowing equations are obtained:

Zt1þDt

t1

r�xpdt ¼ Da2p

Zt1þDt

t1

_xpxpdt þ Da1p

Zt1þDt

t1

x2
pdt

Zt1þDt

t1

r� _xpdt ¼ Da2p

Zt1þDt

t1

_x2
pdt þ Da1p

Zt1þDt

t1

xp _xpdt:

ð15:10Þ

Introduce the following notations:

Zt1þDt

t1

r�xpdt ¼ c1;

Zt1þDt

t1

r� _xpdt ¼ c2;

Zt1þDt

t1

x2
pdt ¼ l11;

Zt1þDt

t1

xp _xpdt ¼ l21;

Zt1þDt

t1

_xpxpdt ¼ l12;

Zt1þDt

t1

_x2
pdt ¼ l22:

ð15:11Þ

According to notations (15.11), Eq. (15.10) can now be written in the form:

c1 ¼ Da1pl11 þ Da2pl12

c2 ¼ Da1pl21 þ Da2pl22:
ð15:12Þ

From the solution of Eq. (15.12) the bias of the plant parameters Daip; (i = 1, 2)
can be determined. The controller can be adjusted according to the estimated
parameter bias as:

Dki ¼ �Daip:
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Therefore, conditions (15.7) are satisfied, which in turn means that the behavior
of system (15.5) follows the desirable trajectories of model (15.4), even in the
presence of dramatic plant parameters changes.

For the solution of Eq. (15.12) one needs to take into account of the hypothesis
of quasi-stationarity of the process, where the interval time Dt is selected such that
the biases of parameters Daip must be constant at this interval. However, the
interval Dt should be sufficiently large in order to accumulate a larger quantity of
variables xp and _xp for the solution of the equations.

15.3 The Numerical Results

The Hankel matrix C, constructed from the Markov parameters (obtained from the
experiment, see Appendix), is as follows:

C ¼
6:5000000e� 02 1:4550000e� 01 1:6442500e� 01
1:4550000e� 01 1:6442500e� 01 1:5056000e� 01
1:6442500e� 01 1:5056000e� 01 1:2447038e� 01

2
4

3
5: ð15:13Þ

Applying the singular value decomposition procedure (15.1) on the Hankel
matrix (15.13), it is found that

U ¼
5:1633320e� 01 8:1190203e� 01 2:7242453e� 01
6:2194166e� 01 �1:3682059e� 01 �7:7101797e� 01
5:8871776e� 01 �5:6753434e� 01 5:7560070e� 01

2
4

3
5

V ¼
5:1633320e� 01 �8:1190203e� 01 2:7242453e� 01
6:2194166e� 01 1:3682059e� 01 �7:7101797e� 01
5:8871776e� 01 5:6753434e� 01 5:7560070e� 01

2
4

3
5

S ¼
4:2773559e� 01 0:0000000eþ 00 0:0000000eþ 00
0:0000000eþ 00 7:4455532e� 02 0:0000000eþ 00
0:0000000eþ 00 0:0000000eþ 00 6:1531296e� 04

2
4

3
5: ð15:14Þ

Using relations (15.1), (15.2) and (15.14) the discrete time state space reali-
zation of the reduced order system is obtained as follows:

Ad ¼
9:7950468e� 01 �3:4211654e� 01
3:4211654e� 01 3:4867831e� 01

� �

Bd ¼
3:3767560e� 01

�2:2160613e� 01

� �

Cd ¼ 3:3767560e� 01 2:2160613e� 01½ �
ð15:15Þ

The behavior of the full order model and the reduced order model is given in
Fig. 15.1. It can be seen in Fig. 15.1 and Appendix that the Markov parameters of
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Fig. 15.1 The behavior of
the full order model and
reduced order model

Fig. 15.2 Bias Da1p = 1,
Da2p = 0. The adaptation is
switched off
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the reduced order model are a close approximation to the Markov parameters of
the original system.

Nominal parameters of the plant in the continuous time (15.3) are obtained
from (15.15) as follows:

�a1p ¼ �3:1184; �a2p ¼ �3:0517;

�c1p ¼ �0:0318; �c2p ¼ 2:9132:

Parameters of model (15.4) are chosen as a1m ¼ �a1p, a2m ¼ �a2p, c1m ¼ �c1p,
c2m ¼ �c2p.

Fig. 15.3 Bias Da1p = 1,
Da2p = 0. The adaptation is
switched on
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The performance of the high dynamic precision adaptive control system is
presented in Figs. 15.2, 15.3, 15.4, 15.5.

Figure 15.2 shows that the bias from the nominal parameter at time t� 1 s is
Da1p ¼ 1; (Da2p ¼ 0). The adaptation is switched off.

Figure 15.3 shows the bias from the nominal parameter at t� 1 s with adap-
tation being switched on (Da1p ¼ 1; Da2p ¼ 0). It can be seen that the output of
system yp coincides with the model reference output ym after t� 4 s:

Figure 15.4 shows that the bias from the nominal parameter at time t� 1 s is
Da2p ¼ 1; (Da1p ¼ 0). The adaptation is switched off.

Figure 15.5 shows the bias from the nominal parameter at t� 1 s with adap-
tation being switched on (Da2p ¼ 1, Da1p ¼ 0). It can be seen that the output of
system yp coincides with the model reference output ym after t� 9 s.

Fig. 15.4 Bias Da1p = 0,
Da2p = 1. The adaptation is
switched off
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15.4 Conclusions

The high dynamic precision adaptive control system for the solution of a fault
tolerance problem of a single–input–single–output process is suggested in this
paper. The method, which is based on simultaneous identification and adaptation
of unknown process parameters, provides decoupling of self-tuning contours from
plant dynamics. The control system compensates the rapidly changing parameter
when fault occurs in a process. The mathematical model of the process is formed
from Markov parameters, which are obtained from the experiment as the process
impulse response. The order of the model is determined using singular value
decomposition of the relevant Hankel matrix. This allows one to obtain a robust
reduced order model representation if the information about the process is cor-
rupted by noise in industrial environment. The adaptive control can be used for the
solution of a fault tolerance problem [8] in complex and multivariable processes
and systems.

Fig. 15.5 Bias Da1p = 0,
Da2p = 1. The adaptation is
switched on
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Appendix

Markov parameters obtained
from the experiment

Markov parameters of the
reduced order model

0.0000000e ? 00 0.0000000e ? 00
6.5000000e - 02 6.4934730e - 02
1.4550000e - 01 1.4578163e - 01
1.6442500e - 01 1.6384913e - 01
1.5056000e - 01 1.5077128e - 01
1.2447038e - 01 1.2511681e - 01
9.7003263e - 02 9.7037520e - 02
7.2809279e - 02 7.1509116e - 02
5.3273657e - 02 5.0478548e - 02
2.7143404e - 02 3.4252666e - 02
1.9054881e - 02 2.2345734e - 02
1.3274250e - 02 1.3971877e - 02
9.1920232e - 03 8.3100499e - 03
6.3351771e - 03 4.6301281e - 03
4.3498142e - 03 2.3388797e - 03
2.9776238e - 03 9.8319708e - 04
2.0333343e - 03 2.3330942e - 04
1.3857582e - 03 -1.4099694e - 04
9.4289895e - 04 -2.9426412e - 04
6.4072233e - 04 -3.2618265e - 04
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