
Chapter 8
Probabilistic Graphical Modeling
in Systems Biology: A Framework
for Integrative Approaches
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Abstract Systems biology may be defined as a discipline aiming at integrating
various sources of heterogeneous data, with the objective to describe and predict
the function of biological systems. The purpose is to cross many (possibly weak)
evidences from several data types that describe different biological features of
genes or proteins. Probabilistic graphical models offer an appealing framework for
this objective. Through the thorough review of five selected examples, this chapter
highlights how probabilistic graphical models can contribute to build the bridge
between biology and computational modeling. In this methodological framework,
the five cases illustrate three features of these models, which we discuss: flexi-
bility, scalability and ability to combine heterogeneous sources of data. The
applications covered address genetic association studies, identification of protein–
protein interactions, identification of the target genes of transcription factors,
inference of causal phenotype networks and protein function prediction.
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GA Genetic architecture
GO Gene ontology
GOS GO sub-ontology
GWAS Genome wide association study
MCMC Monte Carlo Markov chain
MRF Markov random field
MRF-MJM MRF mixture joint model
PGM Probabilistic graphical model
PPI Protein–protein interaction
QTL Quantitative trait loci
RNA Ribonucleic acid
RNAi RNA interference
ROC curve Receiver operating characteristic curve
SMM Standard mixture model
TF Transcription factor

8.1 Introduction

In the machine learning domain, probabilistic graphical models provide a unified
framework to both represent dependences between variables and model uncertain
knowledge about the quantitative dependences between these variables. In the
post-genomic era, the provision of voluminous and complex heterogeneous data by
high-throughput omics technologies has brought increased attention to these
models. Notably, their flexibility, scalability and ability to combine heterogeneous
sources of data are expected to enhance the gain in biological and biomedical
discoveries. Data integration is intended to make useful connections that could
lead to novel biological knowledge.

Besides, if there is one area where transdisciplinarity is the daily lot, designing
new computational methods based on advanced models devoted to applications in
systems biology is this area. A constructive cooperation with a domain specialist
requires ability to hold productive dialogue, which therefore demands a good
understanding of the models by the non expert. Bridging the gap between biology,
statistics and computer science is a condition to achieve progress in systems
biology. Albeit dedicated to specific applications, the five models presented in this
chapter remain general enough to help foster reflections about addressing other
applications in systems biology, in an integrative framework.

Methods based on probabilistic graphical models (PGMs) may be complex and
thus might be disconcerting to scientists non familiar with them, which is likely to
hamper the dissemination of such methods. Thus there was a challenge in
attempting to demystify the concepts and mechanisms behind such models in the
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perspective of using them for systems biology. To this aim, this chapter was
conceived as a thorough review of five illustrative approaches of the use of
probabilistic graphical modeling as an integrative framework in systems biology.
We first provide an intuitive presentation of the concept of conditional indepen-
dence, which is the fundamental principle PGMs all rely on; then we introduce the
Bayesian networks and the Markov random fields, which are the two classes of
PGMs addressed in this chapter. Subsequently we present the five illustrations
selected to cover major application fields in systems biology: (1) enhancement of
genome-wide association studies with knowledge on biological pathways, (2)
identification of protein–protein interactions, (3) identification of the regulatory
target genes of transcription factors, (4) inference of causal relationships among
phenotypes via integration of QTL genotypes, (5) prediction of protein function
through ontology-enriched networks connecting multiple related species. A brief
insight about the performance of each method is provided on the fly. We conclude
this chapter highlighting the pros and cons of this modeling framework, when used
for integration purpose in systems biology and we indicate some directions for
future work.

The order of presentation for the contributions is not incidental: it puts forward an
increasing gradient in the heterogeneity of the data sources integrated in the prob-
abilistic framework. For example, approaches (2) and (3) both integrate information
coming from gene ontologies but such information is used similarly to that coming
from the other data sources. In contrast, accounting for this ontological knowledge
thoroughly impacts the probabilistic inference scheme in the last approach. At the
opposite extremity of the data integration spectrum, it is worth mentioning that
PGMs provide the ability to integrate meta-knowledge about a single data source, at
the genome-wide scale. An enlightening example is the modeling of genetic data,
where the so-called linkage disequilibrium encompasses short-range, long-range
and chromosome-wide dependences within these data [24–25]. Such meta-knowl-
edge integration in a genetic association study aims at enhancing power and
accuracy in identifying the causal factors of a disease [20, 35, 37]. In this book
chapter, we focus on the integration of multiple data sources.

8.2 Preliminaries

In the present section, the concepts indispensable for further understanding are
introduced in an intuitive manner. Besides, we highlight why probabilistic
graphical models are appealing to model biological data in an integrative frame-
work. Within the scope of this section, we suppose that the data available are as
follows: p data samples are each described by n variables X ¼ fX1; . . .;Xng. In a
general probabilistic framework, computing the joint probability distribution for
large data is generally not tractable as, by virtue of the so-called product-rule, the
only formalization applicable is
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PðXÞ ¼ PðX1Þ PðX2 j X1Þ PðX3 j X1; X2Þ . . . PðXn j X1; X2; . . .; Xn�1Þ: ð8:1Þ

If we denote by xi a value in the domain of the possible values for the random
variable Xi, it should be noted that computing the probability distribution PðXÞ
means that for any possible instantiation x ¼ ðx1; x2; . . .; xnÞ of X, we know how
to calculate PðxÞ. It should also be kept in mind that from now on, symbols in
lower cases will denote values taken by the variables. Third, the expression
‘‘probability distribution’’ will be reserved to discrete random variables whereas
the expression ‘‘density probability‘‘ will be used for continuous random variables.
In the above formula, X1; . . .; Xr, to be understood as the event
ðX1 ¼ x1; . . .; Xr ¼ xrÞ, denotes the joint observation of values x1; . . .; xr. The
product rule in Eq. 8.1 involves conditional probabilities.

The conditional probability1 of event D1 given event D2, PðD1 j D2Þ, is the
probability of D1 with the additional information that D2 has already occurred. It is
defined as:

PðD1 j D2Þ ¼
PðD1;D2Þ
PðD2Þ

; with PðD2Þ 6¼ 0:

For instance, if D1 and D2 are two diseases, such that D2 is observed with prob-
ability 0:05, and D1 and D2 are simultaneously observed with probability 0:001,
then the onset probability for D1, when D2 is present, is 0:02.

Probabilistic graphical models are appealing models because they rely on
conditional independence, to offer the immense advantage of a factorized for-
mulation of probability distributions. Let us first introduce the concept of condi-
tional independence. In the above example, suppose we calculate that the prior
probability PðD1Þ is equal to the posterior probability PðD1 j D2Þ. Intuitively, this
means that knowing whether D2 occurs (P D1 j D2ð Þ) does not refine our knowl-
edge about whether D1 occurs. The diseases D1 and D2 are therefore independent:
D1 ?? D2. Conditional independence is a little bit more complex:

Definition 1 (Conditional independence) Given three variables A, B and C,
conditional independence between A and B given the state of C (A ?? B j C) is
defined as: PðA j B; CÞ ¼ PðA j CÞ (with PðCÞ[ 0). The concept of conditional
independence given a unique variable is easily extended to conditional indepen-
dence given a set of variables.

Intuitively, A and B are conditionally independent given C (A ?? B j C) if and
only if, given any value of C, the probability distribution of A remains the same for
all values of B: PðA j B ¼ b1; C ¼ cÞ ¼ PðA j B ¼ b2; C ¼ cÞ ¼ PðA j C ¼ cÞ.
Suppose now that a third variable E measures the effects of the disease D1, and that
these effects cause the disease D2 (symbolized through D1 ! E! D2); indoubt-
edly, D1 and D2 are dependent; however, D1 and D2 are conditionally independent

1 Depending on the context, the conditional probability of D1 given D2, PðD1 j D2Þ, is also
called the posterior probability of D1 conditional on D2.
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given E (see Table 8.1). Intuitively, this means that the status of D1 can be inferred
from the status of E. Therefore, when dependences exist within data, conditional
independence shields a given variable from the remaining variables, given some
set of variables. Biological data are often described by a network, if not several
networks, in the integrative framework. The conditional independence property is
known as the Markov property. The Markov property is the corner stone for
simplifying probability distributions, thus directly achieving tractability or making
easier approximations to further obtain tractability. Intrinsically, all five models
illustrated in this chapter rely on the Markov property, to infer knowledge from
one or several biological networks.

Probabilistic graphical models (PGMs) provide a powerful framework for
representing and reasoning with uncertainty and dependences. The qualitative part
of a PGM is a graph G that encodes dependences (and independences) between the
variables, represented by nodes in the graph. Uncertain knowledge about the
qualitative dependences between the variables is formalized with the aid of
probability distributions. Besides differences in their graphs, we now briefly show
the variants of Markov property for the two kinds of probabilistic graphical model
(PGMs) addressed in this chapter. One of the most popular kinds of PGMs is the
Bayesian network (BN).

Table 8.1 Conditional independence of two variables D1 and D2 given a third-
variable E

D2E D2Ē D̄2E D̄2Ē

D1
0 120 40 40 20
1 180 160 60 80

D2E D2Ē D̄2E D̄2Ē

D1
0 0.171 0.057 0.057 0.029
1 0.257 0.229 0.086 0.114

D2
0 1

D1
1 0.086 0.229
0 0.200 0.485

E = 0
D2

0 1

D1
1 0.2 0.2
0 0.8 0.8

E = 1
D2

0 1

D1
1 0.4 0.4
0 0.6 0.6

(a) (b) (c)

(d) (e)

Counts
P(D1, D2, E)

Joint distribution
P(D1, D2)

Marginal distribution

Conditional distributions

P(D1 | D2 = i,E = 0) P(D1 | D2 = i,E = 1)

c Marginal probabilities are obtained through summing (‘‘marginalizing’’) prob-

abilities over the domain of E; PðD1 j D2Þ ¼ PðD1 ; D2Þ
PðD2Þ ¼

0:485
0:679 ¼

0:714 6¼ PðD1Þ ¼ 0:685, thus D1 and D2 are dependent variables. d and e D1 and
D2 are conditionally independent given E (D1 ?? D2 j E) since the columns are
identical within each table.
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Definition 2 (Bayesian network) In a BN, the qualitative component is a directed
acyclic graph (acyclic because no directed path Xi1 ! Xi2 ! � � � ! Xir , where
i1 ¼ ir, is allowed). Conditional distributions are defined for each variable Xi:
hi ¼ ½PðXi=PaXiÞ� where PaXi denotes node i’s parents. The local Markov property
states that each variable is conditionally independent of its non-descendants given
a known state of its parent variables: Xi ?? X n descðXiÞ j PaXi , where the notation
X n Y stands for the set fXi 2 X and Xi 62 Yg and descðXiÞ is the set of
descendants of Xi. The local Markov property entails that the joint distribution
writes as a product of local distributions conditional on the parent variables:

PðXÞ ¼
Y

i2f1;...;ng
hi:

Figure 8.1a shows a Bayesian network. Another widely used model is the
Markov random field.

Definition 3 (Markov random field) In Markov random fields (MRFs), the
qualitative component G is an undirected graph which may have cycles (that is
(undirected) cycles Xi1 � Xi2 � � � � � Xir , where i1 ¼ ir, are allowed). The joint
distribution is factorized over cliques ‘‘covering’’ the set X. A clique is defined by
any set of pairwise connected nodes, such as fX1; X2g or fX1; X2; X4g in Fig.
8.1b. A set of random variables X is an MRF if there exist so-called function
potentials such that the joint distribution writes:

PðX ¼ xÞ ¼ 1
Z

bðxÞ

PðX ¼ xÞ ¼ 1
Z

Y

C2cliquesðGÞ
uCðxCÞ:

(a) (b)

Fig. 8.1 Probabilistic graphical models. a Bayesian network. b Markov random field. a The prior
probability distributions PðD1Þ and PðD2Þ, and the conditional distributions PðE j D1; D2Þ and
PðD3 j EÞ are shown. The node E has two parents (D1 and D2). The node D1 has one child (E)
and two descendants (E and D3). b The factorization of the joint distribution PðX1; X2; X3; X4Þ
involves the potentials relative to the two cliques ðX1; X2; X4Þ and ðX1; X3; X4Þ. The node X1

has two neighbors: X2 and X3
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There, xC denotes some possible instantiation for the variables encompassed by
clique C. Function uC is called a clique potential. Z is the normalizing function
used to ensure that P be a probability distribution (Z ¼

P
x bðxÞ guarantees thatP

x PðX ¼ xÞ ¼ 1). In the case of the MRF, the local Markov property states that
a variable is conditionally independent of all other variables given its set of
neighbours Ni: PðXi j X�iÞ ¼ PðXi j NiÞ, where X�i designates the set X deprived
of variable Xi.

Figure 8.1b shows a Markov random field. In particular, this chapter will refer
to pairwise MRFs, which consider cliques of size 2 and whose joint distribution
writes:

PðX ¼ xÞ ¼ 1
Z

Yn

i¼1

uiðxiÞ
Y

ði;jÞ2G
ui;jðxi; xjÞ: ð8:2Þ

Finally, we recall some additional notions to non specialists. Given a model M
and the observed data D, according to Bayes theorem,2 the relation between
posterior distribution, prior distribution and likelihood writes: PðM j DÞ / PðD j
MÞ PðMÞ: The proportionality is explained by the fact that the probability to
observe the data, PðDÞ, is a constant. Model learning consists in evaluating how a
candidate M fits the data D. Maximizing the likelihood PðD j MÞ is a standard
procedure to achieve this purpose. Due to additional knowledge (D), the prior
distribution PðMÞ is refined into the posterior distribution PðM j DÞ. The reader is
also reminded that Uða; bÞ designates the uniform probability distribution over
interval ½a; b� and that Nðl; r2Þ represents the normal (or Gaussian) probability
distribution with mean l and variance r2. The multivariate normal distribution is a
generalization of the latter distribution to higher dimensions; then the normal
distribution is summarized by a mean vector and a covariance matrix. To denote
that a random variable A follows a given distribution, say Nðl; r2Þ, we will write:
A�Nðl; r2Þ.

8.3 Enhancement of Genome-Wide Association Studies
with Knowledge on Biological Pathways

To decipher the genetic causes of diseases, genome-wide association studies
(GWASs) compare the genomes of affected people to those of unaffected. The aim
is to identify associations between genetic variants and the disease. GWASs pose a
formidable challenge since most of the time the effects from individual genetic
variants are weak and the sample size is not large enough to guarantee sufficient
power. To overcome this issue, various strategies have been proposed. Multilocus

2
PðM j DÞ PðDÞ ¼ PðD j MÞ PðMÞ.
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association tests benefit from linkage disequilibrium—that is dependences existing
within genetic data—by considering sets of correlated markers instead of single
markers. An alternative lead lies in integrating evidences from external data
sources, in the single locus approach. Various approaches based on the integration
of prior biological knowledge were designed to prioritize candidate disease genes
(see [16] for a survey). In GWASs, evidence from the gene level is recognized as
the most promising. In particular, incorporating prior biological knowledge about
pathways has a role to play [31, 40]: as genes interact with each other in biological
pathways, they are likely to jointly affect disease susceptibility. However, so far,
no GWAS approach had taken into account knowledge about regulatory rela-
tionships between genes of a given pathway. Not surprisingly, in this domain, the
pioneering approach of Chen and collaborators takes full advantage of probabi-
listic graphical modeling [5].

In the following, we denote S ¼ fS1; . . .; Sng the set of gene labels to be predicted
based on the observed association data and the knowledge on the pathway topology.
Si ¼ 1 states that gene i is associated with the disease; otherwise, the label is Si ¼ 0.
Typically, the association data are p-values P1; . . .;Pn resulting from n single-locus
association tests. Usually, given some significant threshold P�, Pi\P� (respectively
Pi�P�) indicates that Si should be set to 1 (respectively 0). The probabilistic
framework adopted by Chen and collaborators aims at improving the reliability in
predicting the labels: the ultimate goal is thus to estimate the posterior distribution of
S conditional on the data P, that is PðS j PÞ. By virtue of the Bayes theorem,
PðS j PÞ / PðSÞ PðP j SÞ. The key to the prediction improvement by Chen et al. lies
in the integration of knowledge on the pathway topology in the model: such
knowledge is incorporated in the prior distribution PðSÞ.

8.3.1 Exploiting Knowledge from the Gene Pathway

In the following, Ni denotes the set of the ni neighbors of gene i in the pathway of
concern; G denotes the pathway topology. To capture the idea that two neighbor
genes i and j tend to share a common association status (Si ¼ Sj), Chen et al. adjust
a nearest neighbor Gibbs measure [15] as follows:

PðS ¼ s j h0Þ ¼
1
Z

exp

½hþ
X

i

I1ðSiÞ þ s0

X

ði;jÞ2G
ðwi þ wjÞ I0ðSiÞ I0ðSjÞ

þ s1

X

ði;jÞ2G
ðwi þ wjÞ I1ðSiÞ I1ðSjÞ�:

ð8:3Þ

The symbol s ¼ ðs1; . . .; snÞ denotes one label assignment (amongst the 2n possible
assignments), for instance ð0; 1; 1; . . .; 1; 0Þ. h ¼ ðh; s0; s1Þ denotes hyperpa-
rameters fixed by the user. I0 and I1 are indicator functions, meaning that I1ðSiÞ ¼ 1
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if Si ¼ 1 and I1ðSiÞ ¼ 0 otherwise, and, symmetrically I0ðSiÞ ¼ 1 if Si ¼ 0 and
I0ðSiÞ ¼ 0 otherwise. Finally, the model in Eq. 8.3 also reflects the fact that genes
showing many interactions in a pathway are likely to play a prominent role in a
biological process; thus they are likely to exert a large influence. Consequently,
weights wis are incorporated in the model, that depend on the neighborhood sizes:
wi ¼

ffiffiffiffi
ni
p

is an increasing function of the number ni of neighbors of gene i.
Equation 8.3 formalizes the joint probability for S so that genes connected with

each other tend to have the same labels, that is the same association status. The
third term concerns all edges connecting neighbors sharing the common label 0.
The fourth term concerns neighbors that share the label 1. Besides, s0 and s1 assign
weights to such edges, depending on the shared labels. Positive parameters s0 and
s1 will favor assignments s of S in which neighbor genes share the same label.

A property of nearest neighbor Gibbs measures is that they always define a
Markov random field. In this case, the conditional independence assumption
entails: PðSi j S�i; h0Þ ¼ PðSi j SNi ; h0Þ, where we recall that S�i ¼ ðS1; . . .;
Si�1; Siþ1; . . .; SnÞ. Besides, using Eq. 8.3, Chen et al. show that the conditional
distribution PðS j SNi ; h0Þ has a logistic regression form. A standard linear
regression model is not convenient to represent a binary (0/1) variable B as
B ¼ a0 þ a1 A1 þ a2 A2 þ � � � þ ak Ak, since the predictors Ai are unconstrained.
Instead, one deals with p ¼ PðB ¼ 1Þ 2 ½0; 1� and a logit transformation is
therefore required to apply a linear regression model to logitðpÞ ¼
log p

1�p

� �
2� �1; þ1½. In the case illustrated, the logistic form is:

logitðPðSi j SNi ; h0ÞÞ ¼ hþ s1 wi J1
i þ

X

k2Ni

wk I1ðSkÞ
 !

� s0 wi J0
i þ

X

k2Ni

wk I0ðSkÞ
 !

;

ð8:4Þ

where J0
i ¼

P
k2Ni

I0ðSkÞ and, similarly, J1
i ¼

P
k2Ni

I1ðSkÞ.
In the configuration where s0 and s1 are both null, all genes are interpreted as

independent; the so-called intercept h then determines the posterior probability

PðSi j h; s0 ¼ s1 ¼ 0Þ ¼ expðhÞ
1þexpðhÞ.

To recapitulate, the prior acknowledging for the pathway topology is the
conditional distribution PðS j SNi ; h0Þ. This prior has the logistic regression form:

logitðPðSi j SNi ; h0ÞÞ ¼ bi0 þ bi1 S1 þ � � � þ bin Sn

with

bi0 ¼ h

bij ¼ 0 if i ¼ j or j 62 Ni

bij ¼ ðwi þ wjÞ ðs1 I1ðSjÞ � s0 I0ðSjÞÞ otherwise:

In the following, for concision, we will omit the references to SNi and h0 and the
joint prior distribution will merely be denoted PðSÞ as in the end of the intro-
ductory paragraph of Sect. 8.3.
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8.3.2 Posterior Distribution of Association Status

The posterior distribution integrates the knowledge about the pathway topology (from
the prior) and the evidence from the observed association data (i.e. the p-values):

PðS j PÞ / PðSÞ PðP j SÞ: ð8:5Þ

A model remains to be defined for PðS j PÞ. Chen and collaborators model instead
PðS j YÞ, where any p-value Pi is converted into Yi ¼ U�1ð1� Pi=2Þ. Therein, U is
the cumulative distribution function ofNð0; 1Þ. The justification for this conversion
is simplification in further algebraic derivations. Then, the joint density of Y readily
writes:

f ðY j SÞ ¼
Y

i:Si¼0

f0ðYiÞ
Y

i:Si¼1

f1ðYiÞ;

where f0 and f1 respectively denote the distributions of Yi under the null hypothesis
and the hypothesis of association, that is: f0ðYiÞ ¼ PðYi j Si ¼ 0Þ and
f1ðYiÞ ¼ PðYi j Si ¼ 1Þ. Under the null hypothesis (no association, Si ¼ 0), any
value in ½0; 1� is acceptable for the p-value (probability) Pi. Pi is therefore modeled to
follow the uniform distribution Uð0; 1Þ. This setting entails that f0ðYiÞ follows the
Gaussian distribution Nð0; 1Þ: On the other hand, the unknown distribution of Yi

under the hypothesis of association is assumed to follow a Gaussian distribution:
f1ðYiÞ�Nðli; r

2
i Þ.

Under these settings, the algebraic derivation of the posterior distribution (see
Eq. 8.5)

PðS j YÞ / PðSÞPðY j SÞ

shows that, similarly to the prior PðSÞ, the posterior distribution PðS j YÞ has a
logistic regression form. The regression forms are identical in all points except for

the intercept, which is now hþ log LRðYiÞ where LRðYiÞ ¼ f1ðYiÞ
f0ðYiÞ is the usual

likelihood ratio. Importantly, the conditional independence assumption of the prior
distribution is kept: PðSi j S�i; . . .Þ ¼ PðSi j SNi ; . . .Þ.

Finally, the assignment of labels to the genes is performed by running an MCMC.
The MCMC starts from some initial value sð0Þ assigned (at random) to S. Then step k
sequentially updates the labels of the genes according to the following scheme:

logitðPðsðkÞi j Y; s
ðkÞ
1 ; . . .; sðkÞi�1; s

ðk�1Þ
iþ1 ; . . .; sðk�1Þ

n Þ ¼ b0i0 þ b0i1s1 þ � � � þ b0insn:

An important point is that the conditional independence assumption in Eq. 8.4
holds for the posterior distribution, which is therefore also a Markov random field.
The practical consequence is that the computation involved in the sampling of si

only requires values sj where j belongs to the neighborhood Ni: otherwise, the b0ij
coefficient is null if genes i and j are not neighbors in the pathway.
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8.3.3 Performances

Incorporating prior biological knowledge to enhance GWASs is not new (see for
instance Prioritizer [10], CANDID [13], CIPHER [42]). However, such approaches
do not consider the functional relationships existing among genes. In contrast, the
approach of Chen et al. takes advantage of knowledge on known associations to infer
novel association knowledge on other genes related to the former through pathways.

The relevance of the model of Chen and collaborators was supported by a
preliminary study. These authors considered 3,735 genes over 350 pathways. On
the other hand, association results from a GWAS on Crohn’s disease were
available. In each of the pathways, the number of edges Nþþ with both extremities
associated with the disease was observed. Over the 350 pathways, an over-
whelming proportion of counts Nþþ showed exceptionally large values. This
clearly confirms the hypothesis: in a given pathway, most often, genes that are
associated with the disease are neighbors.

The approach of Chen et al. was then evaluated based on 289 pathways and
GWAS data relative to Crohn’s disease. Thirty-two genes associated with the
disease were known (target genes). It was shown that ranking the genes according
to their posterior probabilities is more faithful to the reality than ranking them
based on their p-values. Finally, as expected, it was verified that compared to other
genes in the pathway, the genes with an improved rank are more densely con-
nected to target genes; besides, such genes are also more densily connected with
each other.

8.4 Identification of Protein–Protein Interactions

Protein–protein interactions (PPIs) provide invaluable clues to help elucidate
biological processes or cellular functions. Wetlab technologies such as co-affinity
purification followed by mass spectrometry [12] may only provide PPI data with
both low coverage and accuracy. In silico prediction of PPI networks falls into
three categories: high-throughput data-based, sequence-based and ortholog-based
methods. In the first category, for instance, correlation between mRNA expres-
sions may suggest the existence of a PPI [7]. Sequence-based methods examine for
example protein/domain structures [27], gene neighborhoods [21] and gene fusion
events [9].3 In ortholog-based methods, annotation transfer between genomes is
the key to detect conserved PPIs—or interologs—via gene orthologs [46].

To face the ever-growing accumulation of high-dimensional data, combined
with the apparition of new types of data, Xia and collaborators designed a flexible
model, able to integrate up to 27 data sets of various data types. This model is

3 Gene fusion is likely to detect a PPI since two proteins interacting in the genome of one species
are more likely to be fused into one single protein in the genome of another species.
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based on a naive Bayes classifier [43]. A naive Bayes classifier is a Bayesian
network whose elementary tree structure consists of a single parent (the class
variable) and of children (here, the data types) that are independent of one another,
given the class variable (see Fig. 8.2).

8.4.1 Coping with a Vast Spectrum of Heterogeneous
Data Types

Before we explain thoroughly how the designed classifier, IntNetDB, integrates
various types of data to find PPIs in the human genome, we emphasize the wide
heterogeneity of the data types used by this system. In the most recent instance of
IntNetDB, Xia and co-workers integrated 27 heterogeneous genomic, proteomic
and functional data sets, encompassing 7 data types. For some model organisms
(Yeast, Worm, Fruitfly...), annotations about physical protein–protein interac-
tions are available. Mapping each such genome interactome to human genome
through protein orthologs evidences interologs. Domain-domain interactions
(DDIs) are known to mediate many protein–protein interactions. Structural domain
information databases exist, that provide DDI scores. A DDI score is assigned to
the pair of proteins that respectively harbour the two domains. Gene co-expres-
sion is often a reliable indicator for PPI.

In addition to data describing gene fusion and gene neighborhood, another
data type also depicts gene contexts: gene co-occurrence is often indicative of a
PPI; provided that the organism genome is fully sequenced, it is recognized that
two interacting proteins are likely to be either both absent or both present in this
genome [38]. On the other hand, proteins sharing the same biological function are

(a) (b)

Fig. 8.2 Integration scheme in the approach of Xia et al. [43]. a The various data type evidences
for the prediction of protein–protein interactions (PPI). b The naive Bayes classifier combining
these data types. The variable class is binary: PPI/no PPI. DDI: domain-domain interaction.
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often involved in a PPI [33]. Thus, the Gene Ontology (GO) [36] provides sup-
plementary evidence for PPI. Mapping human genes to orthologs in four model
organisms (Yeast, Worm, Fruitfly and Mouse) was considered in [43].

Xia and co-workers also integrated two novel data types to help predict PPIs:
phenotypic distances and genetic interactions. RNAi phenotype data have been
used to predict PPIs for model organisms: under knock-out experiments, the
respective phenotype profiles of interacting proteins tend to be similar. To transfer
these phenotype data to human, Xia and collaborators mapped to their human
orthologs the genes in the model organisms. Then similarity between the mapped
phenotypes was assessed for the pair of genes in human. On the other hand,
synthetic genetic analysis is a technology that was used in Saccharomyces cere-
visiae to provide a global map of genetic interactions. Genetic interactions are
recognized as high reliable indicators of PPIs. Xia and co-workers mapped the
genetical interaction network of the Yeast model to human interologs.

8.4.2 Heterogeneous Data Integration by Naive Bayes
Classifier

In the integrative model, each of the T data types used for the integration con-
tributes an evidence ei ð1� i� T) for some given pair of proteins. To assess PPI
for this pair of proteins, the likelihood ratio is

LRðe1; . . .; eTÞ ¼
Pðe1; . . .; eT j PPIÞ
Pðe1; . . .; eT j :PPIÞ ;

where Pðe1; . . .; eT j HÞ represents the probability that the evidence ðe1; . . .; eTÞ
has been observed under hypothesis H. The two alternative hypotheses we are
interested in are PPI, the existence of a protein–protein interaction, and :PPI, the
absence of such an interaction. Thus, if the numerator is significantly higher than
the denominator, PPI will be assessed. Symmetrically, a low likelihood ratio will
support the :PPI hypothesis.

Under the assumption that the data sources are independent, the likelihood ratio
writes as a product:

LRðe1; . . .; eTÞ ¼
YT

i¼1

LRðeiÞ ¼
YT

i¼1

Pðei j PPIÞ
Pðei j :PPIÞ :

The likelihood ratio for data type i providing evidence ei is calculated from a set
of assessed PPIs (positive set) and assessed counter-examples (negative set). The
Human Protein Reference Database (HPRD) was used as the positive set; it ref-
erences 19,438 experimentally verified PPIs for 5,983 proteins [32] (at the time of
the integration by Xia et al.). The negative set was generated by Rhodes and co-
workers [33]: it spans all pairwise combinations between two sets of proteins
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located in two different subcellular compartments [plasma membrane (1,397
proteins) and nucleus (2,224 proteins) respectively]. Evaluating both positive and
negative sets for each data type provides reference evidences, which allows to
compute the desired likelihoods. Discretization into intervals is used for the pur-
pose. Suppose we have to assess Pðei j PPIÞ for some pair of proteins, where ei is
the evidence observed for this pair. The positive PPI reference set does not nec-
essarily exhibit a protein pair showing the exact evidence ei. Therefore, the value
Pðei j PPIÞ is replaced with PðIpositive setðeiÞ j PPIÞ, where Ipositive setðeiÞ is an
interval around ei. This interval was obtained from the discretization into intervals
of the evidences observed for the protein pairs of the positive PPI reference set.
Pðei j :PPIÞ is calculated similarly.

Care is required when several data sets contributing to the same data type are
integrated. In this case, to avoid the bias due to dependence, the maximal likeli-
hood (over the data sets) is retained for the data type.

8.4.3 Performances

The literature on alternative methods is vast. Machine learning methods addressing
PPI prediction encompass Bayesian classifiers, decision trees, random forests,
logistic regression and support vector machines. The reader is referred to [44] (for
instance) for a recent overview of existing computational methods.

Two variants of the IntNetDB method were run. The two executions differed by
the HPRD version (more than 10,000 newly annotated PPIs), the integration of
three novel data types (phenotypic, genetic, gene context) in addition to PPI, GO,
gene expression, DDI, and the incorporation of fourteen extra data sets. The
comparison showed a drastical gain in coverage, for a similar ratio of true positives
to false positives: the reinforced integration increased prediction coverage by five-
fold (38,379 PPIs for 5,791 proteins versus 180,010 PPIs for 9,901 proteins).
Besides, not only is the depicted probabilistic approach a simple yet efficient
system to standardize the contributions of heterogeneous data types via likeli-
hoods, it is also a flexible method: the combined likelihood easily supports the
integration of any novel type of data.

8.5 Identification of the Regulatory Target Genes
of Transcription Factors

A transcription factor (TF) is a protein that controls the expression of its target
gene by binding to some specific DNA site located in the regulatory region of the
gene. ChIP-chip and ChIP-seq techniques (Chromatin Immuno-Precipitation
respectively followed by microarray gene expression measurements and by
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massively parallel DNA sequencing) provide the genome-wide list of the physical
binding sites, for a given TF. Exploiting sequence similarity to a consensus
obtained for already known binding sites is also likely to pinpoint putative binding
sites for the TF of interest. Another source of evidence lies in the variation in gene
expression induced by knock-out or mutation of the gene coding for the TF.
However, none of the above data types alone can achieve accurate and complete
identification. First, high-throughput data are prone to present high noise level.
Besides, ChIP-chip and ChIP-seq technologies only inform about physical DNA-
TF interactions. Third, putative binding sites predicted based on sequence simi-
larity with a canonical motif might actually not be bound by the TF of interest.
Finally, variations in gene expression are equally observed for genes either directly
or indirectly controled by a given TF. In the following, B, S and E will respectively
stand for binding, sequence and expression data.

8.5.1 Integrating Multiple Genomic Data Sources
with Multiple Gene Networks

To cross evidences from multiple types of genomic data, two categories of
methods have been investigated. In regression approaches, where a data type is
regressed against another, a large number of observations is required. This is a
severe limitation in the case of gene expression microarray data. In mixture model4

methods, the probabilistic framework allows inference based on the posterior
probability of being a target conditional on the multiple data evidences. In the
mixture model developed in [39], integration includes only two data types—(S, E)
or (S, B) -. This model was further adapted in [30], to jointly handle the three data
types B, S and E. So far, the mixture models used assumed conditional indepen-
dence: conditional on a gene being a target or not, the different data types are
independent. Nevertheless, for the pair (B; S), such an hypothesis is not consistent
with experimental results: the higher the similarity with the canonical site (S), the
higher the binding strength (B).

This section describes the model of Wei and Pan [41]. Therein, the multiple
sources of genomic data are modeled through a multivariate normal mixture
model, and integration of multiple gene networks with these genomic data types
relies on a Markov random field (MRF). Besides relaxing the constraint on con-
ditional independence of genomic data types, another major contribution of Wei
and Pan lies in incorporating biological prior knowledge stating that neighboring
genes tend to be co-regulated by a TF. Thus, not only does Wei and Pan’s
approach integrate several genomic data types; it allows to automatically incor-
porate knowledge from multiple gene networks (see Fig. 8.3). More and more gene

4 A mixture model is a probabilistic model that represents a population of k groups, with random
proportions p1; . . .; pk.
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networks are made available, such as protein–protein interaction networks . On the
other hand, novel networks may be inferred, such as co-expression gene networks
and networks derived from gene ontologies.

Without loss of generality, the presentation here restrains to the three genomic
data types B, S and E. It is important to note that regions which associate with TFs
according to ChIP-chip and ChIP-seq assays are not determined with single-
nucleotide resolution. Wei and Pan computed the binding data (B) from ChIP-chip
assay data: given two replicates in presence of the antibody appropriate for the TF of
interest and given two control replicates, four log2 intensity ratios (LIR) were
measured for the four combinations Immuno-Precipitation/control. The binding
score Bi of a given gene i was computed as the average of the four LIR peaks on the
coding region. If there were probes in the intergenic region, Bi was then calculated as
the maximum of the average over the coding region and the average over the
intergenic region. The sequence data (S) used by Wei and Pan was obtained as
follows: first, a consensus sequence was produced from 10 known binding sites of
the TF of interest; then the genome was scanned with respect to this consensus.
Fixing a very low threshold allowed the detection of at least one match per gene. For
gene i, Si was calculated as the maximum of all its matching scores.

8.5.2 The Unified MRF-Based Mixture Joint Model

For a specified TF, and given a set of n genes, the aim is to estimate whether gene i
is a target for a factor transcription of interest: Ti ¼ 1 denotes a target, otherwise
Ti ¼ 0. The gene i is described by ðBi; Si;EiÞ, summarizing observations for B, S
and E data. In this approach, conditional normal distributions are described for the
observed genomic data (B, S, E):

Fig. 8.3 Integration scheme
for two networks and three
types of data evidence in the
approach of Wei and Pan
[41]. A circled node indicates
that strong evidence is
observed for the
corresponding node (gene).
Bottom right section
reinforced belief in
transcription factor (TF)
target status is indicated in
black.
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PððBi; Si;EiÞ j Ti ¼ jÞ ¼ /ððBi; Si;EiÞ; lj;RjÞ ¼ /jðBi; Si;EiÞ;

where j ¼ 0; 1 and / is a trivariate normal density function of mean lj and
covariance matrix Rj. A mixture model is then depicted as:

PððBi; Si;EiÞ j TiÞ ¼ ð1� p1Þ /0ðBi; Si;EiÞ þ p1 /1ðBi; Si;EiÞ; ð8:6Þ

where p1 ¼ PðTi ¼ 1Þ is the prior probability of gene i being a target (and,
symmetrically, ð1� p1Þ is the prior probability of gene i not being a target). The
model in Eq. 8.6 has to be understood as the ‘‘superimposition’’ of two normal
densities, one under the assumption that gene i is a target (/1), and one under the
assumption that gene i is not a target (/0).

The knowledge from the Nnet gene networks is incorporated through a Markov
random field that rules the states T1; . . . Tn of the n genes according to their Nnet

neighborhoods. Wei and Pan formalized an MRF-based mixture joint model
(MRF-MJM), which writes as the following logistic regression model:

logit PðTi ¼ 1 j TSNnet

k¼1
neighði;kÞ; hÞ

� �
¼ cþ

XNnet

k¼1

bk n1ði; kÞ � n0ði; kÞð Þ=mði; kÞ;

ð8:7Þ

where neighði; kÞ designates the neighborhood of gene i in network k, parameter h
stands for ðc; b1; . . .; bNnet

Þ, njði; kÞ is the number of genes in neighði; kÞ that have
state Tj (j ¼ 0; 1) and mði; kÞ ¼ n0ði; kÞ þ n1ði; kÞ. The contribution of each net-
work k is weighted by the non negative regression coefficient bk, which therefore
measures how informative network k is. In Eq. 8.7, conditioning by TSNnet

k¼1
neighði;kÞ

indicates that the TF target status of gene i depends on the statuses of all its
neighbor genes, considered over all the Nnet networks.

In this case, estimating the likelihood is intractable. In this framework, a
tractable approximation to the joint distribution, the pseudolikelihood [1], is used
instead. Tractability is ensured by the conditional independence assumption which
leads to the following factorization:

PðTÞ ’ LpseudoðT; hÞ ¼
Yn

i¼1

PðTi j TSNnet

k¼1
neighði;kÞ; hÞ

¼
Yn

i¼1

exp cþ
PNnet

k¼1 bk ðn1ði; kÞ � n0ði; kÞÞ=mði; kÞ
� �

1þ exp cþ
PNnet

k¼1 bk ðn1ði; kÞ � n0ði; kÞÞ=mði; kÞ
� � :

ð8:8Þ

Besides the factorization, the transition from Eq. 8.7 to 8.8 uses the conversion
y ¼ logitðxÞ ¼ log x

1�x

� �
) x ¼ ey

eyþ1.
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The Bayes theorem states that PðT j ðB; S;EÞÞ / PððB; S;EÞ j TÞ PðTÞ. The
two ingredients on the right hand side are available from Eqs. 8.6 and 8.8,
respectively. An MCMC is used to estimate the posterior probability of genes
being targets of a specified TF.

8.5.3 Performances

A tremendous variety of alternative computational approaches are available. Some
pointers to general surveys are provided in [29, p. 584]. In particular, Elnitski et al.
wrote a summary on the synergism between in silico, in vitro and in vivo identi-
fication of TF binding sites [8]. On the other hand, the influential role of data
integration is stressed in the surveys provided in [17, 28].

The MRF-MJM approach was evaluated with the LexA transcription factor of
Escherichia coli. It was first noticed that allowing conditional dependence by
assuming a general conditional variance structure in the MRF-MJM model does
not increase the predictive power over assuming conditional independence.
However, as binding data and sequence data are highly correlated for target genes,
this result appears to go against intuition. It might be explained by moderate
predictive power of sequence data and a simpler model in the assumption of
conditional independence. All subsequent analyses were then run incorrectly
assuming conditional independence.

Wei and Pan tested six different integration schemes. Six instances of the MRF-
MJM approach, including simplified ones, were run: ðE; NCoEÞ, ðE; NGOÞ,
ðE; NCoE þ NGOÞ, where NCoE and NGO are gene networks respectively derived
from gene co-expression and a gene ontology (GO), and the three previous
instances with the full set of genomic data ðB; S;EÞ instead of E. Besides, instances
of the standard mixture model (SMM), which considers a single genomic data
type, were also run for comparison: SMMðBÞ, SMMðSÞ, SMMðEÞ. The genes were
ranked according to their posterior probabilities. The variation in the ranking
across these instances was studied for the genes supported by experimental evi-
dence or annotated with ‘‘strong evidence’’ in the RegulonDB database [11].

It was confirmed using ROC curves that mixed integration of both networks and
various genomic data types greatly improves over considering a single genomic
data type alone. Besides, in a mixed scheme, the improvement is less drastic when
increasing the number of genomic data types or when increasing the number of
networks. The GO-derived network constantly showed a b coefficient lower than
the co-expression network’s: it is explained by a higher connectivity of the GO
network, which entails that a target and a non target genes are more likely to be
neighbors in this network.
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8.6 Inference of Causal Relationships Among Phenotypes
via Integration of QTL Genotypes

A quantitative phenotype (or trait) is defined as any physical, physiological or
biochemical quantitative feature that may be observed for organisms. Quantitative
trait loci (QTL) mapping aims at identifying the genomic regions, or QTLs, where
genotype variation is correlated with phenotype variation. Deciphering the causal
relationships among expression traits involved in the same biological pathways—
and therefore correlated—is a current research topic. To this aim, the identification
of the eQTLs (expression QTLs) causal to each phenotype is of prime importance.
In the following, we will denote by genetic architecture (GA) of a given phenotype
the locations and effects of its (directly) causal QTLs. Conversely, GA inference
has to benefit from the information borne by the network that links the phenotypes.
Though, standard QTL mapping merely addresses one single trait at a time, not
considering a possible causal network structure among traits. Thus, QTLs that
exert a direct effect on the trait under study cannot be distinguished from QTLs
with an indirect effect (see Fig. 8.4a). To reconstruct a causal phenotype network
(CPN), several approaches in the literature include QTLs in a probabilistic
framework. However, the common feature of these approaches lies in that GA
inference and CPN reconstruction are conducted separately [3, 34, 47]. In general,
the GA is first inferred, to further help the determination of the CPN. In the
QTLnet approach, Chaibub Neto and co-authors pioneered the principle of joint
inference of CPN and GA [4].

8.6.1 Joint Inference of Causal Phenotype Network
and Genetic Architecture

Chaibub Neto et al. showed that performing the mapping analysis of a phenotype
conditional on its parents in the CPN is the way to avoid detecting QTLs with
indirect effects on this phenotype as directly causal QTLs. Namely, whereas
standard mapping analysis would test the dependence between phenotype u1 and
QTL candidate Q1 (u1 ?? Q1), conditional mapping assesses or invalidates the
dependence relation u1 ?? Q1j Pa ðu1Þ where Paðu1Þ is the set of parents of u1 in
the CPN. As the CPN is itself unknown, the QTLNet approach jointly infers the
CPN and the GA: the procedure iterates a process where updating the CPN
alternates with updating the GA. Thus, GA inference will benefit from information
on the CPN. The core idea is to learn a Bayesian network whose structure coin-
cides with the candidate CPN, using the current information available about causal
QTLs. It has to be noted that the central dogma of biology constrains unidirec-
tionality for causality, from QTL to phenotype: arcs u! Q are not allowed.

Adding information about causal QTLs is crucial to distinguish between can-
didate phenotype networks, when learning a phenotype network. The network
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which best fits the data is that which maximizes some given criterion. In a
probabilistic framework without QTL data integration, this criterion would rely on
the joint probability Pðu1; . . .; unÞ. With QTL integration, the probability to be
taken into account is Pðu1; . . .; un j GAÞ where GA stands for the r QTLs
available: Q1; . . .; Qr. Let us consider a toy-example where the networks (1)
u1 ! u2 ! u3 and (2) u1  u2 ! u3 cannot be distinguished without QTL data
integration since they have the same joint probability Pðu1; u2; u3Þ.5 We now
incorporate QTL knowledge as Q2 affecting u2 but neither u1 nor u3 directly and
obtain two mixed models (see Fig. 8.4b). Then, the conditional probabilities of the
two networks are: Pð1Þðu1; u2; u3 j Q2Þ ¼ PðQ2Þ Pðu1Þ Pðu2 j Q2; u1Þ Pðu3 j
u2Þ and Pð2Þðu1; u2; u3 j Q2Þ ¼ PðQ2Þ Pðu2 j Q2Þ Pðu1 j u2Þ Pðu3 j u2Þ. In the
general case, the previous conditional probabilities are not equal.

8.6.2 The Mixed Model

To model continuous phenotypes that are involved in a causal phenotype network
while also being under the dependence of discrete QTLs, a conditional Gaussian
regression model is used: conditional on the genotypes and, possibly, covariates,
the phenotypes follow a multivariate normal distribution.

Given n individuals, t phenotypes, let u ¼ ðu1; . . .;unÞT represent all pheno-

type values, with ui ¼ ðu1i; . . .;utiÞ
T representing the t phenotype values for

individual i. Let �i ¼ ð�1i; . . .; �tiÞT be independent normal error terms. The
regression model for the phenotype p of individual i writes:

upi ¼ l�pi þ
X

v2PaðupÞ
bpv uvi þ �pi; �pi�Nð0; r2

pÞ: ð8:9Þ

The genetic contribution describes the effects of QTLs and possibly covariates:
l�pi ¼ lp þ Xpi hp, where lp is the overall mean for phenotype p, Xpi represents the

(a) (b)

Fig. 8.4 Disambiguisation of causal relationships. a Left direct effect of QTL Q1 on phenotype
u2; right indirect effet of Q1 on u2. In both cases, u2 6?? Q1. b The two models have the same joint
probability Pðu1; u2; u3) but have different conditional probabilities Pðu1; u2; u3 j Q2Þ given
the QTL data

5
Pð1Þðu1; u2; u3Þ ¼ Pðu1Þ Pðu2 j u1Þ Pðu3 j u2Þ and Pð2Þðu1; u2; u3Þ ¼ Pðu2Þ Pðu1 j u2Þ Pðu3 j u2Þ:

Equality is assessed from the Bayes theorem.
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row vector of genetic effect predictors derived from the QTL genotypes along with
any covariates, and hp is a column vector of all genetic effects defining the genetic
architecture of phenotype p augmented with any covariates. In the phenotypic
contribution (second term of Eq. 8.9), PaðupÞ designates the set of parents of
phenotype p in the phenotype network and bpv models the effect of parent phe-
notype v on phenotype p.

8.6.3 Causal Phenotype Network Reconstruction

Since the graph space grows super-exponentially with the number of phenotypes,
reconstructing a CPN requires a heuristic. An MCMC is implemented, that
combines sampling over CPN structures and QTL mapping. However, conceptu-
ally, a mixed structure G ¼ Gu [ GA, is considered, which is the CPN Gu aug-
mented with the genetic architecture GA connecting QTLs to phenotypes (see Fig.
8.5). The posterior probability of a candidate Gu is estimated as explained below.

From Eq. 8.9, we know that Pðupi j Gu;GA; cÞ is Nðl�pi þ
P

v2PaðupÞ

bpvuvi; r
2
pÞ,

6 where c stands for the set of parameters of the mixed model (i.e. the
coefficients b). Under the assumption of independence between the n individuals,
the likelihood of the candidate CPN factorizes as:

Pðu j Gu;GA; cÞ ¼
Yn

i¼1

Yt

p¼1

Pðupi j Gu;GA; cÞ:

In this case, it is straightforward to compute the marginal likelihood by inte-
grating the previous expression with respect to c:

Pðu j Gu;GAÞ ¼
Z

c
Pðu j Gu;GA; cÞ Pðc j Gu;GAÞ dc:

Finally, the posterior probability of structure Gu conditional on the data may be
computed from:

PðGu j u;GAÞ / Pðu j Gu;GAÞ PðGuÞ;

where PðGuÞ is a prior on the CPNs.
Thus, integrating knowledge about QTLs actually modifies the likelihood

landscape for the search space of Gu structures.
To navigate in this search space, three moves are implemented in the MCMC

scheme of Chaibub Neto et al.: addition of a directed edge, removal or direction

6 If X ¼ yþ E, with E�Nð0; r2Þ, then X�Nðy; r2Þ.
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reversal. Subsequent to a move, (conditional) QTL mapping is replayed for those
phenotypes whose set of parent nodes was modified by the move. Finally, a
posterior probability for the causal relationship ui ! uj (1� i; j� t) involving
each pair of phenotypes is assessed through Bayesian model averaging: for each
directed edge ui ! uj, the posterior probability is estimated as the frequence of
occurrence observed over all the models sampled by the MCMC process.

8.6.4 Performances

First, 1,000 tests were performed based on simulated data generated under two
conditions: respectively weak and strong dependences between the phenotypes and
their eQTLs. The genetic architectures produced were compared with those
obtained through standard QTL mapping. Conditional mapping (see first paragraph
in Sect. 8.6.1) revealed the true architecture in both conditions. To estimate the
quality of the phenotype network inference, the authors measured the frequency
that the posterior probability of the true network was the highest, second highest,
etc. Under the strong dependence condition, the true network is identified as the
best one in 84 % of the cases. The results are more subdued under the weak
dependence condition.

The QTLnet method was then used on real data (132 mice of a F2 intercross,
3,421 transcripts, 1,065 markers), to derive the causal phenotype network relative
to 14 highly correlated transcripts. A consensus network was constructed through
Bayesian model averaging. Interestingly, this consensus network suggests a key
role of one of the transcripts in the regulation of the other transcripts in the
phenotype network.

Fig. 8.5 The mixed model in the approach of Chaibub Neto et al. [4]. a The genetic architecture
defines the QTL mapping (arrows in light grey); the causal network defines the dependences
between the phenotypes (transcripts) (arrows in dark). b Comparison of the genetic architectures
inferred without and with conditioning (in the latter case, the QTLs are framed) (see Sect. 8.6.1)
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8.7 Prediction of Protein Function Through GO-Enriched
Networks of Multiple Related Species

In Sect. 8.5, a gene ontology (GO) was used to derive a functional coupling gene
network, to enhance the identification of transcription factor targets. Therein, a
preprocessing step merely derived a gene network, based on some similarity
measure in the ontology. In the present section, we outline an approach which
benefits from GO knowledge on the fly. As the most developed biological ontology
is the Gene Ontology [36], it is not surprising that this approach addresses the
prediction of protein function.

Improving the coverage and accuracy for functional annotation of proteins is an
active field in post-genomics research. On the one hand, only labor intensive
small-scale experiments are able to provide direct evidence about the functions of
proteins such as energy and RNA metabolism, signal transduction, translation
initiation, enzymatic catalysis and immune response. In contrast, though numerous
high-throughput technologies allow large-scale experimental investigations, the
various types of molecular data but only yield indirect clues about protein func-
tion. To reach the objectives of coverage and accuracy, much is expected from
computational methods.

Established prediction methods use sequence or structure similarity to transfer
functional annotation from protein to protein [22]. However, it is well known that
sequence similarity does not obligatorily entail functional identity. More reliable
evidence is derived from indirect information provided by the biological context of
the protein. Such contextual information includes physical protein–protein inter-
actions (PPI), genetic interactions and co-expression of the genes coding for the
proteins. These contextual data are commonly represented as networks. Thus, a
wide category of methods predicts the function of a protein from the known
functions of its neighbors in the network [2, 14, 45]. Besides, incorporation of
heterogeneous data has been proven useful to increase the power of automated
predictive systems [26].

Probabilistic graphical models offer an appealing framework to propagate
functional annotations through neighborhoods; this explains that approaches based
on these models are not new to protein function inference (e.g. [6, 19, 26]).
However, severe limitations hamper these approaches in the (frequent) case of
proteins that are isolated in the network or whose neighborhood is poorly anno-
tated. Refined GO-based strategies have been proposed to overcome these issues.
Amongst them, the probabilistic approach of Mitrofanova and collaborators
combines random Markov models and Bayesian networks into a single model [23].

In classical approaches, probabilistic inference relies on partial knowledge of
functional annotations to discover the missing functions by passing on and han-
dling uncertain information over a large network. For instance, this network may
be derived from knowledge on physical interactions (PPIs). One of the original
concepts of Mitrofanova and co-workers’ model lies in connecting the networks of
two (or more) related species into a single computational model. The rationale
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behind this approach exploits the fact that in most cases, proteins of different
related species that share high similarity—orthologs—exerted the same estab-
lished function before the speciation event. The second original concept of the
approach described is the direct integration of an ontology or rather, of a sub-
ontology (GOS), into the graphical model. This integration allows the simulta-
neous prediction for the multiple functional categories—or terms—described by
the GOS. In the combined model, each protein is represented by its own GOS. As a
consequence, during function inference, not only is the information passed
between protein neighbors within a species, information also percolates within the
GOS. Moreover, due to inter-species connections between orthologs, such infor-
mation is diffused in an enlarged network.

8.7.1 The GO-Enriched Intra-Species Model

For the sake of a progressive exposition, we first present a model deprived of inter-
species relationships. In the model, each protein is represented by a Bayesian
network whose structure is a replicate of the GO sub-ontology (GOS) of interest
(see Fig. 8.6a). Each protein has its own annotation (positive, negative, unknown)
for each of the GOS terms. A positive annotation means that the protein has the
function represented by the GOS term. The final objective of the probabilistic
inference is to assign an annotation (positive/negative) to each term (GOS node)
labeled unknown in the combined model. The GOS is a directed acyclic graph
where the relationship between child c and parent p may be ‘‘IS A’’ or ‘‘IS PART
OF‘‘. The GOS information is naturally modeled as a Bayesian network (BN). The
so-called true-path rule for gene ontologies requires that if a protein i is positively
annotated at a child node t (denoted by xt

i ¼ þ), then it must also be at all the
ancestor nodes of this child. Consequently, positive annotations may be expanded
up within a GOS whereas negative annotations are expanded down if all the parent
terms of a child term are annotated negative. It follows that conditional proba-
bilities Pðxt

i ¼ þ j paitÞ and Pðxt
i ¼ � j paitÞ need be estimated only if one parent

at least is annotated positive within a possible assignment pait of the parents (for
instance, pait ¼ ðþ;þ;�Þ in the case when node t has three parents in the GOS).

On the other hand, a pairwise Markov random field (MRF) is used to encode
connections between the proteins, based on some similarity measure between the
proteins. Such measures may be derived from PPIs or orthology (i.e. sequence
similarity). In the model resulting from GOS and MRF combination, a potential
function, wintra, is defined; this potential expresses the probability of joint anno-
tation of two proteins i and j at a GOS term t, conditional on their being similar. In
the case of a PPI-based measure, similar proteins are defined as interacting pro-
teins: then, the probabilities wintraðxt

i; xt
jÞ ¼ Pðxt

i; x
t
j j interactionÞ, with xt

i; x
t
j 2

fþ;�g are estimated from a training set. In the case of a sequence similarity-based
measure, a potential is derived from a pairwise normalized BLAST score sB:
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wintraðþ;þÞ ¼ wintrað�;�Þ ¼ sBði; jÞ; wintraðþ;�Þ ¼ wintrað�;þÞ ¼ 1� sBði; jÞ.
If both similarity measures are available for a given pair of proteins, thus defining
two potentials, the resulting potential is defined as the product of the two former.

The knowledge about the annotation information of protein i, at GOS term t is
modeled through function /: /ðþÞ ¼ 1; /ð�Þ ¼ 0 for a positive annotation;
/ð�Þ ¼ 1; /ðþÞ ¼ 0 for a negative annotation; equiprobability for an unkown
annotation (/ð?Þ ¼ 0:5).

The MRF and the GO-based BNs are combined into a single hybrid model
[18]—(see Fig. 8.6b). Based on the material above defined, the joint distribution of
the functional term annotations (Xt

i ) over the set of proteins P is defined as a
pairwise MRF distribution (see Eq. 8.2), whose statement is simplified as follows
for the sake of conciseness:

Pðfxt
igt2S;i2PÞ ¼

1
Z

Y
t2S

Y

i2P
/ðxt

iÞ
Y

i;j2edgesðMRFðPÞÞ
wintraðxt

i; x
t
jÞ

Y

i2P
ðxt

i j paitÞ:
ð8:10Þ

S is the sub-ontology of interest and Z is the so-called normalizing constant (see
Definition 2, Sect. 8.2). In the above joint distribution, it is easy to identify the
contribution of the Markov random field defined by the similarity relation between
proteins, and the contribution of the Bayesian networks. The flow of information
about annotation is propagated through the hybrid model using a message-passing
mechanism tailored for such hybrid models.

(a)

(b) (c)

Fig. 8.6 The combined model of Mitrofanova et al. [23] for protein function prediction. a The
Gene Ontology (GO) substructure. b The GO-enriched intra-species model. c The combined
model obtained through inter-species homology (Two species are considered: sp1 and sp2)
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8.7.2 The GO-Enriched Inter-Species Model

The extension to the inter-species case is straightforward when two related species
are considered. This time, when sequence similarity is ascertained for protein i in
the first species and protein j in the second species, a corresponding potential
function winter is defined. Similarly to the scheme described by Eq. 8.10, the
combined model is merely augmented with undirected edges connecting the
identical GOS term nodes of i and j proteins (see Fig. 8.6c). The joint distribution
is readily extended as follows: a second intra-species factor is added,Q

i2P0 /ðxt
iÞ
Q

i;j2edgesðMRFðP0ÞÞ wintraðxt
i; x

t
jÞ where P0 is the set of proteins for the

second species; an inter-species factor is also added, that accounts for the (valid)
edges connecting some protein in P to some other similar protein in P0:Q

i;j2edgesðMRFðP[P0ÞÞ winterðxt
i; x

t
jÞ.

8.7.3 Performances

Mitrofanova and collaborators performed tests on Yeast and Fly. Respectively
6,008 and 12,199 proteins were considered for Yeast and Fly species. Various tests
were performed based on (1) executions (S) of the approach without integration of
the gene ontology, that is single-term prediction, and (2) runs (GO) of the approach
with the integration of the gene ontology. Besides, annotation transfer by similarity
was considered either within a single species (1), or within two species (2). We
will denote S1, S2, GO1 and GO2 these four kinds of tests. Figure 8.7 recapitulates
the experimental protocole.

The comparison S1 versus GO1 is meant to evaluate the impact of using a gene
ontology. In this baseline test, predictions were then compared for a single term.
The improvement in the prediction is outstanding in all cases: a gain of 26 % (from

Fig. 8.7 Evaluation of the
impact of gene ontology
integration and inter-species
connection on accuracy, in
Mitrofanova et al.’s method.
S1 denotes a run with intra-
species connection only,
whereas S2 indicates intra-
and inter-species connection.
GO1 indicates the integration
of gene ontology knowledge
to the basic scheme S1 (and
symmetrically for GO2 and
S2)
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74 to 100 %) is observed for the Fly species; an increase of 47 % (from 44 to 91 %)
is observed for the Yeast species. Thus, in the case of the Fly species, the inte-
gration of GO knowledge suffices to produce the accuracy of 100 %.

The comparison S1 versus S2 aims at evaluating the influence of annotation
transfer between genomes, through inter-species connection. Mitrofanova and
collaborators performed 5-cross validation for the Fly, Yeast and combined Yeast-
Fly networks. The results are contrasted: an under-performance is obtained in the
case of the Fly species, for which the accuracy decreases by 19 % (from 74 to
55 %); a gain of 28 % (from 44 to 72 %) is observed for the Yeast species. Thus,
inter-species connection alone may be counter-productive (Fly). If a gain is
observed through inter-species connection, it is more subdued than the gain
obtained through integration of a gene ontology (Yeast).

The aim of comparing S2 against GO2 is to measure the impact of the inte-
gration of GO knowledge in presence of inter-species connection. This time, in the
case of the Fly species, inter-species connection does not interfere to lower the
performance, which confirms the prominent role of the GO integration (55 % to
100 %). A gain of 25 % (from 72 to 97 %) is observed for the Yeast species (to be
compared to the increase from 44 to 91 % without inter-species connection).

A significant gain of 8 % (from 91 to 97 %) is thus observed for the Yeast
species in the GO1 versus GO2 test.

The main conclusion is that the GO integration exerts the most influential role.
Inter-species connection may perform worse than merely considering a single
genome. However, it is always beneficial to integrate both GO knowledge and
inter-species connection. Yeast species shows more substantial improvements
compared to Fly species: this may be explained by the higher quality of Fly data
and hence better neighborhoods for the Fly proteins. Annotation transfer is
enhanced through two independent principles: simultaneous consideration of
multiple but related functional GO categories, higher connectivity due to orthology
or PPI knowledge. Expanded protein coverage is another observed advantage.

In the spirit of the comparison S2 versus GO2, Mitrofanova and collaborators
also compared their full approach (GO2: GO integration and inter-species con-
nection) to the method of Naria et al. [26] which can be seen as a variant of S2.
The method of Naria et al. relies on a probabilistic Bayesian framework that
integrates networks (e.g. PPI and/or expression networks) with categorical features
(i.e. presence of protein domains, knockout phenotype (e.g. ‘‘starvation sensitiv-
ity’’) and cellular location categories). The case of lack of information about
categorical features is taken into account in [26], which thus allows the compar-
ison. Besides, for comparability, both PPI and sequence similarity were used to
build the networks input to the two methods. The method of Mitrofanova et al.
improves over that of Naria et al.: for the Fly species, the accuracies observed are
respectively 100 and 45 %; for the Yeast species, the accuracies are 97 and 50 %.
Again, GO integration is shown to play a more prominent role than inter-species
connection. This improved performance can be attributed to the increased con-
nectivity endowered in the GO structure. However, it has to be noted that the S2
executions of Mitrofanova and co-workers’ method already outperformed the (S2)
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runs of Naria et al.’s approach: 55 versus 45 % for the Fly species, and 72 versus
50 % for the Yeast species. It is difficult to speculate on the reasons why annotation
information percolates more efficiently in the probabilistic model of [23] (without
GO integration) than in that of [26]. Unfortunately, no common types of results are
available (such as accuracy, false positive rate, or number of true positives) that
could allow the comparison of the methods both at full integration level (GO2 for
Mitrofanova et al.’s method, and integration of categorical features for Naria
et al.’s approach.).

Finally, with a Gene Ontology subtree of size 8, the running times observed for
each five-cross validation round on Yeast, Fly and Yeast-Fly models were 35, 59
and 28 mn on average on a standard personal computer. The third low execution
time is explained by faster convergence in the combined network, probably due to
denser sources of evidence.

8.8 Discussion and Future Directions

In this chapter, we have presented different approaches based on probabilistic
graphical models, to illustrate the use of this class of models as an integrative
framework for systems biology. In particular, various forms of Markov random
fields were described, that were used to model the propensity to share a common
state for neighbor nodes in a single network or in multiple networks. For instance, in
the illustration devoted to genetic association study (GAS), the MRF models a single
network—a biological pathway—and the state accounts for association with the
disease.

One of the simplest Bayesian networks that can be imagined, the naive Bayes
classifier, also represents one of the most flexible tools to integrate multiple data
types. In this line, the method presented here to detect protein–protein interactions
(PPIs) assigns equal weights to the genomic data types. However, a limitation lies in
that the positive and negative sets of examples and counter-examples requested by
this simple method do not necessarily benefit from equal covers across the data types.

Enhancement through mixed integration of genomic data types and gene net-
works is shown for the identification of the target genes of transcription factors (TF).
It was emphasized that the key to improvement is much more mixing data sources
than multiplying either the number of genomic data types or the number of networks.
In the probabilistic model, a single Markov random field integrates and weights the
contributions of the gene networks. Neighbor genes therein are expected to share a
common state (target or non target). In the global model, genomic data types are
integrated through a prior distribution. In the GAS application, the prior distribution
accounted for the integration of pathway knowledge.

The gene networks mentioned above provide qualitative knowledge to rely
upon. This time, for causal phenotype network (CPN) reconstruction, a conditional
Gaussian regression model was used to integrate quantitative characteristics
(continuous phenotypes) and qualitative assumptions (latent relationships between
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the phenotypes). In contrast with the preceding approaches, prior knowledge—
consisting in the genetic architecture (GA)—is not fixed from the start but is
instead refined throughout the CPN inference procedure: feedback from the most
recent incumbent CPN offers opportunity to update the GA and vice versa.

The second (PPIs) and third (TF target genes) models presented both rely on
shared functional annotation. Raw data is used in the second model whereas the
third one may incorporate a gene network induced from a gene ontology. In
contrast, accounting for ontological knowledge thoroughly impacts the statistical
inference scheme in the last approach presented, that addresses protein function
prediction. This approach combines ontology replication with intra- and -inter-
species homology knowledge. Again, as for the GAS illustration above, a Markov
random field (MRF) is built from a known structure, here a network connecting
similar proteins. Similarity is assessed from PPI knowledge as well as intra- and
inter-species homology. Unlike the GAS approach, neighbors in the network tend
to share a common hierarchy of function annotations instead of a single variable.
The originality of the mixed model arises from the expansion of the protein nodes
of the MRF into Bayesian networks (BNs), each replicating the gene ontology
substructure. The completion by links between identical term nodes in similar
protein meta-nodes provides a highly connected network. Thus boosted informa-
tion propagation is expected.

Among the five integrative methods reviewed, the one addressing PPI prediction
and the one predicting TF gene targets are perhaps the most exemplary in that they
take advantage of various genomic data and/or networks. In the case of the TF gene
target application, integrating genomic data and networks outstandingly improves
the results but then, increasing the number of genomic data types or networks does
not provide much improvement. On the other hand, the illustration on the prediction
of protein functions reveals the prominent role of gene ontology (GO) knowledge.
GO integration exerts the most influential role. However, in this context, it is always
beneficial to integrate both GO knowledge and inter-species connection.

The previous paragraph raises in particular the question on the possible depen-
dence of the various data sources and on how this dependence is ignored or modeled.
In the illustration of the PPI detection, the naives Bayes classifier requires inde-
pendence of the data types conditional on the state variable (PPI=:PPI). Robustness
to deviation from this rule was not evaluated in this framework. However, in the case
of another model and for another application (identification of TF target genes), the
conclusion was that the simplifying assumption of conditional independence does
not decrease performance. The PPI detection illustrates here a case where multiple
data sets may be examined within a common data type. Retaining the empirical
maximum likelihood computed over all data sets of the same data type avoids the
dependence bias for this type. Again, an open question remains the significance of a
high likelihood obtained for some data type if there are cover biases between data
types, in terms of positive and negative sets.

Further progress in the field will mainly depend on improving implementations
and allowing actual flexibility. For instance, MCMC implementations rely on
hyperparameters whose tuning can hardly be delegated to the end-user. Besides, it
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is worth examining how to incorporate additional biological knowledge in priors,
as in the case of causal phenotype network inference. The reported advantages of
probabilistic graphical networks in promoting highly integrative approaches
combining various heterogeneous data sources may be sometimes offset by the
computational burden. From the theoretical viewpoint, for all models presented
here, generalization to multiple data types is straightforward. Mitrofanova et al.’s
method readily generalizes to more than two species but scalability might be an
issue. The method designed to predict protein functions was shown tractable for
gene ontology substructures of size below 20, which might appear insufficient to
some end-users and therefore requires further work. The next-generation
sequencing era is also that of grid and cloud computing. For example, three of the
models presented here use an MCMC scheme. MCMCs are amenable to distrib-
uted implementations. As more data and more data types will become available,
adding a novel data type should be automatically handled by the models’ imple-
mentations. Therefore, the dissemination in the biological community of integrated
PGM-based approaches also implies that service-oriented integration accompanies
theoretical developments.
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