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Agent-Based Modeling Approaches
to Multi-Scale Systems Biology:
An Example Agent-Based Model
of Acute Pulmonary Inflammation

Gary An, Michael Wandling and Scott Christley

Abstract Implicit in systems biology is the concept that the whole is greater than
the sum of its parts. Agent-based modeling, an object-oriented, discrete event,
population-based computational modeling method, is well suited to meeting this
goal. By viewing systems as aggregates of populations of interacting components,
agent-based models (ABMs) map well to biological conceptual models and present
an intuitive means by which biomedical researchers can represent their knowledge
in a dynamic computational form. ABMs are particularly suited for representing
the behaviour of populations of cells (i.e. ‘‘cell-as-agents’’), but ABMs have also
been used to model molecular interactions, particularly when spatial and structural
properties are involved. Presented herein are a series of ABMs of biomedical
systems that cross multiple scales of biological organization, as well as a detailed
description of an example ABM of acute pulmonary inflammation. Because of
these characteristics agent-based modeling is a useful addition to the suite of
equation-based mathematical modeling methods found in systems biology, and can
serve as an integrating framework for dynamic knowledge representation of
biological systems.
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Abbreviations

ABM Agent-Based Modeling
ABMF Agent-Based Modeling Format
AI Artificial Intelligence
ALI Acute Lung Injury
APIABM Acute Pulmonary Injury Agent-Based Model
ARDS Acute Respiratory Distress Syndrome
CMA Computational Modeling Assistant
DAMP Damage-Associated Molecular Products
EINISI Enteric Immunity Simulator
I-jB I-kappa-B
NCBO National Center for Biomedical Ontology
NEC Necrotizing enterocolitis
NF-jB Nuclear Factor kappa-B
ODD Overview, Design and Detail Protocol
ODE Ordinary differential equation
PMN Polymorphonuclear neutrophils
TGF-b1 Transforming growth factor-b1
TNF-a Tumor necrosis factor-a
VILI Ventilator Induced Lung Injury

15.1 The Translational Dilemma in Biomedical Research

The greatest challenge facing the biomedical research community is the ability to
translate the successes at obtaining basic mechanistic knowledge about biological
processes into clinically effective therapeutics. There is a growing gap between the
capability to acquire and analyze data and the ability to effectively and efficiently
evaluate the hypotheses generated from that data. This is the Translational
Dilemma. Recognition of this gap was made evident in 2004 when the United
States Food and Drug Administration released a white paper titled: ‘‘Innovation or
Stagnation: Pathways for the Future of Biomedical Research’’ [1]. This report
noted that while there has been steady increase in funding for basic biomedical
research there has been a concurrent steady decrease in the number of new clin-
ically effective therapeutics brought to the bedside. These divergent trends are not
sustainable. A recent review analyzed the roots of the Translational Dilemma and
defined it as: the inability to efficiently translate data into viable mechanistic
hypotheses across levels of biological organization, and limitations in the ability
to test those hypotheses in a meaningful and efficient way (see Fig. 15.1) [2].
Currently, biomedical research faces two fundamental limits to its goal of being
able to develop new interventions that can beneficially affect human health:
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(1) achieving the breadth of hypothesis testing necessary to deal with the multi-
plicity of possible explanations of high-resolution data (throughput problem) and
(2) adequately representing the complexity of integrative hypotheses (multi-scale
problem). Both of these issues are directly related to the need to greatly increase
the ability to evaluate the plausibility of mechanistic hypotheses, and will almost
certainly involve using computational modeling and simulation for dynamic
knowledge representation and hypothesis instantiation. The ability to execute in
silico experiments offers the potential to substantially accelerate and enhance the
Scientific Cycle by providing a plausibility filter for putative hypotheses to help
direct traditional experimental design to separate sets of plausible hypotheses and
provide a wider search capability for plausible solutions. This chapter will discuss
the use of agent-based modeling (also known as individual based modeling), for
dynamic knowledge representation, and provide specific examples in the area of
acute inflammation.

Fig. 15.1 The current imbalance in the scientific cycle. Technological advances in the past few
decades have greatly increased the ability to generate, collect and correlate data, but a process
bottleneck has developed at the point of being able to evaluate hypotheses via experiment. This
bottleneck restricts the ability of the biomedical research community to efficiently and
systematically reduce the space of possible hypotheses to those that are plausible. Augmenting
this iterative cycle will identify those hypotheses that will be targeted for further investigation
and refinement, and serve as potential points of therapeutic control. Reprinted with permission
from Ref. [2]
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15.2 Dynamic Knowledge Representation
with Agent-Based Modeling

Agent-based modeling is an object-oriented, discrete-event, rule-based computa-
tional modeling method [3–7]. An agent-based model (ABM) represents a system
as populations of components where the simulation agent level of the ABM cor-
responds to the primary component of the system being studied. An ABM agent
class is defined by specific properties governing its identity and behavior, and an
ABM creates a population of individual computational instances of each agent-
class. Each individual agent therefore possesses the behavioral rule sets and
defined properties of its agent class, but once created can have diverging behav-
ioral trajectories based on differing inputs within a heterogeneous simulation
environment. ABM rules are often expressed as conditional statements (‘‘if-then’’
statements), making ABM suited to expressing the hypotheses that are generated
from basic science research, though it should be noted that the general conditional
nature of simulation agent rules does not preclude the encapsulation of other types
of mathematical or computational models (i.e. differential equation, stochastic or
network) as rule systems [8–10]. Regardless of the specific ABM rules, ABMs
offer the ability to achieve a close mapping between the natural language
expression of hypotheses present in publications (the current means by which this
knowledge is communicated within the community), and the structure of ABM
[11, 12]. This property facilitates the use of agent-based modeling as a means of
dynamic knowledge representation, particularly for non-mathematicians/compu-
tational scientists. ABMs are also intrinsically multi-scale, utilizing behavioral
rules (Scale #1) to determine individual agent behavior (Scale #2) and then
aggregating individuals into population dynamics of the global system (Scale #3).
These levels can theoretically be nested, to provide a comprehensive depiction of a
multi-scale biological system (see Fig. 15.2), making ABMs well suited for cre-
ating modular models [7, 8, 13–15].

15.2.1 Properties of Agent-Based Models

ABMs are related to other spatially discrete modeling methods, most notably
cellular automata, though the mobile capability ABM agents and ability to rep-
resent a wider range of model topologies could lead to consideration of cellular
automata as a special type of ABM. Similarly, neural nets can be considered
ABMs, with the nodes representing instances of an agent class, and the network
structure being the model topology. However, in practice, many ABMs have
several characteristics of agent-based modeling that set it apart from other object-
oriented, rule-based modeling systems (such as Petri nets, Boolean or Bayesian
Networks), even though at its purest definition, they could all be potentially
viewed as ABMs:
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1. Agent-based models (ABMs) readily incorporate space. In an ABM agent
behavior is driven by interactions determined by agent neighborhoods defining
the communication and interaction network for each agent. An agent neigh-
borhood can be represented as a two-dimensional square grid (very common), a
3-dimensional cubic space [8, 13], 2- or 3-dimensional hexagon cal space
[12, 16] or as a network topology, as a neighborhood does not necessarily mean
physical proximity but rather the configuration of some set of other agents with
whom an agent can interact. This definition of an agent neighborhood is con-
sistent with the bounded nature of the sense-and-respond and message passing
capabilities of biological objects.

2. ABMs utilize parallelism. In general, each ABM agent class has multiple
computational instantiations that form a population of agents, each capable of
having different behavioral trajectories. These heterogeneous behaviors pro-
duce population dynamics that are the observable, system-level output of the
ABM. A classic example of this phenomenon is the behavior of flocks of birds,

Fig. 15.2 The mapping between scales of biological organization, research community structure
and agent-based models. This diagram maps the similar structure of organizational scales present
in biological systems, the research communities studying them and the architecture of an ABM.
Note that scales of organization are nested in the biological system and the ABM, reflecting the
trans-scale coupling seen in both systems. Alternatively, the research community structure is
disparate and compartmentalized, arising from both social and pragmatic logistical factors.
Reprinted with permission from Ref. [12]
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in which simulations utilizing relatively simple interaction rules among birds
can lead to sophisticated flocking patterns without an overall controller [17].

3. ABMs incorporate stochasticity. Many biological systems have behaviors that
appear to be random [18, 19]. Probabilities of a particular behavior can be
determined for the population as a whole, and used to generate a probability
function for the behavior of a single agent that is then incorporated into the
agent’s rules. As a population of agents executes their rules during the course of
a simulation, each agent follows a particular behavioral trajectory as its
behavior rules’ probabilities are resolved as the simulation progresses. A set of
behavioral outputs is thusly generated from a single ABM, producing system
behavioral state spaces representing the set of population-level biological
observations.

4. ABMs are modular. Agents represent a modular level into which new infor-
mation can be added either through the introduction of new agent-types or by
the modification of existing agent rules without having to re-engineer the entire
simulation. Agent classes representing generic cell types can be subdivided and
expanded to include a finer degree of detail with respect to sub-categories of
cells while the remainder of the ABM remains essentially intact. New media-
tors can be similarly added by creating new cellular-state or environmental
variables and rules. Multiple ABMs can be aggregated, providing that their
points of contact and interaction are consistent across the incorporated ABMs
[12, 13].

5. ABMs produce emergent properties. A central hallmark of ABM is that they
generate system-level behaviors that could not have been reasonably inferred
from, and often may be counter-intuitive to, examination of the rules of the
agents alone. This is our definition of emergent behavior. ABMs are able to
generate this type of behavior due to the locally constrained and stochastic
nature of agent rules, and the population effects of their aggregated interactions.
For example, in the bird flock an initial observation would suggest an overall
leader, thereby requiring a means of determining rules for flock-wide command
and control communication. This, however, is not the actual case; birds func-
tion on a series of locally-constrained, neighborhood-defined interaction rules,
and the flocking behavior emerges from the aggregate of these interactions [17].
The capacity to generate non-intuitive behavior is a vital advantage of using
ABM for conceptual model verification, as often the translation of generative
mechanisms to system-level behavior produces paradoxical and un-anticipated
results that break a conceptual model.

6. ABMs can be readily constructed using incomplete and abstracted knowledge.
When constructing an ABM it is advantageous at the outset to keep the rules as
simple and verifiable as possible, even at the expense of some detail. As such,
meta-analyses of existing basic research often guide the development of an
ABM [20]. ABMs constructed with admittedly incomplete and uncertain
mechanisms representing statements of hypotheses can provide qualitative
verification of those hypotheses [21]. As with all computational models, the
greater fidelity of mapping between the ABM and its biological counterparts
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enhances the correlation between simulation results and the real-world
behaviors. An iterative process of refinement of an ABM will lead to increased
detail, possibly a stronger correlation to real-world data and a greater confi-
dence in the ability of the ABM to describe observable phenomena.

Agent-based modeling is an integrative modeling framework that can readily be
used for communicable dynamic knowledge representation [11–13, 22] (see
Fig. 15.2). Agent-based modeling, because of its emphasis on ‘‘things doing
things’’, is generally more intuitive for non-mathematicians/computer scientists
than more formal mathematical modeling methods such as ordinary differential
equations, partial differential equations, and their stochastic variants. Agent-based
modeling presents a lower threshold barrier for researchers to ‘‘bring to life’’ their
conceptual models and integrate in silico methods with traditional in vitro and
in vivo experiments [22].

Since ABMs are knowledge-based models, constructed by instantiating bottom-
up mechanisms (as opposed to inductive models, where mechanisms are inferred
with the goal of explaining data), agent-based modeling addresses different
modeling questions than equation-based inductive models. For instance, ABMs are
not readily developed directly from a mass of raw data; they require that the
modeler have a mechanistic hypothesis that, when instantiated in an ABM, can be
used to generate simulated data, which can then be compared to the real-world data
set. One can envision an iterative process by which inductive models are applied to
large data sets, wet lab experiments are carried out to investigate the mechanisms
inferred from the inductive model, and the experimentally confirmed mechanisms
are used as a basis of an ABM which would close the discovery loop by reca-
pitulating the original data set.

Agent-based modeling was pioneered in the areas of ecology, social science and
economics, but in the last decade they have been used to in the biomedical arena to
study sepsis [12, 13, 23, 24] cancer [8, 16, 25–27] cellular trafficking [28–32]
wound healing [33–35] and intracellular processes and signaling [9, 36–42]. Many
biomedical ABMs focus on cells as the primary simulation agent level (with the
notable exceptions of modeling intracellular processes from Refs. [9, 36–42]
above). From a knowledge translation standpoint, cells form an easily identifiable
level of ‘‘encapsulated complexity’’ that is both highly studied as a unit (i.e.
cellular biology) and can be addressed with relatively straightforward input-output
rules [7]. As noted above, while ABM agent rules are often logical or algebraic
statements, rules can be a mathematical model in itself. There are multiple
examples of embedding complex mathematical models within a cell-level ABM
agent [7–10, 15, 35, 43]. These examples emphasize the potential unifying role of
agent-based modeling as a means of ‘‘wrapping’’ different simulation methodol-
ogies. This suggests that the meta-structure of an ABM can be used as a template
into which structured biomedical knowledge can be integrated to facilitate the
instantiation of multiple mechanistic hypotheses [44].
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15.2.2 Tools for Agent-Based Modeling

Agent-based modeling environments require addressing certain software issues
beyond the basic capabilities of more traditional object-oriented programming
tools. These issues include emulating parallel processing to represent the actions of
multiple agents within populations, dealing with associated execution concurrency
issues within those populations, establishing means of defining model topology (i.e.
agent interaction neighborhood), and the development of task schedulers to account
for the multiple iterations that constitute an ABM run. As a result of these issues,
along with the case that many researchers who utilize ABMs are not trained
computer scientists or programmers, many biomedical ABMs are created using
existing ABM development software packages. These agent-based modeling
environments attempt to strike a balance between representational capacity, com-
putational efficiency, and user-friendliness. A non-comprehensive list of such ABM
toolkits includes Swarm (http://www.swarm.org/index.php/Swarm_main_page),
Mason (http://cs.gmu.edu/*eclab/projects/mason/), RePast (http://repast.source
forge.net/), NetLogo (http://ccl.northwestern.edu/netlogo/), StarLogo (http://
education.mit.edu/starlogo/) and SPARK (Simple Platform for Agent-based Rep-
resentation of Knowledge www.pitt.edu/*cirm/spark [45]). All these platforms
represent some trade-off among the triad of goals mentioned above. For an
excellent review and comparison of many of these agent-based modeling toolkits,
see Ref. [46].

15.2.3 Agent-Based Modeling of Inflammation

The use of agent-based modeling has dramatically increased since the year 2000,
and is now a generally accepted means of performing computational biology. As is
the case when discussing any specific modeling method, it should be reemphasized
that agent-based modeling is only one of an array of methods that can be used to
represent and investigate biological systems (such as those covered in other
chapters in this book). Each of these modeling techniques has its strengths and
weaknesses, and potential modelers need to recognize that the modeling method
chosen should be tailored to the question(s) being asked of the model [47]. One of
the most effective ways of communicating the capabilities (and limitations) of a
particular modeling method is through the use of examples. Towards this end, the
following sections list a series of ABMs of different aspects of inflammation,
followed by a more detailed description of the development and use of an ABM
directed at a specific issue, that of acute pulmonary inflammation.

We focus on ABMs of the inflammatory response because inflammation is one
of the most basic and ubiquitous processes in biology: in addition to growth,
metabolism and replication, the response to injury leading into repair is a core
function of all organisms. It is highly evolutionarily conserved, and in multi-
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cellular organisms is a well-coordinated network consisting of specialized cell
types and molecular mediators [47, 48]. The inflammatory response can be
described simply as: (1) Sensing of damage or threat, (2) Containment and
clearance of the threat, and (3) Repair of the damaged tissue. Intrinsic to all of
these steps are counter-regulatory controls intended to limit and modulate the
response. Evolution has operated on the components of the inflammatory response
to produce systems that are robust over a wide range of heterogeneous insults, with
trade offs on the efficacy of the pro-inflammatory response versus the negative
consequences of an overly sensitive and exuberant response. While this balance
generally operates well it is subject to disordered behaviour with significant
consequences on the development of disease. Diseases such as sepsis, trauma,
inflammatory bowel diseases, chronic wounds, autoimmune diseases and asthma
are the direct result of disordered and inappropriate inflammation, while many
other diseases, such as cancer, diabetes, atherosclerosis, Alzheimer’s, and obesity
are associated with inflammatory processes as either a generative mechanism or a
means of perpetuating the disease. This is because inflammation can damage
normal healthy tissues, which in turn leads to the production of molecules that re-
stimulate inflammation. Acceleration of this forward feedback loop can lead to
disordered inflammation that promotes organ dysfunction and death [47–51],
Inflammation may also manifest in slower degenerative processes that share many
common mediators with acute pro-inflammatory insults [52]. However, experience
has shown that caution must be exercised in targeting inflammation with phar-
macological agents. Because of its ubiquitous role in homeostasis, modulation of
inflammation is fraught with unintended systemic consequences, such as gastro-
intestinal toxicity of cyclooxygenase-2 inhibitors [53, 54] or increased suscepti-
bility to infection in persons taking TNF-a inhibitors [55, 56] or the general failure
of anti-cytokine therapies for sepsis [24]. The difficulty in engineering safe and
effective therapeutic agents directed at inflammation is a primary example of the
Translational Dilemma in biomedical research. Because of these characteristics
inflammation represents perhaps the ideal target for systems biology and com-
putational modelling with agent-based modelling, and the following sections list a
series of ABMs of different aspects of inflammation across a range of organiza-
tional scales. This brief survey of inflammation-related ABMs is followed by an
example describing in more detail the development and use of an ABM directed at
a specific issue, namely that of acute pulmonary inflammation.

15.2.3.1 ABMs of Inflammation-Related Intracellular Processes

The characterization of intracellular pathways is the traditional focus of systems
biology, with a long history of work and achievement in the development of
mathematical models of cellular signaling and metabolic control. These models are
generally biochemical kinetic models, utilizing differential equations and sto-
chastic methods based on the Gillespie Algorithm. However, the use of discrete-
event, particle based modeling, exemplified by agent-based modeling, is growing
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in this arena. With increasing awareness of the influence of the complex, com-
partmentalized environment of the intracellular milieu on intracellular dynamics,
there is a need to account for issues of molecular crowding and spatial hetero-
geneity of the reaction milieu and how they affect enzymatic reactions within the
intracellular environment. Additionally, the presence of sub-cellular structures,
cytoskeletal elements, organelles, and compartments call for the increasing
incorporation of spatial properties and detail. Ridgway et al. [40] used an ABM of
intracellular signaling to demonstrate that the reaction dimension determining
biochemical kinetics within a prokaryotic cytoplasm was reduced from the
expected three dimensions to nearly two, with significant consequences for the
dynamic modeling of control loops in which subtle changes in feedback determine
the direction of a molecular switch. Pogson et al. [39] developed an ABM of
control pathways affecting the transcription factor Nuclear Factor kappa B
(NF-kB). These studies demonstrating the importance of the spatial distribution in
terms of nuclear translocation of the constitutive inhibitor of NF-kB, I-kappa-B
(IkB), and the binding of IkB to actin, a cytoskeletal protein, a mechanism sub-
sequently identified in their laboratory [38]. We developed an agent-based
architecture called Spatially Configured Stochastic Reaction Chambers to dem-
onstrate that even an abstract representation of enzyme kinetics could, if sufficient
pathway component detail was included, reproduce canonical behavior at the
cellular level, as in the effect of preconditioning on the behavior of the Toll-like
Receptor 4 (TLR-4) signaling pathway [36]. Similarly, an ABM of NF-kB
response to endotoxin utilized molecular level agents nested within ‘‘mega-
agents’’ representing different inflammatory cell types to reproduce recognizable
dynamics of endotoxin response, including priming and tolerance at both the
transcription factor and cellular activation level [42].

15.2.3.2 Cell-Level ABMs of Systemic Inflammation and Simulated
Trials for Sepsis

The cell-as-agent level of component representation provides perhaps the most
intuitive link between the laboratory-derived basic mechanistic knowledge and the
structure of an ABM. Some of the earliest examples of biomedical ABMs were
focused at this level [23, 24, 26], leading to the realization that even abstract agent-
rules could produce very recognizable dynamics that could provide deep insights
into the essential characterization of a disease process. For example, an early ABM
of systemic inflammation and sepsis viewed the inflammatory process as being
governed by interactions at the endothelial blood interface [23]. This ABM gen-
erated four clusters of distinct trajectories of model-system behavior purely by
altering the degree of initial perturbation, trajectories that matched the four pri-
mary clinical scenarios associated with systemic inflammatory response. This
ABM also demonstrated that the mechanistic basis of inflammation was the same
whether the initiating insult was infectious, as in classical sepsis, or tissue damage,
as in severe trauma.
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The endothelial-surface systemic inflammation ABM was further extended to
perform in silico clinical trials based on published and hypothetical inflammatory-
mediator-based interventions [24]. Published pharmacologic properties of a series
of mediator-targeting compounds were inputted into the ABM simulating a sepsis
population. The efficacies of the interventions were then evaluated against a
simulated control population. None of the mediator-directed interventions led to a
statistically significant improvement in simulated patient outcome, including a set
of immune augmenting interventions (e.g. addition of Granulocyte Colony Stim-
ulating Factor) and combination anti-cytokine therapy (intended to overcome
possible pathway redundancy). While these results were not totally unexpected,
the exercise demonstrated that the ABM could be used as a means of assessing the
veracity of the proposed intervention: i.e. what are the global consequences of
intervening in a particular pathway, and is it actually a good idea to intervene at
this point? The confirmation that what appeared to be intuitively plausible points
of mechanistic intervention did not in fact behave as expected when placed in a
systemic context demonstrated the potential usefulness of agent-based modeling
and dynamic knowledge representation for hypothesis verification. We suggest
that one of the primary roles of dynamic knowledge representation is exactly this
type of hypothesis evaluation and verification, intended to reduce the set of
plausible hypotheses and thereby help direct future investigation by eliminating
therapeutic dead-ends.

15.2.3.3 Cell-Level ABMs of Wound Healing of Skin
and Soft Tissue

As a system of response and repair, inflammation is intimately tied to healing.
Many cellular and molecular mediators are shared between acute inflammation and
healing; for instance the anti-inflammatory mediators that limit and contain the
propagation of the pro-inflammatory response, such as Interleukin-10 and trans-
forming growth factor-b1(TGF-b1) are themselves growth factors. Wound healing
is also an intrinsically spatial process, as damaged tissue is removed and replaced
by surrounding ‘‘normal’’ tissue. Therefore, ABMs of wound healing represented a
natural direction of development arising from the early inflammatory ABMs.
Wound healing ABMs have been used to shed basic insights on the spatial nature
of skin wounds and their healing [34, 57], to represent the mechanistic patho-
physiology of diabetic wounds and to posit potential mechanistic targets for
therapeutics development [33], and offer the potential for personalized medicine
by modeling individual responses to injury and therapy in vocal chord trauma
[58, 59]. The diabetic wound ABM [33] was used to determine the phenotypic
effects of under-activation of latent TGF-b1 and over-production of tumor necrosis
factor-a (TNF-a), both associated with diabetes, and generated a host of emergent
features characteristic of diabetic ulcers. Moreover, this ABM was used to test in
silico the effects of both current therapies for diabetic ulcers (namely wound
debridement and treatment with platelet-derived growth factor) as well as novel
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interventions (e.g. inhibition of TNF-a or addition of TGF-b1) [33]. The ABM of
vocal fold inflammation and healing attempted to create personalized sets of
models by calibrating parameters using data on cytokine levels in laryngeal
secretions of individual human volunteers subjected to experimental phonotrauma.
Patient-specific computational simulations were created based on baseline levels
of cytokines as well as at 1 and 4 h after phonotrauma. These simulations gen-
erally predicted the levels of cytokines at much later time points (24 h), and were
used as the basis for simulated therapy [58, 59].

15.2.3.4 ABMs of Organ-Level Inflammation

A critical point of the translational dilemma is the transfer of cellular and
molecular mechanisms, which are measured and characterized in the laboratory
environment, to the level of organ level physiology and phenotype, which is the
primary means by which disease is defined and diagnosed. It is here that the
population-oriented capabilities of agent-based modeling can serve an important
translational role. As a result there has been a great deal of interest in producing
ABMs that represent organ-level manifestations of inflammation.

Intestinal Inflammation

The intestinal tract is subject to a variety of inflammatory conditions, both acute,
such as in systemic shock, gut-derived sepsis and necrotizing enterocolitis, as well
as in more chronic diseases, such as inflammatory bowel disease. The nature of the
inflammatory processes in the gut is particularly notable due the persistent pres-
ence of huge numbers of microbes that can initiate and propagate inflammation.
While the study of the gut ecology has been traditionally divided into those who
study the host (epithelial biology and immunology) and those who study the
microbes (microbiology), there is an increasing recognition that these two fields
need to be merged into a comprehensive characterization of the host-microbe
environment [60]. The integrative capabilities of agent-based modeling may play a
particularly important role in this arena, and there has already been some pre-
liminary work in this direction. A group at the Virginia Bioinformatics Institute
has developed the Enteric Immunity Simulator (EINISI), an ABM environment to
investigate the pathogenesis of enteric diseases related to the immune response to
pathogen and reproduced the dynamics of bacterial dysentery [61]. Our group at
the University of Chicago has developed an ABM of gut host-pathogen interac-
tions specifically related to virulence activation of Pseudomonas aeruginosa, an
important nosocomial pathogen, and the development of gut-derived sepsis [62].
This ABM contains a detailed representation of P. aeruginosa virulence activation
pathways integrated with an abstracted gut epithelial surface. The ABM’s output is
mapped to in vitro and in vivo experimental platforms of gut-derived sepsis, used
to simulated a more clinically relevant manifestation of intestinal ischemia
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resulting from systemic shock than currently possible using in vivo techniques (i.e.
non-lethal systemic shock), and has been used to identify gaps in the low-phos-
phate-sensing model of P. aeruginosa virulence activation in circumstances of
major abdominal surgical stress. Additional laboratory experiments are in the
process of being performed to more comprehensively characterize the factors
involved in low-phosphate-related P. aeruginosa virulence activation. Finally, we
have also developed an ABM that represents a unifying hypothesis underlying the
pathogenesis of necrotizing enterocolitis (NEC), the leading cause of gastroin-
testinal morbidity and mortality in the premature infant population [63]. NEC is a
complex, multi-factorial disease that involves prematurity, enteral feeding and a
bacterial component resulting in bowel inflammation and necrosis. The research
community has found it extremely challenging to create laboratory models that can
comprehensively reproduce the range of pathogenic components associated with
NEC, mainly related to the extreme degree of experimental perturbations required
to generate the NEC phenotype in vivo. We have formulated a minimally sufficient
unifying hypothesis of NEC that posits that the fundamental deficit in infants
susceptible to NEC is immaturity of the ability of the neonatal gut epithelial cells
to manage reactive oxygen species, including those produced as a byproduct of
cellular respiration. When this basic feature was instantiated in the NEC ABM, and
then overlaid with the other recognized contributing factors, a recognizable pattern
of cascading systems failure was demonstrated to be necessary for the generation
of the NEC phenotype. Specifically, immature neonatal gut epithelial cells had
increased fragility to inflammation propagating challenges, such as metabolic
stress (from feeding), decreased mucus barrier integrity and bacterial contacts. It is
hoped that this ABM can be used to integrate the multiple theories and mecha-
nisms currently studied concerning the pathogenesis of NEC.

Pulmonary Inflammation

The lung is an organ that is commonly subjected to inflammatory insults and
responses, either through direct infection, inhalation of particulate matter, or in a
‘‘bystander’’ role associated with systemic inflammation. One type of pulmonary
infection that has been the subject of extensive agent-based modeling is tuber-
culosis. ABMs have been used to study inflammatory cell control mechanisms
associated with the generation of pulmonary granulomas [64], and the pathogen-
esis of pulmonary tuberculosis has been modeled using a multi-scale architecture
where ODEs representing the molecular dynamics of TNF-a signaling were
embedded within inflammatory cell agents [10]. Another ABM examined the
pulmonary inflammatory response to inhaled particulate matter and the subsequent
transition from acute inflammation to fibrosis [65]. While relatively simple in
terms of cellular agent rules and types of mediators represented, this ABM was
able to reproduce histological patterns of pulmonary inflammation and fibrosis
seen in a clinically relevant murine model of particulate inhalation. Finally, in
Sect. 15.2.4 we present a detailed description of an ABM of acute pulmonary
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inflammation designed to examine the dynamics of acute lung injury from trauma,
pneumonia, and systemic sepsis.

15.2.3.5 Multi-Organ Inflammation and Failure

The structural/anatomic approach to multi-scale modeling can be taken one step
further by using the modular property of agent-based modeling to link individual
organ ABMs in a multi-scale architecture. The approach was introduced in an
ABM of the gut-lung axis of systemic acute inflammation and multiple organ
failure [13]. This ABM incorporates multiple structural and anatomic spaces, e.g.
endothelial and epithelial surfaces as aggregated by cell-type into organ-specific
tissues and finally to organ-to-organ interconnections and cross-talk. This archi-
tecture also translates knowledge across domain specialties (molecular biology to
clinical critical care), representing molecular and cellular mechanisms and
behaviors derived from in vitro studies, extrapolated to ex vivo tissue experiments
and observations, leading to patterns of organ-specific physiology, and finally
simulating clinically relevant, interconnected, multi-organ physiology including
the response to ventilator support of acute respiratory failure. This ABM also
posited certain characteristics of the gut-derived pro-inflammatory compound that
is circulated in the mesenteric lymph and induces pulmonary inflammation.
Examining the time course of pulmonary inflammation and comparing that to
generated factors following intestinal ischemia suggested that the mesenteric
lymph inflammatory compound was not an initial inflammatory cytokine, nor a
translocating luminal compound manifesting decreased intestinal permeability, but
rather a substance reflecting cellular damage of gut tissue with properties con-
sistent with damage-associated molecular patterns (DAMPs). This last hypotheses
remains to be completely confirmed by the sepsis research community, but at this
time appears to be consistent with ongoing research in this area [66].

15.2.4 An Example ABM of Acute Pulmonary Injury

Herein we present a description of the development of an ABM focused on rep-
resenting existent knowledge concerning acute pulmonary inflammation and the
dynamics of various types of acute lung injury. We term this ABM the Acute
Pulmonary Injury ABM (APIABM). The primary goal of this example is to
demonstrate some of the steps and modeling issues related to the development and
use of an ABM. While the APIABM is a relatively simple model and its output is
qualitative in nature, these characteristics actually emphasize one of the greatest
advantages of agent-based modeling, namely the ability to relatively quickly and
with limited computational overhead instantiate mechanistic biological knowledge
into a computational model that can produce recognizable behaviors. There is a
significant role for qualitative modeling within the greater context of the discovery
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phase of science [2, 36] and in particular the ease with which agent-based mod-
eling maps to biological knowledge and can be performed with a ‘‘low threshold,
high ceiling’’ strategy [22] that allows for future modular expansion of the ABMs.
As all modeling can be considered as selective abstraction, we have abstracted out
a fair amount of molecular detail in the APIABM as to not distract from the
cellular functions of interest. Additionally, rather than presenting detailed simu-
lation experiments we instead emphasize the calibration/validation steps, and then
discuss future directions that can be taken with this model. For interested readers,
the entire APIABM can be downloaded from http://bionetgen.org/SCAI-wiki.

The process of ABM construction and use is described in the general context of
the Overview, Design Concepts and Details (ODD protocol), an attempt to help
standardize the description of ABMs and their uses [67]. The ODD protocol was
originally developed for ABMs studying ecological and social systems, and though
it does not present an exact fit with the use of agent-based modeling as a means of
biomedical dynamic knowledge representation (notable discrepancies include:
format-driven redundancies; potential disruption of explanatory flow, particularly
in terms of describing the mapping between the biology and the ABM; non-
applicability of certain categories, such as learning and adaptation; the inherent
imprecision of the term ‘‘emergence’’; and lack of section concerning calibration)
it does provide a useful framework in which the rationale and process behind the
design of an ABM can be communicated. We utilize a modified version of
the ODD protocol as the organizational framework for the description of the
APIABM.

15.2.4.1 Purpose

The modelling purpose of this ABM is to dynamically represent the molecular,
cellular and organ-level dynamics of acute pulmonary inflammation and provide a
unifying basis for the response to multiple types of acute lung injury, namely direct
trauma (pulmonary contusion), bacterial infection (primary pneumonia), and
systemic inflammation (acute lung injury/acute respiratory distress syndrome or
ALI/ARDS). These disease processes represent a major source of morbidity and
mortality in the acutely and critically ill patient, and present significant diagnostic
and therapeutic challenges to medical practitioners. The complexity of the
inflammatory response means that effective modulating therapies need to be the
‘‘right drug for the right condition at the right time,’’ a criteria that requires disease
characterization at a level of resolution not currently achieved (and this includes –
omic characterization, which just provides for a series of high-dimensional
snapshots). By integrating existing mechanistic knowledge, down to the scale of
putative molecularly targeted interventions, to produce a recognizable organ-level
phenotype in the form of edema patterns, the APIABM can serve as a dynamic
bridge to fill in the gaps in existing knowledge and data.
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15.2.4.2 Entities, State Variables, and Scales

The Entities in the ODD refer to the objects from the reference system represented
in the ABM. Entities can refer to the active components of the system (i.e. the
agents/individuals), subcomponents sensed/used/manipulated by the agents (i.e.
variables in the agent or the environment) or aggregated collections of agents or
sections of space that make up the ABM’s environment. Each entity has a set of
state variables that defines its current state. For agents these state variables would
correspond to molecular components such as receptors, enzymes and genes, for the
spatial environment, these state variables would represent levels of secreted
mediators or extracellular structures. The set of state variables is consistent for a
particular entity type, but individual values of the state variables distinguish one
entity from other entity of the same type and are used to track how a particular
entity changes over time [67]. In the APIABM entities range from cellular
mediators to alveolar space, and are discussed in more detail in the sections below.
In order to distinguish computational components in the APIABM from their
biological referents, we will use a different font to denote APIABM
components.

We have elected to abstract the large number of specific molecular species into
functional groups, which are then assigned to aggregated descriptive variables. For
instance, the plethora of pro-inflammatory cytokines involved in pulmonary
inflammation is represented by a single variable called pro-inflammatory
cytokine. We justify this modelling decision based on the fact that we are not
interested in high-resolution examination of molecular interactions, but rather
what the overall consequences of these types of interactions have on the behaviour
of cellular populations. This is one example of how the ‘‘encapsulated complex-
ity’’ offered by agents allows investigation of higher-level system properties even
given incomplete knowledge, as is often the case, of lower-level detail.

Agents/Individuals

In developing an ABM one of the first modelling decisions to be made involves
selection of the agent level. As noted above, the agent-level should represent a
level of ‘‘encapsulated complexity’’ that exists in sufficient numbers such that a
population of agents can be modelled, but not too many numbers such that the
population size abuts computational limitations. The cell types represented include
alveolar epithelial cells, monocytes, macrophages, neutrophils, and bacteria. The
behaviours exhibited by each cell type reproduce those that are known to exist
in situ and vary in response to changes in the inflammatory milieu of the tissue in
which they are located. A description of the agent classes and their state variables
with their process flow can be seen in Table 15.1. A more detailed explanation of
the rules for each agent class is found in the Process Overview and Scheduling
Sect. 15.2.4.3.
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Spatial Units and Environment

The topology of the APIABM is a 2-dimensional square grid with edges that wrap
forming a torus. This world structure was selected in great part due to the con-
straints placed by the software system, NetLogo [68], in which the APIABM was
implemented. We were willing to accept these limitations given the ease with
which models of biomedical systems can be rapidly implemented and prototyped
in NetLogo [22]. The two-dimensional grid spaces (‘‘patches’’ in NetLogo ter-
minology) are the fundamental spatial units of the APIABM, each possessing state
variables representing extracellular mediators and structures that make up the
microenvironment experienced by the cellular agents occupying them. A screen-
shot of the APIABM can be seen in Fig. 15.3. The patches represent an abstract
cross-sectional depiction of the lung parenchyma, with specific focus on repre-
senting the alveolar air spaces and their interposing interstitial tissue. Patches at
x- and y-coordinates that are multiples of 5 are given the state variable ‘‘alveolar
interstitium’’, while the rest are given the state variable ‘‘alveolar space’’. For a
complete list of the state variables of the spatial units see Table 15.2. A detailed
explanation of these can be found below in the Process Overview and Scheduling
section.

Fig. 15.3 Screenshot of acute pulmonary injury agent-based model (APIABM). This screenshot
displays the overall architecture of the APIABM, which includes a regular lattice of alveolar
interstitium, on which move the inflammatory cells, with interposed areas corresponding to
alveolar space. This screenshot also displays an initial localized inoculum of bacteria prior to the
execution of the model. Pulmonary edema is seen as bluish-white patches within the alveolar
spaces (see Figs. 15.4, 15.5, and 15.6), with brighter areas corresponding to higher levels of
edema fluid
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Scale

Since ABMs iteratively execute a set of rules and commands, the time scale of the
ABM is often tied to the length of time it takes for the reference system to perform
the actions reflected in the ABM rules. For the ALIABM, each iteration of the
program (or ‘‘tick’’) represents *7 min in reference system time. The disease
processes being simulated have general time courses of *72 h for development,
with recovery (should it happen) taking *14 days. Based on these timeframes the
simulations were run for 14 days of simulated time.

15.2.4.3 Process Overview and Scheduling

The dynamics of the pulmonary inflammation arise from the actions and inter-
actions of the cellular agents in response to the conditions of the patch on which
they are located. Cellular agents are also able to sense certain variables on the
patches immediately adjacent to them (such as for allowing the simulation of
chemotaxis). As noted above the cells of interest are alveolar epithelial cells,
monocytes, macrophages, neutrophils and generic bacteria; the rule sets for each of
these agent-classes constitute a submodel of the APIABM. An overview of these
cell submodels is presented in this section. For a comprehensive list of the state
variables for each type of agent class, refer to Table 15.2.

Monocytes

Under baseline conditions, monocytes move/circulate throughout the alveolar
interstitium and represent a potential source of additional pulmonary tissue mac-
rophages with a differentiation rate corresponding to the lifespan of the macro-
phages (see Macrophages). After an insult is applied, pro-inflammatory
cytokines and damage signals are released secondary to inflammation and
when they are present above a set chemotaxis threshold, the transformation rate is
accelerated as monocytes migrate to the focus of inflammation and subse-
quently differentiate into macrophages. Monocytes are repleted by an ‘‘off-
screen’’ monocyte-maker that represents the hematopoietic activity of the bone
marrow.

Macrophages

Under baseline conditions, macrophages move randomly through the alveolar
interstitium. When they encounter pro-inflammatory stimuli they migrate towards
the focus of inflammation. Additionally, in response to inflammatory mediators,
macrophages release pro-inflammatory, anti-inflammatory, and tissue repair
cytokines.
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As seen in Table 15.1, the macrophages in the APIABM have numerous
state variables. Macrophages have an age, which is initially set at 3,000 ticks,
which corresponds approximately to a 14 days lifespan [69]. This value decreases
by 1 with every tick until it reaches 0, at which time the macrophage dies and is
removed from the simulation. We note that given the time frame of the current set
of simulations (14 days) we could have excluded age as a macrophage state
variable; however, our goal is to not produce ‘‘one-off’’ models, but rather
incorporate selected aspects from the reference system with an eye towards
additional simulation experiments in the future. For instance, a natural next set of
simulation experiments using the APIABM would examine the immunocompro-
mised phase of sepsis, which extends the simulated time frame out to 28 days or
beyond. Additionally, the inclusion of the age variable eases the possible inclu-
sion of mechanisms that may either speed or attenuate programmed cell death
(apoptosis).
Macrophages include representation of both pro-inflammatory and anti-

inflammatory state signalling pathways. The state variables that make up these
pathways represent the various components of the molecular signalling cascades
that drive the response to and the release of cytokines during the inflammatory
response. These include representations of receptors, signalling kinases, genes and

Table 15.2 Spatial units and patch variables

Spatial unit State variables

Alveolar space: Represents air-fill spaces
of the lung parenchyma. Volume and
surface area represent the gas-exchange
surface of the lung

• Capillary-Leak: Represents the rate at
which edema fluid is produced and
transferred into the alveolar space.
Determined by the presence of damaged
alveolar epithelial cells

Alveolar interstitium: Represents the
tissue of the lung, forms the walls of the
alveolar space

• Fluid: Represents edema fluid that has
leaked from the interstitium into the
airspace

General patch variables: These are extracellular
variables, generally representing secreted/
produced mediators that are sensed by and
responded to by the different cell types

• Pro-inflammatory-cytokine:
Produced and sensed by macrophages,
monocytes and neutrophils

• Anti-inflammatory-cytokine:
Produced and sensed by macrophages
and neutrophils

• Damage-signal: Produced by
alveolar-epithelial-cells and
sensed by macrophages, monocytes
and neutrophils

• Cytotoxic-compound: Produced by
neutrophils and results in damage to
alveolar-epithelial-cells and
kills bacteria

• Nutrients: Produced by bacteria
damaging alveolar-epithelial-
cells and consumed by bacteria to
increase their energy
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transcription/translational events. Patch variables representing pro-inflammatory
stimuli are sensed by macrophages, which respond by activating pro-
inflammatory receptor variables, which in turn leads to activation of pro-
inflammatory-kinases, activation of pro-inflammatory-genes, with
subsequent production and release pro-inflammatory cytokines. Similarly,
a macrophage’s anti-inflammatory receptors can be activated,
leading to activation of anti-inflammatory-kinases of two types leading
to two sets of genes; those associated with inhibiting pro-inflammatory
cytokine production, and those associated with the production of anti-
inflammatory cytokines. These two pathways represent positive and nega-
tive feedback control systems, respectively, on macrophage function.

Neutrophils

Under baseline conditions, neutrophils move randomly throughout the
alveolar interstitium. Neutrophils respond to pro-inflammatory stimuli by
turning on their activation state variable. Activated neutrophils migrate
towards the pro-inflammatory signals, which triggers the activation of signal
cascades, pro-inflammatory-kinases, that result in the release of further
pro-inflammatory cytokines as well as cytotoxic-compounds rep-
resenting reactive oxygen species (ROS). Neutrophils also have an age,
which is set to 1,000 ticks, approximating a life span of 5 days, and are repleted by
an ‘‘off-screen’’ neutrophil-maker representing the hematopoietic activity of
the bone marrow.

(Generic) Bacteria

Bacteria represent the introduced pathogens that cause primary pneumonia.
Bacteria induce tissue damage, leading to the release of tissue damage
compounds that stimulate the activation of the host inflammatory response. The
primary bacteria state variable is energy. Bacteria acquire energy
through their tissue damage induction, and when they reach a set energy
threshold they will replicate. If they are prevented from inducing tissue damage,
their energy degrades at a rate of 1 per tick until it reaches 0, at which time the
bacteria die. Bacteria are also killed by activated neutrophils and the
presence of cytotoxic-compound.

Alveolar Epithelial Cells

Alveolar epithelial cells are stationary cells representing the cellular
components of the alveolar interstitium comprising the lung parenchymal tissue.
Alveolar epithelial cells sense and respond to inflammatory stimuli in
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their local microenvironment, and also form the barrier between the fluid in the
interstitial space and the gas-exchange spaces of the alveoli.

The primary state variable determining the function of the alveolar epi-
thelial cells is damage. When high levels of pro-inflammatory
cytokines or cytotoxic-compounds are present, the alveolar epi-
thelial cells become damaged, releasing their own pro-inflammatory
damage signal molecules, which in turn leads to further propagation of inflam-
mation. Also, damaged alveolar epithelial cells release fluid into the
surrounding alveolar space, simulating the formation of alveolar edema. It is the
spatial distribution of the alveolar edema pattern that forms the qualitative metric
used for validation of the APIABM.

Pulmonary Compartment Spatial Units

The APIABM abstractly depicts the gas-exchange structure of the lung, and is
divided into patches that are either alveolar interstitium or alveolar
space. Under normal conditions, mobile cellular agents have their movement
confined to the patches possessing the alveolar interstitium state vari-
able and therefore do not enter patches possessing the alveolar space state
variable. The patches comprising the alveolar interstitium further pos-
sess a capillary leak state variable. In response to a set level of pro-
inflammatory mediators at a given patch, the capillary leak state variable
activates, allowing inflammatory mediators to leave the interstitium and enter the
alveolar space, as occurs in situ. Additionally, the alveolar space patches
have a fluid level state variable, which represents the degree of fluid leaking
from the alveolar interstitium into the alveolar space through the
damaged alveolar epithelial cells. The distribution and degree of
alveolar edema represents the qualitative metric used for validation of the APIABM.
The spatial unit categories and their respective state variables can be seen in
Table 15.2.

15.2.4.4 Design Concepts and Initialization

In initiating a modeling project, it is of the utmost importance to define the
experimental frame, thereby establishing what can and cannot be examined by the
particular model. The experimental frame is defined by the scientific questions at
hand, and provides direction as to the degree of abstraction used in the develop-
ment of the model [70]. The APIABM is a highly abstracted representation of
acute inflammation of the pulmonary parenchyma. The parenchymal focus of the
APIABM is directed by the scientific goal of understanding and mechanistically
unifying diseases such as pulmonary contusion (i.e. direct lung trauma), bacterial
pneumonia and acute lung injury/acute respiratory distress syndrome (ALI/
ARDS). There are many details of the real lung that are left out. The APIABM
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does not incorporate the mechanical forces associated with ventilation, sponta-
neous or mechanical, and therefore cannot be used to examine the effects of
ventilator associated lung injury (VILI). Our modeling focus does not require
addressing the bronchial airways, and therefore specifically excludes the conse-
quences of inflammation in the airways as is seen in asthma. The focus on acute
inflammation also excludes the ability of the APIABM to represent more chronic
processes such as pulmonary fibrosis, or the development of chronic obstructive
pulmonary disease. While some may consider such restrictions as highly limiting
the potential utility of the APIABM, the fact is that one should strive to develop
the simplest model that can address a defined scientific focus and provide a rec-
ognized use for the researcher. In this case, our interest is in the acute processes
that might affect the lung in a acutely ill patient, and given the role of the
inflammatory response in this setting, we make the modeling decision to focus on
the consequences of inflammation on the gas-exchanging parenchymal aspect of
the lung, specifically manifest in the patterns of production of alveolar edema.

15.2.4.5 Initialization

One critical point to remember when using ABMs for biomedical processes is that
the baseline state is one of dynamic equilibrium, i.e. health. This means that the
state of the system prior to any perturbation that would lead to disease is
dynamically stable. The corollary to this fact is that biomedical ABMs are not
models of disease, but rather models of health that can be subsequently perturbed
to generate system trajectories that correspond to disease. As such, part of the
initialization process involves making sure that the APIABM produces stable
behaviour absent an invoked perturbation, including stability of those cellular
populations that have their life-cycle represented (namely monocytes, mac-
rophages and neutrophils).

15.2.4.6 Simulations

The simulations carried out here using APIABM are geared towards demonstrating
calibration and validation. Calibration involves the adjustment of parameters of the
ABM to attempt to fit some set of defined descriptors of the reference system, be
they a quantitative data set or some more qualitative pattern/phenotype. This latter
approach, called Pattern Oriented Modeling [21], is very commonly used as a
means of calibrating and validating ABMs. Initial validation of an ABM is
accomplished when calibration results in satisfactory matching between the ABM
and its referent with parameter values that are not clearly implausible, a level of
validation is termed face validity [71]. Despite being the lowest level of validation
possible for a simulation, establishing face validity is of extreme importance in the
use of computational models for dynamic knowledge representation of biomedical
systems. This is because biomedical research is primarily a discovery-oriented
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endeavour, where the primary procedural challenge is being able to separate
plausible hypotheses from those that are not [2, 44]. Conversely, the inability to
identify a set of parameters that can achieve plausible behaviour represents a
failure of face validity; in these cases the underlying rules of the ABM need to be
re-evaluated. Unfortunately, there are not clear guidelines about how to identify
the transition point between inadequate sampling of parameter space and deter-
mination of model insufficiency, and the fact remains that this is a heuristic process
that is enhanced by modelling experience.

We utilize pattern oriented analysis in the evaluation of the APIABM, focusing
on two primary system patterns: (1) matching between the time courses of the
modelled processes and the known disease pathophysiology, and (2) matching
between the spatial patterns of alveolar edema generated by the APIABM and
those recognized in the clinical setting. Each of the simulated disease processes
below will include a brief description of the nature of the perturbation, confir-
mation of the expected time course and APIABM screenshots demonstrating the
resulting patterns of pulmonary edema. Of note, other than the code changes to
implement the specific type of perturbation, there were no differences or alteration
in the code of the APIABM between the different disease state simulations.

Simulation of Pulmonary Contusion

A pulmonary contusion arises from direct trauma to the chest wall with force
transmitted to the pulmonary parenchyma. It is, literally, a bruising of the lung.
The traumatic force leads to locally distributed tissue damage, with subsequent
activation of inflammation. Pulmonary contusion was simulated in the APIABM
by applying a roughly circular injury pattern centered on the Cartesian coordinates
of the APIABM with increasing radius of the applied injury pattern representing
progressively increasing trauma. The dynamics of the inflammatory response
followed the expected trajectory, peaking at approximately 3 days for those runs
able to recover. A sequence of APIABM pulmonary contusion screenshots can be
seen in Fig. 15.4.

Simulation of Pneumonia

Pneumonia arises from the introduction of pathogenic bacteria into the lung, with
subsequent bacterial growth, tissue damage and inflammatory response. Pneu-
monia was simulated in the APIABM by applying a roughly circular distribution
of bacteria agents, where increasing number of bacteria and corresponding
size of the inoculated area represent progressively increasing inoculum. The
dynamics of the inflammatory response followed the expected trajectory, with
development of a significant ‘‘infiltrate’’ by 3 days in those levels of initial
inoculum not spontaneously cleared. A sequence of APIABM pneumonia
screenshots can be seen in Fig. 15.5.
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Simulation of Acute Lung Injury/Acute Respiratory Distress Syndrome

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) arises from
activation of pulmonary inflammation by circulating inflammatory products gen-
erated by non-pulmonary systemic inflammation, such as sepsis. The multi-scale
gut-lung ABM mentioned in Sect. 15.2.3.5 [13] examines the role of the mesen-
teric lymph in activating pulmonary inflammation, and we use the putative
mechanism described by that ABM to simulate the effects of remote systemic
inflammation on the lung. Systemic inflammation and subsequent production of
inflammatory mesenteric lymph were abstractly represented by introducing a
probability of spontaneous activation of neutrophils; this reflects both the priming
of neutrophils and activation of pulmonary endothelium by inflammatory

Fig. 15.5 Screenshots of 3-day course of bacterial pneumonia simulated in the APIABM. This
series of screenshots demonstrate the progression of pneumonia resulting from a localized
inoculation of bacteria. The pattern of alveolar edema corresponds to the evolution of a
pneumonia-induced infiltrate seen radiographically

Fig. 15.4 Screenshots of 3-day course of pulmonary contusion simulated in the APIABM. This
series of screenshots demonstrate the progression of alveolar edema resulting from a localized
injury (sterile) corresponding to blunt pulmonary trauma. This is consistent with the time course
seen both clinically and radiographically
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mesenteric lymph. The dynamics of the inflammatory response followed the
expected trajectory, with the development of extensive patchy infiltrates by Day 3.
A sequence of APIABM ALI/ARDS screenshots can be seen in Fig. 15.6.

15.2.4.7 Possible Extensions of the APIABM

The APIABM is a very abstract model, but due to the modular nature of ABMs it
is readily extensible along a series of future development paths. Certainly more
molecular detail can be included into the representation of the pro- and anti-
inflammatory pathways; this could be driven by a researcher’s particular interest
area and desire to examine/confirm higher order behaviour related to that partic-
ular pathway. While the APIABM currently represented the alveolar airspaces
involved in gas exchange, there is no functional consequence of the alveolar
edema; it would be relatively straightforward to tie the edema state of each rep-
resented airspace to a gas exchange function, thereby being able to tie the
inflammatory biology to a functional output of the lung. Pharmacological inter-
ventions can also be simulated: standard therapies such as antibiotics could be
represented by a culling function applied to the bacterial populations, while anti-
mediator interventions could be simulated as has been previously shown in in
silico clinical trials [24]. More detail concerning the functions and characteristics
of bacteria can be added where the specific virulence properties can be embedded
into the bacterial agents to more closely approximate the complex of host-path-
ogen interactions in the face of inflammation [62]. Finally, the APIABM can be
linked to other organ-level ABMs in a modular fashion [13], in order to capture
the broader, systemically oriented genesis and consequences of pulmonary

Fig. 15.6 Screenshots of 3-day course of acute lung injury/acute respiratory distress syndrome
(ALI/ARDS) simulated in the APIABM. This series of screenshots demonstrate the progression of
diffusely heterogeneously distributed alveolar edema arising for diffuse pro-inflammatory
activation of the alveolar epithelium. This perturbation is consistent with the pulmonary effects of
acute systemic inflammation as would be seen in sepsis or severe trauma. The time course and
qualitative pattern of edema formation are consistent with the development of ARDS in the
clinical setting
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inflammation. Interested readers are encouraged to download the APIABM from
http://bionetgen.org/SCAI-wiki and explore the possibilities available from agent-
based modelling.

15.3 Discussion

15.3.1 Challenges to the use of Agent-Based Modeling

As with all modeling methods, agent-based modeling is not without its limitations.
One common issue shared with all computational and mathematical modeling
methods is that the quality and reliability of the models are directly related to the
reliability of the underlying assumptions of the model and the quality of their
implementation during construction of the model. This issue can be addressed by
emphasizing transparency of both underlying assumptions and implementation
details with respect to the construction of an ABM. The ODD protocol, while not
developed specifically with biomedical ABMs in mind, provides a useful reference
point with respect to documenting the structure and goals associated with an agent-
based modeling project [67].

One shortcoming of agent-based modeling is the difficulty in applying formal
analysis to the relationship between the agent-rules and the behavior of the system.
Due to the combined stochastic behaviour of agents and the difficulty in assigning
scalar metrics to account for the spatial aspects of an ABM’s output it can be very
challenging to evaluate the effect of parameter values and model structure on an
ABM’s behaviour. Alternatively, equation-based models have well-established
procedures for analytical tasks such as parameter sensitivity analysis, bifurcation
analysis, and behaviour-state-space determination. Work on developing mathe-
matical descriptions of ABMs offer the prospect that formal analysis may be
available in the future [72]. In the meantime, ABM researchers use a variety of
strategies, such as heuristics [6, 24], literature-based constraints [28, 31] and Latin
Hypercubes [10, 64] for parameter estimation and sensitivity analysis.

Some of the apprehension associated with the analysis of ABMs can be
addressed by viewing ABMs as objects more akin to wet lab experimental plat-
forms rather than more traditional, equation-based mathematical models. Pattern-
oriented analysis, in which corresponding patterns of dynamic behaviour are used
to relate the computational ABM to its real-world referent, allows ABMs to be
evaluated much in the same way as wet lab systems or model organisms [21].
From this regard, the stochastic and emergent properties of ABMs reinforce their
ability to capture the robustness of dynamic behaviour seen in complex systems,
thereby allowing more insight into their core organizational structure.

ABMs are, in general, more computationally intensive than equation based
models. The increased computational requirements place constraints on both the
size of ABMs in terms of number of agents as well as the complexity of their
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internal rule systems. The natural solution to this bottleneck is to implement very
large scale ABMs on current high performance computing platforms. However,
there are intrinsic properties of ABMs, primarily related to the high degree of
dynamics in the agent-to-agent interaction and communication network, that
challenge the ability to implement ABM on highly distributed memory systems.
Certain types of model architectures, mostly incorporating limited or relatively
static interaction neighbourhoods with a high ratio of intra-agent computation (i.e.
very complex mathematical rules) to inter-agent communication, are more suited
to implementation on these massively parallel computer architectures. These types
of models are also suited to implementation using Graphical Processing Units
(GPUs), which offers the possibility of ‘‘supercomputer on a desk’’ computational
power for selected types of ABMs [73–75]. It should be noted that there are also
nontrivial modeling issues associated with parallel implementation of ABMs, aside
from the computer science challenges just noted above. The selection of the scale
of process to be distributed across multiple processors may have consequences
with respect to concurrency and event scheduling and to the mapping of the
simulation behaviour back to the biological referent; for instance attempting to
distribute a single agent’s rules over a series of processors. Thus far parallel ABM
implementations have not explored the distribution of a single agent’s execution
across multiple processors, and have opted for a more organizationally defined
distribution strategy that expands the overall size of the ABM (i.e. more agents)
and keeps the implementation of agent-scale behaviour at the processor and sub-
processor level.

15.3.2 Conclusion

The Translational Dilemma is the greatest challenge facing the biomedical
research community today. Future operational procedures for biomedical science
should involve technological augmentation of all the steps of the scientific cycle
and allow the knowledge generated from such research to manifest in multiple
areas. These include the development of highly predictive, personalized simula-
tions to streamline the development and design of therapies, simulating the clinical
application of these therapies in population studies (in silico clinical trials), and
predicting the effects of drugs on individuals. We suggest that the agent-based
paradigm, incorporating knowledge encapsulation, modularity and parallelism, can
play an important role in the development of this meta-engineering process.
Agent-based modeling can provide an integrative architecture for the computa-
tional representation of biological systems. Expanding the tools for AI-augmen-
tation of computational dynamic knowledge representation and ties to biomedical
ontologies [44, 76] can significantly reduce the threshold for the general researcher
to utilize computational modelling and allow investigators to ‘‘see’’ the conse-
quences of a particular hypothesis-structure/conceptual model, such that the
mechanistic consequences of each component of the hypothesis can be probed and
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evaluated. Dynamic knowledge representation enables the instantiation of
‘‘thought experiments:’’ the exploration of possible alternative solutions and
identifying those that are plausible, i.e. consistent with the observed data. These
models can aid in the scientific process by providing a transparent framework for
this type of speculation, which can then be used as jumping off points for the
planning and design of further laboratory experiments and measurements. It is
hoped that the increasing use of this type of knowledge representation and com-
munication will foster the further development of ‘‘virtual laboratories’’ and in
silico investigations.
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