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Editorial and Introduction

Systems biology employs a rational approach to delineate the emerging properties
of biological networks and complex biotechnological schemes. It aims to explain
and to predict molecular, cellular, tissue, organ, and whole-body processes,
quantitatively. By using multiscale models in silico, SB is expected to bring
numerous benefits to pharmaceutical discovery and development as the properties
of a system can be studied over a wide range of length and timescales. SB can
reduce the number of compounds that need to be synthesized in discovery by using
refined algorithms to weed out compounds with poor pharmacokinetic and
toxicology profiles. Accordingly, it will save time and money by selecting the
drugs, which are more likely to succeed in clinical development.

SB features two arms: biology at health (functional/physiologic network model)
and biology at disease (pathological/disease network model). In both cases, the
global systems level of understanding requires two components (Gomes B
Practical Applications of Systems Biology in the Pharmaceutical Industry
Genomics, International Drug Discovery 5(2): 54–57, 2010).

The first is termed integrative biology. This is an attempt to meaningfully
combine all the sources of information on targets, assays, and compounds. Within
the pharma industry there has been an enormous expansion of information from
expression profiling, proteomics, metabolomics, etc., as well as a great deal of
proprietary information on compound libraries, high throughput and high content
screening, cheminformatics, compound safety testing, and clinical trial informa-
tion. An integration of all this information represents a challenge to integrative
biology.

The second component of SB lies in the areas of computational methods,
modeling, and simulation. The goal is to create simulations of metabolic processes,
signaling pathways, transcription (regulatory) networks, physiological processes, or
even cell- or whole organism-based models.

In terms of various methods and tools of computational modeling, there is a need
for critical analysis and lack of understanding of multiscale biosystems for
computational experts. The challenges and critical points are the following:

Conventional biological science has produced a vast amount of data over the last
few decades so that questions arise as to how to find patterns and how to relate multi-
quality data sets in the quest for underlying mechanism. It is clear that conventional,

xv



reductionism-determined research approaches must fail in understanding the
mechanisms behind the complex pattern generation, the self-organization and
nonlinear interaction of these multiscaled systems. This old concept was for a long
time around, where one simply has to dissect the biology, investigate it in isolation,
and finally put it all back together. Most conventional experimental models,
however, have been developed in the reductionism era, i.e., they focus on one
endpoint and emphasize one feature—with little dynamical information and lacking
the possibility of studying more than one to two variables of the system at the same
time. Most scientists would now admit that although this approach has led to very
significant discoveries in the past it will not be able to explain the complex behavior
of most biological systems. It is increasingly recognized that complex systems
cannot be described in a reductionist view.

It is thus imperative to develop novel research approaches with complex system
science that will become one of the grand challenges of the next decade (non-
reductive experimentation and corresponding computational tools). While models
must be constructed, analyzed, simulated, validated, and verified, on the
experimental side, biological systems need to be identified, characterized, and
tested for their reliability in cross-species comparisons, in particular between model
organisms and humans. Thus, SB approaches are hypothesis-driven and involve
iterative rounds of data-driven modeling, prediction, model-driven experimentation,
model refinement, and development. Towards this end, tremendously increased
computational power will help in the efforts ahead to analyze the immense amount of
data in the biological and biomedical sciences in order to guide promising new
experimental work. Such new experimental design should be based on and driven by
the mathematical and computational modeling. We need to come up with such new
experimental methods to test and refine the predictions made with novel theoretical
models, based on ‘model-aided (-driven) experimental design.’ The present effort
features scarcities of detailed quantitative experimental data and of computational
tools designed to use such data for the development and testing of biologically
meaningful models. Such experimentation will require a strong background in
physics, mathematics, and computer science.

The focus will be on the challenging interface between model-based experimen-
tal design and computational simulation. We should therefore bridge the gap
between experimental and computational modeling experts. This is an emerging
scientific field.

The Editorial Plan for present and future volumes can be summarized as follows:

(1) Foundation of systems biology, integrative biology, and issues of biosystem
complexity, redundancy, and of other network properties; setting the stage
Foundations of SB: requirements and outcomes, challenges in SB and networks,
graph-theoretic analysis of networks, network modularity, disease module,
network topology, clustering, redundancy, emergent (systems) properties, other
structural and topological network properties: parsimony, epistasis, robustness,
motifs, etc., network manipulation, network rewiring, elementary network
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reconstruction tools (constraint-based, accurate mathematical reaction model),
network inference (learning structure), identifying disease module, etc.

(2) Modeling of ill-defined, lack of knowledge (experimental) problems in the
field of complex biosystems, including identification and validation; review of
enabling technologies
Reproducibility of model-based results, identifiability of ill-defined systems,
structural identifiability, standardization, network functional mapping, large-
scale reaction networks, large-scale integrated data analysis (combined met-
abolic, signaling and regulatory networks), coarse-grained simulation tools,
hybrid simulation tools, agent-based modeling methodology, etc.

(3) Critical analysis of multiscale computational methods and tools, including
identification and validation; computational tools for crossing levels
Multiscale simulation tools and scale laws, crossing scale and boundaries at
multiscale simulation, spatiotemporal control, Physiome systems, etc.

(4) Discussion of pros and cons of various integrative system biology approaches,
methods and tools of computational modeling, including simplifications,
approximations and assumptions, applied for the description of various
problems; success case studies
Reconstructing cellular signaling and regulatory networks—an integrative
approach, computational SB in health and disease, inferring from combined
gene, signaling and regulatory networks, large-scale signaling networks,
employment of computational network biology for identification of combi-
nation targets, SB and immunology, SB and cancer, SB and disease inferring,
SB and cell differentiation/stem cells, SB and pharmacology, etc.

(5) Systems biology in discovery and development
Target optimization tools, lead optimization, virtual chemistry screening, lead
discovery and molecular interactions, SAR/QSAR methods, In silico screen-
ing, quantitative pharmacology and pharmacokinetics, SB at biomarker
identification, clinical model-based drug development (MBDD), personalized
medicine, etc.

Note, Volume one will be based on items (1) through (3). Considering space
limitations the second volume will continue to cover the same topics and starts
with parts from (4) and (5). A possible third volume would cover items (4) and (5),
in detail.
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Recent Challenges of Computer Assisted
Systems Biology: Requirements and Outcomes

Motivation

Growth in the pharmaceutical market has slowed—almost to a standstill. One
reason is that governments and other payers are cutting costs in a faltering world
economy. But a more fundamental problem is the failure of major companies to
discover, develop, and market new drugs. Major drugs, losing patent protection or
being withdrawn from the market are simply not being replaced by new
therapies—the pharmaceutical market model is no longer functioning effectively
and most pharmaceutical companies are failing to produce the innovation needed
for success (Prokop and Michelson 2012). To document the above statement by
very recent numbers, the R&D efficiency, measured in terms of the number of new
drugs brought to market by the global biotechnology and pharmaceutical industries
has declined steadily. According to the number of new US Food and Drug
Administration approved drugs per billion US dollars of R&D spending in the drug
industry has halved approximately every nine years since 1950, in inflation-
adjusted terms (Scannell et al. 2012).

This multi-authored new book looks at systems biology (SB) as a vital strategy
that can bring innovation to a market in need of new ideas and new products.
Modeling is a significant task of systems biology. SB aims to develop and use
efficient algorithms, data structures, visualization, and communication tools to
orchestrate the integration of large quantities of biological data with computational
modeling. It involves the simulation of biological systems, such as the networks of
metabolites combining with signal transduction pathways and gene regulatory
networks to analyze and visualize the complex connections of these cellular
processes. SB involves a series of operational protocols used for performing
research, namely a cycle composed of theory, analytic, or computational modeling
to propose specific testable hypotheses about a biological system, experimental
validation, and then using the newly acquired quantitative description of cells or
cellular processes to refine the computational model or the theory.
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Place of Systems Biology in Computational Biology

Notions of Computational systems biology, bioinformatics, and the other fields of
computer-assisted biology are not defined clearly.

Bioinformatics (BI) is another relatively new discipline dealing with the
computational needs of biology, which has become a highly data-intensive
activity. Biology databases must deal with both variety and scale, as well as have
to be able to integrate the disparate databases that are their information sources. At
the same time they must provide flexible, user friendly interfaces for querying and
data mining must cope with incomplete and uncertain data (van Gend and Snoep
2008). BI tools are very different from SB. However, both BI and SB work in
concert and in parallel; SB and BI are different but complementary. Specifically,
various BI computational methods address a broad spectrum of problems in
functional genomics and cell physiology, including: analysis of sequences,
(alignment, homology discovery, gene annotation), gene clustering, pattern
recognition/discovery in large-scale expression data, elucidation of genetic
regulatory circuits, analysis of metabolic networks, and signal transduction
pathways. The underlined items may overlap with SB goals.

In our view bioinformatics is a part of computational biology, consisting of five
major components, as follows:

• BI (including computational genomics);
• Structural modeling: molecular modeling and protein structures (some people

consider structural tools as part of BI);
• Biophysics: molecular dynamics (‘‘physical biology of the cell’’);
• Computational modeling of biosystems (CSB); and
• Biomedical informatics.
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An overview of branches of computational biology is presented in Fig. 1
(adapted from Prokop and Michelson 2012). The question is whether there is an
overlap between SB and BI. The disciplines exist side by side, in parallel. Some
tools are used interchangeably between SB and BI. Biomedical informatics (BMI)
is another branch of CB, like biophysics. Biophysics focuses on physical concepts
and phenomena that cut across multiple biological structures and functions
(Phillips et al. 2009). Three distinct biophysics approaches have been identified:
(all taken from Phillips, although some approaches listed may be part of chemical
engineering or SB domains now):

1. Mechanical, chemical equilibrium, entropy, statistics, and tensegrity for resting
cells;

2. Statistical, chemical rate, and electrochemical tools for cell dynamics; and
3. Networking in space and time.

The SB inputs are evident in all disciplines. Although the distinction is used by
NIH in their working definitions of bioinformatics and computational biology, it is
clear that there is a tight coupling of developments and knowledge between the
more hypothesis-driven research in computational biology and technique-driven
research in bioinformatics.

Systems biology is a radically new concept resulting from the merging of two
basic paradigms, reductionism and holism. It represents a combination of reduc-
tionist and holistic approaches to the relationships among the elements of a system,
with the goal of identifying its emergent properties and defining molecular,
cellular, tissue, organ, and whole-body processes, quantitatively. SB represents a
tool for hypothesis generation about a system that is typically too large and
complex to understand by simple reasoning. In our definition the SB is ‘‘quanti-
tative, postgenomic, postproteomic, dynamic, multiscale physiology’’ (Wikswo
et al. 2006).

Systems biology employs a rational approach to delineate the emerging prop-
erties of biological networks and complex biotechnological schemes. By using
multiscale models in silico, SB is expected to bring numerous benefits to phar-
maceutical discovery and development as the properties of a system can be studied
over a wide range of length and timescales. SB can reduce the number of com-
pounds that need to be synthesized in discovery by using refined algorithms to
weed out compounds with poor pharmacokinetic of toxicology profiles. Also, it
will save time and money by selecting the drugs, which are more likely to succeed
in clinical development.
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Foundation of Systems Siology, Integrative Biology, Biosystem
Complexity, Redundancy, and Other Network Properties

SB features two arms: biology at health (functional/physiologic network model)
and biology at disease (pathological/disease network model). In both cases, the
global system level understanding requires two components (Gomes 2010). The
first is termed integrative biology. This is an attempt to meaningfully combine all
the sources of information on targets, assays, and compounds. Within the pharma
industry there has been an enormous expansion of information from expression
profiling, proteomics, metabolomics, etc., as well as a great deal of proprietary
information on compound libraries, high throughput and high content screening,
chemo-informatics, compound safety testing, and clinical trial information. An
integration of all this information represents a challenge of integrative biology.

The second component of SB lies in the areas of computational methods,
modeling, and simulation. The goal is to create simulations of metabolic processes,
signaling pathways, transcription (regulatory) networks, physiological processes,
or even cell- or whole organism-based models.

In terms of various methods and tools of computational modeling, there is a
need for critical analysis, as well as a lack of understanding of multiscale
biosystems by computational experts. As the matrix algebra is one of the basic
mathematical tools employed first in SB, we stress its importance by presenting
articles from this field in the first section of the book. Graph theory is an old field
of mathematics where biological applications are driving new advances (‘‘small
world’’ networks, where most nodes are locally connected but a few have long-
range links, Watts and Strogatz 1998; and ‘‘scale-free’’ networks, where node
degree follows a power-law distribution: most nodes are connected to only a few
neighbors but a few nodes are connected to many neighbors, Albert and Barabasi
2002). Perhaps the biggest open mathematical challenges, however, are in
understanding the dynamic properties of networks that cannot be derived from
static measures of their structure (Armstrong and Sorokina 2012).

Modeling of Ill-Defined, Lack of Knowledge of Experimentally
Observed Problems

There is some doubt about the usefulness of SB originating from the complexity of
biological systems. Simeonidis (2011) argued: in early 2010, Sydney Brenner
stated that ‘‘The new science of systems biology […] will fail because deducing
models of function from the behavior of a complex system is an inverse problem
that is impossible to solve.’’ Brenner goes on to label systems biology ‘‘anti-
reductionism,’’ and even calls it ‘low input, high throughput, no output’ biology.
Nevertheless, it seems that physicists and engineers do not need to be convinced of
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the usefulness of holistic approaches to systems with complex, nonlinear with
emerging behaviors, because they have been applying them successfully on a daily
basis, for decades. Brenner’s unfair criticism is an indication of the work that we
still need to convince many biologists. Noble, as the creator of the Virtual Heart,
has been living proof that SB works, even before the term ‘systems biology’
existed (his original cardiac model was published back in 1960; Noble 1960).

SB should be about understanding the parts in terms of the whole, and bringing
everything together. While doing so, this classification allows for a precise
definition of ‘emergent property,’ if one so desires. While the reductionist
approach has identified many components of biological pathways (and key
interactions), it has been less successful in describing how these interactions
culminate in the emergent properties of systems. Experimentally, systems biology
can be realized by perturbing a system, determining the effects of these
perturbations in a rigorous and broad manner, and incorporating this information
in robust computational models that may lead to testable predictions on the
behavior of the system. In general, the above interactions generate rich and non-
intuitive system behavior, often called emergent properties, which cannot be
predicted from the properties of each intracellular component. The discovery of
emergent properties is best addressed by following an SB approach. Understanding
cellular networks in robust mathematical models to demonstrate emergent
principles and to predict cellular function in response to perturbation remains a
great challenge in biological research, both in health and disease.

Compared with the usual engineering problems, however, biological problems
are ill-defined and immensely complex. The cooperation of specialists from each
side is required. Models for complex biological systems may involve a large
number of parameters. It may happen that some of these parameters cannot be
derived from observed data via regression techniques. Such parameters are
typically denoted as unidentifiable, the remaining parameters being identifiable.
Closely related to this idea is that of redundancy, that a set of parameters can be
expressed in terms of some smaller set. Before data are analyzed, it is critical to
determine which model parameters are identifiable or redundant to avoid ill-
defined and poorly convergent regression. The emphasis on identifiability is
important as one naturally asks the question: how does the inaccuracy in the
measurements (data noise) propagate back to errors in the inferred parameters?
Therefore, it is important to consider methods that control the impact of data error
on the identified parameters.

In addition, having recognized that targeting a single point often leads to a non-
productive therapy, recently a focus on methods to target the networks with
combinations of drugs or genetic perturbations rather than single points in the
network in case of designing and implementing effective targeted therapies for
cancer treatment and prevention. Recent work using omics data and integrated
experimental and computational analysis to study the transient response of some
signaling networks in human cancer cells revealed the effect of targeting
individual molecules of signaling network and identified optimal drug
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combinations that inhibited cell signaling and proliferation to overcome activation
of feedback loops by single agents at monotherapy (Iadevaia et al. 2010) and has
led to discovery of crosstalk between signaling pathways.

Critical Analysis of Multiscale Computational Methods
and Computational Tools for Crossing Levels

The emergent properties and the ways in which biological systems operate as a
whole require integration and structural organization as well as the properties of
the individual system components. Biological systems can be represented as
networks which themselves typically contain regular (network) structures, and/or
repeated occurrences of network patterns. The networks are also often organized in
a multiscale manner, reflecting the physical and spatial organization of the
organism, from the intracellular to the intercellular level and beyond (tissues,
organs, etc). Current challenges to modeling in systems biology include those
associated with issues of complexity and representing systems with multiscale
attributes.

Living organisms are organized into multiple, interrelated scales so that no
single one can be fully considered in isolation from the others (Martins et al.
2010). Indeed, molecular signals from the outside can elicit changes in the cell
metabolism and gene expression pattern; cells acquire identity from contact with
other cells and ECMs (extracellular matrix components); tissues are delineated and
integrated with other tissues by specialized ECMs; and molecules carry messages
from organ to organ. The timescales involved vary from seconds (for cell
signaling) to years (for organism development and life span), while the spatial
scales range from nanometers (for protein–DNA interactions) to meters (for nerve
impulse propagation).

The aim of SB is to describe and understand biology at a global scale where
biological functions are recognized as a result of complex mechanisms that happen
at several scales, from the molecular to the ecosystem (Dada and Mendes 2010).
Modeling and simulation are computational tools that within a single scale are
invaluable for description, prediction, and understanding these mechanisms in a
quantitative and integrative way. Therefore the study of biological functions is
greatly aided by multiscale methods that enable the coupling and simulation of
models spanning several spatial and temporal scales. Various methods have been
developed for solving multiscale problems in many scientific disciplines, and they
are applicable for continuum-based modeling techniques, in which the relationship
between system properties is expressed with continuous mathematical equations,
as well as for discrete modeling techniques that are based on individual units to
model the heterogeneous microscopic elements such as individuals or cells. In this
review, we survey these multiscale methods and explore their application in
systems biology.
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Systems biology seeks to understand not only the regulatory networks that
govern cellular behavior but also the processes that govern the integration of
higher level physiological structures and functions. We are now witnessing the
generation of predictive models that simultaneously address such systems at
multiple scales—from the genome, to the cell, to the organ—in an attempt to
account for their dynamism and complexity. The development of methods that
account for crossing and coupling different scales in mathematical terms is the
single most important task of SB. Thus, the SB modeling with the multiscale
perspective attempts to link between the scales.

Challenges of Various Integrative System Biology Approaches
and Methods and Tools of Computational Modeling
and Challenges

Conventional biological science has produced a vast amount of data over the last
few decades so that questions arise as to how to find patterns and how to relate
multi-quality data sets in the quest for underlying mechanism. It is clear that the
conventional, reductionism-determined research approaches must fail in under-
standing the mechanisms behind the complex pattern generation, the self-
organization, and nonlinear interaction of these multiscale systems. This old
concept was for a long time around that one simply has to dissect the biology,
investigate it in isolation, and finally put it all back together. Most conventional
experimental models, however, have been developed in the reductionism era, i.e.,
they focus on one endpoint and emphasize one feature—with little dynamical
information and lacking the possibility of studying more than one to two variables
of the system at the same time. Most scientists would now admit that although this
approach has led to very significant discoveries in the past, it will not be able to
explain the complex behavior of most biological systems. It is increasingly
recognized that complex systems cannot be described in a reductionist view.

It is thus imperative to develop novel research approaches with complex system
science that will become one of the grand challenges of the next decade (non-
reductive experimentation and corresponding computational tools). While models
must be constructed, analyzed, simulated, validated, and verified, on the
experimental side, biological systems identified, characterized, and tested for
their reliability in cross-species comparisons, in particular between model
organisms and humans. Thus, SB approaches are hypothesis-driven and involve
iterative rounds of data-driven modeling, prediction, model-driven experimenta-
tion, model refinement, and development. Toward this end, tremendously
increased computational power will help in the efforts ahead to analyze the
immense amount of data in the biological and biomedical sciences in order to
guide promising new experimental work. Such new experimental design should be
based on and driven by the mathematical and computational modeling. We need to
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come up with such new experimental methods to test and refine the predictions
made with novel theoretical models, based on ‘model-aided (-driven) experimental
design.’ The present effort features scarcities of detailed quantitative experimental
data and of computational tools designed to use such data for the development and
testing of biologically meaningful models. Such experimentation will require a
strong background in physics, mathematics, and computer science.

As pointed out by Finkelsten (Finkelstein et al. 2004) ‘‘One of systems
biology’s central challenges involves the tie between descriptions of experiments,
observations, experimental data, interpretations derived from models, and
assumptions. In short, systems biology cannot be viewed independently of an
information management framework that embraces a significant part of the
experimental life sciences.’’ The focus of these Springer volumes will also be on
the challenging interface between model-based experimental design and compu-
tational simulation. We should therefore bridge the gap between experimental and
computational modeling experts.

We will briefly comment on the contents of this volume. Generally, we start
with very fundamental (partly mathematical) approaches and then move to more
applied aspects.

The first chapter by Ballereau et al., in a generalized effort, introduces systems
biology, its context, aims, concepts, and strategies. They describe approaches and
methods used for collection of high-dimensional structural and functional
genomics data, including epigenomics, transcriptomics, proteomics, metabolomics
and lipidomics, and discuss how recent technological advances in these fields have
moved the bottleneck from data production to data analysis and bioinformatics.
Finally, they review the most advanced mathematical and computational methods
used for clustering, feature selection, prediction analysis, text mining, and pathway
analysis in functional genomics and systems biology. This chapter represents a
very good baseline for our effort in this volume.

The second contribution by Mueller overviews the existing methods to compare
biological networks, based on approaches such as exact and inexact graph
matching. Moreover, they review graph kernel-based methods and introduce an
approach based on structural network measures (topological descriptors) to
classify large biological networks. They introduced the superindex of topological
network descriptors. The application of formal graph analysis was illustrated by
two examples, classifying gene networks representing prostate cancer, and
classifying metabolic networks into three domains.

The third chapter by Serra et al. emphasizes the importance of generic models
of biological systems that aim at describing the features that are common to a wide
class of systems, instead of studying in detail a specific subsystem in a specific cell
type or organism. Among generic models of gene regulatory networks, random
Boolean networks are reviewed in-depth, and it is shown that they can accurately
describe some important experimental data, in particular the statistical properties
of the perturbations of gene expression levels induced by the knock-out of a single
gene. Boolean networks are a particular case of discrete dynamical networks,
where time and states are discrete. As stated by the authors, Boolean modeling is
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very accessible even without a background in quantitative sciences, yet it allows
life scientists to describe and explore a wide range of surprisingly complex
phenomena.

Kikuchi and Voit emphasize the crosstalk, especially in signalling pathways in
brain. This chapter is rather exceptional in a way that the employment of systems
tools is mostly limited to microbial and mammalian cells, not specific organs. It
deals with computational neuroscience and drug addiction. The authors employ
three chemical reaction inspired modeling approaches. The first is a conventional
ODE-based modeling method to reveal the dynamic properties of model structure.
The second approach is a method to generate constraint conditions of models from
the stoichiometry matrix of chemical reactions due to the lack of kinetic data. Last,
the third approach is an application of complex network analysis to biological
networks, focusing on k shortest path and k-cycle. In their concluding remark they
emphasize the importance of the simple, transparent models.

Dančik et al. expands on network properties. Network-based approaches have a
potential to significantly increase our understanding of biological systems and
consequently, our understanding and treatment of human diseases. Dančik et al.
address several important properties of biological networks—robustness, dyna-
mism, modularity, and conservation. Each of these properties is an important
element in establishing the ‘signature’ property of biological networks—
emergence. They recognize that the association of diseases with network modules
rather than single genes will likely impact the future of drug discovery. For
treatment to have a positive impact, rather than focusing on single targets, it may
be necessary to focus on the whole network associated with a disease (gene
cluster).

Chaiboonchoe et al. focus on the network analysis in-depth, on the basis of
graph topology. They describe several types of networks and how the combination
of different analytic approaches can be used to study diseases. They provide a list
of selected tools for visualization and network analysis. The use of these
approaches may be extended to simulate processes on higher (cell–cell interac-
tions) levels of organization or combined to represent multiple levels from the
molecular to the organ levels, the approach of great importance in systems biology
and at multiscale simulation.

Jethava et al. employ a popular assumption that the network structure features
the sparsity of interaction network, i.e., each gene interacts with at most few other
genes. The underlying causes govern network evolution in time-varying interac-
tion. Authors emphasize the importance of time series data as interaction networks
vary over time and in response to environmental and genetic stress during the
course of the experiment. A systematic analysis of time-series data corresponding
to multiple related networks allow network reconstruction, based on multiple data
sources, e.g., gene interaction networks, iRNA–mRNA interactions, protein–
protein interactions, as well as multiple experiments with genetic perturbations.
Such approaches allow better network reconstruction by combining information
from several experiments.
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Sinoquet discusses the use of graph-based representation as the foundation for
encoding a complete distribution over a multidimensional space. The graph is a
compact representation of a set of independences that hold in the specific
distribution. Typical representations are Bayesian networks and Markov networks.
The purpose of this chapter is to eliminate many weak evidences from several data
types that describe different biological features of genes or proteins. Probabilistic
graphical models offer an appealing framework for this objective: flexibility,
scalability, and ability to combine heterogeneous sources of data.

Chylek et al. employed a rule-based modeling, in which protein–protein
interactions are represented at the level of functional components and thus
avoiding listing of chemical species in a system, which is a necessity in traditional
modeling approaches. A set of rules can be used to generate a reaction network, or
to perform simulations with or without network generation and replacing systems
of differential equations as formal entities. This approach serves as an excellent
alternative to classical representation of chemical reaction networks typical in
chemical and biological kinetics.

Waltemath et al. critically review their experience with model exchange and
simulation reproducibility through standard formats gained in computational
biology. For model-based results in systems biology, reproducibility requires not
only a coded form of the model but also a coded form of the experimental setup to
reproduce the analysis of the model. They show how sophisticated model and
simulation experiment management improves the reproducibility of model-based
results in systems biology. In particular, they outline the necessary steps toward
reproducing a simulation result, with a particular focus on the use of standardized
simulation experiment encoding. Finally, to ensure reproducibility of model-based
results they recommend a ‘‘best practice’’ solution.

Little et al. introduce the notion of weak local identifiability and gradient weak
local identifiability. These concepts are based on local properties of the likelihood,
in particular the rank of the Hessian matrix. As models for complex biological
systems may involve a large number of parameters, it may happen that some of
these parameters cannot be derived from observed data via regression techniques.
Such parameters are said to be unidentifiable, the remaining parameters being
identifiable. Closely related to this idea is that of redundancy, that a set of
parameters can be expressed in terms of some smaller set. Before data are
analyzed, it is critical to determine which model parameters are identifiable or
redundant to avoid ill-defined and poorly-convergent regression.

Durmontier et al. present a very general paper. It examines current approaches
to organize systems biology knowledge and describes applications related to
search, query, model similarity, integration of simulation results, and validation of
model annotations. It also looks into how to formalize knowledge constructed
from Semantic Web technologies and how this information could be used to build,
publish, query, discover, compare, validate, and evaluate models and knowledge in
systems biology.

Georgatos et al. give an overview of the infrastructure of Scientific Computing,
as well as of the related network and data management, in the limelight of the
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necessary integration. Systems biology became an important user of computer
hardware and software, as well as of the associated support. Thinking about
multiscale modeling and simulation, the interaction between the computational
infrastructure and the methodological development determines the capability of
the applications. The authors emphasize the importance of Open Standards, as well
as reproducibility, confidentiality, collaboration, and training issues. Afterwards
they evaluate the advantages and the drawbacks of the available infrastructure,
including HPC, computing grids, dedicated clusters, cloud computing, and desktop
grids. The conclusion summarizes the challenges of Information Technology in the
appropriate handling and interpretation of the ever-growing, but fragmented big
datasets in the next decade. Especially anonymization issues are discussed in
detail.

Wierling and Hache underline the importance of a strong interaction between
wet-lab experiments, data analysis, and in silico modeling. Especially, the
integration of experimental data and pre-existing knowledge of computational
models of biological systems are of considerable importance. In silico simulations
of model behavior under similar conditions, as in the experiment gives the
possibility for model validation regarding specific experimental data. Such an
integrative approach leads eventually to a more accurate and consistent description
of the observed biological system. Authors then review several resources and
computational tools, which support the investigation of biological networks and
describe several resources and methods for integrative modeling.

An et al. view systems as aggregates of populations of interacting components,
in the sense of agent-based modeling (ABMs), this represents a very suitable tool
for dynamic computational systems. ABMs are particularly suited for representing
the behavior of populations of cells, but have also been used to model molecular
interactions, particularly when spatial and structural properties are involved as
stressed by the authors. It is also a valuable tool for crossing multiple scales of
biological organization and complex phenomena. Resulting is an emergence from
the lower (micro) level of systems to a higher (macro) level. However, ABMs are
more computationally intensive than equation-based models.

Pálfy et al. compare KEGG, Reactome, Netpath, and SignaLink pathway
databases and examine their usefulness in systems-level analysis, especially in
regard to signaling. They study the crosstalk as an important field in signal
transduction research. To identify crosstalks and to understand their roles in
development and disease, one needs to analyze signaling networks at the systems
level. Biological crosstalk refers to instances in which one or more components of
one signal transduction pathway affect another. This can be achieved through a
number of ways with the most common form being crosstalk between proteins of
signaling cascades. In these signal transduction pathways, there are often shared
components that can interact with either pathway. Crosstalk between pathways
provides for complex nonlinear responses to combinations of stimuli, but little is
known about the density of these interactions in any specific cell. A global analysis
of crosstalk suggests that many external stimuli converge on a relatively small
number of interaction mechanisms to provide for context-dependent signaling.
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Although this topic belongs more to network analysis (upfront Chapters) it is
presented here with the emphasis on drug discovery and how the effectiveness of
pathway intervention techniques (e.g., drugs, gene knockouts) changes with the
presence of crosstalk.

Rider et al. provide an outline of employing the combination of multiple
technologies, such as genomic, proteomic, and metabolomic data that can provide
a more complete integrative picture. Much recent work has studied integrating
these heterogeneous data types into single networks. They focus on describing the
variety of algorithms used in integrative network inference. They concluded that
any single type of data presents a one-dimensional view of a biological system.
Therefore, evaluation based on a single data type may not be a baseline for the
performance of an integrative method. Furthermore, different approaches tend to
use different amounts and types of data, making the actual methods themselves
very difficult to compare. The creation of a common body of data for evaluation
and a standard for evaluation methods for integrative network approaches would
allow integrative network algorithms to be truly compared.

Finally, Csukas et al. studied a simplified multiscale biosystem with a new
modeling and simulation methodology. The biosystem was a consciously, but
arbitrarily selected multiscale part of the p53/miR-34a related signaling process
that has an important role in tumor resistance in cancer diagnostics, as well as in
the therapy of various tumors. The multiscale model covered a vertical slice of the
system from the change of a pathologic stage to the detailed dynamic molecular
processes and vice versa. The major advantage of direct computer mapping is the
unified representation of the various quantitative and qualitative sub-models, as
well as the easy combination of these various models within the unified simulating
environment. Regardless of the limited number of components and interactions,
the investigated fictitious illustrative example demonstrated many important and
interesting features of the multiscale, hybrid biosystems. The model demonstrates
how the typical properties of the low-level molecular events project onto the state
properties of the higher scales. These emergent properties determine typical
scenarios of lower scale states and actions.

As the above chapters cover mostly items 1 and 2 of the editorial plan, the
following volume will be more dedicated to items 2 and 3, mainly on problems
associated with disparities between experiments and modeling and on multiscale
simulation. We encourage potential contributors to submit their manuscripts
without being asked.

The editors acknowledge the effort by the authors in terms of providing internal
review of manuscripts to the other colleagues.

The Editors would welcome solicitation of new authors based on the previously
mentioned Editorial Plan.

Aleš Prokop
Béla Csukás
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Chapter 1
Functional Genomics, Proteomics,
Metabolomics and Bioinformatics
for Systems Biology
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Abstract This chapter introduces Systems Biology, its context, aims, concepts
and strategies, then describes approaches used in genomics, epigenomics, trans-
criptomics, proteomics, metabolomics and lipidomics, and how recent techno-
logical advances in these fields have moved the bottleneck from data production to
data analysis. Methods for clustering, feature selection, prediction analysis, text
mining and pathway analysis used to analyse and integrate the data produced are
then presented.
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Abbreviations

BASE BioArray Software Environment
BS BiSulphite
CATCH-IT Covalent Attachment of Tags to Capture Histones and Identify

Turnover
CFS Correlation-based Feature Selection
CHARM Comprehensive High-throughput Array for Relative Methylation
ChIA-PET Chromatin Interaction Analysis by Paired-End Tag
ChIP Chromatin ImmunoPrecipitation
CLIP Crosslinking immunoprecipitation
DHS DNAse I hypersensitivity
DNA DeoxyriboNucleic Acid
EFS Ensemble Feature Selection
ELISA Enzyme-Linked ImmunoSorbent Assays
ENCODE ENCyclopedia Of DNA Elements
ESI ElectroSpray Ionisation
EWAS Epigenome-Wide Association Studies
FAB Fast Atom Bombardment
FAIRE Formaldehyde-assisted isolation of regulatory elements
FDR False Discovery Rate
FT-ICR Fourier Transform Ion Cyclotron Resonance
FUGE Functional Genomics Experiment data model
GAGE Generally Applicable Gene-set Enrichment
GC Gas Chromatography
GEO Gene Expression Omnibus
GO Gene Ontology
GSEA Gene Set Enrichment Analysis
GWAS Genome-Wide Association Studies
HITS-CLIP HIgh-Throughput Sequencing of RNAs isolated by CrossLinking

ImmunoPrecipitation
HMM Hidden Markov Models
HPLC High Performance Liquid Chromatography
IMS Imaging Mass Spectrometry
IP ImmunoPrecipitation
iTRAQ Isobaric Tags for Relative and Absolute Quantitation
KEGG Kyoto Encyclopedia of Genes and Genomes
kNN k-Nearest Neighbor
LC Liquid Chromatography
MALDI Matrix Assisted Laser Desorption Ionisation
MBD Methyl-CpG Binding Domain
MCAM Multiple Clustering Analysis Methodology
MeDIP Methylated DNA Immunoprecipitation
MGDE Microarray Gene Expression Data
MIAME Minimum Information About a Microarray Experiment
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MIAPE Minimum Information About a Proteomics Experiment
MINSEQE Minimum INformation about a high-throughput SeQuencing

Experiment
MMASS Microarray-based Methylation Assessment of Single Samples
MN Microccocal Nuclease
MRM Multiple Reaction Monitoring
mRNA Messenger RiboNucleic Acid
MS Mass Spectrometry
NCBI National Center for Biotechnology Information
NER Named-Entity Recognition
NGS Next Generation Sequencing
NIH National Institutes of Health
NMR Nuclear Magnetic Resonance
PaGE Patterns from Gene Expression
PCR Polymerase Chain Reaction
PRIDE PRoteomics IDEntifications
PSM Peptide-Spectrum Match
QMS Quadrupole Mass Analyser
RNA RiboNucleic Acid
RRBS Reduced Representation Bisulphite Sequencing
RT-qPCR Reverse Transcription quantitative PCR
SAGE Serial Analysis of Gene Expression
SELDI Surface Enhanced Laser Desorption Ionization
SILAC Stable Isotope Labeling by Amino acids in Cell culture
SNP Single Nucleotide Polymorphism
SRM Selected Reaction Monitoring
SUMCOV SUM of COVariances
SVM Support Vector Machine
ToF Time-of-Flight
UCSC University of California, Santa Cruz
VOCs Volatile Organic Compounds

1.1 Background

1.1.1 Context

Life in a broad scientific context can be defined as the phenomenon that emerges
from particles of inorganic matter organised in molecules which interact with each
other within a cell [1]. This property is systemic because it only appears in the
system and not in its parts [2]. Living systems are complex, modular and hierar-
chical structures. Indeed, a multicellular organism consists of molecules, such as
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, lipids and
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metabolites involved in chemical reactions and structures of cells. Cells are
organised in tissues forming organs with specific functions that are required for the
health of the organism. Systemic properties appear at each level, for example
homeostasis and response to stimuli in a single intracellular network, metabolism,
growth, adaptation, reproduction in a single cell.

Information that defines an organism and its ability to react to its environment is
encoded in its DNA and is expressed differentially in space and time throughout
life. Typical studies in biology have until recently used the reductionist approach
and addressed specific issues employing one or a few types of molecules at a small
scale, each shedding light on only a small fraction of vastly complex phenomena.
Some findings were remarkable, such as the discovery of the structure of DNA,
and later of the way genetic information stored in DNA is transcribed in messenger
RNA (mRNA) then translated in proteins, essential components of the cell
machinery and the engines of life. The accumulation of such knowledge on
molecules and mechanisms led to the ‘bottom-up’ approach to modeling biological
systems, using genes as core elements to simulate cells, organs and the whole
organism. This was complementary to the ‘top-down’ view of an organism as a
physiological system integrating information from its various constituents and
their interaction with the environment.

Major technological advances have in the last 15 years enabled biologists to
eventually gather information on a larger scale in various tissues, including samples
obtained with non-invasive methods, such as the collection of blood and urine. The
massive increase in throughput has had several consequences. First, biologists can
now study the vast majority of constituents, i.e. ‘ome’, of a given element, e.g. genes,
of a system be it an organism, organ or cell, e.g. all genes in its genome. Second, the
sheer size of data sets implies that their analysis relies increasingly on computational
tools and power available to analysts. Third, because characterisation of several
‘omes’, e.g. genome, transcriptome, proteome and metabolome, progresses rapidly
along with other disciplines such as imaging and in particular pharmaceutical
research with cheminformatics, compound libraries, high throughput screening,
safety and clinical data [3–5], one can now attempt to disentangle interactions
between the different elements of a biological system, or ‘interactome’, to under-
stand its behavior across several scales in a holistic manner, in health and disease.

1.1.2 Aims and Concepts

Systems Biology is the integrative study of complex systems in life with a holistic
approach now based on large-scale data sets analyzed iteratively with mathe-
matical models and simulation tools [6, 7]. Understanding each component of a
complex system in isolation is not sufficient to characterise the system. Indeed,
properties of the system are not only defined by the simple addition of elementary
functions but also emerge from the interactions between the elements [7–9]. These
emergent properties are studied by inferring networks of interactions between
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these constituents, e.g. genes, proteins and ligands, and by unraveling their reg-
ulatory mechanisms. Because of the very large number of elements in these net-
works, such an endeavor relies on concepts defined in the framework of the theory
of complex systems [10]. Systems Biology not only aims at understanding the
relationships between different levels of the expression of genetic information, via
data integration, but also at defining the system as a whole and producing a
convincing mathematical model of it, linking the highly complex interactions
between its components to its emergent properties [11–14]. In this context, disease
can be viewed as a shift of homeostasis from the normal range due to a large set of
perturbations in the network of interacting biomolecules in the whole organism.
Distinct perturbations may therefore result in a single disease phenotype, in
agreement with our understanding of complex diseases. Conversely, shifting the
system back to healthy homeostasis may be achieved in multiple ways and by
targeting several points in the network [15, 16].

Systems Biology follows an integrative and iterative approach that relies on
experimental and mathematical methods (Fig. 1.1). First, existing data relating to
different hierarchical levels of the system are integrated into mathematical or
graphical models to generate hypotheses towards understanding mechanisms at
play and build predictions on the functions of that system. Some components of
the system are then perturbed experimentally, such as in in vitro or in vivo models
of a disease. The outcome is assessed in the context of the model and the initial
hypotheses are revised accordingly. These revised hypotheses finally inform new
perturbation experiments. The approach is repeated until the system’s behaviour is
faithfully simulated by the model [7]. Further complexity is added when one
considers the environmental factors of the model.

Predictive 
simulations, 

model analysis

Model validationModel fits

Model

Systematic behavior

Interacting 
biomolecules

ScalesHypothesis  and 
experimental data

Organize and 
store data Assessment of 

goodness-of-fit

Integration Compare with 
experimental data 

and hypothesis

Update 
hypothesis and 
obtain new data

Model does not fit

Discover 
missing parts

Mathematical 
Modelling

Drug design, 
biotechnology,

bioengineering...

Biological 
system

Fig. 1.1 Modeling in Systems Biology. Modeling starts with the integration of different
experimental data into a single knowledge base to organize and store data. Mathematical
descriptions of the interaction between model elements allow (1) simulation of the emergent
behavior of the system, (2) comparison of this simulated behavior with experimental data, (3)
adjustment of the model and (4) design of further experiments. When the model fits experimental
data, studying the role of particular design features may help identify mechanisms at play and design
principles. The model may also be used in drug design, biotechnology or bioengineering for example
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1.1.3 Strategies

Three main strategies aim to build the link between the system’s components and
its emerging properties: ‘bottom-up’, ‘top-down’ and ‘middle-out’ (Fig. 1.2). The
main steps of the ‘bottom-up’ approach are to graphically or mathematically
model relationships between the components of the system, starting with those at
the lowest level of the multiscale structure, hence ‘bottom’, e.g. genes and pro-
teins, set model parameters using experimental values and verify the model by
comparing its systemic behavior with the behavior of a real system. The term
bottom-up also refers to the direction chosen: from known or assumed properties
of the components one deduces system functions [17]. This molecular biology
strategy has been successful in modeling biological systems with relatively low
number of components, e.g. a single intracellular network or a single prokaryotic
cell. It may however not be suited to reconstruction of the emergence of larger
systems, e.g. the whole body physiological behavior in Mammals. In contrast, the
‘top-down’ or physiology approach relies on the systemic behavior. It first
involves defining ways the complicated systemic function of interest varies with
conditions and/or time, and then inferring hypothetical structures responsible for
this function. The system behavior is perturbed and the effects studied at the level
of the system components, i.e. genome, transcriptome, proteome and metabolome.
This strategy is limited to an extent by the challenge of inferring DNA sequences

Fig. 1.2 Multiple scale strategies in Systems Biology. Starting at the molecular level,
interactions between DNA, epigenetic factors, RNA, proteins, lipids and metabolites define the
core biological processes required for higher order functions. These processes are defined by
molecular interaction networks, which communicate with each other within a given cell, between
cells in the same tissue or distinct tissues, or between organs of a complex organism
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from phenotypes. Also, models built with top-down approaches must be updated
with every new experiment using all existing experiments, making the analytical
and computational challenges increasingly difficult. In contrast, models built with
the bottom-up approach such as an in silico cell model comprise modules which
are updated independently of each other [18]. The ‘middle-out’ strategy intends to
overcome the intrinsic limitations of the above approaches, taking into account
that chains of causality can operate in biological systems in both directions,
starting at any levels of biological organization. The behavior of a single func-
tional system is thus modeled in terms of interactions between entities at a level
sufficiently well described by experimental data (‘middle’), typically of the lower
levels of organization but not necessarily down to molecules. The model is then
extended to higher and lower levels (‘out’) iteratively by combining ‘bottom-up’
and ‘top-down’ approaches. It was successfully implemented in the Physiome
project [19, 20].

Systems Biology will play a crucial role in the development of personalized
medicine as it will enable integration of different types of data to profile patients,
identify unbiased biomarkers and produce precise disease phenotypes. It will
hence help prevention, diagnosis and treatment, or Systems Medicine [21, 22].

1.2 Introduction to Functional Genomics, Proteomics,
Metabolomics and Bioinformatics

Genomics is the study of the sequence, structure and content of the genome, in
particular the genes and their number, structure, function and organisation along
the genome. Functional genomics is the study of the function of genes and the
regulation of their expression at the level of the cell, organ or organism, spatially
and at different time points and/or health status, by deciphering the dynamics of
gene transcription, translation and protein–protein interactions on a genome-wide
scale using high-throughput technologies. The main large-scale experimental tools
used to study epigenetics (epigenomics) and gene expression (transcriptomics)
have so far involved microarrays and more recently next-generation sequencing.
Mass spectrometry is widely used to study proteins (proteomics), metabolites
(metabolomics), and more recently volatile organic compounds (VOCs) in exhaled
breath condensate (breathomics). Technical advances also led to the development
of computational tools to handle and analyse their output.

1.2.1 Sequencing Technologies

Whole genome sequencing started with the sequencing of a bacteriophage in 1977
using the Sanger sequencing technique. The development and maturation of
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4-color automated Sanger sequencing produced the instruments that sequenced the
human genome (Smith et al. 1986). Several high-throughput sequencing tech-
niques, or Next Generation Sequencing (NGS), arose subsequently which were
each inferior to the more established automated Sanger technique, being slower
per run, less accurate, with shorter read length and more expensive, but far
superior by virtue of the vastly larger number of nucleotides read [23–25]. Now 3rd

generation sequencing strategies employ nanopores and single molecule reads, and
promise to increase the throughput and decrease the cost of sequencing strikingly.
Computational tools are being developed to process the very large amount of NGS
short, low quality reads and assemble them into a genome sequence [26]. Genome
sequences of over sixty pro- and eu-karyotes are annotated in online public gen-
ome browsers [27, 28]. Knowledge of whole genomes also enabled the large-scale
study of gene expression and the development of functional genomics. NGS can
indeed be used for DNA or RNA sequence analyses and has several advantages
over microarrays: it does not require array design, enables wider scale, whole-
genome studies, improved resolution, more flexibility, allele-specificity, lower cost
and amount of input material. NGS now also enables routine discovery of variants
in entire exomes and even large genomes [29, 30] as in Human with the 1000
Genomes Project [31], in cancer research [32, 33] and studies of allele specificity
in gene expression [34]. NGS also catalyzed the massive development of me-
tagenomics [35] and will thus help decipher host-gene-microbial interactions [36].
NGS is however not mature enough for routine use in clinical field [37]. The ever
increasing speed, quality and range of applications of sequencing methods have
created a huge flow of data and related challenging requirements not only for
computing power, memory and storage [38–40] but also data sharing [41]. Reads
mapped onto a reference genome can be displayed with other sources of annotation
such as NCBI [42] with Ensembl [28] and UCSC browsers [43].

1.2.2 Mass Spectrometry

Mass spectrometry (MS) relies on deflection of charged atoms by magnetic fields
in a vacuum to measure their mass/charge (m/z) ratio. A typical experiment fol-
lows five steps: (1) introduction of the sample, (2) ionisation of its particles, (3)
acceleration, (4) deflection proportional to the mass and charge of the ion, and (5)
detection, recorded as a spectrum showing peaks on a plot of relative quantity as a
function of the m/z ratio.

Several methods for introduction, ionisation and types of spectrometers enable
a wide range of analyses. Introduction methods are Gas chromatography (CG) for
thermally stable mixtures, liquid chromatography (LC) for thermally labile mix-
tures, and solid probes. Some compounds such as large proteins and polymers
must be ionized directly. Ionisation methods can be hard or soft. Hard ionisation
introduces high amount of energy in the molecules that results in fragmentation
and thus helps identify the compound but resulting spectra rarely contain the

10 S. Ballereau et al.



molecular ion. ElectroSpray Ionisation (ESI) uses high voltage to disperse and
ionise macromolecules through a spray nozzle. It is soft, limits fragmentation and
produces multiply charged ions, allowing detection of large compounds at lower
mass/charge value, and hence increases the analyser’s mass range. ESI is often
coupled with LC/MS. Mixtures containing non-volatile molecules can also be
analysed with Fast Atom Bombardment (FAB) and Matrix Assisted Laser
Desorption Ionisation (MALDI). MALDI is used to analyse extremely large
molecules, up to 200,000 Da, often coupled with time-of-flight (ToF) MS. Surface
Enhanced Laser Desorption Ionization Mass Spectrometry (SELDI-MS) separates
protein subsets fixed onto a surface according to specific biophysical properties,
e.g. hydrophobicity. Thus, analysis of proteins, peptides and nucleotides can be
performed with ESI, SELDI, MALDI, and FAB [44].

Several types of analysers exist. In a quadrupole mass analyser (QMS) ions are
deflected by oscillating positive and negative electric fields. A triple-QMS con-
tains three QMS one after the other where the first QMS enables the identification
of known compounds, the second its fragmentation, and the third the identification
of the fragments, thereby elucidating the compound structure. Other types of
analysers include ion trap, ToF, Orbitrap, and Fourier Transform Ion Cyclotron
Resonance (FT-ICR) with increasing mass resolution and accuracy. Orbitraps are
cheaper, more robust and have a higher-throughput than FT-ICRs. Tandem-MS
involves several steps of selection of compound using MS. MS methods mentioned
above vary in throughput, robustness, sensitivity, selectivity and ease of use [44].

1.2.3 Bioinformatics

Bioinformatics comprises mathematical approaches and algorithms applied to
biology and medicine using Information Technology tools, e.g. databases and
mining software [45, 46]. Analysis of omics data typically follows four steps: (1)
data processing and identification of molecules, (2) statistical data analysis, (3)
pathway and network analysis, and (4) system modelling. Examples include de
novo genome assembly, genome annotation, identification of co- or differentially
expressed genes at the level of transcripts or proteins and the inference of protein–
protein interaction networks. Bioinformatics also enables integration of hetero-
geneous high-throughput data sets produced by a given study and existing data sets
using knowledge management, annotation and text mining tools such as the two
structured vocabularies Gene Ontology (GO) for genes and associated biological
processes, cellular components and molecular functions [47, 48] and Microarray
Gene Expression Data (MGED) ontology [49], the PRoteomics IDEntifications
(PRIDE) database [50], Functional Genomics Experiment data model (FuGE) [51],
the Systems Biology Markup Language [52], the Systems Biology Graphical
Notation [53], BioMART [54, 55], tranSMART [56], bioXM [57], GARUDA [58],
Nexbio [59], and includes Systems Biology [23]. Identification of pathways, and
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network inference and analysis is covered in chapter ‘Network analysis for sys-
tems biology’.

These efforts collectively aim at unraveling the molecular pathways under-
pinning physiology and at identifying biomarkers to describe a system with a
combination of environmental, clinical, physiological measures to improve
detection and monitoring of a phenomenon, such as diseases in medical research to
facilitate diagnosis and therapy. Biomarker discovery relies on two types of
studies: unbiased, which only depend on the technique used, and targeted, which
focus on pre-defined biomarkers measured by specific methods. Experimental and
bioinformatics methods and tools mentioned in the following text are listed in
Tables 1.1 and 1.2.

1.3 Functional Genomics, Proteomics and Metabolomics

1.3.1 Epigenomics

Epigenomics is the genome-wide study of modifications of chromatin, i.e. DNA
and associated proteins, which play an important role in gene regulation, gene-

Table 1.1 Examples of methods and tools for functional genomics, proteomics and metabolo-
mics. This list is non exhaustive and only includes items mentioned in the text

Epigenomics
methods

DNA methylation [61]: Endonucleases (MMASS, CHARM, Methyl-seq),
bisulphite (BS) conversion (RRBS, MethylC-seq), and affinity (MeDIP-
chip, MeDIP-seq, MDB-seq). Methylation levels can then be measured
with microarrays and sequencing techniques;

Chromatin accessibility (DNAseI-seq, FAIRE–seq, Sono-seq, 3C, 4C, 5C,
ChIA-PET);

Nucleosome positioning (CATCH-IT, MNase-se, haploChIP)
Epigenomics tools Encyclopedia Of DNA elements (ENCODE) project [63], the NIH

Roadmap Epigenomics effort [64], the Human Epigenome Project [65]
and recently BLUEPRINT [67]

Transcriptomics
methods

DNA microarray, SAGE, RNA-seq, ChIP-seq, CLIP-seq [108, 113, 114,
117]

Transcriptomics
tools

ArrayExpress [104], GEO [106], MIAME [107], MINSEQE [119]. See [26,
120] for reviews on downstream analysis.

Proteomics
methods

ELISA, 2D gel electrophoresis, NMR, MS, iTRAQ, SILAC, SRM, SELDI-
ToF [126–131]

Proteomics tools MIAPE [134], TransProteomic pipeline, protein atlas, neXProt [139–141]
Metabolomics

methods
NMR [143], MS [44], IMS [144, 147]

Metabolomics tools MetabolomeExpress [150], metaP [151], KEGG [145], human metabolome
project [142]

Lipidomics
methods

MS [44, 161], orbitraps [160], IMS [144, 147]

Lipidomics tools LIPID MAPS [165], XCMS [162], MZmine2 [163]
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environment interactions, development and in diseases such as inflammation and
cancer [60, 61]. Such modifications involve the DNA itself but not its sequence,
i.e. a methylated cytosine (mC) adjacent to a guanine (CpG dinucleotides in
mammals), and of chromatin proteins, i.e. methylation, acetylation and phos-
phorylation of histones. Epigenomics also covers chromatin accessibility, nucle-
osome remodelling, long-range chromatin interactions and allele-specific
chromatin signatures. Technological advances are now enabling Epigenome-Wide
Association Studies or EWAS, akin to Genome-Wide Association Studies or
GWAS [62], and large scale studies in different cell types and tissues, as in the
human ENCyclopedia Of DNA Elements (ENCODE) project [63], the NIH
Roadmap Epigenomics effort [64], the Human Epigenome Project [65], [66] and
recently BLUEPRINT that aims to determine the epigenome of 100 different blood
cell types [67].

DNA methylation at CpG is widely studied as it mediates gene repression in a
cell-specific manner by preventing the transcriptional machinery from accessing
DNA. Methylated DNA can be detected with three types of DNA treatments, i.e.
endonucleases, bisulphite (BS) conversion, and affinity. Methylation levels can
then be measured with microarrays and sequencing techniques.

Endonucleases cleave DNA at specific sites, are sensitive to methylation and
enable several DNA analyses techniques. Recent methods enable analysis of a
single sample, e.g. microarray-based methylation assessment of single samples
(MMASS), better statistical analyses and methods for array design, e.g. compre-
hensive high-throughput array for relative methylation (CHARM) [68] and the

Table 1.2 Examples of methods and tools for bioinformatics. This list is non exhaustive and
only includes items mentioned in the text

Bioinformatics Microarray gene expression data (MGED) ontology [49], the proteomics
identifications (PRIDE) database [50], functional genomics experiment
data model (FuGE) [51], the systems biology markup language [52], the
systems biology graphical notation [53], BioMART [54, 55],
tranSMART [56], bioXM [57], GARUDA [58], nexbio [59]

Clustering Babelomics [176], BASE [177], MCAM [178]
Feature selection Unsupervised [187], supervised [186]; filters (student’s t test, Wilcoxon

rank sum test, CFS, EFS, Markov blanket filtering) [188], wrappers
(kNN [203], Naive Bayes [204], sequential forward search [205]),
hybrid methods [202], mathematical programming [209], signal
processing approaches [210]

Prediction analysis Unsupervised (clustering, feature selection, dimension reduction, density
estimation, and model structure learning, nonlinear dimension reduction
methods) [211–213]; supervised (SVM [215], random forest [216]);
semi-supervised [217]; time series (HMM [218])

Networks from
literature

NER [225], iHOP [232], FActa ? [221], AliBaba [233], IntAct [234],
CoPub [235]

Pathway analysis Differential expression filtering, overrepresentation statistics [236], GSEA
[240], PAGE [241], GAGE [242], ontologizer [243], GeneCodis [244],
elementary flux analysis [245], extreme pathways [246]
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widely used NGS sequencing of DNA enriched for CpG containing regions
(Methyl-seq) [61].

BS conversion modifies unmethylated cytosine in CpGs into a uracil and thus
transforms an epigenetic difference into a genetic one detectable by methylation
specific DNA microarrays with single-nucleotide resolution [69, 70]. Except for
mC, BS treated DNA comprises only three base types and hence has reduced
sequence complexity and hybridization specificity. This is overcome by enriching
for CpG-containing segments as in Reduced Representation Bisulphite Sequencing
(RRBS) with BS treatment and NGS. Alternatives include whole-genome BS
sequencing, although that is expensive, and the widely used MethylC-seq, i.e. NGS
of BS treated DNA. Throughput and coverage may increase with nanopore
sequencing which can sequence mC directly, without BS treatment [71].

Genome-wide identification of DNA binding-sites and corresponding binding
proteins is mainly achieved with the affinity-based approach chromatin immuno-
precipitation (ChIP) whereby DNA-binding proteins, e.g. histones and transcription
factors, are cross-linked in vivo in cells that are then lysed. DNA is fragmented by
sonification, recovered by heating DNA–protein complexes and detected with
microarray (ChIP-chip) or NGS (ChIP-seq) [72, 73]. Methylated DNA Immuno-
precipitation (MeDIP-chip and MeDIP-seq) uses monoclonal antibody against
methylated cytosine to enrich single-strand methylated DNA. Some alternatives
rely instead on high affinity binding of a Methyl-CpG Binding Domain (MBD)
protein complex for double-strand methylated DNA (e.g. MDB-seq) [60, 74].
Transcription factor binding sites are then predicted in the sequences identified
[75]. ChIP is also widely used to study patterns of histone modifications and
chromatin modifiers [63, 76]. It can be integrated to other data sets, as with Segway
[77], helping development of chromatin model [78]. ChIP coupled with quantitative
real-time PCR allows the study of the dynamics of DNA and proteins interactions in
living cells for up to several minutes, and has now been adapted to microfluidics
technology reducing the number of cells and time required [79].

Across the three types of treatment, at least 13 array- and 10 seq-based ana-
lytical methods exist, the choice of which depends on their features, the required
coverage and resolution, types of bias, accuracy and reproducibility, and also on
the number of samples, available DNA quality (high for affinity techniques) and
quantity (high for nuclease techniques), and in particular for array-based methods:
the organism. The most widely used NGS-based methods rely on BS (RRBS and
MethylC-seq) or affinity (MeDIP-seq and MBD-seq) approaches [61, 80, 81].

Microarray data processing addresses imaging and scanning artefacts, back-
ground correction, batch and array normalization, and correction for GC content
and CpG density. The ratio of methylated to unmethylated molecules for a given
locus is a widely used metric. It is analysed with tools developed for gene
expression data, potentially wrongly since they rely on assumptions violated by
DNA-methylation data, e.g. independence of the number of methylated and un-
methylated sites, and similarity of signal strength across samples [61, 82–84].
Processing sequencing reads involves mapping of reads to the reference genome,
counting and/or analysis of bisulphite data [85, 86].
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Genomic regions of chromatin accessibility, i.e. low nucleosomal content and
open chromatin structure, potentially harbour regulatory sequences and can be
identified with high-throughput DNAse I hypersensitivity assay (DNAseI-seq aka
DHS-seq) [87], formaldehyde-assisted isolation of regulatory elements followed
by sequencing (FAIRE–seq) [88] and Sono-seq [89]. And long range chromosomal
interaction are identified with chromosomal conformation capture (3C) [90, 91],
3C on chip (4C) [92], 3C carbon copy (5C) [93] and coupled with NGS as in using
Hi-C [94] and ChIA-PET [95]. Nucleosome positioning and remodelling is studied
with CATCH-IT [96] and MNase-seq [97] while haploChIP identifies allele-spe-
cific chromatin profiles [98, 99], including SNPS that affect gene expression [100].

Methods to integrate epigenomics data are recent and currently being devel-
oped. Examples include integration with gene expression data, using an empirical
Bayes model [101] and clustering of DNA methylation data followed with non-
linear regression analyses [102]. Visualisation tools can display raw data genome-
wide as with Circos [103] or analysis output in a similar manner to that used for
GWAS, using log10 p-value, but on two axes: test of difference in methylation
status and test of difference in gene expression [83].

1.3.2 Transcriptomics

Transcriptomics is the genome-wide identification and quantification of RNA
species such as mRNAs, non-coding RNAs and small RNAs, in health and disease,
and in response to external stimuli. With DNA microarrays, gene expression levels
are measured as the amount of RNA in the sample that matches the set of probes
fixed on the array; RNA molecules are fluorescently labelled and hybridised onto
the array where the intensity of the signal measured for a given probe is assumed
to be proportional to the quantity of RNA bound to it. Changes in expression levels
between experimental conditions or samples with or without disease on one hand
and similarity of expression pattern with a gene with known function on the other
hand indicate the most likely functions of the genes. Two main public repositories
for gene expression data sets exist: ArrayExpress [104, 105] and Gene Expression
Omnibus (GEO) [106], both compliant with the ‘Minimum information about a
microarray experiment’ (MIAME) guidelines [107]. Although microarrays are an
established and very widely used technology [108], data processing and analysis
methods are still being developed. For example, recent studies claim that models
for background noise based on Gaussian distribution for computational efficiency
may not be appropriate and non-parametric methods may harbour a lower false
positive rate [109], while weighted average difference seems to be the best method
to identify differentially expressed genes [110]. Two main sequencing-based
alternatives exist which, unlike microarrays, do not rely on a set of pre-defined
probes and are therefore considered unbiased: Serial Analysis of Gene Expression
(SAGE) and genome-wide transcriptome NGS (RNA-seq).
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SAGE entails sequencing tags that are unique to each gene and not defined a
priori. SAGE was for example used to build expression profiles of long non-
coding RNAs for 26 normal tissues and 19 cancers in human [111], shedding light
on their poorly understood function [112]. The more recent RNA-seq provides
whole transcript sequences, has very low background noise, offers a very large
dynamic range, is highly accurate and reproducible, enables the discovery of novel
exons, isoforms and transcripts. RNA-seq has already proved very promising but is
not as mature as microarrays yet [113–115]. Rare and transient transcripts so far
undetected by current methods were recently identified with targeted transcripto-
mics by capture on tiling array followed by NGS [116]. Currently, some experi-
mental protocols may introduce bias due to amplification, fragmentation and
ligation processes [117, 118]. Development of robust quality control standards and
guidelines for microarrays occurred over a decade but should be faster for RNA-
seq. Methods are being developed to describe experiments using MIAME-like
‘Minimum Information about a high-throughput SeQuencing Experiment’
(MINSEQE) guidelines [119], map the vast amount of short read sequences [26],
assess expression levels and detect differentially expressed transcripts [120].

Estimates of expression levels of transcripts of interest must be validated by
RT-qPCR and emerging techniques such as direct visualization and counting of
RNA molecules [121]. These must however be standardised and applied across
platforms [21]. Microarrays are still relatively cheaper than RNA-seq, their biases
are known and analysis workflows are mature. They are therefore still preferred in
drug discovery, though RNA-seq methods will probably replace them over the
next years. Because gene expression profiles obtained with both methods correlate
well, the vast amount of data acquired with microarrays is complementary to new
data produced by RNA-seq [108].

Other techniques such as ChIP are also used to identify proteins binding DNA
(ChIP-seq) [73] and RNA (CLIP-seq aka HITS-CLIP) [122]. These fast evolving
high throughput methods are greatly improving our understanding of gene
expression regulation [123, 124], at the transcriptional and post-transcriptional
levels [125].

1.3.3 Proteomics

Correlation between levels of transcripts and proteins is incomplete due to vari-
ation in speed and efficiency of translation and of mRNA degradation. Many
proteins undergo posttranslational modifications, e.g. phosphorylation and ubiq-
uitination, which modulate their activity and mediate signal transduction. Proteins
also play their role as part of complexes with other proteins or nucleic acids. A
recent study of a human cell line identified over 10,000 proteins, with concen-
trations ranging over seven orders of magnitude. The human proteome has been
estimated to comprise several millions distinct species which cannot currently be
amplified and reflect concentrations with a very wide dynamic range [126].
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Proteins can be identified using low-throughput antibody methods, Enzyme-
Linked ImmunoSorbent Assays (ELISAs) and 2D gel electrophoresis. Proteomics
aims at defining all of the proteins present in a cell, a tissue, or an organism (or any
other biological compartment) and employs large-scale, high-throughput studies of
protein content, modifications, function, structure, localisation, and interactions
using high-throughput techniques. Protein microarrays capture proteins using
agents fixed on their surface, which can be antibodies but also peptides, receptors,
antigens, nucleic acids. Detection and quantification are often fluorescence-based
and identify interactions between proteins, kinase substrates, activators of tran-
scription factors [127]. Nanoproteomics has the potential to provide fast, high-
throughput and sensitive methods using only minute amount of samples [128].
However, MS is currently the main technique for large-scale whole-proteome
study with precise measurements [129, 130].

Shotgun proteomics, i.e. shotgun LC coupled with tandem MS (LC–MS/MS) is
the most widely used approach. The sample of peptides resulting from the trypsin
(or other enzyme) digestion of proteins is separated by High Performance Liquid
Chromatography (HPLC) and peptides are identified using tandem MS: peptides
are ionised and separated, producing mass spectra with peaks corresponding to
peptides (first MS), which are then identified using further fragmentation and
separation of resulting peptide fragments (second MS). Inclusion of labelled
synthetic peptides as spike-in or labelling samples chemically (iTRAQ) or meta-
bolically (SILAC) improves quantification [131]. Mixture complexity is addressed
by fractioning the mixture. Targeted proteomics allows one to identify 100-200
proteins in a complex mixture by previously identifying the ‘‘transition peptide
fragments’’ through the use of a triple quadrupole mass spectrometer which sep-
arates the trypsin peptide fragments, then fragments these further into ‘‘transi-
tions’’ that can be quantified in the third quadrupole. One attempts to choose
transitions that are unique to individual proteins and spiking in isotopically
labelled transition peptides greatly improves quantification. Targeted mass spec-
trometry is termed Selected Reaction Monitoring (SRM) or Multiple Reaction
Monitoring (MRM). SRM assays for the entire human proteome (more than 20,000
proteins) have recently been developed (R. Mortiz, personal communication).

HPLC–MS is highly sensitive, specific and fast, and thus used for bioanalysis,
in particular pharmacokinetics to measure speed of drug clearance by the body,
and in urine sample analysis. Drawbacks however include a bias towards identi-
fication of most abundant peptides. SELDI-ToF is more accurate than shotgun
approach and is thus better suited to biomarker quantification, but may not be
accurate enough for clinical diagnostics [132].

Recent techniques produce data sets of approximately one million spectra, up to
100 Gb in size, where up to 8,000 proteins can be identified [133]. Pre-processing
of raw spectra entails noise filtering, baseline subtraction, peak detection, and
calibration and alignment of LC/MS maps. Analysis follows four steps: (1)
identification of amino-acid sequences, peptides and proteins in Peptide-Spectrum
Match (PSM), and detection, quantification, annotation and alignment of features,
(2) peptide and protein significance analysis, (3) class discovery and prediction,
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and (4) data integration and pathway analysis. Identification of amino-acid
sequences mainly involves searching databases of spectra obtained experimentally
or of spectra predicted from genomic sequences using in silico digestion, and
reporting PSMs with the best scores. Statistical strength of predictions is indicated
using the False Discovery Rate (FDR) computed using decoy databases, or models
including the proportions of true and false identifications. Because many spectra
map to many peptides and many peptides map to many proteins, identification of
peptides and proteins is cumbersome and not completely solved. The issue is
further complicated by post translational modifications and single amino-acid
polymorphisms. Current methods identify approximately two thirds of tandem MS
spectra. Proteins are reported on the basis of single-peptide match, or more
stringently of match to protease specific peptides [133, 134]. Experiments are
described using MIAME-like Minimum Information About a Proteomics Experi-
ment (MIAPE) guidelines [135].

Difference in protein abundance is assessed with protein quantification (con-
centration estimate) and class comparison (change in abundance between condi-
tions). The principle is to summarise all quantitative data relating to the protein by
(1) spectral counting, where the number of spectra is assumed to reflect abundance
with LC MS–MS, and is limited to large change for abundant proteins in low-
complexity mixtures, or (2) probabilistic models incorporating all features of a
protein and their variation. These models aim to address important issues, such as
representation of the experimental design, treatment of missing data and control of
FDR [134, 136]. Recent studies have shown convincing examples of quantitative
proteomics efforts ran across different laboratories and using several experimental
platforms. Currently, about two-third of human proteins predicted to exist have
been detected with MS, hence the need to improve sensitivity, reproducibility of
identification, and sensitivity and accuracy of quantification [133, 134, 136].
Protein–protein interactions and cell signalling cascades are mainly studied with
the following approaches: yeast two-hybrid complementation, protein microarray,
immunoaffinity chromatography and MS [137], and with a lower throughput by
immunoprecipitation and mass spectrometry in Mammals [138, 139]. Attempts to
integrate proteomics with other omics data are hindered by current drawbacks of
proteomics analysis: proteome not completely sampled, uncertain identification of
protein, difficulties in mapping identifiers across the different omics sources, hence
the need for protein-centric knowledge bases such as TransProteomic Pipeline
[140], Protein Atlas [141] and neXProt [142].

1.3.4 Metabolomics and Lipidomics

1.3.4.1 Metabolomics

Metabolomics is the high-throughput characterisation of the mixture of all
metabolites in a biological system, i.e. endogenous and exogenous small
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molecules [143]. Metabolites are lipids, peptides, and amino, nucleic and organic
acids. Metabolomics is now widely used in microbiology, nutrition, agriculture
and environmental sciences, and clinical and pharmaceutical fields. Metabolites
are the product of enzymatic reactions mediating complex biological processes and
may therefore help understand phenotypes. They can be analysed using NMR
spectroscopy although it lacks sensitivity [144] and MS (GC and LC) is usually
preferred and used in targeted and untargeted approaches. Targeted strategies are
specific and sensitive, allow absolute quantification and thus widely used in
clinical diagnostics and drug development. Targeted approaches based on stable
isotopes and models of metabolic networks allow estimation of the flux through
biochemical pathways [145]. In contrast, untargeted approaches harbour a high
coverage, though any metabolite identification is less specific and sensitive, and
requires more intensive computational analysis. Features to use for identification
are detected using univariate and multivariate analyses and then used to search
databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [146, 147].
Further experiments to distinguish isomers and characterise unidentified metabo-
lites using tandem MS or NMR are often required. Metabolomics also include
identification of substrate in in vitro assays of three types: (1) the protein is fixed
onto a surface and ligands screened, (2) the metabolite is fixed and serve as bait for
interacting proteins, or (3) activity-based protein profiling using chemical probes
and beads. Last but not least, location of metabolites within cells, tissues or bodies
can be studied by coupling MALDI or matrix-free MS and imaging techniques
(imaging mass spectrometry, IMS) to obtain spectra by scanning the biological
sample with the laser and then compiling a map of metabolite content across that
sample [145, 148].

Standards for experiment description and tools for processing and analysis of
metabolomics data are actively being developed [149, 150]. For example, Me-
tabolomeExpress [151] and metaP [152] both combine tools from raw data pro-
cessing, i.e. MS peak detection, to multivariate analysis.

Development of biomarkers with metabolomics and comparison between data
sets depend on: (1) the characterisation of technical MS artefacts and differences in
compounds discriminating samples between analysers and (2) sample type and
biological variability [153]. The Human Metabolome Project quantified over 4,000
metabolites in up to 70 samples [143] out of 6,826 identified by Wishart and
colleagues [154]. Another recent large-scale targeted metabolomics study quan-
tified 122 metabolites in 377 individuals, including type 2 diabetes patients and
controls, and identified 25 metabolites in plasma and 15 more in serum with
different concentrations in the two groups [155].

1.3.4.2 Lipidomics

Lipids play important roles in the signalling involved in metabolism, energy
storage, and cell proliferation, migration and apoptosis [156]. They are also the
main components of cellular membranes, together with membrane proteins.
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They thereby maintain cellular architecture and mediate membrane trafficking by
enabling protein machinery assembly, as for example in dynamic clusters gath-
ering specific proteins in lipids rafts [157]. Lipids are very diverse in their
structure, physical properties and quantity. For example, signalling and structural
lipids are respectively found in low and high abundance. Lipidomes, the lipids
present in biological structures, are currently poorly understood [158]. The Human
lipidome may contain thousands of species [159] while only 20 % of all lipids may
have been detectable with existing technologies, as in 2009 [154]. Lipidomics
studies aim to characterise lipids content, localisation and activity in cells and
tissues [160]. The vast majority of lipids are extracted from lysed cells and tissues,
and analysed with MS either directly in the shotgun method, i.e. ‘top-down’ lip-
idomics with high resolution analysers such as Orbitraps, or with LC–MS/MS
‘bottom-up’ lipidomics to distinguish lipids with identical charge to mass ratio
[161]. Lipids have also been analysed with MALDI IMS [162]. Lipidomics MS
raw data can be analysed with tools used for metabolomics, such as XCMS [163]
and MZmine 2 [164].

Lipids are identified and quantified using raw data processing and statistical
analysis, followed by pathway analysis and modelling [165]. Major lipidomics
intiatives include the ‘Lipid Metabolites And Pathways Strategy’ (LIPID MAPS)
which has established standards and enabled absolute rather than relative quanti-
fication [166], and the Mouse Macrophage Lipidome [167]. Absolute quantities for
proteomics and lipidomics will help characterise complexes comprising both
proteins and lipids [145].

Future technical advances should aim for higher accuracy better consistency,
and harmonisation of protocols. Analytical developments should include: (1)
automated data processing and lipid identification and mining, (2) statistical data
analysis to address high-dimensionality and platform-independent computation of
lipid identification false discovery rate, (3) pathway analysis to identify bio-
chemical, signalling and regulatory processes that involve the lipids of interest
characterised in a sample set, and (4) modelling in time and space within the
context of physiology and systems [168].

1.4 Methods and Tools

Current high-throughput technologies produce very large data sets and have
shifted the bottleneck from data production to data analysis. Knowledge man-
agement tools are thus very valuable to organise, store and analyse data either
directly with embedded software or indirectly by exporting the data in the required
format. Recent data sets also harbour very high dimensionality. Data integration
aims at combining such high-dimensionality, large data sets differing in the type of
data collected. Unsupervised integration aims to reduce the dimensionality of large
data sets, without introducing a bias inherent to prior knowledge and hypotheses. It
helps detect patterns within and amongst data sets and complements standard
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observations in building hypotheses. These are then tested analytically with
supervised methods, usually only using a fraction of the available dimensions, and
experimentally [58, 169, 170]. Despite its power and promises data integration is
only a means to an end, not an automatic engine to generate valuable findings.
Indeed, answers to the questions asked in a scientific study directly depend on the
experimental design, e.g. the types of data, controls, processing and analyses, and
the size of samples, within financial and time constraints. The following section
describes methods for clustering, feature selection, prediction analysis, text mining
and pathway analysis (Fig. 1.3).

1.4.1 Clustering

Motivation: Clustering is a data-exploration technique for multivariate analysis
which divides data based on intrinsic groups without predefined labels. Clustering
methods have been applied to various aspects of biomedical research, e.g. gene
expression in cancer, to distinguish patients or genes subgroups based on expression
levels of a set of differentially expressed genes. Clustered genes may have
similar functions, be involved in the same cellular process or in similar pathways.

Fig. 1.3 Overview of machine learning methods. Supervised and unsupervised methods range
from lower level dimensionality reduction approaches to higher-level analytical techniques and
their extensions for integrative data analysis [171]
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Such knowledge would improve our understanding of gene function and biological
processes. Clustering methods can be used for visualization, hypothesis generation
and selection of genes for further analysis.

Pre-processing: Clustering requires standard normalization methods for omics
data [172–174]. Clustering specifically requires a prior dimensionality reduction
and data standardization, e.g. filtering out genes or proteins with low variance
across the samples, methods based on the maximization of a function of covari-
ances as in the ‘sum of covariances’ (SUMCOV) method [175], and standardi-
zation of the data, e.g. mean absolute deviation standardization.

State-of-the-art: Numerous clustering tools have been developed. Several
well-known clustering algorithms are: hierarchical clustering, partition and den-
sity-based clustering and fuzzy clustering. More recently developed clustering
algorithms include: subspace or bi-clustering methods that cluster both genes and
samples [176]. Automatic acquisition, pre-processing and clustering analysis via
web-based tools is possible for several high-throughput technologies, e.g. Babel-
omics [177], BioArray Software Environment (BASE) [178] and Multiple Clus-
tering Analysis Methodology (MCAM) [179]. Efficient cluster validation
procedures are crucial for decision making with large number of genes in the
absence of large amount of samples and will therefore be extremely useful to
understand genetic interactions and design drug targets.

Use cases: Clustering is widely used in microarray data analysis and a wide
choice of tools exists. Clustering of genes may identify a group of genes with
similar functions while clustering of samples can suggest patient subgroups for
stratification, response to treatments and disease subtypes or grade, e.g. childhood
leukemia [180], breast cancer [181] and asthma [182, 183]. Clusters can also be
integrated with pathway analysis [184].

1.4.2 Feature Selection

Motivation: Feature or attribute selection methods have a wide range of appli-
cations in Systems Biology. They enable an experimenter to identify which genes
or proteins are significantly differentially expressed across different biological
conditions in a cell type of interest, and which subsets of genes or proteins provide
the most promising combined set of biomarkers for discriminating between these
conditions (see also the section on prediction analysis). Moreover, feature selec-
tion approaches are often used to reduce the dimension of the input data before
applying other higher-level statistical analysis methods. This alleviates a variety of
statistical problems referred to as the curse of dimensionality in the literature
[185]. However, in contrast to feature transformation based dimension reduction
methods [186], the original features of the data are preserved, which facilitates
data interpretation in subsequent analyses.

Feature selection algorithms can be grouped into supervised [187] and unsu-
pervised approaches [188], depending on whether they incorporate information
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from class labels for the biological conditions. Moreover, feature selection algo-
rithms employing prediction methods to score the informativeness of a feature
subset are known as wrappers, whereas other univariate and combinatorial
approaches to filter attributes are called filters [189].

Pre-processing: For most experimental platforms used in Systems Biology,
several low-level pre-processing steps are required before applying feature
selection methods. These include image processing [190, 191], normalisation
[192] and summarisation approaches [193, 194], for microarray gene expression
data [195], and raw data filtering [196], peak detection [197], peak alignment [198]
and retention time normalisation methods for proteomics and metabolomics mass
spectrometry data [199]. Moreover, some feature selection methods require a prior
discretization of the data, e.g. if special association measures are used, such as
mutual information [200].

State-of-the-art: The choice of the feature selection method depends both on
the analysis goal (e.g. identifying individual biomarkers, or building a combina-
torial predictive model for sample classification) and on the desired trade-off
between efficiency (the run-time complexity of the algorithm) and accuracy (the
predictive power of the selected features).

Among the filter approaches, simple univariate statistics like the parametric
Student’s t test and the non-parametric Wilcoxon rank sum test are still widely
used, due to their advantages in terms of speed and the difficulty of estimating
feature dependencies from noisy, high-dimensional data. More complex combi-
natorial methods such as CFS [201], EFS [202] and Markov blanket filtering [203]
have recently gained influence.

Wrapper methods are becoming increasingly popular. They score feature sub-
sets using prediction methods in combination with a search space exploration
approach and their selections reach state-of-the art predictive performance in
biological classification problems. Examples include combinations of fast and
simple prediction methods, e.g. kNN [204] and Naïve Bayes [205], and search
space exploration methods, e.g. sequential forward search [206]. These approaches
are gradually being replaced by more complex algorithm combinations, including
evolutionary algorithms [207] and kernel-based machine learning methods [208].

Finally, several recent techniques have improved the trade-off between speed
and accuracy: (1) combination of filters [209], (2) combination of filters and
wrappers into hybrid methods [203], (3) mathematical programming [210] and (4)
signal processing approaches [211].

Use cases: Identification and prioritisation of gene, protein or metabolite bio-
markers via feature selection techniques have three main aims: (1) distinguish
biological conditions, e.g. presence of cancer, of viral infection, or tumor grades,
(2) mediate early diagnostic, patient-tailored therapy, disease progression moni-
toring, and (3) help study treatment in a cell culture or animal model. However,
feature selection methods are also used to filter datasets prior to the application of
other higher-level data analysis methods, e.g. other machine learning methods,
pathway overrepresentation analysis and network analysis. Finally, feature
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selection is often integrated with classification and regression techniques to
decrease the complexity of machine learning models and maximize their predic-
tive accuracy.

1.4.3 Prediction Analysis

Motivation: Prediction analysis refers to a family of methods that attempt to
capture statistical dependencies and extract patterns from a set of measured data, to
make predictions about future data. Such methods hold great promise in functional
genomics, proteomics, metabolomics and bioinformatics, where the recent tech-
nologies provide a wealth of data such as gene and protein expression measure-
ments, DNA and RNA sequence reads. The rate at which such data are produced
makes automatic prediction analysis an indispensable tool for the biologist.
Methods for prediction analysis can be unsupervised, semi-supervised, or
supervised.

State-of-the-art: Unsupervised methods find regularities and hidden structure
in the data. Typical approaches include clustering, feature selection, dimension
reduction, density estimation, and model structure learning [212]. Classical linear
dimension reduction methods are principal component analysis and independent
component analysis, but recently some very powerful nonlinear dimension
reduction methods have appeared [213, 214].

Supervised methods use data in the form of pairs (x, y) and estimate a function
that predicts the value of y from a given input x. When y is a discrete quantity (for
example a label of a number of distinct biological conditions) the method is called
classification and when y is continuous the method is called regression. The key
challenge is to ensure that the estimated function can generalize well to unseen
situations [215]. Two methods are popular: (1) support vector machine (SVM) that
estimates a discriminative function by maximizing class separation margin [216]
and (2) random forest, based on tree ensembles and voting [217].

Semi-supervised methods combine ideas from supervised and unsupervised
methods, to capture unsupervised structure in the data in order to boost classifi-
cation performance [218].

Time series methods use data measured at different times to model and predict
future values of the data, by capturing its structure and regularities and accounting
for stochastic effects, e.g. with hidden Markov models (HMM) [219].

Use cases: A typical example is the classification of biological data such as
gene expression data into different biological classes, e.g. disease and healthy,
mostly using SVM and random forests. Prediction methods are also applied to
pathway analysis, network decomposition and sequence annotation. They are often
combined with a feature selection to extract the most relevant dimensions in the
input data space [220].
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1.4.4 Building Networks and Pathways from Literature

Motivation: Text mining joints efforts with the experimental sciences to help
multifaceted disease-related research. Networks and connectivity maps are derived
from text in an attempt to find connections and causal relations between compo-
nents of complex biomedical systems, in order to elucidate disease mechanisms
and detect co-morbidities [221, 222].

Pre-processing: Preparation of textual data consists of tokenization, removal of
punctuation marks, part-of-speech tagging and sometimes syntactic parsing. Next,
names of proteins, genes, chemicals, phenotypes and diseases are identified in the
text. Management of biomedical terminology addresses several issues, such as
appearance of new terms [221], heavy use of acronyms, abbreviations and general-
purpose words that designate genes [223]. Synonymy and homonymy impose
special challenges on the recognition process and complicate linking of a gene
name to its unique identifier in the database [224, 225]. State-of-the-art named-
entity recognition (NER) systems achieve F-measure of about 86 % [226] on
biomedical corpus as opposed to 93 % on general purpose English texts [227].

State-of-the-art: Reconstruction of biological pathways from literature has
evolved from undirected pairwise protein–protein co-occurrences [228] to com-
plex biomedical events of typed and therefore directed interactions spanning
multiple proteins [229–232]. The latter rely to a large extent on the richly anno-
tated corpora, deep syntactic parsing and supervised machine learning techniques.
Due to complexity of the natural language, accurate extraction of biomedical
events remains a challenge. F-measure achieved by state-of-the-art systems varies
from roughly 70–48 % depending largely on the event type being recognized.

Use cases: Many biomedical text-mining tools assist users at different stages of
text processing, in particular for networks and pathways construction. Co-occur-
rence model has been successfully implemented in iHop, a hyperlinked network of
genes and proteins mentioned in PubMed abstracts [233]. Facta ? extends the
pairwise co-occurrence model with event extraction and discovery of indirect
associations between the biomedical concepts [222]. Based on PubMed abstracts,
AliBaba builds networks of interacting proteins, genes—disease associations and
subcellular location of proteins [234]. Networks extracted from text can be com-
plemented with experimental data using IntAct [235] and CoPub [236].

1.4.5 Pathway Analysis

Motivation: Pathway analysis aims at identifying pathway deregulations to
improve the understanding of complex phenotypes by leveraging information on
known biomolecular interactions in pathways to guide the search through the space
of possible functional associations. A wide range of methods exists, including
enrichment analysis statistics, pathway-based disease gene prioritization methods,
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convex metabolic pathway analysis and in silico pathway prediction/reconstruc-
tion methods [237].

Pre-processing: Because experimental measurement platforms and pathway
databases tend to use different identifier formats, pathway analysis usually starts
with the conversion of gene/protein names into a standard format [238–240],
followed by normalisation and pre-processing of the experimental data.

State-of-the-art: Several novel approaches have recently been developed to
infer changes in pathway activity from high-throughput data more accurately than
by the classical combination of differential expression filtering with overrepre-
sentation statistics like the Fisher exact test (for unordered datasets) or the Kol-
mogorov–Smirnov test (for ranked datasets). These include parametric and non-
parametric approaches that take into account unfiltered gene expression level
measurements, e.g. GSEA [241], PaGE [242], GAGE [243] or exploit information
from ontology graphs, e.g. Ontologizer [244] and GeneCodis [245]. For the study
of metabolic pathways, two related approaches using convex analysis have become
increasingly important: Elementary flux modes [246] and extreme pathways [247].
Finally, as opposed to the classical human expert-based definition of pathways,
various methods for pathway prediction/reconstruction using experimental data
have been proposed recently [248, 249].

Use cases: Genome-wide pathway analyses have provided new insights on the
aetiology of complex diseases that cannot be obtained from classical single-locus
analyses [250]. Such analyses have indeed shown that different disruptions in a
pathway can cause the same disease, as in colorectal cancer [251]. Metabolic
pathway analysis is used in biomedical and biotechnological applications, e.g. to
increase the production yield of microorganisms by metabolic engineering, i.e. the
modification of selected pathways via recombinant DNA technologies [252].
Pathway analysis can also be integrated with network analysis to identify dereg-
ulated network modules in complex diseases [253].

1.5 Conclusions

Study of individual genes and their products in model systems has shifted to high-
throughput studies in laboratories and often generated by large consortia. Each
type of omic data is proving very valuable and their integration promises even
greater rewards. Current techniques are very diverse and can analyse complex
biological samples. They harbour high sensitivity and specificity, albeit not always
sufficient, as in proteomics. Ongoing developments will increase accuracy,
robustness, and flexibility while reducing cost. Current technical innovations
continue shifting the bottleneck from data production to data analysis. Our
understanding of biology will indeed increasingly rely on data and knowledge
management, and informatics infrastructure to complement advances in mathe-
matical and computational modelling for temporal and spatial analytical tech-
niques, which are crucial to Systems Biology.
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165. Orešič M (2011) Informatics and computational strategies for the study of lipids. Biochim
Biophys Acta 1811(11):991–999

166. Schmelzer K, Fahy E, Subramaniam S, Dennis EA (2007) The lipid maps initiative in
lipidomics. Meth Enzymol 432:171–183

167. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS,
Glass CK, Hardiman G, Reichart D, Merrill AH Jr, Sullards MC, Wang E, Murphy RC,
Raetz CRH, Garrett TA, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM,

1 Functional Genomics, Proteomics, Metabolomics and Bioinformatics 37



Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S (2010) A mouse
macrophage lipidome. J Biol Chem 285(51):39976–39985

168. Niemelä PS, Castillo S, Sysi-Aho M, Oresic M (2009) Bioinformatics and computational
methods for lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci
877(26):2855–2862

169. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher
O, Neuweger H, Schneider R, Tenenbaum D, Gavin A-C (2010) Visualization of omics data
for systems biology. Nat Methods 7(3 Suppl):S56–S68

170. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach.
Nat Rev Genet 11(7):476–486

171. Glaab E (2011) Analysing functional genomics data using novel ensemble,consensus and
data fusion techniques. University of Nottingham, Nottingham

172. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP
(2003) Exploration, normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics 4(2):249–264

173. Mueller LN, Brusniak M-Y, Mani DR, Aebersold R (2008) An assessment of software
solutions for the analysis of mass spectrometry based quantitative proteomics data.
J Proteome Res 7(1):51–61

174. Castillo S, Gopalacharyulu P, Yetukuri L, Orešič M (2011) Algorithms and tools for the
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Chapter 2
Comparing Biological Networks:
A Survey on Graph Classifying
Techniques

Laurin A. J. Mueller, Matthias Dehmer and Frank Emmert-Streib

Abstract In order to compare biological networks numerous methods have been
developed. Here, we give an overview of existing methods to compare biological
networks meaningfully. Therefore we survey classical approaches of exact an
inexact graph matching and discuss existing approaches to compare special types
of biological networks. Moreover we review graph kernel-based methods and
describe an approach based on structural network measures to classify large bio-
logical networks. The aim of this chapter is to provide a survey of techniques to
compare biological networks for the interdisciplinary research community dealing
with novel research questions in the field of systems biology
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Acronyms

GED Graph Edit Distance
GEO Gene Expression Omnibus
GO Gene Ontology
PPI Protein Protein Interactions
QSAR Quantitative Structure-Activity Relationship
QSPR Quantitative Structure-Property Relationships

2.1 Introduction

During the last decade, the amount of biological data has increased tremendously
[93]. New developed technologies in molecular biology, such as DNA microarray
or high-throughput sequencing, allow to create large collections of biological data
and to aggregate information about different parts (i.e. genes, proteins) that are
responsible for the functionality of a cell or an organism [64]. Identifying the
different building blocks of a cell is the foundation of understanding the complex
biological processes that take place within a cell. But to understand the mecha-
nisms of a cell it is necessary to understand the interactions between the different
components [56].

To model such interactions and the dynamics of biological processes, network-
based approaches have been proven useful [3, 41, 43, 124]. A strong need for
methods to compare biological networks arose in order to answer intriguing
questions such as finding interactions across species, predicting functions of
proteins or protein interactions, identifying functional information about poorly
characterized interactions, etc. [109]. Additionally, networks-based approaches
representing data from clinical studies can provide information to classify stages of
complex diseases [88] or to predict tumor stages [42]. Comparing such networks
can also be fruitful in order to identify biomarkers or groups of biomarkers for a
better prediction and characterization of complex diseases [96].

Several methods to compare graphs for the investigation of different problems
in various different scientific disciplines have been developed during the last
decades [20, 24, 34, 117, 128]. Note, it is essential to understand that no general
method or algorithm for comparing networks exists, as it always depends on the
practical problem that has to be solved [34]. From this we see that there is a strong
need to develop methods in order to compare networks. The aim of this review is
to introduce existing methods to compare and classify networks to the field of
system biology Additionally, this survey of graph classification techniques may
help to select useful methods to shed light upon challenging problems in com-
putational biology.

The chapter is organized as follows: in Sect. 2.2.1 we summarize classical
methods for exact an inexact graph matching. A survey of different existing
algorithms to align and compare biological networks is given in Sect. 2.2.2.
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In Sect. 2.2.3 we discuss graph kernel-based methods for supervised machine
learning and in Sect. 2.3 we describe methods based on topological network
descriptors to compare and classify biological networks. Additionally we sum-
marize two applications of the classification approach based on topological net-
work descriptors in Sects. 2.3.3 and 2.3.4.

2.2 A Review on Graph Classification Techniques

Numerous methods and algorithms to compare graphs have been developed during
the last decades [20, 24, 34, 117, 128]. It is essential to understand that there is no
general approach that solves the problem of the matching of two graphs [34]. For
two graphs that are structurally different, it strongly depends on the practical
problem if they should be classified as similar. For example, in computational
chemistry, graphs are used to represent the chemical structure of different mole-
cules [13, 29, 118]. Comparing two molecules that are both toxic but one is a base
and one an acid, it strongly depends on the research question whether the two
graphs should be classified as similar (both are toxic) or not (one is a base one an
acid). In general, the term classification refers to methods that identify similar
objects. But in the context of machine learning, classification refers to supervised
and clustering to unsupervised machine learning approaches.

In order to introduce the field of graph classification to systems biology we
outline classical approaches (see Sect. 2.2.1) in this section. Moreover we give a
detailed overview of recent approaches to compare biological networks (see
Sect. 2.2.2). Furthermore we give an overview of kernel-based methods to classify
graphs (see Sect. 2.2.3).

2.2.1 Classical Work

Methods for the comparison of graphs have been developed for the classification
of structural patterns for different applications in the field of pattern recognition,
such as image analysis, document processing or biometric identification [24]. In
this work, we will give an overview of methods and algorithms, that can be
utilized to estimate the similarity of graphs.

Exact Graph Matching: Methods to compare graphs can be categorized into
two major groups: exact and inexact graph matching [19, 31]. The problem of
exact graph matching is based on finding relations based on graph isomorphisms
[31]. Generally speaking, two graphs Ga ¼ ðVa;EaÞ and Gb ¼ ðVb;EbÞ having the
same number of nodes jVaj ¼ jVbj are isomorphic if the function p : Va ! Vb

exists, such that ðg; hÞ 2 Ea () ðpðgÞ; pðhÞÞ 2 Eb [24]. Then Ga and Gb are said
to be isomorphic graphs. This means that the mapping has to be edge-preserving in
both directions [24]. A weaker formulation of the problem of exact graph matching

2 Comparing Biological Networks 45



is subgraph isomorphism where one graph has to be matched to a subgraph of
another graph [24]. Additionally, another matching type of this category matches a
subgraphs of the first graph to an isomorphic subgraph of the second one [19].
Methods that find this kind of matching are summarized under the problem of
finding the maximum common subgraph [24].

Zelinka [128] was the first to suggest a measure for the similarity of graphs
based on subgraph isomorphism. The measure is based on the assumption, that the
larger the common induced subgraph of two graphs is the more similar the graphs
are [128]. This distance measure is restricted to graphs having the same number of
nodes. Sobik [117] formulated later a generalization of this method for graphs
having different numbers of nodes.

The standard algorithm for graph and subgraph isomorphism was introduced by
Ullmann [121]. As most algorithms for exact graph matching, this method is based
on tree search using backtracking [121]. In general, the computational complexity
of this algorithm is exponential, but can be reduced to polynomial time for certain
graph classes [44]. In more recent work [26, 27, 74, 101] several improvements of
the algorithm of Ullmann [121] have been developed. Additionally, McKay
introduced an algorithm based on automorphism groups of graphs, that are used to
derive a unique ordering for each equivalence class of isomorphic graphs [80].
Moreover, Messmer and Bunke [82] developed an algorithm that builds an deci-
sion tree for a whole graph library, what improves the search tremendously.
Nevertheless, the complexity of constructing the decision tree has to be considered
separately. Later, they further developed this method by using recursive graph
decomposition for each graph in the library [83]. Although this algorithm avoids
the comparison of similar subgraphs, the complexity of the matching increases
with the number of graphs in the library [83].

For practical use, exact graph matching methods may not always be appropriate
for several reasons [24]:

1. In the worst case, exact graph matching methods need exponential time com-
plexity [19]. Specially, with biological networks that can consist of several
thousand nodes, it is crucial to use methods that perform the process of graph
matching more efficiently. Additionally, due to the inference procedure of
biological networks, it is highly expectable that they do not have the same
number of nodes. This makes it virtually impossible to apply exact graph
matching algorithms.

2. Statistical methods for the inference of networks, particular in biology, result in
non-deterministic networks [42]. The properties of such a non-deterministic
network (i.e. number of nodes, edge density) is influenced by several circum-
stances (i.e. sample size or noise). Hence, exact graph matching may not be
appropriate for such applications and the matching process has to be more
tolerant [24, 42].

Inexact Graph Matching: Due to these facts, several inexact graph matching
methods have been developed. Famous algorithms of this class, such as the graph
edit distance [19], are based on graph edit operations to calculate the distance
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between two graphs [119]. Such methods are based on costs of graph transfor-
mations (i.e. insertions or deletions of nodes or edges) that are needed to transform
one graph into the other [119]. Moreover, such methods have to find a mapping
between two graphs, that minimizes the costs of the transformation [24]. Tsai and
Fu [119] introduced a tree search-based algorithm that estimates the graph edit
cost. This method only takes node and edge substitutions into account. Later [120],
they extended the algorithm by taking node and edge insertions and deletions into
account. Additionally, Bunke and Allermann [20] introduced the graph edit dis-
tance. The general idea of this algorithm is to define the distance between two
graphs as the minimum amount of graph transformations (node and edge deletions
and insertions) [21]. The main shortcoming of this approach is the computational
complexity that makes it virtually impossible to apply this method to large graphs
[21]. Therefore, several algorithms have been developed that calculate an
approximation of the graph edit distance with acceptable computational com-
plexity, see [21, 92, 99].

Additionally, several algorithms for inexact graph matching were developed,
that include the merging or splitting of vertices, to estimate the distance between
two graphs [25, 107]. Therefore, these algorithms use a defined transformation
model to collapse subgraphs into one single node to estimate the graph distance
[107]. Other methods that use error-tolerant graph matching based on the A�
search algorithm can be found in [45, 46, 104, 108, 125]. The A� algorithm uses a
best-first search to find a path from an initial node to a target node in order to
minimize the costs on a certain path [54]. For example, Eshera et al. [45, 46]
proposed a powerful method for image understanding by representing the images
as attributed relational graphs. They utilize dynamic programming techniques to
estimate the graph distance based on the shortest path problem. Several other
algorithms have been developed in the field of pattern recognition but it would be
out of the scope of this chapter to outline them here in detail. Therefore, see the
extensive review of Conte [24] for an detailed overview of graph matching
algorithms.

2.2.2 Recent Work on Comparative Biological Network
Analysis

To model the dynamic and multidimensional nature of biological processes, net-
work-based approaches have been proven useful [3, 43, 93]. In order to analyze the
structure of biological data, Watts and Strogatz [124] and Barabási and Albert [9]
introduced a network-based approach to the field of systems biology. They showed
that the structure of biological networks is different from random networks
[9, 124]. Representing biological data as networks has become ubiquitous in
systems biology and biomedical research [41]. Therefore, several methods have
been proposed to infer gene networks from biological data [4, 73, 84]. Intuitively,
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gene networks represent the interactions of genes or gene products [41]. From this,
it is obvious that there is a strong need for methods to compare such networks. In
this section we briefly summarize recent approaches to compare and classify
networks.

Global and Local Alignment: The classification of networks has become an
important task when analyzing protein-protein interactions (PPI). In this context,
the problem of finding the best way in which nodes of one network correspond to
the nodes of another network is called network alignment [69] and can be
understood as a reformulation of graph matching [127].

Several local network alignment algorithms have been developed. The first
method of this category is called PathBlast and was developed to compare PPI
networks across species in order to identify protein pathways and complexes that
have been conserved by evolution [62, 63]. The algorithm is based on the sequence
aligning algorithm BLAST [5] and searches for high-scoring pathway alignments
between PPI networks [62]. Kelley et al. [62] applied this algorithm to align path-
ways from the well studied yeast network (S. cerevisiae) to pathways of a less known
bacterial PPI network (H. pylori) in order to predict protein functions. Whereas this
method only allows the matching of one small protein pathways onto a larger PPI
network, NetworkBLAST allows to align two PPI network in order to find all protein
pathways and complexes that are common in both networks [60, 110]. Sharan
et al. [110] used this method to predict physical PPIs and showed that proteins with
similar sequences interact within multiple species and that such proteins occur in
same conserved clusters or protein pathways. Another method based on finding the
maximum induced subgraph to align PPI networks of two different species was
invented by Koyutürk et al. [66]. This method is based on a model with the focus on
the evolution of protein–protein interactions [65, 66]. Additionally, the alignment of
two PPI networks based on this model is done by finding the maximum weighted
induced subgraph [66]. Furthermore, Flannick et al. [48] proposed an local align-
ment algorithm based on the phylogenetic relationships of the two species in order to
score possible conserved modules, called Graemlin. This method calculates the log-
ratio between the probability that a module is subject to evolutionary constraints,
and the probability the module is under no constraints [48].

Local network alignment seeks for single or multiple unrelated matched sub-
graphs of two given PPI networks and can match one protein to different local
matchings. In contrast, global network alignment searches the maximum consis-
tent matching across all vertices of the networks [127]. Therefore, Singh et al.
[114] developed the first global alignment algorithm for PPI networks called
IsoRank. The basic idea of this algorithm is that a protein in the first network is
matched to a protein in the second network only when the neighbors of the two
proteins can also be matched [127]. The calculation of a matching score of a pair
of nodes is formulated as an eigenvalue problem. This score is used to identify
relevant matches of corresponding nodes by using a greedy algorithm in order to
extract a subgraph that represents the alignment [127]. Additionally, this method
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was later further developed to IsoRankN in order to distinguish the global align-
ment between multiple networks, see [75, 115].

Additionally Shih et al. [113] introduced an algorithm for the global alignment
of multiple PPI networks. This approach calculates the similarity score based on
the protein sequence in advance, and then uses clustering techniques to group
similar proteins [113]. Based on a scaling parameter, similar clusters of the input
networks are merged to obtain the alignment. They also showed that their method
significantly outperforms IsoRankN in terms of computational complexity [113].

All previous discussed algorithms depend on information about the nodes
(proteins), such as sequences of proteins. The method called GRAAL, introduced
by Kuchaiev et al. [68] only considers structural features of the topology of the
underlying PPI networks. In particular it matches pairs of nodes based on their
graphlet degree signature similarities [97]. Graphlets are small connected non-
isomorphic subgraphs of a larger network. To calculate a score for the matching of
a pair of nodes GRAAL estimates how often a certain node is part of one of the 73
vertex orbits, based the automorphism groups of all graphlets with 2–5 nodes [97].
For a detailed explanation of this algorithm, we refer to [97]. Further developments
of this algorithm are H-GRAAL [86] and M-GRAAL [69] that successively
improved the performance in terms of computational complexity of the GRAAL
algorithm. Furthermore, the MI-GRAAL algorithm improves the matching by
taking protein sequences into account in order to optimize the matching of PPI
networks [69]. However, a shortcoming of this approach is that the search of
graphlets is accompanied by high computational costs, specially when aligning
large networks.

Other Approaches: Due to the fact that the above discussed graphlet degree-
based algorithms only take the topology of the underlying networks into account, it
is possible not only to align PPI networks but any kind of (biological) network.
Additionally, other methods have been introduced to align biological networks.
Ay et al. [7] developed an algorithm to align large networks using the idea of
compressing the initial networks. In particular, the method combines neighboring
nodes with a low degree to so-called supernodes in order gain a compressed
representation of the larger input networks. The level of compression is equal to
the distance of neighboring nodes that are combined to supernodes. Subsequently,
the compressed networks are matched by using a subgraph-based method called
SubMAP [8]. Therefore, all possible subnetworks of size k are compared pairwise
to calculate a similarity score, for details see [8]. The computational complexity of
this approach depends strongly on the level of compression and also is accom-
panied by a loss of topological information [8]. Note, that the level of compression
has to be identified for each problem individually.

Dehmer and Mehler [34] introduced a graph similarity measure to quantify the
similarity between generalized trees. They utilize sequence aligning techniques
based on the in- and out-degrees of the vertices to determine the similarity by
transforming the generalized trees into property strings [34]. Emmert-Streib et al.
[42] applied this algorithm to correlation networks inferred from microarray data,
in order to classify tumor stages of cervical cancer. Each correlation network was
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decomposed into a set of generalized trees [42]. In particular, the proposed local
decomposition algorithm generates one generalized tree for each node of the
original network by using the corresponding node as root node of the tree [42].
Then, the nodes with distance k are assigned to the level k of the tree. Later, all
nodes with a level greater than a predefined distance D are deleted to get the
decomposed generalized tree [42]. To estimate the similarity between two net-
works, the obtained trees are then pairwise compared by a the above presented
generalized tree-similarity-algorithm, for details see [34, 42]. They showed that by
using this method it is possible to meaningfully distinguish between networks
representing different tumor stages [42].

Additionally, Emmert-Streib [40] presented a network-based approach to detect
differences in biological pathways. Therefore, he inferred networks based on
Pearson correlations for a set of of genes corresponding certain pathways from
microarray data for the chronic fatigue syndrome [40]. To compare the networks
he introduced a modification of the graph edit distance. With this approach he was
able to identify pathways that significantly change due to the influence of the
disease [40].

In recent work Mueller et al. [88, 90] introduced a method based on topological
network descriptors to classify gene networks (see Sect. 2.3.2). They were able to
classify gene networks representing cancerous and benign tissue inferred from
different microarray studies on prostate cancer [88, 90]. They used a network
decomposition approach [90] based on the gene ontology database [53] in order to
demonstrate the usefulness of their approach. Additionally, Mueller et al. applied
this approach to a set of metabolic networks in order to distinguish between the
three domains of life [91]. A detailed description of this approach will be presented
in Sect. 2.3.2.

2.2.3 Graph Kernels for Supervised Machine Learning

The above discussed methods and algorithms focus on the matching or alignment
of networks. We discussed methods for inexact and exact graph matching, algo-
rithms that perform a local or global alignment of a pair or multiple biological
networks. These methods can be used for unsupervised machine learning algo-
rithms, such as clustering when the class label is not known. In contrast, supervised
machine learning methods create a classifier based on training data where the class
label is known in advance [122]. Then, this classifier can be used to assign a class
label to an object where the class label is not known before.

In the following we will survey approaches that can be used to classify a set of
networks corresponding to a given class label by using kernel methods such as
support vector machines (SVM) [122]. The major advantage of kernel-based
methods is that they access the examples via a so-called kernels [61]. In particular,
only the inner product of the vector representation of the objects are used when the
learning machine accesses the examples [61]. In particular, when the dimension of
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the vector representation of an example is very high, the dimension does not affect
the task of training and classification as long as a kernel function to calculate the
inner product effectively is available [61]. Kernel-based methods are often effec-
tive with high dimensional data as they map the input space into a higher
dimensional space by using a kernel, where a linear separation of the examples can
be performed more precisely [122]. There exist a large amount of graph kernels in
order to classify graphs [17, 49, 98, 111]. In this section we briefly summarize
existing approaches, in this field.

Kashima and Inokuchi [61] introduced a graph kernel based on random walks.
This kernel method counts all pairs of walks of two given input graphs. In par-
ticular, walks are sequences of nodes that allow repetitions of nodes. Walks of the
length k can be calculated in polynomial time by taking the adjacency matrix of a
graph to the power of k [61]. Gärntner et al. [49] extended this method by defining
kernel functions based on random walks for labeled and directed graphs. Addi-
tionally, Borgwardt et al. [15] developed a kernel method based on shortest paths.
The advantage of this method is that it outperforms the random walk kernels in
terms of computational complexity. The calculation of all paths in a graph is
NP-hard, whereas determining the shortest path between all pairs of nodes can be
solved in polynomial time [49], i.e. with the Floyd-Warshall algorithm [38].
Moreover, Borgwardt et al. [112] developed kernel methods based on graphlet
distributions. They showed that kernels based on graphlets achieve a higher
accuracy than random walk kernels by applying them to different graph sets.
However, they showed that the computational complexity increases dramatically
with increasing size of the used graphlets and specially for large graphs [112].

Also, Gärtner et al. [49] introduced basic graph kernels based on subgraphs
comparing the neighborhoods of all pairs of nodes. Subsequently, Mathé and Vent
[77] extended this method considering unbalanced subtrees. Based on this concept,
Menchetti et al. introduced a subgraph kernel function based on the decomposition
of the input graphs [81]. However, comparing labeled graphs using subgraph-
based kernel can only be done with high computational costs and cannot be
recommend for graphs with more than 100 nodes [111]. Therefore, Shervashidze
and Borgwardt developed an fast subtree kernel in order to classify large labeled
graphs based on the Weisfeiler-Lehman algorithm for graph isomorphism [111].
A comparison to other subgraph-based graph kernels showed that this method
performs up to 5 times faster when applied to different graph data sets, see [111].

Additionally, Horvàth et al. [58] introduced a kernel method based on the
number of cyclic patterns in a graph. A comparison showed that this class of graph
kernels outperforms methods based on frequent subtrees patterns in terms of
classification performance when applied to molecules representing drug targets for
HIV [58]. However, the finding of cyclic patterns in a graph shows a higher
computational complexity than kernels based on shortest path [57, 58]. For a
detailed study on the classification performance of different graph kernel methods,
see [17, 49, 98, 111].

Graph kernels are relatively new to the field of systems biology but have been
successfully applied to several chemical and biological applications. Ralaivola
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et al. [98] used walk based kernels in order to predict mutagenicity and anti-cancer
activity of different data sets of molecular networks representing drug targets.
Additionally, they have been utilized to predict the toxicity of molecules mean-
ingfully [77]. Borgwardt et al. [17] modified a random walk kernel in order to
classify proteins based on their secondary structure into enzymes and non-
enzymes. Additionally, they created a classifier based on graph kernels to predict
the disease stage for PPI networks representing microarray experiments for leu-
kemia and breast cancer [16]. Moreover, Avail et al. [1] proposed a method based
on path kernels to identify protein-protein interactions from the literature. They
showed that this method achieves meaningful classification performances com-
pared to non kernel-based state-of-the art algorithms by applying them to different
graph data sets [1, 2, 102]. See [105], for detailed overview of biological appli-
cations using graph-based and other kernel methods.

2.3 Comparing Networks Using Structural Measures

In order to compare and classify large biological networks we now introduce
approaches based on topological network descriptors. Such descriptors have been
used to quantify the complexity of networks [29, 30] and to solve problems in
other disciplines [13, 78, 118, 123, 126]. A topological network descriptor is a
numerical graph invariant that characterizes the structure of an underlying network
quantitatively. A graph invariant is a numerical value associated with the graph G
that is the same for any isomorphic graph [52]. Therefore, a large amount of
topological network descriptors have been developed, but it would be out of the
scope of this chapter to explain them in detail. For further investigation see the
extensive overview of available network descriptors by Todeschini et al. [118].
Also, Dehmer and Mowshowitz [35] provided a recent and up to date review on
information-theoretic complexity measures for graphs.

Topological network descriptors have been also used in mathematical and
medical chemistry including drug design to analyze and characterize the structure
of chemical compounds (QSAR/QSPR) [13, 29, 36, 118]. Basak an Magnuson [10]
utilized structural graph measures to determine the structural similarity of a set of
molecular networks. Additionally, Scsibrany et al. [106] used descriptors based on
binary fingerprint vectors for describing molecular substructures to estimate the
similarity of molecular networks.

Also, topological network descriptors can be used to indirectly improve exact
graph matching techniques when comparing a large set of networks. In order to do
so, descriptors showing high uniqueness [33] can can be used to reduce the amount
of graphs that have to be compared with often computational expensive graph
isomorphism testing algorithms [79]. For example, Dehmer et al. [33] showed that
an information-theoretic measure based on degree-degree associations shows a
high discriminative power on exhaustively generated sets of non-isomorphic
graphs [32]. When applying such a measure to a large set of networks,

52 L. A. J. Mueller et al.



isomorphism algorithms only have to be applied to networks having equal
descriptor values. In particular this means the higher the uniqueness of a descriptor
on a set of networks, the less the amount of graphs that have to be compared by
using isomorphism testing [79].

The concept of topological network descriptors is relatively new to the field of
system biology. Therefore we want to introduce approaches using unsupervised
and supervised methods to classify large biological networks based on topological
network descriptors.

2.3.1 Distance Measures Based on Graph Probability
Distributions

As already discussed in Sect. 2.2.1 a lot of inexact graph matching methods show
high computational complexity. Hence, they are not suitable for a comparative
analysis of large networks. Kugler et al. [70] introduced an information-theoretic
approach in order to derive a graph prototype for a set of biological networks.
Therefore, they used three different probability distributions calculated form a set
of gene networks. To calculate the distances between the networks, based on the
derived probability distributions they used Kullback-Leibler divergence [70]. This
approach motivated us to introduce a group of distance measures based on graph
probability distributions. To the best knowledge of the authors, no further studies
exist, that use this kind of measures for graphs in general, rather than for biological
networks. However, we introduce this class of distance measures as an approach to
compare large biological networks for several reasons:

1. Probability distributions of graphs, based on structural measures can be cal-
culated in polynomial computational complexity [33].

2. They are new to the field of systems biology and have not been evaluated on
networks in general, rather on biological networks.

However, the concept of graph probability distributions is not new. For instance,
the degree distribution has been used in several studies in order to characterize
biological networks [50, 85, 100]. It is possible to derive numerous additional
different probability distributions from graphs such as i.e. the distance distribution
[28] or the distribution of eigenvalues of different graph matrices [36]. Addi-
tionally, entropy based descriptors utilize different probability distribution to
quantify the structural complexity of networks, see [14, 70, 87, 95].

Below in Table 2.1, we list different distance measures that we collected from
the literature in order to compare discrete probability distributions. Note, that this
list does not make claims of being complete. However, combining the different
distance measures with different probability distributions provide a large amount
of distance measures for inexact graph matching. These measures can help to
answer challenging questions in systems biology. They can be used as distance
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measures for different unsupervised machine learning algorithms such as clus-
tering in order to identify common properties. Such an approach could, for
example, be used to cluster PPI networks to identify functional similarities of the
underlying PPIs. Additionally such measures can be used for an integrative
analysis, i.e. for networks representing different microarray studies, to identify a
graph prototype as a representative for all other studies, see [70].

2.3.2 Classification Using Quantitative Structural Measures

In this section we discuss an approach to classify large biological networks based
on topological networks measures and supervised machine learning methods.
Additionally, we discuss two applications of this approach applied to networks
representing biological data. Similar approaches for determining the similarity of
molecular graphs using chemical descriptors have already been applied in com-
putational chemistry [47, 55, 55]. Feng et al. [47] used statistical methods to
investigate different classes of topological network descriptors that were able to
predict the toxicology of molecules. Their results show that they could not achieve
this goal meaningfully but demonstrated the usefulness of the approach in general
[47]. Helma et al. [55] used so-called molecular fragments to predict the muta-
genicity of a set of molecular compounds. Rupp et al. [103] used chemical
descriptors based on chemical substructures in order to predict the muntagenic
activity of chemicals and compared different machine learning algorithms with
different parameter settings. They showed that the performance of the classifica-
tion strongly depends on the choice of the descriptors. For a detailed overview of
the results we refer to [103]. Also, Hansen et al. [51] used several thousand
descriptors from different groups to classify a benchmark set of molecular com-
pounds in terms of mutagenicity. Later, Dehmer at al. [29] showed that compa-
rable results could be achieved by using only seven topological network measures.

We introduced this approach into the field of systems biology for several
reasons:

Table 2.1 Distance measures to compare probability distributions

Name Formula Reference

Manhattan distance DLðPkQÞ ¼ 1
2

P
i jPðiÞ � QðiÞj [67]

Euclidean distances
DEðPkQÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i PðiÞ � QðiÞð Þ2

q
[37]

Chebyshev distance DCðPkQÞ :¼
P

i
jPðiÞ�QðiÞj
jPðiÞjþjQðiÞj

[22]

Canberra distance DCðPkQÞ :¼ maxiðjPðiÞ � QðiÞjÞ [72]
Kullback-Leibler divergence DKLðPkQÞ ¼

P
i PðiÞ ln PðiÞ

QðiÞ
[71]

ItakuraSaito distance DISðPkQÞ ¼
P

i PðiÞ=QðiÞ � log
PðiÞ
QðiÞ � 1 [23]

Bhattacharyya distance DBðPkQÞ ¼ � ln
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðiÞQðiÞ

p� �
[11]
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1. As already discussed (see Sect. 2.2) most methods of exact and inexact graph
matching are not applicable to biological networks caused by their computa-
tional complexity and the typically large size of biological networks. The large
size of biological networks often makes it virtually impossible to use such
methods (i.e. methods based on graph isomorphism or certain graph kernels) as
their computational complexity is insufficient (see Sect. 2.2.1). Moreover, when
comparing a large set of networks, each network has to be compared to each

other one, what results in nðn�1Þ
2 comparisons, where n represents the amount of

networks to be compared. Whereas topological network measures have to be
calculated only once for each network.

2. Some network alignment methods are only defined for special classes of bio-
logical networks (i.e. PPI networks), such as methods based on functional
alignments. Whereas, other methods only take the structural characteristics of
the underlying networks into account, see Sect. 2.2. In general, topological
network descriptors also take only the structure of a network into account in
order to quantify its structural complexity. However, there exists numerous
networks measures that can be used to integrate biological information, for
example by considering node or edge labels for representing biological infor-
mation, see [30]. As our approach allows multiple topological network
descriptors it is possible to combine measures of both classes.

3. As one network measure may be insufficient to quantify the structure of a given
set of networks, the large amount of available topological network descriptors
allows to combine measures that are based on different structural characteris-
tics, such as distances, degrees, graph entropies, etc. Note, this is not possible
with most of the above discussed approaches, such as graph kernels.

The idea of this approach, as illustrated in Fig. 2.1, is to classify a set of networks
based on a given class label by calculating different topological network
descriptors for these networks. This results in a feature vector representing the
structural characteristics of each network by a single value for each applied
descriptor. In order to select the features (topological network descriptors) that
show an ability to distinguish between the different classes, a feature selection
algorithm [76] has to be applied. The selected features are then combined to a so-
called superindex that is defined as follows [12, 30]:

Definition 1 Let I1; I2; I3. . .; In be topological network descriptors. The superin-
dexSI of these measures is defined as

SI :¼ fI1; I2; I3; . . .; Ing: ð2:1Þ

Subsequently, the resulting superindex is used as input for supervised machine
learning methods, such as support vector machines [122] or random forest [18]. In
order to estimate the performance of the classifier and to reduce the selection bias
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we recommend to use external cross validation [6, 116] by reperforming the
feature selection within each loop of the cross-validation.

2.3.3 Classifying Gene Networks Representing Prostate
Cancer

In the following we briefly survey the study due to Mueller et al. [90]. Its aim was
to demonstrate the ability to classify biological networks using the recently
developed R-package QuACN [89]. Currently QuACN contains about 150 dif-
ferent topological network measures. The focus of this application was to show the
methodical perspective of our approach rather than giving a biological interpre-
tation. We selected seven public available microarray experiments on prostate
cancer form NCBI GEO [39] and EBI Arrayexpress [94]. For each study we

Fig. 2.1 Illustration of our approach using topological network descriptors and supervised
machine learning methods to classify large biological networks
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inferred two networks using the C3NET inference algorithm [4]: One network
represented benign tissue from the control group and the other one represented
cancerous tissue. For each of these 14 networks we extracted subgraphs containing
the genes associated with GO-terms from the gene ontology (GO) database [53].
This resulted in a total of 159 subnetworks associated with benign tissue and 108
networks associated with cancerous tissue.

In order to classify the resulting networks we calculated all descriptors avail-
able in QuACN, performed a features selection to select the 10 best features, and
built a classifier using random forest. To estimate the classification performance
we used external 10-fold cross-validation as suggested in Sect. 2.3.2. As a result,
we achieved a classification performance with an F-Score of 0.80 and an accuracy
of 0.74. These results demonstrated the usefulness of our approach, to meaningful
capture class specific structural complexity by using topological network mea-
sures. Note, this was a non-trivial result as one could easily show by using other
measures that the classification task would result in a random classification what
would not be feasible in practice.

2.3.4 Classifying Metabolic Networks into the Three
Domains of Life

Another application of our approach was to classify organism within the three
domains of life using topological information of the underlying metabolic net-
works [91]. It has been shown that these networks share domain-independent
structural similarities [59]. To get a deeper understanding of evolutionary pro-
cesses we used our approach to identify domain-specific structural information of
43 metabolic networks, each representing one particular organism. These organ-
isms can be divided in three different classes, which represent the three domains of
life: Archae, Bacterium, and Eukarytote. In order to estimate the classification
performance of different groups of topological network descriptors we applied our
approach to the metabolic networks by using two different groups of structural
measures: entropy-based and non-entropy-based descriptors. For a detailed
description of the experimental setting see [91]. Our results [91] showed that the
classification performance by using entropy-based descriptors is higher than with
non-entropy-based descriptors. Moreover, selecting the best features combining
both groups achieved the highest classification performance of an weighted F-
Score and an accuracy of 0.84. Additionally we compared our results to another
approach by calculating the Kullback-Leibler divergence [71] for the degree dis-
tribution of each metabolic network as already discussed in Sect. 2.3.1. We could
show that this approach did not show a feasible classification of the metabolic
networks within the three domains of life what additionally documented the
usefulness of our approach.
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2.4 Conclusion

In this chapter, we surveyed existing methods for comparative graph analysis. We
put the emphasis on techniques that can be useful to answer intriguing questions in
systems biology. As we have shown, numerous methods for classifying networks
have been developed but their impact for the field of systems biology has not yet
been explored. One reason is that different methods have been developed for a
special purpose and that they only have been applied in a single discipline.
Another reason is the vast amount of methods developed so far and the fact that for
a special practical problem not every technique may be appropriate. We hope that
the surveyed methods motivate the reader to use them in order to compare bio-
logical networks meaningfully and stimulates an interdisciplinary audience to
tackle challenging problems in systems biology.
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14. Bonchev D, Trinajstić N (1977) Information theory, distance matrix and molecular
branching. J Chem Phys 67:4517–4533

15. Borgwardt KM, Kriegel HP (2005) Shortest-Path Kernels on graphs. In Data mining, Fifth
IEEE International Conference on. IEEE, p 8

16. Borgwardt KM, Kriegel HP, Vishwanathan SVN, Schraudolph NN (2007) Graph Kernels
for disease outcome prediction from Protein-Protein interaction networks, vol 12. In:
Proceedings of Pacific symposium on biocomputing (PSB), pp 4–15

17. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel HP (2005)
Protein function prediction via graph Kernels. Bioinformatics 21(suppl 1):i47–i56

18. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32
19. Bunke H (2000) Graph matching: theoretical foundations, algorithms, and applications.

Proc Vis Interface 2000:82–88
20. Bunke H, Allermann G (1983) Inexact graph matching for structural pattern recognition.

Pattern Recogn Lett 1(4):245–253
21. Bunke H, Riesen K (2009) Graph edit distance-optimal and suboptimal algorithms with

applications. Anal Complex Netw pp 113–143
22. Cantrell CD (2000) Modern mathematical methods for physicists and engineers. Cambridge

University Press, Cambridge
23. Chan AHS (2010) Advances in industrial engineering and operations research. Lecture

notes in electrical engineering. Springer, New York
24. Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern

recognition. Int J Pattern Recogn Artif Intell 18(3):265–298
25. Cordella LP, Foggia P, Sansone C, Vento M (1996) An efficient algorithm for the inexact

matching of Arg Graphs using a contextual transformational model, vol 3. In: Proceedings
of the 13th international conference on pattern recognition. IEEE, pp 180–184

26. Cordella LP, Foggia P, Sansone C, Vento M (2000) Fast graph matching for detecting CAD
image components, vol 2. In: 15th international conference on pattern recognition. IEEE, pp
1034–1037

27. Cordella LP, Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching
large graphs. In: 3rd IAPR-TC15 workshop on graph-based representations in, pattern
recognition, pp 149–159

28. Dankelmann P (2011) On the distance distribution of trees. Discrete Appl Math
29. Dehmer M, Barbarini N, Varmuza K, Graber A (2009) A large scale analysis of

information-theoretic network complexity measures using chemical structures. PLoS ONE
4(12)

30. Dehmer M, Barbarini N, Varmuza K, Graber A (2010) Novel topological descriptors for
analyzing biological networks. BMC Struct Biol 10(1):18

31. Dehmer M, Emmert Streib F (2007) Structural similarity of directed universal hierarchical
graphs: a low computational complexity approach. Appl Math Comput 194(1):7–20

32. Dehmer M, Emmert Streib F, Tsoy YR, Varmuza K (2010) Quantum Frontiers of atoms and
molecules, chapter quantifying structural complexity of graphs: information measures in
mathematical. Nova, 2010

33. Dehmer M, Grabner M, Varmuza K (2012) Information indices with high discriminative
power for graphs. PLoS ONE 7(2):e31214

34. Dehmer M, Mehler A (2007) A new method of measuring similarity for a special class of
directed graphs. Tatra Mountains Math Publ 36:39–59

35. Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Inf Sci 181(1):57–
78

36. Dehmer M, Sivakumar L, Varmuza K (2012) Uniquely discriminating molecular structures
using novel eigenvalue based descriptors. MATCH Commun Math Comput Chem
67(1):147–172

37. Dodge CW (2004) Euclidean geometry and transformations. Dover Publications, New York

2 Comparing Biological Networks 59



38. Dreyfus SE (1969) An appraisal of some shortest-path algorithms. Oper Res, pp 395–412
39. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression

and hybridization array data repository. Nucleic Acids Res 30(1):207–210
40. Emmert Streib F (2007) The Chronic Fatigue syndrome: a comparative pathway analysis. J

Computl Biol 14(7):961–972
41. Emmert Streib F, Dehmer M (May 2011) Networks for systems biology: conceptual

connection of data and function. IET Syst Biol 5(3):185–207
42. Emmert Streib F, Dehmer M, Kilian J (2005) Classification of large graphs by a local tree

decomposition. Proc DMIN 5:20–23
43. Emmert Streib F, Glazko GV (2010) Network biology: a direct approach to study biological

function. Wiley Interdisciplinary Reviews. Systems biology and medicine, Dec 2010, pp 1–27
44. Eppstein D (1995). Subgraph Isomorphism in Planar Graphs and Related Problems. In

Proceedings of the Sixth Annual ACM-SIAM symposium on discrete algorithms. Society
for Industrial and, Applied Mathematics, pp. 632–640

45. Eshera MA, FU K (1984) A graph distance measure for image analysis. IEEE Trans Syst,
Man, and Cybern 14(3):398–408

46. Eshera MA, Fu KS (1986) An image understanding system using attributed symbolic
representation and inexact graph-matching. Pattern Anal Mach Intell IEEE Trans 5:604–618

47. Feng J, Lurati L, Ouyang H, Robinson T, Wang Y, Yuan S, Young SS (2003) Predictive
toxicology: benchmarking molecular descriptors and statistical methods. J Chem Inf
Comput Sci 43(5):1463–1470

48. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S (2006) Graemlin: General
and robust alignment of multiple large interaction networks. Genome Res 16(9):1169–1181

49. Gärtner T, Flach P, Wrobel S (2003) On graph Kernels: hardness results and efficient
alternatives. Learn Theory Kernel Mach, pp 129–143

50. Guzmn Vargas L, Santilln M (2008) Comparative analysis of the transcription-factor gene
regulatory networks of E. Coli and S. Cerevisiae. BMC Syst Biol 2:13

51. Hansen K, Mika S, Schroeter T, Sutter A, Ter Laak A, Steger Hartmann T, Heinrich N,
Muller KR (2009) Benchmark data set for in Silico prediction of Ames mutagenicity. J
Chem Inf Comput Sci 49(9):2077–2081

52. Harary F (1994) Graph theory. Perseus Books, Addison-Wesley, New York, Reading
53. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al (2004) The Gene

Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database
issue):D258

54. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

55. Helma C, Cramer T, Kramer S, De Raedt L (2004) Data mining and machine learning
techniques for the identification of mutagenicity inducing substructures and structure
activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 44(4):1402–
1411

56. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable
predictive and preventative medicine. Science 306(5696):640

57. Horváth T (2005) Cyclic pattern Kernels revisited. Adv Knowl Discov Data Min, pp 139–
140

58. Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern Kernels for predictive graph mining.
In: Proceedings of the Tenth ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, pp 158–167

59. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabsi AL (Oct 2000) The large-scale
organization of metabolic networks. Nature 407(6804):651–654

60. Kalaev M, Smoot M, Ideker T, Sharan R (2008) NetworkBLAST: comparative analysis of
protein networks. Bioinformatics 24(4):594–596

61. Kashima H, Inokuchi A (2002) Kernels for graph classification, vol 2002. In: ICDM
workshop on active mining, p 25

60 L. A. J. Mueller et al.



62. Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T (2003)
Conserved pathways within Bacteria and Yeast as revealed by global protein network
alignment. Sci STKE 100(20):11394

63. Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T (2004) PathBLAST: a
tool for alignment of Protein interaction networks. Nucleic Acids Res 32(suppl 2):W83–
W88

64. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664
65. Koyutürk M, Grama A, Szpankowski W (2005) Pairwise local alignment of Protein

interaction networks guided by models of evolution. In: Research in computational
molecular biology. Springer, New York, pp 995–995

66. Koyutürk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A (2006)
Pairwise alignment of protein interaction networks. J Comput Biol 13(2):182–199

67. Krause EF (1973) Taxicab geometry. Math Teach 66(8):695–706
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Chapter 3
Emergent Properties of Gene Regulatory
Networks: Models and Data

Roberto Serra and Marco Villani

Abstract We emphasize here the importance of generic models of biological
systems that aim at describing the features that are common to a wide class of
systems, instead of studying in detail a specific subsystem in a specific cell type or
organism. Among generic models of gene regulatory networks, Random Boolean
networks (RBNs) are reviewed in depth, and it is shown that they can accurately
describe some important experimental data, in particular the statistical properties
of the perturbations of gene expression levels induced by the knock-out of a single
gene. It is also shown that this kind of study may shed light on a candidate general
dynamical property of biological systems. Several biologically plausible modifi-
cations of the original model are reviewed and discussed, and it is also show how
RBNs can be applied to describe cell differentiation.
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cDNA complementary DNA
SFRBN Scale-free Random Boolean Network
TES Threshold Ergodic Sets

3.1 Introduction

Mathematical models are a key ingredient of systems biology, so there is no real
need to point out their usefulness in a book like this. However, we wish here to
discuss models that are quite unfamiliar to a large part of the systems biology
community, and to describe their properties and their relevance. These models are
called ‘‘generic’’,1 as they that are not tailored to specific cases but are rather
meant at exploring properties that are common to several different biological
systems.

This is a quite unusual approach for ‘‘classical’’ biologists, whose discipline has
learnt in the last centuries to be skeptical towards broad generalizations. This has
been a safe attitude, but it is nowadays becoming an obstacle to the growth and
development of new approaches, that are required by the wealth of data and facts
that have been ascertained. While in the past it has probably been wise to escape
generalizations that might have been based upon a weak evidence, today we face
the opposite problem, i.e. the desperate need for general concepts, to make sense
out of the genomic and x-omic data deluge.

If this is the case (and indeed it is!) then one can take the risk of trying some
broad generalizations. One must of course not give up with scientific rigour (this
would be a disaster) but rather adopt a more daring attitude, and our scientific
community should spend some time and effort in exploring the merits and the
limitations of broad generalizations.

Of course, there are general theories in biology, and Darwinian evolution, with
its variations, has been at the center of the stage for more than a century. There are
also other broad generalizations, like the cellular theory of the living, that have
gained universal validity. And there are of course other well-known facts: for
example, we know that the DNA-RNA–protein mechanism is the same in almost
all living creatures, that 20 aminoacids make up the proteins of the vast majority of
living beings, that most organisms use ATP as an energy source, etc.

But we need to enlarge our understanding of the general laws of the biosphere,
in order to be able to understand what’s really going on. Since this might seem
quite abstract, let us mention here a concrete example. There are regularities that
have been known since a long time, that take the form of scaling laws that relate
various properties of living species to their body mass. The most famous one is a
relationship between oxygen consumption rate r (a proxy for power supply) and

1 A term borrowed from condensed matter physics.
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body mass M, that has been known since the seminal work of Kleiber in the 30s [1]
to follow a power-law behavior:

r / M
3
4 ð3:1Þ

This ‘‘law’’ (let us call it like this, although it might look just an empirical
regularity) is followed by organisms of very different sizes, spanning several
orders of magnitude from mouse to elephant, and even of very different types (e.g.
mammals and birds). More recently the validity of the ‘‘law’’ has been verified
down to the level of cellular organelles, i.e. mitochondria, and even to the
molecular level of the respiratory complex [2]. In this way the relationship spans a
huge range of body masses, about 27 orders of magnitude—very few ‘‘real’’
physical laws have been verified on such a wide range!

Note that Eq. 3.1 is a really systemic one: if we take the cells out of the organism
and cultivate them in vitro, the oxygen consumption rate turns out to be almost
independent of the mass of the animal where they come from [2]. So the question is
how can one explain such an astonishing regularity, given the very different
physiological organizations of the involved organisms. A possible candidate might
be the surface to volume ratio, but this would give an exponent close to 2/3, while the
error on the exponent 3/4 is small, and allows one to exclude this explanation.

There have been, and there still are, several attempts at deriving the value 3/4 for
different organisms, but the more general one, that applies down to the molecular
level, deals with the number of dimensions of the space we inhabit, i.e. 3 (excluding
possible extra-dimensions that would not be perceived on a macroscopic scale, and
not even at the smallest scales so far explored by our technology) [3]. Few further
hypotheses are necessary to derive the 3/4 exponent: that the oxygen distribution in
the interior of the organism is achieved by a fractal network that uniformly fills the
available space, that the internal volume is also fractal and that evolution has been
able to optimize the value of the key parameters. While it is nowadays understood
that evolution cannot be regarded in toto as an optimization process, it is also
accepted that it can perform local optimizations, like the one that is proposed here.
Under these assumption the derivation is quite straightforward: the dimension of the
internal surface is between 2 and 3, that of the internal volume is between 3 and 4, so,
if a and b are constants, subject to the constraints 0 B a B1, 0 B b B1, a ? b B 1, then
the dimension of the internal surface is 2 ? a and that of the internal volume is (2 ? a)
? (1 ? b) = 3 ? a ? b. Therefore optimizing distribution efficiency corresponds to
finding the maximum value of the ratio r ¼ 2þa

3þaþb subject to the above constraints on

a and b. Now or
ob � 0; so r attains it maximum when b is minimum, i.e. it takes the

value 0. We are left the task of maximizing r� ¼ 2þa
3þa ; since or�

oa ¼
3þa� 2það Þ

3það Þ2 ¼ 1
3það Þ2 is

positive, r* attains its maximum when a = 1, so r�max ¼ 3=4:
This is an enlightening example of application of theoretical thinking to real

data, as it not only provides an explanation of the observed regularities, but also
shows a deep and unexpected relationship with the physical properties of the space
we inhabit. Note also that the above property can be considered emergent, as it
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appears during biological evolution. Emergence is a key and yet controversial
notion, and we do not want to enter here a philosophical debate, but we stress that
it is a useful concept to describe some key properties of complex systems.

Another very interesting emergent property that has been proposed regards the
dynamics of living beings. This is a more general claim than the above one, and it
has been raised by different authors in different contexts [4–6]: in synthesis, it
hypothesizes that there are general dynamical properties that should be selected by
biological evolution, and that states that are intermediate ‘‘between order and
chaos’’ should be privileged.

The qualitative argument is that chaotic states are too fragile, since a small
difference can lead the system to entirely different states. Therefore survival would
be quite difficult in these regimes, while on the other hand regimes that are deeply
ordered could be unable to modify their behavior in response to external changes,
and moreover they might not be sufficiently evolvable to cope with long-term
modifications of the living environment. Therefore critical states, at the edge of
chaos, should be particularly abundant in living beings, or perhaps, as Kauffmann
puts it [4, 7], also ordered states close to the boundary with chaotic ones might be
selected for. We will refer to this as the ‘‘criticality hypothesis’’.

Note that this claim is still quite vague, and requires some clarifications. We
will use below the term ‘‘dynamical system’’ to refer either to quantitative
dynamical models, described by systems of (either differential or finite-difference)
equations, or to the actual physical or biological system described by that equation
set. The context will avoid ambiguities. In general, a deterministic, nonlinear
dynamical system can be either ordered or chaotic depending upon the value of
some parameters: in the former case the attractors are fixed points or cycles, in the
second one they are fractal ‘‘strange’’ attractors. It is therefore possible to separate
regions in parameters space where the attractors are ordered from those where they
are disordered: the hypersurfaces that separate these regions define the boundaries
between order and chaos, i.e. the critical parameter values. In mathematical
models, these hypersurfaces are zero-measure sets in the parameter space, but it
has also been proposed [8] that the application of this concept to real biological
systems requires to interpret the notion of critical states in a looser sense, and to
include those states whose parameters belong to a small, finite volume surrounding
the hypersurfaces.

So the ‘‘criticality hypothesis’’ states that biological evolution should be able to
tune the parameters in such a way as to get the parameters of biological systems in
this critical region. However, it is unlikely that this should be the case for all
biological systems: indeed, the argument in favor of critical states assumes a
changing environment, and it would not hold for a constant one (in this latter case
an ordered state might be the optimal choice). Therefore one should look for
criticality in those subsystems whose dynamics is particularly important in order to
endow the whole organism with the capability to withstand environmental chan-
ges—an obvious candidate being therefore gene regulatory networks, i.e. the main
topic of this chapter.
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In the following sections we will address the issue of modeling these networks,
and we will soon focus on a class of models where the separating surfaces between
ordered and chaotic states can be clearly defined. These models are based on
strong simplifications of the regulation process, that make it possible to analyze
their behaviors and to simulate them with reasonable resources. But the amena-
bility to theoretical treatment is not the only desirable feature of a model, and it
will also be seen that this model is able to properly describe some quantitative
experimental data on disturbances in gene expression profiles following gene
knock-out. Perhaps surprisingly, this study will also allow one to get information
about the dynamical regime of the biological regulatory network, and therefore to
test the criticality hypothesis.

Another approach to testing this hypothesis is possible, based on the analysis of
time courses of gene expression values [9]. Both approaches have provided sup-
port to the criticality hypothesis, without however yet ruling out other possibilities,
on the basis of existing data.

The models considered so far are generic, i.e. they do not embed specific
hypotheses about particular organisms; actually, as it will be discussed, they
strongly rely on randomness of connections and transition rules for their func-
tioning. While it is interesting and perhaps even surprising to observe how far
these models can go in interpreting experimental data, it is clear that some
properties have to be tuned by biological evolution2 and that evolved networks
may present properties that are different from those of random ones. Indeed,
evolved networks present very interesting properties [10]; however, since most
studies of their evolution have been based on criteria that do not have a sound
biological base, their behavior will not be discussed here.

In the following Sect. 3.2 the topic of modeling genetic regulatory networks
will be introduced, and in Sect. 3.3 we will present the model that we will be most
concerned with, i.e. that of random Boolean networks (RBNs for short), deferring
to Sect. 3.5 an in-depth discussion of the hypotheses behind the model, and of
possible modifications in order to cope with some of its limitations. In the
meantime, in Sect. 3.4 we will present evidence that RBNs, in spite of their
simplifications, are able to quantitatively describe experimental data, and to shed
light on the criticality hypothesis. In Sect. 3.6 we will also consider the application
of RBNs to describe a fascinating phenomenon, i.e. cell differentiation. In Sect. 3.7
we will further discuss the relationship between generic models, specific models
and experiments.

2 It might then appear surprising that a random network is able to describe the data on gene
knock-out: this is actually due to the fact that the initial choice of the parameters concentrated on
critical networks, that are the most widely studied in the literature.
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3.2 Models of Gene Regulatory Networks

Gene regulation is accomplished through several interacting processes [11], that
are largely but not completely known, that include among others the control

• of transcription (from DNA to mRNA)
• of mRNA processing, transport and degradation
• of aminoacid binding to t-RNA and transport
• of ribosome activity
• of protein 3-D folding.

Transcription is usually initiated by the binding (or the leaving) of proteins to
portions of the DNA chain, and the interactions between proteins and DNA can be
affected by the presence of small molecules that in turn interact with the proteins,
modifying their 3-D shapes. Last but not least, also miRNAs can affect the mRNA
processing. In eukaryotes, one has also to consider that DNA in chromosomes is
tightly packed with histones, that make most part of the genome inaccessible to
binding. Therefore it is also necessary to consider the processes that control the
folding/unfolding of chromatin.

Note that the above is just a simplified summary of the major interactions
involved in the regulation of gene expression. Therefore a detailed description
would appear to be impossible, unless perhaps one focuses on the dynamics of one
or very few genes. But this is not a viable option for studying the system-level
properties of gene regulatory networks. However, a possible alternative approach
is suggested by some models of physical phenomena, that are able to capture
interesting (qualitative and quantitative) properties in spite of seemingly drastic
simplifications. An important historical example concerns the equilibrium prop-
erties of perfect gases: as it is well known, their behavior is described by the law
PV = nRT (P pressure, V volume, T absolute temperature, n number of moles and
R is a constant), that was derived by observations of macroscopic samples of gas.
But a law with the same functional form (i.e. the product PV proportional to the
number of moles and to ‘‘something else’’) was also obtained by considering a
molecular model of the gas. Identifying the two expressions led to the conclusion
that absolute temperature is proportional to the average kinetic energy of the gas
molecules, a major triumph of 19th century physics.

What is interesting here is that Boltzmann and others came to the right result by
considering a completely unrealistic model of the gas molecules, that were treated
like rigid spheres undergoing elastic collisions. Nowadays it is well known that
this is not the case, they are complex structures whose interactions are ruled by
quantum mechanics. And of course this more accurate description is necessary for
a proper understanding of some properties, but not for deriving the ideal gas law.
So the lesson is that even a very crude model can give enlightening hints con-
cerning the behavior of a complex system.

This way of thinking is not yet widespread as it should. It goes without saying
that knowing in detail the behavior of the elements (e.g. the molecules, or the genes)
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can be very helpful, but it is likewise true that there are properties that are
indifferent, at least within approximations, to the microscopic details, as they come
out of the features of the interactions, and may hold for systems made of very
different kinds of elements. Also the example quoted in the introduction, i.e. the
scaling law for oxygen consumption rate, is an example of this type of indifference
to the microbehavior (indeed the exponent is the same for very different kinds of
animals, irrespective of their respiratory physiological differences).

There are also other examples of systems properties that do not depend upon the
correctness of the interaction laws, like for example the FHP model of lattice gases
[12, 13], which shows phenomena typical of fluid mechanics, like the formation of
eddies of the von Karman type in the flow beyond an obstacle, although in the
model the fictitious particles that represent the fluid undergo inertial motion and
elastic scattering on a hexagonal grid—certainly, not a realistic description of
flowing water!

Encouraged by these success stories, one can try to adopt drastic simplifications
also in modeling gene regulation.

There are indeed several types of models. First of all, gene expression level
means essentially the concentration of the corresponding mRNA or rather of the
corresponding protein. It is this latter variable that determines the effect on other
genes, but it is the former that represents the direct output of gene activation. Both
concentrations are continuous variables, although in some cases the number of
molecules per cell is so small that integer variables would be better suited than real
variables. But there are also Boolean (i.e. two-level) models that neglect the
differences in expression levels and simply choose to describe whether the gene is
active or not. It has already been pointed out there is no hope of describing with
some details for systems composed of several genes. This is not only, and actually
not so much, a matter of computing power, but rather a matter of introducing too
many parameters, therefore causing a combinatorial explosion of possible alter-
native sets of values.

Therefore in this review we will privilege the Boolean approach, and in particular
we will consider in detail a class of models that are often called Random Boolean
Networks. They have been proposed more than 40 years ago by Stuart Kauffman,
and have become quite popular in the 80s, when the interest for complex dynamical
systems became widespread. Indeed, together with neural networks, they were one of
the few available classes of high-dimensional nonlinear dynamical systems that
could be applied to interesting biological phenomena, or to artificial devices that
mimicked some aspects of biology. While neural networks undergo an evolutionary
process that shapes their attractors to perform useful tasks, RBNs just display a
dynamical repertoire that is richer than that of (most) neural nets. It is indeed possible
(see Sect. 3.3 for a more precise description) to identify ordered and disordered
regions, and to precisely locate the critical boundary in parameter space. Moreover,
even when subject to external influences, RBNs display a robustness of behaviors
that nicely illustrated notions like autonomy and eigenbehaviors. Therefore the
model became one of the favorite workhorses of complex system theorists, so its
dynamical properties were studied in depth, and several variants were introduced.
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At the same time Kauffman was able to show that some scaling properties of the
model resembled those found in nature, thereby raising the hope that they might shed
light on some properties of natural systems. However the evidence was quite vague
and research in RBNs gradually faded, as the abstract properties had already been
extensively analyzed. However, in the first decade of this century new results became
available concerning the simultaneous expression levels of thousands of genes, so it
was possible to compare the behavior of these networks with experimental data,
showing that RBNs can be a useful tool for interpreting the latter. At about the same
time new theorists became interested in RBNs, so we are observing in these last year a
growing number of papers and a growing attention towards this model, in spite of its
age.

3.3 Random Boolean Networks

Here below a synthetic description of the model main properties is presented,
referring the reader to [14, 4] for a more detailed account. A classical RBN is a
dynamical system composed of N genes, or nodes, which can take either the value
0 (inactive) or 1 (active). Let xi(t)[{0,1} be the activation value of node i at time t,
and let X(t) = [x1(t), x2(t) … xN(t)] be the vector of activation values of all the
genes. As previously reported, real genes influence each other through their cor-
responding products and through the interaction of these products with other
chemicals, by promoting or inhibiting the activation of target genes.

In the corresponding model network these relationships are represented by
directed links (directed from node A to node B, if the product of gene A influences
the activation of gene B) and Boolean functions, which model the response of each
node to the values of its input nodes. In a classical RBN each node has the same
number of incoming connections kin, and its kin input nodes are chosen at random
with uniform probability among the remaining N-1 nodes: in such a way the
outgoing connectivities have a Poissonian distribution. Other widespread RBN
versions release the sharp choice of a fixed number of incoming connections and
allow Gaussian distributions with relatively small standard deviations: this mod-
ification yet doesn’t change the Poissonian distribution of outgoing connectivities
nor its dynamical behavior.

The Boolean functions can be chosen in two different ways: (1) at random for
every node, by assigning to each set of input values the outcome 1 with probability
p (sometimes also called the bias) or (2) at random from a predefined set of
allowed transition functions with probability p. These two procedures can have
similar outcomes (for example when the choice is uniform among all possible
Boolean functions and p = 0.5) but could also create different nets (for example
when the choice is among only a subset of the possible Boolean functions, chosen
to have in average p equal to 0.5).

In the so-called quenched model, both the topology and the Boolean function
associated to each node do not change in time. The network dynamics is discrete
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and synchronous, so fixed points and cycles are the only possible asymptotic states
in finite networks (a single RBN can have, and usually has, more than one
attractor). The model shows two main dynamical regimes, ordered and disordered,
depending upon the value of the connectivity and upon the Boolean functions:
typically, the average cycle length grows as a power law with the number of nodes
N in the ordered region and diverges exponentially in the disordered region [4].
The dynamically disordered region also shows sensitive dependence upon the
initial conditions,3 not observed in the ordered one. RBNs temporal evolution
undergoes a phase transition between order and disorder, the critical value of the
connectivity kin_c being given by: kin_c = [2p (1 - p)]-1, [15]. This formula,
which refers to an ensemble of networks rather than to a single finite realization,
defines what has sometimes been referred to as the ‘‘edge of chaos’’ [16].

It should be mentioned that some interesting analytical results have been
obtained by the so-called annealed approach, in which the topology and the
Boolean functions associated to the nodes change at each step. Several results for
annealed nets hold also for the corresponding ensembles of quenched networks—
as for example the link between kin_c and pc. Although the annealed approximation
may be useful for analytical investigations [14] in this work we will always be
concerned quenched RBNs, that are closer to real gene regulatory networks.

Several works have addressed the issue of the scaling of the number of
attractors in RBNs with the number of its nodes [4, 17, 18, 19]; initial claims that
in critical networks the former grows as a power law of the latter (with exponent
\1) were later replaced by a more accurate description, so today one knows that
the scaling is higher than polynomial in the limit of infinitely large networks.
Nonetheless, in simulations of large but finite networks one actually observes a
power-law scaling; this is due to the inevitable undersampling of the set of initial
conditions but, on the other hand, it can be argued that it is the number of attractors
with a significant basin of attraction that matters for modeling finite systems—and
this does actually scale as a power law.

Systems along the critical line separating ordered and disordered regions show
equilibrium between robustness and adaptiveness [20]; for this reason they are
supposed to be reasonable models of the living systems organization. In addition,
recent results support the hypothesis that biological genetic regulatory networks
operate close to the critical region (see Sect. 3.4 below) [9, 21, 22].

A very important aspect concerns how to determine and measure the RBNs’
dynamical regime. The main static methods to measure the RBN dynamical
regimes in fact implicitly presume ergodicity, that is, all inputs can arise with the
same probability during evolution.

An example is the ‘‘sensitivity’’, proposed by Shmulevich and Kauffman [23] and
based on the average probability of unit i to spread an incoming perturbation to its

3 As it was observed, the asymptotic states of finite RBNs are cycles of finite length (a fixed point
being a cycle of length 1), so no real chaotic dynamics is possible; however, due to the sensitive
dependence upon initial conditions, the disordered region is also often termed ‘‘chaotic’’.
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neighbors. If this average is lower than 1 the perturbation will tend to disappear (and
the system is ordered), whereas if its value is higher than 1 the perturbation will tend
to invade the whole system (disordered systems): the sensitivity of critical systems
therefore averages to 1. In order to compute this average however Shmulevich and
Kauffman suppose that all the inputs values of the Boolean functions have the same
occurrence probability, a fact that is not guaranteed except that in the case of a purely
random system. In fact RBN are dissipative systems, and starting from initial con-
ditions RBNs quickly converge to their asymptotic behaviors where they remain: in
this situation many input combinations are absent and therefore don’t contribute to
the typical dynamical behavior. It is possible to avoid this misalignment by using
during the computation the correct input distributions [24, 25], explicitly introducing
in such a way the dynamics into this measure.

The alternative to the static measures is that of directly exploring the dynamical
behavior of the system: in particular, an interesting and well-known method
directly measures the spreading of perturbations through the network. This mea-
sure involves two parallel runs of the same system, having the initial states dif-
ferent for only a small fraction of the units. This difference is usually measured by
means of the Hamming distance h(t), defined as the number of units that have
different activations on the two runs at the same time step (the measure is per-
formed on many different initial condition realizations, so one actually considers
the average value \h(t)[, but we will omit below the somewhat pedantic brack-
ets). If after a transient the two runs are likely to converge to the same state, i.e.
h(t) ? 0, then the dynamics of the system is robust with respect to small per-
turbations (a signature of the ordered regime).

Therefore, a system is ordered when:

k ¼ lim
h tð Þ!0

dh t þ 1ð Þ
dh tð Þ \1 ð3:2Þ

whereas it is critical or disordered if k (sometimes called the Derrida parameter) is
respectively equal to or greater than 1 [14].

Following this idea, a common practice to measure the dynamical regime of a
RBN is that of randomly generating a great number of pairs of initial conditions
differing each other for one or more units, perform one step, measure the Hamming
distance of the two resulting states, take the averages for each perturbation size,
and compute the limit of the slope of the tangent of the curve as the perturbation
size tends to zero (the so-called Derrida procedure [15]).

However, RBNs spend most time in their asymptotic states (the attractors):
measures taken on randomly chosen states therefore do not necessarily allow a
correct estimate of the effective system dynamical behavior. One can then propose
the sensitivity on attractor i (SAi) as the result of the Derrida procedure performed
only on the states belonging to the attractor i, and the attractors sensitivity (SA) as
the average of the SAi, each SAi being weighted according to the size of its
attraction basin. This last measure indeed provides a more meaningful picture of
the system dynamical regime. Near the ‘‘edge of chaos’’ region, static sensitivity,
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Derrida parameter and attractors sensitivity tend to coincide; note however that in
single realizations the three measures can differ, and that their difference becomes
significant (also on average) when distant from this area [25].

In the classical model of RBNs, Boolean functions are either chosen at random
among all those which are possible or generated by the random procedure
described above with bias p. However, a detailed study of tens of actual genetic
control circuits that have been analyzed and interpreted according to a Boolean
logic [26] has shown that in real biological systems only canalizing functions are
found in the great majority of the cases: a function is said to be canalizing if there
is at least one value of one of its inputs that uniquely determines the output [26].

Other biologically plausible sets of Boolean functions are

(a) separable functions, whose output is determined by comparing a weighted sum
of their inputs with a threshold [27]

(b) coherent functions, in the sense that a single gene either favors or opposes the
expression of another gene located downstream—acts as activator or inhibi-
tor—but not play both roles for the same downstream gene [28].

It is possible to observe that the three sets of canalizing, coherent and separable
functions coincide in the case of two input connections, where only two out of 16
functions are excluded (namely the XOR and its negation). In the case kin = 3 one
finds that the sets of coherent and separable functions are identical, while that of
canalyzing functions is different. However, for all kin [ 3 the three sets don’t
coincide [28]. The network dynamics is therefore affected by the choice of the set
of Boolean functions, and consequently it is important to precisely specify how
they are chosen.

3.4 Interpretation of Experimental Data

A bold hypothesis was put forth by Kauffman since his first papers, namely that the
different attractors of genetic network models should be associated to different cell
types [4, 7, 29]. While this might be surprising at first sight, it turns out to be fully
reasonable if one takes into account that cell types (excluding those involved in
sexual reproduction) share the same genome but differ in the expression levels of
their genes, so that both dynamical attractors and cell types describe different
coherent patterns of expression of the same genome.

On the basis of this identification, he noticed a similarity between the power-
law scaling of the number of attractors with the number of genes in critical
networks on one side,4 and that of the number of cell types with respect to the total
DNA content of different animal species on the other. In both cases an

4 Remember that, as it was observed in Sect. 3.3, the number of attractors with a significant
attraction basin grows in this way.
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approximate power-law increase with an exponent close to 1/2 was observed.
However, more recent discoveries about the genome have questioned the supposed
proportionality of the number of genes to the total genome size, so this argument
has lost some of its appeal.

While technological progress, having led to a more complex view of the gen-
ome, has cast doubts on the first attempt to relate the properties of RBNs to those
of real biological organisms, technology has also opened new ways to test the
suitability of the model to describe experimental results. In particular, DNA-
microarrays allow to simultaneously determine the expression pattern of a huge
number of genes, and comparison of the statistical features of these expression
patterns with those of mathematical models becomes possible.

A particularly useful set of data comes from cDNA microarray measurements
of gene expression profiles of Saccharomyces cerevisiae subject to the knock-out
of genes, one at a time [30]. In a typical experiment, one compares the expression
levels of all the genes in cells with a knocked-out gene, to those in normal (‘‘wild
type’’) cells. In this way, all the experimental data can be cast in matrix form Eij,
where Eij is the ratio of the expression of gene i in experiment j to the expression
of gene i in the wild type cell. In the case examined, there were more than 6,300
genes and about 230 experiments, i.e. a remarkably wide data set.

In order to compare these measured continuous data with those obtained in
simulations of Boolean models it is necessary to ‘‘binarize’’ the experimental data,
i.e. to ascertain whether a gene has changed its expression or not. Microarray data
are noisy, therefore statistical methods, like e.g. p-values, are usually applied to
determine whether the change in expression level is to be considered meaningful,
with respect to a ‘‘null hypothesis’’ that the two levels are the same. This is a
sensible method to find out those genes that are good candidates for being asso-
ciated to the differences, but it tends to privilege the null hypothesis: two genes are
regarded as ‘‘different’’ only if they pass a severe scrutiny. But this is not a good
method to determine how many genes have been perturbed, in this case one should
not favor one alternative with respect to the other. Therefore one can simply define
a threshold level, such that the difference is regarded as ‘‘meaningful’’ if the ratio
of expression levels is greater than the threshold h (or smaller than 1/h) and
neglected otherwise. The choice of the threshold is essentially the only free
parameter involved in this study.

Let Y be the Boolean matrix which can be obtained by E by posing yij = 1 if
Eij [ h, or Eij \ 1/h; yij = 0 otherwise (yij = 1 therefore means that the modifi-
cation of the expression level of gene i in experiment j is accepted as ‘‘meaning-
ful’’). In order to describe the global features of these experiments, two important
aggregate variables are (a) the avalanche, defined as the size of the perturbation
induced by a particular experiment (in experiment j, Vj = Ri yij), and (b) its dual
quantity, the susceptibility (the susceptibility of gene i, Si, is equal to the number of
experiments where that gene has been significantly affected: Si = Rj yij).

It is possible to compare the experimental data concerning the matrix V with
those obtained in model RBNs, where the original random network (RBNw)
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corresponds to the wild type cell, while the knocked-out cell is simulated by a
network (RBNk) that is identical to the previous one, except for the fact that a
single gene of RBNw is permanently silenced. The reader is referred for details to
the original papers [31, 32]. The initial simulations were performed with a
‘‘classical’’ RBNw with exactly two input links for each node, coming from two
genes chosen at random with uniform probability among the remaining N - 1
genes. All the 16 Boolean functions of two inputs were allowed and they were
chosen at random with the same probability. The number of nodes was equal to
that of the matrix of experimental data, larger than 6,000.

The choice of the parameters (kin = 2, all the Boolean functions) had no par-
ticular reason, it was just the most widely studied model. Therefore it turned out
particularly surprising to find out that the model was able to reproduce the sta-
tistical features of the experiment quite well, in particular the frequency of ava-
lanches of various sizes was quite similar for synthetic RBNs and for actual
genetic networks of S. cerevisiae.

As usual, critical networks displayed a high variance, so some experiments
were also performed limiting the set of Boolean functions to those that are can-
alyzing, on the ground of their higher biological plausibility (see Sect. 3.3): in this
case the variance of the simulated data was smaller and the agreement was also
very good. The distribution of susceptibilities are also well approximated (see
Fig. 3.1).

These results therefore provide support to the claim that strongly simplified
models like RBNs can provide useful information on the behavior of real organ-
isms. But they also open up a new deep question: why does all this seem to work?
In biological modeling one almost never hits the target on the first strike, moreover
the model had exactly two input links per gene, and it is well known that the

Fig. 3.1 Comparison between avalanches in S. cerevisiae (a gene being involved if its
expression changes by a factor higher than 6—or lower than 1/6) and the median distribution of
10 synthetic networks with only canalizing boolean functions: a avalanche size and b gene
susceptibilities (the number of experiments where each gene has been significantly affected by an
avalanche)
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distribution of links in S. cerevisiae is not so regular [33]. It is therefore interesting
to try to understand the reasons for such an agreement.

Let us anticipate that such a good agreement is ultimately due to the fact that
the synthetic networks used are critical, or close to criticality. And, if the Kauff-
man hypothesis holds, also real biological organisms have been driven by evo-
lution close to a critical state.

That criticality explains the agreement can be shown by an approximate ana-
lytical calculation. One can indeed compare what happens in the RBNw and
RBNk: at the beginning, a single node (that is, the knocked-out one, that will also
be called the root of the perturbation) will differ in the two cases, so the size of the
initial avalanche will be 1. If, at the next time step, no one of the nodes that receive
input from the root changes its value, then the avalanche stops there and it will turn
out to be of size 1.

Therefore one can compute p1, i.e. the probability that an avalanche has size 1.
Let q be the probability that a node chosen at random changes its value if one (and
only one) of its inputs changes its value; p1 is then the probability that all the
output nodes of the root do not change, and if there are k outgoing connections,
this probability is qk; therefore, integrating over the outgoing distribution:

p1 ¼
XN�1

k¼0

pout kð Þqk ð3:3Þ

where pout(k) is the probability that a node chosen at random has k outgoing
connections.

As far as larger avalanches are concerned, one can limit the study to the case of
large sparse networks with (on average) a few connections per node, as is the case
for S. cerevisiae; therefore the probability that an output node of the root is also
one of its input nodes is negligible. In this case the probability that an avalanche
has size 2 equals the probability that only one of the output nodes of the root (i.e. a
node at level 1) changes its value, and that the perturbation does not propagate
downwards to level 2 (i.e. that nodes which receive connections from the affected
node do not change their value).

Therefore:

p2 ¼
XN�1

k¼0

kpout kð Þqk�1 1� qð Þ
XN�k�1

m¼0

pout mð Þqm ð3:4Þ

By applying the same reasoning, one can continue and compute the probability
of avalanches of increasing size. Of course, calculations become more and more
cumbersome, as the same size can be achieved in different ways (for example, an
avalanche of size 3 may be composed by the root and by two nodes at level 2, none
at level 3, or by the root, one node at level 2 and one at level 3).

It is however possible to show that every pm can be written as a function of the
moment generating function defined as
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F ¼
XN�1

k¼0

qmpout mð Þ ð3:5Þ

and of its derivatives. Indeed p1 directly coincides with F (see Eq. 3.3); noting that

oF
oq ¼

PN�1

k¼0
pout kð Þkqk�1; one can show that p2 (Eq. 3.4) can be written as

p2 ¼ 1� qð ÞF oF

oq
ð3:6Þ

In the same way it can be shown [22] that also the higher order terms can be
expressed as functions of F and its derivatives.

This fact has an immediate consequence: under the assumptions made, the
moment generating function, that determines the distribution of avalanches,
depends only upon the outdegree distribution: that is why the assumption of
exactly 2 inputs per node does not affect the validity of the agreement with
experimental data.

One can move one step further by taking into account the fact that the outdegree
distribution in the (classical) model networks is Poissonian:

pout kð Þ ¼ e�A Ak

k!
ð3:7Þ

where A = \k[ (note that the average of the number of ingoing connections
equals that of the outgoing connections, so there is no need to specify). In this case
Eq. 3.5 becomes

F ¼
XN�1

k¼0

qke�A Ak

k!
ffi
X1

k¼0

qke�A Ak

k!
¼ e�AeqA ð3:8Þ

therefore, introducing the variable k = ln(1/F):

k ¼ 1� qð ÞA
F ¼ e�k

Pn ¼ Bnk
n�1enk

ð3:9Þ

From Eq. 3.9 one can observe that F, and therefore the avalanche distribution
(the coefficient Bn depending only on the average branching of avalanches),
depends only upon the parameter k that is the product of two terms, i.e. [proba-
bility that a node changes value if one of its input changes] 9 [average number of
connections per node].

Suppose now that one performs a transient flip on a node of the network RBNw.
Under the above assumptions (i.e. that a node has a negligible probability to be
perturbed by nodes placed lower levels in the avalanche tree) the situation is the
same as that of the avalanche experiment. And indeed k coincides with the Derrida
exponent.
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This is perhaps the result that has the deepest meaning: the avalanche distri-
bution turns out to depend upon the same parameter that defines the dynamical
regime, therefore one can infer information on the dynamical regime from data
about the avalanche distribution. And so one can test the hypothesis that living
beings are ‘‘at the edge’’ of chaos by estimating the dynamical parameter k from
the distribution of avalanches.

As discussed in Sect. 3.3 there are various measures of ‘‘sensitivity’’: static
sensitivity, Derrida parameter (computed from random initial conditions) and
attractor sensitivity (computed starting from attractor states). If one uses a RBN
with kin = 2 and all the Boolean functions, these various definitions coincide and
k = 1: since the distribution of avalanches is close to the observed one, the bio-
logical network might actually be critical (although further work is needed to
verify this hypothesis).

Indeed, the data from this single experiment are not conclusive: as it was
mentioned, also networks with only the 14 canalyzing functions are able to
reproduce the distribution of avalanches. In this case the networks are more
ordered from a dynamical viewpoint, due to the absence of the XOR and EQUAL
functions, while the average ratio of 0’s to 1’s in the truth table is still 1/2. The
static sensitivity then coincides with the attractor sensitivity and turns out to be
6/7, i.e. slightly subcritical—and therefore still compatible with the extended
‘‘criticality hypothesis’’.

A different, independent type of data analysis on the distribution of the same
avalanches has also led to estimate k = 1 [34]. A further indication (fully com-
patible with the findings described above) that cells might operate in an ordered or
critical state comes from the study of time-synchronized HeLa cells performed by
Schmulevich et al. [9].

3.5 Beyond Classical RBNs

Let us now consider with some detail the simplifications that have been introduced
in the RBN model. The most obvious one is the use of Boolean values for gene
activation, that correspond to concentrations of mRNA or proteins. It is well
known that different genes can display very different activation levels, and this is
ignored in all the Boolean models. Moreover, the use of Boolean variables imposes
the thresholding procedure on DNA microarray data described in Sect. 3.4, that is
largely empirical and lacks firm theoretical grounding.

An obvious remedy could be that of using continuous [35] or multiple-valued
models [36]. While these models are definitely interesting, their application to
networks composed by very many genes is dubious: not only for reasons of
computer resources needed for their simulations, but also because of the arbi-
trariness in the definition of the maximum activation levels (that are known only
for a subset of genes). There is also a class of models, often referred to as Glass
networks [37], that are in a sense intermediate between continuous and discrete:
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here the activation of a gene is a continuous variable, but there are spikes that
sometimes bring it to its maximum value, that is the same for every node, while the
subsequent decrease is described by a differential equation. In its simplest form,
this is a linear equation, so the decrease in activation is exponential and can be
analytically computed, thus avoiding the burden of integrating a set of coupled
differential equations and allowing the simulation of large networks. Glass net-
works also inspired more sophisticated dynamical models, where deactivation
follows a nonlinear law [38, 39]; in this case however the simplifications of linear
decay are lost, and only small networks can be dealt with.

It is interesting to observe that the binarized distribution of avalanches in Glass
networks is essentially the same as that of the classical RBNs described in Sect.
3.4 [40]. Indeed, the behavior of Glass models turns out to be quite similar to that
of RBNs in some respects, while they also allow, by using different decay con-
stants, to describe the different degradation rates of various proteins.

Indeed, the most stringent limitation of the classical RBN model seems to be its
synchronous updating, that requires that all the activations at time t - 1 be for-
gotten when computing those at time t ? 1 (that depend only upon the values at
time t). This updating procedure could lead to spurious synchrony, that in turn
could introduce attractors not stable with other updating schemes [41]; it seems
nevertheless that updating schemes don’t heavily influence the RBN dynamical
regimes [42, 43, 44, 45].

The major biological assumption of synchronous updating regards the fact that
all the proteins synthesized two steps ago have faded, but it is known that proteins
may have very different life spans. In order to assure the loss of memory of states
prior to X(t) one should then define a ‘‘long’’ time step Dt, of the order of that of
the longer living proteins, but this would mean that it becomes impossible to
follow shorter term dynamics, that are likely to play a major role in cell processes.

This problem cannot be overcome by resorting to asynchronous updating, as it
is usually done in condensed matter physics, because in this case the matters would
become even worse, as the longest living protein would again determine the Dt.
Moreover, even using Dt’s close to the average life span of a protein, asynchronous
updating would require unrealistic long times to update a set of some thousands of
nodes.

A direct attack to the problem of the presence of different decay constants for the
proteins has involved their explicit introduction in the model [46]. In this case, a
Boolean model is still adopted, but there are now two kinds of nodes, that correspond
to genes and proteins (or other ‘‘gene products’’ that may affect activation). Proteins
are described by two variables: a Boolean one, that determines whether the protein is
present or not, and a discrete one, that is a kind of ‘‘clock’’ that measures how much
time has elapsed since the last moment when that protein was synthesized. Each
protein has a fixed life span, chosen randomly with uniform probability up to a
maximum decay time and when the clock reaches this limit value the activation is set
to 0 (unless of course that protein is synthesized again at exactly that time). A gene is
activated or inhibited by proteins, according as usual to a Boolean function; if the
gene is activated, then the corresponding protein is synthesized and the clock is reset.
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Using a model like this amounts to endowing the system with a longer memory,
and it is thus possible to investigate how the dynamics is affected by the duration
of this memory. Several tests have been performed showing interesting effects,
summarized in Fig. 3.2 and described in detail in [46, 47]. It is worthwhile to
notice that while memory affects the number of attractors and their lengths, the
distribution of avalanches turns out to be very close to that of the classical RBNs,
and therefore also to the experimental data.

Another limitation of the classical RBN model is that of using an equal number of
incoming connections for every node, a simplification probably linked to the limits of
the computing resources of the heroic initial times. However it is not difficult to
extend the model to include a distribution of in-degrees, and this has been done
showing that the dynamics is similar to that of the model with a constant kin.

Another interesting variation concerns the topology of the regulatory network.
At the time of the inception of the RBN model, there were basically two network
topologies that were widely known and studied: random networks (of the Erdos-
Renyi type) and regular networks, like e.g. cellular automata. And so the classical
model is a blend of the two: as a consequence of the random procedure for
determining the input nodes to a given gene, it turns out that the outdegree distri-
bution approximates a Poissonian one (a result that was used in Sect. 3.4 to derive
the role of the Derrida parameter), like in Erdos-Renyi random networks. In more
recent times a great interest has been raised by different topologies, in particular
those of the ‘‘small world’’ [48] and those of the ‘‘scale-free’’ types [49, 50].
A growing body of experimental data suggests that approximate realizations of the
latter are widespread in biological (but also in social) systems. It is therefore
interesting to consider the behavior of random Boolean networks endowed with this
type of topology.

The analysis of the dynamical properties of networks with a power-law
topology has been pioneered by Aldana [51], who derived the equations governing
the order–disorder boundary.

Fig. 3.2 Gene-protein model: variation of (a) the average number of different attractors and
(b) the average length of the periods of the attractors and the average length of the transients for
ensembles of networks characterized by a different value of the maximum decay time MDT. All
the networks are designed with kin = 2 and p = 0.5; averages are taken over 100 different
networks, and for each of them we built 10 different realizations, characterized by a different
MDT, ranging from 1 to 10
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The well-known formula for a scale-free distribution of outgoing links is:

pout kð Þ ¼ 1
Z

k�k ð3:10Þ

Z cð Þ ¼
Xkmax

k¼1

k�c ð3:11Þ

where k can take values from 1 to a maximum possible value kmax (if self-coupling
and multiple connections are prohibited, kmax = N - 1). Z (which coincides with
the Riemann zeta function in the limit kmax ? ?) guarantees the proper nor-
malization. Like RBNs, also such scale-free networks show two regimes, an
ordered and a disordered one, separated by a curve which determines the critical
slope of the exponent c [51]. The average value of k is:

kh i �
Xkmax

k¼1

kp kð Þ ffi
X1

k¼1

kp kð Þ ¼ 1
Z cð Þ

X1

k¼1

k�cþ1 ¼ Z c� 1ð Þ
Z cð Þ ð3:12Þ

The condition for a critical network with kin = 0.5 is that the last term on the
r.h.s. of Eq. 3.12 be equal to 2 [51].

Comparing two different types of networks requires that the conditions for the
comparison be precisely defined. To this aim, a study was performed on networks
that differ only in the topology of the outgoing connections: a classical RBN and a
network where all the nodes have the same indegree, but where the outgoing
connections are determined by a modified Barabasi-Albert procedure, giving rise
to a power-law distribution of outdegrees. In this way, the only difference is the
topology, while all the other parameters (including the Boolean functions) are the
same. The results are quite impressive: the scale-free networks are much more
ordered, the number and length of their attractors increase with the number of
nodes much less than the classical ones, and also the duration of the transients is
much shorter [32] (Fig. 3.3).

One might wonder if scale-free RBNs (shortly, SFRBNs) provide different
results concerning the distribution of avalanches. Again, answering to this question
requires that the condition of the comparison, and therefore the way in which the
SFRBN is prepared, be precisely defined.

Since, as discussed in Sect. 3.4, the distribution of avalanches does not depend
on the indegree distribution, the SFRBNs can be generated keeping the number of
ingoing connections equal to two for each node, exactly like the RBNs [52].

In order to compare RBNs and SFRBNs, it should be stressed that the synthetic
RBNs discussed in the previous section indeed have some nodes without outgoing
links (a feature likely to hold also for real genetic networks). So, in order to
analyze the effects of changes of the form of the distribution of outdegrees, it is
necessary to extend Eq. 3.10 to the case k = 0. Of course, a direct extension
would lead to a meaningless divergence. The simplest generalization of Eq. 3.10
capable to include the value to k = 0 is then:
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pout kð Þ ¼ 1
Z0 k
�c if k 6¼ 0

pout 0ð Þ ¼ p0

ffi

ð3:13Þ

In the following we will refer also to the distribution given by Eq. 3.13 as a
‘‘scale-free’’ distribution. The normalization coefficient is now Z0:

Z 0 ¼

Pkmax

k¼1
k�c

1� p0
ð3:14Þ

Having said this, it is possible to analyze the distribution of avalanches in RBNs
and in SFRBNs; for maintaining all the other parameters unchanged, the same
threshold value (7) is used in both cases, and p0 of Eq. 3.13 is set equal to the value
of the fraction of nodes without outgoing connections in the RBN case. The results
for the distribution of avalanches are slightly, but significantly different from those
of the RBN case (Fig. 3.4).

The main remark concerns the presence, in the SFRBN case, of a larger fraction
of smaller avalanches. This can be understood by observing that SFRBNs have
some largely connected hubs: since the total number of links (2N) in the two
networks is the same, this implies that in SFRBNs there will be more nodes with
few connections, so the probability of getting a small avalanche increases. On the
other hand, also the maximum avalanche is larger in the case of SFRBNs, because
hitting hubs may lead to large avalanches. The agreement with experimental data
is therefore better for RBNs, but this might be due to the way in which the
comparison has been made (i.e. keeping the total number of links fixed). More-
over, when one performs the in silico knock-out only on a subset of 200–300 genes
(the same number of the experiments), it is not infrequent to find values for the
maximum avalanche that are much smaller than those obtained when knocking out
all the 6,000 genes, and that are closer to those experimentally observed. There-
fore, while RBNs appear to better describe the data, the jury is still out, waiting for
further data to analyze.

Fig. 3.3 Comparison between Boolean networks with random and scale-free topology: a average
number of attractors and b average period length. Each point represent the average among 50
networks, each net being tested with 200 different initial conditions
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Actual living beings derive their structure (including the topology of their gene
regulatory network) from a long evolutionary history: by using RBN models it is
possible to duplicate some aspects of this process (for example, gene duplication and
the subsequent gene divergence), in order to analyze their robustness and evolv-
ability properties [20, 53]. Interestingly, these mechanisms lead to gene regulatory
networks having scale-free topologies [54, 55]. Robustness properties are related to
topological properties [56], dynamical regimes [57] and redundancy [58].

Let us finally comment on the fact that (almost) ‘‘no RBN is an island’’: in
multicellular organisms cells interact and communicate, but also unicellular
organisms present aggregated forms (e.g. colonies) that sometimes are able of very
complex behaviors (like for example in the case of the slime mold [59]). Cellular
communication affects the behavior of the regulatory network of single cells, so it
seems particularly interesting to analyze the dynamics of a set of interacting gene
network models. This can be done e.g. by placing the ‘‘model cells’’ on the sites a
rectangular grid (allowing at most one cell per site), and allowing only interactions
with neighbors [60]. Each site hosts a whole RBN, and the ‘‘genome’’ (topology
and Boolean functions) are the same for every site. In this way one can simulate a
‘‘tissue’’ or even an organism undergoing development.

The interactions should simulate cell-to-cell communications, and to this aim
two alternatives have been analyzed: in one case it is supposed that an RBN can
feel the presence of active nodes on the neighboring sites (this feature being
limited to a subset of the genes), in the other case it is supposed that the Boolean
functions of some genes are affected by the activation of particular receptors that
sense what has been synthesized by neighboring cells.

Extensive simulations have been carried out, leading to several interesting
results [61]; the most intriguing one seems to be the non-monotonic dependency of
the number of different coexisting attractors (and of other related variables) upon
the interaction strength, measured as the fraction of all the nodes that are directly
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Fig. 3.4 Comparison between the distribution of the avalanches in classical RBNs (mean on 50
simulated networks) and SFRBNs with pout(0) = 0.1353 (average taken over 10 simulated
networks)—logarithmic binning
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affected by the state of the neighboring cell. The results show that extreme values
are attained at an intermediate level of connection strength, a suggestion that might
be amenable to experimental tests (Fig. 3.5).

3.6 Noisy RBNs and Cell Differentiation

We will also review here some results which might shed light on a phenomenon
that is both very important from the biological viewpoint and very intriguing from
the modeling side. In fact it is possible to perturb attractors by means of a tem-
porary disturbance, in which for only one time step one or more randomly chosen
genes are flipped: if the perturbation is repeated with a certain frequency, we
obtain a so-called noisy RBN (NRBN) [62], a system that seems to correspond to
real biological networks better than simple deterministic RBNs (cells in effect are
very noisy systems [63–68].

If the random perturbations are not too frequent, the network relaxes to one of
the attractors of the deterministic RBN before a new perturbation takes place:
under these assumptions the asymptotic dynamics of a NRBN can be properly
described in terms of the attractors of the corresponding RBN.5 However,
attractors in noisy RBNs are not stable, and the effective asymptotic behavior of
these systems is generated by hopping among the set of attractors that the system

Fig. 3.5 Average number of different attractors as a function of the coupling strength. Every
curve is a different interaction mechanism (‘‘Sh’’ means that the cells can share some chemical
compounds, whereas ‘‘Si’’ means that cells communicate by means of signaling molecules and
receptors) and threshold (in order to be effective, a chemical message needs the support of at least
1, 3 or 4 neighboring cells). Note that the three signaling mechanisms show similar efficacies,
whereas the three sharing mechanisms differs at high interaction strength

5 From now on, the term attractor will always refer to those of the deterministic RBN.
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can pass through, the so-called ‘‘ergodic set’’ [62]. Unfortunately, noisy RBNs
typically have just a single ergodic set,6 and therefore these systems are not
suitable candidates for modeling cells in the case of multicellular organisms,
where a single network should support several different asymptotic behaviors
(identified with cell types). A way to avoid this difficulty [69–71], that will be
summarized below, unexpectedly allows one to describe cellular differentiation,
i.e. the process whereby stem cells, which can develop into different types, become
more and more specialized.

The proposal is based on the observation that the main effect of (a not too high
level of) noise is that of inducing transition among attractors: the transition proba-
bilities are not all equal (for example, see in Fig. 3.6 the attractor transition graph of
a particular RBN) and the smallest ones correspond to rare transitions, that are
unlikely to take place during a cell lifetime; if these transitions are removed, the
attractor transition graph is modified (see Fig. 3.6) and the system recovers presents
different asymptotic behaviors. The direct graph composed by attractors—two
attractors A and B being linked iff under noise there exists a transition that starts in A
and ends in B—breaks in several disjoint groups of attractors that the system, once
entered, cannot leave: they are the so-called Threshold Ergodic sets—briefly TESh,
h being the threshold above which the transitions are neglected. Because of their
construction, TESs are robust under noise.

By tuning the level of noise (in the model, by increasing h) is therefore possible
to indirectly determine size and number of TEShs and to modified in such a way
the systems’ asymptotic state, from very ample TEShs (where noise has high level)

Fig. 3.6 Attractor transition graph in a particular RBN. Circles represent attractors; arrows
represent transitions among attractors induced by single spin flips. The numbers on each arrow
are the probability that, by flipping at random the state of a node in an attractor, that transition
takes place. Homogeneously filled circles represent different TESs, whereas empty circles are
unstable attractors: once left, the system cannot came back to these latter (semi)asymptotic states.
a The complete attractor transition graph (only one TES0 is present, involving 5 attractors); b the
same graph, where links below the threshold h = 0.02 are removed (there are two TES0.02,
involving 2 ? 2 attractors)

6 In a few cases two ergodic sets have been observed, in networks with a few hundred nodes.
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to the single attractors (situation where the noise is at minimum level). Real cells
in effect can tune their internal level of noise [65], and in this vision can determine
its differentiation state from stem cells wandering through a very ample portion of
the state space to fully differentiated cells, confined within a smaller state space
area. This process can take place according to two different modalities: (1) sto-
chastic differentiation, in which for each lineage the proportions among the
resulting different cellular types are constant, and (2) deterministic differentiation,
in which the population of cells go through a particular differentiation path
(a particular lineage).

The model can explain stochastic differentiation by supposing that during the
noise reduction process each cell of the population remains blocked in the TESh that
contains the particular attractor where the cell is at the moment of noise lowering.

On the other hand deterministic differentiation requires an external signal, able to
drive the cells toward a particular fate. In RBNs such a signal could be modeled by
permanent fixing the activities of some nodes [25, 69, 71]: indeed, one finds that in
approximately one-third of critical RBNs a permanent fixing of particular genes
during noise reduction can force the network towards particular final destinations
(i.e. particular TES). Therefore, the repeated combinations of noise reduction and
cells communication can select particular differentiation pathways, in a way that is
similar to the real process [69, 71]. The nodes able to drive the transitions towards
specific attractors have been termed ‘‘switch nodes’’ (see Fig. 3.7 for an example).

Differentiation is almost always irreversible, but there are limited exceptions
under the action of appropriate signals [72, 73]: also in the model one can obtain
similar effects. Moreover, in a few cases it has been possible to come back from a
differentiated to a pluripotent state by forcing the expression of a node without
acting on the threshold. The new pluroipotent state is similar but not identical to
the original TES0 [69, 71]: this represents the in-silico analogue of the famous
experiment of Yamanaka on induced pluripotency [74, 75]. In other cases direct
jumps from one differentiated cell type to another one have been observed, thereby
simulating experiments as those described in Vierbuchen et al. [76].

With the same theoretical framework it is therefore possible to describe the
most relevant features of cell differentiation: (a) different degrees of differentia-
tion; (b) stochastic differentiation; (c) deterministic differentiation in well-defined
lineages; (d) limited reversibility; (e) induced pluripotency and (f) induced change
of cell type.

3.7 Generic Models, Specific Models and Experiments

We have described in detail the relationship between a class of generic models and
the behavior of real gene regulatory networks. Of course, RBNs are just one
among several types of models, so it is worthwhile to reconsider the reasons for
this choice.
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If one is interested in the details of gene regulation, RBNs are not particularly
useful, and the same holds true if one is interested in analyzing small regulatory
circuits (involving just a few genes). In this latter case RBNs could be applied, but
more realistic models might be more useful. However, it must be stressed that
small circuits are always embedded in larger networks, and considering a single
module while ignoring the rest of the system,7 although it is common practice, may
be misleading.

In the end, when one is interested in the behavior of large networks, RBNs are
still a very useful tool, because of several reasons:

• their Boolean nature makes them amenable to fast simulations
• a large body of theoretical and simulation results are already available
• the comparison with real experimental data has proven to be fruitful and able to

lead to interesting insights (e.g. do systems live on the edge of chaos?)
• they can be the basis for interesting generalizations, including different topol-

ogies, the introduction of a longer memory, the interaction among neighboring
cells and others

• they seem able to be the basis for analyzing cell differentiation.

Therefore, notwithstanding their age, RBNs are still an indispensable tool for
analyzing vary large gene regulatory networks, although other models can prove
much more accurate when one is concerned with smaller networks.

Fig. 3.7 TESs and differentiation. As the threshold increases the single TES0 breaks into smaller
disjoint TESs, corresponding to more differentiated cells, until eventually final cell types are
reached. Examples of stochastic transitions are shown by dotted lines. By acting on particular
genes at each noise reduction event, it is possible to select the particular pathway that links the
TESh A, B and C. Note that the 16 attractors of the RBN are not always shown: the figure
represents only attractors belonging to some TES, and in certain situations some attractors are not
in such a condition

7 In some cases the rest of the system is not ignored, but described at a very aggregated level in a
crude way: the remarks in the text hold also in this case.
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Chapter 4
Regulatory Crosstalk Analysis
of Biochemical Networks
in the Hippocampus and Nucleus
Accumbens

Shinichi Kikuchi and Eberhard O. Voit

Abstract This chapter describes mathematical modeling of neuronal biochemical
pathways, especially for pathological and non-pathological features of molecular
and cellular mechanisms in the hippocampus and nucleus accumbens. We modeled
both types of neurons with a variety of techniques: dynamic equations, constraint-
based modeling, and complex network analysis. The last two approaches are called
static modeling. In this chapter, we introduced these 3 methods to model the
process of signal transduction, metabolism, ion fluxes, and gene regulation in a
neuron, and their recent applications to the pathological characterization of the
system. (1) The first one is a model of synaptic plasticity in the hippocampal CA1
neurons, which is thought to be relevant for learning and memory. We selected a
constraint-based approach to model the cell, which uses constraint conditions in
models from the stoichiometry matrix of chemical reactions in the absence of
kinetic data. (2) The second model focuses on hippocampal signaling pathways in
Alzheimer’s disease, including neurite outgrowth, synaptic plasticity and neuronal
death. This is an application of complex network analysis to biological networks,
with a particular emphasis on the k shortest path and the k-cycle. (3) The synaptic
plasticity in medium spiny neurons in the nucleus accumbens is the main topic of
the third model, which is thought to be relevant for reward system. An approach to
reveal the dynamic properties of the model is a conventional ordinary differential
equation-based modeling and perturbation analysis. Finally, brief concluding
remarks appear in Sect. 4.5.
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Drug addiction � Systems biology � Computational neuroscience � Chemical
reactions �Dynamic model � Static model � Signal transduction �Genetic network �
Hippocampus �Nucleus accumbens �Psychostimulant �Extreme pathway analysis �
k shortest path � k-cycle � Sensitivity �Microarray analysis

List of Acronyms

Ab amyloid b
AC adenylate cyclase
ACh acetylcholine
AD Alzheimer’s disease
ADP adenosine diphosphate
ADN Alzheimer’s disease network
AMPH amphetamine
AMPT a-methyl paratyrosine
APP amyloid b precursor protein
ATP adenosine triphosphate
AMPAR alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor
BDNF brain-derived neurotrophic factor
cAMP cyclic adenosine monophosphate
CaM calmodulin
CaMKII calcium/calmodulin-dependent protein kinase type II
CaN calcineurin
CDK5 cyclin dependent kinase 5
CN control network
CREB cAMP responsive element binding protein
DA dopamine
DARPP-32 dopamine- and cAMP-regulated phosphoprotein of 32-kDa
DAT dopamine transporter
EGF epidermal growth factor
EP extreme pathway
ER endoplasmic reticulum
ES enzyme-substrate (complex)
ESF extreme signaling flow
FasL Fas ligand
GABA c-Aminobutyric acid
GAP GTPase-activating protein
Glu glutamate
HFS high frequency stimulation
ICAD inhibitor of caspase-activated DNase
IGF1 insulin-like growth factor-1
IP3 inositol 1, 4, 5-phosphate
I1 inhibitor 1
LFS low frequency stimulation
LTD long-term depression
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LTP long-term potentiation
mGluR metabotropic glutamate receptor
MAPK mitogen-activated protein kinase
MAO monoamine oxidase
MDD major depressive disorder
MINT-1 Munc18-interacting protein 1
MSNs medium spiny neurons
NAc nucleus accumbens
NFAT nuclear factor of activated T cells
Ng neurogranin
NGF nerve growth factor
NMDAR N-methyl-D-aspartate receptor
NRG neuregulin
NT neurotrophin
ODE ordinary differential equation
PDE phosphodiesterase
PKA protein kinase A
PKC protein kinase C
PLCb phospholipase Cb

PP1 protein phosphatase 1
PP2A protein phosphatase 2A
PP2B protein phosphatase 2B (a.k.a. calcineurin)
RRN randomly removed network
SN substantia nigra
TH tyrosine hydroxylase
TNFa tumor necrosis factor-a
VMAT2 vesicular monoamine transporter 2
VTA ventral tegmental area

4.1 Introduction

Systems neuroscience is a multidisciplinary approach to finding the mathematical
laws in neuroscience by well-defined strategies in mathematics and systems
engineering [1]. It covers a wide area of studies from molecular, cellular, synapse,
and circuit levels to brain function. The discovery of LTP of Glu synapses in the
hippocampus launched an exciting exploration into the molecular basis of learning
and memory [2, 3]. LTP and its counterpart, LTD, appear to be essential in the
stabilization and elimination of synapses during the developmental fine-tuning of
neural circuits in many areas of primary sensory cortex [4]. The reward circuitry in
the NAc enables it to predict the future over a short period of time based on the
success and failure of previous predictions, and the NAc is of interest in this
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respect because any drug abuse commonly causes DA release in the NAc, and
behavioral observations indicate that the mesolimbic DA pathway is directly
involved in rewards [5, 6]. Metabolic processes in the presynapse determine the
amount of released neurotransmitters through the control of enzymatic reactions
and neurotransmitter recycling between different compartments. On the postsyn-
aptic side, the density and conductance of receptors are regulated by second
messenger systems and by kinases and phosphatases. The adaptive change in the
efficiency of information transmission between presynaptic and postsynaptic
neurons, known as synaptic plasticity, lasts from days to weeks in vivo [7]. In this
chapter, we discuss the molecular neurobiology of synaptic plasticity in the hip-
pocampus and NAc using the wide range of models to examine the signal trans-
duction mechanism as a highly complex system.

The purpose of this chapter is to introduce modeling techniques of complex
biochemical networks, especially for pathological and non-pathological features of
molecular and cellular mechanisms in the hippocampus and nucleus accumbens. In
this chapter, we introduce these three methods to model the process of neuronal
signal transduction, and their recent applications to the pathological character-
ization of the system. Sections 4.2 and 4.3 focus on static models for large-scale
data. Section 4.2 discusses a model of synaptic plasticity in hippocampal CA1
neurons, which is thought to be relevant for learning and memory. An algebraic
method is introduced to model the stoichiometric matrix from the mole ratios
between reactants and products. A complex network model in Sect. 4.3 provides
the characteristics of hippocampal signal transduction pathways that mediate
neurite outgrowth, synaptic plasticity and neuronal death in AD, with particular
emphasis on the structures of the k shortest path and the k-cycle. Section 4.4
introduces an ODE model of synaptic plasticity in MSNs in the NAc, which is
thought to be relevant for the reward system. The perturbation analysis of this
model reveals the dynamic properties of a model structure. Section 4.5 presents
general remarks about systems biology and mathematical modeling.

4.2 Stoichiometric Analysis of Bidirectional Hippocampal
Synaptic Plasticity

4.2.1 Signal Transduction Cascade and Constraint-Based
Modeling

Papin and Palsson [8] used extreme pathway analysis [9], a constraints-based
approach, to express reactions in a signal transduction system in terms of algebraic
equations, and to define enzymes as external factors. However, it is difficult to
represent large-scale signaling networks with this technique, because a cascade
yielded by this method is fragmented into small pathways. Matsubara et al. [10]
proposed an enhanced modeling technique for extreme pathway analysis, which
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applies a minimal combination of EPs to obtain a series of information flow data.
This approach has been applied to analyze hippocampal neuronal plasticity in a
whole postsynaptic signal transduction system. Conventional models address
modeling only in terms of unidirectionality of neuronal plasticity, for example
hippocampal LTP [11, 12] or cerebellar LTD [13]. We proposed an algebraic
model for bidirectional synaptic plasticity in the hippocampus using the stoichi-
ometric matrix of the signaling network (Fig. 4.1). The kinetic details and initial
conditions for the differential equations and the full list of references are presented
in [12].

A constraint-based model represents a group of chemical reactions described by
a stoichiometric matrix. The rows and columns in this matrix correspond to net-
work components and biochemical reactions, respectively. Each element in the
matrix contains the stoichiometric coefficient of the given component in the
associated reaction. A vector in the null space of the stoichiometric matrix, called
the EP, indicates the minimal unique pathway of the system; the EP has been
widely applied for modeling metabolic networks [14, 15], which is expressed as

EP ¼ p 2 V j S � p ¼ 0; pI
i [ 0; �1\pE

j \1; 8i; j
n o

; ð4:1Þ

where S is a stoichiometric matrix, V a flux space, p an EP vector, pi
I the ith

internal flux of p, and pj
E the jth external flux of p. The EP can be used for

Fig. 4.1 Neuronal plasticity cascade in the hippocampal CA1 neurons. Arrows represent the
activation (increasing) relationships, and barred lines the inactivation (decreasing) relationships.
For the acronyms and the detailed reaction mechanisms, see Matsubara et al. [10]. Source note:
The figure is reproduced with permission from Matsubara et al. [10]
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modeling networks with catalysts of the system in the quasi-steady-state condition.
Thus, only small signal transduction networks can be modeled by the EP because a
molecule could be at the same time a substrate, a product, or an enzyme in
different reactions.

The ESF is a minimum pathway from the input to the output signals, which
creates a series of EPs of enzyme activation events and substrates depending on
stoichiometric coefficients [10]. Figure 4.2a represents a typical multilevel cascade
of MAPK phosphorylation, composed of two mass action and two enzymatic
reactions. Initially Si (i = 1, 2, 3) are activated; Mj (j = 1, 2, 3; intermediate ES
complexes) and Ek (k = 1, 2) are then activated by mass conversion or enzymatic
action. The signal transduction finally leads to the activation of P. In Fig. 4.2b, the
enzymes in the stoichiometric matrix are classified into those before and after
catalysis. The five ESFs of the network as shown in Fig. 4.2c are calculated by
null-space manipulation of the converted stoichiometric matrix. Substances in the
boxes (Fig. 4.2c) are defined as external substances. There are four meaningless
ESFs, which are identical to EPs without external fluxes. ESF5 connects three EPs
to represent the integrated information flow from S1 to P, thereby distinguishing
the related enzymes as different states. While ESF analysis is elegant, it is difficult
to infer the information flow of enzymatic reactions in this system because of the
segmented EPs (Fig. 4.2d). Whereas an EP is a unique minimal unit to charac-
terize a steady state, an ESF is a minimal functional unit for signal transduction.
All ESFs are represented as non-negative linear combinations of given EPs, and
are expressed as

ESF ¼ f 2 V j S0 � f ¼ 0; f ¼
Xkþ1

i¼1

wipi;wi 2 S0; pi 2 EP, 8i
( )

; ð4:2Þ

where S0 is a converted stoichiometric matrix, f an ESF, w a weight coefficient
yielding the stoichiometry of enzymatic reactions, p an EP vector, and k the
number of enzymatic reactions.

In an in silico knockout analysis using EP, although EP5 (consuming S1 as a
substrate) was eliminated, EP8 (producing P) was not eliminated, indicating that S1

is not necessary for the production of P. On the other hand, the ESF analysis
showed that S1 was a substrate essential for the production of P, since ESF5

(producing P) was removed when S1 was knocked out. This suggests that ESF is
more sensitive than EP analysis in revealing the knockout influence, likely because
the information is derived from the integrated information flow between the initial
substances and the ultimately activated substances.
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Fig. 4.2 a MAPK cascade as an example of a typical signal transduction cascade. It is composed
of two mass action reactions ðS1�M1�E1Þ and two enzymatic reactions ðE1 þ S2�M2 !
E1 þ E2;E2 þ S3�M3 ! E2 þ PÞ: Vif and Vib represent the ith forward and backward reactions,
respectively. The right column shows the stoichiometric matrix of this cascade. b The
stoichiometric matrix is converted for ESF calculation, classifying enzymes into those before and
after catalysis. It is composed of two mass action reactions and two enzymatic reactions
ðE1 þ S2�M2 ! E01 þ E2;E2 þ S3�M3 ! E02 þ PÞ. The right column shows the stoichio-
metric matrix of this cascade. c An illustration of ESFs of the above model. The ESF is
represented by the null space in S

0
, which is converted into a stoichiometric matrix. The

substances in square boxes are defined as external substances. Other substances are defined as
internal. d An illustration of EPs of the above model. The EP is represented by the null space in
S. We found that ESF5 is a combination of EP5, EP7, and EP8. Source note: The figure is adapted
with permission from Matsubara et al. [10]
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4.2.2 ESF Analysis of Signaling Cascades
in the Hippocampal CA1

4.2.2.1 Enumeration of ESFs

The ESFs of the hippocampal signaling network that underlies neuronal plasticity
were calculated by using the EP algorithm [9, 16]. As a result, 13,815 ESFs were
shown in this network; they were categorized into three groups: (1) The first 213
group (13,021 ESFs) induces LTP by activating CaMKII or PKC (Fig. 4.3); (2) the
second one (267 ESFs) induces LTD by activating PP1 or PP2A (Fig. 4.4); (3)
ESFs in the third group (527 ESFs) does not activate kinases or phosphatases that
change the state of AMPARs. The number of ESFs that induce LTP was
approximately 50-fold higher than the number of ESFs that induce LTD; this
shows the fault-tolerance of LTP-related pathways in this cascade.

4.2.2.2 Redundancy Analysis

The redundancy of networks is evaluated by the number of identical ESFs cal-
culated from a network (Tables 4.1 and 4.2; [8]). High redundancy is a good
indicator of fault tolerance, since a specific output is generated by different inputs;
low redundancy, on the other hand, indicates a high correlation between inputs and
outputs. The ESFs for the induction of LTP and LTD manifest 8 and 6 output
patterns, respectively. The redundancy in the LTP outputs of PKC and PKA is 98-
and 44-fold higher, respectively, than the redundancy of CaMKII; the redundancy
in the LTP outputs of PP2A is 24-fold higher than the redundancy of PP1.
Meanwhile, CaMKII is the only kinase related to LTD induction. The redundancy
in the LTD outputs of PP1 is 1.3-fold higher than the redundancy of PP2A. This
suggests that PKC inherently contributes to the high redundancy of LTP, that it has
no relation to LTD induction, and that the ratio of the concentrations of PP1 and
CaMKII plays a role in the induction of LTD.

4.2.2.3 Reaction Participation Analysis

Reaction participation analysis scores the number of ESFs passing through a
specific reaction [8, 14]. A positive correlation reportedly exists between lethality
and connectivity related to a particular substance [17, 18]. This suggests that the
high-scoring reactions in the reaction participation analysis indicate the factors
essential to stabilize a phenotype. Figure 4.5 shows the scores of ESFs for the
induction of LTP and LTD, where the thickness of the lines reflects the partici-
pation values. The scores of the Ca2+ exchange reactions in LTP and LTD were 99
and 78 %, respectively, consistent with the role of Ca2+ as a second messenger in
both phenomena. The exchange reactions of ATP and ADP, not shown in the
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Fig. 4.3 LTP-inducing ESFs. ESF A (EPA1–EPA7) indicates activation of the MAPK cascade.
ESF B (EPB1) indicates activation of CaMKII by Ca2+ and CaM. Dashed arrows indicate
enzymatic reactions. Source note: The figure is adapted with permission from Matsubara et al. [10]
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Fig. 4.4 LTD-inducing ESFs. ESF C (EPC1–EPC2) indicates successive activation of CaN and
PP1 by Ca2+ and CaM. ESF D (EPD1–EPD4) indicates competition between autophosphorylation
and dephosphorylation of CaMKII by PP1. Source note: The figure is adapted with permission
from Matsubara et al. [10]
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cascade map, have the second-highest scores because of phosphorylation and
dephosphorylation. The reactions around the positive feedback loop involving
PKC and MAPK have much higher scores in LTP than the reactions that include
CaMKII. Disassembly of the complex of PP1 and phosphorylated I1 has a score of

Table 4.1 Redundancy analysis of LTP-inducing ESFs.

Final outputs

Kinases Phosphatases #ESF

PKC 5817
PKC, PKA 4896
PKC PP2A 1361
PKC, PKA PP2A 816
CaMKII PPI 63
CaMKII 31
CaMKIt PPI, PP2A 28
CaMKII PP2A 9

#ESF is the number of ESFs. PKC and PKA have higher redundancy than CaMKII
Source note: The table is adapted with permission from Matsubara et al. [10].

Table 4.2 Redundancy analysis of LTD-inducing ESFs

Final outputs

Kinases Phosphatases #ESF

CaMKII PP1, PP2A 180
CaMKII PPI 42

PPI 21
PPI, PP2A 6

CaMKII PP2A 6
PP2A 4

PKC and PKA are irrelevant to LTD. CaMKII and PP1 outputs are often simultaneous
Source note: The table is adapted with permission from Matsubara et al. [10].

Fig. 4.5 Reaction participation analysis for: a LTP-inducing ESFs; b LTD-inducing ESFs. The
line width reflects participation values. Source note: The figure is adapted with permission from
Matsubara et al. [10]
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93 % in LTD. The activation of PLCb induced by Ca2+ stimulation has a score of
88 % in LTP. The increased concentration of intracellular Ca2+ released from the
ER, attributable to the activation of PLCb and IP3 production, plays an essential
role in LTP. The successive routes of AC, cAMP, PKA, and I1 also yielded high
scores in LTP. In contrast, CaM activation is the only LTD-inducing module
triggered by Ca2+ increase.

4.2.2.4 Knockout Analysis

Table 4.3 compares the results of in silico knockout analysis with in vivo data for
CA1 hippocampal region-specific gene knockout mice. ESF knockout analysis
characterizes the effect of substance deletion on neuronal plasticity. If the deletion
of the target substance leads to the decrease in the number of ESFs that enhance a
phenomenon, it results in the suppression of the phenomenon. Conversely, the
decrease in the number of suppressive ESFs indicates that the deletion results in
the enhancement of the phenomenon.

In the knockout analysis shown in Table 4.3, LTP was suppressed by mGluR
deletion, since mGluR is closely related to LTP-inducing PKC. The deletion of
PKA suppressed LTP, but caused no change in LTD, since PKA was used by

Table 4.3 Results of in silico knockout analysis with in vivo data for CA1 hippocampal region-
specific gene knockout mice

Knockout In vivo In silico

LTP LTD LTP LTD

mGluR ;1 $1 ; $
PKA ;2,3 ;2,4 ; $
PKC ;5 $5 ; $
CaMKII ;6,7,8*,9* ;7:8* ; :
Ras ;10** ; $
MAPK ;11,12 ; $
CaN :13$14 $13;14 : ;
AC ;15 ; $
I1 $16 ; :
Ng :17;18 ;17:18 : $

$ no effect; : upregulation; ; downregulation. $ indicates that #ESFs are invariant under
substance deletion. : means that the number of ESFs suppressing the phenomenon is reduced by
target substance deletion, resulting in the enhancement of the phenomenon. ; means that the
number of ESFs enhancing the phenomenon is reduced by target substance deletion, resulting in
the suppression of the phenomenon. * results of point mutations at the phosphorylation sites. **

results of heterozygous knockouts. 1 Aiba et al. [74]; 2 Qi et al. [75]; 3 Abel et al. [76]; 4 Brandon
et al. [77]; 5 Abeliovich et al. [78]; 6 Silva et al. [79]; 7 Stevens et al. [80]; 8 Giese et al. [81];
9 Matford et al. [82]; 10 Ohno et al. [83]; 11 Mazzucchelli et al. [84]; 12 Winder et al. [85];
13 Malleret et al. [86]; 14 Zeng et al. [87]; 15 Wong et al. [88]; 16 Allen et al. [89]; 17 Krucker
et al. [90]; 18 Huang et al. [91]. Source note: The table is reproduced with permission from
Matsubara et al. [10]
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approximately half of the ESFs for the induction of LTP. LTP was suppressed by
Ras, MAPK, or PKC deletion, since the activation route Ras-MAPK-PKC was
used by most ESFs for the induction of LTP (not LTD). CaMKII was used by ESFs
for the induction of LTD as well as LTP. LTP was suppressed, and LTD was
enhanced by CaMKII deletion, since CaMKII inactivates LTD-inducing PP1. CaN
deletion enhanced LTP and suppressed LTD, because it was a key phosphatase
that was used by ESFs for LTP in addition to LTD. Both AC1/8 (activated by
CaM) and AC2 (activated by PKC) were used by ESFs for LTP; therefore LTP
was suppressed when either of them was deleted. I1 played an important role in
LTD suppression due to its inhibitory binding to PP1; the deletion of I1, therefore,
enhanced LTP and suppressed LTD. Ng had a constraining influence on the speed
and magnitude of CaM-dependent reactions, because it interacted with high
affinity with CaM in the absence of Ca2+. As Ng inactivation by PKC resulted in
the induction of LTP, Ng deletion resulted in LTP enhancement as well.

This is an outline of an algebraic method for signal transduction cascade. The
method is especially applicable to generating multiple conditions like double
knockout mice. The removal scheme helps to understand the structure of biolog-
ical systems. In the next section, we introduce a method to characterize a series of
chemical reactions, even without the stoichiometry of the reactions.

4.3 Complex Network Analysis of Hippocampal Signaling
Pathways in AD

4.3.1 Complex Network Modeling of Signaling Pathways

Structural effects of biomolecular networks in pathological conditions have been
reported in a degree analysis of cancer-related genes by using gene regulatory
networks to identify the genes [19] and in various other analyses [20]. Ma’ayan
et al. [21] used a directed graph of the signal transduction pathways in the human
hippocampal CA1 region. The graph contains 570 nodes (signal molecules) and
1,333 edges (reactions). The edges can be categorized into three types of infor-
mation defined as active, inactive, and bidirected (bidirectional activation or
inactivation) reactions. The studies mentioned above assumed that the state of
proteins does not change in the absence of external stimulation, and do not take
into account possible intrinsic changes in gene regulation [22]. Yanashima et al.
[23] extracted AD-related genes by analyzing GSE5281, a set of gene expression
data in the human hippocampal CA1 region derived from patients with late-onset
AD and controls [24], and proposed a complex network model of hippocampal
signaling pathways using a gene expression profile of patients with AD. Complex
network analysis is classified into the following three categories, outlined in
Fig. 4.6.
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4.3.1.1 Feature Analyses

Node feature analysis includes the calculation of k-core, betweenness centrality,
closeness centrality, and degree centrality (Fig. 4.6a). The k-core of a graph is the
maximal subgraph in which each node’s degree is at least k. Betweenness cen-
trality measures the importance of a node within a network, based on the enu-
meration of the shortest paths for all possible node pairs. Closeness centrality is
defined as the number of nodes minus one, divided by the sum of all shortest path
lengths from and to the given node. Degree centrality is the number of nodes to
which a given node is connected. The feature analysis also includes the changes in
the shortest path length for the evaluation of the small-world effect [25], and the
changes in articulation points by removing nodes for the evaluation of a network
connectivity.

4.3.1.2 Structural Properties

Structural index analysis is conducted by generating an ADN after removing AD-
related signal molecules from the CN. A k-cycle structure has been used for the
analysis of feedback loops in the networks (Fig. 4.6b). The network structure is

Fig. 4.6 Complex network analysis of signal transduction cascades. The pink circles and the
black lines represent molecules and molecular interactions, respectively; the focus of each
analysis is highlighted with red and yellow colors. The unidirectional and bidirectional arrows
indicate the direction of chemical reactions. a Node feature analysis (centrality and changes in
indicators upon node removal), b Structural properties, and c Characteristics of pathways
(analysis of network similarity and pathways analysis). Source note: The figure is adapted with
permission from Yanashima et al. [23]
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defined from which duplicating nodes are removed when one node can be reached
from the in-neighbors. An earlier study [21] and our pilot study showed that 90 %
of all nodes can be reached within 9 steps from the input (n = 30). Thus, the
pathways within 9 steps of each other are postulated to be important for inter-
cellular signal transduction. Since network structure depends on the number of
nodes, an RRN was generated by removing nodes from the CN to equal the
number of nodes in the ADN. The network density, average clustering index, and
average shortest path length change of this new CN were limited to 5 %. The k-
cycle data can be analyzed according to Eq. 4.3:

Ck ¼
Xk

n¼1

cyclen Nodeið Þ
n

; ð4:3Þ

where Ck represents the number of k-cycle structures in the network. The function
cycle n represents the number of cycle structures that can be reached from the in-
neighbors.

4.3.1.3 Characteristics of Pathways

Since cellular processes are controlled by many alternate signal transduction
pathways [26], it is necessary to analyze the k-shortest path in addition to ana-
lyzing pathway length or the shortest paths (Fig. 4.6c). The k-cycle of the RRN
was compared with that of the ADN. Through exploration of the k-shortest path
length, the number of pathways was determined by calculating the shortest path
length between nodes and by using the depth-first iterative-deepening algorithm
[27]. The k-shortest path with extracellular ligands (n = 30) as the input, and
cytoskeletal proteins (n = 24) and transcription factors (n = 35) as the output
were used to define 1,770 pathways. Three neuronal functions, neurite outgrowth,
plasticity and death, were chosen to analyze how neuronal functions are affected in
AD. Glu was set as the start point and CREB as the end point for neuronal
plasticity; ACh, IGF, and Ephrin as the start points, and tubulin as the end point for
neurite outgrowth; FasL and TNFa as the start points, and ICAD as the end point
for neuronal death; and all inputs as the other start points, and MINT-1 and caspase
3 as the other end point for neuronal death as well. Ab oligomers inhibit hippo-
campal LTP in rats in vivo [28]. NGF has a maintenance function in the nerve cells
[29], and ACh decreases as Ab accumulates [30]. TNFa and caspase 3 correlate
positively with the accumulation of Ab [31, 32]. An evaluation of robustness,
defined in Eq. 4.4, was conducted by comparing the robustness values of all inputs
and outputs of the ADN with those of the CN and RRN. The number of steps
k used in the k-shortest path analysis in the k-cycle structure was defined as 9 steps,
using the following equation:

Rij ¼
Nij �meanx

SDx

; ð4:4Þ
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where R is the robustness value (R-value) of the pathway. R is the difference
between the numbers of k-shortest paths obtained for all inputs to outputs in all k-
shortest path sets, which is defined as X. In the pathways related to neuronal death,
R is the difference in the number of k-shortest paths between node i and node
j obtained in the RRN sets, which is defined as X in this case. Nij is the k-shortest
path number from node i to node j in the network of interest. MeanX is the mean of
all k-shortest path sets or nodes in the RRN sets. SDX is the standard deviation of
all k-shortest path sets or nodes in the RRN sets.

Equation 4.5 below shows the interpretation of network similarity by using a
single value [33] for the vector space of inputs and outputs in a network and a
matrix expression for the equal-length shortest path [34], which indicates pathways
with equal steps. Our study analyzed the change in the entire pathway at step
e [23].

S ¼ arccos
ce!� oe!

ce!
ffi
ffi
ffi
ffi
ffi
ffi � oe!
ffi
ffi
ffi
ffi
ffi
ffi

0

B
@

1

C
A; ð4:5Þ

where S represents network similarity between the first mode of singular value
c (equal-length shortest-path matrix of CN) and o (equal-length shortest-path
matrix of ADN or RRN); e represents the specific step value of the equal-length
shortest-path matrix.

4.3.2 Pathological and Non-Pathological Characterization
of Hippocampal Signaling Pathways

Seventy-six AD-related genes involved in downregulation of actin and b-catenin,
which result in a decreased level of CaMKII [35–37], were extracted through
empirical Bayes t-statistics. The number of signaling molecules (in particular
kinases, adapters, receptors, transcription factors and Bcl-2 family proteins) was
reduced in the ADN compared with the CN (Table 4.4). There were no significant
differences between AD-related signaling molecules and other molecules in all
parameters described in 3.1.1 (P \ 0.05, Mann–Whitney U-test; Table 4.5). The
ADN contained 494 nodes and 974 edges after the removal of these AD-related
signal molecules. In total, 91 % of the input–output sets were connected in the CN
(average path length = 5.94), and 50 % of these sets were connected in the ADN
(average path length = 6.68).

Comparison of the numbers of k-cycle structures (k = 4-9) of RRN, CN, and
ADN showed a decrease in the all-step k value (Fig. 4.7). However, the graph
shape was similar for each RRN and for each cycle structure number corre-
sponding to the steps in the random sampling network; the correlation coefficient
between ADN/CN and RRN/CN was 0.99, indicating the rate of change in the
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number of k-cycle structures between ADN and CN, and between RRN and CN,
respectively. This finding also demonstrates that network size, not external factors,
has an effect on the cycle structure.

The k-shortest path analysis (k = 9) of CN, ADN, and RRN showed no notable
difference in the distribution shape between all inputs and outputs. There were also
no differences in the average network pathway between ADN (67 ± 216) and
RRN (144 ± 342) at k = 9. Thus, there was no difference in the effect of AD-
related signal molecules and random signal molecules on any of the inputs or
outputs. The pathways associated with neuronal plasticity showed the greatest
change in the robustness for each k in ADN–CN and ADN–RRN, which indicate
the change in robustness between ADN and CN, and between ADN and RRN,
respectively (Fig. 4.8a). Likewise, there was a large decrease in the robustness of
the pathways associated with neurite outgrowth that involve NGF and ACh
(Fig. 4.8b–e). The decrease was within the top 10 % of all combinations.

Table 4.4 Number of constituent signal molecules in CN and ADN

Function Number of signal molecules in networks

ADN CN CN—ADN (%)

Adapter 89 103 14(14)
Kinase 71 86 15(17)
Receptor 39 51 12(24)
Transcriptional factor 28 35 7(20)
Ligand 30 30 0(0)
Cytoskeletal protein 21 24 3(13)
Vesicle 17 21 4(19)
Ion channel 17 20 3(15)
GEF 19 20 1(5)
Inhibitor 17 18 1(6)
GAP 13 13 0(0)
GTPase 11 13 2(15)
PDE 9 11 2(18)
G protein 9 10 1(10)
Ribosome 10 10 0(0)
Activator 8 8 0(0)
Bcl2 Family 6 8 2(25)
Protease 8 8 0(0)
Phosphatase 15 16 1(6)
Other 57 65 8(12)

494 570 76(13)

‘‘Other’’, small molecules or histones. The CN–ADN indicates the difference of the number of
signal molecules between CN and ADN. The CN has the 570 nodes and 1,333 edges, and the
ADN has the 494 nodes and 974 edges. 76 AD-related signal molecules were extracted, which are
known to decrease actin, b-catenin, and CaMKII. This group of genes represents 13 % of the CN.
According to the pathway functions of these 76 AD-related molecules, ‘‘Bcl-2 family’’ and
‘‘Receptor’’ nodes decreased at a rate greater than the network as a whole. Source note: The table
is adapted with permission from Yanashima et al. [23]
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The largest change in robustness was found for the pathway between Glu and
actin; the R-values were -14.9, -13.6, and -1.29 for ADN–CN, ADN–RRN, and
RRN–CN, respectively (data not shown). These changes in robustness were
independent of the signal molecule number, network density, the average clus-
tering index, or the average shortest path length. The pathways associated with
neuronal death that involve FasL and ICAD showed no changes in the robustness;
however, CN and RRN showed increases in each step of the TNFa to ICAD and
caspase 3 pathways (Fig. 4.8f–i). These results show that AD-related signal
molecules have more selective effects on neural plasticity and neurite outgrowth
than do random signal molecules.

Analysis of certain inputs to all outputs (Fig. 4.9) showed a large decrease in
signal molecules associated with NRG, NGF, Reelin, and DA, a neuromodulator

Table 4.5 Network feature analysis of signal molecules
Centrality analysis Node removal analysis

k-core Between ness Closeness Degree Average path
length

Articulation
point

AD
ALL 0.61 ± 1.24 0.008 ± 0.013 0.21 ± 0.18 0.012 ± 0.015 5.453 ± 0.024 107.78 ± 0.75
OUT 0.66 ± 1.05 0.006 ± 0.013 0.27 ± 0.30 0.012 ± 0.015
IN 2.62 ± 133 0.007 ± 0.016 0.24 ± 0.04 0.009 ± 0.013
Others
ALL 0.70 ± 1.10 0.005 ± 0.011 0.21 ± 0.17 0.010 ±0.011 5.452 ± 0.022 107.83 ± 0.64
OUT 0.76 ± 1.42 0 005 ± 0.011 0.21 ± 0.23 0.010 ±0.011
IN 2.59 ± 1 25 0.006 ± 0.013 0.24 ± 0.04 0.008 ± 0.009

Network feature analysis of AD-related signal molecules and other signal molecules in the network. The
analysis was performed by measuring k-core, betweenness, closeness, degree, change in average shortest path
length, and change in articulation points (mean ± SD). IN incoming paths; OUT outgoing paths; ALL
incoming and outgoing paths. Source note: The table is adapted with permission from Yanashima et al. [23]

Fig. 4.7 Rate of change in the number of k-cycle structures between ADN and CN (ADN/CN),
and between RRN and CN (RRN/CN), respectively. The X-axis represents step k, and the Y-axis
represents the rate of decrease. The error bars represent a top value of 95 % and a bottom value of
5 %. Source note: The figure is adapted with permission from Yanashima et al. [23]
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of reward-based and motor learning (Sect. 4.4; [38, 39]). The reduction in the DA
receptor level positively correlated with the severity of cognitive dysfunction in
AD patients. In contrast, EGF and the NT family (including BDNF and NT4)
showed an increase in associated signal molecules. The level of BDNF is increased
in AD patients and in the hippocampus of a transgenic mouse model of AD [40, 41].
However, the R-value of inputs was between 0.8 and -1.2. This suggests that the
effect of BDNF on the robustness in AD is small. Analysis of all inputs to certain
outputs revealed a large decrease in signal molecules associated with CREB, actin,
and tubulin (Fig. 4.9). In contrast, the transcription factor NFAT and the actin-
binding proteins a-actinin and profilin showed an increase in associated signal
molecules. Since the R-value range was between 1.2 and -4.3, the results of the
comparison of input to total output imply that AD affects the expression of the
output molecules more than that of the input molecules. The changes in similarity
between the input and output sets in the CN, ADN, and RRN indicate that simi-
larity is lower in the ADN than in the RRN at e = 5 and 9, but higher at e = 6, 7,
and 8 (Fig. 4.10).

Fig. 4.8 Pathway robustness: individual input–output relationships in ADN–CN, ADN–RRN,
and RRN–CN (k = 4–9). a Robustness changes in the pathways from Glu to CREB associated
with neuronal plasticity. b–e Robustness changes in the pathways from ACh, Ephrin, IGF1, and
NGF to tubulin, associated with neurite outgrowth. f, g Change in the number of pathways from
FasL and TNFa to ICAD, associated with neural cell death. h, i Change in the number of
pathways from all inputs to MINT-1 and caspase 3, associated with accumulation of APP. Source
note: The figure is adapted with permission from Yanashima et al. [23]
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We introduced two static methods in the last two sections, algebraic and
complex network methods. In the next section, a dynamic approach and its
applications are introduced.

4.4 Perturbation Analysis of Psychostimulant-Evoked
Synaptic Plasticity in the NAc

4.4.1 Why is Addiction Rewarding the Reward System?

Extracellular DA levels in the NAc are the input of the reward system. The
psychostimulant promotes reverse transport of DA and blocks action of DAT, and
thus causes a temporary increase in synaptic levels of DA in the NAc [42].

Fig. 4.9 Robustness of inputs and outputs in ADN–CN, ADN–RRN, and RRN–CN (k = 9),
where indicate the change in robustness between ADN and CN, between ADN and RRN, and
between RRN and CN, respectively. a Robustness analysis of the pathways from certain ligands
to all outputs (transcription factors and cytoskeletal proteins). The R-value range of inputs was
between 0.8 and -1.2. b Robustness analysis of the pathways from all ligands to certain
transcription factors (R-value range, -2.1 to 1.1). c Robustness analysis of the pathways from all
ligands to certain cytoskeletal proteins (R value range, -4.3 to 1.3). For the acronyms and the
detailed reaction mechanisms, see Yanashima et al. [23]. Source note: The figure is adapted with
permission from Yanashima et al. [23]
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It seems to rely on synaptic plasticity of neuronal pathways involved in reward
learning, and a corresponding hypothesis states that addictive drug use is a form of
pathological learning [43–45]. The process of recovery from acute addiction, such
as euphoria and the subsequent withdrawal, shows that the exception handler of
the reward system is based on a homeostatic regulation of DA modulation [46].
Compulsive drug abuse is an exception of the exceptions for the reward system,
and triggers the defense mechanism to relearn the reward prediction on the
assumption of an excess of reward. The symptoms of chronic addiction are par-
ticularly challenging for patients because the regulation strategy of gene networks
and the cell environment is changed in the chronic presence of stress regardless of
the incorrect calculation of reward. The aim of this process (known as allostasis)
is, in contrast to homeostasis, to achieve stability through change, and the cost of
adaptation to cumulative stress is considered as a major cause of lifestyle diseases
[47]. The pathological state of the reward system has a high risk of lethality,
because the regulation of chronic addiction involves pathological learning through
gene expression alterations and cytoskeletal remodeling, resulting in neuronal cell
death [48].

Why is addiction so difficult to avoid? It may not seem worth the risk to have
such a potentially heavy cost of the reward system, and such excess stimulation is
counterintuitive. However, it seems plausible that efficient reward learning may be
impossible without the ‘‘side effect’’ of addiction, that is, the design of the reward
system may allow addiction in compensation for optimization of reward predic-
tion. It is still an open question whether drug addiction is an acceptable trade-off as
a pathological state of the reward system.

4.4.2 ODE Model of Synaptic Plasticity in the Reward
Circuitry

NAc is located in the ventral striatum and receives inputs for the basal ganglia; it is
a component of the important cortico-striato-pallido-thalamo-cortical loop. In
addition to the DA input, NAc also receives Glu projections from the cortex that

Fig. 4.10 Network similarity
analysis of CN, ADN, and
RRN. The X-axis represents
step e and the Y-axis
represents the angle value (S).
Error bars, SD. Source note:
The figure is adapted with
permission from Yanashima
et al. [23]
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can influence the effects of DA transmission on synaptic plasticity. A model of the
biochemical reactions has been developed that describes the 3 sub-modules and
ultimately connects the DA and Glu signals to synaptic plasticity of GABAergic
MSNs [49, 50]. Specifically, the components of the system include (1) DA
metabolism and release, along with the presynaptic effects of AMPH (Fig. 4.11a;
[51, 52], (2) signal transduction in the postsynapse (Fig. 4.11b; [53–56], and (3)
trafficking of AMPA receptors (Fig. 4.11b; [57–59]). Color lines and dashed lines
represent potentially critical mechanisms for synaptic plasticity, which are subject
to perturbation investigations: the negative feedback loop PKA–PDE–cAMP–PKA
(Fig. 4.11b, I: the red line); the positive feedback loop PKA–PP2A–DARPP-32-
Thr75–PKA (Fig. 4.11b, II: the green line); the alternative pathways Glu–PP2B–
PP1 and Glu–CaMKII–PP1 (Fig. 4.11b, III: the lavender lines); alternative path-
ways PKA–DARPP-32-Thr34–PP1 vs. PKA–I1–PP1 (Fig. 4.11b, IV: the blue
lines). The integrative model for synaptic plasticity of MSNs in the NAc was based
on ODEs and the law of mass action. All reactions were represented in the form of
an enzymatic reaction (Eq. 4.6) or a simple binding reaction (Eq. 4.7):

Sþ E�
Kf

Kb

SE�!Kc Pþ E; ð4:6Þ

Aþ B�
Kf

Kb

AB; ð4:7Þ

DA is synthesized from its precursor L-DOPA, which is produced from tyro-
sine. Most synthesized DA is packed into storage vesicles for later release into the
synaptic cleft. DAT proteins can carry DA from the synaptic cleft back to the
presynaptic terminal for recycling. In addition, DA can be enzymatically converted
into other metabolites or diffuse out of the cleft. The psychostimulant AMPH

Fig. 4.11 a DA dynamics in the presynaptic terminal. Mechanisms that alter DA metabolism in
the presynapse in response to AMPH are highlighted by red arrows. b Signal transduction in the
postsynapse. For the acronyms and the detailed reaction mechanisms, see Qi et al. [49]. Source
note: The figure is adapted with permission from Qi et al. [49]
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increases release of DA from the vesicles into the cytosol through VMAT2, and to
the synaptic cleft via DAT. At the same time, AMPH inhibits the enzyme MAO,
which degrades excess DA, and promotes synthesis of dopamine through activa-
tion of the enzyme TH.

The effects of DA and Glu signals on synaptic plasticity depend on several
important processes. DA binds to D1 receptors and triggers production of the
second-messenger cAMP, which subsequently activates PKA. The positive feed-
back loop PKA–PP2A–DARPP-32-Thr75–PKA is important for the effects of DA
on synaptic plasticity. The negative feedback loop PKA–PDE–cAMP–PKA is also
critical with respect to DA, because inhibition of this module eliminates responses
of the system to DA. PKA activates PP2A, which removes the phosphate at Thr75
of DARPP-32. Since DARPP-32 phosphorylated at Thr75 inhibits PKA, these
processes form a positive feedback loop (Fig. 4.12a). PKA phosphorylates
DARPP-32 at Thr34 and thereby converts it into a potent inhibitor of PP1.

In contrast, Glu binds to its own receptors (AMPAR and NMDAR) and induces
Ca2+ flux into the cell. Ca2+ influx activates phosphorylation of DARPP-32 by
CDK5 at Thr75, which inhibits PKA activity. The elevation of Ca2+ activates
PP2B (a.k.a. CaN), which dephosphorylates DARPP-32 and thus reduces PP1
inhibition. Thus, Glu activates PP1 through this pathway. However, the auto-
phosphorylation of CaMKII is also activated by Glu, and leads to PP1 inhibition.
Therefore, the resultant effect of Glu on synaptic plasticity can vary, depending on
the relative magnitudes of PP1 activation and inhibition it causes (Fig. 4.13a).

These features regarding DA metabolism in the presynapse were taken directly
from Qi et al. [51]. On the postsynaptic side, the kinetic details and initial

Fig. 4.12 Effect of the positive feedback loop PKA–PP2A–DARPP-32-Thr75–PKA on synaptic
plasticity of MSNs. a Functional diagram of the positive feedback loop. Green arrow activation;
red arrows inhibition. The blue hexagon attached to DARPP-32 indicates the phosphate group at
Thr75. b HFS of the corticostriatal projections (Glu HFS). Solid lines ratios of the number of
membrane-associated AMPARs after and before a stimulus. Dashed lines ratios of conductance
of membrane-associated AMPARs after and before a stimulus. Blue and green lines represent
inhibition of the loop. Magenta and red lines represent activation of the loop. Source note: The
figure is adapted with permission from Qi et al. [49]
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conditions of the model, and the full list of references are presented in [49].
Altogether, the integrated model consisted of 121 ODEs.

4.4.3 DAergic Modulation of GLUergic Synaptic Plasticity
in the Presence or Absence of Psychostimulant

The published data related to the reward system reveal that (1) Corticostriatal HFS
causes the release of Glu and induces synaptic depression [60–62]. (2) Simulta-
neous HFS of projections from the cortex and the SN/VTA causes the release of
both Glu and DA, and results in synaptic potentiation [62–64]. (3) Corticostriatal
HFS with simultaneous depletion of striatal DA by 6-hydroxydopamine has no
effect, or results in a tendency toward synaptic depression [64, 65]. (4) HFS of the
SN/VTA causes the release of DA and induces synaptic potentiation. [63]. (5) A
reduction in DA release in the striatum through pretreatment with AMPT does not
block the synaptic depression induced by corticostriatal HFS [64]. (6) LFS of the
SN/VTA blocks synaptic depression caused by corticostriatal HFS and induces a
short period of synaptic potentiation [66].

After typical diagnostics of stability and robustness (e.g., [67, 68]), the
responses of the system to the above six different scenarios of HFS with or without
neurotransmitter depletion or LFS were simulated (Fig. 4.14). In these simula-
tions, the basal levels of DA and Ca2+ were set to 10 and 50 nM, respectively.
Upon stimulation, the DA and Ca2+ levels peaked at 2 and 5 lM, respectively.

Fig. 4.13 Regulation of PP1 by Glu through CaMKII has a more significant effect on synaptic
plasticity of MSNs than regulation of PP1 through PP2B. a Functional diagram of the regulation
of PP1 by Glu through PP2B and CaMKII. Green arrows: activation; red arrow: inhibition.
b HFS of the SN/VTA (DA HFS). Solid lines: ratios of membrane-associated AMPARs after and
before a stimulus. Dashed lines: ratios of conductance of membrane-associated AMPAR after and
before a stimulus. Blue and green lines represent inhibition of the Glu–CaMKII–PP1 pathway.
Magenta and red lines represent activation of this pathway. Source note: The figure is adapted
with permission from Qi et al. [49]

118 S. Kikuchi and E. O. Voit



Subsequently, injection of the psychostimulant AMPH was simulated. Finally, the
mechanisms that may critically affect synaptic plasticity were perturbed, and their
effects on the performance of the system in response to various input signals were
observed (Figs. 4.14 and 4.15). DA and Glu signals were considered separately as
well as in combination. Overall, the results of the model simulations, as shown in
Fig. 4.14, demonstrated good consistency with electrophysiological observations.

The model simulations identified 2 interesting phenomena of potential impor-
tance. First, they showed that changes in synaptic plasticity are mostly of short
duration, with a typical time frame of about 10 min. This result is consistent with
the observation that synaptic potentiation caused by the SN/VTA stimulation
mostly lasts for 10–15 min [66]. The second interesting result is a temporary
synaptic depression, which precedes synaptic potentiation in the cases of con-
current DA and Glu signals. The clinical observations of this effect have not been
reported.

To study the effect of AMPH on synaptic plasticity, the mechanisms triggered
by AMPH were incorporated into the model of DA metabolism, and the output of
the model was plotted together with the experimental observations ([69];
Fig. 4.15). The dynamic responses of extracellular DA produced by the model
were very similar to those experimentally measured. The effects of different

Fig. 4.14 Typical synaptic plasticity of MSNs in the NAc in response to stimulation of the
corticostriatal projections and the SN/VTA. Time is shown in seconds; synaptic plasticity is
expressed as the ratio of the number of membrane-associated AMPARs after and before a
stimulus (blue lines), or as the ratio of conductance of membrane-associated AMPARs (green
lines). Source note: The figure is adapted with permission from Qi et al. [49]
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amounts of AMPH were also simulated, with dosages varying from 0.1 to 5 mg/
kg, a range that corresponds to medical treatments and recreational use, respec-
tively (Fig. 4.15a). The effective period of 0.5 mg/kg AMPH turned out to be
longer than 2 h, thus requiring an increased time window for simulations. A single
injection of 0.5 mg/kg AMPH can potentiate synaptic efficacy about 3-fold
(Fig. 4.15b). The system behaved in a quasi-bistable way, and the synaptic
potentiation lasted for over 2 h. An intervention causing reduced reward is the
application of D1 antagonists (e.g., SCH 39166), which in a model simulation
caused an alteration of AMPH effects on synaptic plasticity.

4.4.4 Perturbation Analysis of Dynamic DA Modulation
of Signal Transduction Pathways

We perturbed several components, which are expected to be potentially important
to synaptic plasticity. Perturbations consisted of 10-fold activation and inhibition,
and were implemented by multiplication of the relevant rate constants by 10 or 0.1,
respectively. The simulation results show that inhibition of this loop can coun-
teract the synaptic depression effect of Glu signals (Fig. 4.12b). For DA signals,
however, activation of this loop enhanced synaptic potentiation. In response to
concurrent DA and Glu signals, inhibition of this loop, rather than its activation,
counteracts the synaptic depression caused by Glu. Quantitatively, this positive
feedback contributes more significantly to the effects of DA than of Glu. Acti-
vation of the Glu–CaMKII–PP1 pathway enhanced the effects of both DAergic
modulation and Glu signals, whereas its inhibition diminishes the normal effects of
both DA and Glu, so that corticostriatal HFS induces synaptic potentiation instead

Fig. 4.15 a Effect of AMPH on synaptic plasticity of MSNs. Experimental measurements
(connected symbols) of released DA following single injections of different doses of AMPH,
namely 0.1, 0.5, 2.0, and 5.0 mg/kg. b Effect of AMPH on synaptic plasticity of MSNs. Synaptic
plasticity caused by a single dose of 0.5 mg/kg AMPH. Blue line: ratio of membrane-associated
AMPARs after and before the injection of AMPH. Green line: ratio of conductance of membrane-
associated AMPARs after and before the injection of AMPH. Source note: The figure is adapted
with permission from Qi et al. [49]
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of synaptic depression (Fig. 4.13b). In contrast, the Glu–PP2B–PP1 pathway has a
less significant impact on synaptic plasticity. For the effect of negative feedback
loop PKA–PDE–cAMP–PKA on synaptic plasticity of MSNs, and the other
experimental results, see Qi et al. [49].

Under normal conditions, the effects of DA and Glu last for about 10–20 min,
but this time period extends to over 2 h under the influence of AMPH. Glu signals
are released by neurons projected from the cortex to the striatum, while DA signals
come from striatal projections of DAergic neurons. In the striatum, the MSNs
typically respond to DA stimuli with synaptic potentiation, and to Glu signals with
synaptic depression. Under concurrent DA and Glu signals, the synaptic plasticity
varies with the input combinations as described in Fig. 4.16.

As a consequence, these two feedback loops should be further investigated,
because their alteration might have the potential of reversing drug use disorders.
The Glu signal from the cortex is similarly critical for drug-induced adaptations of
neuronal behavior. In summary, our results suggest that Glu signaling relies more
on the Glu–CaMKII–PP1 pathway than on the Glu–PP2B–PP1 mechanism with
respect to the regulation of synaptic plasticity. DA and Glu signals interact with
each other through multiple pathways, one of which is the inhibition of PP1 by
PKA. The model simulations indicate that the indirect inhibition of PP1 through
DARPP-32 phosphorylated at Thr34 might actually be more effective than its
inhibition through I1.

4.5 Remarks: Systems Biology and Mathematical
Modeling

Mathematical modeling is aimed at an emergent property of a system, not an entity
in a system, which is often intangible, invisible, and non-measurable in nature.
Nonetheless, wet-bench approaches, such as gain- and loss-of-function studies,
also help us predict the emergence of complex oscillatory behavior during cell

Fig. 4.16 Synaptic plasticity
of MSNs in response to
various stimuli. Synaptic
plasticity depends on various
combinations of concurrent
stimuli of corticostriatal
projections and the SN/VTA.
Grey areas reflect negligible
effects. Source note: The
figure is adapted with
permission from Qi et al. [49]
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cycle, even without equations and numbers as shown in Sect. 4.2. One of the
important problems in systems biology is whether molecular biosystems can be
described in a simple way, even without comprehensive data. The question is not
whether biosystems can be modeled, but whether models of biosystems finally
become quite simple like oscillation or ‘‘E = mc2’’, or complicated like an air-
plane blueprint if the model is adequate (e.g., [70]).

Systems biology models of signal transduction, and gene networks in particular,
need to overcome a larger obstacle than limited data precision and lack of infor-
mation. The protein as a variable in signal transduction models changes its
enzymatic activity and binding affinity via posttranslational modifications (such as
phosphorylation) or binding to other molecules. For instance, the dodecameric
holoenzyme of CaMKII is considered to be a key molecule in postsynaptic plas-
ticity, because its bistable activation of CaMKII acts like a memory switch, and is
thought to reflect the binary history of neuronal excitability through CaMKII
binding to Ca2+/CaM and phosphorylation of Thr286 and Thr305/Thr306 during
holoenzyme formation [71]. In addition to these key regulatory events, there are
many other modifications including phosphorylation of Thr253. Assuming that the
number of possible states for each average protein and the number of pertinent
proteins in a cell are 20 and 200, respectively, the number of all possible states of a
protein network (model variables) would be 20200, not 200. Since 20200 precise
experiments to identify kinetic parameters (model constants) are, of course, not
feasible, simplification of the process of protein modification is necessary to
address this basic problem in signal transduction modeling, which is called the
combinatorial explosion problem [72]. Unless we have good data and a scheme of
simplification, the numerical solver will not complete the numerical integration in
real time. The current parameter estimation techniques cannot be compared with
the vast parameter space of the model in scale [73]. On the other hand, it is helpful
to think about a design of the computational roles and model granularity to
understand the system, including a pathological state, for example, ‘‘why is
addiction rewarding the reward system?’’ in the previous section.

Generally speaking, simple models are attractive for mathematical modelers,
particularly in the natural sciences and engineering disciplines. In molecular
systems biology, complicated models have often been selected before searching
for an appropriate model granularity, because of their importance for experimental
validations in molecular biology. The complexity of a model depends on the
researcher’s interests and the research subject. Which level of complexity is more
attractive for experimental biologists oriented towards systems biology? The
authors’ personal choice would be a simple model. On the other hand, we also
believe that if a number of simple rules emerge from complicated models, this
would be a new model not only to simplify the complex phenomenon but also to
overcome the fragmentation of knowledge. It is also worth noting that, in most
cases, a number of complex behaviors can be captured as a part of the state space
of a nonlinear system with many degrees of freedom. This is a good example to
caution against overfitting to the data by providing detailed information, and to
emphasize the need to focus on a system for the interpretation of the observed data.
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The clarification of non-measurable characteristics is sometimes more valuable in
systems biology than the accurate reproduction of the behaviors, and it might
provide an important contribution to natural science by means of mathematical
modeling. The authors hope that this chapter will be of some help in understanding
the concepts of systems biology and the role of modeling in biology.
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Chapter 5
Properties of Biological Networks

Vlado Dančík, Amrita Basu and Paul Clemons

Abstract Relationships in biological systems are frequently represented as net-
works with the goal of abstracting a system’s components to nodes and connec-
tions between them. While such representations allow modeling and analysis using
abstract computational methods, there are certain aspects of such modeling that are
particularly important for biological networks. We explore features that are
deemed necessary for living and evolving organisms and reflect the evolutionary
origins of biological networks. Biological networks are robust to random altera-
tions of their nodes and connections yet may be vulnerable to attacks targeting
essential genes. Biological systems are dynamic and modular, and so are their
network representations. Comparisons of biological networks across species can
reveal conserved and evolved regions and shed light on evolutionary events and
processes. It is important to understand networks as a whole, as significant insights
might emerge from the network approach that cannot be attributed to properties of
the nodes alone. Network-based approaches have a potential to significantly
increase our understanding of biological systems and consequently, our under-
standing and treatment of human diseases.
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5.1 Introduction

Network science has emerged as an analytical discipline with widespread appli-
cations in engineering, social sciences, and physical sciences. Network represen-
tations have been articulated for telecommunications (e.g., the Internet), social
groups and interactions (e.g., transmission of ideas or diseases), and information
and semantic descriptions (e.g., workflow diagrams or decision trees), among
many others. Network representations also abound in the biological sciences,
including food webs or evolutionary relationships among species, biological neural
networks, and interactions between individual genes, proteins, or metabolites.

In all cases, the representations are made up of a set of objects, generally called
nodes or vertices, and connections between pairs of objects, generally called edges
or links. Nodes may be computers, species, proteins, people, or even concepts,
depending on the context. Similarly, the meaning of edges will depend on the
application, minimally describing the condition that there ‘‘is a connection
between’’ two particular nodes, but possibly carrying additional information, such as
direction (edges point from one node to a second node), extent (different edges have
different numeric weights representing some quantity), or quality (different types of
edges with different meanings are present in the same network). Because of their
shared representations, the properties of networks from many disciplines can be
modeled and analyzed using computational methods that are agnostic to what the
particular nodes and edges represent. However, interpretation of the results of such
analyses remains domain-specific and requires knowledge of the nature of the
objects (nodes) and the meaning of the interactions (edges) between them.

In general, biological networks exist at a number of time and distance scales,
e.g., signal transduction, gene regulation, protein interaction, metabolic, phylo-
genetic, and ecological [1]. In this chapter, we focus primarily on biological
networks comprising elements at the molecular and cellular scales. Specifically,
we will draw our examples from the area of network biology that derives from the
application of bioinformatics to high-throughput biological data: molecular net-
works of genes or gene products (proteins) and small molecules that interact with
them. In particular, we will address several important properties of biological
networks—robustness, dynamism, modularity, and conservation. Each of these
properties is an important element in establishing the ‘signature’ property of
biological networks—emergence.
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Emergence in complex adaptive systems [2] is the ability of such systems to
produce phenomena that cannot easily be explained by the individual behavior of
the components [3]. In other words, emergence can be considered an ‘obligate’
network property: it requires both the individual components (nodes, agents) and
their complete system of interactions (edges, inputs). Emergence can be defined as
an unexpected behavior that results from interactions among system components
and between those components and their environment.

In biology, emergent phenomena are evident at several scales of organization,
and indeed increasing biological organization itself is an example of emergence.
Individual atoms form molecules with molecular properties not possessed by their
atomic constituents. Biological macromolecules self-organize (or are chaperoned
by other macromolecules) to form higher-order functional structures such as
protein complexes, cellular organelles, and whole cells. Collections of cells in turn
beget tissues, organs, and individual organisms. Groups of similar organisms form
colonies, species, and societies, and groups of these interact to form food webs and
ecosystems. At each level of biological organization, the properties of the whole
depend on the components and on their complex network of interactions.

Emergent properties of biological networks depend critically on each of the
other network properties discussed in this chapter. Emergence is related to
robustness and dynamism as these properties respectively provide elements of
stability and flexibility required to generate more complex behaviors. Emergence
is related to modularity and conservation in that participating modules may
function one way on their own, but change their function as contributors to larger
community behavior. Thus, emergence requires network complexity sufficient to
take advantage of increasing interconnectedness between individual pairwise
interactions between components.

A collection of key concepts in understanding biological networks (among
many other real-world networks) comes from the work of Albert-László Barabási
and colleauges, who proposed a mechanism to generate the networks with scale-
free degree distributions observed in the World Wide Web and genetic interaction
networks [4]. Their idea was that the observed network degree distributions could
be explained by two relatively simple rules: (1) that networks continually add new
nodes, and (2) that new nodes are preferentially connected to nodes that already
have more connections. This second rule, termed preferential attachment, was
similar to a ‘cumulative advantage’ previously observed in networks of scientific
publications [5]. Barabási and Albert comment that ‘‘the development of large
networks is governed by robust self-organizing phenomena that go beyond the
particulars of the individual systems’’. In other words, the scale-free nature of such
networks is an example of an emergent property of the network itself, and net-
works of many different kinds may share similarities in such emergent properties.
Similar studies have identified additional rules that govern real-world networks,
such as the propensity of hierarchically organized systems to produce networks
that are both scale-free and have a high level of clustering [6], including among
highly connected modular biological units comprising several cellular components
[7]. Several recent studies use modern biological network science to advance the
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understanding of human disease, including modeling cancer metastasis patterns
[8], finding new targets in drug-resistant pathogens [9], and understanding inter-
dependencies and disease progression in patients with multiple diseases [10].
Recent theoretical and predictive work in understanding complex systems and
their emergent properties is shifting the focus from network topology to network
dynamics [11] as a new frontier at which new theories and generative rules are
needed.

At the end of this chapter, following our discussion of biological network
properties, we present a section on network interpretation and visualization,
highlighting some of the tools available to researchers studying biological net-
works and systems biology. Finally, we conclude the chapter with a short pro-
spective on future possibilities for network biology to impact human disease.

5.2 Biological Networks are Robust

An important aspect of biology is the ability of an organism to thrive in dynamic,
transient conditions. To achieve this, organisms must have a balance between
robustness and adaptability, between resisting and permitting change in their own
internal states [12]. Examples of robust biological systems are prevalent at many
scales, from biochemical to ecological, as will be described in this section. At each
scale, robustness can reflect the properties of individual components, or the
dynamic feedback between interacting elements. For example, during temperature
change, expression of a metabolic function may be robust-an enzyme maintains its
shape and specificity across temperatures within a large dynamic range because a
dependent network of reactions can sustain the supply of product, even when a
single enzyme fails. Robustness can also be observed on a species-wide or gen-
ome-wide level. A genome may be robust because it has repair systems that
minimize replication errors and is organized such that many mutations have little
effect on its phenotype. For example, genetic robustness in yeast accounts for
insignificant phenotypic outcomes upon deletion of many genes. This result is
explained by the architecture of the genetic program in yeast, which is charac-
terized by genes performing related functions being distributed in alternate path-
ways, and through gene-duplication events.

Perturbation of biological systems. How do we decide if a network is robust to
genetic or environmental perturbations? Two methods used widely are measuring
the essentiality of a particular node (gene) in the network, or measuring the sta-
bility of the biological system to perturbation from environmental stimuli. Insights
into mutational robustness have come from large-scale synthetic lethal screens in
model organisms [13, 14]. In these screens, pairs of mutations are combined
systematically and the effects on viability are observed. These screens have shown
that for nearly all genes, robustness to mutation depends on the continued presence
of multiple additional gene products. Thus, pairs of these synthetic lethal genes
can mask or buffer the effects of mutations in many other loci [15].
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In addition to genetic change, organisms are also subject to changes in external
conditions, such as environmental perturbations. In a normal environment there is
a wide range of stochastic variation among individuals, for example in the con-
centrations of proteins within individual cells [13]. A frequent observation for
evolved networks is a correlation in the robustness to different types of pertur-
bation (genetic, stochastic or environmental). Historically, it had been suggested
that mutational robustness may be related to the need to withstand these envi-
ronmental or stochastic changes. This idea was based on Waddington’s intuition
that environmental change, stochastic variation, and genetic mutations are likely to
have similar effects on an organism, because they act through the same underlying
molecular mechanisms [16]. For example, the chaperone Hsp90 is known to confer
robustness to both environmental (e.g., temperature) and mutational alteration.
Similarly, sets of genes in Caenorhabditis elegans function as general buffers of
genetic variation, and inactivation of these genes can result in multiple phenotypic
consequences of mutation of many different genes [17]. A future challenge is to
understand how dependencies among the requirements of genes for genetic, sto-
chastic, and environmental robustness are determined [18].

Another way to determine a network’s robustness is by obtaining a compre-
hensive understanding of the functional and dynamic changes that are caused by
perturbations to the network. In a cellular network, each node may have a different
biological function and therefore the effect of a perturbation cannot depend on the
node’s connectivity only, rather the functional identity of the node (gene product).
Functional and dynamical robustness of cellular networks is supported by results
that indicate that several relatively well-studied systems are robust to diverse
perturbations. For example, the chemotaxis receptor module of Escherichia coli
maintains its normal function despite significant changes in a specified set of
internal or external parameters, which leaves its tumbling frequency relatively
constant even under 100-fold deviations in its set of biochemical parameters [19].
Using computer simulations, the development of correct segment-polarity patterns
in Drosophila melanogaster embryos is robust to changes in the simulated initial
conditions such as starting concentrations, reaction parameters, or to the absence
of several segment-polarity proteins [20, 21].

Although our understanding of network robustness is still limited, a few
important themes have arisen through network property analyses. First, it is
increasingly accepted that adaptation and robustness are network properties, and
not the result of manipulation of an individual component’s properties [19].
Second, the ability of a module to evolve intrinsically has a key role in creating or
destroying robustness. Important modules that are conserved evolutionarily, and
are responsible for key cellular functions, such as respiratory function, might be
able to withstand uncommon errors to a lower extent. For example, orotate
phosphoribosyltransferase (pyrE)-challenged E. coli strains have a reduced ability
to tolerate additional gene inactivation, even in rich media [20, 22]. Third, scale-
free networks, meaning those whose degree distributions obey a power law, are
amazingly robust against accidental failures: even if a high percentage of ran-
domly selected nodes fail, the remaining nodes still form a tight cluster with a
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short path connecting any two nodes [20]. This property occurs because random
failure affects mainly the numerous lower-degree nodes, the absence of which does
not disrupt the network’s overall integrity. This reliance on ‘hubs’, on the other
hand, induces an ‘attack’ vulnerability—the removal of a few key hubs discon-
nects the system into small isolated node clusters [23] (Fig. 5.1). Thus, the dual
nature of scale-free networks indicates that there is a strong relationship between a
protein’s number of connections and its role in maintaining the viability or growth
potential of a cell.

Robustness in biochemical networks. Robustness of a biochemical network is
defined as the tolerance to variations in kinetic parameters with respect to the
maintenance of steady state [24]. Robustness also plays an important role in dis-
covering the mechanism of the evolutionary process of biochemical networks.
Since most biochemical networks in Nature operate close to the steady state, the
robustness measurement of a biochemical network is usually captured right at the
steady state [24]. In addition, the sensitivity, or effect of environmental variation,
is inversely related to robustness, and a biochemical network with strong robust-
ness will be more resistant to the effects of environmental variation. Barkai and
Leibler have shown in bacteria that certain key properties of biochemical networks
are robust; that is, they are relatively insensitive to the exact values of biochemical
parameters in a biochemical network responsible for bacterial chemotaxis [19, 25].
Bacteria such as E. coli are able to sense gradients of chemical ligands in their
vicinity, and chemotaxis as described in a homogeneous ligand environment is
insensitive to the absolute value of ligand concentration. Chemotaxis robustness
therefore allows bacteria to maintain their responsiveness to chemical gradients
over a wide range of attractant or repellent concentrations. Barkai et al. also find
that cooperative effects among enzymatic reactions can be added without
destroying the robustness of adaptation. The adaptation itself, as measured by its
precision, is thus a robust property of the chemotactic network. This does not
mean, however, that all the properties are equally insensitive to variations in the

Fig. 5.1 Network
robustness. Biological
networks are robust with
respect to disabling of a
random node (gray), but can
be affected significantly by an
attack on an essential node
(white)
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network parameters. For instance, the authors show that the adaptation time, which
characterizes the dynamics of relaxation to the steady-state activity, displays
substantial variations in the altered systems [19].

Robustness in disease and drug networks. Many times when a drug fails or
produces side effects, studying drug-interaction networks may provide an expla-
nation. A drug can be ineffective when the robustness of the cellular network of
sick cells or parasites compensates for the changes caused by the drug [26]. By
contrast, drug side effects can be the result of hitting an unexpected point of
fragility in the perturbed network. Robustness analysis is already being used to
reveal primary drug targets and methods have also been established to give a
quantitative measure of changes in robustness during drug action. Other studies on
drug-interaction networks include [27, 28].

Early yeast essentiality studies prompted many researchers to formulate the
hypothesis that human disease genes should also have a tendency to encode hub
nodes in networks. Yet, previous measurements found only a weak correlation
between disease genes and hubs, resulting in an important question: what is the
role of the cellular network in human diseases? Are disease genes more likely to
encode hubs in the cellular network? Goh et al. [29] developed a conceptual
framework to link systematically all genetic disorders (the human disease ‘phe-
nome’) with the complete list of disease genes (the disease genome), resulting in a
global view of the ‘diseasome’, the combined set of all known disorder-disease
gene associations. Initial analyses appeared to support the hypothesis that disease
genes, given their impact on the organism, tend to encode hubs in the interactome.
In addition, disease-related proteins have a 32 % larger number of interactions
with other proteins (average degree) than non-disease proteins and that high-
degree proteins are more likely to be encoded by genes associated with diseases
than proteins with few interactions (P = 1.6 9 10-17).

Other types of protein-interaction network analyses include studies of network
connectivity of natural product targets compared with disease genes. Dančík et al.
[30] evaluated the distributions of protein connectivities among all STRING
proteins, natural product targets, and heritable disease genes. Results suggested
that STRING proteins mapped from disease genes display intermediate connec-
tivity, while STRING proteins mapped from small-molecule natural products are
enriched for more highly connected proteins. This result may indicate that natural
products may target proteins more essential to an organism than are disease genes.

Anvar et al. [31] further showed that the inter-species network of genes coding
for the proteasome provides accurate predictions of gene-expression levels and
disease phenotypes. Moreover, cross-species translation increased the stability and
robustness of these networks. Unlike some other existing modeling approaches, the
authors’ algorithms do not require assumptions about challenging one-to-one
mapping of protein orthologs or alternative transcripts, and can deal with missing
data. Instead, they showed that the identified key components of the oculopha-
ryngeal muscular dystrophy disease network can be confirmed in an unseen and
independent disease model. This study presented a novel strategy in constructing
inter-species disease networks that provide crucial information on regulatory
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relationships among genes, leading to better understanding of the disease molec-
ular mechanisms.

Robustness in protein-interaction networks. Robustness can be measured in a
protein-interaction network by measuring the integrity upon removal of the most
connected nodes. Jeong et al. [32, 33] found evidence of robustness by modeling
random mutations in the genome of yeast by arbitrarily removing random sets of
yeast proteins. The authors identified that yeast could tolerate a deletion of a
significant number of genes from its proteome, and not affect the integrity of the
network. Maslov and Sneppen [34] provided more evidence of topological rela-
tionships in protein-interaction networks. These authors found that links between
pairs of highly connected proteins were suppressed, whereas links between highly
connected and less well-connected pairs of proteins were favored. It was suggested
that this pattern increases the overall robustness of the network by localizing the
effects of deleterious perturbations. As protein-interaction networks are constantly
reinstated in the course of evolution, in order to integrate new proteins into the
network, and to compensate for the loss of a protein, new nodes can be added to a
protein interaction network by means of gene duplication [35]. This principle has
been proposed as an explanation for the presence of hubs in protein-interaction
networks, however later studies indicate that genes in complexes show more
severe fitness effects upon deletion than other genes in protein-protein interaction
networks. The authors found that this observation is not related to the number of
complexes in which they are present, but that shared components between many
complexes (i.e., the hubs) are not more likely to be essential than non-hub proteins
[36]. Furthermore, experimentally identified protein complexes tend to be com-
posed of uniformly essential or non-essential molecules, and thus the functional
role of the whole complex is determined by the deletion phenotype of the indi-
vidual proteins.

Robustness in metabolic networks. In metabolic networks, a measure of
robustness is the relative change in the concentration of a metabolite to those of
other metabolites. Holme [37] analyzed the average values of robustness as a
function of average network modularity, and observed that robustness to global
metabolic perturbations increases while the robustness to perturbations within a
module remains fairly constant. The fact that their system is more robust to global
than to local perturbations can be explained—a localized perturbation has a larger
impact on a restricted subsystem and this subsystem cannot absorb that impact as
well as the whole system would be able to do so. However, when relating
robustness to modularity, one needs to specify against what kind of perturbation
robustness is measured. For sudden shifts in concentration levels, more modular
reaction systems are more robust and converge to a steady state faster than less
modular systems.

In a different type of analysis, Barabási and coworkers presented a rigorous
comparison of global properties of metabolic networks from 43 organisms, and
observed that these networks had similar topological scaling properties [7, 38].
Wagner and Fell [39] and Norris and Raine [40] performed gap network analyses
of E. coli and both groups confirmed that metabolic networks had small-world and
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scale-free properties. Csermly et al. [27]demonstrated the existence of a scale-free
distribution of the metabolic flux of E. coli, and recognized the importance of the
strong links, but suggested that even the weak ones may play a role in the sta-
bilization of the system. Thus, a constrained number of hubs can control the entire
metabolic network, and the small-world property of metabolic networks can ensure
the stability of a network to random mutations [38, 41–43].

Our current knowledge of cellular networks and their analytical methods has
arrived at a time when testing the effects of drug candidates with known cellular
targets on the robustness of cellular networks is becoming increasingly possible.
The more we know about disease-specific changes in cellular networks, the better
we will be able to predict the efficacy of drugs in silico [26].

5.3 Biological Networks are Dynamic

It is well understood that biological systems are dynamic and so are the networks
that represent them. Cells react to stimuli conveyed in the form of signaling
molecules—typically small molecules or diffusible proteins—that originate in
other cells or in the environment. For example, as a preferred nutrient becomes
unavailable, cells react by activating pathways to use alternative energy sources. In
addition to environmental stimuli, network dynamics also reflect signals among
cells in organisms during processes like differentiation or development. Observing
changes caused by perturbing the environment of cells is a main approach to
explore dynamics. Large efforts have gone into studying network dynamics in the
context of disease. Progress in treating diseases like cancer can benefit from using
networks to understand disease mechanisms, a better understanding of network
dynamics, and applying network dynamics in the development of therapies.

A recent study by Bandyopadhyay and his collaborators [44] documents the
dynamic nature of biological networks. The authors selected 418 yeast genes,
including most kinases, phosphatases, transcription factors, and DNA repair fac-
tors, and measured the growth of approximately 80,000 double-mutant strains in
two different modes, with and without treatment by the DNA-damaging agent
methyl methanesulfonate (MMS). The genetic relationship between any two
mutations was determined by observing whether a strain was healthier or sicker
than expected (relative to single-mutant phenotype) and collected into a genetic-
interaction network. Two static networks were generated, one for the MMS-treated
condition (2,297 connections) and one for the untreated condition (1,905 con-
nections). The response to treatment was captured by a ‘differential’ network of
873 connections that removes ‘housekeeping’ interactions and reveals portions of
the static networks that are sensitive to treatment. To validate their approach, the
authors selected a reference set of 31 known DNA-repair genes and observed that
the differential network was highly enriched for interactions among genes from the
reference set. In contrast, there was no such enrichment in either of the static
networks.
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Constitutive and transient interactions. To explore the dynamic behavior of
another network, Luscombe et al. [45] constructed a yeast network that contained
7,074 connections between 142 transcription factors and 3,420 target genes. As an
illustration that some connections in networks are transient and some are consti-
tutive, the authors determined which connections were active under each of five
different conditions: cell cycle, sporulation, diauxic shift, DNA damage, and stress
response. The authors observed that only 66 interactions, representing mostly
regulation of housekeeping functions, were active in four or more conditions. On
the other hand, half of the targets were expressed in only one of the five conditions.
The authors further explored the dynamic nature of the transcription network and
observed that endogenous processes (cell cycle and sporulation) progress through
multiple stages while exogenous stimuli (diauxic shift, DNA damage, and stress
response) exhibit rapid reaction to stimuli. In addition, some topological measures
of the network (in-degrees, out-degrees, path lengths, clustering coefficients, sin-
gle-input motifs, and feed-forward-loop motifs) changed considerably between
endogenous and exogenous sub-networks.

Current progress in ‘-omics’ technologies allows much more thorough inves-
tigations of network dynamics [46, 47]. A study by Nicolas et al. [48] of Bacillus
subtilis under more than one hundred different conditions revealed a large vari-
ability of the transcriptome network. While most protein-coding sequences (85 %)
were highly expressed under one or more conditions, only a few (3 %) were highly
expressed under all conditions. A related study [49] focused on two conditions,
nutrient shift from glucose or malate to glucose plus malate, and collected chro-
matin immunoprecipitation microarray [50] data, as well as mRNA, protein, and
metabolite levels. These authors observed almost instant intake of malate while
glucose intake was delayed, and then used integrated analysis of collected data and
prior knowledge to suggest a requirement for transcriptional regulation to initiate
glucose intake in B. subtilis.

As the previous two examples illustrate, network interactions can be divided
into two types, constitutive (stable) and transient (temporary). While constitutive
interactions, typically associated with protein complexes, are active all or most of
the time, transient interactions only occur under certain circumstances, like
reaction to outside stimuli or execution of an internal program [51]. Das et al. [52]
developed a dynamic programming algorithm that uses temporal gene-expression
data to identify transient interactions and explain related network dynamics.

Understanding network dynamics can provide us with a means of perturbing the
network to achieve desired (or suppress undesired) phenotypes. Karlebach and
Shamir [53] described an algorithm that finds the smallest possible number of
perturbations required for a specific phenotypic change. They applied their method
to a network of genes expressed in human glioma tumors [54, 55]. Similarly, Liu
et al. [56] studied full controllability of complex networks and developed tools for
identifying ‘driver’ nodes. Somewhat surprisingly, they observed that high-degree
nodes are not likely to belong among driver nodes.

There have been many attempts to capture the dynamism of biological systems
at different levels of abstraction. In principle, there are two frameworks to such

138 V. Dančík et al.



modeling, quantitative or qualitative. In quantitative modeling, the variables
explicitly denote values such as molecule concentrations or population sizes.
Qualitative models capture systems on a more abstract level, such as whether two
proteins physically interact, or whether a compound inhibits a reaction. The choice
of modeling framework requires balancing model complexities that capture
desired features with the availability of information needed to build good models.
Here, we describe some successful approaches that were able to formalize bio-
logical systems: Boolean and Bayesian networks, Petri nets, ordinary differential
equations (ODEs), and cellular automata. It should be noted that network dyna-
mism is very active research area, and there are many additional methods to
investigate network dynamics of biological systems, including ontological mod-
eling [57], p-calculus [58], workflow modeling [59], information theory [60],
graph rewriting [61], Gragner causality [62, 63], and temporal association rule
mining [64], among others. For more detailed reviews of modeling formalisms see
[65–69].

Boolean networks. Boolean networks, introduced by Kauffman [70], are
probably the simplest models capable of capturing network dynamics. Boolean
models are directed graphs in which each node, typically corresponding to a gene,
has an associated Boolean value—one if a gene is expressed, and zero if it is not
expressed. A collection of these values for all nodes can be seen as one state of the
system. In addition, each node has an associated Boolean function (some com-
bination of AND, OR, and NOT operators) that represents the effects of regulators
of a gene on the node corresponding to that gene (Fig. 5.2). In each step of a
simulation, each node is assigned a new Boolean value that is the result of
applying that node’s function to the current values of its input (regulator) nodes.
Starting with any initial configuration, such a simulation will converge to a steady
state or will cycle deterministically through a finite set of states [70].

Fig. 5.2 Boolean networks.
In a Boolean network each
node has a Boolean variable
(representing a state of the
node) and a Boolean function
(representing rules to change
the node’s state)
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Despite having a simple formulation, Boolean networks are capable of cap-
turing the complex dynamics exhibited by real biological systems like cellular
states [71], feedback loops, and feed-forward loops. For example, relationships
between multiple coupled feedback loops were explored by Kwon and Cho [72].
While early simulations were performed on randomly generated Boolean networks
[70, 73], more recent availability of high-throughput data allowed use of Boolean
networks constructed for model organisms like yeast [74]. Recent studies have
explored various aspects of actual cell dynamics, including the cell cycle [75], cell
proliferation [76], inflammatory signaling [77], and the FA/BRCA pathway [78].

The deterministic nature of Boolean networks can cause problems due to partial
experimental evidence, stochastic components of cells, or different network
rewiring due to different stimuli. Shmulevich et al. [54] addressed this problem by
introducing probabilistic Boolean networks that can accommodate multiple
Boolean functions per node. Recent improvements to Boolean networks include
modeling of catalysts, activators, and inhibitors that is less abstract and better
reflects actual molecular mechanisms [79], and use of asynchronous Boolean
network ensembles to model cell-population dynamics [76].

Bayesian networks. The probabilistic nature of Bayesian networks seamlessly
captures many aspects of modeling biological systems: noisy and missing mea-
surements, limited knowledge, and natural variability. Bayesian networks are
directed acyclic graphs in which every node has an associated random variable that
can be discrete or continuous. The relationship among nodes is specified by
probability distributions that are conditional on values of random variables asso-
ciated with the input nodes (Fig. 5.3). These conditional probability distributions
allow quantitative expression of relationships among related genes. Particularly
popular are Gaussian Bayesian networks, in which nodes representing genes have
their expression modeled by a normal distribution [80]. Friedman et al. [81]
developed an algorithm for ‘learning’ Bayesian networks from gene-expression
data and applied the method to yeast cell-cycle data. The use of a heuristic
algorithm was necessary, since learning Bayesian networks is an NP-hard problem
[82]. Bayesian networks were also used to detect significant sub-networks using

Fig. 5.3 Bayesian networks.
In a Bayesian network each
node has an associated
random variable and the
relationship between nodes is
specified by a conditional
probability distribution
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gene-expression profiling of yeast that were genetically or environmentally per-
turbed [83].

The acyclic nature of the graphs underlying Bayesian networks makes it
impossible to model some essential aspects of biological networks, such as feed-
back loops. Such limitations can be addressed by dynamic Bayesian networks,
which allow cycles and introduce the concept of time, making them better-suited
to model biological systems. Connections in dynamic Bayesian networks can be
seen as interactions with a time delay. Dynamic Bayesian networks were used to
model E. coli regulatory pathways in response to tryptophan stimulation or star-
vation [84], E. coli DNA repair networks [85], Drosophila melanogaster [86] and
Arabidopsis thaliana [87] gene regulatory networks, yeast cell-cycle [88], and T
cell activation [89, 90]. To better account for particular aspects of biological data,
various extensions of dynamic Bayesian networks have been proposed, including
non-parametric regression modeling [91], distribution discretization [88], and
hidden state variables [89, 90].

Petri nets. Petri nets were described more than fifty years ago in Carl Adam
Petri’s dissertation to study the behavior of distributed systems, and soon became a
popular modeling tool for other artificial systems like integrated circuits, manu-
facturing systems, communication networks, among many others [92]. It was only
natural to extend the use of Petri nets to biological systems and especially meta-
bolic pathways [93]. Petri nets are directed bipartite graphs consisting of two types
of nodes, called ‘places’ and ‘transitions’ (corresponding to metabolites and bio-
chemical reactions when modeling metabolic networks). The state of the system is
captured by ‘tokens’ (corresponding to concentrations) that are assigned to places
and move during simulations. The ‘arcs’, connecting places to transitions and
transitions to places, are labeled by numbers that represent the number of tokens
that ‘travel’ through them (corresponding to reaction stoichiometry) (Fig. 5.4).
During a simulation, one of the transitions that is enabled, i.e., its input places

Fig. 5.4 Petri nets. An
example of a Petri net with
six places (metabolites), two
transitions (reactions), and
five tokens (concentrations).
Labels on the edges represent
their capacity with, by
convention, labels omitted for
edges with capacity equal to 1
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provide a sufficient number of tokens as required by arc labels, gets fired, i.e.,
tokens from the input place are removed and new tokens are added to output places
according to the corresponding arc labels. This relatively simple transition-firing
rule is sufficient to model such complex concepts as finite state machines, non-
deterministic and parallel machines, synchronization control, and priority systems.
Various aspects of Petri net modeling, including reachability (can we get from one
state to another?), reversibility (can we always return back to the initial state?), and
‘liveness’ (are there dead-lock states where no transition can fire?), can be
mathematically described and investigated. For a review describing Petri net
modeling and analysis in more detail see [92].

Metabolic networks modeled using Petri nets include the main glycolytic path-
way and oxidative pentose phosphate pathway in erythrocytes [94], sucrose
breakdown pathway in the potato tuber [95], and riboflavin production in B. subtilis
[96]. Besides modeling metabolic networks, Petri nets have also been used to model
MAPK and AKT signaling networks in breast cancer cell lines [97], the yeast mating
pheromone response pathway [98], and CaMKII regulation networks [99].

Various extensions to Petri nets were proposed to capture properties pertinent to
biological systems. Colored Petri nets allow for tokens and possibly transitions to
be segregated into multiple groups (‘colors’). Colored Petri nets were used to
model the responses to EGFR and BCL2 inhibition in MCF7 breast tumor cells
[100]. In stochastic Petri nets, enabled transitions fire with an exponentially dis-
tributed time delay. Stochastic Petri nets were used to model ColE1 plasmid
replication [101]. One of the drawbacks of ordinary Petri nets is their discrete
nature, and hybrid Petri nets address this shortcoming by introducing continuous
places and continuously firing transitions. Hybrid Petri nets also use transitions
with inhibitory arcs and were used to model gene regulatory networks [102]. A
popular extension of hybrid Petri nets, hybrid functional Petri nets, replaces the
constant speeds of continuous transitions with variable speeds that depend on
values in the places. Hybrid functional Petri nets were used to model gene
mechanisms for circadian rhythms and the apoptosis signaling pathway [103, 104].
For more detailed information on modeling biological systems via Petri nets see
[105, 106].

Ordinary differential equations. Ordinary differential equations are a well-
established approach to quantitative modeling of various dynamic systems at all
levels of organization of biological systems. They can unambiguously capture the
behavior of a system and correctly model responses to perturbations. Such equa-
tions are of the form

dxi

dt
¼ fiðx1; . . .; xnÞ;

where xi is the quantity of the i-th entity and fi is the rate of change of xi depending
on all quantities x1, …, xn in the modeled system. Such differential equations are
well-suited to capture the kinetics of individual enzymatic reactions and provide a
means for modeling complex systems by combining modeled reactions [107].
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Moisset et al. [108] used ordinary differential equations to model combined
metabolic and gene-regulation networks in yeast. The authors’ metabolic network
of 39 flux reactions included glycolysis, gluconeogenesis, the TCA cycle, and
fermentation reactions, and their gene-regulatory network consisted of 50 enzymes
and 64 genes. The internal enzymatic reactions were modeled via first-order
Michaelis-Menten kinetics, and mass-action kinetics were used for the remaining
reactions. Model parameters were determined from experimental data obtained
under two different conditions, one during exponential growth on glucose, and one
in exponential growth on ethanol. The authors validated their model by success-
fully modeling the fermentation of yeast.

Numerous applications of modeling biological systems using differential
equations include modeling of the toggle-switch behavior of two mutually
repressive genes [109], the E. coli heat-shock response [110], tryptophan regula-
tion in E. coli [111, 112], gene-expression [113, 114], and many others.

While differential equations were successful in precise modeling of small-to
medium-sized systems, currently they are not (yet) practical for large-scale
modeling. They can be too sensitive to values of model parameters and small
changes in parameter values can have profound effects on the resulting models.
There are a limited number of reactions with known (i.e., measured) values for
kinetic parameters, and in many cases these parameters are obtained by data-fitting
methods. In some cases, the functions fi can be relatively simple, like linear
differential equations, and analytically solvable. Unfortunately, much more often,
the differential equations for biological systems are non-linear and therefore
require computational rather than analytical solutions. To alleviate these issues,
modeling via differential equations can be combined with other modeling tech-
niques like Petri nets [107, 115], dynamic Bayesian networks [116, 117], or sto-
chastic Bayesian networks [118].

Cellular automata. Cellular automata appeared first in the computer science
literature as an abstract universal computational platform inspired by cellular
population dynamics. Since that time, cellular automata were developed from a toy
model to a mature modeling technique capable of realistic simulations. The main
advantage of cellular automata is that, in addition to temporal dynamics, they also
model spatial dynamics. Cellular automata are represented by a grid of cells (not in
a biological sense) with each cell in one of a finite number of possible states
(Fig. 5.5). A simulation is performed in discrete time steps according to transition
rules that determine the new state of a cell depending on the states of the neigh-
boring cells. The transition rules can be deterministic or probabilistic, creating two
types of cellular automata. For reviews on modeling biological systems using
cellular automata see [119–121].

Cellular automata are especially suitable for modeling systems with a signifi-
cant spatial component like epidemic outbreaks. Van Ballegooijen and Boerlijst
[122] studied a (spatial) susceptible-infected-resistant model of disease dynamics
using probabilistic cellular automata. Each cell can be in one of the three states:
susceptible, infected, or resistant. A susceptible cell can be infected by a neigh-
boring infected cell with a probability that depends on the infection rate b and the
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number of infected neighboring cells. An infected cell becomes resistant after
being infected for a time period sI and a resistant cell becomes susceptible after
being resistant for a time period sR. These fairly simple transition rules can pro-
duce different patterns of behavior from localized clusters of infection to spiral or
circular waves depending on the values of parameters b, sI, and sR.

Tumor modeling is another area where cellular automata were extensively used.
Dorman and Deutsch [123] modeled avascular tumor growth by taking into
account mitosis, apoptosis, and necrosis, including nutrient consumption and
signals emitted by necrotic cells. They modeled two types of cells (tumor or
necrotic) that can have five orientations (four sides ? center) thus having ten
discrete states. They also included two continuous variables, one for nutrients, and
the other for the necrotic signals. The transition rules were probabilistic and
correspond to proliferation, death, necrosis, or quiescence with appropriate prob-
abilities depending on neighbor states and nutrient availability. The authors’ cel-
lular automata reproduce experimental results—formation of a layered pattern
consisting of a central necrotic core, a rim of quiescent tumor cells, and an outer
ring of proliferating cells. Additional approaches to tumor modeling with cellular
automata are reviewed in [124].

Cellular automata were also used to model various biological systems including
neural networks [125], thymocyte development [126], and others [119]. Vladim-
irov et al. [127] used cellular automata to add spatial representation of neurons
when modeling very fast oscillations in the neocortex. There are various exten-
sions to adjust cellular automata for modeling particular aspects of biological
systems. Dynamic cellular automata allow movement of cell contents within the
grid and more accurate modeling on molecular level [128]. Cellular automata were
combined with partial differential equations to model tumor cell migration [129]
and tumor growth [130].

Fig. 5.5 Cellular automata.
An example of a cellular
automaton with cells in one
of four states (empty, white,
gray, and black)

144 V. Dančík et al.



Before the introduction of experimental high-throughput protein-interaction
detection methods, the dynamic nature of biological systems was used to infer
interactions, frequently involving much effort and study of one interaction at a
time. At that time, rigorous modeling was limited to small, well-understood sys-
tems. As more interactions became known, these were collected into early inter-
action databases [131] and represented as static networks. As these networks
became available to a wider community of researchers, methods using (at least
partial) prior network knowledge emerged [132]. High-throughput experiments
that produce large quantities of reliable data enable large-scale modeling using
dynamic networks, yet the trade-off between the size of modeled systems and
model accuracy remains. We expect that in the future, large-scale networks and
rigorous methods will converge to well-understood, precise dynamic models of a
‘virtual cell’.

5.4 Biological Networks are Modular

Biologists have observed and studied modularity at all levels, be it separation of a
population into groups of individuals, or interplay of organs in an organism.
Similarly, among protein-protein interactions we can observe protein complexes
and functional modules [133]. Some modules can function on their own, outside of
their natural cellular context. One such example is the DNA replication machinery,
which was successfully isolated and is now the well-known driver of the poly-
merase chain reaction.

There are multiple studies confirming the modular organization of biological
networks. As early yeast networks became available, Schwikowski et al. [134]
explored relationships between physical protein-protein interactions (PPI) and
protein functions specified by the Yeast Protein Database. The comparison
revealed that proteins with related functions tend to co-localize in the interaction
network, and confirmed the feasibility of using protein networks to predict func-
tions of previously uncharacterized proteins. In another study, Tanay et al. [135]
integrated yeast data from various sources, including gene expression, protein-
protein interactions, phenotypic sensitivity, and transcription factors. They used
log-odds ratios to quantify levels of dependencies in modules and used a search
algorithm to identify 665 sub-networks with statistically significant scores. These
authors used a yeast gene-ontology database to annotate detected modules and
were able to predict functions for 874 uncharacterized proteins. Additional studies
using yeast gene-expression data [136], yeast proteomic data [137], and yeast
double mutants [138], further confirmed the modular structure of yeast networks.

Protein function prediction. With experimental evidence of modular structure
in protein-protein interaction networks came use of network relationships for
protein function prediction. Earlier prediction methods either relied on sequence
information or used other sources of experimental data like gene expression, gene-
fusion events, or phylogenetic profiling. Access to high-throughput protein-protein
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interaction data allowed ‘guilt-by-association’ methods to transfer putative gene
annotation to other genes positioned nearby in the network. Schwikowski et al.
[134] used a straightforward method in which a majority annotation of neighbors
assigned annotations to 364 uncharacterized yeast proteins. The same network was
analyzed by Vazquez et al. [139] who defined a scoring function that rewards
connections between proteins with the same annotation and optimized it using a
simulated-annealing algorithm. Hierarchical clustering is an alternative approach
that was used to predict protein functions in an integrated yeast network [140] and
an integrated worm network [141]. Similar approaches to protein function pre-
diction include shortest paths in RNA co-expression networks [142], local topo-
logical weightings [143], and random walks [144].

Letovsky and Kasif [145] proposed a probabilistic approach to protein function
prediction. These authors derived Bayesian likelihoods for annotations and prop-
agated them iteratively beyond the direct neighbors from other nodes separated by
two or more edges. Application of their algorithm to the yeast protein-protein
interaction network yielded 320 new Gene Ontology—(GO-)term associations. In
a similar approach, Deng et al. [146] developed a Markov random-field model and
used Gibbs sampling [147] to estimate posterior distributions of annotations for
uncharacterized proteins. The authors combined various yeast networks and
applied their algorithm to the integrated network. Machine-learning approaches
can be seen as extensions of probabilistic methods and various techniques of this
kind have been applied, including support-vector machines [148], quadratic
optimization [149], probabilistic decision trees and random forests [150, 151],
Gaussian random fields [152], and multi-label kernel regularization learning [153].

Recently, Gillis and Pavlidis [154] addressed the robustness of guilt-by-asso-
ciation function prediction methods, both with respect to multi-functional proteins
[155] and network perturbations. Multi-functional proteins, especially those with
many connections, can introduce a bias in predictions that must be properly
controlled. Also, gene-function information is not distributed uniformly in net-
works. While networks can retain much functional information even if the size is
reduced by four orders of magnitude, there are a small number of connections
whose removal also removes functional information. Protein-function prediction is
a very active research area and new approaches are still being developed. Guilt-by-
association and other methods are indispensable as only one third of human GO
annotations are actually experimentally derived and the remainder rely on com-
putational predictions [156]. The use of biological networks for protein-function
prediction is reviewed in [157, 158].

Community detection. The problem of finding modules is not unique to biology
and was previously studied in many different contexts. In computer science it is
known as graph partitioning and was studied in connection with optimal sched-
uling of tasks for parallel processing or integrated circuit design. Even earlier
applications were in social sciences for studying relationships within a group of
people in closed environments like schools, clubs, or prisons. Motivated by
sociology, module-finding algorithms are now commonly called community-
detection algorithms and we will conform to this terminology as well. Community
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(module, cluster) detection is a well-studied subject and there are many excellent
and thorough reviews including [159–161].

Intuitively, a community is a set of nodes that have relatively dense connections
with other nodes in the community and relatively sparse connections to nodes
outside the community (Fig. 5.6). While there have been attempts by various authors
to formalize a community definition, surprisingly there is no universally accepted
measure for community strength. Probably the most popular is the modularity
measure by Newman and Girvan [162], defined as the difference between the actual
and expected fractions of within-community connections. Guimera and Amaral
[163] used a simulated-annealing algorithm to find communities with optimal
Newman-Girvan modularity scores for the metabolic networks of twelve organisms.
Variants of the modularity score optimization method include randomized search
[164, 165] and heuristic search [166]. The use of randomized and heuristic algo-
rithms for finding optimal modularity scores is warranted as optimization of many
modularity measures was shown to be NP-hard [167].

Divisive algorithms for community detection work by iterative removal of
connections until the network is partitioned into appropriate disjoint modules. Such
algorithms can also generate an overall hierarchical structure by continuing edge
removal until no connections between nodes remain. Divisive algorithms differen-
tiate themselves according to their choice for which edge or edges are to be removed.
Girvan and Newman [168] define a ‘betweenness’ score for an edge as the number of
shortest paths between pairs of nodes running through the edge (taken as the frac-
tional number for pairs with multiple shortest paths). Connections with high edge-
betweenness scores are more likely to connect different communities and are good
candidates for removal by the divisive algorithm. In their algorithm, Radicchi et al.
[169] removed the connection with the smallest edge-clustering coefficient, where
the edge-clustering coefficient was defined as the number of triangles containing the
edge divided by the maximal number of triangles that might contain the edge. By
comparison to the betweenness score, which depends on overall network topology,
the edge-clustering coefficient requires only knowledge of the local topology and

Fig. 5.6 Network
modularity. A network with
four distinct modules, each of
which is highly connected but
only lightly connected to
other modules
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can be computed efficiently. Variants of divisive algorithms were used to detect
modules for the metabolic network of Mycoplasma pneumoniae [42], the network of
gene co-occurrences in Medline titles and abstracts [170], the food web of marine
organisms and the social network of monkeys [171], and the yeast protein-protein
interaction network [172].

Modularity score optimization and divisive algorithms are examples of global
methods for community detection. Global methods work with graphs as a whole
and typically assign each node to one (and only one) of the communities. Other
examples of global approaches to community detection include graph partitioning
[173, 174], spectral methods [175–178], flow methods [179–181], hierarchical
clustering [182], random walks [183, 184], and integer linear programming [185].

In contrast to global methods, local methods, starting from a single node and
exploring the node’s neighborhood, are capable of detecting communities without
needing knowledge of the entire network structure. When starting from multiple
seed nodes and applying a local search method, it is possible to generate over-
lapping communities. While such a structure may be a concern for some appli-
cations, it is acceptable, even desirable, for biological networks since genes can
have multiple functions resulting in membership in multiple modules. Some local
search algorithms can be seen as variants of clique-finding algorithms (a clique is a
set of fully connected nodes), possibly followed by a clique-merging step [164,
186, 187]. Another local approach is to define some kind of community strength
score and search for a set of nodes that optimizes that score [188, 189]. Random
walks are also a popular approach [190, 191]. Local community detection methods
are reviewed in [192].

A different approach to community detection is to group together connections
rather than nodes to detect so-called ‘link communities’. Naturally, such algo-
rithms will also create overlapping node communities. Ahn et al. [193] used a
hierarchical clustering algorithm to build a dendrogram with leaves corresponding
to connections and branches corresponding to link communities. They applied
their algorithm to detect modules in yeast protein-protein interaction networks and
E. coli metabolic networks. The idea of connection clustering instead of node
clustering was also proposed independently by Evans and Lambiotte [194] and by
Gyenge et al. [195]. The algorithm of Evans and Lambiotte uses random walks on
connections and was applied to social and word-association networks. The algo-
rithm of Gyenge and collaborators, applied in machine-learning and hypertext
analyses, defines an underlying Bayesian model and uses Gibbs sampling [147] to
determine a model’s parameters and identify the communities.

Modern approaches to community detection assume an underlying distribution
according to a suitable null distribution model and express modularity in proba-
bilistic terms. Farutin et al. [196] described an algorithm that uses random graphs
with given expected degrees, in which connections are rewired in such a manner
that, on average, each node’s degrees are preserved [197]. Such a framework of
random graphs [198] allows measures of community structure to be expressed
analytically and computed efficiently. These authors used a heuristic local-search
strategy to find modules with optimal community scores in human and yeast
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protein-protein interaction networks. The robustness of their algorithm is docu-
mented by randomly introducing false positives and false negatives and evaluating
the performance of the algorithm on the perturbed networks. In similar approaches,
Koyutürk et al. [199] used a piecewise degree-distribution model, and Lancichi-
netti et al. [200] used a null model of random graphs with an exact degree dis-
tribution. Ball et al. [201] derived a maximum-likelihood formulation of link
communities and used an expectation-maximization algorithm to search for opti-
mal solutions.

Active modules. As discussed in the section on network dynamics, it is not
unusual, in response to changing conditions, that only parts of a biological network
are affected. Identification of the active parts of a network can provide important
insights into mechanisms of studied perturbations. Several approaches have been
proposed to detect active modules, mostly using gene-expression data. Ideker et al.
[202] studied the problem of detecting highly connected sub-networks with sig-
nificant gene-expression differences. These authors expressed activities as z-scores
calibrated against the appropriate null distribution and extended their scoring for
cases of multiple conditions. Once scoring was established, the authors used a
simulated-annealing algorithm with suitable heuristics to search for high-scoring
modules. They used their algorithm to detect active sub-networks responsible for
galactose utilization in yeast. Similar methods with alternatively defined activity
scores or alternative search methods were used to identify active modules for
human prostate cancer [203], the role of the immune system in melanoma [204],
animal models of type 2 diabetes [205], human colorectal cancer [206], and growth
hormone-treated breast cancer cells [207].

A different approach to active-module detection is to pre-process activity data
into pairwise distance matrices and then combine them with network information.
Hanisch et al. [208] created a combined distance measure and used a regular
hierarchical clustering algorithm to generate activity clusters for yeast. Ulitsky and
Shamir [209, 210] used activity data to produce log-likelihood weights on network
edges and then searched the network for ‘heavy’ sub-networks.

Recent methods to identify active modules do not assume homogeneity of
activities across the modules and adjust their approaches accordingly. An algo-
rithm developed by Chowdhury et al. [211] captures individual combinatorial
activity patterns and uses a bottom-up approach to prune the sub-network space
and identify relevant modules that are then used for classification. These authors
applied their method, using neural nets for classification, to predict metastasis of
colorectal cancers. Dutkowski and Ideker [212] developed an algorithm that uses
network-aware random forests of decision trees and applied it to determine
modules responsible for human tissue differentiation during development. They
also applied their method to predict clinical outcomes for breast and brain tumors.

Evolution of modules. The modularity of networks goes hand-in-hand with their
hierarchical structure—small communities are grouped into larger communities
and those are grouped into even larger communities [7]. While hierarchical
structure is created naturally by divisive or hierarchical algorithms, any commu-
nity detection method can be used to generate a hierarchy by creating new nodes
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from detected communities, and new edges for connected or overlapping com-
munities, and then applying the community-detection method again on the new
network of communities [196]. Information about the hierarchical structure of
network modules allows more accurate functional annotation of modules by GO
terms [213]. To compare hierarchy structures across various networks, Mones
et al. [214] proposed a network hierarchy measure. First, they defined a local
centrality score as an average inverted path length to the remaining nodes of the
network, thus giving higher scores to nodes near the center of the network and
lower scores to nodes on the periphery. The network hierarchy measure was then
defined as the difference between the maximal and average local centrality.
Intuitively, in a network with hierarchy structure, the ‘root’ of the hierarchy has
relatively large local centrality, while in a network with no hierarchy all nodes
have smaller local centralities. Alternative measures of network hierarchy, appli-
cable to directed networks only, are defined in [215].

Modularity is indispensable for evolution, as modular systems enable modifi-
cations of individual modules while minimizing potential side effects caused by
undesired interactions between modules. Also, it is easier for modular systems to
react to environmental changes as they can reconfigure their modules or reuse
them to acquire new functions. Although the close relationship between modu-
larity and gene specialization has been documented, the conditions that give rise to
modularity of biological systems are still the subject of intensive research [216].
Further aspects of modularity evolution are discussed in [217].

5.5 Biological Networks are Conserved

Comparison of early sequencing efforts across species provided a means of
measuring levels of conservation and revealed the macromolecular basis of evo-
lution. The availability of protein-protein interactions and other protein association
networks allowed in-depth study of the dynamics of evolution and conservation.
Protein interactions constrain sequence divergence as evidenced by comparing
Saccharomyces cerevisiae and S. pombe orthologs [218]. Proteins involved in
stable complexes have an average sequence identity of 46 %, while proteins not
known to be involved in interactions have an average of 38 %. There are also
examples of genes that ‘rewire’ during evolution. For example, the highly con-
served yeast protein Puf4p regulates mitochondrial genes in the Pezizomycotina
subphylum but targets nucleolar genes in the Saccharomycotina subphylum [219].
Network comparison methods are thus capable of providing valuable transfer of
information between orthologs as well as distinguishing differences between taxa.

As Sharan and Ideker pointed out in a review article [220], there are three
modes of network comparison: network alignment, network integration, and net-
work query. In the sequencing world, these methods would correspond to sequence
alignment, sequence assembly, and sequence database search. Network-alignment
methods compare two or more networks, usually from different species, with the
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goal of identifying conserved and divergent regions (Fig. 5.7). Network align-
ments can be global or local, again not unlike in the case of sequence alignments.
Network-integration methods use several networks obtained by different experi-
mental methods or under different experimental conditions to build a consensus
network. Network-query methods search for occurrences of a query sub-network
in the whole network. Methods for network comparison are reviewed in more
detail in [221, 222].

Network alignment and integration. Kelley et al. [223] were systematically
searching for interaction pathways conserved between bacteria (Helicobacter
pylori) and yeast. The authors’ local network-alignment algorithm, named
PATHBLAST, collects all pairs of proteins (one from each network) that have
sufficient sequence similarity and uses them as nodes in a global alignment graph.
Connections in the global-alignment graph are transferred from the source net-
works, and correspond to conserved interactions, ‘gaps’ (one of the source con-
nections is indirect), and mismatches (both source connections are indirect). To
assess the quality of aligned pathways, the authors proposed a score that consists of
two components, one measuring the level of sequence similarity between proteins
in the pathways and the other measuring the reliability of the aligned interactions.
Both scores are expressed as sums of log ratios of observed and expected values.
The optimal alignment is then obtained using dynamic programming on many
randomized acyclic sub-networks. Other local network-alignment algorithms
include NetworkBLAST [224], Graemlin [225], NetAlign [226, 227], PHUNKEE
[228], match-and-split algorithm [229], and NetAligner [230].

In a global network alignment, all nodes of the source networks have to be
aligned or explicitly marked as gaps. IsoRank, an algorithm of Singh et al. [231]
defines a match score for pairs of nodes, one from each network, based on the
stationary distribution of a random walk that is combined with a sequence simi-
larity score. The combination is controlled by a parameter a that controls relative
contributions of network topological similarity and sequence similarity. An opti-
mal global alignment that maximizes the sum of scores of aligned nodes can be

Fig. 5.7 Network alignment.
An alignment of two
networks with one mismatch
(dark nodes) and two gaps
(white nodes)
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computed by a heuristic greedy algorithm, or using established methods for finding
matches in bipartite graphs. These authors also extended their method to alignment
of multiple networks and produced global alignments of yeast, fly, worm, mouse,
and human protein-protein interaction networks [232]. Other algorithms for global
network alignment include NATALIE [233], Graemlin 2.0 [234], IsoRankN [235],
NetAlignBP, NetAlignMR [236], GRAAL and its variants [237, 238], PISwap
[239], and an algorithm by Shih and Parthasarathy [240].

A recently introduced linear-time algorithm of Hodgkinson and Karp [241]
combines network alignment with community detection. The algorithm starts by
finding modules using the PageRank-Nibble method [190], then uses the detected
modules to discover network conservation. To assess the performance of their
algorithm, these authors investigated various evaluation measures for network
alignment with a particular focus on biological networks. The alignment of human
and fruit fly protein interaction networks produced by the algorithm revealed that
almost ten percent of proteins belong to conserved modules. Phan and Sternberg
[242] used a similar approach to align human, mouse, worm, fly, and yeast protein-
protein interaction networks, and used the resulting alignments to predict protein
functions. Modules were detected by a clique-percolation method and then were
mapped to obtain seed-protein pairs that were, in turn, extended to produce
alignments of the networks.

The presence of false positives and especially false negatives in experimental
sources of protein interactions and other networks is a known problem. Integration
of networks from different sources or different experimental methods can increase
confidence in information supplied by the individual component networks. As an
example of network integration, we describe an algorithm of Ogata et al. [243] that
starts by collecting pairs of corresponding nodes from two networks, possibly
creating multiple pairs for a node in cases of many-to-many correspondence.
These pairs are then joined into conserved modules using single-linkage hierar-
chical clustering while ensuring that any two clusters can be merged only if in each
of the contributing networks there is a path of limited length that connects the two
clusters. The statistical significance of aligned modules is assessed by repeating
the procedure on randomized networks. The authors applied their algorithm to
align an E. coli gene co-location network to its metabolic network and identified
one hundred functionally related enzyme clusters, of which 39 completely and 50
partially overlapped with known E. coli operons. Rhodes et al. [244] used a naïve
Bayes model to integrate the protein interaction networks of yeast, worms, and
flies with human protein domain data, genome-wide gene-expression data, and
functional annotation data. Further integration with cancer genomics data provided
networks activated in cancer. Other examples of network integration include
integrated yeast networks [245], early embryogenesis in worms [141], eleven
microbe species [246], mouse embryonic stem cells [247], five herpesvirus species
[248], and the potato [249].

Network queries and motifs. Network queries, while similar to network align-
ment, do contain inherent asymmetry—a query network is usually much smaller
and might be restricted to a tree or even a linear pathway. While many local
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network-alignment algorithms can be used to detect the presence of small sub-
networks, there are approaches that specialize in network queries. Pinter et al.
[250] explored querying metabolic pathways represented as directed networks in
which nodes correspond to enzymes that are connected whenever a product of one
enzyme is the substrate of another enzyme. A scoring function was defined so that
matching similar enzymes is rewarded and gaps (unaligned nodes) are penalized.
To avoid computational inefficiencies, these authors restricted queries and target
networks to directed acyclic graphs. The optimal alignment for trees was then
efficiently computed using dynamic programming and altered to report all sub-
optimal solutions with scores above a given threshold. This algorithm was used to
align 113 E. coli pathways to 151 yeast pathways, resulting in 610 aligned path-
ways with statistically significant scores. In a different approach, Qian et al. [251]
represented the target network as a hidden Markov model. They restricted queries
to linear pathways and their algorithm allows gaps of arbitrary length. These
authors evaluated their algorithm by aligning yeast pathways against networks of
other model organisms. A recent algorithm of Huang et al. [252] is based on a
conditional random-field model and allows both cyclic and acyclic queries and an
arbitrary number of gaps. Other algorithms for network query include GenoLink
[253], QPath [254], PathMatch and GraphMatch [255], SAGA [256], NetMatch
[257], MetaPAT [258], QNet [259], PADA1 [260], and TORQUE [261]. Network
query algorithms were recently reviewed and compared in [262, 263].

A question related to network conservation is to find conserved regions in a
single network, i.e., to find network motifs. Conserved network motifs, analogous
to sequence motifs, can be used, e.g., to predict protein-protein interactions [264,
265]. Ortholog prediction using network alignment produces outcomes that are
improvements compared to using sequence-only methods [231, 266]. Milo et al.
[267] defined a network motif as a connection pattern with significantly higher
occurrence then expected by chance, and proposed an algorithm for their detec-
tion. The algorithm works by counting frequencies of all possible n-node sub-
graphs. The significance of n-node motifs was verified via simulation of random
networks that preserve the distribution of (n - 1)-node subgraphs. When applied
to E. coli [268] and yeast transcriptional regulation networks, the motif-finding
algorithm found two significant motifs, a ‘feed-forward loop’ (a gene is regulated
by two transcription factors and one of the factors also regulates the other factor)
and a ‘bi-fan’ motif (two genes are each regulated by two different factors). These
authors also applied their algorithm to a food web, a neuronal network, and a few
non-biological networks. Motif distributions can be efficiently computed in ana-
lytical terms under various random-network models [269–272]. Berg and Lässig
[273] extended an algorithm to approximate motif search to find motifs that are
similar but not necessarily identical. The occurrence of small motifs can be
combined into profiles that can be used to characterize and compare networks
[274, 275], similar to an approach that has been used for decades in cheminfor-
matics to compare chemical structures. The motif-search problem is reviewed in
more detail by [276, 277].
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Network evolution. Biological networks are conserved, yet they evolve. The
conservation and evolution of biological networks cannot be separated from each
other. As network alignment provides evidence of the existence of conserved
modules, it also provides evidence of evolution. Many interactions involve various
protein domains, and comparisons of conserved and evolved modules may provide
insights not available from the domain arrangements revealed by protein-sequence
information alone. During the course of evolution, genes get duplicated and
diverge, proteins acquire new functions, and proteins change their interacting
partners. Such changes, while difficult to deduce from sequence information, are
reflected in the network structure and can be revealed by network comparisons.

Koyutürk et al. [278] relied on network evolution models to guide network
alignment. As in previous approaches, these authors built a global alignment graph
by matching orthologous interactions. To capture underlying evolutionary events,
the authors defined an alignment score that, in addition to scoring orthologous
interactions, also includes gene-duplication and -divergence scores. The network
alignment was thus reformulated as an optimization problem, and a subgraph-
growing heuristic was applied to find the optimal local network alignment. The
authors applied their algorithm to budding yeast, nematode worm, and fruit fly
networks, and detected 412, 146, and 83 conserved sub-networks between yeast/
fly, worm/fly, and yeast/worm networks, respectively. Berg and Lässig [279] used
statistical models for the evolution of nodes and connections to derive a combined
model for scoring alignments. These authors applied their algorithm to align
human and mouse co-expression networks. Capra et al. [280] considered a more
advanced evolutionary model and integrated genome-wide comparative phyloge-
netic analysis with yeast functional and interaction networks. They predicted the
origin (novel or duplicate) and time of creation (pre-, at, or post-whole-genome
duplication) for every yeast gene and assessed various network properties for
different categories of genes, observing that some properties exhibit bias. For
example, younger genes are less integrated into physical interaction networks than
older genes, and novel genes are less central in the network than duplicate genes of
the same age. Also, proteins preferentially interact with proteins of the same age
and origin. Such behaviors can be easily explained by an evolutionary model
where new genes created by duplication ‘inherit’ interactions while de novo genes
initially may not be fully functional.

In one step of a preferential attachment model for network evolution [4] a node
is added to an existing network and is connected to older nodes randomly in such
way that connections to higher-degree nodes are more likely than connections to
lower-degree nodes. While such models are accurate in social networks, phylo-
genetic analysis of 887 co-evolving protein pairs in 15 eukaryotic species does not
provide evidence for preferential attachment in protein networks [281]. Motivated
by evolutionary events, gene-duplication models [282–284] add a new node to the
network by randomly selecting an existing node and duplicating it and its con-
nections (Fig. 5.8). Reflecting mutations of the duplicated genes, their connections
can experience deletions and new connections can arise with certain probabilities
with rewiring details varying from model to model. The duplication and rewiring
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rates can be estimated using comparative genomics and structural information
[285, 286]. It should be noted that more complex models are probably needed to
precisely reflect evolutionary events, since basic gene-duplication models do not
well capture the modular structure of biological networks [287]. Gibson and
Goldberg [288] came to a similar conclusion and proposed a gene-duplication
model enhanced by including heritable interaction sites on the surfaces of proteins.
Alternative approaches, rather than duplicating one gene at time, consider whole
genome duplication, motivated by such events in yeast evolution [289, 290].

Aspects of network evolution and conservation are reviewed in [291] and [35].
Importantly, there is still disagreement between estimates of the prevalence of
conserved interactions, with estimates ranging from 10 to 78 % [238, 241]. Further
research into network-comparison methods and more precise experimental data are
needed to further our understanding of network evolution and conservation.

5.6 Biological Networks Exhibit Emergent Properties

In the Introduction, we discussed properties of networks themselves that emerge
from rules or governing principles about the network or its components. Such
descriptions concern emergent properties of our representation of biology as a
network, allowing us to make predictions about how a biological network repre-
sentation might change over time or respond to stimuli. While such work is
important in understanding fundamental principles applicable to all types of net-
works, and understanding whether our modeling of biological systems accords
with observation, some recent studies have focused on emergent properties of the
biological system itself. In other words, can we build models that produce testable
biological parameters or hypotheses without explicitly accounting for those

Fig. 5.8 Network evolution. A gene-duplication model for network evolution: a random node
(and its interactions) is duplicated (left), one interaction is lost (dashed line) and one interaction is
acquired (double line) due to gene mutations (center), resulting in an evolved network (right)

5 Properties of Biological Networks 155



parameters in our models? Studies of emergent biological properties have been
reported in multiple fields and at multiple scales, even within the constraints of
molecular and cellular biology, as illustrated by the following diverse approaches.

Emergent metabolic properties in adaptations to environmental change have
been studied using a piecewise affine model [292]. Due to the different time-scales
of change in metabolite versus enzyme levels, feedback from a single metabolite to
transcriptional control of all enzyme levels in an un-branched metabolic pathway
can give rise to multiple different phenotypes, including mono- and multi-stable
ones as well as oscillations. These studies achieved simplicity of interpretation by
using a formalism whose output depends, under the authors’ assumptions, on only
two enzymes in the pathway: the first one that initiates the pathway, and the
enzyme that consumes the regulatory metabolite.

In neurobiology, computational network models that aim to model the chemical
and electrical interactions between physical neuronal cells have demonstrated
emergent behavior that accords with observations. For example, a neuronal net-
work model based on the electrical spiking physiology of oxytocin cells [293]
recapitulated a burst-release of oxytocin behavior that in infant mammals releases
a periodic pulse of the compound into the bloodstream during suckling behavior.
These emergent bursts are produced by the interactions of positive feedback and
inhibitory effects between many sparsely connected cells.

Emergent properties in cellular differentiation networks, including pluripoten-
cy, de-differentiation, and trans-differentiation between cell types has been mod-
eled using noisy random Boolean networks [294]. In this case, changing the noise
thresholds in the network of interacting transcriptional regulators provided a
potentially general approach to study the origins of cellular differentiation as well
as the ability of scientists to reprogram cell fate. Studies such as these highlight the
need for integrating theory, computational modeling, and experiment. As high-
throughput data continue to grow in number and complexity, these needs to
connect biological principles with sound modeling and high-quality data will
become increasingly important.

In one particularly illustrative set of studies of the yeast cell cycle under dif-
ferent growth conditions, Barberis et al. [295] established a detailed model of cell-
cycle dynamics using a system of differential equations that represent changes in
concentrations over time of cell-cycle proteins. This work extended earlier models
by explicitly accounting for increases in cell volume and by separating nuclear and
cytoplasmic interactions between proteins. By testing model predictions under
different parameters, the authors identified a critical cell size for S-phase initiation
as an emergent property of their model that was dependent on nutrient source, and
which agreed well with experimental observations of doubling times in glucose
versus ethanol. Extending the fundamental model predicting critical cell size to
account for additional input perturbations and additional parameters accounting for
phosphorylation, allowed more precise modeling of the consequences of changing
protein concentrations or phosphorylation states [296]. These studies provide a
nice illustration of how a single network model, with appropriate accounting for
relevant model parameters, can explain multiple emergent properties (critical cell

156 V. Dančík et al.



size, cell cycle arrest, etc.) that were selected by evolution under different envi-
ronmental stimuli.

The examples presented in this section are important for study of the individual
systems under consideration, but also represent an important idea in network
biology: that because the special ‘engineering’ principles of modularity, robust-
ness, and conservation underlying biological systems reflect evolutionary pro-
cesses, they are amenable to understanding using network principles [297].

5.7 Using Networks for Data Interpretation

The analysis and interpretation of network relationships between biological mol-
ecules and concepts requires tools for network visualization and interpretation,
both of which are made challenging by the vast amount and heterogeneity of
systems biology data. Most current network-visualization tools are applicable to a
wide range of problems, but many of them reach practical limits of usability when
thousands of nodes and connections have to be analyzed and visualized. We
describe the functionality, and specific strengths, of these tools. Next, we describe
some of the underlying methods being used to rationalize complex datasets, and
that may serve as future engines of new visualization tools.

Systems biology datasets exhibit growing complexity because of numerous
heterogeneous application areas and detection technologies. Integration of multiple
diverse types of data is therefore gaining importance. Currently, different types of
biological data, such as sequence information, protein structures and families,
proteomics data, gene expression, and other experimental data are stored in distinct
databases. Each existing database can be very specialized, and often stores infor-
mation using specific data formats. Many of these databases also contain overlap-
ping but not identical information with other databases, which introduces a
limitation when there is a need to combine the information. Tools are currently being
developed to try to simplify the interpretation of biological data by transforming raw
data into visually tangible representations. The goal of most of these tools is to
discover patterns and structures that remain hidden in raw datasets [298].

Network visualization. Several network visualization tools are currently avail-
able to the scientific community. Medusa [299] is based on the Fruchterman-
Reingold algorithm [300], and provides 2D representations of networks of inter-
mediate size, up to a few hundred nodes and edges. Medusa supports weighted
graphs and represents the significance and importance of a connection by varying
line thickness. Medusa was developed mainly to show multi-edge connections
where each line represents different conceptual information. Medusa is optimized
for protein-protein interaction data such as those taken from STRING [301] or
protein-chemical and chemical-chemical interactions such as those taken from
STITCH [302]. Cytoscape [303] is an open-source project, and mainly provides
2D representations suitable for large-scale network analysis with hundreds of
thousands of nodes and edges. It can support directed, undirected, and weighted
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graphs, and comes with powerful visual templates that allow users to display or
change the attributes of nodes or edges, zoom in or out, and browse the network.
Cytoscape incorporates statistical analysis of networks and makes it easy to cluster
or detect highly interconnected regions. BioLayout Express3D [304] supports both
weighted and unweighted graphs together with edge annotation of pairwise rela-
tionships. It uses the Fruchterman and Reingold [300] layout algorithm for 2D and
3D graph positioning and display of the network. Other tools include Osprey
[305], Pajek [306], SpectralNET [307, 308] and many others, as reviewed in [298].

Enrichment analysis. Two classes of models have been investigated by
researchers to account for interactions among sets of biological entities in differ-
ential analysis of genes. The first approach is known as gene-set analysis, and its
aim is to consider the joint effect of biologically related groups of genes. By
performing gene-set analysis, the interaction among genes may be preserved by
considering the joint effect of genes in each set [309]. The resulting inference
implicitly includes interactions. While individual effects of genes may be small,
the combined effects of changes in the expression of genes in a set could reveal
important changes to the overall system. An examples of current methods being
used widely is gene-set enrichment analysis (GSEA) [310] and its variants [311].
The second class of methods aims to incorporate information about interactions
among genes and proteins into a differential analysis. Ideker et al. described an
integrated genomic and proteomic analysis of perturbed networks to discover
interactions among genes. Later, the same authors proposed a method to test the
significance of sub-networks through permutation testing [202]. More recently, Li
and Wei [312] and Wei and Pan [313] proposed Markov random field models to
incorporate network information in the differential analysis of genes. In these
methods, connected genes in the network are assumed to have similar expression
levels and a Bayesian framework was developed using mixture models to evaluate
whether each gene is differentially expressed [309]. A number of recent methods
combine the advantages of incorporating network information with the strengths of
enrichment analysis. Pradines et al. [314] generated connectedness profiles using
random graphs with given expected degrees and used them to detect sub-networks
with highly expressed genes. Sanguinetti et al. used a mixture model on graphs and
a simple percolation algorithm to search for sub-networks of significant compo-
nents [315]. Likewise, Shojaie et al. developed a method that incorporates network
information using a mixed linear model to test whether pre-defined gene sets were
differentially expressed [316].

Many of the above-mentioned methods have focused on performing single-gene
analysis, or gene-set enrichment analysis for minimal experimental conditions,
e.g., treatment versus control. Since the significance of an enrichment analysis is
based on a permutation test, and the adaptation to complex experimental data
including temporal correlation information is not straightforward, few methods
have been developed to generalize the single-gene framework to make it more
flexible. Shojaie et al. [309] analyzed arbitrary networks with directed and undi-
rected edges, and used the flexibility of mixed linear models to develop a general
inference procedure. Their method can be used to analyze changes in biological
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pathways and provides an inference framework for simultaneous tests of multiple
hypotheses in complex experiments. Results from this method illustrate that gene-
set analysis is not sensitive to small amounts of noise in network information, and
provides a flexible framework used to study changes in genetic pathways.

Combining knowledge from multiple experimental sources (e.g., transcriptome
[310], metabolome [317], acetylome [318]) has frequently identified functional
relationships between diverse biological components. Analyses of such combined
datasets can be performed at different levels: first, where each -omics dataset is
analyzed separately and combining hypotheses made using each separate result,
and next by integration of the datasets in advance and analyzing -omics networks
of the combined data. Cavill et al. explored drug sensitivity through integration of
transcriptional and metabolic data from the NCI-60 cell line panel [319]. They
correlated growth inhibition with molecular profiles to identify pathways related to
drug sensitivity. When combining datasets, the authors used a joint-probability
estimate (to associate each pathway with each drug-sensitivity phenotype), and
found 35 pathways that were significant for at least a single drug, a result they did
not find when they analyzed the datasets separately. Relatively little emphasis has
been placed on systematic evaluation of the extent of information overlap provided
by different types of -omics data. Water et al. [320] investigated this information
overlap by estimating the degree of concordance between RNA- and protein-
expression changes using correlation analysis. The authors tried to reconstruct the
known EGFR-regulatory network to assess whether similar biological processes
are captured by each of two high-dimensional data-collection platforms by con-
ducting gene-set enrichment analyses separately. Their results demonstrate that
concordance between RNA and protein expression varies between specific func-
tional classes of proteins, and that each data type emphasizes a specific pattern of
cellular processes.

Ideally, the next generation of network-analysis methods and visualization tools
should be able to better represent data from heterogeneous sources, high-
throughput experiments, and text-mining applications. These tools should be able
to visualize multi-edged networks across various dimensions, incorporate clus-
tering algorithms, pattern-recognition methods, and statistical analysis methods to
integrate multiple -omics datasets. Tools designed to integrate most of the
aforementioned functionalities would greatly simplify large-scale research in
biochemistry and molecular biology, reduce significantly time and effort spent on
data processing, and provide better guidance to researchers in their experimental
endeavors.

5.8 Network Medicine

Traditional approaches to disease rely on associating a patient’s symptoms with
pathological markers and, usually relying on a physician’s experience, selecting
one of many possible diagnoses and applying the appropriate treatment. As more
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data from various sources becomes available ‘‘the fundamental question of where
function lies within a cell is slowly shifting from a singleminded [sic] focus on
genes to the understanding that behind each cellular function there is a discernible
network module consisting of genes, transcription factors, RNAs, enzymes, and
metabolites’’ [321]. Network-based methods can increase the depth of our
understanding of biological systems and processes and have far-reaching influence
on various aspects of practicing medicine, including drug discovery, toxicology,
biomarker discovery, and personalized medicine [322]. This viewpoint is creating
a significant shift in the approach to disease treatment known by the term ‘network
medicine’ [323, 324].

There are numerous examples of using network approaches to provide signif-
icant insight into the pathogenesis of various diseases. Ergün et al. [325] used
microarray data to reverse-engineer a network that was then used to identify the
androgen receptor gene among the top genetic mediators for metastatic prostate
cancer. In another example, Ciriello et al. [326] developed an algorithm to identify
modules that exhibit patterns of mutually exclusive genetic alterations across
multiple patients and applied it to two cancers, glioblastoma multiforme and
serous ovarian cancer.

A crucial first step in many drug-discovery pipelines is the selection of
appropriate targets (usually proteins) and their thorough validation. It is important
that target validation includes the investigation of the network neighborhood
because biological networks, similarly to social and technological networks,
exhibit small-world phenomena—most nodes in a network are relatively close to
other nodes. Therefore, interfering with one node in the network can have pro-
nounced effects in the node’s neighborhood and across the whole network. The
goal of algorithms developed by Sridhar et al. [327, 328] is to stop production of
undesired compounds by a metabolic network. These authors’ algorithms select
enzymes to be inhibited in such a manner that the effects on remaining metabolites
are minimal. Using such an approach, the authors showed that targeting arachid-
onate 5-lipoxygenase by benoxaprofen might not be optimal. Lee et al. [329]
searched for candidate disease genes by combining data from genome-wide
association studies (GWAS) with evidence from guilt-by-association predictions
via an integrated human functional gene network. The algorithm, when applied to
Crohn’s disease and type 2 diabetes, improved the ability to detect well-validated
genes. Additional network-based approaches to computational target identification
are reviewed in [330–333].

In modern drug discovery, it has become increasingly difficult to develop new
drugs and even more so for first-in-class drugs with novel mechanisms of action.
Drug candidates face many hurdles on their way to clinical application, with
undesirable on-target and off-target side effects being one of the reasons for
failures. Quantitative analyses performed by Brouwers et al. [334] revealed that
side-effect similarities of many drugs are caused by the network neighborhoods of
the drugs’ targets.

Repositioning of existing drugs is one of the approaches to alleviate difficulties
facing drug candidates. While motivations for drug repositioning and the discovery
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of off-target effects are quite different, computationally it is essentially the same
task—use a known drug-target network, possibly integrated with additional
information, to predict novel drug-target interactions. Chang et al. [335] integrated
structural information, obtained by protein-ligand docking, with a metabolic net-
work, gene-expression data, and proteomic data, to build a kidney metabolic
model. This model was then used to predict off-target effects for torcetrapib, a
cholesteryl ester transfer protein that failed in Phase III clinical trials. Cheng et al.
[336] showed that network-based predictions of drug-target interactions are
superior to drug-based predictions (via 2D chemical similarity) and target-based
predictions (via sequence similarity). They validated their method by repositioning
five drugs to target estrogen receptors or dipeptidyl peptidase-IV.

The association of diseases with network modules rather than single genes will
likely impact the future of drug discovery. For treatment to have a positive impact,
rather than focusing on single targets, it may be necessary to focus on the whole
network associated with a disease [337]. Network approaches will require solid
understanding of the affected network, including the network’s structure,
dynamics, and resistance to perturbations. Future treatments will require multiple
points of attack, achieved by drug combinations or development of multi-target
drugs. Optimistically, there are already indications that the network medicine
approach will bring successful treatment in cases where current, single-target
approaches are deficient.
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Chapter 6
On Different Aspects of Network Analysis
in Systems Biology

Amphun Chaiboonchoe, Wiktor Jurkowski, Johann Pellet,
Enrico Glaab, Alexey Kolodkin, Antonio Raussel, Antony Le Béchec,
Stéphane Ballereau, Laurene Meyniel, Isaac Crespo, Hassan Ahmed,
Vitaly Volpert, Vincent Lotteau, Nitin Baliga, Leroy Hood,
Antonio del Sol, Rudi Balling and Charles Auffray

Abstract Network analysis is an essential component of systems biology
approaches toward understanding the molecular and cellular interactions under-
lying biological systems functionalities and their perturbations in disease. Regu-
latory and signalling pathways involve DNA, RNA, proteins and metabolites as
key elements to coordinate most aspects of cellular functioning. Cellular processes
depend on the structure and dynamics of gene regulatory networks and can be
studied by employing a network representation of molecular interactions. This
chapter describes several types of biological networks, how combination of dif-
ferent analytic approaches can be used to study diseases, and provides a list of
selected tools for network visualization and analysis. It also introduces protein–
protein interaction networks, gene regulatory networks, signalling networks and
metabolic networks to illustrate concepts underlying network representation of
cellular processes and molecular interactions. It finally discusses how the level of
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accuracy in inferring functional relationships influences the choice of methods
applied for the analysis of a particular biological network type.

Keywords Boolean models �Cell–cell interaction �Continuous models �Database �
Discrete models � Diseasome � Gene regulatory networks � Hybrid models �
Integrative disease map � Metabolic networks � Multi-scale modeling � Network
analysis tools � Network modeling � Network pharmacology � Network topology �
Ordinary differential equations � Protein–protein interaction � Signalling networks

Abbreviations

APID Agile Protein Interaction DataAnalyzer
AP-MS Affinity purification-mass spectrometry
ATP Adenosine triphosphate
BioGRID Biological General Repository for Interaction Datasets
CCNA2 Cyclin-A2
cMap Connectivity map
CYP3A4 Cytochrome P450 3A4
CTD Comparative Toxicogenomics Database
DIP Database of Interacting Proteins
DNA Deoxyribonucleic acid
GHEN2PHEN(G2P) Genotype-To-Phenotype
GR Glucocorticoid receptor
GRN Gene regulatory Network
GTP Guanosine triphosphate
hERG Human Ether-à-go–go-Related Gene
HPID Human Protein Interaction Database
HPRD Human Protein Reference Database
HTML Hyper Text Markup Language
IMEx International Molecular interaction Exchange consortium
MIMIx Molecular Interaction eXperiment
MINT Molecular INTeraction database
MIPS Mammalian Protein–Protein Interaction Database
My-DTome Myocardial infarction drug-target interactome network
NR Nuclear Receptors
ODEs Ordinary Differential Equations
OMIM Online Mendelian Inheritance in Man
PDEs Partial differential equations
PHARMGKB Pharmacogenomics Knowledge Base
PPI Protein-protein interaction
PSI-MI Proteomics Standards Initiative on Molecular Interactions
RNA Ribonucleic acid
SBML Systems Biology Markup Language
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
XML Extensible Markup Language
Y2H Yeast two-hybrid
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6.1 Introduction: From Pathways to Networks

In a biological pathway of interest, molecular entities such as genes or proteins
very often also interact with other entities involved in distinct pathways. Since
each pathway represents a specific region of a larger network in a given biological
system, network analysis methods can provide additional biological insights that
cannot be obtained from pathway analyses alone.

Biological networks comprise nodes that correspond to genes, proteins,
metabolites or other biological entities, and edges that correspond to molecular
interactions and other functional relationships between the biological entities. In
general, in comparison to random networks (network elements connected by
chance), biological networks of the same size and connectivity exhibit significant
differences in aspects such as: wiring type or presence of topological motifs
(groups of inter-connected nodes with a given structure). This affects (1) modu-
larity i.e. the degree of division of the network into subnetworks that comprise
densely connected nodes but share few edges outside the module, (2) dissort-
ativity, i.e. the tendency of nodes to connect to other nodes in the network that are
associated with different characteristics (e.g. nodes with many connections link to
nodes with few connections), and (3) robustness [1] i.e. the resilience of the
network to the removal of nodes or edges.

One of the most common strategies used to extract new insights from biological
networks is to study the graph topology of a network, i.e. the patterns of
interconnections between nodes and edges, based on a key metric: the degree or
the number of connections of a node with other nodes. This led to the introduction
of the concepts of scale-free networks [2], in which the node degree of connec-
tivity distribution follows a power-law, and of small-world networks [3], in which
the distance between nodes grows proportionally to the logarithm of the network
size. In the latter, only few nodes act as ‘‘highly connected hubs’’ and the majority
of the nodes are of low degree of connectivity (i.e. are engaged in only few
interactions) [4, 5]. This property is believed to confer resistance to random attacks
but makes scale-free network extremely susceptible to targeted perturbations [6].
Most biological networks display scale-free properties typical of small-world
networks much more often than expected by chance, as is also observed for social
networks [7].

These properties make network analysis an interesting approach to study bio-
logical systems in order to explain experimental observations and to formulate new
hypotheses about biological functions at the molecular, cellular and higher levels
of abstraction. Network analysis should however be performed with caution for
two reasons. First, most of the networks are largely incomplete, that is they are
missing many nodes (e.g. molecules, complexes, phenotypes) and edges (i.e.
connections representing reactions, associations or influences). On the other hand,
many false positive elements and interactions tend to be included in networks in
the absence of contextual information on cellular or tissular localization. Second,
the networks have dynamical architectures, i.e. they may change significantly in
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structures during biological or disease processes. There are virtually no examples
where connectivity measurements have been made in a dynamical manner [8].

Despite these limitations networks have proven to be valuable tools to represent
and analyse complex biological knowledge and processes. The first section of this
chapter introduces the basic network types associated with gene regulation, pro-
tein–protein interactions, metabolic reactions and signalling processes. Inference
of a genetic interaction network from gene co-expression data in the absence of
knowledge of the underlying mechanisms, or accurate characterization of chemical
reactions with known stoichiometry and kinetic parameters correspond to widely
different levels of representation and require distinct computational approaches.
The resulting molecular interaction networks need to be integrated with drug and
phenotype networks in order to understand perturbations causing and caused by
disease, and to facilitate the process of development of adequate medical
interventions.

Introduction of network types (Fig. 6.1) is followed by a concise introduction to
the main methods available for network topology analysis and modelling
approaches: discrete and continuous models and how they can be extended to
simulate cell–cell interactions.

In order to understand perturbations causing and caused by disease and to
facilitate the process of development of adequate medical interventions, the

Fig. 6.1 Network types: a gene regulatory network, b protein–protein interaction network,
c diseasome network, d section of an integrative network of disease model
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resulting molecular interaction networks need to be integrated with drug and
phenotype networks. We thus present specific examples where knowledge from
multiple sources has been integrated to construct network of diseases and drug
targets as well as comprehensive disease-focused cellular maps. In the last section
we present a short overview of case studies applying network analysis for disease
mechanism identification as an illustration of the network pharmacology trend that
is now emerging in drug design and development.

6.2 Network Types

Among different types of biological networks, this section introduces the most
studied molecular network types [9–11]. Although all of them can be reduced to
graphs comprising nodes connected by edges, the variety of biological networks
arises from the differences in annotated information or purpose for which partic-
ular biological knowledge is represented as a network. Thus, the majority of
networks discussed here are directed (i.e. an arrow denotes the effect of the source
node on the target node) to stress the order of the process, except the protein–
protein interaction network that only combines non-causative pairwise physical
interactions without implying succession in time and space. Gene regulatory
networks are represented as directed graphs of proteins or small RNA molecules
activating or inhibiting gene expression. Therefore a label on the edge orientation
displays the regulatory effect. Signalling networks are also directed and signed,
and are usually organized to separate processes by cellular localization to better
illustrate mutual relationships of particular pathways. The main highlight of
metabolic networks is the presence of chemical reactions that extend beyond non-
covalent binding. Therefore simple edges need to be complemented with notation
of additional substrates and products as well as links representing modulation e.g.
activation by enzyme. Because of the complexity of mechanistic description,
signalling and metabolic networks are often analysed with fine-tuned continuous
models as opposed to typically simpler binary representation of gene regulatory
networks.

Lastly, this section extends this simple classification of networks by presenting
some examples of disease-related networks.

6.2.1 Gene Regulatory Networks

Construction and analysis of a gene regulatory network (GRN) play an important
role in understanding the mechanisms of diseases. Recent advances in functional
genomics are based on novel experimental and computational approaches that
enhance the ability to comprehensively reconstruct the regulatory networks and
enrich them with newly discovered components and interactions.
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Gene regulatory networks can be reconstructed from the literature [12] or from
experimental data using reverse engineering approaches. These approaches are
based on gene expression co-variation patterns inferred from expression or on
promoter region occupancy information of specific transcription factors derived
from ChIP-Seq or ChIP-Chip experiments [13]. Nevertheless, networks inferred
purely from experimental data and those assembled from the literature have dif-
ferent limitations. In the first case, a wealth of data about interactions previously
described is ignored. On the other hand, literature-based networks are too dis-
connected from experimental data to be able to describe input–output relation-
ships, such as cellular responses under specific biological stimuli or mechanisms
that determine specific expression patterns. To bridge the gap new methods
emerge that combine data from both literature and experiments and provides
biological networks contextualized to certain experimental conditions [14, 15].

A GRN is commonly represented by a graph usually directed and signed
showing interaction (network edges) between components (network nodes) that
regulate each other. Because these regulatory components (transcription factors,
cofactors, enhancers, repressors or miRNAs) have different properties, a GRN
could describe mechanisms of gene regulation at multiple levels (e.g. transcription,
post-transcription). Deciphering GRNs from rapidly growing microarray expres-
sion databases has been shown to be a very promising approach e.g. in cancer
research [16, 17]. Many tools are emerging and have been used for constructing,
inferring and analyzing such GRNs. These tools include Boolean networks,
Bayesian networks and Ordinary Differential Equations (ODEs) into recently
developed web-based applications [18–20]. Considering their complexity, it is
often difficult to evaluate or validate the performance of the available tools. In
biomedical research, GRNs are expected to improve the current understanding of
development and gene interactions in complex systems [21–24].

6.2.2 Protein–Protein Interaction Networks

Protein–protein interactions (PPIs) play a vital role in mediating cellular responses
in all species and interactome mapping has become an elementary aspect in all
areas of systems biology as the scientific community has gathered information on
thousands of protein interactions and is increasingly editing, curating and inte-
grating these data sets.

Two complementary ways to obtain comprehensive PPI information exist. The
first approach relies on high-throughput experimental methods, including yeast
two-hybrid (Y2H) [25, 26], affinity purification followed by mass spectrometry
(AP-MS) [27, 28], and luciferase complementation assays [29]. Although recent
development of these methods aims at overcoming false-positive discoveries,
experimental validation of PPIs by several methods is still crucial. The second
approach is to curate all publications in the literature [30], and consult curated
datasets from publicly available interaction databases [31].
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The International Molecular interaction Exchange consortium (IMEx http://
www.imexconsortium.org) [32] comprises eleven databases sharing data curated
according to the same common standards. Interactions are reported using the
Minimum Information required for reporting a Molecular Interaction eXperiment
(MIMIx) [33]. The exchange of information is supported by one major data
exchange format: the Proteomics Standards Initiative on Molecular Interactions
(PSI-MI) [34] (see Ref. [35] for a complete review) (Table 6.1).

PPI datasets are often visualized as a network. Proteins are represented as
nodes, and interactions as connections between nodes. PPI networks are dynamic:
they change in time and space to adapt or switch to different physiological
conditions.

Various studies have constructed molecular networks with virus proteins to
identify their interactions with host proteins and reveal a host-pathogen hybrid
protein-interaction network. From a systems biology perspective, a viral infection
at the cell level can be viewed as a combination of molecular perturbations
allowing viral components production and assembly while generating minor to
massive cellular dysfunction. Thus, several large-scale studies of interactions
between viral and human proteins have been performed to identify the laws
governing virus-host interactomes [36–40]. Taking into account the analytical
heterogeneity and the size of the interaction datasets, five corresponding virus-
human interactomes were carefully and comprehensively reconstructed from the
literature and uniformly analyzed using graph theory as well as structural and
functional methods [41].

The systems approach to the biology of viral infection is thus beginning to
unravel the global perturbations that lead to viral replication and eventually to
pathogenesis. Furthermore, the list of virus-host interactors represents an invalu-
able resource to derive new molecules, especially for anti-viral therapy.

6.2.3 Signalling and Metabolic Networks

Signalling and metabolic networks may be built using a mechanism-based bottom-
up strategy, with parameters either measured experimentally or assigned arbitrary
values in the physiological range. Different questions may then be asked. For
example, why is the network organized the way it is? Indeed, at first glance some
features in the network may appear paradoxical. However, altering this paradox-
ical feature in the computer model may disclose design principles underlying the
functioning of the network [42]. This approach has for example been successfully
applied to design studies of nuclear receptor signalling.

Nuclear Receptors (NR) are proteins that may be activated by signalling
molecules (ligands, composed of different intra- and extra-cellular metabolites
such as hormones or fatty acids) and then regulate gene expression of their
responsive genes. The glucocorticoid receptor (GR) is a NR with an important
regulatory role in various cellular functions: gluconeogenesis and glucose uptake,
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lipolysis in adipose tissues, proteolysis in muscles, osteoblast differentiation and
apoptosis [43, 44]. Ligands for GR are steroid hormones such as cortisol. GR has a
high rate of nucleo-cytoplasmic shuttling and is predominantly located in the
cytoplasm when unbound to a ligand. Upon ligand binding, GR changes its con-
formation, resulting in its increased affinity to nuclear importins and its decreased
affinity to exportins. This causes translocation of the ligand-GR complex to the
nucleus, where GR binds to its responsive genes and regulates their transcription
[45, 46] thereby transmitting signal for gene expression. This network is also
metabolic, as it involves nucleo-cytoplasmic transport of the receptor driven by
GTP hydrolysis, and ATP and GTP metabolic reactions. Furthermore, concen-
trations of receptors, importins, exportins and ligand itself (e.g. cortisol continu-
ously degraded by CYP3A4 enzyme) are parts of the larger metabolic network.
This is the first paradoxical feature. Why is the receptor not only a receptor? Why
does the receptor continuously shuttle between the nucleus and the cytoplasm? The
study of GR network showed that nucleo-cytoplasmic shuttling of GR also serves
as a smart shuttle for a ligand, which it pumps into the nucleus, thereby increasing
the sensitivity and responsiveness of signalling [42].

This example shows that signalling and metabolic networks should not be ana-
lyzed separately, but instead be integrated together and with regulatory networks.
This integration has recently become an important topic in systems biology [47].

6.2.4 Integrative Approaches Applied to Human Diseases

Disease networks can be viewed as networks of associations between disease-
causing mutations and diseases or as high-resolution interaction maps integrating
metabolic reactions, signalling pathways and gene regulatory networks.

The link between all genetic disorders (the human disease phenome) and the
complete list of disease genes (the disease genome) results in a global view of the
‘‘diseasome’’, i.e. the combined set of all known disease gene associations [11, 48].
Here diseases form a network in which two diseases are connected if they share at
least one gene. In the disease gene network, diseases or genes are represented as
nodes and gene-disorder association as edges. In such a network representation,
obesity, for example, is connected to at least seven other disorders such as dia-
betes, asthma, and insulin resistance because genes associated with these diseases
are known to affect obesity as well [7]. In recent years several disease map projects
have flourished, such as the pioneering work at the Systems Biology Institute
(Okinawa, Japan) that was a hub of collaborative, community-based efforts to
reconstruct a map of tuberculosis [49]. In addition, the Connectivity map (cMap)
[50] developed by the Broad Institute aims to create a map connecting genes,
diseases and drugs using a repository of gene expression profiles to represent
different biological states including gene alterations and disease phenotypes. cMap
is a web tool with preloaded data in which query results can be interpreted by
strong (positive or negative) connection or absence of connection [50].
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These efforts would be not possible without integrating publically available
disease-related knowledge. Online Mendelian Inheritance in Man (OMIM) is a
catalogue of human genes and genetic disorders and traits that has been updated
continuously for several decades [51]. As of May 2012, it contained 2,795 diseases
genes and 4,669 disorders for which the molecular basis is known. Other data-
bases, including the Pharmacogenomics Knowledge Base (PHARMGKB) [52] or
the Comparative Toxicogenomics Database (CTD), focus on different aspects of
phenotype-genotype relationships. GEN2PHEN (G2P) is a European project
aiming at gathering and curating information to build a knowledgebase of geno-
type-phenotype interactions [53]. This project will build a linked database from
existing publicly accessible databases and integrate all available data using high-
performance analytical tools.

The human cancer map project is exploiting the idea that network motifs can
contribute to a network switching from one stable state to another [54]. Analyzing
networks reconstructed from microarray experiments and molecular interaction
maps, authors identified genes participating in bi-stable switches i.e. network motifs
that can exist in two stable states and drive the change of the network states.
Expression states of genes within bi-stable switches were compared between
hepatocellular carcinoma or lung cancer and healthy control samples. In both cases,
bi-stable switches made of differentially expressed genes were proposed to be a
network mechanism for locking in disease states. Such studies have identified two
important hubs: cyclins and albumin. In hepatocellular carcinoma, up-regulation of
CCNA2 (cyclin A2) leads to changes in expression of downstream genes, in
accordance with the general observation that perturbations of oscillations in cyclins
concentrations can have a detrimental effect on cell development. For instance,
ubiquitination of cyclin A1 induces apoptosis via activation of caspase-3 [55] or
cyclin D1 degradation activated by a troglitazone derivative [56]. Also, the lack of
phosphorylation of cyclin E, due to mutations, results in its increased stability, which
has implications for breast cancer [57]. Another important hub is the up-regulated
albumin gene. Albumin is a large transport molecule with an adaptable two-domain
structure that can bind an array of lipids, peptides, metabolites and drugs. Allosteric
modulation of albumin may change its binding and cargo transport properties, and
hence directly affect downstream cellular processes. For example, electron spin
resonance studies of albumin modulation by cancer-related small molecule markers
revealed significant differences in binding of albumin-specific 16-doxyl-stearic acid
probe. During disease progression the albumin pool saturates with cancer cellular
metabolites, thus indicating an affected albumin state [58].

6.3 Network Analysis

Many software tools are available to reconstruct biological networks from
experimental data and then position nodes on a graph according to a topological
placement algorithm. This visual network of interconnected nodes can then be
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transformed into various mathematical models e.g. flux balance models, kinetic
ODE models or space Partial Differential Equations (PDEs) models, which can be
fitted to experimental data and used to simulate the kinetic behaviour of biological
networks. Since each of the many different tools available only performs one of
those tasks, designing an integrated and efficient analysis pipeline is challenging.
Such difficulties prompted the development of a single unified standard language
suitable for the interchange between various tools: the systems biological markup
language (SBML) [59]. SBML is based on the widely used Extensible Mark-up
Language (XML), allows the development of graphical interfaces and analysis
frameworks to display and analyze interaction maps. It is therefore becoming a
standard for the representation and annotation of biological processes. The fol-
lowing chapter discusses several tools and the perspectives of their future
development.

6.3.1 Network Analysis Tools

Among public network management tools that currently exist to visually explore
and analyse biological networks (see review in [60]) such as Arena3D [61],
GEPHI [62], igraph [63] and VisANT [64] (Table 6.2), Cytoscape [65], CellDe-
signer [66] and Copasi [67] are the most powerful and widely used.

Cytoscape (449,030 downloads as on September 2012) is the most popular
software for the visualization and analysis of interaction networks. Its functionality
can be extended using the collection of plugins developed by the expanding
Cytoscape community of users. Recently Cytoscape web [68] became available to
embed interactive networks in an HTML page.

CellDesigner (65,105 downloads as on September 2012) is a structured dia-
gram editor for drawing integrative maps (including gene regulatory and bio-
chemical networks) that define reactions and interactions between various types of
biochemical species (genes, proteins, small molecules) in the context of their
subcellular localization and in relation to the biological or pathological processes
in which they are involved.

Copasi (26,000 downloads as on January 2012) is a stand-alone program that
supports models in the SBML standard and can simulate their behavior using
ODEs or Gillespie’s stochastic simulation algorithm.

The growing popularity of Cell Designer and Copasi stems from their com-
patibility and complementarity. The strength of Cell Designer is its easy-use
interface for the drawing of biochemical networks while that of Copasi is its
convenience for fitting the model to experimental data, metabolic control analysis
and dynamic simulations. The network diagram and mathematical model created
in Cell Designer can be easily transformed into Copasi and vice versa.
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6.3.2 Network Topology Analysis

The discovery that many real-world biological networks exhibit scale-free and
small-world properties [69, 70] has led to a surge of new topological analysis
methods for biological networks. The study of global topological properties
enables a general characterization of a network, e.g. providing information on its
robustness to perturbations. In contrast, analysis of local topological properties can
provide specific insights on single nodes (e.g. on their centrality in the network and
their tendency to form dense clusters with other nodes), which can also be
exploited in high-throughput data analysis applications. A comprehensive and
detailed discussion of network topological properties has been compiled recently
in a book dedicated to this topic [71].

Molecular interaction networks are assembled from public interaction databases
like BioGRID [72], HPRD [73], IntAct [74], MIPS [75], DIP [76], HPID, [77]
MINT [78], or meta-databases such as APID [79]. Several issues affect the quality
of assembled networks and other integration tasks, e.g. false positives in the input
data sources and incomplete lists of interactions. Commonly used pre-processing
methods filter collected interactions using a combined set of criteria, e.g. the
number and type of experiments that were used to verify an interaction and data
source-specific confidence scores. One of the most comprehensive collections of
molecular interaction data for different species is provided by the STRING data-
base [80], which also contains different types of confidence scores for each
interaction to filter the data. Since many network analysis methods require a single
connected component as input, a final pre-processing step often involves removing
small, disconnected components from a graph representation of the assembled
interactions.

Regarding the typical applications for topological analyses, global descriptors
are mainly used for the general characterization of large-scale biological networks.
Since these global network properties have already been studied extensively for
several biological network types and species, the corresponding analyses are only
likely to provide new insights when studying a novel network type. However, new
applications for employing global topological analyses as components of other
algorithms have been proposed recently, e.g. to improve the generation of gene
co-expression networks by analysing the scale-free property for tentative networks
[81]. By contrast, local topological network characteristics have already been
exploited by a wide variety of new data mining approaches recently, including
methods to identify dense communities [82] of nodes [83, 84], methods to compare
mapped gene and protein sets in terms of their network topological properties [85],
and approaches to score distances between nodes for prioritizing disease genes
[86]. Interestingly, recent studies have shown that cancer-associated genes tend to
have outstanding topological characteristics [87], even when accounting for
study-specific biases, and that topological information can facilitate cancer
classification [88].
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In summary, topological characteristics of complete biological networks, sub-
graphs and single nodes provide a valuable information source for the integrated
analysis of functional genomics data. Network topology analyses are often com-
bined with graph-theoretic methods to identify dense communities or clusters of
nodes [83, 84], or to quantify the similarity between single nodes or node sets
using different network-based distance measures [86, 89–91]. However, topolog-
ical properties can also be exploited in other domains, e.g. as features in machine
learning methods for clustering and prediction [92], as part of scoring criteria in de
novo pathway prediction [93], and to evaluate the stability and integrity of bio-
logical networks generated from combined microarray correlation analysis and
literature mining [94].

6.3.3 Network Modeling

Various approaches describe biological networks mathematically. The simplest is
to build a discreet model based on graph theory. In this approach, each node (e.g.
molecule) of the biological network may be present in two (e.g. 0 or 1) or several
fixed states. Each state affects interactions of a node with other nodes differently
and the underlying mechanisms need not be known. In contrast, continuous
modeling offers alternative approaches that account for the subtle gradual changes
in the concentration of species in a biological network. Three main types of
continuous models exist: a continuous ‘microscopic’ model traces every molecule
individually while a ‘mesoscopic’ model uses stochastic simulations with
molecular concentrations described in terms of probability functions; lastly, a
‘macroscopic’ model neglects limitations in the diffusion of molecules on the
reaction rate, considers each species of biomolecules as a single pool described
with a system of ODEs. The latter is a very popular approach to model intracellular
metabolic networks in which the number of molecules is rather high and could be
viewed as a single pool with a certain mean concentration. Another important
question relates to interactions between different cells. This requires special cell–
cell interaction models. In this section we will discuss three main modeling
approaches: discrete modeling, continuous modeling based on ODEs and modeling
of cell–cell interactions.

6.3.3.1 Discrete Models

In the Boolean framework, the state of each node in the network is conceptually
described as being active (represented by ‘1’) or inactive (represented by ‘0’).
Similarly, directed edges in the network are represented as activators or inhibitors.
The state of each node is therefore determined by the states of the nodes that activate
and/or inhibit them, following predefined logic rules inferred from experimental data
and/or expert knowledge. Boolean models provide an abstraction of genetic circuits
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that, despite being simplistic, are able to capture important aspects of cell devel-
opment [95]. Importantly, they enable the study of key dynamical properties such as
steady states, defined as stable states of the network that might be stationary or
oscillatory. In a Boolean model, the consequences in the global system of a given
perturbation (represented as a change in the state of a node) are assessed through
updating the states of the nodes in the network following the logic functions. The
updating process can be done synchronously or asynchronously, depending on
whether all nodes are updated simultaneously or in a step-wise manner, respectively
[96, 97]. Indeed, the steady states reached following these two strategies might be
different, and it is usually recommended to combine their results. Boolean networks
allow integration of qualitative information into the modelling process and have been
successfully applied to many relevant biological systems [6, 96, 98]. Despite being
deterministic, the Boolean framework allows inclusion of stochastic components in
the models, either in the states of nodes [99, 100] or in the logic functions [101].
Together with Boolean models, multiple valued logic models [97, 102] are another
type of discrete logic models that allow considering more than two levels, e.g. low,
medium or high expression, which might be more realistic, but is associated with a
higher computational cost.

Discrete logic models have the fundamental advantage over continuous models
such as ODEs that they can use qualitative data to build a gene regulatory network.
The amount and availability of qualitative information is larger than the quanti-
tative parameters required in ODEs. However, discrete logic approaches cannot
model the evolution in time of the quantitative concentrations of the species in the
system. To bridge the gap between ODEs and discrete logic models, a third
category of approaches has been developed, where the initial discrete logic net-
work is transformed into a system of ODEs, following different strategies with
successful results [98, 103–105].

6.3.3.2 Continuous Models

ODEs are often used for dynamic modelling of regulatory networks of different
levels of complexity from bacteria [106] to eukaryotes [107–110]. Changes in
concentrations of each species in the network of interacting biomolecules may be
expressed through balance equations and rate equations. In this framework, vari-
ations in concentrations of molecules as a function of time may be represented by
differential equations establishing the stoichiometry and the reaction rates of the
transformations and/or transport events [111, 112]. These equations contain the
information about component properties for each molecule. Integrating all ODEs
together enables reconstruction of the emergent behaviour of a whole system, e.g.
simulation of its dynamics in silico.

In order to validate a dynamic model, the simulated systemic behavior is
compared with the behaviour of a real system; this comparison is especially
powerful if both the real object and its model are challenged with a series of
perturbations that were not considered while the model was under construction nor
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used for parameter fitting. In many cases the predicted behaviour does not fit that
of the actual biological system. This may then lead to the discovery of mechanisms
missing or poorly described in the model. For example, the yeast glycolysis model
built by Teusink and co-authors predicted that yeasts would invest too much of
ATP in the first ATP-consuming reactions, and then die from the accumulation of
these compounds and from a deficit of phosphate. The observation that yeasts are
more robust in reality than in silico, provoked re-thinking of the model mecha-
nisms and led to the discovery of an additional negative feedback loop which
regulates the first phosphorylation step of glycolysis and prevents the turbo
explosion in ATP-consuming reactions [113].

Once a model simulates the biological system behaviour adequately, it can be
used for various goals. For example, using a in silico cell model of a metabolic
network, one can design modification of the organism metabolism: e.g. the metab-
olism of Escherichia coli can be modified in such a way that E. coli produces
polylactic acid—a biopolymer analogous to petroleum-based polymers which can be
used in industry [114]; the metabolism of insects can be modified to make insects a
promising source offood to meet the challenge of providing the protein supply to feed
over 9 billion humans in the near future [115]. Cell models have become useful in
differential network-based drug discovery: a kinetic model of the known metabolic
network may help to find proper target enzymes either for correcting malfunctioning
of a human cell or for killing a cancer cell [116] or a parasite [117]. For instance,
comparison between glycolysis in Trypanosoma brucei (parasite causing African
trypanosomiasis in humans), and glycolysis of human erythrocytes was used for the
development of drugs killing T. brucei with reduced side effects [118].

The main drawback of in silico cell models is that they usually require
knowledge of the mechanisms of interactions and estimates of numerous param-
eters for these interactions, which are only available for few systems that are very
well characterized experimentally. However one may anticipate that tremendous
progress in functional genomics, proteomics, metabolomics and bioinformatics
should help to obtain the lacking information in the near future.

6.3.3.3 Cell-Cell Interactions and Multi-Scale Modeling

Intracellular regulatory networks are used for the analysis of a single cell or of a
population of identical cells in the same state. However, different cell types usually
exist in the same tissue while cells of the same type can have different concen-
trations of intracellular proteins due to intrinsic stochastic variations or to different
cellular environments. Their interaction can influence intracellular regulatory
networks e.g. through bistable switches in the network. Hence, local regulation by
cell–cell interaction within the tissue and global regulation through interactions
with other organs should both be taken into account in the analysis of regulatory
networks. Multi-scale modeling therefore includes intracellular and molecular
levels as well as interactions at the levels of cell populations and of other tissues
and organs.
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Intracellular regulation of individual cells and their local and global interactions
can be studied with hybrid models in which cells are considered as individual
objects, intracellular regulatory networks are described by ODEs or by Boolean
networks, and the extracellular matrix together with nutrients, hormones and other
signalling molecules by PDEs. Hybrid models can also account for natural sto-
chastic variations of intracellular concentrations, cell motion, cell proliferation,
differentiation and apoptosis. They are well adapted to the representation and
analysis of various biological systems and biomedical situations. They can include
the pharmacokinetics of medical treatments, prediction and optimization of their
efficacy. However, they require a detailed knowledge of intracellular and extra-
cellular regulations and sophisticated modeling tools [119, 120].

A hybrid model of erythropoiesis and leukemia treatment was described
recently [121]. Erythropoiesis, or red blood cell production, occurs mainly in the
bone marrow in small units called erythroblastic islands. They contain, on average,
several dozens of cells in different phases of cell differentiation: erythroid pro-
genitors, erythroblasts, reticulocytes structured around a macrophage. Normal
functioning of erythropoiesis depends on the balance between proliferation, dif-
ferentiation and apoptosis of erythroid progenitors. The intracellular regulatory
network in erythroid progenitors, described by ODEs, determines cell fate due to
bistability, where one stable equilibrium corresponds to proliferation without
differentiation and another one to differentiation/apoptosis. The choice between
these stable equilibria and, at the next stage, between differentiation and apoptosis
is determined by two factors: local extracellular regulation, e.g. Fas-ligand pro-
duced by more mature cells and growth factors produced by macrophages; and
global regulation by hormones, such as erythropoietin, with concentrations
depending on the total number of erythrocytes produced by erythroblastic islands.
Biochemical substances in the extracellular matrix influence intracellular regula-
tion through the coefficients of the ODE system while their concentration is
described by PDEs. This multi-level modeling simulates erythropoiesis in normal
and stress situations in agreement with experimental data. It also explains the role
of central macrophages in controlling erythroblastic islands. Strong perturbations
of the system caused for example by mutations or dysfunction of regulatory
mechanisms can result in various blood diseases such as anemia or leukemia.

6.3.4 Network Analysis for Systems Biomedicine
and Pharmacology

6.3.4.1 Network Analysis of Disease

Network analysis may be also a valuable approach to study mechanisms under-
lying pathology and disease susceptibility. For instance studies of network
dynamics can shed light on disease-related network states. Different stable steady
states appear to be related to distinct phenotypic states of the cell [122].
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Robustness of biological networks allows maintenance of a certain phenotypic
state over a range of perturbations and may play an important role in controlling
state transitions when such stable states are reached. It has been postulated that
network circuits displaying bi- and multi-stability may drive network state tran-
sitions associated to disease progression and then maintain networks in diseased
states [123]. In particular, bi-stable switches in protein–protein interaction or
regulatory networks allow cells to enter into irreversible paths and assume dif-
ferent fates depending on which genes are expressed or silent [124, 125].

An analysis of pathological response to fat diet [126] or the mechanism of prion
disease [127] using Boolean modelling recently showed the importance of network
motifs in stabilizing the disease-related network state. Indeed circuits regulating
bi-stability do not function in isolation but are assembled as an interconnected core
cluster of genes that regulate one another thereby ensuring the stability of the
network. In addition, differentially expressed genes involved in bi-stable switches
are central to the regulatory network and can thus efficiently propagate perturba-
tions to more distant regions of the network. These concepts are supported by
previous studies focusing on network motifs to show the key role of network
bi-stable feedback loops in cell fate determination and plasticity [128–130], and
the implication of bi-stable circuits in the resilience and progression of human
cancers, where the healthy and cancer states are considered to be the two stable
states [131, 132].

6.3.4.2 Network Pharmacology

In a typical drug development approach, an active compound is optimized to act on
a single protein target and other potential interactions are considered only to
increase specificity of binding to a given receptor subtype while avoiding known
toxic effects. This view has been recently challenged in the field of polypharma-
cology as it is recognized that drugs can effectively act on multiple targets, e.g. the
recent discovery of the simultaneous inhibition of two families of oncogenes
(tyrosine and phosphoinositide kinases) by the same effector [133]. Studies of off-
target effects can lead to successful drug repurposing [134, 135] or to the pre-
vention of adverse side effects. For instance, blocking of the hERG potassium
channel is responsible for many severe drug-induced cardiac arrhythmias and is
therefore included as a part of safety testing in drug development [136].

On the other hand, a single drug is unlikely to be sufficient to target the multiple
facets of pathological processes. Rational drug design is now attempting to define
mixtures of bioactive compounds that constitute drugs often exerting synergistic
therapeutic effects, as in the long tradition of herbal medicine [137].

Systems biology approaches are used to develop tools necessary to understand
complex drug-target relationships. Network pharmacology is integrating infor-
mation on diseases, targets, and drugs with biological data to infer networks of
drug targets, disease-related genes or drug-disease interactions [138–140]. Prop-
erties of such networks may help in understanding individual drug response due to
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changing genetic background [122], or contribute to the discovery of new drug-
gable targets, therapeutic strategies to overcome adverse drug effects. In some
cases, these studies are accompanied with development of resources and tools
tailored for medical applications. My-DTome [141] is an example of a web-based
searchable resource on drug-target interactome networks relevant to myocardial
infarction.

6.4 Conclusions

Network analysis to organize and mine biological knowledge has become an inherent
element of computational systems biology. By focusing on certain aspects of bio-
chemical processes in living cells, the network may represent gene regulatory,
metabolic, signalling processes and connect network elements with functional
associations or, when used without imputing causality, represent physical binding of
molecules. To answer specific biological questions different methodologies should
be considered depending on the completeness of description that is accessible. This
chapter presented an overview of approaches used to derive meaningful conclusions
from graph topology, and develop simulations of network states using discrete and
continuous models. The use of these approaches may be extended to simulate pro-
cesses on higher (cell–cell interactions) levels of organization or combined to rep-
resent multiple levels from molecules to organs. The study of disease-related
networks is increasingly impacting identification of drug targets with limited adverse
effects, triggering the emergence of network pharmacology.
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Chapter 7
Computational Approaches
for Reconstruction of Time-Varying
Biological Networks from Omics Data

Vinay Jethava, Chiranjib Bhattacharyya and Devdatt Dubhashi

Abstract This chapter presents a survey of recent methods for reconstruction of
time-varying biological networks such as gene interaction networks based on time
series node observations (e.g. gene expressions) from a modeling perspective.
Time series gene expression data has been extensively used for analysis of gene
interaction networks, and studying the influence of regulatory relationships on
different phenotypes. Traditional correlation and regression based methods have
focussed on identifying a single interaction network based on time series data.
However, interaction networks vary over time and in response to environmental
and genetic stress during the course of the experiment. Identifying such time-
varying networks promises new insight into transient interactions and their role in
the biological process. A key challenge in inferring such networks is the problem
of high-dimensional data i.e. the number of unknowns p is much larger than the
number of observations n. We discuss the computational aspects of this problem
and examine recent methods that have addressed this problem. These methods
have modeled the relationship between the latent regulatory network and the
observed time series data using the framework of probabilistic graphical models. A
key advantage of this approach is natural interpretability of network reconstruction
results; and easy incorporation of domain knowledge into the model. We also
discuss methods that have addressed the problem of inferring such time-varying
regulatory networks by integrating multiple sources or experiments including time
series data from multiple perturbed networks. Finally, we mention software tools
that implement some of the methods discussed in this chapter. With next
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generation sequencing promising yet further growth in publicly available -omics
data, the potential of such methods is significant.

Keywords Time-varying networks � Dynamic interactome � Gene microarray
expressions � Probabilistic graphical models � ‘1-regularization � Network
reconstruction � Integrative analysis � Multiple networks

Acronyms

PGM Probabilistic Graphical Model
GGM Gaussian Graphical Model
HMM Hidden Markov Model
BN Bayesian Network
DBN Dynamic Bayesian Network
MLE Maximum Likelihood Estimate
LASSO Least Absolute Shrinkage and Selection Operator
PML Penalized Maximum Likelihood
GLASSO Graphical LASSO (see LASSO)
KELLER KErnel-reweighted Logistic Regression
TESLA TEmporally Smoothed l1-regularized Logistic Regression
NETGEM Network Embedded Temporal GEnerative Model for gene expression

data
ERGM Exponential Random Graph Model
PPI Protein-Protein Interaction

7.1 Introduction

Most cellular components exert their functions through interactions with other
cellular components, which can be located either in the same cell or across cells,
and even across organs. In humans, the potential complexity of the resulting
network—the human interactome—is daunting: with about 25,000 protein–coding
genes, 1,000 metabolites and an undefined number of distinct proteins and func-
tional RNA molecules, the number of cellular components that serve as the nodes
of the interactome easily exceeds 100,000.

It is increasingly recognized that an understanding of a gene’s network context
is essential in determining the phenotypic impact of defects that affect it. To
understand the behaviour of any one gene in the context of human disease, indi-
vidual genes must be understood in the context of molecular networks that define
the disease states. Following on from this principle, a key hypothesis is that a
disease phenotype is rarely a consequence of an abnormality in a single effector
gene product, but reflects various pathobiological processes that interact in a
complex network. A corollary of this widely held hypothesis is that the interde-
pendencies among a cell’s molecular components lead to deep functional,
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molecular and causal relationships among apparently distinct phenotypes [9, 34,
55]. Analysis based on microarray expression experiments has been used exten-
sively for exploring these interdependencies.

The past decade has seen exponential growth in publicly available datasets for
analysis of gene regulatory networks, predominantly in the form of time series
gene expression data. Reflecting this trend, the focus has shifted from traditional
perturbation experiments (knockout/knockdown) in which a single gene or a pair
of genes are inactivated and the downstream effects are studied [68, 69]; to a more
holistic approach aimed at studying the influence of several regulators simulta-
neously based on time series gene expression data [2, 8, 14].

Initial methods for analysis of time series gene expression data focussed on
correlation-based methods to identify the regulatory relationships (see Androulakis
et al. [4] for an early survey focussing on correlation-based methods).
Gitter et al. [27] present a recent survey discussing methods using lagged correlation
and regression analysis for inferring gene regulatory networks. They also discuss
methods for combining time series gene expression data with static data for recon-
struction of the regulatory network.

One of the key challenges in using time series gene expression data for infer-
ence of gene regulatory networks is the relatively small number of observations
compared to the number of unknown variables [28]. For example, gene expression
time series data is much smaller (usually less than 8 time points, [22]) compared to
the number of possible interactions between genes at different time points. Tra-
ditional methods for time-series analysis [4] fail to address this. The above
problem arises in a number of domains, and is often referred to as the curse of
high-dimensional data [16, 19]. This refers to the scenario when the number
of unknown variables, typically represented by p is larger than the number of
observations, typically represented by n i.e. large p, small n. This problem is
ill-posed, and cannot be solved without additional assumptions.

Several regularization methods have been investigated for addressing this
problem. One popular choice is to introduce ‘1 penalty on the model parameters
(interaction strengths) which makes the resulting problem well-posed. The ‘1

penalty is known to yield sparse networks i.e. most of the interactions are absent in
the resulting network. This is especially well-suited for reconstruction of gene
regulatory networks, since it is known that regulatory networks are sparse i.e. only
a handful of genes act as regulators for a single gene [17]. Recent advances [13,
20] in theoretical understanding of ‘1-based regularization have led to the devel-
opment of multiple optimization methods and related applications collectively
referred to using the encompassing term compressed sensing. See e.g. Friedman
et al. [24] for a textbook introduction to ‘1-based regularization and related
techniques, and [12] for a more advanced treatment.

The problem of high-dimensional data is exacerbated in the case of recon-
struction of time-varying networks since reconstruction of the network at a time
point depends on the single observation i.e. expression data at that time point. In
principle, the interaction networks at different time points could be very dissimilar.
However, a natural consequence of the underyling biological process is that
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networks at nearby time points are largely similar; except in the case of sharp
changes in response to external stimula [43]. Modeling the time-varying evolution
of the network is a key aspect of time-varying network reconstruction. Current
methods have modeled the dynamic evolution of the network under different
assumptions e.g. smooth variation i.e. the network is changing slowly over
time [59], or sharp changes in network structure in response to external stim-
uli [1]. Other methods have used additional domain knowledge like presence or
absence of certain motifs [29] and functional roles of the genes [36].

One solution to the high-dimensional data problem in the context of time-varying
network reconstruction is to perform multiple measurements at each time point under
similar experimental conditions. However, this is largely infeasible. A related
approach is to combine data from multiple related sources or experiments. Such data
and the underlying networks often exhibit commonalities such as the presence of a
large common subnetwork. On the other hand, there might be significant differences
in some part of the networks either to due experimental conditions or genetic per-
turbations. Integrating expression data for network reconstruction poses a twofold
challenge, namely, modeling the common subnetwork and the variation across the
networks corresponding to different data sources, and capturing the impact of net-
work variation on the node observations. In some cases, there is additional infor-
mation available such as the genetic perturbations in the networks. Recent
methods [30, 36] have focussed on modeling the network variation under the
assumption that there is a large common subnetwork.

Gitter et al. [27] discuss computational methods for reconstruction of regula-
tory networks providing a broad overview of the different approaches that have
been used. In this chapter, we survey recent methods for reconstruction of time-
varying networks from short time-series data from a modeling perspective. These
methods use the framework of probabilistic graphical models to model the
dependence between node observations and the underlying interaction network.
Such methods have to make additional assumptions on network structure as well as
network dynamics (how the interactions are varying with time) in order to make
the inference tractable. We explore the connection between the regularization
techniques and the underlying biological processes that justify these assumptions.

7.1.1 Organization

The remainder of this chapter is organized as follows: In Sect. 7.2, we discuss the
framework of probabilistic graphical models in the context of network recon-
struction. Section 7.3 provides a brief discussion of the ‘1 penalty and its usage in
reconstruction of gene regulatory networks. In Sect. 7.4, we discuss recent
methods for reconstruction of time-varying interaction networks. Section 7.5
presents methods for integrating time series information from multiple sources into
the graphical model framework. Section 7.6 presents the relevant software tools
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for reconstruction of dynamic interaction networks. Finally, Sect. 7.7 presents our
conclusions as well as a discussion of open problems in this area.

7.1.2 Notation

We use det ð�Þ and Trð�Þ to denote the matrix determinant and trace (sum of
diagonal elements) of a matrix respectively. We use jjXjj‘0

to denote ‘0-norm of a
matrix X which is equal to the number of non-zero entries of X

jjXjj‘0
:¼ #fXij : Xij 6¼ 0g ð7:1Þ

Similarly, we use jjXjj‘1
to denote the ‘1-norm of a matrix X which is given by

the sum of absolute values of entries in X

jjXjj‘1
:¼
X

i;j

jXijj ð7:2Þ

7.2 Background

This section describes the problem of network reconstruction from a modeling
perspective focussing on time series gene expression data. Suppose gene expres-
sion levels are measured for p genes denoted by V :¼ f1; . . .; pg at n different time
points T :¼ f1; . . .; ng. We denote the gene expression levels at time t as a random

variable XðtÞ :¼ ½XðtÞ1 ; . . .;XðtÞp �> where XðtÞi 2 R denotes gene expression level for
gene i at time t.

A network-based approach models the multiple interactions among the different
components in a biological system using a graph. A graph G ¼ ðV ;EÞ consists of
set of nodes (or vertices) V ¼ f1; . . .; pg representing different components in the
biological systems; and set of edges E � V � V representing the dependence
between the different components. In the case of a time-varying network, this is
equivalent to having a different underlying graph GðtÞ ¼ ðV ;EðtÞÞ at each time
t 2 f1; . . .; ng wherein the set of edges varies with time.

For gene regulatory relationships, the nodes of the graph correspond to the set of
genes; and the edges in the graph represent the regulatory relationships. The node
observations correspond to the gene expression levels XðtÞ at each time
t 2 f1; . . .; ng. It is well-known that the gene regulatory network E has an impact on
the observed gene expression profile XðtÞ. More precisely, the correlation between the

gene expression values XðtÞi and XðtÞj measured at different times t 2 f1; . . .; ng is a
good indicator for the interaction ði; jÞ being present in the regulatory network.
Several methods have been developed for identifying gene interaction networks
which are based on the correlation of gene expression levels in gene microarray
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experiments. See Gitter et al. [27] for a recent survey on different methods for
analysis of dynamic regulatory networks and [4] for an earlier survey.

However, random effects such as noise, measurement error, etc. may lead to
false correlation between the expression profiles at two genes i and j. A proba-
bilistic approach to model this uncertainty is to treat the gene expression profile
XðtÞ at time t as a random variable drawn from a parametric distribution with
unknown parameter. For static network reconstruction, the expression profiles
Xð1Þ; . . .;XðnÞ are assumed to be drawn independently and identically distrib-
uted (i.i.d.) from the same distribution. A major subtask in network reconstruction
in this framework is to estimate the parameters of the underlying distribution
which best fit the measured expression profiles.

More importantly, there is a strong duality between a distribution over several
random variables X ¼ ½X1; . . .;Xp� and a graph which describes the dependence
between individual random variables Xi and Xj. Formally, this has been studied
using the framework of Probabilistic Graphical Models (PGM). See e.g. Koller
and Friedman [39] for a recent textbook providing a comprehensive introduction
on the subject.

Several well-known models such as Hidden Markov Models (HMM), Bayesian
Networks (BN), Dynamic Bayesian Networks (DBN), etc. are instances of graphical
models, and have been successfully used for static network reconstruction [31, 48,
57]. However, HMMs require the number of observations (n) to be larger than the
number of variables (p); and therefore, cannot be used in the case of short time-series
data. DBNs also suffer from the curse of dimensionality (large p, small n), and a
number of regularization methods have been investigated in order to address this [32,
37, 49, 58, 73]. More fundamentally, DBNs can only be used to identify relationships
in a directed acyclic graph. In effect, while dependence between expression profiles

XðtÞi and Xðtþ1Þ
j between any two genes i and j at different time points t and ðt þ 1Þ can

be easily captured; the dependence between expression profiles XðtÞi and XðtÞj at the
same time instant cannot be fully modeled as this may lead to cycles in the resulting
directed graph. This problem can be addressed using undirected probabilistic
graphical models, which we discuss below.

The dependence between the expression levels X ¼ ½X1; . . .;Xp�> and the
interaction strengths W ¼ fWij : ði; jÞ 2 Eg in network G ¼ ðV ;EÞ has been
modeled using the conditional probability distribution [25, 44, 56, 59, 60, 66, 67]

PðX ¼ xjW ¼ wÞ ¼ 1
ZðwÞ exp

ffi

ffi 1
2

X

i;j2V

wijxixj

�

ð7:3Þ

where ZðwÞ is a normalization constant. It has the property that whenever wij ¼ 0,
the node expressions for nodes i and j are conditionally independent given other
expression levels. This has been used to construct gene association network where
missing edges encode conditional independence.

Formally, the gene association network is constructed by considering the graph
G ¼ ðV;EÞ where E � V � V denotes the set of edges; with edge ði; jÞ 62 E
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whenever genes i and j are conditionally independent (wij ¼ 0). Figure 7.1 shows
an association network between p ¼ 11 proteins constructed using n ¼ 7466
measurements [23, 54]. In Fig. 7.1, the absence of an edge between two nodes e.g.
Raf and PKA indicates that these are conditionally independent given the
remaining nodes.

The problem of model selection is to infer W based on i.i.d. samples XðiÞ drawn
from the conditional distribution in (7.3). Static network reconstruction methods
using time series data model the observations at different times Xð1Þ; . . .;XðnÞ as
being i.i.d. samples from an unknown static network W i.e.

PðXðtÞ ¼ xðtÞjW ¼ wÞ ¼ 1
ZðwÞ exp

ffi

ffi 1
2

X

i;j2V

wijx
ðtÞ
i xðtÞj

�

ð7:4Þ

This is not biologically consistent since it is known that the underlying network is
not static during the course of the experiment. Rather, the network is varying
across time and in response to external and internal stimuli [43, 50].

Therefore, one should instead consider W ðtÞ ¼ fW ðtÞij : ði; jÞ 2 EðtÞg as the

interactions strengths in the network GðtÞ ¼ ðV;EðtÞÞ at time t. The dependence
between gene expression levels XðtÞ and the instantaneous interaction strengths
W ðtÞ is given by

PðXðtÞ ¼ xðtÞjW ðtÞ ¼ wðtÞÞ ¼ 1

ZðwðtÞÞ exp

ffi

ffi 1
2

X

i;j2V

wðtÞij xðtÞi xðtÞj

�

ð7:5Þ

The problem of time-varying interaction network reconstruction is to identify
the interaction strengths W ðtÞ at different times t 2 f1; . . .; ng based on the node
observations Xð1Þ; . . .;XðnÞ. However, this problem is ill-posed since the number of
unknowns (W ðtÞ) is much larger than the number of observations (XðtÞ).

Raf Mek

PKA

P38

PKC

Jnk

PIP2

Akt

Plcg

PIP3

Erk
Fig. 7.1 Association network
estimated from flow
cytometry dataset with p ¼ 11
proteins measured on
n ¼ 7; 466 cells. A missing
edge between nodes e.g. Raf
and PKA means the expression
levels of the two nodes is
conditionally independent
given the remaining
expression levels. (Adapted
with permission from
Friedman et al. [23])
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In the following subsection, we discuss covariance selection-a classical method
for reconstructing a static network W based on real-valued node observations XðtÞ

modeled as i.i.d. samples drawn from conditional distribution in (7.4). However,
this method can fail if the number of observations n is smaller than the number of
unknowns p. Further, the method yields a large number of false positives i.e.
multiple interactions W even though it is known that underlying biological net-
work is sparse. Section 7.3 discusses regularization method using ‘1 penalty which
addresses the above-mentioned problems. Section 7.4 presents methods which
extend these methods to inference of time-varying networks under mild assump-
tions on the temporal evolution of the underlying network.

7.2.1 Static Network Reconstruction Using Covariance
Selection

Whenever the node observations (gene expression levels) Xi 2 R and interaction
strengths Wij 2 R are treated as real values, the conditional distribution in (7.3) is
equivalent to X being drawn from a multivariate Gaussian distribution with mean 0
and covariance R :¼ Wffi1 i.e.

X�Nð0;RÞ ð7:6Þ

Equivalently, the conditional probability of XðtÞ conditioned on W is given by

PðXðtÞjWÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞpdetðWffi1Þ

p expðffi 1
2

X

i;j2V

XðtÞi XðtÞj WijÞ ð7:7Þ

This model is commonly referred to as the Gaussian Graphical Model [41]. We
note that the normalization constant ZðwÞ has a closed form expression given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞpdetðWffi1Þ

p
for GGMs.

Construction of gene association networks requires inference of the concen-
tration matrix W based on observations Xð1Þ; . . .;XðnÞ. This problem is known as
covariance selection and was first studied by Dempster [18]. It involves computing
the Maximum Likelihood Estimate (MLE) of W given observations Xð1Þ; . . .;XðnÞ.
The log-likelihood of the observations is given by

LðWÞ ¼ log PðXð1Þ; . . .;XðnÞjWÞ ¼
Xn

t¼1

log PðXðtÞjWÞ ð7:8Þ

¼ n

2
log detW ffi n

2
TrðSWÞ ffi np

2
logð2pÞ ð7:9Þ

where S 2 R
p�p is the empirical covariance matrix for observations Xð1Þ; . . .;XðnÞ

given by

Sij ¼
1
n

Xn

t¼1

XðtÞi XðtÞj ð7:10Þ
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The Maximum Likelihood Estimate W� is given by

W� ¼ arg max
W	0

log det W ffi TrðSWÞ ð7:11Þ

¼ arg min
W	0

TrðSWÞ ffi log det W ð7:12Þ

where W 	 0 stands for positive-definiteness of W , and TrðSWÞ denotes the trace
of the matrix. The positive definiteness constraint ensures that Wffi1ð¼ R̂Þ is an
invertible covariance matrix. Minimization of the negative log-likelihood in (7.12)
is a convex optimization problem [10].

An exhaustive search for finding the non-zero elements of W� is computa-
tionally prohibitive for moderate and large networks (more than 30ffi 40 genes). A
number of methods based on greedy search have been studied for solving this
problem [41, 61]. However, these are not suited whenever the number of obser-
vations n is smaller than number of genes p in the network [11, 45]. Another
aspect of concern is that whenever n is much smaller than p, the solution W�

obtained by greedy methods has a large number of non-zero elements. On the other
hand, it is known that the underlying interaction network is sparse [62, 70], i.e.
each gene is regulated by a small number of genes.

7.2.2 Discretization of Gene Expression Levels

Microarray measurements are noisy estimates of the gene expression level. In certain
applications, the qualitative level of gene expression is a better indicator of up or
down regulation than the microarray measurement (which is a rough estimate of the
gene expression). Therefore, the gene expression levels are sometimes quantized to a
discrete set X. For example, in the case of cDNA microarray, a choice of X ¼
fffi1; 1g corresponds to the gene being downregulated (ffi1) or upregulated (þ1). For
some applications, the relative strengths of the interactions are of interest rather than
the actual values. Then, the weights are quantized to some discrete set W. For
example, a choice ofW ¼ fffi1; 0; 1gwould correspond to the gene interaction being
activator (ffi1), conditionally independent (0) or repressed (ffi1).

Notice that the convention in systems biology is to represent co-activation as
W ¼ þ1 while W ¼ ffi1 traditionally represents a relationship where genes
mutually repress each other. This is reversed in model discussed above to due
negative sign in (7.3), which is standard convention in statistical physiscs [47]
where such models were first studied. Further, in case of continuous weights, the
model has a natural interpretation in terms of inverse covariance (concentration)
matrix of a multi-variate Gaussian distribution as discussed in 7.2.1.

A choice of X ¼ fffi1; 1g and W ¼ fffi1; 0; 1g yields the Ising model which is
well-studied in statistical physics [47], wherein W ¼ 0 state is modeled as the
edge being absent in the network.
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The normalization constant ZðwÞ in (7.3) is given by

ZðwÞ ¼
X

xi2X

X

x22X
. . .
X

xp2X
exp

ffi

ffi 1
2

X

i;j2V

wijxixj

�

ð7:13Þ

whenever the gene expression levels are discretized to the set X. The network
reconstruction procedure is more complicated since the log-likelihood function
does not have a closed form expression as in (7.9) for Gaussian Graphical Models.

7.3 Sparse Network Reconstruction Based
on ‘1-Regularization

As discussed in Sect. 7.2.1, traditional methods for covariance selection are
computationally prohibitive and inconsistent in the high-dimensional setting i.e.
whenever number of genes p is much larger than the number of microarray
measurements n. Recent work [7, 23, 40, 45, 53] has addressed this by introducing
an additional regularization term based on ‘1-norm into the optimization problem.
The technique, commonly known as LASSO (least absolute shrinkage and
selection operator), was first studied by Tibshirani [63] in the context of linear
regression. The lasso penalty can be understood as a relaxation of the ‘0 norm
which induces model sparsity (fewer interactions in the network). This is discussed
below in the context of gene interaction network.

As mentioned earlier, the number of interactions in a gene interaction network
is few compared to the total number of possible edges. In other words, a gene is
regulated by few other genes. This can be ensured by introducing an additional
constraint in (7.12) as follows

arg minW	0 TrðSWÞ ffi log det W
jjW jj‘0


 t ð7:14Þ

The solution to (7.14) has at most t interactions, where t is a parameter chosen
based on domain knowledge. However, the optimization in (7.14) is an instance of
mixed integer programming [10], and is computationally intractable for moderate
and large networks (p� 30). The lasso penalty replaces the ‘0-norm with ‘1-norm
to obtain the relaxed convex optimization problem given by

arg minW	0 TrðSWÞ ffi log det W
jjW jj‘1


 t ð7:15Þ

One can obtain the equivalent Lagrangian formulation [10] as

arg min
W	0

TrðSWÞ ffi log det W þ kjjW jj‘1
ð7:16Þ

where k is a user-specified parameter.
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The parameter k regulates the penalty incurred by choosing a non-sparse
interaction network having many gene-gene interactions. A higher value of k
ensures higher sparsity (fewer non-zero interactions), while a choice of k ¼ 0
corresponds to covariance selection without any penalty. Figure 7.2 shows an
association network between p ¼ 11 proteins constructed using n ¼ 7466 mea-
surements with different penalty parameter k in (7.16) [23]. As the penalty
parameter increases, the number on non-zero interactions decreases. A choice of
k ¼ 0 (no regularization) yields the fully connected network. Several meth-
ods [7, 23, 45, 71] have focussed on efficient computation of the solution in (7.16).
Meinshausen and Bühlmann [45] first explored the connection to ‘1 regularization.
They devised a neighbourhood selection procedure which used lasso regression to
obtain a set of neighbours (non-zero interaction strength) for each gene based on
local conditional likelihoods. In other words, for each gene, their approach chooses
a small set of ‘‘most-likely neighbour’’ genes that have non-zero interactions,
while remaining interactions are set to zero. These local neighbourhoods are used
to construct the association network using either an ‘AND’ or an ‘OR’ final step
procedure. This procedure corresponds to a modified penalty term in (7.16) [3].

Banerjee et al. [7] and Friedman et al. [23] improved the previous approach by
casting it into the penalized maximum likelihood (PML) framework in (7.16).
They used block coordinate descent to solve the resulting optimization. This
means the optimization in (7.16) is solved by iteratively updating one of the rows
(or columns) of W till certain convergence criteria is reached. In practice, each
iteration (row or column update) requires solving a lasso problem (linear regres-
sion with ‘1 regularization term). This procedure is closely related to local
neighbourhood search described below. Wainwright et al. [51, 65] studied net-
work estimation in Ising models and discrete graphical models based on a similar
local neighbourhood search using lasso penalty. Section 7.3.1 provides a brief
description of the local neighbourhood search procedure based on logistic
regression.
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Fig. 7.2 Association network estimated from flow cytometry dataset with p ¼ 11 proteins
measured on n ¼ 7; 466 cells with different penalty parameter k in (7.16) (Adapted with
permission from Friedman et al. [23]). Increasing the parameter k yields a network with fewer
interactions
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Ravikumar et al. and Wainwright et al. [51, 65] show from a statistical per-
spective that under mild conditions on sparsity of W , local neighbourhood seach
recovers the interaction network correctly given a small number of measurements
n� d3 log p where d is the maximum number of interactions (maximum degree) of
any gene with other genes in the network. This is often referred to as the spar-
sistency (sparse consistency) property (of the estimator of W). A similar condition
holds for PML framework. In effect, the conditions can be understood as follows:
if the underlying model was a Gaussian Graphical Model with few interactions
(sparse network); then the methods will recover the interactions W precisely given
enough observations n.

However, the above conditions do not apply in the context of biological net-
works since GGM is at best an approximation to the dependence between inter-
actions and node observations. Instead, the reconstructed network is compared to
past biological findings; and previously unknown interactions predicted by the
model have to be experimentally verified.

7.3.1 Local Neighbourhood Search

We describe the local neighbourhood search procedure focussing on the special
case of Ising models. This corresponds to situations where gene expression levels
are discretized to the set X ¼ fffi1; 1g i.e. genes are either downregulated or
upregulated.

The basic idea of the method is to iteratively estimate the concentration matrix

W by updating a single row (or column) at a time. Let Wni :¼ ½Wij�> 2 R
pffi1 be a

vector of length ðpffi 1Þ constructed by considering the ith row (or column) of W
except the diagonal element. Notice that the set of non-zero elements of Wni
represent the interactions of gene i with other genes in the network i.e. the local
neighbourhood of gene i given by

Ni ¼ fj 2 V : ðWniÞj 6¼ 0g ð7:17Þ

Therefore, estimating Wni yields insight into which genes interact with the ith

gene. Sparsity in Wni is ensured by introducing an additional ‘1 regularization
term. The resulting optimization is a convex optimization of the form

W�ni ¼ arg min
Wni2Rpffi1

‘ðWniÞ þ kjjWnijj‘1
ð7:18Þ

where ‘ðWniÞ is the negative rescaled log likelihood ‘ðWniÞ is given by

‘ðWniÞ :¼ ffi 1
n

Xn

t¼1

log PðXðtÞi jX
ðtÞ
ni ;WniÞ ð7:19Þ
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and PðXðtÞi jX
ðtÞ
ni ;WniÞ is the conditional probability distribution of gene expression

XðtÞi conditioned on the gene expressions of the other genes XðtÞni :¼ fXðtÞj : j 2 Vnig
and interaction strengths Wni is given by

PðXðtÞi jX
ðtÞ
ni ;WniÞ ¼

1

1þ exp ðxðtÞi

P
j2Vni wijx

ðtÞ
j Þ

ð7:20Þ

The optimization in (7.18) can be solved efficiently using convex solvers [21,
38, 42].

The method iteratively estimates Wni, and consequently the local neighbour-
hood, for different genes i 2 V till some convergence criteria is met, usually in
terms of the size of the increments in log likelihood.

The interaction network can be constructed by either considering an ‘‘AND’’
configuration wherein an edge ði; jÞ is present in the network if i is in the local
neighbourhood of j and vice versa,

E ¼ fði; jÞ 2 V � V : i 2Nj and j 2Nig ð7:21Þ

An alternative construction is using ‘‘OR’’ configuration wherein an edge ði; jÞ
is present in the network if i is in the local neighbourhood of j or vice versa,

E ¼ fði; jÞ 2 V � V : i 2Nj or j 2Nig ð7:22Þ

7.4 Reconstruction of Time-Varying Regulatory Networks

Sections 7.2.1 and 7.3 describe the covariance selection problem in the static
setting i.e. the gene expressions Xð1Þ; . . .;XðnÞ are modeled as independent samples
from an multivariate normal distribution with fixed but unknown concentration
matrix W . The zero elements of W correspond to genes whose gene expressions
are conditionally independent conditioned on other genes, while non-zero ele-
ments indicate strength of interaction, either activating or repressing depending on
the sign of Wij for all observation time instants.

Nevertheless, it is known that rewiring occurs in gene interaction networks in
response to environmental and genetic stress [43]. For example, genes implicated
in yeast metabolism undergo significant rewiring in response to changes in nutrient
availability [15]. A biologically plausible modeling of the interaction network,
therefore, should incorporate interaction dynamics. This poses new challenges
from a modeling perspective, which we discuss below.

The dynamics (temporal variation) of the interaction strengths should depend
on the time elapsed between observation instants. For example, if we take
observations at very short intervals, the interactions between nearby time instants
should not differ a lot. In other words, there is sparsity in the interaction dynamics
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as the interaction network does not drastically change from one observation time
point for the most part. Nonetheless, there might be instances at which major
changes can occur in the network, often in response to environmental or genetic
stress.

On the other hand, it is known that gene interactions are a vital part of func-
tional roles performed by a gene. Indeed, one could posit that it is the changing
functional requirements imposed by internal development or external stress which
might drive gene rewiring. Thus, a gene interaction network may get rewired in
order to satisfy a new functional role. There is a rich literature which relates the
functional roles of the genes to the interaction network.

A number of recent approaches [1, 36, 59, 72] have addressed this problem.
These methods can be broadly categorized into two classes: optimization-based
and model-based methods. Optimization-based methods [1, 59, 72] introduce an
additional term into the optimization in (7.16) which ensures that there are not
many changes in the network between consecutive observation times. These
methods do not incorporate additional information such as knowledge about the
functional roles of the genes, network motifs, etc. into the network reconstruction.
Model-based methods [26, 29, 36] incorporate additional knowledge such as
information about presence or absence of specific network motifs [29], functional
roles of the genes [36], etc. into network dynamics.

Inference of time-varying interactions characterizes the activity of individual
genes and predicts their interactions with other genes, including unknown pre-
dictions which could serve as test candidates for experimental testing. At a broader
level, it yields new insight by implicating groups of genes, often characterized by
different functional roles performed by them, interacting among each other and
with other groups at critical stages of a biological process [36, 59]. For example,
the analysis in Song et al. [59] reveals high activity between genes related to
metamorphosis, wing margin morphogenesis, wing vein morphogenesis and
apposition of wing surfaces during early embryonic stage in Drosophila Mela-
nogaster (fruit fly). Such interaction is typically visible during the transition from
pupa stage to adult stage when wing development occurs [5]. This behaviour could
potentially indicate diverse functionality of these genes. Similarly, the analysis in
[36] implicates genes related to complex/cofactor binding as active during tran-
sition from glucose starvation to nitrogen starvation in S. Cerevisiae (baker’s
yeast).

7.4.1 Optimization-Based Methods for Modeling Interaction
Dynamics

Zhou et al. [72] first studied estimation of time-varying Gaussian Graphical Models
using ‘1 regularization. Their approach extends the static model in Sect. 7.2.1 by
assuming the observation XðtÞ at each time t to be drawn from a Gaussian distribution

222 V. Jethava et al.



Nð0;RðtÞÞ independent of other observations. The concentration matrix at time t is

given by W ðtÞ :¼ RðtÞ
ffi1

. Consequently, the interaction network at time t is given by

GðtÞ ¼ ðV;EðtÞÞ where EðtÞ :¼ fði; jÞ 2 V � V : W ðtÞij 6¼ 0g is the set of edges with

non-zero interaction strengths. The conditional probability distribution of XðtÞ

conditioned on interaction strengths W ðtÞ is given by

PðXðtÞjW ðtÞÞ ¼ 1

ZðW ðtÞÞ exp

ffi

ffi 1
2

X

ði;jÞ2EðtÞ

XðtÞi XðtÞj W ðtÞij

�

ð7:23Þ

where ZðW ðtÞÞ is a normalization constant.
Since the observation at each time is independent of other times, covariance

selection procedures are not directly applicable since the empirical covariance S
cannot be computed by treating different observations as i.i.d. samples. The
method addresses this by constructing a weighted covariance matrix ŜðtÞ at each
time instant t where decreasing weights are assigned to observations with
increasing time gap. At a given time t, the weight corresponding to observation at
time i is defined using a symmetric non-negative kernel K as

wðtÞðiÞ ¼ Kðjt ffi ij=hÞ
Pn

i¼1 Kðjt ffi ij=hÞ ð7:24Þ

Then, the weighted empirical covariance ŜðtÞ at time t is given by

ŜðtÞ ¼ 1
C

Xn

i¼1

wðtÞi XðiÞXðiÞ
>

ð7:25Þ

where C :¼
Pn

i¼1 wðtÞðiÞ is the scaling term. For example, if the function KðxÞ
used to assign weights to observations is given by

KðxÞ ¼ 2ffijxj if x
 1
0 otherwise

�

ð7:26Þ

then measurements Xðtffi1Þ and Xðtþ1Þ made at time instances ðt ffi 1Þ and ðt þ 1Þ
respectively are assigned weight 1=2 in computation of ŜðtÞ. The empirical
covariance ŜðtÞ at time t is computed as

ŜðtÞ ¼ 1
2

ffi
1
2

Xðtffi1ÞXðtffi1Þ> þ XðtÞXðtÞ
> þ 1

2
Xðtþ1ÞXðtþ1Þ>

�

ð7:27Þ

This allows estimation of the concentration matrix W ðtÞ
�

at time t using
weighted empirical covariance matrix ŜðtÞ by solving the following optimization
problem

W ðtÞ
� ¼ arg max

W	0
TrðŜðtÞWÞ ffi log det W þ kjjW jj‘1 ð7:28Þ
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The optimization in (7.27) can be solved independently at each time t 2
f1; . . .; ng using the methods described in Sect. 7.3.

Zhou et al. [72] show that the above procedure correctly recovers W ðtÞ under
mild smoothness conditions on RðtÞ in addition to sparsity assumption of W ðtÞ (few

non-zero interactions). More precisely, if RðtÞ ¼ ½rðtÞij �, where rðtÞij 2 C1 is a
smooth function denoting the instantaneous covariance between genes i and j at

time t; then rðtÞij has bounded first and second order derivatives at all times i.e.

max
i;j

sup
t
j o
ot

rðtÞij j 
C1 ð7:29Þ

max
i;j

sup
t
j o

2

ot2
rðtÞij j 
C2 ð7:30Þ

Put simply, each term in the covariance matrix RðtÞ changes slowly over time. In
other words, as we make more measurements with smaller time gaps between
consecutive measurements, the difference between the inferred networks at con-
secutive time points will decrease. This is indeed the case for most biological
systems.

7.4.1.1 Inference of Dynamic Interactions Under Smooth Variation

As mentioned in Sect. 7.2.2, there are scenari where it is advantageous to dis-
cretize the measurements to some set X. A common choice is X ¼ fffi1; 1g, which
corresponds to genes being downregulated or upregulated. References [1, 59] have
studied inference of time-varying discrete graphical models where the gene
expression are discretized to X ¼ fffi1; 1g. They extended the local neighbour-
hood search procedure [51, 65] to handle inference of dynamic interaction net-
works under smoothness conditions in (7.29)–(7.30). This is achieved by
introducing a weighted negative log likelihood analogous to (7.25)

~‘ðtÞðWniÞ ¼ ffi
1
C

Xn

k¼1

wðtÞðkÞ log PðXðkÞi jX
ðkÞ
ni ;WniÞ ð7:31Þ

where C ¼
Pn

k¼1 wðtÞðkÞ is the scaling term, and wðtÞðkÞ is given by a symmetric
non-negative kernel K as described in (7.24). The modified optimization problem
for the ith row at time t is given by

W ðtÞni ¼ arg min
Wni2Rpffi1

�
~‘ðtÞðWniÞ þ kjjWnijj‘1

�
ð7:32Þ

The above optimization is same as in (7.18) except for the weighted log like-

lihood term ~‘ðtÞðWniÞ. Consequently, the network is constructed independently at
each time t as described in 7.3.1.

224 V. Jethava et al.



They use this approach to study the evolution of gene regulatory network in D.
Melanogaster, the common fruit fly, over its developmental cycle based on 66
gene expression measurements collected in [5]. The expression measurements can
be categorized into four stages, i.e. embryonic (1–30 time point), larval (31–40
time point), pupal (41–58 time point) and adult stages (59–66 time point). In order
to verify the biological findings of the method, they focus on three groups of genes
consisting of 25ffi 30 genes that are known to be functionally implicated in dif-
ferent developmental stages, namely, embryonic development, post-embryonic
development and muscle development. They measure the interactivity of the group
in the interaction networks found using their method, and observe that each group
of genes has more non-zero interactions during their development stage.
Figure 7.3 shows the interactivity of three groups of genes during the different
developmental cycles, showing that each group of genes is more active during its
development stage.

They also investigate the interactions between genes from different functional
groups. Figure 7.4 shows the connectivity between different functional groups.
This yields fresh insight into interactions between functional groups. For example,
the method reveals high activity between genes related to metamorphosis, wing
margin morphogenesis, wing vein morphogenesis and apposition of wing surfaces
during early embryonic stage (Fig. 7.4b, c). Such interaction is typically visible
during the transition from pupa stage to adult stage (Fig. 7.4r, s) when wing
development occurs [5]. This behaviour could potentially indicate diverse func-
tionality of these genes.

Ahmed and Xing [1] extended the above approach to handle sharp structural
changes such as sudden rewiring of a gene network in response to a stimulus. They
use the approach to study the evolution of regulatory network in D. Melanogaster
consisting of 4,028 genes at 66 different time points over its life cycle.

Fig. 7.3 Interactivity of three groups of genes related to (a) embryonic development, (b) post-
embryonic development; and c muscle development. It shows the interactivity of three groups of
genes during the different developmental cycles, showing that each group of genes is more active
during its development stage. Thus, the time-varying networks inferred using Song et al. [59] are
consistent with known biological findings. (Reprinted with permission from Song et al. [59])
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Fig. 7.4 (a) Average network between functional groups obtained using Song et al. [59]. Each
color patch denotes an ontological group, and the position of the ontological groups remains the
same from (a) to (u). The annotation in the outer rim indicates the function of each group.
(Adapted with permission from Song et al. [59])
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7.4.2 Model-Based Methods for Modeling Interaction
Dynamics

Methods discussed in Sect. 7.4.1 do not make any assumptions on the structure of
the network beyond sparsity (few non-zero interactions) and smoothness temporal
variation (nearby time instants have similar interaction profile). However, if more
information is available, it can be incorporated into the analysis. For example, the
yeast (static) interaction network is known with high degree of confidence based
on perturbation studies [35, 64]. It has also been observed that even though the
interaction networks are highly dynamic in nature, they feature a number of
building blocks i.e. motifs and subgraphs that recur over time [33]. Finally, there is
extensive information available about the functional roles performed by the
genes [6, 46]. Even though it is clear that this information could potentially aid in
reconstruction of dynamic interaction networks; integration poses a challenge, and
it is only recently that methods [29, 36] have been explored that leverage this
information to aid in dynamic interaction network reconstruction.

7.4.2.1 Inference of Interaction Dynamics Based on Recurring Motifs

Guo et al. [29] studied a model-based approach that leverages information about
recurring subgraphs that appear in the interaction networks at different times. Their

approach considered the interaction W ðtÞij between genes i and j at time t to be
either absent or present with some strength Wij i.e.

W ðtÞij ¼
Wij if EðtÞij ¼ 1

0 otherwise

(

ð7:33Þ

They modeled the evolution of the interaction network under the Markov
assumption i.e. the interaction network EðtÞ at time t depends only on the inter-
action network Eðtffi1Þ at previous time instant ðt ffi 1Þ,

PðEð1Þ;Eð2Þ; . . .;EðnÞÞ ¼ PðEð1ÞÞ
Yn

t¼2

PðEðtÞjEðtffi1ÞÞ ð7:34Þ

The transition probability PðEðtÞjEðtffi1ÞÞ is specified in terms of simple features
(Wf ) that measure some global statistic extracted from the interaction network,

PðEðtÞjEðtffi1ÞÞ ¼ 1

Zðh;Eðtffi1ÞÞ exp

ffiXF

f¼1

hf Wf ðEðtÞ;Eðtffi1ÞÞ
�

ð7:35Þ

Examples of simple features are ‘‘density’’, ‘‘stability’’ and ‘‘transitivity’’
given by
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W1ðEðtÞ;Eðtffi1ÞÞ ¼
X

ij

EðtÞij (density) ð7:36Þ

W2ðEðtÞ;Eðtffi1ÞÞ ¼
X

ij

IðEðtÞij ¼ Eðtffi1Þ
ij Þ (stability) ð7:37Þ

W3ðEðtÞ;Eðtffi1ÞÞ ¼
X

ijk

EðtÞij Eðtffi1Þ
ik Eðtffi1Þ

kj
P

ij Eðtffi1Þ
ik Eðtffi1Þ

kj

(transitivity) ð7:38Þ

where Ið�Þ denotes the indicator function i.e. IðEðtÞij ¼ Eðtffi1Þ
ij Þ is one if edge ði; jÞ is

present in the interaction networks EðtÞ and Eðtffi1Þ at times t and ðt ffi 1Þ respec-
tively, and zero otherwise.

The density feature W1ðEðtÞ;Eðtffi1ÞÞ counts the number of interactions in the
network EðtÞ at time t. For example, if the coefficient h1 corresponding to the
density feature in (7.35) is negative, this favors sparse interaction network EðtÞ at
time t. The stability feature W2ðEðtÞ;Eðtffi1ÞÞ counts the number of interactions that
are preserved across the two network EðtÞ and Eðtffi1Þ. If the coefficient h2 corre-
sponding to the stability feature in (7.35) is positive, this discourages large number
of changes between EðtÞ and Eðtffi1Þ. As an extreme case, if h2 is extremely high, we
recover a static network.

The transitivity feature W3ðEðtÞ;Eðtffi1ÞÞ measures the fraction of genes i and j
that are connected to a common gene k at time ðt ffi 1Þ, and also which have an

edge ði; jÞ at time t. Figure 7.5 shows the case when EðtÞij Eðtffi1Þ
ik Eðtffi1Þ

kj ¼ 1. If h3

corresponding to the transitivity feature in (7.35) is positive, this means a common
gene interacting with two genes (which may or may not be interacting with each
other) is likely to induce interactions among the two possibly non-interacting
genes. In other words, this favors the triangle motif in the network.

Other motifs e.g. stars, cycles, etc. can similarly be favored or discouraged in
the network structure by careful choice of features and weight function h. This

i j

k

Fig. 7.5 Example of transitivity feature. The edges ði; kÞ and ðj; kÞ present in Eðtffi1Þ at time
ðt ffi 1Þ are shown in red, while edge ði; jÞ in EðtÞ at time t are shown in blue. Here

EðtÞij Eðtffi1Þ
ik Eðtffi1Þ

kj ¼ 1
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class of models are known as Exponential Random Graph Models (ERGM) (see
Robins et al. [52] for an introductory survey).

Guo et al. [29] use a sampling based approach to infer the time varying net-
works EðtÞ based on gene expression measurements assuming that the interaction
dynamics are Markovian as in (7.34). They analyze the muscle development
subnetwork of Drosophila Melanogaster (fruit fly) consisting of 11 genes during
four stages of the life cycle, including embryonic, larval, pupal and first 30 days of
adulthood. Their results agree closely with known interactions, and suggest hith-
erto unknown linkages which can be investigated further experimentally.

7.4.2.2 Inference of Interaction Dynamics Based on Functional Roles
of Genes

In a recent work, Jethava et al. [36] studied the dynamics of the interaction net-
work in terms of the functional roles performed the genes. Their approach assumes
Markovian dependence between interaction strengths W ðtÞ and W ðtffi1Þ at times t
and ðt ffi 1Þ respectively, i.e.

PðW ðtÞjW ðtffi1Þ; . . .;W ð1ÞÞ ¼ PðW ðtÞjW ðtffi1ÞÞ ð7:39Þ

They modeled the time-varying interaction between two genes as governed by
the functions performed by the two genes. In effect, the dynamics of interaction

W ðtÞij between any two genes i and j is conditionally independent of other inter-
actions in the network conditioned on the roles. This assumption allows tractable
inference in moderate and large networks (few thousand genes). A Bayesian
approach is used to model network sparsity with selection of appropriate priors.

Most genes perform multiple functions at different times, each contributing to
some vital requirement in the life cycle. Their model assumes that at each time, the
interaction between two genes depends on the active functional roles of the two
genes at that time. Thus, the overall network structure at each time depends on the
different processes happening in the organism at that time.

The model infers the latent time-varying interactions using functional infor-
mation of genes. This is used to infer the interaction network in S. Cerevisi-
ae (baker’s yeast) at different time points with varying nutrient availability.
Figure 7.6 shows an example of the inferred network at time t ¼ 4:1 h. The net-
work changes due to external stimulus (change in nutrient availability). The model
successfully captures sharp change in the network (the interaction strengths get
inverted) in response to critical change in nutrient availability from Carbon-rich
environment to Nitrogen-rich environment.
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7.5 Integrative Analysis from Multiple Sources

The availability of data from multiple sources such as protein-DNA binding,
protein-protein interactions (PPI), miRNA-mRNA interactions, time series gene
expressions under genetic perturbations etc. has led to a new challenge in network
inference based on multiple sources. In many cases, the additional data belongs to
a single time point under a single condition e.g. protein-DNA binding, miRNA-
RNA interations, etc. (see Gitter et al. [27], Sect. 3.3 for a discussion of methods
integrating static with time series data).
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Fig. 7.6 Time varying interaction strengths between the genes at time t ¼ 4:1 h in [36] in
experiment with gradual change in nutrient availability. The edge colors denote their interaction
strength, which was classified as strong repressing (red), low repressing (pink), no effect (yellow),
low inducing (light blue) and strong inducing (dark blue). (Reprinted with permission)
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A new scenario has arisen where one wishes to combine several time series data
to infer the related network at different time points. For example, if time series
gene expressions are measured under the same experimental conditions for several
different strains of an organism with minor genetic variation; the inferred networks
for the different strains should be largely similar. Alternatively, if one is measuring
time series expression data using different methods or under different experimental
conditions, some of the interactions might be different while the remaining net-
work structure is largely preserved.

From a computational perspective, one models such time series data as being
non i.i.d. which are generated from different but closely related interaction net-
works. For Gaussian Graphical Models, this corresponds to multiple graphical
models that share the same variables and a large part of the dependence structure.
Guo et al. [30] recently investigated the joint estimation of multiple graphical
models under the assumption that the underlying network structure is largely
preserved across the multiple data sources. In their method, no additional
assumption is made beyond the large common substructure across the different
data sources. We discuss this further in Sect. 7.5.1.

In many cases, we might have further information about the variation in the
network structure between different data sources. For example, if one of the
sources is time series gene expression data under gene knockout; the network
structure would largely vary in a close neighbourhood of the knocked out gene.
Jethava et al. [36] explore this for dynamic network reconstruction in yeast based
on data from several strains of yeast having genetic perturbations. This is dis-
cussed further in Sect. 7.5.2.

7.5.1 Data Integration Based on Common Network
Substructure

Guo et al. [30] investigate joint estimation of network structure for multiple
graphical models. Their approach assumes the underlying model structure (con-
ditional independencies) is largely preserved across the different networks.

In order to model this, they model the interaction strength w½k�ij between nodes i

and j in kth network as a product of two terms, namely, a term hij which is

common across all networks and c½k�ij which is different across the networks arising
from different data sources i.e.

w½k�ij ¼ hijc
½k�
ij ð7:40Þ

If hij is zero, then all the networks have i and j conditionally independent i.e. no
edge is present between nodes i and j across all networks. However, if hij is not

zero, some of the networks can still have c½k�ij ¼ 0 while other networks can have
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cðk
0Þ

ij 6¼ 0 yielding different network structure. In order to ensure common sub-
structure, they use ‘1 regularization based approach by introducing sparsity con-
straint on h and c½k� i.e.

arg min
C½k�;H

XK

k¼1

ðTrðS½k�W½k�Þ ffi log det W ½k�Þ þ g1jjHjj‘1
þ g2

XK

k¼1

jj½k�jj‘1
ð7:41Þ

The parameters g1 controls the degree of commonality in the network. A high
value of g1 promotes common substructure across the different networks. The
parameter g2 controls the degree of sparsity in the networks. The resulting opti-
mization is solved using the GLASSO software as a subroutine.

This approach allows systematic integration of data from different sources in
order to obtain sparse networks with large common substructure. In order to extend
this procedure to the case of dynamic networks, one can use the weighted
empirical covariance ŜðtÞ;½k� in network k at time t based on kernel reweighting as
discussed in Sect. 7.4.1. Figure 7.7 shows an example of two sparse networks with
a large common substructure.

7.5.2 Integration of Time Series Data Under Genetic
Perturbations

Jethava et al. [36] studied the problem of dynamic network reconstruction in
S. Cerevisiae from multiple experiments with genetic perturbation i.e. where one
or two genes have been knocked out. Their approach combines the network per-
turbation effect into dynamic network reconstruction under the assumption that the
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Fig. 7.7 Example of sparse networks sharing a large common substructure. The common
substructure is highlighted in blue. Such networks can be extracted from different data sources or
data from multiple experiments using approach outlined in Guo et al. [30]
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network changes drastically near the perturbations (genes knocked out); while sub-
networks not related to the functional roles performed by the knocked out gene are
minimally impacted.

This is modeled by considering the interaction strength wðtÞ;½k� in perturbed
network k at time t as a product of two terms, namely, a base interaction strength

wðtÞij and a edge damping coefficient c½k�ij .

wðtÞ;½k�ij ¼ wðtÞij c½k�ij ð7:42Þ

The damping coefficient c½k�ij of edge ði; jÞ in network k depends on the distance
of nodes i and j from the genes knocked out in the perturbed network k i.e.

c½k�ij ¼ ð1ffi c½k�i Þð1ffi c½k�j Þ ð7:43Þ

Since a base network is known for Yeast with high degree of confidence, this is

used to compute the node damping c½k�i by diffusing the effect of the gene knockout

through the network i.e. if a gene i is knocked out in network k, then c½k�i is 1;

otherwise, c½k�i is computed by averaging the damping coefficients c½k�j for all genes j

which interact with gene i.

c½k�i ¼
1 if gene i is knocked out
b

dðiÞ
P

j2NðiÞ
c½k�j otherwise

8
<

:
ð7:44Þ

The parameter b controls the range of perturbation effects. A small value of b
implies the effect of gene knockout is limited to close neighbours only; while a
large value of b means the pertubation effects are long-ranged. Figure 7.8 shows
an example of damping coefficients computed for a network with single gene

0.500 1.000
 0

0.183
 0

0.049

 0.776

0.049

 0.776

0.016 0.934

0.016

 0.967

 0.934

Fig. 7.8 Example of damping with one gene knocked out with damping coefficient b ¼ 0:5. The
knockout gene is indicated in gray; and the node and edge damping coefficients are shown. The
node damping coefficients quickly decrease as one goes away from the knockout gene.
Consequently, the impact of knockout decreases (edge damping close to 1) for interactions far
from the knockout point
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knockout. The edges next to the knockout gene are impacted the most, while
interactions far away from the knockout point are treated as being the same across
all networks.

This approach decouples the inference procedure from the effect of network
perturbations - while allowing incorporation of data from multiple experiments
into reconstrution of the dynamic networks. Consequently, one can use pertur-
bation studies in concert with time series data.

7.6 Software

7.6.1 Glasso

Graphical lasso (GLASSO) is a popular software written in R and Matlab, for
estimating sparse inverse covariance matrix using lasso (‘1) penalty. This can be
used to find a sparse static interaction network based on microarray expression
data. The software is available at http://www-stat.stanford.edu/*tibs/glasso/.

7.6.2 Keller

KELLER is a software in Matlab for estimating time-varying regulatory networks
based on time series gene expression data using ‘1 regularization approach. It
assumes that the interaction network changes smoothly over time i.e. the network
between consecutive observation times are very similar structurally. The software
is available at http://cogito-b.ml.cmu.edu/keller/.

7.6.3 Tesla

TESLA is a software in Matlab for estimating time-varying networks based on
node observations using ‘1 regularization approach. This can be used to find
dynamic interaction network (different at different time-points) based on micro-
array expression measurements. It detects sharp changes such as sudden rewiring
of the network in response to external stimulus. The software is available at http://
www.sailing.cs.cmu.edu/tesla/index.html.
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7.6.4 Netgem

NETGEM is a software in Matlab for estimating time-varying interaction network
based on microarray expression data using a Bayesian approach. It models the
network dynamics contingent on the functional roles performed by interacting
genes. It incorporates time series data with perturbation analysis to improve net-
work reconstuction by combining time series data from several perturbed net-
works. The software is available at http://www.cse.chalmers.se/*jethava/
netgem.html.

7.7 Discussion

This survey discusses recent methods for reconstruction of time-varying networks
based on time series gene expression data. This problem is ill-posed due to high-
dimensional data i.e. number of variables p is much larger than number of
observations n. Additional assumptions on the network structure as well as the
temporal dynamics governing network evolution are required in order to facilitate
reconstruction of time-varying interaction networks.

A popular assumption on the network structure is the sparsity of interaction
network i.e. each gene interacts with at most few other genes. This agrees closely
with domain knowledge and yields biologically plausible networks. This network
sparsity is imposed by using ‘1 regularization in optimization-based methods, or an
sparsity inducing prior in Bayesian approach.

The underlying causes governing network evolution in time-varying interaction
networks are not well-understood. A number of simplifying assumptions have
been made in order to model different aspects of the network evolution including
smooth variation i.e. the underlying network changes slowly over time, piece-wise
constant with sharp changes, Markovian dynamics. The reconstructions using the
different methods have been shown to yield biologically plausible networks.
Further, the reconstructed networks often predict transient interactions which may
be experimentally verified; leading to a deeper understanding of biological pro-
cesses. A clear understanding of network evolution is yet to emerge; and this is an
exciting direction for future research.

We also discuss methods which allow systematic analysis of time-series data
corresponding to multiple related networks. These methods allow network
reconstruction based on multiple data sources e.g. gene interaction networks,
miRNA-mRNA interactions, protein-protein interactions (PPI); as well as multiple
experiments with genetic perturbations. Such approaches allow better network
reconstruction by combining information from several experiments. This is
becoming increasingly relevant with growth in publicly available -omics data due
to recent advances in sequencing methods.
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Chapter 8
Probabilistic Graphical Modeling
in Systems Biology: A Framework
for Integrative Approaches

Christine Sinoquet

Abstract Systems biology may be defined as a discipline aiming at integrating
various sources of heterogeneous data, with the objective to describe and predict
the function of biological systems. The purpose is to cross many (possibly weak)
evidences from several data types that describe different biological features of
genes or proteins. Probabilistic graphical models offer an appealing framework for
this objective. Through the thorough review of five selected examples, this chapter
highlights how probabilistic graphical models can contribute to build the bridge
between biology and computational modeling. In this methodological framework,
the five cases illustrate three features of these models, which we discuss: flexi-
bility, scalability and ability to combine heterogeneous sources of data. The
applications covered address genetic association studies, identification of protein–
protein interactions, identification of the target genes of transcription factors,
inference of causal phenotype networks and protein function prediction.
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GA Genetic architecture
GO Gene ontology
GOS GO sub-ontology
GWAS Genome wide association study
MCMC Monte Carlo Markov chain
MRF Markov random field
MRF-MJM MRF mixture joint model
PGM Probabilistic graphical model
PPI Protein–protein interaction
QTL Quantitative trait loci
RNA Ribonucleic acid
RNAi RNA interference
ROC curve Receiver operating characteristic curve
SMM Standard mixture model
TF Transcription factor

8.1 Introduction

In the machine learning domain, probabilistic graphical models provide a unified
framework to both represent dependences between variables and model uncertain
knowledge about the quantitative dependences between these variables. In the
post-genomic era, the provision of voluminous and complex heterogeneous data by
high-throughput omics technologies has brought increased attention to these
models. Notably, their flexibility, scalability and ability to combine heterogeneous
sources of data are expected to enhance the gain in biological and biomedical
discoveries. Data integration is intended to make useful connections that could
lead to novel biological knowledge.

Besides, if there is one area where transdisciplinarity is the daily lot, designing
new computational methods based on advanced models devoted to applications in
systems biology is this area. A constructive cooperation with a domain specialist
requires ability to hold productive dialogue, which therefore demands a good
understanding of the models by the non expert. Bridging the gap between biology,
statistics and computer science is a condition to achieve progress in systems
biology. Albeit dedicated to specific applications, the five models presented in this
chapter remain general enough to help foster reflections about addressing other
applications in systems biology, in an integrative framework.

Methods based on probabilistic graphical models (PGMs) may be complex and
thus might be disconcerting to scientists non familiar with them, which is likely to
hamper the dissemination of such methods. Thus there was a challenge in
attempting to demystify the concepts and mechanisms behind such models in the
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perspective of using them for systems biology. To this aim, this chapter was
conceived as a thorough review of five illustrative approaches of the use of
probabilistic graphical modeling as an integrative framework in systems biology.
We first provide an intuitive presentation of the concept of conditional indepen-
dence, which is the fundamental principle PGMs all rely on; then we introduce the
Bayesian networks and the Markov random fields, which are the two classes of
PGMs addressed in this chapter. Subsequently we present the five illustrations
selected to cover major application fields in systems biology: (1) enhancement of
genome-wide association studies with knowledge on biological pathways, (2)
identification of protein–protein interactions, (3) identification of the regulatory
target genes of transcription factors, (4) inference of causal relationships among
phenotypes via integration of QTL genotypes, (5) prediction of protein function
through ontology-enriched networks connecting multiple related species. A brief
insight about the performance of each method is provided on the fly. We conclude
this chapter highlighting the pros and cons of this modeling framework, when used
for integration purpose in systems biology and we indicate some directions for
future work.

The order of presentation for the contributions is not incidental: it puts forward an
increasing gradient in the heterogeneity of the data sources integrated in the prob-
abilistic framework. For example, approaches (2) and (3) both integrate information
coming from gene ontologies but such information is used similarly to that coming
from the other data sources. In contrast, accounting for this ontological knowledge
thoroughly impacts the probabilistic inference scheme in the last approach. At the
opposite extremity of the data integration spectrum, it is worth mentioning that
PGMs provide the ability to integrate meta-knowledge about a single data source, at
the genome-wide scale. An enlightening example is the modeling of genetic data,
where the so-called linkage disequilibrium encompasses short-range, long-range
and chromosome-wide dependences within these data [24–25]. Such meta-knowl-
edge integration in a genetic association study aims at enhancing power and
accuracy in identifying the causal factors of a disease [20, 35, 37]. In this book
chapter, we focus on the integration of multiple data sources.

8.2 Preliminaries

In the present section, the concepts indispensable for further understanding are
introduced in an intuitive manner. Besides, we highlight why probabilistic
graphical models are appealing to model biological data in an integrative frame-
work. Within the scope of this section, we suppose that the data available are as
follows: p data samples are each described by n variables X ¼ fX1; . . .;Xng. In a
general probabilistic framework, computing the joint probability distribution for
large data is generally not tractable as, by virtue of the so-called product-rule, the
only formalization applicable is
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PðXÞ ¼ PðX1Þ PðX2 j X1Þ PðX3 j X1; X2Þ . . . PðXn j X1; X2; . . .; Xn�1Þ: ð8:1Þ

If we denote by xi a value in the domain of the possible values for the random
variable Xi, it should be noted that computing the probability distribution PðXÞ
means that for any possible instantiation x ¼ ðx1; x2; . . .; xnÞ of X, we know how
to calculate PðxÞ. It should also be kept in mind that from now on, symbols in
lower cases will denote values taken by the variables. Third, the expression
‘‘probability distribution’’ will be reserved to discrete random variables whereas
the expression ‘‘density probability‘‘ will be used for continuous random variables.
In the above formula, X1; . . .; Xr, to be understood as the event
ðX1 ¼ x1; . . .; Xr ¼ xrÞ, denotes the joint observation of values x1; . . .; xr. The
product rule in Eq. 8.1 involves conditional probabilities.

The conditional probability1 of event D1 given event D2, PðD1 j D2Þ, is the
probability of D1 with the additional information that D2 has already occurred. It is
defined as:

PðD1 j D2Þ ¼
PðD1;D2Þ
PðD2Þ

; with PðD2Þ 6¼ 0:

For instance, if D1 and D2 are two diseases, such that D2 is observed with prob-
ability 0:05, and D1 and D2 are simultaneously observed with probability 0:001,
then the onset probability for D1, when D2 is present, is 0:02.

Probabilistic graphical models are appealing models because they rely on
conditional independence, to offer the immense advantage of a factorized for-
mulation of probability distributions. Let us first introduce the concept of condi-
tional independence. In the above example, suppose we calculate that the prior
probability PðD1Þ is equal to the posterior probability PðD1 j D2Þ. Intuitively, this
means that knowing whether D2 occurs (P D1 j D2ð Þ) does not refine our knowl-
edge about whether D1 occurs. The diseases D1 and D2 are therefore independent:
D1 ?? D2. Conditional independence is a little bit more complex:

Definition 1 (Conditional independence) Given three variables A, B and C,
conditional independence between A and B given the state of C (A ?? B j C) is
defined as: PðA j B; CÞ ¼ PðA j CÞ (with PðCÞ[ 0). The concept of conditional
independence given a unique variable is easily extended to conditional indepen-
dence given a set of variables.

Intuitively, A and B are conditionally independent given C (A ?? B j C) if and
only if, given any value of C, the probability distribution of A remains the same for
all values of B: PðA j B ¼ b1; C ¼ cÞ ¼ PðA j B ¼ b2; C ¼ cÞ ¼ PðA j C ¼ cÞ.
Suppose now that a third variable E measures the effects of the disease D1, and that
these effects cause the disease D2 (symbolized through D1 ! E! D2); indoubt-
edly, D1 and D2 are dependent; however, D1 and D2 are conditionally independent

1 Depending on the context, the conditional probability of D1 given D2, PðD1 j D2Þ, is also
called the posterior probability of D1 conditional on D2.
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given E (see Table 8.1). Intuitively, this means that the status of D1 can be inferred
from the status of E. Therefore, when dependences exist within data, conditional
independence shields a given variable from the remaining variables, given some
set of variables. Biological data are often described by a network, if not several
networks, in the integrative framework. The conditional independence property is
known as the Markov property. The Markov property is the corner stone for
simplifying probability distributions, thus directly achieving tractability or making
easier approximations to further obtain tractability. Intrinsically, all five models
illustrated in this chapter rely on the Markov property, to infer knowledge from
one or several biological networks.

Probabilistic graphical models (PGMs) provide a powerful framework for
representing and reasoning with uncertainty and dependences. The qualitative part
of a PGM is a graph G that encodes dependences (and independences) between the
variables, represented by nodes in the graph. Uncertain knowledge about the
qualitative dependences between the variables is formalized with the aid of
probability distributions. Besides differences in their graphs, we now briefly show
the variants of Markov property for the two kinds of probabilistic graphical model
(PGMs) addressed in this chapter. One of the most popular kinds of PGMs is the
Bayesian network (BN).

Table 8.1 Conditional independence of two variables D1 and D2 given a third-
variable E

D2E D2Ē D̄2E D̄2Ē

D1
0 120 40 40 20
1 180 160 60 80

D2E D2Ē D̄2E D̄2Ē

D1
0 0.171 0.057 0.057 0.029
1 0.257 0.229 0.086 0.114

D2
0 1

D1
1 0.086 0.229
0 0.200 0.485

E = 0
D2

0 1

D1
1 0.2 0.2
0 0.8 0.8

E = 1
D2

0 1

D1
1 0.4 0.4
0 0.6 0.6

(a) (b) (c)

(d) (e)

Counts
P(D1, D2, E)

Joint distribution
P(D1, D2)

Marginal distribution

Conditional distributions

P(D1 | D2 = i,E = 0) P(D1 | D2 = i,E = 1)

c Marginal probabilities are obtained through summing (‘‘marginalizing’’) prob-

abilities over the domain of E; PðD1 j D2Þ ¼ PðD1 ; D2Þ
PðD2Þ ¼

0:485
0:679 ¼

0:714 6¼ PðD1Þ ¼ 0:685, thus D1 and D2 are dependent variables. d and e D1 and
D2 are conditionally independent given E (D1 ?? D2 j E) since the columns are
identical within each table.
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Definition 2 (Bayesian network) In a BN, the qualitative component is a directed
acyclic graph (acyclic because no directed path Xi1 ! Xi2 ! � � � ! Xir , where
i1 ¼ ir, is allowed). Conditional distributions are defined for each variable Xi:
hi ¼ ½PðXi=PaXiÞ� where PaXi denotes node i’s parents. The local Markov property
states that each variable is conditionally independent of its non-descendants given
a known state of its parent variables: Xi ?? X n descðXiÞ j PaXi , where the notation
X n Y stands for the set fXi 2 X and Xi 62 Yg and descðXiÞ is the set of
descendants of Xi. The local Markov property entails that the joint distribution
writes as a product of local distributions conditional on the parent variables:

PðXÞ ¼
Y

i2f1;...;ng
hi:

Figure 8.1a shows a Bayesian network. Another widely used model is the
Markov random field.

Definition 3 (Markov random field) In Markov random fields (MRFs), the
qualitative component G is an undirected graph which may have cycles (that is
(undirected) cycles Xi1 � Xi2 � � � � � Xir , where i1 ¼ ir, are allowed). The joint
distribution is factorized over cliques ‘‘covering’’ the set X. A clique is defined by
any set of pairwise connected nodes, such as fX1; X2g or fX1; X2; X4g in Fig.
8.1b. A set of random variables X is an MRF if there exist so-called function
potentials such that the joint distribution writes:

PðX ¼ xÞ ¼ 1
Z

bðxÞ

PðX ¼ xÞ ¼ 1
Z

Y

C2cliquesðGÞ
uCðxCÞ:

(a) (b)

Fig. 8.1 Probabilistic graphical models. a Bayesian network. b Markov random field. a The prior
probability distributions PðD1Þ and PðD2Þ, and the conditional distributions PðE j D1; D2Þ and
PðD3 j EÞ are shown. The node E has two parents (D1 and D2). The node D1 has one child (E)
and two descendants (E and D3). b The factorization of the joint distribution PðX1; X2; X3; X4Þ
involves the potentials relative to the two cliques ðX1; X2; X4Þ and ðX1; X3; X4Þ. The node X1

has two neighbors: X2 and X3
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There, xC denotes some possible instantiation for the variables encompassed by
clique C. Function uC is called a clique potential. Z is the normalizing function
used to ensure that P be a probability distribution (Z ¼

P
x bðxÞ guarantees thatP

x PðX ¼ xÞ ¼ 1). In the case of the MRF, the local Markov property states that
a variable is conditionally independent of all other variables given its set of
neighbours Ni: PðXi j X�iÞ ¼ PðXi j NiÞ, where X�i designates the set X deprived
of variable Xi.

Figure 8.1b shows a Markov random field. In particular, this chapter will refer
to pairwise MRFs, which consider cliques of size 2 and whose joint distribution
writes:

PðX ¼ xÞ ¼ 1
Z

Yn

i¼1

uiðxiÞ
Y

ði;jÞ2G
ui;jðxi; xjÞ: ð8:2Þ

Finally, we recall some additional notions to non specialists. Given a model M
and the observed data D, according to Bayes theorem,2 the relation between
posterior distribution, prior distribution and likelihood writes: PðM j DÞ / PðD j
MÞ PðMÞ: The proportionality is explained by the fact that the probability to
observe the data, PðDÞ, is a constant. Model learning consists in evaluating how a
candidate M fits the data D. Maximizing the likelihood PðD j MÞ is a standard
procedure to achieve this purpose. Due to additional knowledge (D), the prior
distribution PðMÞ is refined into the posterior distribution PðM j DÞ. The reader is
also reminded that Uða; bÞ designates the uniform probability distribution over
interval ½a; b� and that Nðl; r2Þ represents the normal (or Gaussian) probability
distribution with mean l and variance r2. The multivariate normal distribution is a
generalization of the latter distribution to higher dimensions; then the normal
distribution is summarized by a mean vector and a covariance matrix. To denote
that a random variable A follows a given distribution, say Nðl; r2Þ, we will write:
A�Nðl; r2Þ.

8.3 Enhancement of Genome-Wide Association Studies
with Knowledge on Biological Pathways

To decipher the genetic causes of diseases, genome-wide association studies
(GWASs) compare the genomes of affected people to those of unaffected. The aim
is to identify associations between genetic variants and the disease. GWASs pose a
formidable challenge since most of the time the effects from individual genetic
variants are weak and the sample size is not large enough to guarantee sufficient
power. To overcome this issue, various strategies have been proposed. Multilocus

2
PðM j DÞ PðDÞ ¼ PðD j MÞ PðMÞ.
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association tests benefit from linkage disequilibrium—that is dependences existing
within genetic data—by considering sets of correlated markers instead of single
markers. An alternative lead lies in integrating evidences from external data
sources, in the single locus approach. Various approaches based on the integration
of prior biological knowledge were designed to prioritize candidate disease genes
(see [16] for a survey). In GWASs, evidence from the gene level is recognized as
the most promising. In particular, incorporating prior biological knowledge about
pathways has a role to play [31, 40]: as genes interact with each other in biological
pathways, they are likely to jointly affect disease susceptibility. However, so far,
no GWAS approach had taken into account knowledge about regulatory rela-
tionships between genes of a given pathway. Not surprisingly, in this domain, the
pioneering approach of Chen and collaborators takes full advantage of probabi-
listic graphical modeling [5].

In the following, we denote S ¼ fS1; . . .; Sng the set of gene labels to be predicted
based on the observed association data and the knowledge on the pathway topology.
Si ¼ 1 states that gene i is associated with the disease; otherwise, the label is Si ¼ 0.
Typically, the association data are p-values P1; . . .;Pn resulting from n single-locus
association tests. Usually, given some significant threshold Pffi, Pi\Pffi (respectively
Pi�Pffi) indicates that Si should be set to 1 (respectively 0). The probabilistic
framework adopted by Chen and collaborators aims at improving the reliability in
predicting the labels: the ultimate goal is thus to estimate the posterior distribution of
S conditional on the data P, that is PðS j PÞ. By virtue of the Bayes theorem,
PðS j PÞ / PðSÞ PðP j SÞ. The key to the prediction improvement by Chen et al. lies
in the integration of knowledge on the pathway topology in the model: such
knowledge is incorporated in the prior distribution PðSÞ.

8.3.1 Exploiting Knowledge from the Gene Pathway

In the following, Ni denotes the set of the ni neighbors of gene i in the pathway of
concern; G denotes the pathway topology. To capture the idea that two neighbor
genes i and j tend to share a common association status (Si ¼ Sj), Chen et al. adjust
a nearest neighbor Gibbs measure [15] as follows:

PðS ¼ s j h0Þ ¼
1
Z

exp

½hþ
X

i

I1ðSiÞ þ s0

X

ði;jÞ2G
ðwi þ wjÞ I0ðSiÞ I0ðSjÞ

þ s1

X

ði;jÞ2G
ðwi þ wjÞ I1ðSiÞ I1ðSjÞ�:

ð8:3Þ

The symbol s ¼ ðs1; . . .; snÞ denotes one label assignment (amongst the 2n possible
assignments), for instance ð0; 1; 1; . . .; 1; 0Þ. h ¼ ðh; s0; s1Þ denotes hyperpa-
rameters fixed by the user. I0 and I1 are indicator functions, meaning that I1ðSiÞ ¼ 1
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if Si ¼ 1 and I1ðSiÞ ¼ 0 otherwise, and, symmetrically I0ðSiÞ ¼ 1 if Si ¼ 0 and
I0ðSiÞ ¼ 0 otherwise. Finally, the model in Eq. 8.3 also reflects the fact that genes
showing many interactions in a pathway are likely to play a prominent role in a
biological process; thus they are likely to exert a large influence. Consequently,
weights wis are incorporated in the model, that depend on the neighborhood sizes:
wi ¼

ffiffiffiffi
ni
p

is an increasing function of the number ni of neighbors of gene i.
Equation 8.3 formalizes the joint probability for S so that genes connected with

each other tend to have the same labels, that is the same association status. The
third term concerns all edges connecting neighbors sharing the common label 0.
The fourth term concerns neighbors that share the label 1. Besides, s0 and s1 assign
weights to such edges, depending on the shared labels. Positive parameters s0 and
s1 will favor assignments s of S in which neighbor genes share the same label.

A property of nearest neighbor Gibbs measures is that they always define a
Markov random field. In this case, the conditional independence assumption
entails: PðSi j S�i; h0Þ ¼ PðSi j SNi ; h0Þ, where we recall that S�i ¼ ðS1; . . .;
Si�1; Siþ1; . . .; SnÞ. Besides, using Eq. 8.3, Chen et al. show that the conditional
distribution PðS j SNi ; h0Þ has a logistic regression form. A standard linear
regression model is not convenient to represent a binary (0/1) variable B as
B ¼ a0 þ a1 A1 þ a2 A2 þ � � � þ ak Ak, since the predictors Ai are unconstrained.
Instead, one deals with p ¼ PðB ¼ 1Þ 2 ½0; 1� and a logit transformation is
therefore required to apply a linear regression model to logitðpÞ ¼
log p

1�p

� �
2� �1; þ1½. In the case illustrated, the logistic form is:

logitðPðSi j SNi ; h0ÞÞ ¼ hþ s1 wi J1
i þ

X

k2Ni

wk I1ðSkÞ
 !

� s0 wi J0
i þ

X

k2Ni

wk I0ðSkÞ
 !

;

ð8:4Þ

where J0
i ¼

P
k2Ni

I0ðSkÞ and, similarly, J1
i ¼

P
k2Ni

I1ðSkÞ.
In the configuration where s0 and s1 are both null, all genes are interpreted as

independent; the so-called intercept h then determines the posterior probability

PðSi j h; s0 ¼ s1 ¼ 0Þ ¼ expðhÞ
1þexpðhÞ.

To recapitulate, the prior acknowledging for the pathway topology is the
conditional distribution PðS j SNi ; h0Þ. This prior has the logistic regression form:

logitðPðSi j SNi ; h0ÞÞ ¼ bi0 þ bi1 S1 þ � � � þ bin Sn

with

bi0 ¼ h

bij ¼ 0 if i ¼ j or j 62 Ni

bij ¼ ðwi þ wjÞ ðs1 I1ðSjÞ � s0 I0ðSjÞÞ otherwise:

In the following, for concision, we will omit the references to SNi and h0 and the
joint prior distribution will merely be denoted PðSÞ as in the end of the intro-
ductory paragraph of Sect. 8.3.
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8.3.2 Posterior Distribution of Association Status

The posterior distribution integrates the knowledge about the pathway topology (from
the prior) and the evidence from the observed association data (i.e. the p-values):

PðS j PÞ / PðSÞ PðP j SÞ: ð8:5Þ

A model remains to be defined for PðS j PÞ. Chen and collaborators model instead
PðS j YÞ, where any p-value Pi is converted into Yi ¼ U�1ð1� Pi=2Þ. Therein, U is
the cumulative distribution function ofNð0; 1Þ. The justification for this conversion
is simplification in further algebraic derivations. Then, the joint density of Y readily
writes:

f ðY j SÞ ¼
Y

i:Si¼0

f0ðYiÞ
Y

i:Si¼1

f1ðYiÞ;

where f0 and f1 respectively denote the distributions of Yi under the null hypothesis
and the hypothesis of association, that is: f0ðYiÞ ¼ PðYi j Si ¼ 0Þ and
f1ðYiÞ ¼ PðYi j Si ¼ 1Þ. Under the null hypothesis (no association, Si ¼ 0), any
value in ½0; 1� is acceptable for the p-value (probability) Pi. Pi is therefore modeled to
follow the uniform distribution Uð0; 1Þ. This setting entails that f0ðYiÞ follows the
Gaussian distribution Nð0; 1Þ: On the other hand, the unknown distribution of Yi

under the hypothesis of association is assumed to follow a Gaussian distribution:
f1ðYiÞ�Nðli; r

2
i Þ.

Under these settings, the algebraic derivation of the posterior distribution (see
Eq. 8.5)

PðS j YÞ / PðSÞPðY j SÞ

shows that, similarly to the prior PðSÞ, the posterior distribution PðS j YÞ has a
logistic regression form. The regression forms are identical in all points except for

the intercept, which is now hþ log LRðYiÞ where LRðYiÞ ¼ f1ðYiÞ
f0ðYiÞ is the usual

likelihood ratio. Importantly, the conditional independence assumption of the prior
distribution is kept: PðSi j S�i; . . .Þ ¼ PðSi j SNi ; . . .Þ.

Finally, the assignment of labels to the genes is performed by running an MCMC.
The MCMC starts from some initial value sð0Þ assigned (at random) to S. Then step k
sequentially updates the labels of the genes according to the following scheme:

logitðPðsðkÞi j Y; s
ðkÞ
1 ; . . .; sðkÞi�1; s

ðk�1Þ
iþ1 ; . . .; sðk�1Þ

n Þ ¼ b0i0 þ b0i1s1 þ � � � þ b0insn:

An important point is that the conditional independence assumption in Eq. 8.4
holds for the posterior distribution, which is therefore also a Markov random field.
The practical consequence is that the computation involved in the sampling of si

only requires values sj where j belongs to the neighborhood Ni: otherwise, the b0ij
coefficient is null if genes i and j are not neighbors in the pathway.
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8.3.3 Performances

Incorporating prior biological knowledge to enhance GWASs is not new (see for
instance Prioritizer [10], CANDID [13], CIPHER [42]). However, such approaches
do not consider the functional relationships existing among genes. In contrast, the
approach of Chen et al. takes advantage of knowledge on known associations to infer
novel association knowledge on other genes related to the former through pathways.

The relevance of the model of Chen and collaborators was supported by a
preliminary study. These authors considered 3,735 genes over 350 pathways. On
the other hand, association results from a GWAS on Crohn’s disease were
available. In each of the pathways, the number of edges Nþþ with both extremities
associated with the disease was observed. Over the 350 pathways, an over-
whelming proportion of counts Nþþ showed exceptionally large values. This
clearly confirms the hypothesis: in a given pathway, most often, genes that are
associated with the disease are neighbors.

The approach of Chen et al. was then evaluated based on 289 pathways and
GWAS data relative to Crohn’s disease. Thirty-two genes associated with the
disease were known (target genes). It was shown that ranking the genes according
to their posterior probabilities is more faithful to the reality than ranking them
based on their p-values. Finally, as expected, it was verified that compared to other
genes in the pathway, the genes with an improved rank are more densely con-
nected to target genes; besides, such genes are also more densily connected with
each other.

8.4 Identification of Protein–Protein Interactions

Protein–protein interactions (PPIs) provide invaluable clues to help elucidate
biological processes or cellular functions. Wetlab technologies such as co-affinity
purification followed by mass spectrometry [12] may only provide PPI data with
both low coverage and accuracy. In silico prediction of PPI networks falls into
three categories: high-throughput data-based, sequence-based and ortholog-based
methods. In the first category, for instance, correlation between mRNA expres-
sions may suggest the existence of a PPI [7]. Sequence-based methods examine for
example protein/domain structures [27], gene neighborhoods [21] and gene fusion
events [9].3 In ortholog-based methods, annotation transfer between genomes is
the key to detect conserved PPIs—or interologs—via gene orthologs [46].

To face the ever-growing accumulation of high-dimensional data, combined
with the apparition of new types of data, Xia and collaborators designed a flexible
model, able to integrate up to 27 data sets of various data types. This model is

3 Gene fusion is likely to detect a PPI since two proteins interacting in the genome of one species
are more likely to be fused into one single protein in the genome of another species.
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based on a naive Bayes classifier [43]. A naive Bayes classifier is a Bayesian
network whose elementary tree structure consists of a single parent (the class
variable) and of children (here, the data types) that are independent of one another,
given the class variable (see Fig. 8.2).

8.4.1 Coping with a Vast Spectrum of Heterogeneous
Data Types

Before we explain thoroughly how the designed classifier, IntNetDB, integrates
various types of data to find PPIs in the human genome, we emphasize the wide
heterogeneity of the data types used by this system. In the most recent instance of
IntNetDB, Xia and co-workers integrated 27 heterogeneous genomic, proteomic
and functional data sets, encompassing 7 data types. For some model organisms
(Yeast, Worm, Fruitfly...), annotations about physical protein–protein interac-
tions are available. Mapping each such genome interactome to human genome
through protein orthologs evidences interologs. Domain-domain interactions
(DDIs) are known to mediate many protein–protein interactions. Structural domain
information databases exist, that provide DDI scores. A DDI score is assigned to
the pair of proteins that respectively harbour the two domains. Gene co-expres-
sion is often a reliable indicator for PPI.

In addition to data describing gene fusion and gene neighborhood, another
data type also depicts gene contexts: gene co-occurrence is often indicative of a
PPI; provided that the organism genome is fully sequenced, it is recognized that
two interacting proteins are likely to be either both absent or both present in this
genome [38]. On the other hand, proteins sharing the same biological function are

(a) (b)

Fig. 8.2 Integration scheme in the approach of Xia et al. [43]. a The various data type evidences
for the prediction of protein–protein interactions (PPI). b The naive Bayes classifier combining
these data types. The variable class is binary: PPI/no PPI. DDI: domain-domain interaction.
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often involved in a PPI [33]. Thus, the Gene Ontology (GO) [36] provides sup-
plementary evidence for PPI. Mapping human genes to orthologs in four model
organisms (Yeast, Worm, Fruitfly and Mouse) was considered in [43].

Xia and co-workers also integrated two novel data types to help predict PPIs:
phenotypic distances and genetic interactions. RNAi phenotype data have been
used to predict PPIs for model organisms: under knock-out experiments, the
respective phenotype profiles of interacting proteins tend to be similar. To transfer
these phenotype data to human, Xia and collaborators mapped to their human
orthologs the genes in the model organisms. Then similarity between the mapped
phenotypes was assessed for the pair of genes in human. On the other hand,
synthetic genetic analysis is a technology that was used in Saccharomyces cere-
visiae to provide a global map of genetic interactions. Genetic interactions are
recognized as high reliable indicators of PPIs. Xia and co-workers mapped the
genetical interaction network of the Yeast model to human interologs.

8.4.2 Heterogeneous Data Integration by Naive Bayes
Classifier

In the integrative model, each of the T data types used for the integration con-
tributes an evidence ei ð1� i� T) for some given pair of proteins. To assess PPI
for this pair of proteins, the likelihood ratio is

LRðe1; . . .; eTÞ ¼
Pðe1; . . .; eT j PPIÞ
Pðe1; . . .; eT j :PPIÞ ;

where Pðe1; . . .; eT j HÞ represents the probability that the evidence ðe1; . . .; eTÞ
has been observed under hypothesis H. The two alternative hypotheses we are
interested in are PPI, the existence of a protein–protein interaction, and :PPI, the
absence of such an interaction. Thus, if the numerator is significantly higher than
the denominator, PPI will be assessed. Symmetrically, a low likelihood ratio will
support the :PPI hypothesis.

Under the assumption that the data sources are independent, the likelihood ratio
writes as a product:

LRðe1; . . .; eTÞ ¼
YT

i¼1

LRðeiÞ ¼
YT

i¼1

Pðei j PPIÞ
Pðei j :PPIÞ :

The likelihood ratio for data type i providing evidence ei is calculated from a set
of assessed PPIs (positive set) and assessed counter-examples (negative set). The
Human Protein Reference Database (HPRD) was used as the positive set; it ref-
erences 19,438 experimentally verified PPIs for 5,983 proteins [32] (at the time of
the integration by Xia et al.). The negative set was generated by Rhodes and co-
workers [33]: it spans all pairwise combinations between two sets of proteins
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located in two different subcellular compartments [plasma membrane (1,397
proteins) and nucleus (2,224 proteins) respectively]. Evaluating both positive and
negative sets for each data type provides reference evidences, which allows to
compute the desired likelihoods. Discretization into intervals is used for the pur-
pose. Suppose we have to assess Pðei j PPIÞ for some pair of proteins, where ei is
the evidence observed for this pair. The positive PPI reference set does not nec-
essarily exhibit a protein pair showing the exact evidence ei. Therefore, the value
Pðei j PPIÞ is replaced with PðIpositive setðeiÞ j PPIÞ, where Ipositive setðeiÞ is an
interval around ei. This interval was obtained from the discretization into intervals
of the evidences observed for the protein pairs of the positive PPI reference set.
Pðei j :PPIÞ is calculated similarly.

Care is required when several data sets contributing to the same data type are
integrated. In this case, to avoid the bias due to dependence, the maximal likeli-
hood (over the data sets) is retained for the data type.

8.4.3 Performances

The literature on alternative methods is vast. Machine learning methods addressing
PPI prediction encompass Bayesian classifiers, decision trees, random forests,
logistic regression and support vector machines. The reader is referred to [44] (for
instance) for a recent overview of existing computational methods.

Two variants of the IntNetDB method were run. The two executions differed by
the HPRD version (more than 10,000 newly annotated PPIs), the integration of
three novel data types (phenotypic, genetic, gene context) in addition to PPI, GO,
gene expression, DDI, and the incorporation of fourteen extra data sets. The
comparison showed a drastical gain in coverage, for a similar ratio of true positives
to false positives: the reinforced integration increased prediction coverage by five-
fold (38,379 PPIs for 5,791 proteins versus 180,010 PPIs for 9,901 proteins).
Besides, not only is the depicted probabilistic approach a simple yet efficient
system to standardize the contributions of heterogeneous data types via likeli-
hoods, it is also a flexible method: the combined likelihood easily supports the
integration of any novel type of data.

8.5 Identification of the Regulatory Target Genes
of Transcription Factors

A transcription factor (TF) is a protein that controls the expression of its target
gene by binding to some specific DNA site located in the regulatory region of the
gene. ChIP-chip and ChIP-seq techniques (Chromatin Immuno-Precipitation
respectively followed by microarray gene expression measurements and by
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massively parallel DNA sequencing) provide the genome-wide list of the physical
binding sites, for a given TF. Exploiting sequence similarity to a consensus
obtained for already known binding sites is also likely to pinpoint putative binding
sites for the TF of interest. Another source of evidence lies in the variation in gene
expression induced by knock-out or mutation of the gene coding for the TF.
However, none of the above data types alone can achieve accurate and complete
identification. First, high-throughput data are prone to present high noise level.
Besides, ChIP-chip and ChIP-seq technologies only inform about physical DNA-
TF interactions. Third, putative binding sites predicted based on sequence simi-
larity with a canonical motif might actually not be bound by the TF of interest.
Finally, variations in gene expression are equally observed for genes either directly
or indirectly controled by a given TF. In the following, B, S and E will respectively
stand for binding, sequence and expression data.

8.5.1 Integrating Multiple Genomic Data Sources
with Multiple Gene Networks

To cross evidences from multiple types of genomic data, two categories of
methods have been investigated. In regression approaches, where a data type is
regressed against another, a large number of observations is required. This is a
severe limitation in the case of gene expression microarray data. In mixture model4

methods, the probabilistic framework allows inference based on the posterior
probability of being a target conditional on the multiple data evidences. In the
mixture model developed in [39], integration includes only two data types—(S, E)
or (S, B) -. This model was further adapted in [30], to jointly handle the three data
types B, S and E. So far, the mixture models used assumed conditional indepen-
dence: conditional on a gene being a target or not, the different data types are
independent. Nevertheless, for the pair (B; S), such an hypothesis is not consistent
with experimental results: the higher the similarity with the canonical site (S), the
higher the binding strength (B).

This section describes the model of Wei and Pan [41]. Therein, the multiple
sources of genomic data are modeled through a multivariate normal mixture
model, and integration of multiple gene networks with these genomic data types
relies on a Markov random field (MRF). Besides relaxing the constraint on con-
ditional independence of genomic data types, another major contribution of Wei
and Pan lies in incorporating biological prior knowledge stating that neighboring
genes tend to be co-regulated by a TF. Thus, not only does Wei and Pan’s
approach integrate several genomic data types; it allows to automatically incor-
porate knowledge from multiple gene networks (see Fig. 8.3). More and more gene

4 A mixture model is a probabilistic model that represents a population of k groups, with random
proportions p1; . . .; pk.
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networks are made available, such as protein–protein interaction networks . On the
other hand, novel networks may be inferred, such as co-expression gene networks
and networks derived from gene ontologies.

Without loss of generality, the presentation here restrains to the three genomic
data types B, S and E. It is important to note that regions which associate with TFs
according to ChIP-chip and ChIP-seq assays are not determined with single-
nucleotide resolution. Wei and Pan computed the binding data (B) from ChIP-chip
assay data: given two replicates in presence of the antibody appropriate for the TF of
interest and given two control replicates, four log2 intensity ratios (LIR) were
measured for the four combinations Immuno-Precipitation/control. The binding
score Bi of a given gene i was computed as the average of the four LIR peaks on the
coding region. If there were probes in the intergenic region, Bi was then calculated as
the maximum of the average over the coding region and the average over the
intergenic region. The sequence data (S) used by Wei and Pan was obtained as
follows: first, a consensus sequence was produced from 10 known binding sites of
the TF of interest; then the genome was scanned with respect to this consensus.
Fixing a very low threshold allowed the detection of at least one match per gene. For
gene i, Si was calculated as the maximum of all its matching scores.

8.5.2 The Unified MRF-Based Mixture Joint Model

For a specified TF, and given a set of n genes, the aim is to estimate whether gene i
is a target for a factor transcription of interest: Ti ¼ 1 denotes a target, otherwise
Ti ¼ 0. The gene i is described by ðBi; Si;EiÞ, summarizing observations for B, S
and E data. In this approach, conditional normal distributions are described for the
observed genomic data (B, S, E):

Fig. 8.3 Integration scheme
for two networks and three
types of data evidence in the
approach of Wei and Pan
[41]. A circled node indicates
that strong evidence is
observed for the
corresponding node (gene).
Bottom right section
reinforced belief in
transcription factor (TF)
target status is indicated in
black.
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PððBi; Si;EiÞ j Ti ¼ jÞ ¼ /ððBi; Si;EiÞ; lj;RjÞ ¼ /jðBi; Si;EiÞ;

where j ¼ 0; 1 and / is a trivariate normal density function of mean lj and
covariance matrix Rj. A mixture model is then depicted as:

PððBi; Si;EiÞ j TiÞ ¼ ð1� p1Þ /0ðBi; Si;EiÞ þ p1 /1ðBi; Si;EiÞ; ð8:6Þ

where p1 ¼ PðTi ¼ 1Þ is the prior probability of gene i being a target (and,
symmetrically, ð1� p1Þ is the prior probability of gene i not being a target). The
model in Eq. 8.6 has to be understood as the ‘‘superimposition’’ of two normal
densities, one under the assumption that gene i is a target (/1), and one under the
assumption that gene i is not a target (/0).

The knowledge from the Nnet gene networks is incorporated through a Markov
random field that rules the states T1; . . . Tn of the n genes according to their Nnet

neighborhoods. Wei and Pan formalized an MRF-based mixture joint model
(MRF-MJM), which writes as the following logistic regression model:

logit PðTi ¼ 1 j TSNnet

k¼1
neighði;kÞ; hÞ

� �

¼ cþ
XNnet

k¼1

bk n1ði; kÞ � n0ði; kÞð Þ=mði; kÞ;

ð8:7Þ

where neighði; kÞ designates the neighborhood of gene i in network k, parameter h
stands for ðc; b1; . . .; bNnet

Þ, njði; kÞ is the number of genes in neighði; kÞ that have
state Tj (j ¼ 0; 1) and mði; kÞ ¼ n0ði; kÞ þ n1ði; kÞ. The contribution of each net-
work k is weighted by the non negative regression coefficient bk, which therefore
measures how informative network k is. In Eq. 8.7, conditioning by TSNnet

k¼1
neighði;kÞ

indicates that the TF target status of gene i depends on the statuses of all its
neighbor genes, considered over all the Nnet networks.

In this case, estimating the likelihood is intractable. In this framework, a
tractable approximation to the joint distribution, the pseudolikelihood [1], is used
instead. Tractability is ensured by the conditional independence assumption which
leads to the following factorization:

PðTÞ ’ LpseudoðT; hÞ ¼
Yn

i¼1

PðTi j TSNnet

k¼1
neighði;kÞ; hÞ

¼
Yn

i¼1

exp cþ
PNnet

k¼1 bk ðn1ði; kÞ � n0ði; kÞÞ=mði; kÞ
� �

1þ exp cþ
PNnet

k¼1 bk ðn1ði; kÞ � n0ði; kÞÞ=mði; kÞ
� � :

ð8:8Þ

Besides the factorization, the transition from Eq. 8.7 to 8.8 uses the conversion
y ¼ logitðxÞ ¼ log x

1�x

� �
) x ¼ ey

eyþ1.
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The Bayes theorem states that PðT j ðB; S;EÞÞ / PððB; S;EÞ j TÞ PðTÞ. The
two ingredients on the right hand side are available from Eqs. 8.6 and 8.8,
respectively. An MCMC is used to estimate the posterior probability of genes
being targets of a specified TF.

8.5.3 Performances

A tremendous variety of alternative computational approaches are available. Some
pointers to general surveys are provided in [29, p. 584]. In particular, Elnitski et al.
wrote a summary on the synergism between in silico, in vitro and in vivo identi-
fication of TF binding sites [8]. On the other hand, the influential role of data
integration is stressed in the surveys provided in [17, 28].

The MRF-MJM approach was evaluated with the LexA transcription factor of
Escherichia coli. It was first noticed that allowing conditional dependence by
assuming a general conditional variance structure in the MRF-MJM model does
not increase the predictive power over assuming conditional independence.
However, as binding data and sequence data are highly correlated for target genes,
this result appears to go against intuition. It might be explained by moderate
predictive power of sequence data and a simpler model in the assumption of
conditional independence. All subsequent analyses were then run incorrectly
assuming conditional independence.

Wei and Pan tested six different integration schemes. Six instances of the MRF-
MJM approach, including simplified ones, were run: ðE; NCoEÞ, ðE; NGOÞ,
ðE; NCoE þ NGOÞ, where NCoE and NGO are gene networks respectively derived
from gene co-expression and a gene ontology (GO), and the three previous
instances with the full set of genomic data ðB; S;EÞ instead of E. Besides, instances
of the standard mixture model (SMM), which considers a single genomic data
type, were also run for comparison: SMMðBÞ, SMMðSÞ, SMMðEÞ. The genes were
ranked according to their posterior probabilities. The variation in the ranking
across these instances was studied for the genes supported by experimental evi-
dence or annotated with ‘‘strong evidence’’ in the RegulonDB database [11].

It was confirmed using ROC curves that mixed integration of both networks and
various genomic data types greatly improves over considering a single genomic
data type alone. Besides, in a mixed scheme, the improvement is less drastic when
increasing the number of genomic data types or when increasing the number of
networks. The GO-derived network constantly showed a b coefficient lower than
the co-expression network’s: it is explained by a higher connectivity of the GO
network, which entails that a target and a non target genes are more likely to be
neighbors in this network.
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8.6 Inference of Causal Relationships Among Phenotypes
via Integration of QTL Genotypes

A quantitative phenotype (or trait) is defined as any physical, physiological or
biochemical quantitative feature that may be observed for organisms. Quantitative
trait loci (QTL) mapping aims at identifying the genomic regions, or QTLs, where
genotype variation is correlated with phenotype variation. Deciphering the causal
relationships among expression traits involved in the same biological pathways—
and therefore correlated—is a current research topic. To this aim, the identification
of the eQTLs (expression QTLs) causal to each phenotype is of prime importance.
In the following, we will denote by genetic architecture (GA) of a given phenotype
the locations and effects of its (directly) causal QTLs. Conversely, GA inference
has to benefit from the information borne by the network that links the phenotypes.
Though, standard QTL mapping merely addresses one single trait at a time, not
considering a possible causal network structure among traits. Thus, QTLs that
exert a direct effect on the trait under study cannot be distinguished from QTLs
with an indirect effect (see Fig. 8.4a). To reconstruct a causal phenotype network
(CPN), several approaches in the literature include QTLs in a probabilistic
framework. However, the common feature of these approaches lies in that GA
inference and CPN reconstruction are conducted separately [3, 34, 47]. In general,
the GA is first inferred, to further help the determination of the CPN. In the
QTLnet approach, Chaibub Neto and co-authors pioneered the principle of joint
inference of CPN and GA [4].

8.6.1 Joint Inference of Causal Phenotype Network
and Genetic Architecture

Chaibub Neto et al. showed that performing the mapping analysis of a phenotype
conditional on its parents in the CPN is the way to avoid detecting QTLs with
indirect effects on this phenotype as directly causal QTLs. Namely, whereas
standard mapping analysis would test the dependence between phenotype u1 and
QTL candidate Q1 (u1 ?? Q1), conditional mapping assesses or invalidates the
dependence relation u1 ?? Q1j Pa ðu1Þ where Paðu1Þ is the set of parents of u1 in
the CPN. As the CPN is itself unknown, the QTLNet approach jointly infers the
CPN and the GA: the procedure iterates a process where updating the CPN
alternates with updating the GA. Thus, GA inference will benefit from information
on the CPN. The core idea is to learn a Bayesian network whose structure coin-
cides with the candidate CPN, using the current information available about causal
QTLs. It has to be noted that the central dogma of biology constrains unidirec-
tionality for causality, from QTL to phenotype: arcs u! Q are not allowed.

Adding information about causal QTLs is crucial to distinguish between can-
didate phenotype networks, when learning a phenotype network. The network
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which best fits the data is that which maximizes some given criterion. In a
probabilistic framework without QTL data integration, this criterion would rely on
the joint probability Pðu1; . . .; unÞ. With QTL integration, the probability to be
taken into account is Pðu1; . . .; un j GAÞ where GA stands for the r QTLs
available: Q1; . . .; Qr. Let us consider a toy-example where the networks (1)
u1 ! u2 ! u3 and (2) u1  u2 ! u3 cannot be distinguished without QTL data
integration since they have the same joint probability Pðu1; u2; u3Þ.5 We now
incorporate QTL knowledge as Q2 affecting u2 but neither u1 nor u3 directly and
obtain two mixed models (see Fig. 8.4b). Then, the conditional probabilities of the
two networks are: Pð1Þðu1; u2; u3 j Q2Þ ¼ PðQ2Þ Pðu1Þ Pðu2 j Q2; u1Þ Pðu3 j
u2Þ and Pð2Þðu1; u2; u3 j Q2Þ ¼ PðQ2Þ Pðu2 j Q2Þ Pðu1 j u2Þ Pðu3 j u2Þ. In the
general case, the previous conditional probabilities are not equal.

8.6.2 The Mixed Model

To model continuous phenotypes that are involved in a causal phenotype network
while also being under the dependence of discrete QTLs, a conditional Gaussian
regression model is used: conditional on the genotypes and, possibly, covariates,
the phenotypes follow a multivariate normal distribution.

Given n individuals, t phenotypes, let u ¼ ðu1; . . .;unÞT represent all pheno-

type values, with ui ¼ ðu1i; . . .;utiÞ
T representing the t phenotype values for

individual i. Let �i ¼ ð�1i; . . .; �tiÞT be independent normal error terms. The
regression model for the phenotype p of individual i writes:

upi ¼ lffipi þ
X

v2PaðupÞ
bpv uvi þ �pi; �pi�Nð0; r2

pÞ: ð8:9Þ

The genetic contribution describes the effects of QTLs and possibly covariates:
lffipi ¼ lp þ Xpi hp, where lp is the overall mean for phenotype p, Xpi represents the

(a) (b)

Fig. 8.4 Disambiguisation of causal relationships. a Left direct effect of QTL Q1 on phenotype
u2; right indirect effet of Q1 on u2. In both cases, u2 6?? Q1. b The two models have the same joint
probability Pðu1; u2; u3) but have different conditional probabilities Pðu1; u2; u3 j Q2Þ given
the QTL data

5
Pð1Þðu1; u2; u3Þ ¼ Pðu1Þ Pðu2 j u1Þ Pðu3 j u2Þ and Pð2Þðu1; u2; u3Þ ¼ Pðu2Þ Pðu1 j u2Þ Pðu3 j u2Þ:

Equality is assessed from the Bayes theorem.
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row vector of genetic effect predictors derived from the QTL genotypes along with
any covariates, and hp is a column vector of all genetic effects defining the genetic
architecture of phenotype p augmented with any covariates. In the phenotypic
contribution (second term of Eq. 8.9), PaðupÞ designates the set of parents of
phenotype p in the phenotype network and bpv models the effect of parent phe-
notype v on phenotype p.

8.6.3 Causal Phenotype Network Reconstruction

Since the graph space grows super-exponentially with the number of phenotypes,
reconstructing a CPN requires a heuristic. An MCMC is implemented, that
combines sampling over CPN structures and QTL mapping. However, conceptu-
ally, a mixed structure G ¼ Gu [ GA, is considered, which is the CPN Gu aug-
mented with the genetic architecture GA connecting QTLs to phenotypes (see Fig.
8.5). The posterior probability of a candidate Gu is estimated as explained below.

From Eq. 8.9, we know that Pðupi j Gu;GA; cÞ is Nðlffipi þ
P

v2PaðupÞ

bpvuvi; r
2
pÞ,

6 where c stands for the set of parameters of the mixed model (i.e. the
coefficients b). Under the assumption of independence between the n individuals,
the likelihood of the candidate CPN factorizes as:

Pðu j Gu;GA; cÞ ¼
Yn

i¼1

Yt

p¼1

Pðupi j Gu;GA; cÞ:

In this case, it is straightforward to compute the marginal likelihood by inte-
grating the previous expression with respect to c:

Pðu j Gu;GAÞ ¼
Z

c
Pðu j Gu;GA; cÞ Pðc j Gu;GAÞ dc:

Finally, the posterior probability of structure Gu conditional on the data may be
computed from:

PðGu j u;GAÞ / Pðu j Gu;GAÞ PðGuÞ;

where PðGuÞ is a prior on the CPNs.
Thus, integrating knowledge about QTLs actually modifies the likelihood

landscape for the search space of Gu structures.
To navigate in this search space, three moves are implemented in the MCMC

scheme of Chaibub Neto et al.: addition of a directed edge, removal or direction

6 If X ¼ yþ E, with E�Nð0; r2Þ, then X�Nðy; r2Þ.
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reversal. Subsequent to a move, (conditional) QTL mapping is replayed for those
phenotypes whose set of parent nodes was modified by the move. Finally, a
posterior probability for the causal relationship ui ! uj (1� i; j� t) involving
each pair of phenotypes is assessed through Bayesian model averaging: for each
directed edge ui ! uj, the posterior probability is estimated as the frequence of
occurrence observed over all the models sampled by the MCMC process.

8.6.4 Performances

First, 1,000 tests were performed based on simulated data generated under two
conditions: respectively weak and strong dependences between the phenotypes and
their eQTLs. The genetic architectures produced were compared with those
obtained through standard QTL mapping. Conditional mapping (see first paragraph
in Sect. 8.6.1) revealed the true architecture in both conditions. To estimate the
quality of the phenotype network inference, the authors measured the frequency
that the posterior probability of the true network was the highest, second highest,
etc. Under the strong dependence condition, the true network is identified as the
best one in 84 % of the cases. The results are more subdued under the weak
dependence condition.

The QTLnet method was then used on real data (132 mice of a F2 intercross,
3,421 transcripts, 1,065 markers), to derive the causal phenotype network relative
to 14 highly correlated transcripts. A consensus network was constructed through
Bayesian model averaging. Interestingly, this consensus network suggests a key
role of one of the transcripts in the regulation of the other transcripts in the
phenotype network.

Fig. 8.5 The mixed model in the approach of Chaibub Neto et al. [4]. a The genetic architecture
defines the QTL mapping (arrows in light grey); the causal network defines the dependences
between the phenotypes (transcripts) (arrows in dark). b Comparison of the genetic architectures
inferred without and with conditioning (in the latter case, the QTLs are framed) (see Sect. 8.6.1)
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8.7 Prediction of Protein Function Through GO-Enriched
Networks of Multiple Related Species

In Sect. 8.5, a gene ontology (GO) was used to derive a functional coupling gene
network, to enhance the identification of transcription factor targets. Therein, a
preprocessing step merely derived a gene network, based on some similarity
measure in the ontology. In the present section, we outline an approach which
benefits from GO knowledge on the fly. As the most developed biological ontology
is the Gene Ontology [36], it is not surprising that this approach addresses the
prediction of protein function.

Improving the coverage and accuracy for functional annotation of proteins is an
active field in post-genomics research. On the one hand, only labor intensive
small-scale experiments are able to provide direct evidence about the functions of
proteins such as energy and RNA metabolism, signal transduction, translation
initiation, enzymatic catalysis and immune response. In contrast, though numerous
high-throughput technologies allow large-scale experimental investigations, the
various types of molecular data but only yield indirect clues about protein func-
tion. To reach the objectives of coverage and accuracy, much is expected from
computational methods.

Established prediction methods use sequence or structure similarity to transfer
functional annotation from protein to protein [22]. However, it is well known that
sequence similarity does not obligatorily entail functional identity. More reliable
evidence is derived from indirect information provided by the biological context of
the protein. Such contextual information includes physical protein–protein inter-
actions (PPI), genetic interactions and co-expression of the genes coding for the
proteins. These contextual data are commonly represented as networks. Thus, a
wide category of methods predicts the function of a protein from the known
functions of its neighbors in the network [2, 14, 45]. Besides, incorporation of
heterogeneous data has been proven useful to increase the power of automated
predictive systems [26].

Probabilistic graphical models offer an appealing framework to propagate
functional annotations through neighborhoods; this explains that approaches based
on these models are not new to protein function inference (e.g. [6, 19, 26]).
However, severe limitations hamper these approaches in the (frequent) case of
proteins that are isolated in the network or whose neighborhood is poorly anno-
tated. Refined GO-based strategies have been proposed to overcome these issues.
Amongst them, the probabilistic approach of Mitrofanova and collaborators
combines random Markov models and Bayesian networks into a single model [23].

In classical approaches, probabilistic inference relies on partial knowledge of
functional annotations to discover the missing functions by passing on and han-
dling uncertain information over a large network. For instance, this network may
be derived from knowledge on physical interactions (PPIs). One of the original
concepts of Mitrofanova and co-workers’ model lies in connecting the networks of
two (or more) related species into a single computational model. The rationale
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behind this approach exploits the fact that in most cases, proteins of different
related species that share high similarity—orthologs—exerted the same estab-
lished function before the speciation event. The second original concept of the
approach described is the direct integration of an ontology or rather, of a sub-
ontology (GOS), into the graphical model. This integration allows the simulta-
neous prediction for the multiple functional categories—or terms—described by
the GOS. In the combined model, each protein is represented by its own GOS. As a
consequence, during function inference, not only is the information passed
between protein neighbors within a species, information also percolates within the
GOS. Moreover, due to inter-species connections between orthologs, such infor-
mation is diffused in an enlarged network.

8.7.1 The GO-Enriched Intra-Species Model

For the sake of a progressive exposition, we first present a model deprived of inter-
species relationships. In the model, each protein is represented by a Bayesian
network whose structure is a replicate of the GO sub-ontology (GOS) of interest
(see Fig. 8.6a). Each protein has its own annotation (positive, negative, unknown)
for each of the GOS terms. A positive annotation means that the protein has the
function represented by the GOS term. The final objective of the probabilistic
inference is to assign an annotation (positive/negative) to each term (GOS node)
labeled unknown in the combined model. The GOS is a directed acyclic graph
where the relationship between child c and parent p may be ‘‘IS A’’ or ‘‘IS PART
OF‘‘. The GOS information is naturally modeled as a Bayesian network (BN). The
so-called true-path rule for gene ontologies requires that if a protein i is positively
annotated at a child node t (denoted by xt

i ¼ þ), then it must also be at all the
ancestor nodes of this child. Consequently, positive annotations may be expanded
up within a GOS whereas negative annotations are expanded down if all the parent
terms of a child term are annotated negative. It follows that conditional proba-
bilities Pðxt

i ¼ þ j paitÞ and Pðxt
i ¼ � j paitÞ need be estimated only if one parent

at least is annotated positive within a possible assignment pait of the parents (for
instance, pait ¼ ðþ;þ;�Þ in the case when node t has three parents in the GOS).

On the other hand, a pairwise Markov random field (MRF) is used to encode
connections between the proteins, based on some similarity measure between the
proteins. Such measures may be derived from PPIs or orthology (i.e. sequence
similarity). In the model resulting from GOS and MRF combination, a potential
function, wintra, is defined; this potential expresses the probability of joint anno-
tation of two proteins i and j at a GOS term t, conditional on their being similar. In
the case of a PPI-based measure, similar proteins are defined as interacting pro-
teins: then, the probabilities wintraðxt

i; xt
jÞ ¼ Pðxt

i; x
t
j j interactionÞ, with xt

i; x
t
j 2

fþ;�g are estimated from a training set. In the case of a sequence similarity-based
measure, a potential is derived from a pairwise normalized BLAST score sB:
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wintraðþ;þÞ ¼ wintrað�;�Þ ¼ sBði; jÞ; wintraðþ;�Þ ¼ wintrað�;þÞ ¼ 1� sBði; jÞ.
If both similarity measures are available for a given pair of proteins, thus defining
two potentials, the resulting potential is defined as the product of the two former.

The knowledge about the annotation information of protein i, at GOS term t is
modeled through function /: /ðþÞ ¼ 1; /ð�Þ ¼ 0 for a positive annotation;
/ð�Þ ¼ 1; /ðþÞ ¼ 0 for a negative annotation; equiprobability for an unkown
annotation (/ð?Þ ¼ 0:5).

The MRF and the GO-based BNs are combined into a single hybrid model
[18]—(see Fig. 8.6b). Based on the material above defined, the joint distribution of
the functional term annotations (Xt

i ) over the set of proteins P is defined as a
pairwise MRF distribution (see Eq. 8.2), whose statement is simplified as follows
for the sake of conciseness:

Pðfxt
igt2S;i2PÞ ¼

1
Z

Y

t2S

Y

i2P
/ðxt

iÞ
Y

i;j2edgesðMRFðPÞÞ
wintraðxt

i; x
t
jÞ

Y

i2P
ðxt

i j paitÞ:
ð8:10Þ

S is the sub-ontology of interest and Z is the so-called normalizing constant (see
Definition 2, Sect. 8.2). In the above joint distribution, it is easy to identify the
contribution of the Markov random field defined by the similarity relation between
proteins, and the contribution of the Bayesian networks. The flow of information
about annotation is propagated through the hybrid model using a message-passing
mechanism tailored for such hybrid models.

(a)

(b) (c)

Fig. 8.6 The combined model of Mitrofanova et al. [23] for protein function prediction. a The
Gene Ontology (GO) substructure. b The GO-enriched intra-species model. c The combined
model obtained through inter-species homology (Two species are considered: sp1 and sp2)
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8.7.2 The GO-Enriched Inter-Species Model

The extension to the inter-species case is straightforward when two related species
are considered. This time, when sequence similarity is ascertained for protein i in
the first species and protein j in the second species, a corresponding potential
function winter is defined. Similarly to the scheme described by Eq. 8.10, the
combined model is merely augmented with undirected edges connecting the
identical GOS term nodes of i and j proteins (see Fig. 8.6c). The joint distribution
is readily extended as follows: a second intra-species factor is added,
Q

i2P0 /ðxt
iÞ
Q

i;j2edgesðMRFðP0ÞÞ wintraðxt
i; x

t
jÞ where P0 is the set of proteins for the

second species; an inter-species factor is also added, that accounts for the (valid)
edges connecting some protein in P to some other similar protein in P0:
Q

i;j2edgesðMRFðP[P0ÞÞ winterðxt
i; x

t
jÞ.

8.7.3 Performances

Mitrofanova and collaborators performed tests on Yeast and Fly. Respectively
6,008 and 12,199 proteins were considered for Yeast and Fly species. Various tests
were performed based on (1) executions (S) of the approach without integration of
the gene ontology, that is single-term prediction, and (2) runs (GO) of the approach
with the integration of the gene ontology. Besides, annotation transfer by similarity
was considered either within a single species (1), or within two species (2). We
will denote S1, S2, GO1 and GO2 these four kinds of tests. Figure 8.7 recapitulates
the experimental protocole.

The comparison S1 versus GO1 is meant to evaluate the impact of using a gene
ontology. In this baseline test, predictions were then compared for a single term.
The improvement in the prediction is outstanding in all cases: a gain of 26 % (from

Fig. 8.7 Evaluation of the
impact of gene ontology
integration and inter-species
connection on accuracy, in
Mitrofanova et al.’s method.
S1 denotes a run with intra-
species connection only,
whereas S2 indicates intra-
and inter-species connection.
GO1 indicates the integration
of gene ontology knowledge
to the basic scheme S1 (and
symmetrically for GO2 and
S2)
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74 to 100 %) is observed for the Fly species; an increase of 47 % (from 44 to 91 %)
is observed for the Yeast species. Thus, in the case of the Fly species, the inte-
gration of GO knowledge suffices to produce the accuracy of 100 %.

The comparison S1 versus S2 aims at evaluating the influence of annotation
transfer between genomes, through inter-species connection. Mitrofanova and
collaborators performed 5-cross validation for the Fly, Yeast and combined Yeast-
Fly networks. The results are contrasted: an under-performance is obtained in the
case of the Fly species, for which the accuracy decreases by 19 % (from 74 to
55 %); a gain of 28 % (from 44 to 72 %) is observed for the Yeast species. Thus,
inter-species connection alone may be counter-productive (Fly). If a gain is
observed through inter-species connection, it is more subdued than the gain
obtained through integration of a gene ontology (Yeast).

The aim of comparing S2 against GO2 is to measure the impact of the inte-
gration of GO knowledge in presence of inter-species connection. This time, in the
case of the Fly species, inter-species connection does not interfere to lower the
performance, which confirms the prominent role of the GO integration (55 % to
100 %). A gain of 25 % (from 72 to 97 %) is observed for the Yeast species (to be
compared to the increase from 44 to 91 % without inter-species connection).

A significant gain of 8 % (from 91 to 97 %) is thus observed for the Yeast
species in the GO1 versus GO2 test.

The main conclusion is that the GO integration exerts the most influential role.
Inter-species connection may perform worse than merely considering a single
genome. However, it is always beneficial to integrate both GO knowledge and
inter-species connection. Yeast species shows more substantial improvements
compared to Fly species: this may be explained by the higher quality of Fly data
and hence better neighborhoods for the Fly proteins. Annotation transfer is
enhanced through two independent principles: simultaneous consideration of
multiple but related functional GO categories, higher connectivity due to orthology
or PPI knowledge. Expanded protein coverage is another observed advantage.

In the spirit of the comparison S2 versus GO2, Mitrofanova and collaborators
also compared their full approach (GO2: GO integration and inter-species con-
nection) to the method of Naria et al. [26] which can be seen as a variant of S2.
The method of Naria et al. relies on a probabilistic Bayesian framework that
integrates networks (e.g. PPI and/or expression networks) with categorical features
(i.e. presence of protein domains, knockout phenotype (e.g. ‘‘starvation sensitiv-
ity’’) and cellular location categories). The case of lack of information about
categorical features is taken into account in [26], which thus allows the compar-
ison. Besides, for comparability, both PPI and sequence similarity were used to
build the networks input to the two methods. The method of Mitrofanova et al.
improves over that of Naria et al.: for the Fly species, the accuracies observed are
respectively 100 and 45 %; for the Yeast species, the accuracies are 97 and 50 %.
Again, GO integration is shown to play a more prominent role than inter-species
connection. This improved performance can be attributed to the increased con-
nectivity endowered in the GO structure. However, it has to be noted that the S2
executions of Mitrofanova and co-workers’ method already outperformed the (S2)

8 Probabilistic Graphical Modeling in Systems Biology 267



runs of Naria et al.’s approach: 55 versus 45 % for the Fly species, and 72 versus
50 % for the Yeast species. It is difficult to speculate on the reasons why annotation
information percolates more efficiently in the probabilistic model of [23] (without
GO integration) than in that of [26]. Unfortunately, no common types of results are
available (such as accuracy, false positive rate, or number of true positives) that
could allow the comparison of the methods both at full integration level (GO2 for
Mitrofanova et al.’s method, and integration of categorical features for Naria
et al.’s approach.).

Finally, with a Gene Ontology subtree of size 8, the running times observed for
each five-cross validation round on Yeast, Fly and Yeast-Fly models were 35, 59
and 28 mn on average on a standard personal computer. The third low execution
time is explained by faster convergence in the combined network, probably due to
denser sources of evidence.

8.8 Discussion and Future Directions

In this chapter, we have presented different approaches based on probabilistic
graphical models, to illustrate the use of this class of models as an integrative
framework for systems biology. In particular, various forms of Markov random
fields were described, that were used to model the propensity to share a common
state for neighbor nodes in a single network or in multiple networks. For instance, in
the illustration devoted to genetic association study (GAS), the MRF models a single
network—a biological pathway—and the state accounts for association with the
disease.

One of the simplest Bayesian networks that can be imagined, the naive Bayes
classifier, also represents one of the most flexible tools to integrate multiple data
types. In this line, the method presented here to detect protein–protein interactions
(PPIs) assigns equal weights to the genomic data types. However, a limitation lies in
that the positive and negative sets of examples and counter-examples requested by
this simple method do not necessarily benefit from equal covers across the data types.

Enhancement through mixed integration of genomic data types and gene net-
works is shown for the identification of the target genes of transcription factors (TF).
It was emphasized that the key to improvement is much more mixing data sources
than multiplying either the number of genomic data types or the number of networks.
In the probabilistic model, a single Markov random field integrates and weights the
contributions of the gene networks. Neighbor genes therein are expected to share a
common state (target or non target). In the global model, genomic data types are
integrated through a prior distribution. In the GAS application, the prior distribution
accounted for the integration of pathway knowledge.

The gene networks mentioned above provide qualitative knowledge to rely
upon. This time, for causal phenotype network (CPN) reconstruction, a conditional
Gaussian regression model was used to integrate quantitative characteristics
(continuous phenotypes) and qualitative assumptions (latent relationships between
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the phenotypes). In contrast with the preceding approaches, prior knowledge—
consisting in the genetic architecture (GA)—is not fixed from the start but is
instead refined throughout the CPN inference procedure: feedback from the most
recent incumbent CPN offers opportunity to update the GA and vice versa.

The second (PPIs) and third (TF target genes) models presented both rely on
shared functional annotation. Raw data is used in the second model whereas the
third one may incorporate a gene network induced from a gene ontology. In
contrast, accounting for ontological knowledge thoroughly impacts the statistical
inference scheme in the last approach presented, that addresses protein function
prediction. This approach combines ontology replication with intra- and -inter-
species homology knowledge. Again, as for the GAS illustration above, a Markov
random field (MRF) is built from a known structure, here a network connecting
similar proteins. Similarity is assessed from PPI knowledge as well as intra- and
inter-species homology. Unlike the GAS approach, neighbors in the network tend
to share a common hierarchy of function annotations instead of a single variable.
The originality of the mixed model arises from the expansion of the protein nodes
of the MRF into Bayesian networks (BNs), each replicating the gene ontology
substructure. The completion by links between identical term nodes in similar
protein meta-nodes provides a highly connected network. Thus boosted informa-
tion propagation is expected.

Among the five integrative methods reviewed, the one addressing PPI prediction
and the one predicting TF gene targets are perhaps the most exemplary in that they
take advantage of various genomic data and/or networks. In the case of the TF gene
target application, integrating genomic data and networks outstandingly improves
the results but then, increasing the number of genomic data types or networks does
not provide much improvement. On the other hand, the illustration on the prediction
of protein functions reveals the prominent role of gene ontology (GO) knowledge.
GO integration exerts the most influential role. However, in this context, it is always
beneficial to integrate both GO knowledge and inter-species connection.

The previous paragraph raises in particular the question on the possible depen-
dence of the various data sources and on how this dependence is ignored or modeled.
In the illustration of the PPI detection, the naives Bayes classifier requires inde-
pendence of the data types conditional on the state variable (PPI=:PPI). Robustness
to deviation from this rule was not evaluated in this framework. However, in the case
of another model and for another application (identification of TF target genes), the
conclusion was that the simplifying assumption of conditional independence does
not decrease performance. The PPI detection illustrates here a case where multiple
data sets may be examined within a common data type. Retaining the empirical
maximum likelihood computed over all data sets of the same data type avoids the
dependence bias for this type. Again, an open question remains the significance of a
high likelihood obtained for some data type if there are cover biases between data
types, in terms of positive and negative sets.

Further progress in the field will mainly depend on improving implementations
and allowing actual flexibility. For instance, MCMC implementations rely on
hyperparameters whose tuning can hardly be delegated to the end-user. Besides, it
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is worth examining how to incorporate additional biological knowledge in priors,
as in the case of causal phenotype network inference. The reported advantages of
probabilistic graphical networks in promoting highly integrative approaches
combining various heterogeneous data sources may be sometimes offset by the
computational burden. From the theoretical viewpoint, for all models presented
here, generalization to multiple data types is straightforward. Mitrofanova et al.’s
method readily generalizes to more than two species but scalability might be an
issue. The method designed to predict protein functions was shown tractable for
gene ontology substructures of size below 20, which might appear insufficient to
some end-users and therefore requires further work. The next-generation
sequencing era is also that of grid and cloud computing. For example, three of the
models presented here use an MCMC scheme. MCMCs are amenable to distrib-
uted implementations. As more data and more data types will become available,
adding a novel data type should be automatically handled by the models’ imple-
mentations. Therefore, the dissemination in the biological community of integrated
PGM-based approaches also implies that service-oriented integration accompanies
theoretical developments.
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Chapter 9
Innovations of the Rule-Based Modeling
Approach

Lily A. Chylek, Edward C. Stites, Richard G. Posner
and William S. Hlavacek

Abstract New modeling approaches are needed to tackle the complexity of cell
signaling systems. An emerging approach is rule-based modeling, in which
protein-protein interactions are represented at the level of functional components.
By using rules to represent interactions, a modeler can avoid enumerating the
reachable chemical species in a system, which is a necessity in traditional mod-
eling approaches. A set of rules can be used to generate a reaction network, or to
perform simulations with or without network generation. Although the rule-based
approach is a relatively recent development in biology, it is based on concepts that
have proven useful in other fields. In this chapter, we discuss innovations of the
rule-based modeling approach, relative to traditional approaches for modeling
chemical kinetics. These innovations include the use of rules to concisely capture
the dynamics of molecular interactions, the view of models as programs, and
agent-based computational approaches that can be applied to simulate the
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chemical kinetics of a system characterized by a large traditional model. These
innovations should enable the development of models that can relate the molecular
state of a cell to its phenotype, even though vast and complex networks bridge
perturbations at the molecular level to fates and activities at the cellular level. In
the future, we expect that validated rule-based models will be useful for model-
guided studies of cell signaling mechanisms, interpretation of temporal phospho-
proteomic data, and cell engineering applications.

Keywords Computational modeling � Combinatorial complexity � Protein-
protein interactions � Cell signaling � Rule-based modeling � Formal languages �
Simulation algorithms � Chemical kinetics

Acronyms

BEM Bond electron matrix
BNGL BioNetGen Language
ODE Ordinary differential equation
SBGN Systems Biology Graphical Notation
SBML Systems Biology Markup Language

9.1 Introduction

An important aim of systems biology is to understand phenomena that arise from
the interactions of the component parts of cellular regulatory systems [1], such as
genes, proteins, and metabolites. Key components of many regulatory systems
have been studied extensively in isolation, which remains a common approach for
investigating cellular regulation. Synthesis of the knowledge gained from reduc-
tionist studies, and accompanying development of systems-level understanding,
necessitates the use of computational models that can account for the complexity
of cellular regulatory networks [2–6]. Models are useful because they can make
testable predictions and elucidate the logical consequences of the assumptions
upon which a model is based. Models can advance understanding in other ways
[7], for example, by consolidating available knowledge, visualizing this knowl-
edge to make it more accessible, and revealing knowledge gaps. For a model to be
useful, it need not capture all known mechanistic details, but the level of detail
included in a model should be suitable for the system of interest and the questions
that a modeler intends to ask.

Here, we focus on cell signaling systems. These systems consist of interacting
molecules that coordinate responses to changes in the environment (signals).
Aspects of these responses may not always be possible to predict using intuition
alone. Indeed, molecularly targeted therapies, such as RAF inhibitors for cancer
treatment [8], may lead to unexpected and even harmful outcomes due to complex
repercussions emanating from perturbed molecular states. To better understand
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how cell signaling systems process information and respond to stimuli, we need
mathematical/computational models that capture the chemical kinetics of molec-
ular interactions in these systems. These physical interactions have been found to
be dynamic [9, 10], regulated (viz., protein-protein interactions that are affected by
post-translational modifications [11]), and mediated by modular components (e.g.,
domains and linear motifs [12]). Thus, it seems worthwhile to develop models that
can account for these mechanistic details.

However, mechanistic details of protein-protein interactions in cell signaling
systems give rise to at least two significant challenges for modelers. The first
challenge is size: a signaling system typically contains numerous proteins [13]. The
second challenge is combinatorial complexity [14, 15]: a protein may participate in
multiple interactions and undergo post-translational modifications at multiple sites.
As a result, a large number of chemical species can potentially be populated.
Traditional modeling approaches, such as those indicated in Fig. 9.1, are poorly
suited to cope with combinatorial complexity because they require enumeration of
every reachable species. An alternative approach more suited for modeling of cell
signaling systems, and other types of biochemical systems, is that of rule-based
modeling, which is distinguished from traditional modeling approaches in several

Population sizes

M
ix

in
g

ODEs

PDEsBD

KMC

Fig. 9.1 Traditional modeling approaches. For well-mixed systems with large population sizes
(i.e., populations that are large enough for concentrations to be continuous), ordinary differential
equations (ODEs) can be used. For well mixed-systems with small population sizes, kinetic
Monte Carlo (KMC) methods (e.g., Gillespie’s method) may be more appropriate. If the rate of
mixing in a system is slower than the rate of chemical reactions, spatial effects can be expected to
be important. In these cases, partial differential equations (PDEs) and Brownian dynamics (BD)
can be used for systems with large and small population sizes, respectively. For each of these
traditional modeling approaches, there is a corresponding rule-based approach. BioNetGen [16]
and Smoldyn [17] can perform ODE-based and KMC-based simulations. Other simulators,
including DYNSTOC [18], KaSim [19], NFsim [20], and RuleMonkey [21] can also perform
KMC-based simulations. BNG@VCell [22] and Simmune [23, 24] can perform PDE-based
simulations. Smoldyn [17] can also use BD to model diffusion of molecules
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ways. Here, we review key innovative features of the rule-based modeling
approach. It is a method of systems biology that is likely to grow in importance in
the future, in part because of the number of sophisticated software tools now
available to support it. For example, see [16–24]. There is also a large body of
knowledge available about a number of cell signaling systems and a need to
formalize this knowledge.

To illustrate the size and combinatorial complexity of a well-studied cell sig-
naling system, let us consider a subset of the proteins involved in signaling via the
epidermal growth factor receptor (EGFR). Specifically, let us focus on 21 proteins
included in the model of Chen et al. [25]; it is worth noting that the NetPath database
lists over 400 proteins involved in EGFR signaling [13]. Based on information
available in public databases, on average each of the 21 proteins contains 8.2 sites of
phosphorylation [26], 2.6 domains [27], and 0.6 motifs [28], and has 6.5 interaction
partners among the other 20 proteins [29]. These statistics are summarized in
Fig. 9.2. Enumeration of every possible species of interest that could arise in this
subsystem would be impractical, if not impossible, without the use of simplifying
assumptions to reduce combinatorial complexity. For example, consider Gab1, Raf-
1, and EGFR. According to Phospho.ELM, these proteins have 14, 21, and 35 sites of
phosphorylation, respectively [26]. As a result, Gab1 has 214 = 16,384 possible
phosphorylation states, Raf-1 has 221 & 2 9 106 possible phosphorylation states,
and EGFR has 235 & 3.4 9 1010 possible phosphorylation states.

Number of S/T/Y phosphorylation sites
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Fig. 9.2 Sites, modifications and interactions of proteins involved in EGFR signaling. Gene
names of the proteins considered here are EGF, NRG1, EGFR, ERBB2, ERBB3, ERBB4, SHC1,
GRB2, SOS1, GAB1, PIK3RI, PIK3CA, PDPK1, AKT1, KRAS, RASA1, RAF1, MAP2K1,
MAPK1, PTEN, and PTPN11. a Domains considered are those documented in the Pfam database
[27]. b Similarly, motifs were obtained from ELM [28]. c Phosphorylation sites were obtained
from Phospho.ELM [26]. d Interaction partners were obtained from HPRD [29]
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The challenge of combinatorial complexity can be addressed using the rule-
based modeling approach [30–32]. In this approach, proteins are represented as
structured objects whose components can interact independently of one another
unless otherwise specified. Contextual constraints on protein-protein interactions
can be captured in rules, which include necessary and sufficient conditions for
firing of reaction events. One can view reactants as satisfying conditions required
at specific sites, as specified in rules. Fewer simplifying assumptions are typically
required and a more comprehensive picture of a signaling system can be developed
that is more aligned with mechanistic understanding.

In this chapter, we discuss innovations of the rule-based modeling approach.
The first innovation that we discuss is the use of rules, which builds on concepts
that have proven useful in other fields. A second innovation is the use of formal
languages to specify models, allowing models to be viewed as programs. A third
innovation is network-free algorithms for stochastic simulation of agent-based
models consistent with the law of mass action. These algorithms are needed for
mechanistic modeling of cell signaling on a large scale.

9.2 Use of Rules to Represent Molecular Interactions
in Cellular and Molecular Biology

The network motifs (e.g., the writer, reader, eraser motif, which consists of
tyrosine phosphorylation, SH2 domain binding, and dephosphorylation [33]) and
subsystems that constitute a signaling system may each involve only a few dif-
ferent proteins. However, interactions among these proteins may give rise to far
larger numbers of distinct chemical species through combinations of the different
possible interactions and modifications [14, 15, 34, 35]. To capture these effects, a
number of tools and modeling frameworks have been developed that use rules to
represent molecular interactions at the level of molecular components, or sites.

Among the first software tools developed for rule-based modeling of biological
systems were OLIGO [37] and StochSim [38, 39]. OLIGO is capable of generating
reaction networks for assembly of oligomeric complexes, but does not capture
regulation of interactions through post-translational modifications. This capability
is provided in StochSim, where proteins are represented as multi-state entities.
A protein is encoded as a set of ‘‘flags’’ that represent binding or modification states.
During a simulation, molecules are selected randomly and a list of rules is used
to determine whether a reaction can occur between them (i.e., whether states can
change). Although StochSim can be used to effectively capture changes in state, it is
poorly suited for explicitly tracking the connectivity of molecular complexes.

Another early approach, developed by Regev et al. [40], uses p-calculus to
model a cell signaling system as a concurrent computational system. In this
approach, molecules and sites are treated as parallel processes that can behave
independently of one another, in accordance with a set of rules. Stochastic
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p-calculus [41] and tools implementing this method, such as BioSPI [42], BlenX
[43], and SPiM [44, 45], enable simulation of biochemical kinetics. However, the
use of p-calculus introduces artifacts from the study of concurrency, such as
directionality of communication.

An early example of a non-trivial rule-based model is that of Goldstein et al.
[46] and Faeder et al. [47]. This model is equivalent to 354 ODEs with 3,680
distinct right-hand-side terms, making it tedious to specify using traditional
approaches. The model was used to investigate early events in signaling via the
high-affinity receptor for IgE. The rule-based approach has since been applied
extensively to study immunoreceptor signaling [48–55]. However, these and other
applications are not the main subject of this chapter; instead, we focus on
methodology.

To demonstrate the use of rules, let us consider a system in which a scaffold, S,
may bind ligand A with a forward rate constant of k+A and a reverse rate constant
of k-A. The scaffold S may also independently bind ligand B with a forward rate
constant of k+B and a reverse rate constant of k-B. Thus, the system has six species:
S, A, B, a complex of S and A, a complex of S and B, and a ternary complex of S, A,
and B. Figure 9.3 illustrates traditional formulations of a model of this system.
Panels A and B show the reactions of the model as a list and as a reaction scheme,
respectively. Panel C is a visualization of the model using the conventions of
Systems Biology Graphical Notation (SBGN) [36]. Panel D shows the six ODEs of
the model that follow from mass-action kinetics. The ODEs characterize the
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Fig. 9.3 A model of scaffold-ligand interactions traditionally formulated. Ligands A and B bind
non-cooperatively to scaffold S. a A list of reactions with associated rate constants for forward
and reverse reactions. A, B, and S represent unbound proteins. CA and CB represent S bound to
A and B, respectively. CAB represents the ternary complex of S, A, and B. b A reaction scheme,
i.e., an organized layout of the reactions of Panel A. c An SBGN (Process Diagram) [36]
representation of the model of Panels A and B. d The model in the form of a system of ODEs: the
variables x1,…, x6 represent the concentrations of S, A, B, CA, CB, and CAB, respectively
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change with time of each of the six concentrations for a well-mixed reaction
compartment and continuous population levels (i.e., large numbers of molecules).

A rule-based formulation of the same model is illustrated graphically in
Fig. 9.4. This model can be encoded in a number of rule-based modeling lan-
guages. As we will discuss, the most commonly used languages for rule-based
modeling are BioNetGen Language (BNGL) [16, 59] and Kappa [31, 60, 61], and
we will use shared conventions of these languages in our description of the model.
The scaffold is represented as a structured object, S, with two components, a and
b. These components are binding sites that recognize ligands A and B, respec-
tively. Ligand A contains a component s that binds a in S. Similarly, ligand B
contains a component s that binds b in S. Figure 9.4a illustrates two rules that
capture the interactions among these molecules. The first rule specifies the con-
ditions necessary for S to bind A: S must have an unbound component a and A
must have an unbound component s. We assume that the state of site b does not
affect the interaction between S and A, so it is omitted from the rule. If b could
affect the interaction between S and A (e.g., through an allosteric mechanism), it
would be possible to express such an effect by appropriate modification of the rules
that comprise the model. The second rule specifies the conditions necessary for S
to bind B, which are similar to those of the first rule. These two rules represent the
same set of interactions as the eight unidirectional reactions and the six ODEs
shown in Fig. 9.3. Figure 9.4b shows the model visualized as a contact map, which
in general provides an illustration of all molecules, components, modifications
(none in this model) and interactions that are included in a model. Figure 9.4c is an
alternative rendering of the contact map.
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Fig. 9.4 A rule-based model of scaffold-ligand interactions. a Two rules visualized using the
graphical conventions of Faeder et al. [56]. Components not affecting an interaction are omitted
from a rule. Proteins are represented as simple colored graphs. The ‘‘color’’ of a graph is the name
of the protein that the graph represents. By convention, boxes enclose vertices of the same color.
Bonds are represented as edges, which connect vertices that represent cognate binding sites.
A BioNetGen Language (BNGL) encoding of the first rule is S(a) ? A(s)\-[
S(a!1).A(s!1) kpa,kma. A BNGL encoding of the second rule is S(b) ? B(s)\-[
S(b!1).B(s!1) kpb, kmb. b The model visualized as an extended contact map [57]. Boxes
represent proteins and components. A double-headed arrow represents a noncovalent bond.
Contact maps can be generated using RuleBender [58]. c. An alternative rendering of a contact
map, consistent with conventions of Danos et al. [31]
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From the simple example given above, the benefits of the rule-based approach
may not be evident. However, consider addition of one more interaction to the
model: dimerization of the scaffold protein. This added interaction gives rise to ten
additional species (Fig 9.5a). Thus, ten additional ODEs must be added to capture
this one additional interaction. Furthermore, the original six equations must be
modified to account for additional reactions that each of the original six species
can now undergo. Figure 9.5b shows a modified equation from the original model;
the highlighted terms are added to account for interactions that become possible if
the scaffold dimerizes.

In contrast, scaffold dimerization can be incorporated into a rule-based model
through single addition of the rule of Fig. 9.5c without modification of the rules of
Fig. 9.4a. Thus, rule-based modeling is more extensible than traditional modeling
for chemical kinetics. It is worth noting that the rule-based approach has been used
to study scaffold effects in cell signaling [62, 63]. A complete specification of the
rule-based model in which scaffold molecules may dimerize is provided in
Fig. 9.6, wherein a BNGL [16, 59] encoding (Listing 1) and an equivalent Kappa
[31, 60, 61] encoding (Listing 2) are given. Listing 1 can be used to generate a
MATLAB (The MathWorks, Natick, MA) definition of a system of ODEs (i.e., a
traditional model specification) by adding the command ‘‘writeMfile();’’ to
the end of the listing (i.e., in the actions block of the code, which is not shown).
Listing 1 can be processed by BioNetGen [16, 59] to generate an M-file consisting
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Fig. 9.5 Illustration of an extension of the scaffold model of Figs. 9.3 and 9.4 to allow the
scaffold to dimerize. a A partial reaction scheme showing the ten additional species that arise
when scaffold dimerization is allowed. b An example of an equation from the scaffold model of
Fig. 9.3d that must be modified if scaffold dimerization is allowed. The terms that must be added
to account for scaffold dimerization are highlighted. c. The rule that is added to the rule-based
model of Fig. 9.4a to account for scaffold dimerization. A BNGL encoding of this rule is S(s) +
S(s)\-[S(s!1).S(s!1) kps,kms
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of 113 lines of code. The M-file defines a system of 16 ODEs with 60 different
right-hand-side terms. In contrast, the model specification of Listing 1 in Fig. 9.6
consists of only three rules and three molecule type definitions (molecule type
definitions are not illustrated in earlier figures), as well as specifications of
parameter values and initial conditions.

Although the rule-based modeling approach is a relatively recent development
in biology, similar concepts have long been used in other fields. Below, we briefly
discuss related approaches that have been developed for a variety of problems in
physics, chemistry, and computer science. The success of this approach in other
fields suggests that it will also be useful for studying the systems of cellular and
molecular biology.

9.2.1 Precedents in Physics

The Ising model was originally developed to study ferromagnetism: the emergence
of a magnetic moment through alignment of atomic spin states. The model, which
has a number of other applications, involves a lattice of sites, each of which has
one of two states, e.g., spin-up or spin-down. The state or spin of a site can be
reversed. The probability of a site’s spin reversing depends on the spin states of its
neighbors. The Ising model can be simulated using a number of methods. In the

Fig. 9.6 The model composed of the rules illustrated in Figs. 9.4a and 9.5c encoded in two
formal languages, the BioNetGen Language (BNGL) and Kappa. Listing 1. BNGL-encoded
model specification. This excerpt from a BioNetGen input file illustrates the definition of
molecule types, seed species (initial conditions for a simulation), and rules. Lines of code for
setting parameter values and actions are not shown. The model specification can be simulated
using different methods available in BioNetGen [16, 59] or other BNGL-compliant software tools
[18, 20–22]. Note that the first rule corresponds to the top rule of Fig. 9.4a, the second rule
corresponds to the bottom rule of Fig. 9.4a, and the third rule corresponds to the rule of Fig. 9.5c.
Listing 2. Kappa-encoded model specification. This model specification, which is equivalent to
Listing 1, can be processed by KaSim [61]
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classic Metropolis method [64], a site (if spin is flipped) or pair of sites (if spins are
exchanged) is first selected at random. For the purposes of this discussion, we
assume that a single site is chosen. The probability of spin reversal is then com-
puted based on temperature and the configuration of a site’s neighbors. This
probability is then compared to a random number. If the random number is less
than or equal to the probability of flipping, the spin of the site is reversed and time
is incremented. If the random number is greater than the probability of flipping,
spin is reversed with a probability equal to the ratio of the probabilities of the
initial and final states. If spin is not reversed, a null event occurs and time is
incremented. A drawback of this method is that a high frequency of null events
causes simulation to slow significantly.

An alternative approach is the n-fold way [65], a kinetic Monte Carlo (KMC)
method [66], in which null events are avoided. In this algorithm, a site is classified
based on its spin state and the spin states of its nearest neighbors. A classification
scheme for a square lattice is shown in Fig. 9.7a. Use of this scheme is illustrated
in Fig. 9.7b; white squares represent spin-up sites, gray squares represent spin-
down sites, and the number of a square indicates its class. Rather than selecting a
site randomly, the probability of a site being selected is related to the probability of
its spin flipping. Once a site is selected, its spin is flipped immediately. Thus, null
events do not arise. The n-fold way for the example of Fig. 9.7 consists of the
following steps:

1. Assign each site to one of ten possible classes.
2. Choose a class r [ [1, 2,…, 10]. A class is chosen by first calculating cumulative

rates Q1, Q2,…, Q10, where
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Fig. 9.7 Classes used in KMC simulation of the Ising model. a. Scheme used for classification of
lattice sites. A site is classified based on its spin and the number of its nearest neighbors that are
spin-up. b. In this example, white squares are used for spin-up sites and dark squares are used for
spin-down sites. Class numbers are shown on squares in accordance with the scheme of Panel A.
The lattice is assumed to have periodic boundary conditions, i.e., the lower boundary is replicated
above the upper boundary and the left boundary is replicated after the right boundary
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Qr ¼
Pr

j¼1
njPj

In the above expression, nj is the number of sites in class j and Pj is the
probability of spin reversal for a site in class j. Then, a random number R1,
uniformly distributed between 0 and Q10, is chosen, and a class r is chosen such
that Qr-1 B R1 \ Qr.

3. Randomly choose a site i within r.
4. Flip the spin of site i.
5. Update classes and the rates Q1, Q2,…, Q10 based on the new configuration of

the lattice.
6. Increment time. The time step is calculated as

Dt ¼ s log2 R2

Q10
where R2 is a random number and s is the expectation value (i.e.,

the average time per spin flip). Recall that Q10 is the overall rate of spin
flipping.

This procedure applied to stochastic simulation of chemical reaction systems is
known as Gillespie’s method [67–69], which is discussed below. The similarity
between the n-fold way and the rule-based modeling approach lies in the use of
classes. In the n-fold way, a class defines a set of lattice sites that have a particular
spin state and configuration of neighbors. Sites within a class all have the same
probability of undergoing a transition. Similarly, a rule defines a class of reactions
whose reactants share certain local component properties and reactions that are
defined by a rule are taken to have the same kinetic parameters.

9.2.2 Precedents in Chemistry

In modeling chemical reactions, matrices and matrix operations can serve as useful
abstractions for representing molecular structures and functional group transfor-
mations. Ugi and co-workers developed a formalism in which a bond electron
matrix (BEM) is used to represent the atoms present in a molecule (or set of
molecules) and the sharing of electrons between them. In this formalism, a
chemical reaction is viewed as converting a BEM into an isomeric BEM by
redistributing valence electrons. A BEM for n atoms contains n rows and columns.
The ith row and column correspond to the ith atom of the molecule or set of
molecules. The matrix entry bij is the number of bonds between atoms i and j and
the diagonal matrix entry bii is the number of free valence electrons of atom i [71].
(When applied to reactions on surfaces, bii can also represent the number of
electrons backdonated to the absorbate). Electrons are redistributed (i.e., a
chemical reaction is executed) by addition of a reaction matrix R to a reactant
matrix B. An entry in a reaction matrix corresponds to the number of bonds formed
(positive numbers) or broken (negative numbers) between atoms as a result of a
reaction. The matrix E : B ? R represents the product molecule(s) of a reaction.
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The BEM formalism can be used to generate reaction networks and elucidate
possible synthetic routes between reactant and target molecules [72–75]. This
method has also been used for time-scale analysis of rule-based models in which
reactions within the same class have different kinetic parameters [76].

BEMs have been applied by Broadbelt and co-workers to investigate reaction
mechanisms for heterogeneous catalytic chemistry [77] and novel metabolites and
pathways in metabolic networks [78, 79]. The assumption underlying the latter is
that the large number of reactions found in a metabolic network can be represented
by a smaller number of rules for common functional group transformations in
metabolism [78, 80]. Functional groups can be encoded as BEMs and associated
with reaction matrices. An input molecule can also be encoded as a BEM and
compared to the BEM of a functional group to determine whether the molecule
contains the functional group necessary to undergo a reaction. If so, a reaction matrix
is added to the appropriate part of the reactant matrix to yield a matrix for a product
molecule or set of molecules. If the product is a chemical species that has not yet
been generated, it is evaluated to determine whether it can undergo further reactions.
A maximum number of generations can be specified as a stopping criterion. In this
way, a set of rules can be identified that can generate potentially novel reaction paths
from reactants to products. This approach has been complemented by thermody-
namic studies to evaluate the feasibility of possible reaction paths [79].

An example of the use of BEMs to model a chemical reaction is shown in
Fig. 9.8. Panel A shows a rule that specifies the functional groups involved in an
esterification reaction. Panel B shows the same functional groups in the form of
BEMs, with atoms numbered to correspond to Panel A. Panels C and D show two
instances of the rule acting on specific molecules.

9.2.3 Precedents in Computer Science

A concurrent computational system is one in which multiple processes are executed
in parallel and can potentially influence each other. Interaction among processes can
lead to many possible outcomes. The complexity of concurrent systems necessitates
a language that can be used to analyze and reason about a system’s behavior. This
need is addressed by process algebras [81, 82]. Here, we focus on p-calculus, a
process algebra that has been intensely studied in computer science and that has also
been applied to model biological systems, as noted earlier. A notable feature of
p-calculus is that it allows explicit representation of communication channels and
allows system components to be modeled independently.

An example of the use of p-calculus is shown in Fig. 9.9. In p-calculus, ‘‘+’’
designates choice, ‘‘.’’ designates sequence, and ‘‘|’’ designates processes executed
in parallel. The symbol 0 designates an inert process (i.e., a process that does
nothing further). A process can contain one or more channels, which can be used to
communicate with other processes. Channels that can communicate with one
another are referred to as complementary channels. Complementary channels
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share the same name, and prefixing conventions are used to distinguish an input
channel from an output channel. For example, a \x[ is an output channel named
a that sends a piece of information named x. A complementary input channel can
be designated a(u). When a(u) receives information, the name received (e.g., x)
becomes bound to u.
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Fig. 9.8 Bond electron matrices and matrix operations can be used to model functional group
transformations in organic chemistry. a A general Fischer esterification reaction between a
carboxylic acid and an alcohol. A box is placed around functional groups that participate in the
reaction, and a jagged line is used to mark the bonds that are broken. b B is a bond electron matrix
for the reactants. Rows and columns are labeled to correspond to labeling of atoms in Panel A.
R is a reaction matrix showing the bonds that are broken and formed as a result of esterification.
E is a bond electron matrix for the products. c, d Two instances of rule application. Functional
groups are enclosed within a box and atoms are numbered to correspond to panels A and B

P1 :: = a<x>.R + b<y>.T

P2 :: = a(u).0

P3 :: = b(v).0

P4 ::= c(w).0

S ::= P1 | P2 | P3 | P4

S' :: = R | 0 | P3 | P4

S' :: = T | P2 | 0 | P4
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Fig. 9.9 The process algebra p-calculus is used to model concurrent computational systems.
a System S contains processes P1, P2, P3, and P4. P1 can communicate with P2 using channel
a. P1 can communicate with P3 using channel b. P4 can receive information along channel c;
however, there is no complementary channel in S. b Representation of the system in p-calculus.
c The system that S reduces to if P1 sends a message on channel a. d The system that S reduces to
if P1 sends a message on channel b
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In the example of Fig. 9.9, P1 is a process that can send x on channel a. P1 then
behaves as R. Alternatively, P1 can send y on channel b and then behave as T. In
the first scenario, P1 becomes R, and P2 uses channel a to receive x from P1. The
message x becomes bound to u. Then, P2 becomes 0. The processes P3 and P4 are
unaffected by this communication event. As a result, P1|P2|P3|P4 becomes
R|0|P3|P4. Similarly, if P1 chooses the second option, the system becomes
T|P2|0|P4.

The similarity between p-calculus in computer science and rule-based modeling
approaches in systems biology lies in modularity. In a rule-based model, one may
specify an interaction using only the sites that participate in the interaction. In
p-calculus, one may likewise specify the effect of communication using expres-
sions that only include the relevant (sub)processes and channels. For example, in
the system of Fig. 9.9, communication between P1 and P2 or P3 is expressed
without the inclusion of P4, which does not communicate with the other processes.
Rule-based modeling approaches and process algebras share context-free proper-
ties, meaning that context can be omitted from a rule. Omitted contexts have no
affect on the transformation specified in a rule, so that the rule can be applied in
multiple contexts that need not be specified by the modeler. However, in some
cases it is necessary for rule application to be restricted by context (e.g., when a
reaction can only occur intramolecularly). In these cases, features of rule-based
modeling languages, such as the dot-plus notation of BNGL (see Sect. 9.3 below),
can be used to impose contextual constraints. Different but functionally equivalent
notation is available in Kappa.

9.3 Models as Programs

A model can be formalized using mathematical expressions. A different approach
is to formalize a model as an executable program, which can potentially facilitate
analysis [61], extensibility [83], and high-level abstractions [84–86]. A number of
languages for modeling biological systems have been developed, including lan-
guages designed for specification of rule-based models. As we will discuss below,
BNGL [16, 59] and Kappa [60, 61] are the most widely used rule-based modeling
languages. A BNGL-encoded model and an equivalent Kappa-encoded model can
be found in Listings 1 and 2 of Fig. 9.6, respectively.

A model, once specified using rules, may be simulated in a number of different
ways without modification of the model specification per se. The model of Listing
1 can be simulated deterministically with the command simulate_ode, or
stochastically with simulate_ssa. (For a complete description of BNGL
syntax, see Faeder et al. [16]). Thus, model specification is separated from sim-
ulation. For an example of a rule-based model simulated in multiple ways, see
Lipniacki et al. [87].

Methods for simulating rule-based models include generate-first, on-the-fly, and
network-free methods. In generate-first methods, rules are iteratively applied to a
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set of species to generate new reactions and new species. This process continues
until the full network is generated (i.e., no new species are generated) or until a
stopping criterion is satisfied [88]. The dynamics of the network can then be
simulated through numerical integration of a corresponding system of ODEs or a
stochastic simulation algorithm. In on-the-fly methods, a network is generated as
simulation progresses rather than before simulation begins [88, 89]. When a
species is first populated, rules are applied to it, and new reactions and species may
be generated. This approach can be useful if a set of rules implies a large number
of possible species, some of which might never become populated. However, this
method still relies on a computer’s memory to store the network, which can be a
limitation. The step of network generation is avoided entirely with network-free
methods, which are discussed in more detail in the next section. In short, in a
network-free method, all components of a system are tracked individually and
rules are used directly to advance the state of a system by modifying states of
components. Thus, network-free methods are particle- or agent-based.

A number of software tools compatible with BNGL and/or Kappa implement
the simulation methods described above, in addition to providing other capabili-
ties. These tools are listed in Table 9.1. Other languages that may be used to
specify rule-based models include cBNGL, a form of BNGL that allows for
explicit representation of compartments [90]; ML-rules, designed for multi-level
rule-based modeling [91]; and SBML-multi, which is in development. See the
Systems Biology Markup Language (SBML) website (http://sbml.org).

BNGL and Kappa are closely related but differ in several details. One difference
is the treatment of indistinguishable sites. In BNGL, a molecule is allowed to have
two or more sites that have the same name. Such sites are taken to be indistin-
guishable. This capability is useful for molecules such as an IgG or IgE antibody,
which contains two antigen-combining sites that are essentially identical.
A bivalent antibody can be captured in BNGL with a molecule type definition such
as IgE(Ag,Ag). In contrast, Kappa requires that every site have a unique name.
Thus, the same molecule would necessarily require a definition of the form
IgE(Ag1,Ag2).

Reaction rules in BNGL constrain the molecularity of reactions using ‘‘dot-
plus’’ notation. This notation does not exist in Kappa; however, equivalent dis-
tinctions can now be made through other conventions [107].

The dot-plus notation is used to distinguish molecules that are part of the same
chemical species (i.e., molecules that are directly or indirectly connected) from
molecules that are part of separate species (i.e., not connected). For example, the
following rule states that a bond forms between molecules L and R.

R lð Þ þ L rð Þ � [ R l!1ð Þ:L r!1ð Þ

The ‘‘+’’ sign specifies that the two reactant sites must be part of separate species
for the rule to be applied. Thus, the rule defines only bimolecular association
reactions. In general, the molecularity of a reaction is 1 ? p, where p is the
number of ‘‘+’’ signs on the left-hand-side of a rule. In contrast, the following rule
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states that a bond forms between molecules L and R only when they are part of the
same species.

R lð Þ:L rð Þ � [ R l!1ð Þ:L r!1ð Þ

The absence of a ‘‘+’’ sign is an application condition of the rule, which indicates
that the rule generates only unimolecular reactions. This rule defines reactions that
form intramolecular bonds.

The dot-plus notation of BNGL allows a modeler to not only impose molec-
ularity constraints but also specify that a pair of molecules are connected without
explicitly specifying connectivity. For example, to obtain the number of com-
plexes that contain two receptors, one may specify an observable R().R(),
which encompasses all complexes that contain at least two receptors.

Table 9.1 Software tools that use BNGL and/or Kappa

Tool Language Reference

BioNetGen BNGL [16, 59, 88]
BNG@VCell BNGL [22]
little b little b [92]
Smoldyn/libMoleculizer BNGL/Kappa-like [17, 89]
SSC SSC [93]
DYNSTOC BNGL [18]
NFsim BNGL [20, 94]
RuleMonkey BNGL [21]
KaSim Kappa [19, 61]
SRSim BNGL [95]
RuleBender BNGL [58]
RuleStudio Kappa [19]
RuleBase BNGL and Kappa [96]
GetBonNie BNGL [97]
BioLab BNGL [98]
complx Kappa [19]
PySB BNGL and Kappa [86]

Capabilities: BioNetGen is capable of network generation, ODE-based simulation, and generate-
first and on-the-fly stochastic simulation. BNG@VCell has the additional capability of PDE-
based simulation. The little b environment uses BioNetGen to perform network generation.
Smoldyn/libMoleculizer and SSC can perform particle-based reaction diffusion calculations.
BioNetGen can convert BNGL-specified rules into SSC format. DYNSTOC, NFsim, and Rule-
Monkey perform network-free simulation. KaSim performs network-free simulations. SRSim
combines rule-based modeling with atomistic modeling (i.e., molecular dynamics simulation).
RuleBender and RuleStudio are modeling interfaces, and RuleBender provides visualization
capabilities. RuleBase and GetBonnie are model databases. BioLab is a model-checking tool,
complx is a tool for static analysis, and PySB is tool for model building and analysis. Other
software tools for rule-based modeling that do not use BNGL or Kappa include ALC [99], ANC
[100], BIOCHAM [101], BioSPI [40], BlenX4Bio [102], CplexA [103], Meredys [104], ML-
Rules [91], Moleculizer [89], Pathway Logic Assistant [105], PottersWheel [106], Simmune [23,
24], and StochSim [39]
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9.4 Agent-Based Modeling Consistent with the Law
of Mass Action

Traditional models are usually simulated via population-based methods, which
require explicit tracking of all potentially populated chemical species. A rule-
based model can also be simulated with population-based methods; however,
combinatorial complexity can give rise to a large number of species, which makes
the approach impractical or, in some cases, impossible. An alternative method is
network-free simulation. Algorithms for network-free simulation are agent-based
simulation protocols consistent with the law of mass action. Agent-based models
are used in a variety of fields [108], and most algorithms for agent-based simu-
lation are not guided by physicochemical principles. Thus, the innovation of
network-free methods is that agents behave according to rules that recapitulate
chemical kinetics.

To illustrate agent-based simulation of a rule-based model, let us consider a
model of a bivalent ligand and a bivalent cell-surface receptor (Fig. 9.10). The
ligand contains two identical, independent sites that can bind receptors. The
receptor contains two identical, independent sites that can bind ligands. Interac-
tions between ligands and receptors can give rise to chains (i.e., linear aggregates)
and rings (i.e., cyclic aggregates). The two molecule type definitions and three
rules that form this model are shown in Figs. 9.10a and b, respectively.

The rate for a free ligand binding a free receptor site (Fig. 9.10b, Rule 1) is
given by the following Equation [109]:
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Fig. 9.10 A rule-based model for multivalent ligand-receptor binding. a Molecule type
definitions for a bivalent ligand and bivalent receptor. b Rules for interactions between a
bivalent ligand and a bivalent receptor. Note that the receptor R contains two identical sites
(Panel A), but only one site is shown in Rules 1–3 (in accordance with the conventions of Faeder
et al. [56]) because we assume that the bound state of the second site does not affect interactions
represented by these rules. Rule 1 characterizes binding of a free ligand to a receptor. Rule 2
characterizes binding of a tethered ligand to a second receptor, thereby cross-linking a pair of
receptors. Rule 3 characterizes ring closure and opening. The reactant sites of Rule 3 are required
to be (indirectly) connected (i.e., they must exist within the same complex). Rules 2 and 3 differ
on their left-hand sides. The plus sign in Rule 2 indicates that the rule defines reactions with
molecularity of 2, whereas the absence of a plus sign in Rule 3 indicates that the rule defines
reactions with molecularity of 1

9 Innovations of the Rule-Based Modeling Approach 289



g1 ¼ 4kþ1FL NR � NBð Þ ð1Þ

where k+1 is the forward rate constant associated with the rule, FL is the number of
free ligands, NR is the number of receptors, and NB is the number of bonds. The
statistical factor of four arises from the two identical binding sites per receptor and
two identical binding sites per ligand.

The rate of dissociation of ligand from receptor (Fig. 9.10b, Rules 1, 2, and 3),
including breaking of a cyclic aggregate, is proportional to the number of ligand-
receptor bonds [109, 110]:

g1r ¼ koffNB ð2Þ

We assume that a single dissociation rate constant, koff, applies for all dissociation
reactions.

The rate for a tethered ligand binding a receptor site that is not part of the same
complex as the ligand (Fig. 9.10b, Rule 2) is given by the following equation
[109]:

g2 ¼ kþ2

XNA

i¼1

lið2NR � NB � riÞ ð3Þ

where NA is the number of aggregates, li is the number of free ligand sites in the ith
aggregate, and ri is the number of free receptor sites in the ith aggregate.

The rate for ring closure (Fig. 9.10b, Rule 3) is given by the following equation:

g3 ¼ kþ3

XNA

i¼1

liri

Li
ð4Þ

The rate constant for ring closure can be taken to be inversely proportional to the
length of a chain [110]. Here, we assume that rings of size one (i.e., containing one
ligand and one receptor) are prohibited, and that k+3 is the rate constant for closure
of a chain that yields a ring of size two (i.e., containing two ligands and two
receptors). Li is proportional to the length of a chain. For a ring of size two,
we take Li = 1.

Information about rates is used by network-free simulation algorithms to select
rules to apply. Sequential rule application produces a system trajectory.
Figure 9.11 shows an example of a trajectory in a network-free simulation of the
model of Fig. 9.10. It is worth noting that Rule 1 is executed twice, in Panel B and
Panel F. The two instances represent different reactions, but both reactions are
captured by the same rule. A rule can be viewed as a generalized reaction, and
algorithms for network-free simulation can be viewed as generalizations of
Gillespie’s method, which we briefly present below before reviewing different
network-free algorithms reported in the literature.
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9.4.1 Gillespie’s Method

Gillespie’s method [67–69], a method for stochastic simulation of chemical
reaction systems, is useful because it takes into account two facts that a deter-
ministic method is not designed to capture: a system contains a whole number of
molecules, and reactions among molecules are subject to randomness. These
qualities are likely to be important in systems where population sizes are small.

Gillespie’s method consists of essentially the same steps as the n-fold way,
described above. Both methods belong to the class of kinetic Monte Carlo methods
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Fig. 9.11 An example trajectory in agent-based simulation of the model of Fig. 9.10. Each site is
labeled with a unique number because sites are tracked individually. Reaction rates are calculated
using Eqs. 1–4. a The initial state of the system contains three free ligands and three free
receptors. b At time s1, Rule 1 is fired and a ligand binds a receptor. c Between times s1 and s2,
the system contains two free receptors, two free ligands, and a ligand-receptor complex. d At time
s2, Rule 2 is fired and a pair of receptors are cross-linked. e Between times s2 and s3, the system
contains two free ligands, one free receptor, and a complex of two receptors and one ligand. f At
time s3, Rule 1 is fired and a ligand binds a receptor. This reaction differs from the instance of
Rule 1 in Panel B because the receptor that undergoes reaction is already part of a complex.
g Between times s3 and s4, the system contains one free ligand, one free receptor, and a chain of
two ligands and two receptors. h At time s4, Rule 3 is fired and a ring or cyclic aggregate forms.
i Between times s4 and s5, the system contains one free ligand, one free receptor, and a cyclic
aggregate of two ligands and two receptors. j At time s5, the reverse of Rule 3 is fired and the
cyclic aggregate is transformed into a chain or linear aggregate. k Between times s5 and s6, the
system contains one free ligand, one free receptor, and a chain of two ligands and two receptors.
This state is identical to the state of Panel G
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[66]. An implicit assumption of Gillespie’s method is the assumption that an
explicit list of the reactions that can occur in a system is available. A simulation
proceeds as follows. First, initial population sizes and reaction rates are calculated.
Reaction rates are calculated based on rate constants and numbers of reactant
species. Rates are used to select the next event time and the next reaction.
A reaction is then fired. Populations and rates are updated for the new state of the
system, and simulation continues until a stopping criterion is satisfied. Variations
of this method have been developed to increase its speed. For example, efficiency
of simulation can be improved through use of a reaction classification scheme, as
demonstrated in the method of Blue et al. [111] or Gibson and Bruck [112]. More
recently, the method of Slepoy et al. [113] groups together reactions that share
similar rates.

Reaction classification is an inherent feature of the rule-based approach: as a
coarse-graining assumption, reactions implied by the same rule are assigned the
same rate law. Thus, Gillespie’s method is well-suited for simulation of rule-based
models, if rates of all reactions implied by a rule can be calculated without
explicitly deriving the reactions. These calculations are performed in network-free
methods, of which there are multiple variants.

9.4.2 Algorithms for Network-Free Simulation

Gillespie’s method has been generalized for simulation of rule-based models.
These simulation methods are termed ‘‘network-free’’ because rules are used
directly to advance the state of a system, thereby avoiding network generation.
Currently, four related algorithms have been described for network-free simula-
tion. These algorithms are summarized in Fig. 9.12. A main point of difference
between them lies in the handling of non-local site properties. An example of a
non-local site property is connectivity. The non-local environment of two sites
must be examined if they are connected indirectly. Determining if two sites are
indirectly connected is important for enforcing rule application conditions that
place constraints on molecularity of rule-defined reactions. In general, non-local
properties are more difficult to evaluate than local properties (e.g., whether a site is
bound or free).

In the method of Danos et al. [31], rates are assumed to depend on local
properties only. A waiting time is determined, a rule is selected, and sites are
selected for rule application. The system is updated, rates and populations are
recalculated, time is incremented, and simulation continues. The method of Yang
et al. [94] performs the same calculation of rates as the method of Danos et al.
[31]. However, after sites are selected based on local properties, non-local prop-
erties are checked. If a site is found to lack permissive non-local properties, it is
rejected and a null event occurs. The method of Colvin et al. [21] avoids the
rejection step by calculating rates exactly (i.e., with consideration of both local
and non-local properties) before selecting rules and sites. Lastly, the method of
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Colvin et al. [18] differs from the other algorithms in a number of ways. The time
step is fixed, and sites are selected before rules are selected. This method yields
results consistent with the other methods as long as the time step is below a certain
threshold, which is checked during simulation. The performance of tools imple-
menting these methods has been compared, to a limited extent [20, 21, 109].

9.5 Outlook and Closing Remarks

Our accumulated knowledge about the mechanisms of cell signaling motivates the
development of models that can capture these details. Current experimental
capabilities that allow us to characterize the functional roles of specific protein
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Fig. 9.12 A comparison of algorithms for network-free simulation. a The method of Danos et al.
[114] can be applied if rule application depends on local context only. b The method of Yang
et al. [94] introduces a rejection step to account for non-local site properties. c The method of
Colvin et al. [21] calculates exact rule rates considering both local and non-local site properties.
Thus, it has no rejection step. d The method of Colvin et al. [18] is a generalization of the
StochSim method [38, 115], which has a number of distinguishing features, including a fixed time
step and reversal of the site and rule selection steps. However, the method yields results
consistent with other methods, as long as step size is below a threshold
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sites and to monitor the dynamics of protein-protein interactions [116–122] makes
the development of complementary modeling methods especially timely.
A method that addresses this need is the rule-based modeling approach. By using
rules to represent interactions, a modeler can avoid enumerating the reachable
chemical species in a system, which is required in traditional approaches and
which is a severe limitation given the typical size and combinatorial complexity of
cell signaling (sub)systems. The rule-based approach allows models to be specified
compactly, with simplifying assumptions that are more transparent and arguably
less ad hoc than traditional modeling approaches [123]. With recent advances in
simulation methodology, simulation of models that imply large reaction networks
has become feasible. As a result, it is now possible to develop models that capture
site-specific details of a large number of protein-protein interactions.

These capabilities are relevant for the study and, potentially, manipulation of
cell signaling mechanisms. For example, different residues in the same protein
may have different kinetics of phosphorylation, and each phosphorylated residue
may regulate a distinct set of interactions (for example, see Houtman et al. [124]).
As a result, perturbations that affect phosphorylation kinetics of specific sites (e.g.,
therapeutic kinase inhibitors, such as imatinib [125]) may be difficult to analyze
without a model in which individual sites of phosphorylation are distinguished.
However, traditional modeling approaches often necessitate a ‘‘virtual phosphor-
ylation site’’ assumption [126], meaning that multiple sites are lumped together as
a single, virtual site of phosphorylation. Roles for individual sites are not distin-
guished. This assumption can be lifted in a rule-based model more easily than in a
traditional model.

Rule-based models can be specified using formal domain-specific languages
(i.e., programming languages specialized for modeling). In contrast, traditional
models for chemical kinetics formulated in terms of equations are more suitable
for analysis (e.g., integration or differentiation) than for computation. Traditional
modeling forms are used by many software tools, including tools that bridge
equations to numerical methods of analysis (e.g., numerical integration), such as
MATLAB (The MathWorks, Natick, MA). However, departure from traditional
forms can be advantageous [83] and for mechanistic modeling of cell signaling
systems, it is necessary. This need arises from the size and combinatorial com-
plexity of signaling systems, which can be better captured if a model is viewed as a
program. The reason is that a programming language can be tailored for the
problem at hand. A model specified as a program has a number of other advantages
over a set of equations. One advantage that has perhaps not yet been fully
appreciated is greater extensibility and a potential for clearer annotation. As
demonstrated by Thomson et al. [126], the formal elements of a rule-based model
can be specified incrementally (i.e., one at a time), annotated independently, and
then later assembled to address specific questions about system properties, which
can also be formalized [97, 127, 128]. Guidelines for annotating rule-based models
have been proposed [57], which if adopted, could make models more under-
standable and reusable. Rule-based modeling provides a general paradigm for
modeling interactions of structured objects, with proven applications in physics,
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chemistry, and computer science. The approach is being used increasingly often in
systems biology. In the future, we expect it to be a foundational method of the field
because its extensibility addresses large network size, and the use of rules
addresses combinatorial complexity, which are two inherent features of cell sig-
naling systems.
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Chapter 10
Reproducibility of Model-Based Results
in Systems Biology

Dagmar Waltemath, Ron Henkel, Felix Winter and Olaf
Wolkenhauer

Abstract Science requires that results are reproducible. This is naturally expected
for wet-lab experiments and it is equally important for model-based results pub-
lished in the literature. Reproducibility, in general, requires standards that provide
the information necessary and tools that enable others to re-use this information. In
computational biology, reproducibility requires not only a coded form of the model
but also a coded form of the experimental setup to reproduce the analysis of the
model. Well-established databases and repositories store and provide mathematical
models. Recently, these databases started to distribute simulation setups together
with the model code. These developments facilitate the reproduction of results. In
this chapter, we outline the necessary steps towards reproducing model-based
results in computational biology. We exemplify the workflow using a prominent
example model of the Cell Cycle and state-of-the-art tools and standards.
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COMBINE The COmputational Modeling in BIology NEtwork
XML Extensible Markup Language
OWL Web Ontology Language
MIRIAM Minimum Information Required in the Annotation of Models
URN Uniform Resource Name
PMR2 Physiome Model Repository
COPASI Complex Pathway SImulator
SED-ML Simulation Experiment Description Markup Language
MIASE Minimum Information About a Simulation Experiment
IR Information Retrieval
DDMoRe Drug Disease Model Resources

10.1 Introduction

Computer science technologies and methods support research in various areas. In
systems biology, they provide means of modeling and simulation to increase the
understanding of biological systems. This support accelerates the scientific pro-
cess, and allows for sophisticated analyses of complex biological systems. Fur-
thermore, testing hypotheses computationally reduces time and costs for
experimental biologists. Similar to wet-lab experiments, results obtained from
computational models must be reproducible.

One example for the successful application of modeling and simulation on a
biological question is the analysis of the cell cycle, which investigates the pro-
cesses a cell undergoes to divide and replicate itself. The cell is a so-called
autopoietic system, i.e. it is capable of self-creating the processes that reproduce
itself; a key process in cell replication is the division of the cell. One of the earliest
attempts to simulate the molecular details of the cell cycle is the well-known
computational model published by John Tyson in 1991 [1]. The model explains the
complex cell cycle mechanism in an abstract way by using only six interacting
proteins and nine reactions. It shows that the oscillating concentration of the
Maturation Promotion Factor (MPF) is dependent on the Cyclin concentration.
Over the past years, Tyson’s lab developed a number of enhanced computational
models based on their first representations of the cell cycle, e.g. [2–4]. We will
here use a computational representation of Tyson’s original model of the cell cycle
to exemplify the usefulness of concepts and tools for the reproduction of model-
based results.

A computational model of a biological system is an abstract representation of
the living system, simplified by a number of assumptions, and instantiated with a
certain set of parameter values. Computational models of biological systems can
be diverse in scale and complexity, ranging from ‘omics’-scale (i.e. modeling
whole genomes and proteomes) to modeling small sub-circuits of a network [5].
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During development, these models are often written in software tools such as
Matlab, or are directly programmed in languages such as R, Python, Java or C.
One way of studying the models and thereby obtaining results is through simu-
lation. A simulation mimics the behavior of the system, for example by calculating
the changes in concentration of a particular entity over time. It is important to
understand that simulations are not part of a model, but can be applied on a model
to study its behavior. To reproduce a model-based result, one does therefore not
only need the model itself, but one must also have available information about the
simulation that was run on the model to show a desired effect, for example
oscillating behavior. When models and associated simulations need to be
exchanged (e.g. together with a publication, or in large-scale collaborative pro-
jects) model databases help distributing code. Here, specifically designed, com-
puter-readable standard representation formats allow for model exchange across
different software tools and projects. Exporting model code in a standard format is
a common practice in many modeling communities, for example when developing
biochemical models, or in physiology.

One feature of many cell cycle models is the reproduction of the oscillatory
limit cycle1 which is observable in wet-lab experiments. To reproduce this feature
on a computer, an executable version of the model must be run. In many cases it is
possible to manually transform the original model equations (as given in the
respective publication) into an executable file. However, it is much more efficient
to reuse an existing implementation of a model in a standard format. Computa-
tional encodings of the Tyson models are already available from open databases.
For example, one encoding of the 1991 Tyson model [1] can be obtained from
BioModels Database [6], an open repository of computational biology models. The
encoding2 of that model (in SBML format) contains the model structure and initial
parameterization. To understand the intention behind the Tyson model one may
read the reference publication, study related models, explore the information
available from the BioModels Database site, or investigate simulation experiments
performed on the model. In addition, if the model is sufficiently annotated with
information from biology ontologies one can infer semi-automatically the model’s
scope and level of detail together with the implied assumptions. Annotations link
to entries in openly available biology ontologies such as the Gene Ontology [7] or
ChEBI [8]. These links are stored using semantic technologies such as the
Resource Description Framework (RDF) [9]. For example, a modeler can
semantically enrich the cell cycle models with entries from the Gene Ontology.
She could link the above-mentioned Tyson model to the biological term ‘‘Opi-
sthokonta’’, the broad group of eukaryotes to which the modeled yeast belongs to.
Thereby, she supports the interpretation of the model’s biological scope. A model
with a detailed explanation of all involved species can be faster understood; a

1 A limit cycle is ‘‘a closed orbit which is isolated, i.e. neighboring orbits are not closed’’.
(Definition: TEDDY ontology, http://www.biomodels.net/teddy)
2 http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005
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model with associated simulation experiments and simulation results can be better
interpreted, and modifications on the simulation settings can be easier
reconstructed.

The provision of annotated models in standard format is particularly important
as the modeling process more often than not demands to incorporate previously
obtained findings from collaborators or literature, as has been exemplified with the
yeast metabolic network model [10]. Standards for model code ease the exchange
of models across work groups, as they make model code usable in different
software environments. The exchange of computational models enables the
reproduction of other researchers’ works, the study of results that have already
been obtained for a given biological question, and even the adjustment or exten-
sion of models to test own hypotheses. In summary, to reproduce model-based
results in computational biology,

1. Models should be encoded in standard formats;
2. Meta-information should be provided to help understanding the models’

intention; and
3. Associated simulation experiments should be encoded in standard formats.

All information must be made available through open repositories to foster
reuse and consequently allow for result reproducibility. In this chapter we describe
existing standard formats for model encoding, and how models encoded in these
formats are made available through model repositories. We introduce a standard
format for simulation experiment descriptions and we exemplify how the existing
infrastructure of model databases and exchange formats allows modelers to
reproduce other researcher’s results.

10.2 Standard Formats for Computational Models

People can’t share knowledge if they don’t speak a common language
Tom Davenport, Lawrence Prusak [11]

Standardization plays a central role in facilitating the exchange and interpre-
tation of the outcomes of scientific research, and in particular of computational
modeling [12]. Already in 1969, David Garfinkel reported on the development of
standard formats to describe ‘‘what a model should be like, how it should be
described and documented […] to facilitate communication of information about
models’’ [13]. Standardization is crucial to data exchange, information exchange
and knowledge exchange.3 Standardized, machine-readable formats facilitate
model exchange between users, databases and different simulation tools, and they
enable the unified description of models. Nicolas Le Novère, who contributed to

3 Please refer to Bellinger et al. [14] for an overview about the distinction between data,
information, and knowledge
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many standardization efforts, even goes as far as saying that ‘‘quantitative models
will be only as useful as their access and reuse is easy for all scientists’’ [15].
Recently launched, cross-standard community meetings such as the annual
COMBINE4 meeting allow close interaction between researchers from the dif-
ferent fields dealing with computational biology. These meetings foster the
development of standard formats for models and simulation descriptions. Model
reuse is already practiced, but it is limited. Examples for phylogenies of models
include models on MAPK, Glycolysis, or the aforementioned cell cycle. In these
examples, existing models evolved into more complex representations of a system.

Exchangeable models are supplied in standard representation formats and
through open repositories. Representation formats are typically defined in the
Extensible Markup Language (XML) [16]; sometimes the Web Ontology Lan-
guage (OWL) [17] is used. XML is a markup-language that permits model en-
codings to be stored in a structured way, using pre-defined XML elements, or tags.
Owing to the diversity of modeling frameworks used in computational biology,
several standard formats exist to cover the various aspects of biology [18]. We will
here introduce two of them, namely the Systems Biology Markup Language
(SBML) [19] and CellML [20]. Further formats are being established, e.g. for the
encoding of neurophysiological models in Neuro ML [21], or for discrete event
based modeling frameworks [22].

SBML is a community effort encompassing researchers and software devel-
opers from diverse backgrounds in academia and industry. It is a standard repre-
sentation format for the description of biochemical reaction networks, including
cell signaling pathways, but also metabolic pathways, gene regulation networks
etc. To date SBML has been adopted by more than 200 software systems from
simulators to modeling tools and databases. As such it can be considered the most
successful standard in the field so far [6]. SBMLs major revisions are called levels.
A level represents substantial changes to the composition and structure of the
language. The current language specification is called SBML Level 3, Version 1
core. With Level 3, SBML has switched to a modular, plug-in type of language
specification: In addition to the core language, so-called ‘‘packages’’ are developed
for specific modeling needs, e.g. a spatial package. A core SBML model incor-
porates the following main parts [19]:

• Function definition: A named mathematical function available for use in the
model,

• Unit definition: A named new unit of measurement,
• Compartment: A container for species location, either representing physical

structures or not. It is assumed to be a well-stirred one,
• Species: A pool of any kind of entities of the same kind,
• Parameter: A quantity with a symbolic name (constants or variable, global or

local),

4 http://co.mbine.org/
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• Initial assignment: A mathematical expression defining the initial condition of
the model,

• Rule: A mathematical expression defining how to calculate the value or the rate
of change of a variable,

• Constraint: A mathematical expression computing a true/false value from model
variables, parameters and constants,

• Reaction: A statement with an associated rate expression and describing a
process that might change the amount of one or more species,

• Event: A statement describing instantaneous, discontinuous change in one or
more variables when a condition is triggered.

An extract of the SBML representation of the ‘‘Tyson model’’, which is
available from BioModels Database, is shown in Fig. 10.1. The example encodes
Cyclin-dependent kinase cdc2 as an SBML species. Species define pools of bio-
logical entities within an SBML model. Each species has an id (id = ‘‘C2’’), a
location (compartment = ‘‘cell’’), and an initial amount or concentration (initial-
Amount = ‘‘0’’). The optional name (cdc2 k) helps when displaying the model
code to the users. SBML reuses the MathML standard to encode the mathematical
expressions contained in the model, including the kinetic rates, equations, or
function definitions (not shown in the code snippet). The SBML species is addi-
tionally annotated with meta-information in RDF format.

CellML is a model description language for specifying and exchanging bio-
logical processes. The current version is CellML 1.1. It has a modular structure
and focuses on the mathematical description of biological processes. The explicit
representation of modularity and the extensibility of the language both permit the

Fig. 10.1 SBML code snippet from the Tyson Cell Cycle model, showing the encoding of a
biological entity, the Cyclin-dependent kinase cdc2 (SBML species), and its annotation
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description of a range of cellular and sub-cellular systems, including biochemistry,
electrophysiology, system physiology and the mechanics of the intracellular
environment [23]. CellML, in contrast to SBML, provides generic components
which may be abstract groupings, or be representing biological entities and
physical compartments. A CellML model is built as a network of connections
between self-contained elements [24]:

• Model: The CellML root element, contains all the following elements,
• Component: Smallest functional unit of a model, contains the variables and

mathematics to describe the behavior of the subsystem,
• Connection: Connects components to each other, and maps variables in one

component to variables in another,
• Import: Allows for import of further valid CellML models,
• Unit: Allows for the definition of units, apart from standard units already pro-

vided; every variable and number has to have a unit assigned,
• Group: Allows for the definition of logical (encapsulation) and physical (con-

tainment) relationships between components to form hierarchical structures (i.e.
a tree of components linked by parent–child relationships of the same type).

The Tyson model is not only available in SBML format, but also in CellML.
The code snippet in Fig. 10.2 represents the afore-mentioned Cdc2 kinase, which
is here modeled as a CellML component. The component is additionally annotated
with meta-information in RDF format. Similarly to SBML, an initial value is
assigned to the component, and its interaction within the network is specified using
variable declarations and MathML (not shown in the code snippet).

The MIRIAM guidelines. The Minimum Information Requested in the
Annotation of Models (MIRIAM) [25] describes the minimum of information
necessary to be provided together with a computational model in order for it to be
useful to others. Both the SBML and CellML format follow these guidelines.
Annotations provide links to information that is not covered in the XML

Fig. 10.2 CellML component representing Cyclin-dependent kinase cdc2 in the Tyson model

10 Reproducibility of Model-Based Results in Systems Biology 307



representation, but must be made available. These links point to entries in external
biology ontologies, databases or classifications. A human-understandable inter-
pretation of the SBML code shown in Fig. 10.1 can be generated by resolving the
model annotation, which is also shown in the figure: The species cdc2k is linked to
a MIRIAM URN which can be resolved (urn:miriam:uniprot:P04551) using the
MIRIAM query services.5 The URN points to the entry with ID P04551 in the
UniProt ontology.6 P04551 represents ‘‘Cyclin-dependent kinase’’. A detailed
description of the biological entity is available online from the term entry in
Uniprot.

The MIRIAM guidelines are a textual description—they are not computer-
readable. To get a better understanding of the information encoded in standard
formats and annotations, we recommend reading the publication [25], or at least
browsing through the listed ‘‘rules’’.

10.3 Models in Public Repositories

Many published models are openly available from model repositories, and most
journals today demand the submission of model code together with the manuscript.
We will here briefly describe the aforementioned BioModels Database [6], the
CellML Physiome Model Repository [26], and the JWS Online Model repository
[27]. These databases have developed into valuable knowledge resources over the
past years to guarantee modelers easy access to published model code. All three
repositories use standard representation formats for code export. As a result,
support is restricted to models that can be encoded using these standards. How-
ever, the exchangeability of models is ensured.

Bio Models Database [6, 28] is a repository of freely accessible model code.7 It
is an open-source project for commercial and academic use. BioModels Database
accepts models submitted by modelers (e.g. for reference in a publication), but it
also imports models from collaborative model repositories such as the CellML
Model Repository. While the main focus is on SBML-encoded models, the import
of other formats is possible using specifically developed converters. The number of
models available from open model repositories grows quickly. BioModels Data-
base very well reflects this tendency [29]: The number of stored, curated models
has increased from 22 in the year 2005 when BioModels Database was launched to
854 models in May 2012. In the 20th release 142050 more pathway models were
added to the repository. However, BioModels Database does not only grow in
terms of the amount of models, but also with regard to the variety of modeled
entities and the size of encoded reaction networks. Cell cycle models in BioModels

5 http://www.ebi.ac.uk/miriam/main
6 http://www.uniprot.org/
7 www.ebi.ac.uk/biomodels-main/
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Database, for example, have over the years increased in complexity and size: An
XML-encoded version of the first ‘‘Tyson model’’ represents the published model
in SBML format using nine physical entities. One of its successors, the 1993
Novak/Tyson model [30] already encodes 14 species and 23 reactions; both
models are single-compartmental. Since then, more models on the cell cycle have
been published; one example is the 2004 cell cycle model by Chen et al. [31]; its
computational encoding is built of 74 species and 94 reactions; it is still a single-
compartmental model. The most complex model in BioModels Database in terms
of number of encoded species and reactions as well as size of the model file is a
model for the yeast molecular interaction network. It contains 36,263 species and
30,965 reactions in one compartment; the XML file has a size of 39.7 MB.

BioModels Database provides several services, including model curation and
annotation. Models can easily be accessed through the web interface, and even be
simulated using one of the embedded simulation tools [6]. The SBML file history
is tracked using a version control system. The so-called model metadata is stored
separately in a MySQL database. Metadata that is available from the SBML file
includes information on the submission and modification dates of a model file,
authors’ information, references and annotations encoded in a MIRIAM-compliant
manner. Stored models can either be browsed from a list of available models
(sorted by BioModels Database ID, model name, publication ID, or modification
date) or in a tree-structured classification that is based on Gene Ontology terms.

The Physiome Model Repository (PMR2) [26] is the standard repository for
CellML models at different stages of curation. PMR2 implements a model man-
agement system based on the content management system Plone. It can be used
either as an online application8 or as a standalone application. Available models
cover different biological processes, including signal transduction pathways,
metabolic pathways, electrophysiology, immunology, cell cycle, muscle contrac-
tion and mechanical models [23]. It is the intention of the maintainers of the
repository to bring forward the model curation and annotation process so that
ideally all models replicate the results in the published paper. The CellML model
repository contains about 500 model exposures encoded in CellML format (as of
April 2012). A CellML exposure consists of a model and its associated docu-
mentation and meta-information. Models in PMR2 are browsable by different
(physiological) categories, including cell cycle, signal transduction, or metabo-
lism. A system-wide full-text search is offered that permits simple free text search.
Additionally, models of different states of curation can be searched.

JWS Online Model Database [27] is part of the JWS Online Simulator [32], a
web-based simulator for biochemical kinetic models.9 The model repository serves
as the maintainer for kinetic models that can be interactively run online. It supports
the search for SBML models by a limited number of characteristics, including the
author, publication title and journal, organism or model type. A web-based tool

8 http://www.cellml.org/models
9 http://jjj.biochem.sun.ac.za/database
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offers a searchable categorization of models in the repository, distinguishing, for
example, between ‘‘cell cycle’’ models and ‘‘metabolism’’. JWS Online is used as
a model repository within collaborative European projects. For example, it is
integrated with the SEEK platform [33] which is used by the SysMO consortium.

Encodings of the 1991 cell cycle model are available in all three databases
described above. BioModels Database and the JWS Online Model Database both
provide SBML versions of the model, while PMR2 offers a CellML encoding.
Based on the users’ preferences, the model could either be run in an SBML-aware
simulation tool, e.g. COPASI [34], or one that reads CellML, e.g. OpenCOR [35].
The three repositories, apart from the format they naturally support, have different
foci: BioModels Database offers a rich set of model-related information together
with the model, including lists of encoded biological entities and links to the
ontology entries associated to them, visualization of the model structure, and
information about the original publication. All models available from the curated
branch have been tested to be reproducing the results mentioned in the publication.
A detailed search system allows searching for models by key words and model
content. In contrast, JWS Online Model Database provides a lighter interface to its
models, but links more tightly to the JWS Online simulator which allows users to
run the model directly from the web page. The CellML Model repository then
considers the model as part of a bundle of files (so-called exposures) in a version-
controlled repository. In PMR2, the basic information about a model is presented
on the web site, all files associated with the model and its different versions are
provided through the content management system.

The list of model repositories named above is by far not complete. ModelDB10,
for example, is a valuable resource of open model code in computational neuro-
science. Models stored in ModelDB can be searched for based on the meta-
information which had been provided at model upload. ModelDB, in contrast to
the databases mentioned above, does not put restrictions on the format of sub-
mitted model code, and it does not require standard formats. Consequently,
ModelDB can handle different types of model code very flexibly. However, the
free choice of model formats hampers reuse. Whenever downloading a model from
ModelDB, the user must check if she has available the facilities to run the model
code on her machine, or if she needs to install additional simulation tools capable
of running the code. For example, ModelDB offers a large number of models
dealing with synaptic plasticity. Some of them require Matlab to execute m-files,
others demand XPP or C++. Consequently, users may have to set up a whole
computational environment in order to reuse the model code. The NeuroML
standard is the equivalent in computational neuroscience of what SBML is for
computational biology. The NeuroML community aims at making models in
NeuroML format available from ModelDB. Similar developments in other realms
of biology and medicine, such as ecology or pharmacometrics, will benefit from
the experiences already gained in the SBML and CellML communities.

10 http://senselab.med.yale.edu/modeldb/
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In order to reuse a model, it is essential to find the model in the first place.
Hence, sophisticated model retrieval techniques are a prerequisite to model reuse.
The model retrieval problem relates to the well-known problem of information
retrieval (IR) which deals with techniques to efficiently find relevant data [36].
Together with techniques and algorithms to rank the results of a search, relevant
models can be sorted according to the user’s demands, thereby improving the
model retrieval process [29]. The approach has been implemented as a two-step
semantic search in BioModels Database.11

10.4 Simulation Experimental Setups

An unplanned, hit-or-miss course of experimentation with a simulation model can often be
frustrating, inefficient, and ultimately unhelpful. David Kelton [37]

Model representation formats are widely accepted and used to describe model
structure, but they do not cover the description of simulations or analyses per-
formed with the models. However, once a model has been successfully retrieved
from a model repository in standard format, the next step is to simulate that model
to obtain a desired output. The above-mentioned MIRIAM guidelines more for-
mally state that (rule 6):

The model, when instantiated within a suitable simulation environment, must be able to
reproduce all relevant results given in the reference description that can readily be
simulated.

This statement corresponds with Pawlikowski’s earlier demand that ‘‘any
scientific activity should be based on controlled and independently repeatable
experiments’’ [38]. In summary, whenever performing experiments one must
ensure that for many repetitions of a simulation the same final results can be
obtained, with acceptably small statistical errors for stochastic simulations.

One prerequisite for result reproducibility is the existence of a valid, useful and
documented computational encoding of the experiment. To address this need, the
Simulation Experiment Description Markup Language (SED-ML, [39]) has been
designed. It is an XML-based format for the encoding of simulation experiments
that can be applied on a set of computational models. SED-ML follows the
Minimum Information About a Simulation Experiment (MIASE) guidelines [40] in
the same way that SBML obeys to the MIRIAM guidelines. MIASE defines, in a
textual description, the information that is to provide together with a model in
order to ensure the reproducibility of the experiments run on that model. SED-ML
is the computational format to store and exchange that information.

SED-ML. To enable result reproducibility in the life sciences, model authors
should ideally provide SED-ML files together with their model code, describing

11 http://www.ebi.ac.uk/biomodels-demo/search
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how to reproduce the presented simulation results. End-users can thereupon run the
simulation experiments in simulation software of their choice. They might fur-
thermore share their own simulation experiment descriptions by exporting SED-
ML descriptions from their simulation tool. SED-ML is agnostic about the
underlying model representation formats and the software tool that ran the
experiment. The model variables that a SED-ML model needs to be aware of are
addressed directly by XPath; the only limitation is for the model code to be XML.

The SED-ML format is built of five main elements: (1) the models used in the
experiment; (2) the simulation algorithms and their configurations; (3) the com-
bination of algorithm and model into a numerical experiment; (4) post-processing
of results; (5) and output of results. Each SED-ML file holds a list of references
containing all models used in the simulation experiment. Ideally, the reference is
an unambiguous link to a model in an open model repository, making code
retrieval easier. For example, a SED-ML file could contain a link to the afore-
mentioned encoding of the Tyson model in BioModels Database. Alternatively,
the link to the model in PMR2 could be used. If adjustments of model parameters
are necessary before simulation (pre-processing), they can be encoded in SED-ML
as well. The format furthermore allows storing changes in the model’s XML
structure. All changes are defined by linking to a particular model entity with
XPath [41], which is the standard technology to address nodes within an XML file.
A SED-ML file furthermore contains all information on the type of simulation (e.g.
time course), the solver that has been used (e.g. CVODE) and the additional
settings of that solver. The Kinetic Simulation Algorithm Ontology (KiSAO) [42]
has been specifically designed to structure the knowledge about simulation algo-
rithms used in computational biology, and about their characteristics. Post-pro-
cessing steps necessary in between simulation and output of the experimental
results are encoded in a specific XML structure within the SED-ML file. In the
case of the Tyson model, for example, the reproduction of one plot in the man-
uscript required the calculation of the ratio of two modeled entities (Cdc13/Cdc2).
Finally, the type of output can be stored, including information about the
assignment of plotted entities to the axes of the plots.

To date, several communities establish SED-ML as a standard to exchange
simulation setups; the main supporters so far are the SBML and CellML com-
munities. Software support for SED-ML has been implemented in simulation
tools, libraries, validation tools, and a SED-ML visual editor [43]. All software is
openly available. An up-to-date list is available at the SED-ML website.12 More
details about the SED-ML language are given in in the reference publication [39].

SED-ML support and availability of SED-ML files. One way of contributing to
improved result reproducibility is through providing SED-ML files together with
model files when publishing the model code in an open repository. BioModels
Database, for example, welcomes the submission of supplementary material with
each published model, and SED-ML could become one such type of supplement.

12 http://sed-ml.org
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SED-ML support is still under development in many simulation tools. SED-ML
documents can meanwhile be created by the help of the SED-ML script editor.13 It
allows modelers to design SED-ML files without writing the XML code by hand,
but using a more comprehensive, script-like language. An example is shown in
Fig. 10.3: The script takes both the SBML and the CellML versions of the Tyson
model (AddModel) and applies the same simulation experimental setup to them
(AddTimeCourseSimulation). The output then shows the result curve for the two
models (AddPlot). The CellML and SBML model instantiate the simulation with
different initial values for the concentration of YT and M, which leads to a shift in
the CellML model by 20 time units. A repository of simulation experiments
applicable to a biological question supports modelers in retrieving existing
experiments for a model. The SEMS project currently develops methods for
integrated management of model code and associated simulation files [44].

Users may download complete SED-ML descriptions for the simulation of the
Tyson model. The results shown in Fig. 3a of the publication describing the Tyson
model [1] can be reproduced with the SED-ML file that is available from the
curation tab in BioModels Database (for simulating the SBML model) or from the
PMR2 workspace (for simulating the CellML model). Figure 10.4 in this chapter
shows an extract from the SED-ML file that is available from BioModels Data-
base; the expected simulation result is shown in Fig. 10.6.

Fig. 10.3 Simulation of the CellML (left) and SBML (right) encoding of the Tyson model using
the script language and online simulator provided by SED-ML Web Tools

13 http://libsedml.sourceforge.net/libSedML/SedMLScript.html
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10.5 Use Cases

In the following, two use cases for standardized model and simulation encoding are
given. The first example shows the retrieval of computational code for a published
model and the exploration of possible modifications. The second example describes
the necessary steps to reproduce asserted findings using SED-ML.

10.5.1 Example 1: Exploring Existing Models

To get a better understanding of the biological mechanisms behind the cell cycle, one
may explore Tyson’s cell cycle model [1]. The capabilities of the model and their
different experimental setups may best be studied in a familiar simulation tool.

1. Choose a model repository and search for a computational encoding of the
Tyson model. Here we choose BioModels Database. The search field on the
main page is used to search for ‘‘cell cycle Tyson’’. This search results in a
number of curated models, identifiable by their model IDs. Clicking on the
model link for BIOMD0000000005 displays detailed information on the model,
including a PubMed link, model authors and model code submitters,

Fig. 10.4 Extract from the SED-ML file defining a simulation experiment on the Tyson model:
The result is a plot with two curves, one displaying the total amount of cyclin and the other one
displaying the amount of active MPF, relative to total cdc2. The simulation result is shown in
Fig. 10.6 in this manuscript. The SED-ML file reproduces Fig. 3a in [1] of the original
publication.
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submission date, a brief description of the model, and a summary of all model
entities, their interconnection (through reactions) and parameters as encoded in
the model. All this information is valuable for a first understanding of the
model’s complexity and what aspects it covers.

2. Download the available model code in the SBML standard format. A model
can best be explored in familiar software tools. Therefore, the model code
should be retrieved from the repository in a format that can be read by the
software. BioModels Database offers downloads in all SBML levels; here we
choose a model file in SBML Level 2 Version 3 format, which is the current
standard level, and store it locally on our computer.

3. Explore the model. To explore the model, it should be loaded in an SBML-
aware simulation software. Effects of different parameterizations and changes
in the network structure may be studied (extending it or replacing parts of it to
model an alternative assumption). These experiments can finally be stored in
SED-ML format, if export is supported by the simulation tool. SED-ML files
can be uploaded to the Web, and thereby be made available to colleagues for
further elaboration of the performed experiments.

10.5.2 Example 2: Reproducing Existing Simulations

Another application of SED-ML is the reproduction of published results. The
following steps, also depicted in Fig. 10.5, enable the reproduction of experiments
already published in a paper, given that the model and the simulation setup file had
been made publicly available:

1. Obtain the SED-ML code for the model of interest. To reproduce the findings
described in a publication one needs to re-run the experiments. In BioModels
Database, some results are already shown as screenshots in the ‘‘curation’’ tab.
These screenshots show the plots obtained by the curator when simulating the
model to verify the model’s correctness at the time of publication in BioModels
Database. In the perfect case, the simulation description is linked to the model
code, e.g. by referring to a database of virtual simulation experiments, or by
directly providing the simulation description files in the model database. For the
Tyson model, the simulation description can be downloaded directly from the
BioModels Database site (from the ‘‘curation’’ tab).

2. Load the simulation description into the simulation tool. The SED-ML file
can be loaded with a simulation tool that supports the SED-ML format. For
example, a SED-ML file can be opened in the online simulation tool SED-ML
Web Tools.14 The software then executes the SED-ML files, fetches the nec-
essary models from BioModels Database and performs the simulations.

14 http://sysbioapps.dyndns.org/SED-ML_Web_Tools/
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3. Verify the model behaves as expected. A SED-ML file typically contains a set
of experiments to be run on the model. When successfully having run all
experiments, one can be sure that the model behaves as expected. The SED-ML
file available for the Tyson model reproduces the results shown in Fig. 10.4a of
the publication. When running the simulation description in SED-ML Web
Tools, or another simulation tool running SED-ML files, the result should look
identical to the one provided in Fig. 10.6. Once the correct behavior of a model
is ensured, one can continue working with the model, e.g. trying different
simulation setups, or extending the model.

10.6 Summary

What is the difference between a live cat and a dead one? One scientific answer is ‘systems
biology’. A dead cat is a collection of its component parts. A live cat is the emergent
behavior of the system incorporating those parts. Nature Editors [45]

Developing models is a time-consuming process; sometimes it can even be life-
long. A model on the function of a single protein can result in a PhD thesis. Some
researchers dedicate their career to ‘‘just one’’ model. The American physiologist

Fig. 10.5 Steps towards reproducible results in computational biology
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Arthur C. Guyton, for example, started developing a model on the ‘‘Relative
importance of venous and arterial resistance in controlling venous return and
cardiac output’’ in the 1950s [46]; he continued working on that model for
30 years, until his retirement in the 1980s [47]. The great effort put into model
development is one reason to reuse a model in other biological contexts. To test a
new hypothesis in silica, it is desirable to take an existing model as a starting point.
Considering previously developed models and components timely and qualita-
tively accelerates the model creation process. Since 2006, model reuse has been
repeatedly discussed as one major issue in computational biology [15, 48, 49].
Model repositories support finding and reusing models. However, providing rel-
evant information about a model and reusing it are two different issues. In order to
bring systems biology to life, the models’ emergent behavior needs to be described
in standard format to ensure result reproducibility. The information how to sim-
ulate a model is also necessary to reuse a model.

The major concepts on which model reuse and result reproducibility can be
built are models encoded in standardized exchange formats, meta-information to
find models of interest from public repositories, and simulation experiments
encoded in standardized exchange formats. We would like to encourage modelers
to make their model code and their simulation setup available to colleagues in
standard formats and through publication in open repositories. To ensure repro-
ducibility of model-based results we recommend the following ‘‘best practice’’:

1. When preparing to publish a model, first try to reproduce the results from the
information intended to publish.

Fig. 10.6 Simulation output for the SBML Tyson model on Cyclin-based kinase, loading the
SED-ML provided through BioModels Database and simulated in SED-ML Web Tools
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2. Ask a colleague to try and reproduce the results before publication. Every piece
of information necessary for that person to reproduce the findings should be
included in the supplementary information.

3. Publish the model code in a standard format, e.g. SBML. Publication should not
be limited to the supplementary material, but the model should also be put in a
model database, e.g. BioModels Database.

4. If unsure how to annotate the model, consult the MIRIAM guidelines.
5. Provide simulation experiment descriptions for every simulation result men-

tioned in the publication. Use a standard format, e.g. SED-ML.
6. If unsure what to include, consult the MIASE guidelines.
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Chapter 11
Parameter Identifiability
and Redundancy, with Applications
to a General Class of Stochastic
Carcinogenesis Models

Mark P. Little, Wolfgang F. Heidenreich and Guangquan Li

Abstract Models for complex biological systems may involve a large number of
parameters. It may well be that some of these parameters (in particular any value
of those parameters) cannot be derived from observed data via regression tech-
niques. Such parameters are said to be unidentifiable, the remaining parameters
being identifiable. Closely related to this idea is that of redundancy, that a set of
parameters can be expressed in terms of some smaller set. Before data is analysed
it is critical to determine which model parameters are identifiable or redundant to
avoid ill-defined and poorly-convergent regression. This problem has been con-
sidered from a number of points of view in the literature. One distinct recent
application has been to biologically-based cancer models. Heidenreich et al. (Risk
Anal 1997 17 391–399) considered parameter identifiability in the context of the
two-mutation cancer model and demonstrated that combinations of all but two of
the model parameters are identifiable. Here we outline general considerations on
parameter identifiability, and introduce the notion of weak local identifiability and
gradient weak local identifiability. These are based on local properties of the
likelihood, in particular the rank of the Hessian matrix. We relate these to the
notions of parameter identifiability and redundancy previously introduced by
Rothenberg (Econometrica 1971 39 577–591) and Catchpole and Morgan
(Biometrika 1997 84 187–196). Within the widely-used exponential family,
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parameter irredundancy, local identifiability, gradient weak local identifiability
and weak local identifiability are shown to be largely equivalent. We consider
applications to a recently developed class of cancer models of Little and Wright
(Math Biosciences 2003 183 111–134) and Little et al. (J Theoret Biol 2008 254
229–238) that generalize a large number of other recently used quasi-biological
cancer models, in particular the two-mutation model of Heidenreich et al. (Risk
Anal 1997 17 391–399). We show that in the simpler model proposed by Little and
Wright (Math Biosciences 2003 183 111–134) the number of identifiable combi-
nations of parameters is at most two less than the number of biological parameters,
thereby generalizing previous results of Heidenreich et al. (Risk Anal 1997 17
391–399) for the two-mutation model. For the more general model of Little et al.
(J Theoret Biol 2008 254 229–238) the number of identifiable combinations of
parameters is at most r þ 1 less than the number of biological parameters, where r
is the number of destabilization types (types of genomic instability), thereby also
generalizing all these results. Numerical evaluations suggest that these bounds are
sharp. We also identify particular combinations of identifiable parameters.

Keywords Cancer � Stochastic model � Quasi-biological model � Exponential
family � Parameter redundancy � Parameter identifiability � Local identifiability �
Weak local identifiability � Gradient weak local identifiability � Genomic
instability

Acronyms

GLM Generalized linear model
GSD Geometric standard deviation

11.1 Introduction

Models for complex biological systems typically involve many parameters, some
of which cannot be derived from observed data via regression techniques. Such
parameters are said to be unidentifiable or non-identifiable, the remaining
parameters being identifiable. A closely related idea is that of redundancy, that a
set of parameters can be expressed in terms of some smaller set. To avoid ill-
defined and poorly convergent regression one must determine which model
parameters are identifiable or redundant.

There is a substantial literature on identifiability in stochastic models in various
contexts [1–3]. Catchpole and Morgan [3] defined a set of model parameters in an
exponential family model to be redundant if the likelihood can be written using a
strictly smaller parameter vector; otherwise they are irredundant. Rothenberg [1],
Jacquez and Perry [4] and Catchpole and Morgan [3] also defined a notion of local
identifiability, to mean that within a neighbourhood of each set of parameter values
the likelihood differs for at least some data points. This notion has been extended

322 M. P. Little et al.



by Little et al. [5]—they defined a set of parameters to be weakly locally identi-
fiable if the maxima of the likelihood are isolated; they defined parameters to be
gradient weakly locally identifiable if the turning points (those for which the
likelihood derivative with respect to the parameters is zero) are isolated. The
results obtained by Little et al. [5], show that, subject to some regulatory condi-
tions, the number of locally identifiable or (gradient) weakly locally identifiable
parameter combinations is equal to the rank of the Hessian matrix, or equivalently
the rank of the Fisher information matrix. The notions of identifiability in sto-
chastic models [1–3, 5], within which framework this paper is set, should be
contrasted with the consideration of identifiability in non-stochastic settings con-
sidered by some [4, 6, 7].

In this chapter we outline some general considerations on parameter identifi-
ability. We shall demonstrate that the concepts of parameter local identifiability
and redundancy are closely related to apparently weaker properties of weak local
identifiability and gradient weak local identifiability, as shown elsewhere [5].
Within the widely-used exponential family we demonstrate that these concepts
(local identifiability, redundancy, weak local identifiability, gradient weak local
identifiability) largely coincide [5].

We go on to consider applications of all these ideas to a recently developed
general class of carcinogenesis models of Little and Wright [8] and Little et al. [9].
These models generalize a large number of other quasi-biological cancer models,
in particular those of Armitage and Doll [10] and other multistage models [11–13].
Most of the carcinogenesis models developed in the last thirty years are special
cases of the class of models considered here. We shall show that via a specific
reparameterization, in the model of Little and Wright [8] in principle combinations
of all but two of the model parameters are identifiable, thereby generalizing pre-
vious results of Heidenreich et al. [14, 15] for a simple special case. For the more
general model of Little et al. [9] combinations of all but r þ 1 of the model
parameters are identifiable, where r is the number of destabilization types (the
number of types of genomic instability), thereby also generalizing all these results.
We also identify particular forms of identifiable parameters. These are outlined in
the later parts of the Analysis and the Discussion, also in a related paper [16].

11.2 Methods

11.2.1 General Considerations on Parameter Identifiability

Jacquez and Perry [4] defined a notion of local identifiability, which is that in a
local region of the parameter space, there is a unique h0 that fits some specified
body of data, ðxi; yiÞni¼1, i.e., for which the model predicted mean hðxjhÞ is such
that the residual sum of squares:
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S ¼
Xn

l¼1

yl � hðxljhÞ½ �2 ð11:1Þ

has a unique minimum. We present here a straightforward generalization of this to
other error structures. If the model prediction hðxÞ ¼ hðxjhÞ for the observed data y
is a function of some vector parameters h ¼ ðhjÞpj¼1 then under the equivalence of
likelihood maximization and iteratively reweighted least squares for generalized
linear models [17] (Chap. 2), parameter minimization via maximum likelihood
implies that one is trying to minimize:

S ¼
Xn

l¼1

1
vl

yl � hðxljh0Þ �
Xp

j¼1

ohðxljhÞ
ohj

ffi
ffi
ffi
ffi
h¼h0

�Dhj

" #2

ð11:2Þ

where yl ð1� l� nÞ ðnffi pÞ is the observed measurement (e.g., the numbers of
observed cases in the case of binomial or Poisson models) at point l and the
vl ð1� l� nÞ are the current estimates of variance at each point. Heuristically, this
has a unique minimum in the perturbing Dh ¼ ðDhjÞpj¼1 (h ¼ h0 þ Dh) given by

HT DHDh ¼ HT Dd, where ðdlÞnl¼1 ¼ ðyl � hðxljh0ÞÞnl¼1, ðHljÞn;pl¼1;j¼1 ¼
ohðxljhÞ

ohj

ffi
ffi
ffi
h¼h0

� �n;p

l¼1;j¼1

,

D ¼ diag½1=v1; 1=v2; . . .; 1=vn�, whenever HT DH has full rank (=p).
More formally:

Definitions 1 Suppose that the likelihood associated with observation xl is lðxljhÞ
and let LðxljhÞ ¼ ln½lðxljhÞ� for h 2 X � Rp. A set of parameters ðhiÞpi¼1 is identi-
fiable if for any h 2 X there are no d 2 Xnfhg for which
LðxjdÞ ¼ LðxjhÞ ðx almost everywhere (a:e:ÞÞ. A set of parameters ðhiÞpi¼1 is locally
identifiable at that point if there exists a neighborhood N 2 @h such that for no
d 2 Nnfhg is LðxjdÞ ¼ LðxjhÞ ðx a:e:Þ. A set of parameters ðhiÞpi¼1 is weakly locally
identifiable at that point if there exists a neighborhood N 2 @h and data

x ¼ ðx1; . . .; xnÞ 2 Rn such that the log-likelihood L ¼ LðxjhÞ ¼
Pn

l¼1
LðxljhÞ is

maximized by at most one set of h
_

2 N. If L ¼ LðxjhÞ is C1 as a function of h 2 X a
set of parameters ðhiÞpi¼1 2 intðXÞ is gradient weakly locally identifiable at that
point if there exists a neighborhood N 2 @h and data x ¼ ðx1; . . .; xnÞ 2 Rn such that

oLðxjh
_
Þ

oh
_

i

� �p

i¼1

¼ 0 (i.e., h
_

is a turning point of LðxjhÞ) for at most one set of h
_

2 N.

Our definitions of identifiability and local identifiability coincide with those of
Rothenberg and others [1–3]. Rothenberg [1] proved that if the Fisher information
matrix, I ¼ IðhÞ, in a neighborhood of h 2 intðXÞ is of constant rank and satisfies
various other more minor regularity conditions, then h 2 intðXÞ is locally identi-
fiable if and only if IðhÞ is non-singular. Clearly identifiability implies local
identifiability. By the Mean Value Theorem [18] (p.107) gradient weak local
identifiability implies weak local identifiability. We have the following key result.
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Theorem 1 Suppose that the log-likelihood LðxjhÞ is C2 as a function of the
parameter vector h 2 X � Rp, for all x ¼ ðx1; . . .; xnÞ 2 Rn.

1. Suppose that for some x and h 2 intðXÞ it is the case that rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ p.

Then turning points of the likelihood in the neighborhood of h are isolated, i.e.,
there is an open neighborhood N 2 @h � X for which there is at most one

h
_

2 N that satisfies oLðxjhÞ
ohi

� �p

i¼1

ffi
ffi
ffi
h¼h

_¼ 0.

2. Suppose that for some x and h 2 intðXÞ it is the case that rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ p

then local maxima of the likelihood in the neighborhood of h are isolated, i.e.,
there is an open neighborhood N 2 @h � X for which there is at most one

h
_

2 N that is a local maximum of LðxjhÞ.
3. Suppose that for some x and all h 2 intðXÞ it is the case that

rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ r\p then all local maxima of the likelihood in intðXÞ are

not isolated, as indeed are all h 2 intðXÞ for which oLðxjhÞ
ohi

� �p

i¼1
¼ 0.

We prove this result in Appendix A. As an immediate consequence we have the
following result.

Corollary 1 For a given x ¼ ðx1; . . .; xnÞ 2 Rn, a sufficient condition for the like-

lihood LðxjhÞ ¼
Pn

l¼1
LðxljhÞ to have at most one maximum and one turning point in

the neighborhood of a given h ¼ ðh1; . . .; hpÞ 2 intðXÞ is that rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ p.

In particular, if this condition is satisfied h is gradient weakly locally identifiable
(and therefore weakly locally identifiable) (X � Rp is the parameter space).

That this condition is not necessary is seen by consideration of the likelihood

lðxjhÞ ¼ C � exp �
Pp

i¼1
½xi � hi�4

� �

, where C is chosen so that this has unit mass.

Then o2LðxjhÞ
ohiohj

¼ �12 � ½xi � hi�2 � dij which has rank 0 at h ¼ x and a unique max-

imum there. In particular, this shows that the result claimed by Viallefont et al.
[19] (proposition 2) is incorrect.

Definitions 2 A subset of parameters ðhpðiÞÞki¼1 (for some permutation
p : f1; 2; . . .; pg ! f1; 2; . . .; pg) is weakly maximal (respectively weakly gradient

maximal) if for any permissible fixed ðhpðiÞÞpi¼kþ1 (such that X
ðhpðiÞÞpi¼kþ1
k;p ¼

fðhpðiÞÞki¼1 : ðh1; . . .; hk; hkþ1; . . .; hpÞ 2 Xg 6¼ ;) ðhpðiÞÞki¼1 is weakly locally iden-
tifiable (respectively gradient weakly locally identifiable) at that point (in relation

to the restricted likelihood LðhpðiÞÞpi¼kþ1
ðxjðhpðiÞÞki¼1Þ ¼ LðxjðhiÞpi¼1Þ but that this is not
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the case for any larger number of parameters. A subset of parameters ðhpðiÞÞki¼1 is
strongly maximal (respectively strongly gradient maximal) if for any permissible

fixed ðhpðiÞÞpi¼kþ1 and any open U � X
ðhpðiÞÞpi¼kþ1
k;p , ðhpðiÞÞki¼1 restricted to the set U is

weakly maximal (respectively weakly gradient maximal), i.e., all ðh0pðiÞÞ
k
i¼1 2 U

are weakly maximal (respectively weakly gradient maximal).

From this it easily follows that a strongly (gradient) maximal set of parameters

ðhpðiÞÞki¼1 is a fortiori weakly (gradient) maximal at all points ðh0pðiÞÞ
k
i¼1 2

X
ðhpðiÞÞpi¼kþ1
k;p for any permissible ðhpðiÞÞpi¼kþ1. Assume now that k of the p hi are a

weakly maximal set of parameters. So for some permutation p : f1; 2; . . .; pg !
f1; 2; . . .; pg and for any permissible fixed ðhpðiÞÞpi¼kþ1 and any ðhpðiÞÞki¼1 2

X
ðhpðiÞÞpi¼kþ1
k;p � Rk there is an open neighborhood N 2 @ðhpðiÞÞki¼1

� X
ðhpðiÞÞpi¼kþ1
k;p and

some data x ¼ ðx1; . . .; xnÞ 2 Rn for which LðhpðiÞÞpi¼kþ1
ðxjðhpðiÞÞki¼1Þ is maximized by

at most one set of ðh
_

pðiÞÞki¼1 2 N, but that this is not the case for any larger number

of parameters. Assume that r ¼ max rk
o2LðhpðiÞÞ

p
i¼kþ1

ðxjðhpðiÞÞki¼1Þ

ohpðiÞohpðjÞ

� �k

i;j¼1

" #

: ðhpðiÞÞki¼1 2 N

( )

\k.

If L is C2 as a function of h then it follows easily that Xk;r ¼ ðhpðiÞÞki¼1 2 N :
n

rk
o2LðhpðiÞÞ

p
i¼kþ1

ðxjðhpðiÞÞki¼1Þ

ohpðiÞohpðjÞ

� �k

i;j¼1

" #

¼ rg must be an open non-empty subset of N. By

Theorem 1 (3) any h
_

2 Xk;r which maximizes LðhpðiÞÞpi¼kþ1
in Xk;r cannot be isolated,

a contradiction (unless there are no maximizing h
_

2 Xk;r). Therefore, either there

are no maximizing h
_

2 Xk;r or for at least one h
_

2 N

rk
o2LðhpðiÞÞ

p
i¼kþ1

ðxjðhpðiÞÞki¼1Þ

ohpðiÞohpðjÞ

� �k

i;j¼1

ffi
ffi
ffi
ffi
ffi
ðhpðiÞÞki¼1¼h

_

2

4

3

5 ¼ k. This implies that rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

ffi
ffi
ffi
ffi
h¼h

_
0

� �

ffi k,

where h
_0
¼ ðh

_

Þ [ ðhpðiÞÞpi¼kþ1 in the obvious sense.

Assume now that the ðhpðiÞÞki¼1 are strongly maximal. Suppose that for some
h1 ¼ h1ið Þpi¼12 X and some x ¼ ðx1; . . .; xnÞ 2 Rn it is the case that

rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

ffi
ffi
ffi
ffi
h¼h1

" #

[ k. Because o2LðxjhÞ
ohiohj

� �p

i;j¼1

ffi
ffi
ffi
ffi
h¼h1

is symmetric, there is a

permutation p0 : f1; . . .; pg ! f1; . . .; pg for which rk o2LðxjhÞ
ohp0 ðiÞohp0 ðjÞ

� �kþ1

i;j¼1

ffi
ffi
ffi
ffi
h¼h1

" #

¼

k þ 1 [20] (p.79). If L is C2 as a function of h this will be the case in some open
neighborhood N 0 2 @ðh1p0 ðiÞÞ

kþ1
i¼1
� Rkþ1. By Theorem 1 (2) this implies that the
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parameters hp0ðiÞ
	 
kþ1

i¼1
have at most one maximum in N 0, so that hpðiÞ

	 
k

i¼1
is not a

strongly maximal set of parameters in N 0. With small changes everything above
also goes through with ‘‘weakly gradient maximal’’ substituted for ‘‘weakly
maximal’’ and ‘‘strongly gradient maximal’’ substituted for ‘‘strongly maximal’’.
Therefore we have proved the following result.

Theorem 2 Let LðxjhÞ be C2 as a function of h 2 X � Rp for all x 2
Pn.

1. If there is a weakly maximal (respectively weakly gradient maximal) subset of
k parameters, ðhpð1Þ; hpð2Þ; . . .; hpðkÞÞ for some permutation
p : f1; 2; . . .; pg ! f1; 2; . . .; pg), and for fixed ðhpðiÞÞpi¼kþ1 and some x ¼
ðx1; . . .; xnÞ 2 Rn LðhpðiÞÞpi¼kþ1

ðxjðhpðiÞÞki¼1Þ has a maximum (respectively turning

point) on the set of h where rk
o2LðhpðiÞÞ

p
i¼kþ1

ðxjðhpðiÞÞki¼1Þ

ohpðiÞohpðjÞ

� �k

i;j¼1

" #

is maximal then

max rk
o2LðhpðiÞÞ

p
i¼kþ1

ðxjðhpðiÞÞki¼1Þ

ohpðiÞohpðjÞ

� �k

i;j¼1

" #

: ðhpðiÞÞki¼1 2 X
ðhpðiÞÞpi¼kþ1
k;p

( )

¼ k and

max rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

: h 2 X

� �

ffi k.

2. If there is a strongly maximal (respectively strongly gradient maximal) subset
of k parameters, ðhpð1Þ; hpð2Þ; . . .; hpðkÞÞ (for some permutation

p : f1; 2; . . .; pg ! f1; 2; . . .; pg) then rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

� k 8h 2 X .

All further results in this Section assume that the model is a member of the
exponential family, so that if the observed data x ¼ ðxlÞnl¼1 2

Pn then the log-

likelihood is given by LðxjhÞ ¼
Pn

l¼1

xl1l�bð1lÞ
að/Þ þ cðxl;/Þ

h i
for some functions

að/Þ; bð1Þ; cðx;/Þ. We assume that the natural parameters 1l ¼ 1l½ðhiÞpi¼1; zl� are
functions of the model parameters ðhiÞpi¼1 and some auxiliary data zl, but that the
scaling parameter / is not. Let ll ¼ b0ð1lÞ ¼ E½xl�, so that ll ¼ b0ð1l½ðhiÞpi¼1; zl�Þ.
In all that follows we shall assume that the function bð1Þ is C2. The following
definition was introduced by Catchpole and Morgan [3].

Definition 3 With the above notation, a set of parameters ðhiÞpi¼1 2 X is parameter
redundant for an exponential family model if ll ¼ b0ð1l½ðqiÞqi¼1; zl�Þ can be
expressed in terms of some strictly smaller parameter vector ðqiÞ

q
i¼1 (q\p).

Otherwise, the set of parameters ðhiÞpi¼1 is parameter irredundant or full rank.

Catchpole and Morgan [3] proved (their Theorem 1) that a set of parameters is

parameter redundant if and only if rk oll
ohi

� �n p

l¼1;i¼1

� �

\p. They defined full rank
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models to be essentially full rank if rk oll
ohi

� �n p

l¼1;i¼1

� �

¼ p for every ðhiÞpi¼1 2 X; if

rk oll
ohi

� �n p

l¼1;i¼1

� �

¼ p only for some ðhiÞpi¼1 2 X then the parameter set is condi-

tionally full rank. They also showed (their Theorem 3) that if I ¼ IðhÞ is the Fisher

information matrix then rk oll
ohi

� �n p

l¼1;i¼1

� �

¼ rk½IðhÞ�, and that parameter redun-

dancy implies lack of local identifiability; indeed their proof of Theorems 2 and 4
showed that there is also lack of weak local identifiability (respectively gradient
weak local identifiability) for all ðh0iÞ

p
i¼1 2 X which for some x ¼ ðxlÞnl¼1 2

Pn are
local maxima (respectively turning points) of the likelihood.

Assume that h ¼ ðhiÞpi¼1 are an essentially full rank set of parameters for the
model. From the above result for every h ¼ ðhiÞpi¼1 2 X

rk oll
ohi

� �n p

l¼1;i¼1

� �

¼ rkðIðhÞÞ ¼ p. Therefore, since E o2LðxjhÞ
ohiohj

h i
¼ �E oLðxjhÞ

ohi

oLðxjhÞ
ohj

h i
¼

�IðhÞ is of full rank and so negative definite, so by the strong law of large numbers
we can choose x ¼ ðxlÞnl¼1 2

Pn so that the same is true of
o2LðxjhÞ
ohiohj

¼
Pn

l¼1

xl�b0ð1lÞ
að/Þ

h i
o21l

ohiohj
� b00ð1lÞ

að/Þ
o1l
ohi

o1l
ohj

n o
. This implies that on some N 2 @h � Rp

o2LðxjhÞ
ohiohj

¼
Pn

l¼1

xl�b0ð1lÞ
að/Þ

h i
o21l

ohiohj
� b00ð1lÞ

að/Þ
o1l
ohi

o1l
ohj

n o
is of full rank, and therefore by Corol-

lary 1 h ¼ ðhiÞpi¼1 is (gradient) weakly locally identifiable. Furthermore, the above
argument shows that if h ¼ ðhiÞpi¼1 are a conditionally full rank set of parameters

then on the (open) set Xp ¼ h ¼ hið Þpi¼12 X : rk oll
ohi

� �n p

l¼1;i¼1

� �

¼ p

� �

, h ¼ ðhiÞpi¼1

is gradient weakly locally identifiable. We have therefore proved:

Theorem 3 Let LðxjhÞ belong to the exponential family and be C2 as a function of
h 2 X � Rp for all x 2

Pn.

1. If the parameter set h ¼ ðhiÞpi¼1 is parameter redundant then it is not locally
identifiable, and is not weakly locally identifiable (respectively gradient weakly
locally identifiable) for all ðh0iÞ

p
i¼1 2 X which for some x ¼ ðxlÞnl¼1 2

Pn are
local maxima (respectively turning points) of the likelihood.

2. If the parameter set h ¼ ðhiÞpi¼1 is of essentially full rank then for some x ¼
ðxlÞnl¼1 2

Pn o2LðxjhÞ
ohiohj

is of full rank and therefore h ¼ ðhiÞpi¼1 is gradient weakly

locally identifiable (and so weakly locally identifiable) for all h ¼ ðhiÞpi¼1 2 X.
3. If the parameter set h ¼ ðhiÞpi¼1 is of conditionally full rank then it is gradient

weakly locally identifiable on the open set Xp ¼ h ¼ hið Þpi¼12 X :


rk oll
ohi

� �n p

l¼1;i¼1

� �

¼ pg.
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Remarks It should be noted that part (1) of this generalizes part (i) of Theorem 4
of Catchpole and Morgan [3]. However, some components of part (2) (that being
essentially full rank implies gradient weak local identifiability) is weaker than the
other result, proved in part (ii) of Theorem 4 of Catchpole and Morgan [3], namely
that if a model is of essentially full rank it is locally identifiable. As noted by
Catchpole and Morgan [3] there are exponential-family models that are condi-
tionally full rank, but not locally identifiable, so part (3) is about as strong a result
as can be hoped for.

From Theorem 3 we deduce the following.

Corollary 2 Let LðxjhÞ belong to the exponential family and be C2 as a function
of h 2 X � Rp for all x 2

Pn. Then

1. If for some subset of parameters ðhpðiÞÞki¼1 and some x ¼ ðx1; . . .; xnÞ 2 Rn it is

the case that rk o2LðxjhÞ
ohpðiÞohpðjÞ

� �k

i;j¼1

� �

¼ k then this subset is gradient weakly locally

identifiable at this point.

2. If a subset of parameters ðhpðiÞÞki¼1 is weakly locally identifiable and for some
x 2

Pn this point is a local maximum of the likelihood then it is parameter

irredundant, i.e., of full rank, so rk½IðhÞ� ¼ k, so that for some x0 2
Pn0

rk o2Lðx0jhÞ
ohpðiÞohpðjÞ

� �k

i;j¼1

� �

¼ k. In particular, if this holds for all h 2 X then parameter

irredundancy, local identifiability, gradient weak local identifiability and weak
local identifiability are all equivalent.

Proof This is an immediate consequence of the remarks after Definition 1, Cor-
ollary 1, Theorem 3 (1) and Theorems 1 and 3 of Catchpole and Morgan [3]. QED.

Remarks
1. By the remarks preceding Theorem 3 the conditions of part (1) (that for some

x ¼ ðx1; . . .; xnÞ 2 Rn it is the case that rk o2LðxjhÞ
ohiohj

� �k

i;j¼1

� �

¼ k) are automatically

satisfied if h ¼ ðhiÞki¼1 are an essentially full rank set of parameters for the
model.

2. Assume the model is constructed from a stochastic cancer model embedded in
the exponential family, in the sense outlined in Appendix B, so that the natural
parameters 1l ¼ 1l½ðhiÞpi¼1; zl� are functions of the model parameters ðhiÞpi¼1

and some auxiliary data ðzlÞnl¼1, and the means are given by
ll ¼ b0ð1l½ðhiÞpi¼1; zl�Þ ¼ zl � h½ðhiÞpi¼1; yl�, where h½ðhiÞpi¼1; yl� is the cancer
hazard function. In this case, as shown in Appendix B,

o2LðxjhÞ
ohiohj

¼
Pn

l¼1

½xl�b0ð1lÞ�zl

að/Þb00ð1lÞ
o2hðh;ylÞ
ohiohj

� z2
l

að/Þ
ohðh;ylÞ

ohi

ohðh;ylÞ
ohj

½b00ð1lÞ�2þb000ð1lÞ½xl�b0ð1lÞ�
½b00ð1lÞ�3

n o

2

4

3

5. The second term

11 Parameter Identifiability and Redundancy 329



inside the summation � z2
l

að/Þ
ohðh;ylÞ

ohi

ohðh;ylÞ
ohj

½b00ð1lÞ�2þb000ð1lÞ½xl�b0ð1lÞ�
½b00ð1lÞ�3

n o� �p

i;j¼1
is a rank

1 matrix and can be made small in relation to the first term, e.g., by making zl

small. Therefore finding data ðx; y; zÞ ¼ ðx1; . . .; xn; y1; . . .; yn; z1; . . .; znÞ 2 Rn

for which rk o2LðxjhÞ
ohpðiÞohpðjÞ

� �k

i;j¼1

� �

¼ k is equivalent to finding data for which

rk o2hðh;ylÞ
ohpðiÞohpðjÞ

� �k

i;j¼1

� �

¼ k, or by the result of Dickson [20] (p.79) for which

rk o2hðh;ylÞ
ohiohj

� �p

i;j¼1

� �

¼ k.

11.2.2 Hessian vs Fisher Information Matrix as a Method
of Determining Redundancy and Identifiability
in Generalised Linear Models

We, as with Catchpole and Morgan [3], emphasise use of the Hessian of the
likelihood rather than the Fisher information matrix considered by Rothenberg [1].

In the context of generalized linear models (GLM), we have LðxjhÞ ¼

Pn

l¼1

xl1l�bð1lÞ
að/Þ þ cðxl;/Þ

h i
and gðliÞ ¼ gðb0ð1iÞÞ ¼

Pp

j¼1
Aijhj for some link function gðÞ

and fixed matrix A. We define Dij ¼
olj

ohi
¼ 1

g0ðljÞAji ¼ AT G�1ð Þij where

G ¼ diag g0ðl1Þ; g0ðl2Þ; . . .; g0ðlnÞð Þ. Theorem 1 of Catchpole and Morgan [3]
states that a model is parameter irredundant if and only if rk½D� ¼ p. The score

vector is given by Ui ¼ oLðxjhÞ
ohi
¼
Pn

l¼1

½xl�ll�
að/Þ

o1l
ohi
¼
Pn

l¼1

½xl�ll�
b00ð1lÞað/Þ

oll
ohi
¼ 1

að/Þ DDðx� lÞð Þi

where D ¼ diag 1
b00ð11Þ ;

1
b00ð12Þ ; . . .; 1

b00ð1nÞ

� �
. The Fisher information is therefore given

by IðhÞ ¼ E UUT½ � ¼ 1
að/Þ2 DDVDDT where V ¼ E xi � li½ � xj � lj

� �� �	 

i;j

is the

data variance. Theorem 1 of Rothenberg [1] states that a model is locally identi-
fiable if and only if rk½IðhÞ� ¼ p. As above [Corollary 2 (2)], heuristically
parameter irredundancy, local identifiability, gradient weak local identifiability
and weak local identifiability are all equivalent and occur whenever
rkðDDVDDTÞ ¼ rkðDÞ ¼ p. Clearly evaluating the rank of D is generally much
easier than that of DDVDDT .

However, for certain applications, both the Fisher information and the Hessian
must be employed, as we now outline. Assume that the model is constructed from
a stochastic cancer model embedded in an exponential family model in the sense
outlined in Appendix B. The key to showing that such an embedded model has no
more than N irredundant parameters is to construct some scalar functions
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G1ð:Þ;G2ð:Þ; . . .;GNð:Þ such that the cancer hazard function hðhÞ can be written as
hðG1ðhÞ;G2ðhÞ; . . .;GNðhÞÞ. Since the cancer model is embedded in a member of
the exponential family (in the sense outlined in Appendix B) the same will be true
of the total log-likelihood LðxjhÞ ¼ LðxjG1ðhÞ;G2ðhÞ; . . .;GNðhÞÞ. By means of

the Chain Rule [18] (p.215) we obtain o2LðxjhÞ
ohiohj

¼
PN

l;k¼1

o2LðxjG1;...;GN Þ
oGloGk

oGl
ohi

oGk
ohj
þ
PN

l¼1

oLðxjG1;...;GN Þ
oGl

o2Gl
ohiohj

,

so that the Fisher information matrix is given by:

IðhÞ ¼ �Eh
o2LðxjhÞ
ohiohj

h i
¼ �E

PN

l;k¼1

o2LðxjG1;...;GN Þ
oGloGk

oGl
ohi

oGk
ohj

" #

¼ �
PN

l;k¼1

oGl
ohi

E o2LðxjG1;...;GN Þ
oGloGk

h i
oGk
ohj

ð11:3Þ

which therefore has rank at most N. Therefore by Corollary 2 there can be at most N
irredundant parameters, or indeed (gradient) weak locally identifiable parameters.
[A similar argument shows that if one were to reparameterise (via some invertible
C2 mapping h ¼ f ðxÞ) then the embedded log-likelihood Lðxjf�1ðhÞÞ ¼ LðxjxÞ
associated with hðf�1ðhÞÞ ¼ hðxÞmust also have Fisher information matrix of rank
at most N.] By remark (2) after Corollary 2, to show that a subset of cardinality N of
the parameters ðhiÞpi¼1 is (gradient) weak locally identifiable parameters, requires

that one show that o2hðh;ylÞ
ohiohj

h ip

i;j¼1
has rank at least N for some ðh; ylÞ. This is the

approach adopted in the paper of Little et al. [16], which we now outline.

11.3 Parameter Identifiability in the Context
of a Stochastic Cancer Model with Genomic
Instability

We consider the problem of parameter identifiability in a particular class of sto-
chastic cancer models [8, 9], generalizing previously developed ideas [15].
Throughout this section we shall assume that this model is embedded in a member

of the exponential family so that the log-likelihood is given by LðxjhÞ ¼

Pn

l¼1

xl1l�bð1lÞ
að/Þ þ cðxl;/Þ

h i
where the natural parameters 1l ¼ 1l½ðhiÞpi¼1; zl� are func-

tions of the model parameters ðhiÞpi¼1 and some auxiliary data ðzlÞnl¼1, but that the
scaling parameter / is not. We shall assume that the
ll ¼ b0ð1l½ðhiÞpi¼1; zl�Þ ¼ zl � h½ðhiÞpi¼1; yl�, where h½ðhiÞpi¼1; yl� is the cancer hazard
function, and that the ðzlÞnl¼1 are all non-zero. This is generally the case, in par-
ticular when cohort data are analysed using Poisson regression models [8, 21]. By
the remarks following Corollary 2 above, proving weak local identifiability of a
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subset of cardinality k of the biological parameters ðhiÞpi¼1 is equivalent to showing

that for this subset of parameters rk o2h
ohiohj

� �p

i;j¼1

� �

¼ k.

The model of Little et al. [9], generalizing various others [8, 10–13, 22],
assumes that cells can acquire up to k successive cancer-stage mutations, and any
of r (mutually exclusive) types of destabilization mutation(s). Cells become
malignant when k cancer-stage mutations have occurred, no matter how many
destabilizing mutations there have been. Once a cell has acquired a destabilizing
mutation of type d (1� d� r), it and its daughter cells can acquire up to md � 1
further destabilizing mutations of the same type. We define r to be the multiplicity
of destabilization mutation types (types of genomic instability). It is to be expected
that the more destabilizing mutations cells acquire of each type, the higher the
cancer stage mutation rate is, but this is not intrinsic to the model. We write
ðm1 � m2 � � � � � mrÞ as the signature of the destabilizing mutation types. We
habitually describe this model as of type k � r � ðm1 � m2 � � � � � mrÞ for short.
The model is illustrated schematically in Figs. 11.1 and 11.2. Table 11.1 lists the
biological parameters that are used in the model, and their multiplicity.

Cells at different stages of the process are labelled by Iða;b;dÞ, where the first
subscript, a, represents the number of cancer stage mutations that the cell has
accumulated, the second subscript, b, represents the number of destabilizing
mutations acquired, their type being given by the third subscript, d. At all stages
other than Ið0;0;0Þ, cells are allowed to divide symmetrically or differentiate/

Fig. 11.1 Diagram of cancer model with k cancer-stage mutations and m destabilizing
mutations, as in [9]
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apoptose at rates Gða; b; dÞ and Dða; b; dÞ, respectively. Each cell can divide into
an equivalent daughter cell and another cell with an extra cancer stage mutation at
rate Mða; b; dÞ. Likewise, cells can also divide into an equivalent daughter cell and
another cell with an additional destabilizing mutation of type d at rate Aða; b; dÞ.
The model assumes that there are XðtÞ susceptible stem cells at age t. Further
details on derivation of the hazard function are given elsewhere [9].

Fig. 11.2 Destabilizing-mutation planes in model, each plane with structure of Fig. 11.1, as in [9]

Table 11.1 The number of biological parameters in a model with k cancer stages, r types of GI
and md (ðd ¼ 1; . . .; rÞ) levels of destabilizations

Model parameter descriptions Model parameters Number of such parameters in the model

Stem cell population number X tð Þ 1
Growth rate G a;b; dð Þ tð Þ

k � 1þ k �
Pr

d¼1
md

Death/differentiation rate D a;b; dð Þ tð Þ
k � 1þ k �

Pr

d¼1
md

Cancer-stage mutation rate M a; b; dð Þ tð Þ
k þ k �

Pr

d¼1
md

Destabilizing mutation rate A a;b; dð Þ tð Þ
k �
Pr

d¼1
md

Total
3 � k � 1þ 4 � k �

Pr

d¼1
md
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11.3.1 Assessment of Parameter Identifiability
for a Stochastic Cancer Model with Genomic
Instability

In Appendix C we derive the hazard function and show that it can be written in terms
of certain combinations of the biological parameters given in Table 11.1. From
equations (11.C12–11.C16) in Appendix C it is seen that the characteristics and w are
governed by certain parameter combinations. Table 11.2 summarizes the maximum
number of identifiable parameter combinations and their forms associated with each
cell compartment. The maximum number of identifiable parameters associated with
each destabilization zone, Ia;b;d, are 4 when a\k � 1 and 0\b\md; 4 when a ¼
k � 1 and 0\b\md; 3 when a\k � 1 and b ¼ md and 2 when a ¼ k � 1 and
b ¼ md. The function w is governed by at most r þ 1 parameter combinations.
Therefore, we have shown that the hazard function hðhÞ can be written as
hðG1ðhÞ;G2ðhÞ; . . .;GNðhÞÞ for some scalar functions G1ð:Þ;G2ð:Þ; . . .;GNð:Þ, where

N ¼ ðk � 2Þ � ð3þ rÞ þð3þ rÞ � 1 þð1þ rÞ � 1 þ4 � ðk � 1Þ �
Pr

d¼1
ðmd � 1Þ þ 4 �

Pr

d¼1
ðmd � 1Þ þ3 � ðk � 1Þ � r þ2 � r ¼ 3k � 2� r þ 4k �

Pr

d¼1
md (Table 11.2).

Assuming that the cancer model is embedded in a member of the exponential family
(in the sense outlined in Appendix B) the same will be true of the total log-likelihood
LðxjhÞ ¼ LðxjG1ðhÞ;G2ðhÞ; . . .;GNðhÞÞ. By means of the Chain Rule [18] (p.215) we

obtain o2LðxjhÞ
ohiohj

¼
PN

l;k¼1

o2LðxjG1;...;GNÞ
oGloGk

oGl
ohi

oGk
ohj
þ
PN

l¼1

oLðxjG1;...;GN Þ
oGl

o2Gl
ohiohj

, so that the Fisher

information matrix is given by

IðhÞ ¼ �Eh
o2LðxjhÞ
ohiohj

h i
¼ �E

PN

l;k¼1

o2LðxjG1;:::;GN Þ
oGloGk

oGl
ohi

oGk
ohj

" #

¼ �
PN

l;k¼1

oGl
ohi

E o2LðxjG1;:::;GN Þ
oGloGk

h i
oGk
ohj

ð11:4Þ

which therefore has rank at most N. A similar argument shows that if one were to
reparameterise [via some invertible C2 mapping h ¼ f ðxÞ] then the embedded log-
likelihood Lðxjf�1ðhÞÞ ¼ LðxjxÞ associated with hðf�1ðhÞÞ ¼ hðxÞ must also have
Fisher information matrix of rank at most N. By Theorems 1 and 3 of Catchpole
and Morgan [3], for this embedded exponential family model therefore there can
be at most N irredundant parameters. Therefore, of the theoretically available

1þ 2 � ½k � 1þ k �
Pr

d¼1
md� þ k þ 2 � k �

Pr

d¼1
md ¼ 3k � 1þ 4k �

Pr

d¼1
md biological

parameters (Table 11.1), at most N ¼ 3k � 2� r þ 4k �
Pr

d¼1
md parameter combi-

nations are identifiable, indicating a minimum of ðr þ 1Þ parameter redundancies
in the model. Also, from Corollary 2 (2) and the subsequent Remark (2) above,
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subject to some regulatory conditions, the number of locally identifiable or (gra-
dient) weakly locally identifiable parameter combinations is equal to the rank of
the Fisher information matrix, so �N. For example, in the case of the two-mutation

model [11], with k ¼ 2, r ¼ 1, d ¼ 0 and md ¼ 0 (and so m ¼
Pr

d¼1
md ¼ 0), there are

k � ðmþ 1Þ � 1 ¼ 2 � 1� 1 ¼ 1 G’s (namely G(1,0,0)), k � ðmþ 1Þ � 1 ¼ 2 � 1�
1 ¼ 1 D’s (namely Dð1; 0; 0Þ), k � m ¼ 2 � 0 ¼ 0 A’s, k � ðmþ 1Þ ¼ 2 � 1 ¼ 2 M’s
(namely Mð0; 0; 0Þ;Mð1; 0; 0Þ), and a single X, giving a total of five biological
parameters. It is known from the results of Heidenreich et al. [14, 15] that for the
two-mutation model only three combinations of these are estimable, i.e., that there
are two redundancies, precisely in agreement with the result given here for r ¼ 1.
This result therefore precisely generalizes the results and approach of Heidenreich
et al. [14, 15]. Unfortunately, analytical methods for proving that precisely this
number of parameters are estimable, including some recently outlined [23], cannot
be used for the model considered here. Nevertheless, we conjecture that in fact
precisely this number of parameters are estimable, so that the upper bound on the
number of estimable parameter combinations that we have proved above is in fact
sharp. This is supported by numerical evaluation of the Hessian in a couple of
example cases, which we now outline.

11.3.2 Numerical Evaluation of Hessian and Determination
of its Rank

That there are likely to be exactly this number of estimable parameters is sup-
ported by numerical evaluation of the Hessian matrix of the hazard function. We
make use of the solution of the system of ordinary differential equations defining
the Hessian, outlined in Appendix E. We will show in two cases that the Hessian
has rank two less than the number of biological parameters, w. By the above
results (also of Catchpole and Morgan [3]) this suggests that precisely w� 2
parameters are (gradient) weakly locally identifiable. In order to show that the
Hessians are of rank two less than the number of biological parameters, w, we
evaluate the eigenvalues of the Hessian matrix, and establish that the smallest
eigenvalue among the w� 2 largest eigenvalues in absolute value exceeds the
likely magnitude of the error by at least an order of magnitude. We know the likely
size of the error in numerical evaluations of each element, hij, of the Hessian from
the Boerlisch-Stoer integrator that is employed, namely maxð10�10; 10�10 � jhijj :
1� i; j�wÞ (bsstep routine, Press et al. [24]). It is known that if two symmetric
matrices H and ~H have eigenvalues k1� k2� . . .kw�1� kw and
~k1� ~k2� . . .~kw�1� ~kw then jki � ~kij � jjH � ~Hjj2; 1� i�w, where jjHjj2 ¼
sup½jjHxjj2=jjxjj2 : x 6¼ 0� [25]. Since the approximate Hessian that we calculate,
~H, differs from the true Hessian, H, by an amount
jjH � ~Hjj2�

ffiffiffiffi
w
p �max½jhij � ~hijj : 1� i; j�w�, we know that:
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jki � ~kij �
ffiffiffiffi
w
p
�max½jhij � ~hijj : 1� i; j�w� �

ffiffiffiffi
w
p
�max½10�10; 10�10 � j~hijj

: 1� i; j�w�
ð11:5Þ

There is also the issue of numerical roundoff error in the QR algorithm
(Numerical Algorithms Group (NAG) routine F02FAF [26]) used to compute

eigenvalues. If we write now ~ki; ~k
_

i for the true and approximate eigenvalues
associated with the approximate Hessian, ~H, this is bounded by:

j~ki � ~k
_

ij � cðwÞ � e � jj~Hjj2� cðwÞ � e �
ffiffiffiffi
w
p
�max½j~hijj : 1� i; j�w�; 1� i�w

ð11:6Þ

where cðwÞ is a modestly increasing function of the dimension, w, of the
approximate Hessian ~H and e is the machine precision [26]. Since the machine
precision (in double precision) is of the order 10�15, expression (11.6) will be
dominated by the error associated with the approximation to the Hessian, given by
expression (11.5).

We evaluated the Hessian matrix for a model with three cancer-stage mutations
and one destabilizing mutation, and a model with two cancer-stage mutations and
one destabilizing mutation; log-normal perturbations of all parameters were per-
formed, assuming a geometric standard deviation (GSD) of 4, centred on models
with cancer-stage mutation rates of 4.0 9 10-3 year-1, destabilizing mutation
rates of 3.0 9 10-3 year-1, intermediate cell proliferation rates of 1.0 9 10-1

year-1, and intermediate cell death rates of 5.0 9 10-1 year-1. For each of 1,000
random sets of parameters we evaluated the Hessian by numerical integration, as
outlined in Appendix E. We calculated the eigenvalues of the Hessian using the
QR algorithm, specifically the NAG FORTRAN subroutine F02FAF [26]. For
each model we selected the set of random parameters for which the ratio of
minimum to maximum among the w� 2 largest eigenvalues (w being the number
of biological parameters) in absolute value was greatest. These are given in
Tables 11.3 and 11.4, for the three-stage and two-stage models, respectively. The
associated eigenvalues are given in Table 11.5. The absolute value of the w� 2th
smallest eigenvalue associated with each set exceeds the error bound (11.5) by at
least an order of magnitude in each case. This strongly suggests that the Hessians
calculated for these two examples really are of rank w� 2 for each model.

11.4 Discussion

We have introduced various novel notions of identifiability, related to ideas pre-
viously introduced by Rothenberg and others [1, 3]. In particular we have shown
that within the exponential family models parameter irredundancy, local
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identifiability, gradient weak local identifiability and weak local identifiability are
largely equivalent.

The slight novelty of our approach, as with that of Catchpole and Morgan [3], is
that for reasons of greater analytic tractability the notions of identifiability that we
introduce are related more to the Hessian of the likelihood rather than the Fisher
information matrix that was considered elsewhere [1]. The use of this approach is
motivated by the application, namely to determine identifiable parameter combi-
nations in the very general class of stochastic cancer models [8–13, 22] outlined

Table 11.3 Example
coefficients of model with
three cancer stage mutations
and one destabilizing
mutation

Coefficient Value

G(1,0,0) 8.64714335947694 9 10-2

G(2,0,0) 1.06188950764276 9 10-3

D(1,0,0) 4.25556779736062 9 10-2

D(2,0,0) 2.68975909218019 9 10-1

M(0,0,0) 1.33167380928588 9 10-2

M(1,0,0) 1.08841503240502 9 100

M(2,0,0) 9.79093689335407 9 10-2

A(0,0,1) 1.33537580655960 9 10-1

A(1,0,1) 7.65789029061483 9 10-2

A(2,0,1) 3.73742902997137 9 10-2

G(0,1,1) 5.31044255713088 9 10-1

G(1,1,1) 1.32418227810710 9 101

G(2,1,1) 6.88863709884594 9 10-2

D(0,1,1) 1.14118194976730 9 10-2

D(1,1,1) 2.99644035332771 9 10-1

D(2,1,1) 8.92155178101449 9 10-1

M(0,1,1) 7.55711980917015 9 100

M(1,1,1) 6.58304546585478 9 100

M(2,1,1) 4.33636256393215 9 10-3

X 4.06993305645860 9 100

Table 11.4 Example
coefficients of model with
two cancer stage mutations
and one destabilizing
mutation

Coefficient Value

G(1,0,0) 2.22095885699822 9 10-3

D(1,0,0) 1.31378739613141 9 10-6

M(0,0,0) 8.12022029775447 9 10-4

M(1,0,0) 1.40674010365097 9 10-5

A(0,0,1) 2.06668108660923 9 10-1

A(1,0,1) 4.57214970326658 9 10-3

G(0,1,1) 1.56644835664010 9 10-2

G(1,1,1) 3.16379145991048 9 10-4

D(0,1,1) 1.29917705679554 9 100

D(1,1,1) 1.92969737536413 9 10-1

M(0,1,1) 9.58173133172697 9 100

M(1,1,1) 2.26339224702545 9 10-1

X 2.78141105650539 9 10-1
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above. In certain applications the Fisher information may be best for estimating the
upper bound to the number of irredundant parameters, but the Hessian may be best
for estimating the lower bound of this quantity.

The model of Little et al. [9] that we consider generalizes many other well
known cancer models [10–13, 22], indeed most of the widely-used cancer models
developed in the last 30 years; these and other cancer models are generally
embedded in an exponential family model in the sense outlined in Appendix B, in
particular when cohort data are analysed using Poisson regression models, e.g., as
in Little et al. [8, 9, 21]. As we show at the end of the Analysis Section, proving
(gradient) weak local identifiability of a subset of cardinality k of the parameters
ðhiÞpi¼1 can be done by showing that for this subset of parameters

rk o2hðh;yÞ
ohiohj

� �p

i;j¼1

� �

¼ k where h is the cancer hazard function. We have demon-

strated (by exhibiting a particular parameterization) that there is redundancy in the
parameterization for this model: the number of theoretically estimable parameters
in the models of Little and Wright [8] and Little et al. [9] is at most two less than
the number that are theoretically available, demonstrating (by Corollary 2) that
there can be no more than this number of irredundant parameters. Two numerical
examples suggest that this bound is sharp—we show that the rank of the Hessian,

Table 11.5 Eigenvalues in ascending order of Hessian matrix associated with a model with three
cancer stage mutations and one destabilizing mutation (as in Table 11.3), and with a model with
two cancer stage mutations and one destabilizing mutation (as in Table 11.4)

Number Eigenvalues (Table 11.3) Eigenvalues (Table 11.4)

1 -1.20726415206490 9 101 -1.45810346778189 9 100

2 -4.92487558715060 9 100 -7.77741441881355 9 10-1

3 -1.11648980088601 9 100 -2.77127189259301 9 10-1

4 -2.44711976272777 9 10-1 -6.66243518532325 9 10-3

5 -9.84288250086772 9 10-2 -3.53209777682867 9 10-4

6 -1.23814589706358 9 10-2 -2.86471102388267 9 10-4

7 -2.95522329598474 9 10-3 29.25930409562877 9 1026

8 -1.53669876331947 9 10-3 21.78637642487767 9 10211

9 -9.80139032107413 9 10-5 2.74342908757636 9 10-4

10 -3.36238129341872 9 10-5 4.98697524563660 9 10-4

11 -2.14105771381677 9 10-6 1.11215731049368 9 10-2

12 21.86967299054058 9 1027 8.18426507233826 9 10-1

13 5.01559183858810 9 10212 1.45195703291853 9 100

14 9.44044820094881 9 10-7 –
15 4.05661818962605 9 10-4 –
16 1.92220119614334 9 10-3 –
17 1.11042617352459 9 10-2 –
18 1.03277102432191 9 10-1 –
19 1.12667702944003 9 100 –
20 1.08248991510735 9 101 –

Non-significant eigenvalues are underlined in bold
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rk o2hðh;yÞ
ohiohj

� �p

i;j¼1

� �

, is two less than the row dimension of this matrix. This result

generalizes previously derived results of Heidenreich et al. [14, 15] and Hanin
et al. [27, 28] for the two-mutation model, a special case of this model. For the
more general genomic-instability cancer model of Little et al. [9] the number of
identifiable combinations of parameters is at most r þ 1 less than the number of
biological parameters, where r is the number of destabilization types, thereby also
generalizing all these results. Numerical evaluations in two special cases (with
r ¼ 1) suggest that this bound is tight: a combination of parameters with cardi-
nality two less than the number of biological parameters is of full rank, and so is
not redundant.

A weakness of the paper is that one cannot be absolutely sure (because of the
uncertainty implicit in any numerical evaluation) that the bound demonstrated by
the mathematics of Sect. 11.3.1 and Appendix C is sharp. Nevertheless, we have
clearly established a maximum number of identifiable parameter combinations.
We have also specified particular combinations of identifiable parameters, and
these should be used in model fitting to avoid obvious numerical problems, of lack
of convergence and absence of a unique set of parameters maximizing the
likelihood.

Our results imply that for the very general class of cancer models considered
here, only certain specific parameter combinations should be estimated in prin-
ciple, and this is the case whatever the size of the dataset being considered.
Whether for complex models for even this theoretically available number of
parameters there is useful information is of course uncertain, and may well depend
on the particular dataset and on the likely size of the parameters to be estimated.
However, fits to a large population-based registry of colon cancer, as recently
analysed by Little and Li [21], suggests that, for example, the model with two
cancer-stage and one destabilizing mutations can be fitted to the dataset and yields
stable parameter estimates for certain combinations of 11 parameters, in accor-
dance with the results of this chapter.

Acknowledgments This work was supported by the Intramural Research Program of the
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11.5 Appendix A

Proof of Theorem 1 In this Section we outline a proof of Theorem 1 in the main
text. To prove this result we need the following lemma of Rudin [18] (p.229).

Lemma A1 Suppose m; n; r are non-negative integers such that (s.t.) mffi r, nffi r
and F is a C1 function E � Rn ! Rm where E is an open set. Suppose that
rkðF0ðxÞÞ ¼ r 8x 2 E. Fix a 2 E and put A ¼ F0ðaÞ, and let Y1 ¼ AðRnÞ and let
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P : Rm ! Rm be a linear projection operator (P2 ¼ P) s.t. Y1 ¼ PðRmÞ and
Y2 ¼ nullðPÞ. Then 9U;V � Rn, open sets and a bijective C1 function H : V ! U
whose inverse is also C1 and s.t. FðHðxÞÞ ¼ Axþ uðAxÞ; 8x 2 V where u : AV �
Y1 ! Y2 is a C1 function.

We now restate Theorem 1 here.

Theorem A2 Suppose that the log-likelihood LðxjhÞ is C2 as a function of the
parameter vector h 2 X � Rp, and for all x ¼ ðx1; . . .; xnÞ 2 Rn.

1. Suppose that for some x and h 2 intðXÞ it is the case that rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ p.

Then turning points of the likelihood in the neighborhood of h are isolated, i.e.,
there is an open neighborhood N 2 @h � X for which there is at most one

h
_

2 N that satisfies oLðxjhÞ
ohi

� �p

i¼1

ffi
ffi
ffi
h¼h

_¼ 0.

2. Suppose that for some x and h 2 intðXÞ it is the case that rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ p

then local maxima of the likelihood in the neighborhood of h are isolated, i.e.,
there is an open neighborhood N 2 @h � X for which there is at most one

h
_

2 N that is a local maximum of LðxjhÞ.
3. Suppose that for some x and all h 2 intðXÞ it is the case that

rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ r\p then all local maxima of the likelihood in intðXÞ are

not isolated, as indeed are all h 2 intðXÞ for which oLðxjhÞ
ohi

� �p

i¼1
¼ 0.

Proof

1. Let F : X � Rp ! Rp be defined by Fðh1; h2; . . .; hpÞ ¼ oLðxjhÞ
oh1

; oLðxjhÞ
oh2

; . . .;
�

oLðxjhÞ
ohp
Þ. Since L is C2, F is C1 on intðXÞ � Rp. By assumption oFðhÞi

ohj
¼

o2LðxjhÞ
ohjohi

� �p

i;j¼1
is of full rank at h. By the inverse function theorem [18]

(p.221–223) there are open N;M � Rp such that h 2 N and a C1 bijective

function G : M ! N such that GðFðh
_

ÞÞ ¼ h
_

for all h
_

2 N. In particular there

can be at most a single h
_

2 N for which Fðh
_

Þ ¼ 0. QED.

2. By (1) there is an open neighborhood N 2 @h � X for which if h
_

2 N is such

that oLðxjhÞ
ohi

� �p

i¼1

ffi
ffi
ffi
h¼h

_¼ 0 then for h0 6¼ h
_

2 N oLðxjhÞ
ohi

� �p

i¼1

ffi
ffi
ffi
h¼h0
6¼ 0. Suppose now

that h
_

2 N is a local maximum of LðxjhÞ. Any member of this neighborhood

other than h
_

cannot be a turning point, and so by the Mean Value Theorem [18]
(p.107) cannot be a local maximum. QED.
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3. Let F : X � Rp ! Rp be defined by Fðh1; h2; . . .; hpÞ ¼ oLðxjhÞ
oh1

; oLðxjhÞ
oh2

; . . .;
�

oLðxjhÞ
ohp
Þ. Since L is C2, F is C1 on intðXÞ � Rp. By assumption rkðFÞ ¼

rk o2LðxjhÞ
ohiohj

� �p

i;j¼1

� �

¼ r for all h 2 intðXÞ � Rp. Suppose that h0 2 intðXÞ is a

local maximum of L. Let A ¼ oF
oh

ffi
ffi
h¼h0

: Rp ! Rp (A 2 LðRp;RpÞ), and choose

some arbitrary projection P 2 LðRp;RpÞ s.t. PðRpÞ ¼ Y1 ¼ AðRpÞ, and let
Y2 ¼ nullðPÞ. By Lemma A1 there are open sets U;V � Rp with h0 2 U �
intðXÞ and a bijective C1 mapping with C1 inverse H : V ! U s.t. FðyÞ ¼
AH�1yþ uðAH�1yÞ; 8y 2 V where u : AV � Y1 ! Y2 is a C1 function.

Since h0 2 intðXÞ is a local maximum of Lðx; hÞ, by the Mean Value Theorem
[18] (p.107) Fðh0Þ ¼ 0. Now choose some non-trivial vector k 2 nullðAÞ and

define a function, as we can, on some interval d : ð�e; eÞ ! Rp by
dðtÞ ¼ HðH�1ðh0Þ þ tkÞ. Because H : V ! U is bijective and k is non-trivial

dðtÞ ¼ dðt0Þ , t ¼ t0. Also, it is the case that:

FðdðtÞÞ ¼ AH�1ðH½H�1ðh0Þ þ tk�Þ þ uðAH�1ðH½H�1ðh0Þ þ tk�ÞÞ ¼
A½H�1ðh0Þ þ tk� þ uðA½H�1ðh0Þ þ tk�Þ ¼ A½H�1ðh0Þ� þ uðA½H�1ðh0Þ�Þ ¼ Fðh0Þ ¼ 0

ð11:A1Þ

Define G : ð�e; eÞ ! R by GðtÞ ¼ LðdðtÞÞ ¼ Lððd1ðtÞ; d2ðtÞ; . . .; dnðtÞÞÞ. By the

Chain Rule [18] (p.215) dG
dt ¼

Pp

i¼1

oLðxjhÞ
ohi

ddi
dt ¼ 0 8t 2 ð�e; eÞ. Finally, by the Mean

Value Theorem [18] (p.107) G must be constant; in particular LðxjdðtÞÞ ¼ Lðxjdð0ÞÞ
¼ Lðxjh0Þ 8t 2 ð�e; eÞ and so all points dðtÞ must also be local maxima of LðxjhÞ.
Therefore h0 is not an isolated local maximum. Since all we used about h0 2 intðXÞ
was that Fðh0Þ ¼ 0, Fððh0iÞpi¼1Þ ¼

oLðxjh0Þ
oh01

; oLðxjh0Þ
oh02

; . . .; oLðxjh0Þ
oh0p

� �
¼ 0, the above

argument also shows that turning points cannot be isolated: FðdðtÞÞ ¼ 0. QED.

Appendix B

Specification of Embedded Exponential Family Model

In this Section we outline the specification of an embedding of a stochastic cancer
model in a general class of statistical models, the so-called exponential family
[17]. This is often done in fitting cancer models to epidemiological and biological
data (e.g., see references [8, 9, 16, 21]). Recall that a model is a member of the
exponential family if the observed data x ¼ ðxlÞnl¼1 2

Pn is such that the
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log-likelihood is given by LðxjhÞ ¼
Pn

l¼1

xl1l�bð1lÞ
að/Þ þ cðxl;/Þ

h i
for some functions

að/Þ; bð1Þ; cðx;/Þ. We assume that the natural parameters 1l ¼ 1l½ðhiÞpi¼1; zl� are
functions of the model parameters ðhiÞpi¼1 and some auxiliary data ðzlÞnl¼1, and that
ll ¼ b0ð1l½ðhiÞpi¼1; zl�Þ ¼ zl � h½ðhiÞpi¼1; yl�. Here h½ðhiÞpi¼1; yl� is the cancer hazard
function (for example, that of Little et al. [9], as also specified in Appendix C),
ðylÞnl¼1 are some further auxiliary data, and we assume that the ðzlÞnl¼1 are all non-
zero. [Note: this is not necessarily a GLM.] In this case it is seen that

o2LðxjhÞ
ohiohj

¼
Xn

l¼1

½xl�b0ð1lÞ�zl

að/Þb00ð1lÞ
o2hðh;ylÞ
ohiohj

� z2
l

að/Þ
ohðh;ylÞ

ohi

ohðh;ylÞ
ohj

½b00ð1lÞ�2þb000ð1lÞ½xl�b0ð1lÞ�
½b00ð1lÞ�3

n o

2

4

3

5 ð11:B1Þ

so that the Fisher information matrix is given by

IðhÞij ¼ �Eh
o2LðxjhÞ
ohiohj

� �

¼ 1
að/Þ

Xn

l¼1

z2
l

b00ð1lÞ
ohðh; ylÞ

ohi

ohðh; ylÞ
ohj

ð11:B2Þ

Appendix C

Derivation of Hazard Function in Terms of Specific Parameter
Combinations for the Cancer Model of Little et al. [9]

In this Appendix we derive the hazard function for the cancer model of Little et al.
[9] and show that it can be written in terms of certain combinations of parameters,
given in Table 11.2. The hazard function is defined as:

hðtÞ ¼ � d

dt
ln w 1; 1; . . .; 1; 0; t; 0ð Þ ð11:C1Þ

where

wðy1;0;0; y2;0;0; . . .; yk�1;0;0; y0;1;1; . . .; yk�1;1;1; y0;2;1; y1;2;1; . . .; yk�1;mr ;r; yk; t; 0Þ
� wðtÞ
¼
P

n
yn1;0;0

1;0;0 � . . . � ynk�1;0;0

k�1;0;0 � y
n0;1;1

0;1;1 � . . . � ynk�1;1;1

k�1;1;1 � . . . � ynk�1;mr ;r

k�1;mr ;r
� ynk

k 	

P Y1;0;0ðtÞ ¼ n1;0;0; . . .; YkðtÞ ¼ nk Nð0Þ ¼ Xð0Þ; Y1;0;0ð0Þ ¼ . . . ¼ Ykð0Þ ¼ 0
ffi
ffi

	 


ð11:C2Þ

is the full probability generating function (PGF) starting with X(0) cell(s) in the
normal compartment at time 0. The number of biological parameters in this spe-
cific model is summarized in Table 11.1.

By straightforward generalizations of material in Little and Wright [8] (given in
Appendix D) it is seen that w satisfies a Kolmogorov forward equation:
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dw
dt ¼ w � ½y1;0;0 � 1� � XðtÞ �Mð0; 0; 0ÞðtÞ þ w �

Pr

d¼1
½y0;1;d � 1� � XðtÞ � Að0; 0; dÞðtÞþ

P

1� a� k�1

�ya;0;0 � ½Dða; 0; 0ÞðtÞ þ Gða; 0; 0ÞðtÞ þMða; 0; 0ÞðtÞ
þ
Pr

d0¼1
Aða; 0; d0ÞðtÞ� þ y2

a;0;0 � Gða; 0; 0ÞðtÞ þ Dða; 0; 0ÞðtÞ

þya;0;0 � yaþ1;0;0 �Mða; 0; 0ÞðtÞ þ
Pr

d0¼1
ya;0;0 � ya;1;d0 � Aða; 0; d0ÞðtÞ

2

6
6
6
6
4

3

7
7
7
7
5
� ow

oya;0;0
þ

P

0� a� k � 1
1� b�md

1� d� r

�ya;b;d � ½Dða; b; dÞðtÞ þ Gða; b; dÞðtÞ þMða; b; dÞðtÞ
þAða; b; dÞðtÞ� þ y2

a;b;d � Gða; b; dÞðtÞ þ Dða; b; dÞðtÞ
þya;b;d � yaþ1;b;d �Mða; b; dÞðtÞ þ ya;b;d � ya;bþ1;d � Aða; b; dÞðtÞ

2

4

3

5 � ow
o

ð11:C3Þ

with the conventions that ya;b;d � 0 for b[ md, Aða; b; dÞ � 0 for bffimd and
yk;b;d � yk for all defined b and d. We solve the equation by means of Cauchy’s
method of characteristics. Suppose ya;b;d � ya;b;dðuÞ and t � tðuÞ, then
w � wðya;b;dðuÞ; tðuÞÞ. This implies that:

ow
ou ¼

ow
ot � dt

duþ
ow
oyk
� dyk

du þ
P

1� a� k�1

ow
oya;0;0
� dya;0;0

du þ
P

0� a� k � 1
1� b�md

1� d� r

ow
oya;b;d

� dya;b;d

du

¼ dt
du �

w � ½y1;0;0 � 1� � XðtÞ �Mð0; 0; 0ÞðtÞ þ w �
Pr

d¼1
½y0;1;d � 1� � XðtÞ � Að0; 0; dÞðtÞþ

P

1� a� k�1

�ya;0;0 � ½Dða; 0; 0ÞðtÞ þ Gða; 0; 0ÞðtÞ þMða; 0; 0ÞðtÞ
þ
Pr

d0¼1
Aða; 0; d0ÞðtÞ� þ y2

a;0;0 � Gða; 0; 0ÞðtÞ þ Dða; 0; 0ÞðtÞ

þ ya;0;0 � yaþ1;0;0 �Mða; 0; 0ÞðtÞ þ
Pr

d0¼1
ya;0;0 � ya;1;d0 � Aða; 0; d0ÞðtÞ

2

6
6
6
6
4

3

7
7
7
7
5
� ow

oya;0;0
þ

P

0� a� k � 1
1� b�md

1� d� r

�ya;b;d � ½Dða; b; dÞðtÞ þ Gða; b; dÞðtÞ þMða; b; dÞðtÞ
þAða; b; dÞðtÞ� þ y2

a;b;d � Gða; b; dÞðtÞ þ Dða; b; dÞðtÞ
þya;b;d � yaþ1;b;d �Mða; b; dÞðtÞ þ ya;b;d � ya;bþ1;d � Aða; b; dÞðtÞ

2

4

3

5 � ow
oya;b;d

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

þ ow
oyk
� dyk

du þ
P

1� a� k�1

ow
oya;0;0
� dya;0;0

du þ
P

0� a� k � 1
1� b�md

1� d� r

ow
oya;b;d

� dya;b;d

du

ð11:C4Þ

A solution is therefore given by:

ow
ou
¼ w � ½y1;0;0ðuÞ � 1� � XðuÞ �Mð0; 0; 0ÞðuÞ

þ w �
Xr

d¼1

½y0;1;dðuÞ � 1� � XðuÞ � Að0; 0; dÞðuÞ
ð11:C5Þ
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ot

ou
¼ 1 ð11:C6Þ

oyk

ou
¼ 0 ð11:C7Þ

and for d ¼ 0 :

dya;0;0

du ¼ ya;0;0 � ½Dða; 0; 0ÞðtÞ þ Gða; 0; 0ÞðtÞ þMða; 0; 0ÞðtÞ

þ
Pr

d0¼1
Aða; 0; d0ÞðtÞ� � y2

a;0;0 � Gða; 0; 0ÞðtÞ � Dða; 0; 0ÞðtÞ

�ya;0;0 � yaþ1;0;0 �Mða; 0; 0ÞðtÞ �
Pr

d0¼1
ya;0;0 � ya;1;d0 � Aða; 0; d0ÞðtÞ

ð11:C8Þ

while for d 6¼ 0:

dya;b;d

du
¼ ya;b;d � ½Dða; b; dÞðtÞ þ Gða; b; dÞðtÞ þMða; b; dÞðtÞ

þ Aða; b; dÞðtÞ� � y2
a;b;d � Gða; b; dÞðtÞ � Dða; b; dÞðtÞ

� ya;b;d � yaþ1;b;d �Mða; b; dÞðtÞ � ya;b;d � ya;bþ1;d � Aða; b; dÞðtÞ

ð11:C9Þ

For the hazard, a solution is required for wð1; 1; 1; . . .; 1; 0; t; 0Þ, i.e.,
wðy1;0;0 ¼ 1; y2;0;0 ¼ 1; y3;0;0 ¼ 1; . . .; yk�1;mr ;r ¼ 1; yk ¼ 0; t; s ¼ 0Þ, so that a par-
ticular characteristic must have the boundary value ya;b;dðtÞ ¼ 1 and ykðtÞ ¼ 0
[implying by (11.C7) ykðuÞ � 0], so that ya;b;dðuÞ is a function of both u and t, i.e.,
ya;b;dðuÞ � ya;b;dðu; tÞ. Integrating (11.C5) over u 2 ½0; t� yields

wðtÞ ¼ exp

Z t

0

y1;0;0ðu; tÞ � 1
 �

� XðuÞ �Mð0; 0; 0ÞðuÞ

þ
Pr

d¼1
y0;1;dðu; tÞ � 1
 �

� XðuÞ � Að0; 0; dÞðuÞ

2

4

3

5 du

8
<

:

9
=

;
ð11:C10Þ

Assume now that the model parameters Gða; b; dÞðtÞ, Dða; b; dÞðtÞ,
Mða; b; dÞðtÞ, Aða; b; dÞðtÞ and XðtÞ are constant over time. By substituting
za;b;dðu; tÞ ¼ ½ya;b;dðu; tÞ � 1� � Gða; b; dÞ into (11.C8) and (11.C9), the following
can be obtained

dza;b;d

ds
¼ �z2

a;b;d þ za;b;d � N a; b; d; za;bþ1;d; zaþ1;b;d
� �

when d 6¼ 0

þP a; b; d; za;bþ1;d; zaþ1;b;d
� �

dza;0;0

ds
¼ �z2

a;0;0 þ za;0;0 � N 0 a; za;1;1; � � � ; za;1;r; zaþ1;0;0

� �
when d ¼ 0

þP0 a; za;1;1; � � � ; za;1;r; zaþ1;0;0
� �

8
>>>>>><

>>>>>>:

ð11:C11Þ

where
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N a; b; d; v;w½ � ¼

Dða; b; dÞ � Gða; b; dÞ � w � Mða;b;dÞ
Gðaþ1;b;dÞ

�v � Aða;b;dÞ
Gða;bþ1;dÞ ða\k � 1; b\mdÞ

Dða; b; dÞ � Gða; b; dÞ þMða; b; dÞ
�v � Aða;b;dÞ

Gða;bþ1;dÞ ða ¼ k � 1; b\mdÞ
Dða; b; dÞ � Gða; b; dÞ � w � Mða;b;dÞ

Gðaþ1;b;dÞ ða\k � 1; b ¼ mdÞ
Dða; b; dÞ � Gða; b; dÞ þMða; b; dÞ ða ¼ k � 1; b ¼ mdÞ

8
>>>>>>>><

>>>>>>>>:

ð11:C12Þ

P a; b; d; v;w½ � ¼

�Gða; b; dÞ � w � Mða;b;dÞ
Gðaþ1;b;dÞ þ v � Aða;b;dÞ

Gða;bþ1;dÞ

h i
ða\k � 1; b\mdÞ

Gða;b; dÞ � Mða; b; dÞ � v � Aða;b;dÞ
Gða;bþ1;dÞ

h i
ða ¼ k � 1; b\mdÞ

�w � Gða;b;dÞ�Mða;b;dÞ
Gðaþ1;b;dÞ ða\k � 1; b ¼ mdÞ

Gða;b; dÞ �Mða; b; dÞ ða ¼ k � 1; b ¼ mdÞ

8
>>>>><

>>>>>:

ð11:C13Þ

N 0 a; v1; � � � ; vr;w½ � ¼

Dða; 0; 0Þ � Gða; 0; 0Þ � w � Mða;0;0Þ
Gðaþ1;0;0Þ

�
Pr

d¼1
vd � Aða;0;dÞ

Gða;1;dÞ 0\a\k � 1ð Þ

Dða; 0; 0Þ � Gða; 0; 0Þ þMða; 0; 0Þ
�
Pr

d¼1
vd � Aða;0;dÞ

Gða;1;dÞ a ¼ k � 1ð Þ

8
>>>>>>><

>>>>>>>:

ð11:C14Þ

and

P0 a; v1; � � � ; vr;w½ � ¼
�Gða; 0; 0Þ � w � Mða;0;0Þ

Gðaþ1;0;0Þ þ
Pr

d¼1
vd � Aða;0;dÞ

Gða;1;dÞ

� �

ð0\a\k � 1Þ

Gða; 0; 0Þ � Mða; 0; 0Þ �
Pr

d¼1
vd � Aða;0;dÞ

Gða;1;dÞ

� �

ða ¼ k � 1Þ

8
>><

>>:

ð11:C15Þ

Likewise, with the same trick, (11.C10) can be rewritten as

wðtÞ ¼ exp

Z t

0

z1;0;0ðs; tÞ �
X �Mð0; 0; 0Þ

Gð1; 0; 0Þ þ
Xr

d¼1

z0;1;dðs; tÞ �
X � Að0; 0; dÞ

Gð0; 1; dÞ ds

8
<

:

9
=

;

ð11:C16Þ
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Appendix D

Derivation of the Kolmogorov Forward Differential Equation
for the Cancer Model of Little et al. [9]

In this Appendix we derive the Kolmogorov forward differential equation defining
the generating function of the cancer model of Little et al. [9]. The generating
function w is given by

wðy1;0;0; y2;0;0; . . .; yk�1;0;0; y0;1;1; . . .; yk�1;1;1; y0;2;1; y1;2;1; . . .; yk�1;mr ;r; yk; t; sÞ
� wðt; sÞ
¼
P

n
yn1;0;0

1;0;0 � . . . � ynk�1;0;0

k�1;0;0 � y
n0;1;1

0;1;1 � . . . � ynk�1;1;1

k�1;1;1 � . . . � ynk�1;mr ;r

k�1;mr ;r
� ynk

k 	

P½Y1;0;0ðtÞ ¼ n1;0;0; . . .; YkðtÞ ¼ nk NðsÞ ¼ Xð0Þ; Y1;0;0ðsÞ ¼ . . . ¼ YkðsÞ ¼ 0
ffi
ffi �

ð11:D1Þ

By differentiating term by term (justified by the absolute convergence of the
derivative power series) w satisfies:
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o
w o
t
½t;

s�
¼

P

n 1
;0
;0
;n

2;
0;

0
;.
..
;n

k

yn 1
;0
;0

1;
0;

0
�.

..
�y

n k
�

1;
m

r;
r

k�
1;

m
r;

r
�y

n k k
�d

P dt
½Y

1;
0;

0
ðtÞ
¼

n 1
;0
;0
;.

..
;Y

k�
1;

m
r;

rð
tÞ
¼

n k
�

1;
m

r;
r;

Y
k
ðtÞ
¼

n k
�

¼
P

n 1
;0
;0
;n

2;
0;

0
;.
..
;n

k

yn 1
;0
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Appendix E

Derivation of System of Differential Equations Defining
the Hessian of the Hazard Function for the Cancer Model of Little
and Wright [8] and Little et al. [9]

In this Section we derive the set of differential equations defining the Hessian (with
respect to the model parameters) for the cancer model of Little and Wright [8] and
Little et al. [9] in the case when all model parameters are constant. For simplicity
we present only the derivation for the simpler model of Little and Wright [8]; the
derivation for the more complex model of Little et al. [9] is straightforward but
lengthy. This allows us to drop the final identifying label in each of
Gða; b; dÞ;Dða; b; dÞ;Mða; b; dÞ;Aða;b; dÞ, which we will henceforth write as
Gða; bÞ;Dða; bÞ;Mða;bÞ;Aða; bÞ, respectively. The hazard function of the cancer
model with k cancer-stage mutations and m destabilizing mutations developed by
Little and Wright [8] may be written as:

hðtÞ ¼ �
Z t

0

o/1;0½t; s�
ot

�Mð0; 0Þ þ
o/0;1½t; s�

ot
� Að0; 0Þ

� �

� Xds ð11:E1Þ

where the PGFs /i;j also satisfy the following Kolmogorov backward equations
(for 0� i� k � 1, 0� j�m, ði; jÞ 6¼ ð0; 0Þ):

o/i;j

os ½t; s� ¼ ½Dði; jÞ þ Gði; jÞ þMði; jÞ þ Aði; jÞ� � /i;j½t; s�
�Gði; jÞ � /i;j½t; s�

2 �Mði; jÞ � /i;j½t; s� � /iþ1;j½t; s�
�Aði; jÞ � /i;j½t; s� � /i;jþ1½t; s� � Dði; jÞ

ð11:E2Þ

Differentiating (11.E1) gives:

ohðtÞ
oX ¼ �

Rt

0

o/1;0½t;s�
ot �Mð0; 0Þ þ o/0;1½t;s�

ot � Að0; 0Þ
n o

ds

¼ ½1� /1;0½t; 0�� �Mð0; 0Þ þ ½1� /0;1½t; 0�� � Að0; 0Þ
ð11:E3Þ

ohðtÞ
oMð0; 0Þ ¼ �

Z t

0

o/1;0½t; s�
ot

� Xds ¼ ½1� /1;0½t; 0�� � X ð11:E4Þ

ohðtÞ
oAð0; 0Þ ¼ �

Z t

0

o/0;1½t; s�
ot

� Xds ¼ ½1� /0;1½t; 0�� � X ð11:E5Þ

and for all other model parameters, bk:
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ohðtÞ
obk
¼ �

Rt

0

o2/1;0½t;s�
obkot �Mð0; 0Þ þ

o2/0;1½t;s�
obk

� Að0; 0Þ
n o

Xds

¼ � o/1;0½t;0�
obk
ð0; 0Þ � o/0;1½t;0�

obk
� Að0; 0Þ

ð11:E6Þ

Likewise, we can evaluate the second derivatives by differentiating (11.E3–
11.E5) further:

o2hðtÞ
oXoMð0; 0Þ ¼ 1� /1;0½t; 0� ð11:E7Þ

o2hðtÞ
oXoAð0; 0Þ ¼ 1� /0;1½t; 0� ð11:E8Þ

o2hðtÞ
o2Mð0; 0Þ

¼ o2hðtÞ
o2Að0; 0Þ

¼ o2hðtÞ
oAð0; 0ÞoMð0; 0Þ ¼ 0 ð11:E9Þ

and for all model parameters, bk; bl 62 X;Mð0; 0Þ;Að0; 0Þf g:

o2hðtÞ
obkoX

¼ �
o/1;0½t; 0�

obk
�Mð0; 0Þ �

o/0;1½t; 0�
obk

� Að0; 0Þ ð11:E10Þ

o2hðtÞ
obkoMð0; 0Þ ¼ �

o/1;0½t; 0�
obk

� X ð11:E11Þ

o2hðtÞ
obkoAð0; 0Þ ¼ �

o/0;1½t; 0�
obk

� X ð11:E12Þ

o2hðtÞ
obkobl

¼ �
o2/1;0½t; 0�

obkobl
�Mð0; 0Þ �

o2/0;1½t; 0�
obkobl

� Að0; 0Þ ð11:E13Þ

We can evaluate
o/i;j½t;s�

obk
by differentiating (11.E2), for

bk 62 Dði; jÞ;Gði; jÞ;Mði; jÞ;Aði; jÞf g:
o2/i;j

obkos ½t; s� ¼ ½Dði; jÞ þ Gði; jÞ þMði; jÞ þ Aði; jÞ� � o/i;j

obk
½t; s�

�2 � Gði; jÞ � /i;j½t; s� �
o/i;j

obk
½t; s� �Mði; jÞ � o/i;j

obk
½t; s� � /iþ1;j½t; s� þ

o/iþ1;j

obk
½t; s� � /i;j½t; s�

h i

�Aði; jÞ � o/i;j

obk
½t; s� � /i;jþ1½t; s� þ

o/i;jþ1

obk
½t; s� � /i;j½t; s�

h i

¼ Xi;j bk; t; s½ �
ð11:E14Þ

with appropriate initial conditions (discussed later). For bk 2
Dði; jÞ;Gði; jÞ;Mði; jÞ;Aði; jÞf g we have:
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o2/i;j

obkos
½t; s� ¼

Xi;j bk; t; s½ � þ /i;j½t; s� � 1 bk ¼ Dði; jÞ
Xi;j bk; t; s½ � þ /i;j½t; s� � /i;j½t; s�2 bk ¼ Gði; jÞ
Xi;j bk; t; s½ � þ /i;j½t; s� � /i;j½t; s�/iþ1;j½t; s� bk ¼ Mði; jÞ
Xi;j bk; t; s½ � þ /i;j½t; s� � /i;j½t; s�/i;jþ1½t; s� bk ¼ Aði; jÞ

8
>><

>>:

ð11:E15Þ

Likewise, we can evaluate o2hðtÞ
obkobl

by differentiating (11.E14), for

bk; bl 62 Dði; jÞ;Gði; jÞ;Mði; jÞ;Aði; jÞf g:
o3/i;j

obkoblos ½t; s� ¼ ½Dði; jÞ þ Gði; jÞ þMði; jÞ þ Aði; jÞ� � o2/i;j

obkobl
½t; s�

�2 � Gði; jÞ � o/i;j

obk
½t; s� � o/i;j

obl
½t; s� þ /i;j½t; s� �

o2/i;j

obkobl
½t; s�

h i

�Mði; jÞ �
o2/i;j

obkobl
½t; s� � /iþ1;j½t; s� þ

o/i;j

obk
½t; s� � o/iþ1;j

obl
½t; s� þ o/i;j

obl
½t; s� � o/iþ1;j

obk
½t; s�þ

o2/iþ1;j

obkobl
½t; s� � /i;j½t; s�

2

4

3

5

�Aði; jÞ �
o2/i;j

obkobl
½t; s� � /i;jþ1½t; s� þ

o/i;j

obk
½t; s� � o/i;jþ1

obl
½t; s� þ o/i;j

obl
½t; s� � o/i;jþ1

obk
½t; s�þ

o2/i;jþ1

obkobl
½t; s� � /i;j½t; s�

2

4

3

5

¼ Wi;j bk; bl; t; s½ �
ð11:E16Þ

For bk 62 Dði; jÞ;Gði; jÞ;Mði; jÞ;Aði; jÞf g we have:

o3/i;j

obkoblos
½t; s� ¼

Wi;j bk; bl; t; s½ � þ o/i;j½t;s�
obk

bl ¼ Dði; jÞ
Wi;j bk; bl; t; s½ � þ o/i;j½t;s�

obk
bl ¼ Gði; jÞ

�2 � o/i;j½t;s�
obk
� /i;j½t; s�

Wi;j bk; bl; t; s½ � þ o/i;j½t;s�
obk
� o/i;j½t;s�

obk
� /iþ1;j½t; s� bl ¼ Mði; jÞ

� o/iþ1;j½t;s�
obk

� /i;j½t; s�
Wi;j bk; bl; t; s½ � þ o/i;j½t;s�

obk
� o/i;j½t;s�

obk
� /i;jþ1½t; s� bl ¼ Aði; jÞ

� o/i;jþ1½t;s�
obk

� /i;j½t; s�

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð11:E17Þ

Finally, we have that:

o3/i;j

oDði; jÞ2os
½t; s� ¼ Wi;j Dði; jÞ;Dði; jÞ; t; s½ � þ 2 �

o/i;j½t; s�
oDði; jÞ ð11:E18Þ

o3/i;j

oDði; jÞoGði; jÞos
½t; s� ¼ Wi;j Dði; jÞ;Gði; jÞ; t; s½ � þ

o/i;j½t; s�
oDði; jÞ þ

o/i;j½t; s�
oGði; jÞ

� 2 �
o/i;j½t; s�
oDði; jÞ � /i;j½t; s�

ð11:E19Þ
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o3/i;j

oDði; jÞoMði; jÞos
½t; s� ¼ Wi;j Dði; jÞ;Mði; jÞ; t; s½ � þ

o/i;j½t; s�
oDði; jÞ þ

o/i;j½t; s�
oMði; jÞ

�
o/i;j½t; s�
oDði; jÞ � /iþ1;j½t; s�

ð11:E20Þ

o3/i;j

oDði; jÞoAði; jÞos
½t; s� ¼ Wi;j Dði; jÞ;Aði; jÞ; t; s½ � þ

o/i;j½t; s�
oDði; jÞ þ

o/i;j½t; s�
oAði; jÞ

�
o/i;j½t; s�
oDði; jÞ � /i;jþ1½t; s�

ð11:E21Þ

o3/i;j

oGði; jÞ2os
½t; s� ¼ Wi;j Gði; jÞ;Gði; jÞ; t; s½ � þ 2 �

o/i;j½t; s�
oGði; jÞ � 4 �

o/i;j½t; s�
oGði; jÞ � /i;j½t; s�

ð11:E22Þ

o3/i;j

oGði; jÞoMði; jÞos
½t; s� ¼ Wi;j Gði; jÞ;Mði; jÞ; t; s½ � þ

o/i;j½t; s�
oGði; jÞ þ

o/i;j½t; s�
oMði; jÞ

�2 �
o/i;j½t; s�
oMði; jÞ � /i;j½t; s��

o/i;j½t; s�
oGði; jÞ � /iþ1;j½t; s�

ð11:E23Þ

o3/i;j

oGði; jÞoAði; jÞos
½t; s� ¼ Wi;j Gði; jÞ;Aði; jÞ; t; s½ � þ

o/i;j½t; s�
oGði; jÞ þ

o/i;j½t; s�
oAði; jÞ

�2 �
o/i;j½t; s�
oAði; jÞ � /i;j½t; s��

o/i;j½t; s�
oGði; jÞ � /i;jþ1½t; s�

ð11:E24Þ

o3/i;j

oMði; jÞ2os
½t; s� ¼ Wi;j Mði; jÞ;Mði; jÞ; t; s½ � þ 2 �

o/i;j½t; s�
oMði; jÞ

� 2 �
o/i;j½t; s�
oMði; jÞ � /iþ1;j½t; s�

ð11:E25Þ

o3/i;j

oMði; jÞoAði; jÞos
½t; s� ¼ Wi;j Mði; jÞ;Aði; jÞ; t; s½ � þ

o/i;j½t; s�
oMði; jÞ þ

o/i;j½t; s�
oAði; jÞ

�
o/i;j½t; s�
oMði; jÞ � /i;jþ1½t; s��

o/i;j½t; s�
oAði; jÞ � /iþ1;j½t; s�

ð11:E26Þ
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o3/i;j

oAði; jÞ2os
½t; s� ¼ Wi;j Aði; jÞ;Aði; jÞ; t; s½ � þ 2 �

o/i;j½t; s�
oAði; jÞ � 2 �

o/i;j½t; s�
oAði; jÞ � /i;jþ1½t; s�

ð11:E27Þ

As in Little and Wright [8], the following boundary conditions must be satis-
fied, for all i; j; bk; bl:

/i;j½t; t� ¼ 1 0� i� k � 1 ð11:E28Þ

o/i;j½t; t�
obk

¼
o2/i;j½t; t�
obkobl

¼ 0 ð11:E29Þ

This system of ordinary differential equations (in the variable s) for /i;j½t; s�,
o/i;j½t;s�

obk
,

o2/i;j½t;s�
obkobl

were integrated using the Boerlisch-Stoer algorithm with adaptive

stepsize control [24]. Very similar results were obtained using a Runge-Kutta
integrator with adaptive stepsize control [24].
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Chapter 12
Semantic Systems Biology: Formal
Knowledge Representation in Systems
Biology for Model Construction,
Retrieval, Validation and Discovery

Michel Dumontier, Leonid L. Chepelev and Robert Hoehndorf

Abstract With the publication of the human genome, scientists worldwide
opened champagne and let out a collective cheer for progress in biology. After all,
the untold number of interactions of tens of thousands of genes, a greater number
of their products and product derivatives, and tens of thousands of chemicals came
much closer to complete characterization. Paradoxically however, while individual
efforts produced important biological results, an integrated view of biology from
systems perspective seemed ever more distant due to the complexity of data
integration from multiple knowledge representation forms, formalisms, modeling
paradigms, and conflicting scientific statements. To address this, semantic tech-
nologies have risen over the past decade with the promise of truly unifying bio-
logical knowledge and allowing cross-domain queries and model integration. In
this chapter, we shall examine Semantic Web technologies and their applications
to build, publish, query, discover, compare, validate, reason about, and evaluate
models and knowledge in Systems Biology. We shall specifically address bio-
logical ontologies, open data repositories, modeling and annotation tools, and
selected promising applications of Semantic Systems Biology. We firmly believe
that it shall soon be possible to completely close the gap between facts, models,
and results, and to fully apply the accrued models and facts to evaluate biological
hypotheses on a system level, discovering meaning within the vast collection of
biological knowledge and taking Systems Biology research to a new, unprece-
dented level.

Keywords Systems biology � Semantic web � Bioinformatics � Computational
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Description � Formal knowledge representation � Automated reasoning � Biology �
Biochemistry � Artificial intelligence � World Wide Web

Acronyms

BFO Basic formal ontology
ChEBI Chemical entities of biological interest
DL Description logic
EBI European bioinformatics institute
FMA Foundation model of anatomy
GO Gene ontology
HCLS Health care and life sciences
IAO Information artifact ontology
IRI International resource identifier
IUBMB The international union of biochemistry and molecular biology
KiSAO Kinetic simulation algorithm ontology
MIRIAM Minimum information required in the annotation of models
MUO Measurement unit ontology
NCBI National center for biotechnology information
OBI Ontology for biomedical investigations
OPB Ontology for physics and biolog
OWL Web ontology language
PATO Phenotype and trait ontology
RDF Resource description framework
RDFS Resource description framework schema
RNAO RNA ontology
SBML Systems biology markup language
SBO Systems biology ontology
SIO Semanticscience integrated ontology
SPARQL SPARQL query language
TEDDY Terminology for the description of dynamics
XML Extensible markup language
W3C World Wide Web consortium

12.1 Introduction

In the quest to improve our current understanding of biological systems, life
scientists devise, develop and test a variety of computational models based on the
latest knowledge to explain and predict biological phenomena. In their simplest
formulation, models that aim to describe biological phenomena do so in terms of
the participant physical entities and their functions at desired granularity of detail
that is best understood or is relevant for a given purpose. In the past 60 years,
thousands of computational models have been constructed to examine everything
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from action potentials [1], to synthetic oscillatory network of transcriptional
regulators [2], and complete yeast metabolic networks [3]. The construction of
effective models involves rational selection of components, retrieval of as many
experimental values as possible and the nearly unavoidable estimation or fitting of
unmeasured parameters [4]. Clearly, building reusable or ‘‘sustainable’’ models [5]
requires careful attention to accurate description of model components so that it
becomes possible to recognize and test assumptions against observed biological
behaviours [6]. Indeed, an increased interest in sustainable computational mod-
elling has led to a search for more effective methods to construct, publish, share,
compare, validate and evaluate models [7].

Here we focus on semantic systems biology as an interdisciplinary approach
that combines computational biology with formal semantics in order to accurately
build, annotate, publish, share and validate facts and computational models con-
cerning biological entities and phenomena. As a first step, the semantic annotation
of models makes it possible to find models with particular model components or
simulating certain biological processes. As a second and more sophisticated
approach, formal knowledge representation and automated reasoning make it
possible to not only retrieve models containing certain kinds of information, but
also can be used to check consistency of knowledge, determine the implicit
relationships between data and can also be used to classify data. We will examine
current approaches to organize systems biology knowledge and describe appli-
cations related to searching, querying, comparing model similarity, integration of
simulation results, and validation of model annotations. Finally, we will speculate
as to how the simulation of semantically-annotated models could be directly used
as evidence in the evaluation of formalized biological hypotheses.

12.2 The Semantic Web as a Platform for Large Scale Data
Access and Integration

Having access to high quality data is of paramount importance in formulating well
supported hypotheses, and in developing computational models to examine these
hypotheses. Unfortunately, the current state of things makes it rather difficult to
find the right data or software in a timely fashion, largely owing to the lack of
coordination around publishing these on the internet [8]. Even the absence of
coordination might be manageable if it were not for the continuous and expo-
nential growth in scientific literature, the thousands of biological databases where
raw data and curated facts are being stored and served from, and the daily myriads
of new bioinformatics applications and web services to process data and generate
new structural/functional annotations.

With the aim to address the outstanding bioinformatic challenge of large scale
integration of heterogeneous data, life science researchers are examining the
possibilities afforded by the standards and technologies emerging from the World
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Wide Web Consortium’s Semantic Web effort to produce a web of data [9, 10].
The Semantic Web’s stated aim is to make it easier to use the internet to publish,
share, discover, link to and query data. At the core of this effort lie the Resource
Description Framework (RDF), RDF schema (RDFS), SPARQL query language,
and the Web Ontology Language (OWL).

The Resource Description Framework (RDF) offers a simple mechanism to (1)
identify and (2) describe entities in terms of their types, attributes and relations to
other entities. Entities are unambiguously identified by Internationalized Resource
Identifiers (IRIs) which allows for de-referenceable web-based identifiers (HTTP
URIs), that is to say, when users paste the identifier in their browsers, they will get
back information about it. The information returned takes the form of a document
containing one or more statements that describes the entity. Simple statements are
specified as ‘‘triples’’ comprised of an IRI-identified subject, an IRI-identified
relation, and an IRI-specified object or an XML-Schema compliant literal (e.g.
integer, decimal, string, etc.). For instance, to state that a nucleus is part of a cell,
we formulate a triple composed of the subject ‘‘nucleus’’, the predicate ‘‘is part of’’
and the object ‘‘cell’’. Identifiers for such entities and relations can be drawn from
specific terminologies such as the Gene Ontology [11]. The Gene Ontology’s
identifier for ‘‘nucleus’’ is GO:0005634 and the corresponding IRI as specified by
the OBO Foundry initiative is http://purl.obolibrary.org/obo/GO_0005634. Iden-
tifiers.org [21] is a recent effort from the European Bioinformatics Institute (EBI)
to provide stable HTTP identifiers for life science datasets such that their reso-
lution gives the set of services that provide information for that identifier—http://
identifiers.org/obo.go/GO:0005634.

RDF Schema (RDFS) builds on RDF and provides additional vocabulary for
naming resources (rdfs:label) and specifying simple type and relation hierarchies
(rdfs:subClassOf, rdfs:subPropertyOf). Type hierarchies specify that all the
members of one type are also members of another type. For instance, we know that
both the Golgi Apparatus (GO:0005794) and the Endoplasmic Reticulum
(GO:0005793) are kinds of intracellular membrane-bounded organelles
(GO:0043231). We can assert this more formally by indicating that ‘Golgi
Apparatus [GO:0005794]’ is a rdfs:subClassOf ‘intracellular membrane-bounded
organelle [GO:0043231]’.

RDF-based knowledge can be queried using the SPARQL query language.
SPARQL queries may contain triple patterns that can be conjunctively (AND) or
disjunctively (OR) combined with mandatory or OPTIONAL triple query patterns.
A key feature of SPARQL is that it uses the standard web protocol (HTTP) to
query any SPARQL-compliant database on the internet. A recent feature delivered
in SPARQL 1.1 makes it possible to formulate a query that can be executed over
multiple SPARQL-compliant databases, thus supporting a decentralized (non-
warehouse) solution for access to up-to-date resources.

A number of efforts now provide access to RDF data of interest to systems
biology researchers including Bio2RDF, Chem2Bio2RDF, BioGateway and the
W3C HCLS. Of these Bio2RDF [13] is the oldest and largest linked open data
provider that makes available over 4 billion RDF statements for over 40 datasets
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including UniProt, PDB, Entrez Gene, iRefIndex, OMIM, PubMed, Genbank, and
RefSeq among others. A key aspect of Bio2RDF is that it helps build an inter-
linked network of resources by following a simple naming convention:http://
bio2rdf.org/namespace:identifier where namespace refers to short name provided
to a given dataset and the identifier is that which is provided in the dataset. By
using HTTP URIs, Bio2RDF identifiers resolve to documents that provide infor-
mation about named entities, whether it comes from statements obtained in the
original dataset, or by virtue of the fact that there are resources that link to it.
Bio2RDF’s architecture supports select mirroring of resources (one or more), and
mirrors currently exist in Canada, Australia and Ireland. Bio2RDF has been used
in a systems biology investigation to identify a protein interaction network that
arises from significantly expressed genes during the first hours of an HIV infection
of primary human macrophages as monitored by a time-course microarray
experiment [17].

Among the other RDF data providers, Chem2Bio2RDF focuses on chemical
interactions and has been used to support investigations of polypharmacology,
potential multiple pathway inhibitors, and the association of pathways with
adverse drug reactions [14]. BioGateway [15, 16] has developed a lightweight
ontology to facilitate linked life science data queries. The W3C Semantic Web for
Health Care and Life Sciences Interest Group (HCLS) has developed several
prototype databases that integrate key health and life science datasets and ontol-
ogies to demonstrate, including scientific articles and patient records for transla-
tional medicine [12–14].

12.3 Bio-Ontologies

Ontologies have long been regarded as a panacea to problems relating to accurate
definitions, semantic annotation, data integration, search and retrieval, and
(autonomous) agent-based discovery. In its simplest formulation, an ontology
provides a description of entities in terms of their attributes or relationships they
hold with other entities [15]. Formal ontologies are those ontologies that have been
constructed using a formal language that has a clearly defined syntax matched with
unambiguous (e.g. mathematically defined) machine-understandable semantics.
By using a formally defined ontology language to describe entities of interest, one
makes an ontological commitment as to the meaning of the phrases constructed
using terminology from the domain. Making an ontological commitment enables
automated reasoners to correctly generate inferences.

There are well over 300 bio-ontologies available from the National Center for
Biomedical Ontology (NCBO)’s BioPortal resource [16]. These cover (1) material
entities such as molecules (ChEBI for small molecules, PRO for proteins, LiPro
for lipids, RNAO for (RNA) nucleic acids), macromolecular structures and
organelles (GO cellular component), cells and tissues (cell type ontology), organs
and organisms (FMA for human anatomy, NCBI taxonomy of species),
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(2) non-material entities such as qualities (PATO), functions (GO molecular
function) and roles (ChEBI molecular roles), (3) natural processes (GO biological
process, Ontology of physics for biology), and (4) informational entities and
ontologies that combine or provide a scaffold for all of these (SIO—Semantic-
science Integrated Ontology). However, significant overlap exists between ontol-
ogies, as a search yielding 20 different terms for ‘‘protein’’ will attest. In an effort
to develop a set of orthogonal ontologies, the OBO Foundry [17] hopes to coor-
dinate ontology development so as to minimize overlap and build on a common set
of upper level ontologies for types (BFO) and relations (RO). However, propo-
nents of this approach face the overwhelming task of adapting complex philo-
sophical concerns to support the needs of the bio-ontologies community [18].
Regardless, this social engineering effort has not prevented progress in the
development of ontologies of interest to the Systems Biology community,
including the Systems Biology Ontology (SBO) for describing model components
including rate equations and parameters, the Kinetic Simulation Algorithm
Ontology (KiSAO) to specify simulation algorithms and Terminology for the
Description of Dynamics (TEDDY) to characterize systems behavior from simu-
lation results [7].

12.4 Semantic Annotation of Biological Models

The Systems Biology Markup Language (SBML) is a world-wide standard for
describing computational models [19, 20]. As an XML-based markup language,
SBML has the advantage of being specified in a standard machine-accessible
format and may be combined with MathML for the mathematical description of
rate equations and their parameters. SBML can be used to specify compartments,
species, reactions, events, functions, parameters and units. In what is perhaps the
greatest validation of the success of SBML is the large number ([700) and range
of models published in the Biomodels database [21, 22] or JWS Online [23].
However, just having the models in a common syntax or having natural language
descriptions are not sufficient to identify shared components across models or to
classify models in terms of what they represent. For instance, some models fail to
include sufficiently accurate names for species (po1 in BIOMD0000000060) or
reactions (re1 to re76 in BIOMD0000000227) [24]. Efforts have since been
directed to semantically annotate models using common resources (databases,
ontologies) [22].

The semantic annotation of biological models largely depends on selecting the
closest and most specific term that matches the element to be annotated. The
Minimum Information Required in the Annotation of Models (MIRIAM) specifies
what metadata is required for systems biology models [25]. Annotations are made
using an identifier from external resources such as ontology or database entries.
There are over 45 different resources that have been used to annotate EBI’s
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biomodels. Biomodel curators typically pick terms from the NCBI taxonomy for
denoting the species, Chemical Entities of Biological Interest (ChEBI) for small
molecules, UniProt for proteins/enzymes and the Gene Ontology for cellular
components. Reactions may be annotated with IUBMB Enzyme Classification
codes, KEGG reaction codes, or interaction identifiers from IntAct or BIND.
Annotators pick among a set of basic relations to indicate the relevance of the
annotation. For instance, models that represent specific species use the ‘‘qualifier’’
relation ‘‘is’’, but models that represent more general types of organism that are
built using organism-specific data would be related with ‘‘hasVersion’’, while
models that represent specific organisms but are built using data from other
organisms would be specified with ‘‘isVersionOf’’. A number of other relations are
also provided in order to specify parts (hasPart) or wholes (isPartOf), homologs
(isHomologTo), and gene-protein relationships (encodes, isEncodedBy). Of the
249 annotated biomodels (May 2010), *69 % of compartments, species and
reactions were annotated. Semantic annotations for SBML bio-models are repre-
sented as RDF statements in an ‘‘annotation’’ sub-element. In Fig. 12.1, we see the
RDF annotation for a SBML species named ‘‘GLCi’’ in a compartment ‘‘cyto’’,
which presumably represents the internal pool of glucose in the cytoplasm. The
element is annotated with two resources—ChEBI and KEGG Compound.

Although Biomodel curators have exclusive access to an internal system to
semantically annotate the models, there are a number of other software that can
also do this including SBML editor [26], COPASI [27], CellDesigner [28],
semanticSBML [29] and the SEEK [30].

Fig. 12.1 Embedded RDF annotation of a species element in an SBML model. The annotation
indicates that the species is of type glucose as specified by ChEBI:4167 and KEGG compound
C00031
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12.5 Search, Comparison and Retrieval of Models

The semantic annotation of SBML models makes it possible to more accurately
search, compare and retrieve models. Ranked retrieval of models has been
incorporated into the biomodels database and was first demonstrated in [24] using
(1) query by value in which a subset of keywords are used to initiate the search, or
(2) query by example where a model forms the basis to search for similar models.
Ranking occurs by weighing the component terms with respect to their frequency
in the database. A more recent approach [31] investigated the use of a feature
vector-based model similarity which performs well in semantic search and model
alignment. Semantic search results yield the significance of matches in terms of
p-values calculated from a set of randomly annotated models. Model alignment
using semantic annotations (as opposed to purely structural elements), makes it
possible to align models describing identical or similar phenomena, but possibly at
different levels of detail. For instance, while both Biomodel 9 and 84 detail MAP
kinase cascades, Biomodel 9 captures the phosphorylation of MAP kinase
enzymes. Interestingly, through iterative model alignments, the authors report that
8 kinetic models cover *15 % of the yeast consensus metabolic network, dem-
onstrating that there is much more work to be done for a whole cell kinetic
simulation.

12.6 Validating Model Annotations

Given human curated annotations on a bio-model, how do we automatically check
whether these are consistent among each other? One approach, termed the SBML
Harvester [32], involves converting semantic annotations into formal representa-
tions of knowledge that can be automatically reasoned about. A key aspect is the
use of the Web Ontology Language (OWL), a language for building ontologies on
the Semantic Web.

OWL is a formal knowledge representation language that offers an enhanced
vocabulary to more accurately express knowledge relating to types, relations,
individuals and data values. Among many features, it provides vocabulary to (1)
quantify the number and type of relations that hold from one type of individual to
another (existential, cardinality and universal quantifiers), (2) to discriminate
between things that are the same or different (negation), (3) to add specific
implications to relations (transitive, functional, inverse functional, symmetric,
antisymmetric, reflexive, irreflexive), and (4) to formulate simple property chains
(DL-safe rules). All of these features become exceedingly important when trying
to get at the heart of what is meant by certain statements. For instance, consider the
RDF triple:‘nucleus’ ‘part of’ ‘cell’.

On first read you might not acknowledge the ambiguity of the statement. Is it
that every nucleus is part of exactly one cell? Can a nucleus be part of more than
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one cell? Is it that when a nucleus is a part, it can only be part of a cell? Can the
nucleus completely overlap with a cell (e.g. can they be the same or are they
necessarily different?) Interpreted in the other direction, this may be a statement
about cells: Is it that every cell has a nucleus as a part? Do only some cells have a
nucleus as a part? Do cells contain one nucleus or more? Is a nucleus the only part
that cells can have? The list of possible questions is indeed quite long. In using
OWL, we make an ontological commitment to precisely state what we mean by
constructing phrases that can be consistently interpreted by both humans and
machines carrying out automated reasoning.

Indeed, it is not just the ability to more accurately express knowledge that
makes OWL interesting; it is that OWL-based reasoners offer a number of salient
services including:

• Consistency checking: to determine whether the ontology contains
contradictions.

• Satisfiability: to determine whether classes can have instances.
• Computation of subsumption: to determine whether one class is an implicit

subclass of another.
• Classification: to discover all implicit subclass links by the repetitive application

of subsumption.
• Realization: to find the most specific class that an individual belongs to.

Thus, by converting model annotations into formal representations of knowl-
edge, we anticipate the following benefits:

• Accurate capture of the nature of models and the biological systems they
represent

• The ability to leverage knowledge explicit in externally linked ontologies
• The ability to validate the consistency of the annotations
• The ability to discover biological implications inherent in the models.

The SBML Harvester approach converts biomodel annotations into OWL
ontologies through the use of different OWL axiom patterns, depending on the
kind of entity the annotation denotes. The first pattern distinguishes SBML
components from the physical systems and processes that they represent.

E subClassOf represents some Rep(E)
If an element annotation C is a material entity, then we write an axiom to

indicate that the species represents some material entity.
E subClassOf represents some C
If an element annotation F is a function, then we write an axiom that indicates

the species represents a material entity that has the function F.
E subClassOf represents some (MaterialEntity that has-function some F)
If an element annotation P is a process, then we write an axiom that indicates

the species represents a material entity which has a function that is realized only in
instances of type P.

E subClassOf represents some (MaterialEntity that has-function some (Function
and realized-by only P))
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Thus, for a model that is annotated with the process heterotrimeric G-protein
complex cycle (GO:0031684), we write an axiom that indicates that the model
represents an object that has the capability F which is realized in processes of the
type heterotrimeric G-protein complex cycle.

M subClassOf represents some (MaterialEntity that has-function some (real-
ized-by only GO:0031684))

SBML Harvester uses libSBML to access model structure and extract RDF
annotations, Jena RDF API to parse RDF annotations and the OWLAPI to create
OWL axioms and reason with a top-level ontology that made models, model
components, material entities, functions, processes and qualities different from one
another. Application to BioModels repository yields an OWL ontology with more
than 300,000 classes, 800,000 axioms and includes all referenced ontologies: GO
(functions, compartments, processes), ChEBI (molecules), Celltype Ontology (cell
types), FMA (anatomy) and PATO (qualities). Reasoning over the integrated
ontology resulted in 27 inconsistent models, for which most could be attribute to
errors in the annotation. In two models, BIOMODELS 176 and 177, we uncovered
the incorrect species annotation for an ATPase reaction [32]. The Gene Ontology
defined ATPase activity maintained that the input to the reaction was an ATP and
water and the output to the reaction was ADP and inorganic phosphate, to which
we added that these were the only inputs and outputs. The chemical classes were
taken from the ChEBI ontology, to which we added that all chemical classes were
different from one another (disjointness). Automated reasoning over the ontology
uncovered that the species annotation of ‘alpha-D-glucose-phosphate’ is not only
different from ATP, but also is not an allowed chemical in an ATPase reaction.

The generation of a large-scale, formalized knowledge base also makes it
possible to answer questions about models and what they represent across multiple
levels of spatial granularity. For example, one can create a sophisticated query for
model entities (models or model components) that represent something capable of
catalyzing the conversion of a sugar in the pancreas:

represents some (

has-function some (

realized-by only (

realizes some ‘catalytic activity’
and has-participant some (

sugar and contained-in some (part-of some ‘endocrine pancreas’)))))

These and other queries are reported in [32].
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12.7 Integration of Simulation Parameters and Results

While most of the discussion thus far has been centered on the semantic annota-
tions of biological models, we must not forget that the principal reason to create
models is to use them in simulations, thereby providing insight with respect to
their accuracy or to make predictions about unmeasured phenomena.

Quantitative biochemical simulations generate quantities concerning the num-
ber or concentration of species, along with values related to changes with time
such as flux (Fig. 12.2). In order to link this data to the model and physical system
descriptions described in the past section, it is necessary to convert tabular or xml
files into semantically annotated RDF. For any (generated/measured) quantity, it is
important to keep track of (1) the value of the quantity, (2) the unit of measure (if
any), (3) the kind of quantity, (4) the entity (entities) that it is an attribute of, (5)
the time at which the quantity was generated/measured and (6) the process that the
quantity resulted from. Although there exists a number of ontologies to describe
quantities including the Ontology for Biomedical Investigations (OBI) and the
Information Artifact Ontology (IAO), the Measurement Unit Ontology (MUO),
Ontology for Physics and Biology (OPB), and the Semanticscience Integrated
Ontology (SIO). Each of these ontologies has their particular advantages and
disadvantages. In OBI and the IAO, it is necessary that the measurement values
refer to actual measured entities, as opposed to the postulated entities that may be
specified in a model. MUO captures the relation to the value, type and unit. OPB
provides a well thought out view of physical dependencies between rate variables
and flow variables. SIO, however, considers all of these and provides the vocab-
ulary to capture time-course values as RDF linked data. As illustrated in Fig. 12.3,
quantities in SIO can be ascribe a specific value or fall within a range of values
(uncertainty) with an optional unit of measure, obtained at a particular time, be
associated with specific information content entity (model/model component),
object or process, and be linked as an output of a process such as a simulation.

Since SIO is fully compatible with the formalization made by the SBML
Harvester, the RDFized simulation results can be queried inline with the models

Fig. 12.2 a tabular data, and b 2d plot time course data of the repressilator, an oscillating gene
regulatory system

12 Semantic Systems Biology 365



and what they represent. Consider the following DL query which obtains con-
centrations of species containing ribonucleotide residues during the 20 and 40 s
interval of time.

‘concentration’
and (‘measured at’ some double[[20.0, \40.0])
and ‘is attribute of’ some (

‘species’
and ‘represents’ some (‘has part’ some ‘ribonucleotide residue’)

)

Clearly, being able to query the model, model components, biological system
and the raw data form the simulation results in one system is of obvious benefit for
data retrieval or even data exchange [33]. Yet, more work remains to be done in
order to fully understand whether the results obtained are aligned with our
expectations. For instance, we might want to know whether the model produces a
periodic oscillation, or in general, the behaviour generated by any given model. To
address this kind of query, it is necessary to analyze the raw data in terms of the
curve and trend features. Vocabulary for the semantic annotation of dynamic
features is provided by an OWL ontology called Terminology for the Description
of Dynamics (TEDDY) [7]. Thus, through simple multi-curve analysis, it becomes
possible to identify curves that are monotonic (TEDDY_0000144) such as strictly

Fig. 12.3 Entity-relation diagram to specify time-indexed quantities resulting from parametric
simulations
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increasing (TEDDY_0000008) or strictly decreasing (TEDDY_0000009), or non-
monotonic (TEDDY_0000005) such as periodically oscillating (TEDDY_000
0066) or damped oscillation (TEDDY_0000063). After analysis, we can contribute
new information to the knowledge base regarding the dynamical behaviour of the
systems in terms of the curves and line segments and the time-indexed points they
are composed of, and create new queries that integrate these with the model
entities and their meaning. As shown below, we can query for periodic oscillations
stemming from concentration data of species that have DNA binding function.

‘periodic oscillation’
and ‘has part’ some (

‘concentration’
and ‘is attribute of’ some (

‘species’
and ‘has function’ some ‘dna binding’)

)

12.8 Towards Model-Based Hypothesis Testing

If the goal of building models and running simulations is ultimately to better
understand biology, then there must be a place for models to provide evidence for
scientific hypotheses. HyQue [34] is a project to facilitate the formulation and
evaluation of scientific hypotheses using linked open data and Semantic Web
technologies. Through the use of customizable SPARQL-based rules [35], HyQue
retrieves relevant data that can be used to support or dispute claims made by the
hypothesis. HyQue tries to find supporting evidence depending on the kind of
molecular event specified: transport, binding, modulation of function, and positive
and negative regulation of biological processes. For instance, if a claim of the
hypothesis involves the expression of a gene by a protein, HyQue will attempt to
determine whether this fact is known, and also determine whether the agent is
indeed a protein, the target is indeed a gene, whether the protein has been anno-
tated as having the capability to bind DNA or exhibits transcription factor activity,
and whether the gene is known to be regulated. Finally, HyQue scores a hypothesis
based on the total level of support garnered and produces an RDF-based repre-
sentation that links hypothesis to its scores, along with the rules and data used to
generate those scores. This data can then be republished on the semantic web for
others to discover. Thus, with some measure of excitement, we can imagine that
semantically annotated systems biology models and the analysis of the results of
model simulation could potentially be used as evidence for HyQue-based bio-
logical hypotheses.
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12.9 Conclusion

In this chapter we have attempted to paint the landscape of semantic systems
biology from the perspective of how formalized knowledge constructed from
Semantic Web technologies can be used to build, publish, query, discover, com-
pare, validate, and evaluate models and knowledge in systems biology. At the core
of the Semantic Web effort is the use of Web technology as a means to disseminate
and discover information, and this is complimented with formal knowledge rep-
resentation for consistency checking and more sophisticated question answering
through automated reasoning. A key benefit for systems biologists is that the gap
between facts, models and results is quickly closing due to the inevitable inte-
gration arising from a common framework for representing heterogeneous
knowledge. As we look to the future, we envision models being more routinely
incorporated in the evaluation of biological hypotheses, and for which easier
discovery may lead to a renaissance in model reuse and focused extension
Table 12.1.
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Abstract The volume, complexity and heterogeneity of data originating from
high throughput functional genomics technologies have created challenges and
opportunities for Information technology (IT) departments. These increased
demands have also led to increasing costs for IT infrastructure such as necessary
computing power and storage devices, as well as further costs for manpower effort,
required for maintenance. This chapter describes some of the challenges for
computational analysis infrastructure, including bottlenecks and most pressing
needs that have to be addressed to effectively support the development of systems
biology and its application in medicine.
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GPU Graphical Processing Unit
HPC High Performance Computing
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PRACE Partnership for Advanced Computing in Europe
ROI Return On Investment
SaaS Software as a Service
SBML Systems Biology Markup Language
WLCG Worldwide LHC Computing Grid

13.1 Introduction

Technological advances in biomedical research have provided powerful means for
investigating complex molecular processes and phenotypes. Each single high-
throughput functional genomics technique leads to the generation of a substantial
amount of data. Combinations of such ‘omics’ approaches [1] are becoming
common practice in multidisciplinary systems biology and systems medicine
projects [2, 3].

The size, complexity and heterogeneity of the data thus raise a number of
challenges requiring diverse computational support:

1. What type of hardware (computational, storage and network) infrastructure is
needed? How should it be acquired and managed?

2. What types of software services (data management, analytics, etc.) are needed
and how to provide them?

3. How to provide seamless support to biological scientists in using the hardware
and software infrastructure?

Such increase in size, heterogeneity and complexity of data clearly expands the
need for large-scale data and knowledge management, including communication
via networks, solutions for data confidentiality, open standards and open source
software and harmonised analysis workflows. Last but not least, such efforts also
rely on collaboration and training.

13.2 Infrastructure

Popular infrastructures for Scientific Computing typically involve permutations
and combinations of the following list of types:

• HPC systems
• Computing Grids
• Dedicated Clusters
• Cloud Computing
• Desktop Grids.
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The exact characteristics of the different resource types are provided in detail in
Sect. 13.11, seen later in this chapter, with their advantages and limitations
analysed.

Costs for large data and compute facilities have become a hurdle for many aca-
demic institutions and even national centers, typically accumulating investments that
fall in the millions of euros range [4]. Several collaborative attempts therefore aim to
join forces and to manage the data and computing infrastructures on a broader basis
[5]. As regards the European landscape, the following projects have had to deal with
scientific computing for life sciences: EGI/EGEE [6] with the Biomed VO [7],
HealthGrid [8], BioInfoGrid [9], ItalianGrid [10], ELIXIR [11]; to be sure, there are
more efforts on-going, both within and outside of Europe.

The most prominent multinational effort in Life Science domains currently is
the pan-European ELIXIR project [11]. ELIXIR’s goal is to operate a sustainable
distributed infrastructure for managing biological data to support research and its
translation into the medical and environment sciences as well as the biological
industries and society. In order to achieve this mission, ELIXIR is constructing and
enhancing a distributed research infrastructure in accordance with the require-
ments of the scientific community. The ELIXIR Hub will be connected to ELIXIR
Nodes to provide infrastructure for data, computing tools, standards and training as
well as support for the European Strategy Forum on Research Infrastructures
(ESFRI) in the biological and medical sciences.

The Innovative Medicines Initiative (IMI), a joint initiative of the European
Union and the European Federation of Pharmaceutical Industry Associations, has
recognized the need of a common infrastructure to support its portfolio of public–
private partnership projects dedicated to overcome bottlenecks in the development
of biomarkers of drug efficacy and toxicity for the treatment of human diseases. As
a result, IMI has launched eTRIKS [12], a project dedicated to the delivery of
European Translational Research Information and Knowledge management Ser-
vices, first for all IMI projects, then for other European projects in translational
research with similar needs.

13.3 Network Management

Computing systems available on a network may be produced by different vendors,
provide different interfaces and/or support different network protocols. Indeed, a
programmer wishing to exploit a collection of networked computers must usually
contend with different types of heterogeneity: architecture, data format, compu-
tational speed, and even dynamic aspects such as machine load, and network load.
Security, Performance and Reliability are all objectives that have to be met, yet,
with varying weight ratio in the mix, since such a ratio is often specific to the
particular application at hand.

Unlike other situations in which systems and networks are managed in isola-
tion, heavy-duty scientific workflows call for tight integration between these two
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resources. For example, while 10 Gb/s network links are now common and
100 Gb/s equipment is readily available, the optimal use of 10 Gb/s links over a
long distance, implies big packets equivalent to jumbo frames, and requires special
network tuning on both the endpoint systems and the intermediate equipment.
More often than not, this proves to be a delicate exercise in that system and
network teams cannot realistically work apart from each other effectively [13].

Furthermore, the end-to-end nature of data connections across multiple sites
and the need to replicate datasets across organizations imply that too strict network
policies may hinder data management. Such is the case for sites linked with no true
IPv4 end-to-end connectivity [14]. When IPv4 traffic restrictions are in place,
standard Internet protocols and tools such as ftp, scp, rsync and even http may
therefore not readily be supported, in both directions concurrently. The issue may
be more pronounced with the more recent and better scalable grid technologies,
e.g. Globus and gridftp, which depend on open networks using multiple ports
concurrently in both traffic flow directions and dynamically spawning client–
server pairs.

Organisations of different sizes such as laboratories, institutes, multi-center
companies and collaborating centers have requirements that can be met by varying
solutions, which is the reason why there is much divergence in how many critical
network environments are being defined; for end-users this typically implies extra
effort in order to adjust in the particularities of a given institutional environment.

Massive data-producing scientific domains, such as High Energy Physics [15]
(HEP), have chosen a distributed computing model relying on a sophisticated
worldwide network infrastructure. This capability enables high bandwidth virtual
private networks to move large chunks of data from multiple remote locations. The
bioinformatics community has started to benefit from this technology through the
European multi-science grid Enabling Grids for E-science (EGEE) and, currently,
its follow-up effort [15], the European Grid Infrastructure [16] (EGI).

13.4 Data Management and Integration

Systems biology and systems medicine studies incorporate multiple levels of
information including genomics, epigenomics, transcriptomics, proteomics,
metabolomics, lipidomics, various phenotypic assays (including imaging), as well
as pre-clinical and clinical studies. Over the years, a large number of specialized
online databases have emerged providing public access to a variety of such data.
Data on different public sources tends to focus on different organisms, species,
diseases, etc. Such data is typically heterogeneous in its format, e.g. tabular,
network structure, imaging, textual, etc. Moreover, in many cases the data on
different sites uses different terminologies to describe the same concepts. The
problems and historical approaches concerning syntactic and semantic data inte-
gration have been well described [17, 18]. Data management systems aims are to
collect, integrate and deliver data, and most rely on guidelines and standards
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defined by the Minimum Information for Biological and Biomedical Investigations
(MIBBI) project [37], other initiatives [19] and on numerous ontologies [20].

In a typical study in systems biology data accessed from remote sites needs to
be integrated with in-house experimental data. Furthermore, analyses of the dif-
ferent data types rely on specific analytical methods and software. An effective
data infrastructure must thus render such integration seamless. Current efforts
include Garuda Alliance, tranSMART [21] and proprietary systems from Ingenuity
(IPA), IDBS (ClinicalSense), Oracle (Translational research Solution) and BioMax
Informatics (BioXM) [22–24].

The translational medicine data warehouse tranSMART [21] has been designed
and implemented as an open-source system that addresses some of the above chal-
lenges. It allows users to curate public and internal data from multiple modalities to
align them using standard ontologies and store them in a central data warehouse. It
also provides a variety of user interfaces that are implemented with open source
components to enable flexible data query, analysis and mining. It was built initially
by the pharmaceutical company Johnson & Johnson using the Galaxy portfolio of
open-source tools developed by the i2b2 consortium [25]. Its source code has now
been placed in the public domain through the tranSMART consortium [21]. After its
successful deployment in the IMI U-BIOPRED project [3] tranSMART is the core
component for the construction of the IMI eTRIKS platform.

13.5 Use of Open Source Software and Open Standards

In a typical Systems biology computational environment, a plethora of open source
as well as commercial software packages co-exist. Both types can and will
undergo a constant and sometimes fast update pattern. Given that the lifecycle of
software usually does not exceed a decade, being able to replace it as soon as the
need arises may be more important than owning the source code itself. It is
therefore essential that software- commercial or not-follows open standards to
allow interoperability of systems and its components [26]. Such standards are
either inherent or easy to implement with open source software, but have to be
explicitly requested with commercial codes. When the latter requirement is met,
the software would thus enable the essential management and standardisation of
data across sites and projects.

13.6 Scientific Workflow Reproducibility

Bioinformatics as a field has one unusual record, versus other disciplines based on
computer science: the proliferation of small custom-made tools each tailored for a
particular task. Indeed, bioinformatics has a wealth of code trees and forks, unlike
other sciences where a relatively small set of software codes can be parameterized
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to simulate given (e.g. physical) systems. This is, at least in part, a consequence of
the fact that new types of data drive the development of analytical tools and each
bioinformatician has often a tendency to develop his own tools, independently of
others. What is needed are integrated efforts and platforms to better unify these
tools so that more collective value can be gained by the community from these
activities. In the US, large efforts such as the Department of Energy’s Knowl-
edgebase (K-base) are seeking to provide a common platform for such bioinfor-
matics and computational biology models. Additionally, tools such as the Systems
Biology Markup Language (SBML) [27] are used to make models from individual
groups more amenable to sharing and more precise replication.

The combination of these code trees with multiple compilers, optimization
options, parallelization frameworks [28] [e.g. Message Passing Interface (MPI)
libraries] launchers and execution environments make the repeatability of these
workflows partly an experiment of luck. This aspect can be controlled though, by
meticulously documenting the exact versions of the software used, and how it was
delivered in production so that the result can be predicted rather than hoped for.

The ‘modules’ framework and EasyBuild are elegant modern tools to support
the ‘Scientific Workflow reproducibility’ argument, against high-performance
computing (HPC), Grid, Cloud and other such computational environments. They
allow users to manage the configuration of any given system in a structured way,
even across multiple versions of software, varying MPI stacks, compiler tool
chains etc. This is extremely important for resources that are transient in nature
and provided within shared systems, whereby more than one particular version of
software may be required. Such environments can nowadays count beyond 400
different instances of software versions, which need to be available in a given
setup [29].

Finally, workflow engines such as Taverna [30], Galaxy [31], Tavaxy [32] or
the GenePattern system [33] for documentation and use of complex job depen-
dencies are becoming essential tools and will undoubtedly enable reproduction of
future complex executions across different infrastructures. Another key endeavour
is the development of Synapse [34] by Sage Bionetworks that tracks data prove-
nance while housing data and models together in an open source and community
catalysing way. In this way, it can create joint data and model packets that can be
transferred between researchers with straightforward reproducibility.

A critical, yet often overlooked, issue is the need to create software workflows
for the assessment and validation of large data sets. Such tools aim at countering
‘‘lab-specific’’ effects and facilitating the identification and dismissal of poor
quality data. In addition, it is important to note that there are two fundamental
types of noise in all large-scale biological data—technical noise and biological
noise. Technical noise arises from the process of generating the data—and can
generally be handled by mathematical approaches. Biological noise is due to
stochasticity, diversity and heterogeneity of biological processes leading to a
phenotype (e.g. the transcriptome of a given brain area). How one subtracts away
the various non-relevant biological variations to identify the genes or proteins that
control the biological process, function or dysfunction of interest is a very
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challenging problem. Indeed, whether any of the various machine learning tech-
niques can manage to separate the various types of biological processes involved is
not known. Such endeavour requires a systems approach to biology.

13.7 Data Confidentiality

The need for data confidentiality in medical applications has far reaching conse-
quences, which are hard to grasp from the outset. For example, protection of
information derived from a given individual at the highest possible level implies
that participating IT infrastructure must undergo full inventory management,
including tracing equipment lifecycle, including end-of-life components and ver-
ifying third-party services. An old backup or broken disk can therefore not just be
disposed of, and personnel passwords must be protected very carefully while third-
party systems and maintenance personnel have to be vetted for compliance in
accordance to the desired confidentiality level, while this should not happen at the
expense of scientific results.

Techniques such as anonymisation or pseudo-anonymisation [35] might help in
certain cases. For example, full anomymisation prevents anybody from tracking
back to the original data while with pseudo-anonymisation the data-owner can
trace back to the individual via an ID-number. Early definition of constraints and
appropriate and/or available solutions is crucial, as with genetic variation profiles,
which are themselves unique identifiers.

These issues concern not only data centers in the commercial or health sectors
but also IT in academic institutions involved in research projects. Indeed, current
large research consortia typically include partners in the pharmaceutical/biotech
sector and clinical research departments in particular in translational research. Last
but not least, the physical environment of systems and their configuration also
have to be carefully controlled.

13.8 Collaboration

A most important and difficult issue in operating the IT infrastructure of a systems
biology center is that there are no defined standard guidelines. Very often mini-
mum prerequisites to serve such a center, e.g. network features, and system ser-
vices are not well defined. Similarly, needs for storage and computing change
rapidly and substantially without much time for preparation. Centers sometimes
act without consulting technical teams, but when explicit projects’ needs force
collaboration. This often leads to successive ad-hoc activities and often results in
unwanted dependencies.

In an ideal case, operators of such IT infrastructures should be able to exchange
information in electronic (emails, mailing lists), scholarly (annual conferences,
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journals) and physical channels (books, hard media) just like in other fields,
notably High Energy Physics.

A potential collaboration opportunity exists in pooling the experience of current
state-of-the-art centers and documenting: (1) Services provided internally and
externally; (2) Systems on which they are based; (3) Type and amount of human
effort to support such services and systems; (4) High performance computing
(HPC) environments and computational techniques across different centers. This
would ideally become a ‘‘Best Practice’’ document.

It is worthy to mention that European Union countries have already built a long
history of collaborative projects pooling resources e.g. ELIXIR [11], EGEE [6]
Biomed VO [7], HealthGrid [8], BioInfoGrid [9], ItalianGrid [10]. Current trends
will most likely encourage continuation of this tradition.

13.9 Training

To use the high-end hardware and input/output (I/O) systems in an efficient if
optimal way, a substantial insight into the technical details is required. This may
be an extra hurdle for bioinformaticians who have to follow two or more fast
moving fields like biology and IT especially since many have moderate experience
with HPC/high-throughput computing (HPC/HTC) systems. In addition, because
tasks are very specialized and knowledge is fragmented, training is required not
only for end-users but also for service providers such as systems engineers.
Technical training and roles assignment are therefore becoming increasingly
important to ensure efficient use of available resources [36].

Building on the experience of past and existing schools [37] in providing
trainings in both physical and electronic formats [38], future efforts should focus
on skills matching current and upcoming infrastructures e.g. ‘‘HPC-’’, or ‘‘Grid-’’,
or ‘‘Cloud-based bioinformatics’’. Such training would help improve the design of
these environments and, in the end, benefiting the end-users.

Last but not least, creation of cross-disciplinary environments with readily
available experts in diverse types of HPC/HTC is essential. Indeed each bioin-
formatician must not only have appropriate understanding of the IT requirements
but most importantly also must have access to individuals that collectively have all
of the required information. These cross-disciplinary environments will be
essential for biology of the future.

The leading project in European High performance computing, PRACE, has
identified the training priorities in the life sciences [41]:

• Method development
• Memory management
• Integration of optimised libraries in scripts
• Data storage
• Data integration and analysis
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• Code parallelisation
• Benchmarking support
• Computational methods training.

13.10 A Diversity of Scientific Workflows

Many parameters can be fine-tuned for a given workflow on a chosen infrastruc-
ture (HPC, grid, cloud). In order to assist in a reliable and justified choice among
and/or to adapt to available infrastructures, a given workflow should ideally
describe a minimum set of nine requirements:

1. Number of cores needed;
2. Amount of memory and memory bandwidth needed;
3. Amount of temporary scratch data storage needed, at run-time;
4. Amount of permanent work data storage needed, in-between runs;
5. Local disk I/O throughput level required;
6. Backbone bandwidth level required;
7. Maximum time span expected per single job;
8. Data Confidentiality level required;
9. Temporal characteristics of each usage pattern (e.g. batch, interactive/service

oriented, calendar-based, dedicated etc.).

13.11 Categories of Computational Analysis
Infrastructures: Characteristics and Limitations

Here we briefly describe the five main computational infrastructures: HPC, com-
puting grids, dedicated clusters, clouds and desktop grids.

13.11.1 HPC Systems

HPC is synonymous with Supercomputing and originated in the late 1970s to
spread dramatically in the current decade. Today HPC is used in a wide variety of
applications outside the classic fields such as oil exploration, structural analysis,
computational fluid dynamics, atmospheric sciences and defence applications.
New applications include: medicine, computational chemistry, virtual reality and
many more [39–42].
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13.11.2 Computing Grids

The idea to bring together multiple, possibly heterogeneous, computing resources
in order to build a global architecture usable as a single super computing platform
has been brought by Ian Foster and Karl Kesselman in 1998 [43], notably
encapsulated in the Globus grid stack. The Grid concept [44] has also been con-
siderably advanced through various international projects [DataGrid [45]—
Enabling Grids for EsciencE (EGEE) [6]—EGI [46]—Open Science Grid (OSG)
[47]—NORDUGRID [48]—etc.] and several scientific projects have been able to
successfully make use of it. One of the most remarkable success is the Grid
deployed in the framework of the Large Hadron Collider (LHC) [15] which spans
all over the world and allows the quasi-online treatment of *15 PBytes of raw
data each year; this infrastructure is often cited as WLCG.

Grids are especially well adapted for trivially parallel computing tasks
accessing small chunks of data, or even larger ones if they have been copied
locally in advance. For example, Grids are very successful in the area of molecular
docking where a multitude of configurations may be tested in each workflow
execution.

On the other hand, Grids have drawbacks and adapting a computational code to
run on Grid architecture is complex and sometimes not possible for small scientific
communities or for users lacking a strong computing background and not having
access to a portal service, automating the procedure. While substantial effort has
been successfully invested to provide high-level security in Grids, they typically
cannot guarantee a level of confidentiality matching medical or industrial stan-
dards. These limitations are not inherent to the Grid paradigm but have simply not
been addressed by the early developers and further organizational effort is required
before they become daily practice.

13.11.3 Dedicated Clusters

The resource category of dedicated clusters is a common solution preferred by
both academic and commercial environments, especially for teams in early growth
stages; they involve either resources that are self-owned by the resource user or,
owned by a third party but delivered in the form of a dedicated service. This type
of resource can be a prime technology to build expertise on but its maintenance
can prove to be a burden for the smaller teams. It can even be a distraction for
bigger teams, whose objective is not HPC and, would rather opt to outsource the
task to more specialized parties.
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13.11.4 Cloud Computing

While the processing power of single servers was increasing following Moore’s
law, virtualization techniques started to appear. Virtualization allows to instantiate
on demand several virtual machines on a single server. It is then possible to fully
de-correlate the physical architecture from the virtual one that is exposed to the
users. A complete virtual infrastructure (CPU, storage, network, applications, etc.)
can be deployed on the fly with all the characteristics matching the users’ needs.
The use of these on-demand virtual computers is known as cloud computing [49].

With the past experience with Grids and taking advantages of virtualization
techniques, the Cloud paradigm [4] emerged in 2006 with strong support of a few
Internet companies which were able to build an economical model based on Cloud
services. Within the Cloud model, various classes of services are offered to the
users:

• Infrastructure as a Service (IaaS) provides access to a large number of on-demand
virtualized resources.

• Platform as a Service (PaaS) provides a toolkit for application development,
deployment and management on a virtual infrastructure (database management
system for instance).

• Software as a Service (SaaS) where the user’s application itself can be executed
on the virtual infrastructure through a web interface.

The Cloud model may have certain advantages over the Grid paradigm: (1) It
better hides the complexity to the end user; (2) It owns a built-in mechanism to
adapt the amount of resources to the needs (elasticity); (3) Virtualization allows
creation of a virtual infrastructure strictly reserved to a given set of users, enabling
predictable implementation of security and confidentiality; (4) It provides the
ability to prepare virtual machines embedding users’ software and all necessary
external software and libraries that can be deployed and run without any pre-
requisite on the physical layer.

13.11.5 Desktop Grids

Desktop grids are in effect the reincarnation of an older technology that has been
deployed for many years in the form of distributed computing projects, BOINC
[50] being the most notable one among them. Such technologies recently got more
attention due to increased reachability thanks to increased network bandwidth,
new types of platforms such as GPUs, plus advances in organizing both the col-
lection of resources as well as the scheduling aspects of them, that are practically
volatile. Because, by definition, Desktop Grids imply that at least some physical
access on the computing systems exists for 3rd parties and perhaps by unsus-
pecting computer users, this has implications for security and reliability and at
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least some level of results checking is necessary. In computer science terms the
literature refers to these techniques as sabotage tolerance and fault-tolerance.
One notable comment as regards Desktop Grids is that they can overlap but may
not be the same as volunteer computing:

• A Desktop grid may be a committed set by the, otherwise idle, resources of a
university campus, intending to serve internal needs of researchers. That would
be hardly voluntary, though calling it part-time (non-dedicated) resource is
appropriate.

• A volunteer may donate the GPUs and CPUs inside servers of a computer room,
to a third party bigger network; that would certainly be accounted as volunteer
computing, yet, it is not Desktop Grid (Table 13.1).

Taking into account special characteristics of different IT platforms, one can
deduce patterns of use-cases in which each one can excel and when it may be
better to seek for alternatives:

• HPC systems have the best bulk capabilities but their cost is prohibitive for the
simplest tasks, esp. pre- or post-production work.

• Grids can cope well with volume, e.g. drug screening, but once resolution has to
be raised, HPC systems are performing better.

• Dedicated clusters have very predictable performance aspects but they are
unsuitable for non-flat loads, whereby demand is not fixed.

• Clouds may suit one-off experiments but can become expensive when data
volume (storage, network throughput) increases.

• Desktop grids can be cost-effective in data mining, assuming the datasets are
fixed and do not pose a confidentiality risk.

In short, matching an infrastructure and its specific characteristics to a scientific
project with specific requirements can only be done on a case-by-case basis and no
single individual best solution exists for all possible problems.

Concluding, a bioinformatics infrastructure therefore also ought to be diverse
and flexible to accommodate the wide variety of applications and their specific
requirement.

13.11.6 Conclusions and Future Work

Computational infrastructures are enabling technology for biomedical domain
applications with much certainty as regards the timeframe up to year 2020,
whereby Exascale infrastructures are expected to be in place and in daily
exploitation.

Exascale class systems are often understood and planned as Exaflop infra-
structures; frankly put, for biomedical sciences that’s just not sufficient enough:
The nature of applications in this family of scientific domains may not allow to
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Table 13.1 1: Advantages (+) and drawbacks (–) of scientific computing infrastructures

High performance computing (HPC) systems
+ Scalability possible even for ‘‘tight’’ computations, e.g. high resolution molecular docking @

O(1PFlops) and beyond
+ Thread-to-thread data transfers at fast backbone interconnect speeds, e.g. @ O(40Gbps)
+ Typically connected to fast local I/O filesystems, e.g. O(1PBs) @ O(1GBytes per second per

thread)
+ Homogeneous and tightly controlled environment
+ Can provide guarantees for timely execution, upon agreement
+ Can provide guarantees for data confidentiality aspects, upon agreement
- Unfavourable from techno-economic point, for big workflows of low-resolution and high-

throughput
- Complex computer architectures may imply that idea-to-implementation can take a longer

time frame
Computing grids
+ Suitable from techno-economic point, for big workflows of low-resolution and high-

throughput
+ High throughput is possible at extreme ranges, e.g. 100,000 jobs per day for molecular

docking
+ Distributed storage of replicated datasets is typically well handled in a grid environments
+ Scalability is moderate but throughput is high, e.g. Molecular docking @ O(10TFlops * N),

where N is number of sites
+ Thread-to-thread data transfers at -varying- backbone interconnect speeds, typically @

O(1Gbps)
+ May be connected to fast local I/O file systems, e.g. O(100TBs) @ O(100MBytes per second)
+ Composite workflows running at multiple sites a theoretical possibility; not yet widely

adopted
- Heterogeneous infrastructure, by its definition—it has multiple owners
- A typical grid infrastructure cannot provide guarantees for timely execution; exception:

special agreement with a virtual organization owner (e.g. BIOMED)
- A typical grid infrastructure cannot provide guarantees for data confidentiality; notable

exception: secure storage over insecure grid is possible by deploying n-out-of-m
KeyStores as per Shamir’s work

Dedicated clusters
+ Scalability usually at bare minimum, e.g. molecular docking @ O(10TFlops)
+ Thread-to-thread data transfers at backbone interconnect speeds, typically @ O(1Gbps)
+ May be connected to fast local I/O file systems, e.g. O(10TBs) @ O(100MBytes per second)
+ Homogeneous and tightly controlled environment
+ Can provide guarantees for timely execution; very predictable performance aspects
+ Can provide guarantees for data confidentiality aspects
- Unsuitable for high-resolution workflows or very high-throughput applications
- Unsuitable for scientific workflows which exhibit peak demand; or else, there is often

underutilization
- Domain experts may need to build or purchase local expertise in clusters administration
Cloud computing
+ On demand allocation, cost fully linear to activity—as regards computational aspects
+ Scalability usually at bare minimum, e.g. Molecular docking @ O(1Tflops), yet allows

throughput

(continued)
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oversimplify the algorithmic aspects of the problems at hand, nor readjust code
optimally against, for instance, a specific ratio of CPU horsepower (Tflops) per
memory throughput (GBs per second). Aspects related to data management are
going to be as important as pure processing capacity. Furthermore, mapping of
physical processes (e.g. protein molecules) or, bioinformatics algorithmic (e.g.
comparative genomics) to supercomputing architectures is not always straight-
forward, if possible at all with a given codebase.

A certain subset of such applications are foreseen to influence the design of
Exascale class systems; the reason for this is their practical applicability combined
with special needs, as regards the balancing of computational resources (CPU,
memory, I/O). Here are the very ones, which are expected to drive the HPC
landscape in the next decade:

• Genomics (next-gen sequencing, comparative genomics)
• Systems biology (epigenomics, proteomics, metabolomics, regulatory networks,

protein pathways)
• Molecular Simulations (drug design, structural biology, nanotechnology
• Biomedical Simulations (drug impact, ADME/Tox modeling).

Table 13.1 (continued)
+ Thread-to-thread data transfers at backbone interconnect speeds, typically @ O(1Gbps)
+ May be connected to local I/O file systems, e.g. O(10TBs) @ O(100Mbytes per second)
+ Homogeneous and tightly controlled environment
+ Can provide guarantees for timely execution, upon agreement and availability
+ Can provide guarantees for data confidentiality aspects, upon agreement
- Data transfers and storage tend to be prohibitively expensive, if scaling is a requirement
- Unsuitable for high-resolution workflows or very high-throughput applications with

significant bidirectional data management
- Requires negotiation for legal liability brokerage as regards data with confidentiality

requirements
- Systems reliability is truly optimized for the needs of a 3rd party, those of the resource

provider
Desktop grids and resources
+ Suitable from techno-economic point of view for workflows of low-resolution & low-

throughput; e.g. data mining
+ Can allow for notable cost savings by collating resources which idle outside of working hours
+ Large pool of such candidate resources is available, and growing
- Scalability is moderate to low—but may allow for interesting interactive workflows
- Thread-to-thread data transfers at lower network speeds, typically @ O(100Mbps) or less
- Heterogeneous- and significantly so- infrastructure, by its definition—it may have multiple

owners
- A typical desktop grid infrastructure may not provide guarantees for timely execution
- A typical desktop grid infrastructure may not provide guarantees for data confidentiality

Disclaimer: numbers in brackets are indicative as of December 2012; performance can improve
significantly within a few months period. Table has been republished with permission by own
author (F. Georgatos)
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Furthermore, we hereby describe the grand challenges, which lie ahead and
areas in which innovations are expected to occur over next decade.

13.11.7 Big Data, Ever-Growing and, with Fragmented
Datasets

Biomedical sciences are producing nowadays data, in a pace, which increases
faster than so far known IT technological curves. This development implies that
there is a trend towards inflating the IT costs and this impacts the relative cost
fractions. IT costs are expected to become heavier -or may do so in the future- in
the total balance sheet.

This in effect may also imply the need to filter, re-process or throw away data,
as operational needs dictate.

Fragmented datasets of many small files, put serious pressure on modern
Operating Systems and Networks, as regards latency aspects and optimization
techniques; many concepts for speedup that are trivial in other scientific domains
(such as read-ahead algorithms to address slower speeds in the lower levels of the
memory hierarchy) will just not be able to address the needs of some biomedical
applications. One potential solution is to ‘‘packetize’’ information in bigger
chunks, but not all applications are amenable to this practice.

13.11.8 Long-Term Sustainable Funding, Coupled
with Justifiable ROI

Many institutes cannot fund the necessary infrastructure in isolation; this kind of
challenge is already know and addressed in other fields; notably, High Energy
Physics institutes had to pool resources together to cope with the needs for the
computational aspects of LHC, Large Hadron Collider, what is often called the
biggest physics experiment ever. The European ELIXIR project can be seen as a
first step in a similar direction. One current re-established fact is that institutes in
isolation have limited financial power to work on the grand challenges of the
current scientific frontier problems.

Scientific funding does not occur in isolation of the economic environment at
large; this implies that as countries’ resources get constrained, there is increasing
pressure in justifying the research investments in terms of potential Return On
Investment (ROI) and provide in advance measurable parameters to evaluate the
outcomes of scientific endeavour. This is easy to put in a sentence but hard to
achieve in practice, because of the complexities of running scientific projects, the
need for long-term vision and the uncertainties that accompany them.
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13.11.9 Interpretation of Big Data

The challenge with Big Data will be a challenge for at least the next decade.
Already well established technologies like next generation sequencing will pro-
duce a significantly higher output of data, but even more data will come from the
other omics data and 3D and 4D images and time series. The challenge will not
only be related to the practical issues of storage management but will also require
new ways to analyse and more important to visualize and distribute the findings.

Here we can foresee the need to setup collaboration tools and visualization
systems which will allow the domain specialists spread over continents to work on
the same datasets and to discuss and interpret the data at the same time. This will
require much better networks and real-time behaviour than what we experience
today.

The interpretation of Big Data is a multi-faceted matter and touches on subjects
such as:

• image analysis/visualization
• data analysis & pattern recognition
• adoption of new visualization technologies
• distribution of results
• fusion with domain expertise, e.g. from clinician practitioners.

The grand challenge is to be able to turn computational efforts into scientific
insights and progress, which corresponds to pending societal needs. It can be
argued that this is what science is about but the extra hurdle, that relates to data
volumes should not be overlooked too easily.

13.11.10 Publishing Scientific Workflows
and, Reproducibility Thereof

The data accessibility challenge was briefly touched in previous chapters. Another
challenge and where we don’t have a clear picture yet how to tackle it, is the
reproducibility of research. In a recent paper by Mesirov the issue was discussed
and a first attempt was made how a scientist can make his/her results not only
accessible but also have it repeated by other scientists.

As per Mesirov [51] ‘‘Scientific publications have at least two goals: (1) to
announce a result and (2) to convince readers that the result is correct’’. It is true
and it has to be acknowledged early on, that confining the results of certain
biological experiments can be an elusive target; this though is not a convincing
excuse for not confining the results of the computational aspects of the scientific
workflows, which relate to such data. For certain researchers the in silico inves-
tigations may be should not be admissible unless results can be verified by another
party once given the same input datasets and access to the same infrastructure.
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This notion is becoming increasingly recognized in the life sciences community
and individual groups have already started setting up related standards to ease and
enhance collaboration; one such case could be APBioNet, Asia–Pacific Bioin-
formatics Network [52], whereby the BioDB100 initiative, involving 100 Bio-
Databases, is highlighting the validation of scientific claims and standards
compliance as key.

In fact, certain researchers go as far as fully automating the complete workflow
of generating scientific publications, automatically confining the information
within papers and other publications. According to Mesirov [51], Reproducible
Research System (RRS), consists of two components: RRE & RRP. Reproducible
Research Environment (RRE) is for the computational work and provides the
computational tools addressing provenance of data, analyses, and results; Repro-
ducible Research Publisher (RRP) is a document preparation system, including
standard word-processing software that functions in collaboration with the RRE.

Regardless of how far someone is willing to go in automatically producing the
scientific products, including publications, every effort in this direction has to be
agreed as commendable and of great value to the scientific effort. The true chal-
lenge in this area is to ensure that the overheads of the reproducible methods
correspond to benefits for the community and convince peers that such approaches
have high merit.

In such scenario the impact for the IT management is not only to ensure data
management for maybe years but also make sure that the execution of the analysis
pipeline will be archived and able to be re-activated if and when necessary. This
will require employment of modern facilities like data and file system snapshots,
versioning and archiving capabilities, which clearly are beyond what a typical data
center now provides.

13.11.11 Collection of Data and, Confidentiality Thereof

There is common agreement among biomedical researchers that data is indis-
pensable for science progress and not all objectives can be achieved if the data,
including data that refers to specific individuals, cannot be pooled together.
Especially, the individual should always have the right to choose to receive
information that can improve his/her own health. For instance, if a common gene-
or gene combination- is found that corresponds to a disease -or risk factor- and that
is eventually connected with some medical treatment, the donor of information
should be able to receive back the benefits of scientific progress. This runs against
the currently favoured concept of complete anonymisation, which defeats this
basic principle.

The issue is a challenge because there are many choices possible, in a spectrum
defined between two extremes:

– One line of thinking is over full anonymization; this counts on the complete
anonymisation of data, e.g. patient data gets isolated from the information on the
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person and then ‘‘lives a life of its own’’. On one hand, this gives good freedom for
data distribution, yet, at the same time the potential benefit to the original data
donor is suppressed, which may act as counter-incentive for building a big pool of
datasets.

– Another line of thinking is that people should to be willing, after deperson-
alization, to make their data open and available at large, for the data mining that
will transform medicine of the future. The concern is that far too much lip service
is given to confidentiality and legalistic formalisms like Institutional Review
Boards (IRBs), which indeed imply overheads for routine scientific activities.
Going to such direction would require a fundamental change in mentality and
concessions from individuals that not everyone is willing to take, at short notice.

Perhaps a middle way to go is that in order to make the best with information, it
must be collected and protected with appropriate measures, so that the needed
capabilities for scientific processing become possible, including identifying and
informing the individual, if that has been requested. There are technical and
organizational challenges for such issues since they come at the cost of complexity
overheads: that would be the consequence of trying to improve on both flexibility
and security; and doing so does imply certain compromises.
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Chapter 14
Computational Tools and Resources
for Integrative Modeling in Systems
Biology

Christoph Wierling and Hendrik Hache

Abstract Mathematical modeling is key for systems level understanding of cel-
lular processes. The development of mathematical models demands advanced
computational tools that keep track of heterogeneous data of molecules and their
interactions. Especially the integration of experimental data and pre-existing
knowledge into computational models of biological systems is of considerable
importance. In silico simulations of model behavior under similar conditions as in
the experiment give the possibility for model validation regarding specific
experimental data. Such an integrative approach leads eventually to a more
accurate and consistent description of the observed biological system. We review
several resources and computational tools which support the investigation of
biological networks and describe several resources and methods for integrative
modeling.

Keywords Omics data � Mathematical modeling � Software tools � Network
analysis � Reverse engineering
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DNase Deoxyribonuclease
DREAM Dialogue on Reverse Engineering Assessment and Methods
FBA Flux-Balance Analysis
GEDAS Gene Expression Data Analysis Suite
GENT Gene Expression database of Normal and Tumor tissues
GEO Gene Expression Omnibus
GO Gene Ontology
GXD Gene eXpression Database
HGNC HUGO Gene Nomenclature Committee
HMDB Human Metabolite DataBase
HUGO Human Genome Organisation
KEGG Kyoto Encyclopedia of Genes and Genomes
MCA Metaboloc Control Analysis
MeDIP Methylated DNA immunoprecipitation
MMMDB Mouse Multiple tissue Metabolome DataBase
MOPED Model Organism Protein Expression Database
mRNA messenger RNA
MS Mass Spectrometry
NEST Neighborhood-based Entity SeT
NMR Nuclear Magentic Resonace
ODE Ordinary Differential Equation
PaxDB Protein Abundance across organisms DataBase
PCA Principal Component Analysis
RNA Ribonucleic Acid
SABIO-RK System for the Analysis of Biochemical Pathways - Reaction

Kinetics)
SBGN Systems Biology Graphical Notation
SBML Systems Biology Markup Language
SMD Stanford Microarray Database
SVM Support Vector Machine
TCGA The Cancer Genome Atlas
TRED Transcriptional Regulatory Element Database
VANTED Visualization and Analysis of Networks containing Experimental

Data
XML eXtensible Markup Language

14.1 Introduction

Mathematical modeling has a long history in science in particular in physics and
engineering. In recent years, due to the huge amount of qualitative and quantitative
data it became also very popular in molecular biology leading to the establishment
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of the new research subject systems biology. On the heart of systems biology is
always a mathematical model. The development of such a molecular, cellular, or
physiological model often requires a lot of data about the structure of the inter-
action network defining the network topology, the rules or concepts defining the
types of interactions, such as kinetic laws and respective kinetic parameters, as
well as values defining the state of the system. Moreover, usually additional data is
required for model adaptation and model refinement, e.g., experimental data of
time course analysis or specific genetic perturbations or drug treatments.

Since biological systems are usually composed of a vast number of often very
heterogeneous components, the size of such models often becomes quite large,
with a lot of different constraints and parameters depending on the used modeling
approach. Hence, the development of such large models requires advanced com-
putational tools for evaluation and integration of large amounts of data, for model
analysis and simulation, and for data visualization.

Within the last decades many comprehensive databases were developed for the
integration of any kind of experimental and molecular data. This comprises dat-
abases for many kinds of sequence data, such as genomic DNA, mRNA, micr-
oRNA, or protein sequences, interaction data, such as protein–protein interactions
or biochemical reactions, quantitative data of kinetic parameters, gene expression
or metabolite and protein amounts, and last but not least scientific literature. In
parallel, also a lot of different analysis tools were developed and integrated, such
as tools for any kind of sequence analysis and statistical evaluation of, e.g., high-
throughput data.

Besides the integration and analysis of primary data, also the need for advanced
algorithms and software for the analysis and integration of interaction data
becomes more and more relevant. Two important approaches in this respect are
forward modeling and reverse engineering. While the concept of forward modeling
first of all tries to integrate existing knowledge with new data to derive a revised
model that can be used for the generation of new hypothesis by means of simu-
lation, reverse engineering is less biased by pre-existing knowledge and tries to
deduce the internal structure of a system based on perturbation or time course data.

Finally, the visual representation of large amounts of data and results either
coming from wet lab experiments or in silico analysis is of significant importance
in this context. For instance, the visualization of clustering results of expression
data by heatmaps and hierarchical trees is a very useful tool for the understanding
of such large-scale data sets. Furthermore, visualization of interaction networks is
crucial for modeling of molecular or physiological systems and 2D- or 3D-images
of, e.g., molecules, cells and cellular interaction networks as well as tissues or
organs are highly demanded.

Developing mathematical models of biological systems is always an iterative
approach (Fig. 14.1). Pre-existing data, such as data about the model structure and
model topology as well as data on reaction kinetics and the model state, can be
used for the development of a model prototype. Subsequently, by in silico analysis
such as simulation studies new hypothesis can be generated and validated in follow
up experiments used for model refinement in an iterative sequence. This underlines
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the importance of a strong interaction between wet lab experiments, data analysis,
and in silico modeling.

In the following we give an overview of several resources for experimental data
and pre-existing know-how that is relevant for model development. Moreover, we
discuss several computational tools for subsequent data analysis, data integration,
and modeling in systems biology.

14.2 Data Resources

The integration of experimental data is crucial for the development of meaningful
biological computer models. Advances in high-throughput technologies in
molecular biology yield comprehensive data, e.g., about the tempo-spatial
behavior of the system under study. Such diverse data can be integrated into
mathematical models in order to perform several operations such as validating the

Fig. 14.1 Modeling biological systems is an iterative approach. A model prototype based on pre-
existing knowledge is used for the formulation of hypothesis that are going to be validated by
further wet lab experiments whose results can subsequently be used for model refinement
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model’s topology, fitting its kinetic parameters, initializing its components’ con-
centrations or abundances for in silico simulations, or testing its predictions.

A biological system can be investigated by the accurate measurement of the
system constituents at various levels, such as the genome, transcriptome, prote-
ome, metabolome, epigenome, or interactome. Various experimental techniques,
featuring high precision and coverage, have been developed in recent years to
provide measurements at many of these levels. In contrast to single component
analysis, the routine practical use of global measurements has dramatically
accelerated the progress in systems biology. For this integrative approach quan-
titative data is of particular interest. Table 14.1 summarizes several data resources
for systems biology that are discussed in the following in more detail.

Table 14.1 Data and model resources for systems biology

Name Web-link Content or short description

Data resources
COSMIC http://www.sanger.ac.uk/cosmic/ Somatic mutations information
ArrayExpress http://www.ebi.ac.uk/arrayexpress/ Gene expression data
GEO http://www.ncbi.nlm.nih.gov/geo/ Gene expression data
SMD http://smd.stanford.edu/ Gene expression data
GENT http://medical-genome.kribb.re.kr/GENT/ Gene expression data
GXD http://www.informatics.jax.org/

expression.shtml
Gene expression data

CCLE http://www.broadinstitute.org/ccle/home/ Diverse data of cancer cell lines
TCGA http://cancergenome.nih.gov/ Diverse data of cancer patient’s

samples
Human Protein

Atlas
http//www.proteinatlas.org/ Gene and protein expression data

PeptideAtlas http://www.peptideatlas.org/ Peptides data
MOPED http://moped.proteinspire.org/ Protein expression data
PaxDB http://pax-db.org/ Protein expression data
HMDB http://www.hmdb.ca/ Metabolites in human
MMMDB http://mmmdb.iab.keio.ac.jp/ Metabolites in mice
Model resources
PathGuide http://www.pathguide.org/ Pathways
KEGG http://www.genome.jp/kegg Pathways
Reactome http://www.reactome.org/ Pathways
ConsensusPathDB http://consensuspathdb.org/ Pathways and interactions
Pathway

Commons
http://www.pathwaycommons.org/ Pathways and interactions

BRENDA http://www.brenda-enzymes.org/ Enzyme information
SABIO-RK http://sabio.villa-bosch.de/ Biochemical reaction kinetics
JWS http://jjj.biochem.sun.ac.za/ Biochemical models
BioModels http://www.ebi.ac.uk/biomodels/ Biochemical models
CellML http://www.cellml.org/models/ Biochemical models
Transfac http://www.gene-regulation.com/pub/

databases.html
Gene regulation

TRED http://rulai.cshl.edu/TRED Gene regulation
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14.2.1 Genomics Data

The advent of next-generation sequencing technologies in 2008 has revolutionized
genomics and transcriptomics within only a few years. Their applications are
widespread, including the sequencing of complete genomes [1, 14, 64, 163, 169],
the detection, identification, and quantification of rare transcripts and variants with
RNA-seq [97, 166], and the genome-wide profiling of epigenetic marks and
chromatin structures with ChIP-seq [162], MeDIP-seq [96], and DNase-seq [18].
Despite the impact of next-generation technologies on genomics, the usage and
integration of large amounts of genomics data into systems biology is still
ambitious. Systems biology requires information about the functional impact of
genomic aberrations, such as mutations, methylations, and changes in copy
number in order to translate this information into mathematical models of the
cellular system. For instance, over 30,000 mutations have been identified in a
human malignant melanoma [127]. Many of them and even more somatic muta-
tions in human cancers together with related details are collected in the catalogue
of somatic mutations in cancer (COSMIC; [49]). However, functions and pheno-
types of most of the mutations are unknown.

14.2.2 Transcriptomics Data

Since its origin in the mid-1990s, high-throughput gene expression measurement
technologies have been applied on large-scale to determine the activity of genes in
parallel, for instance in different tissues, disease states, after perturbations, or in
different organisms. DNA array techniques have been successfully applied in
many studies [45, 72, 141, 154, 161, 170] and nowadays are taken over by deep
RNA sequencing technologies [30, 65, 113, 158, 173]. The majority of experi-
mental data is stored and provided in web-accessible repositories, such as the three
major databases ArrayExpress with currently more than 30,000 publicly accessible
experiments in about 1,600 organisms, Gene Expression Omnibus (GEO) with
almost 31,000 public experiments in around 2,000 organisms, and Stanford
Microarray Database (SMD) with more than 23,000 public experiments in 280
organisms [43, 70, 124]. Besides these general databases, there are species-, tissue-,
or disease-specific databases, which collect and compile data from public resources
and experiments. For instance, GENT is a web-accessible database that provides
more than 40,000 gene expression samples across diverse human cancer and
normal tissues [149] and GXD is a resource for gene expression data particularly
focused on endogenous gene expression during mouse development [47]. Cancer
Cell Line Encyclopedia (CCLE) stores not only gene expression but also genomic
data for almost 1,000 human cancer cell lines [11]. Pharmacological profiles were
taken from around 500 cell lines after treatment with 24 anticancer drugs. Addi-
tionally, mutation and copy number variation data for all cell lines were obtained
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via massively parallel sequencing and proteomic as well as metabolic data will be
added in the near future. Recently, the cancer genome atlas (TCGA) has massively
generated data of cancer patient samples by genomic DNA copy numbers arrays,
DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing, and
reverse-phase protein arrays. The data of around 30 cancer types is provided on the
data portal to search, download, and analyze the data sets. Many recent high impact
studies using this data have significantly extended our knowledge about diverse
cancer types [22, 59, 89].

14.2.3 Proteomics Data

A more detailed view on cellular processes is provided by quantitative global
proteome measurements. Large-scale high-accuracy proteomics is considered as
powerful as other established omics technologies such as genomics and trans-
criptomics [33]. Nevertheless, it faces several limitations, such as the uncertainty
about the precise number of different human proteins. Due to the vast amount of
possibilities of post-transcriptional and post-translational modifications, the num-
ber of different proteins is thought to range from 20,000 to several millions [33].
However, the number of expressed proteins in a single cell is much smaller. A
recent large-scale proteome study identified around 10,000 different expressed
proteins in HeLa cell lines [114]. A further difficulty of quantitative proteomics
technologies is the wide range of protein abundances from a few per cell for
signaling proteins to millions for structural proteins [117, 126, 164].

Several technologies such as expression profiling based on antibodies, and mass
spectrometry for quantitative proteomics have been developed in the last decades
to enable the identification, quantification, and analysis of proteins in cells, tissues,
and biological fluids.

A technology for systematic analysis of cellular distributions and subcellular
localizations of proteins is based on the large-scale generation of specific protein
antibodies. Currently, over 15,500 antibodies, targeting proteins from more than
12,200 human genes (around 61% of the human protein-coding genes) are stored
in the public database Human Protein Atlas [160]. These antibodies were used on
tissue microarrays to examine the spatial distribution and the relative expression
values of proteins (categorized into four levels) in different cell populations of
various human tissues and cancer types [128]. Results are accessible over the web-
interface of the Human Protein Atlas.

High-resolution mass spectrometry-based proteomics technologies have been
rapidly developed in recent years such that the vast majority of proteomics studies
to date have used mass spectrometric techniques to identify and quantify proteins
in mixtures [117]. Three main mass spectrometry-based proteomic strategies,
shotgun or discovery, directed, and targeted strategies, have emerged [40]. These
can be distinguished by the detailed work-flow of a proteomics experiment and
their application.
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There are various resources and repositories for quantitative protein expression
data coming from high-throughput proteomics measurements. All of them have to
deal with the wide spectrum of technologies, applications, and experimental pro-
tocols, which hampers the establishment of easy-to-use databases. A proteomics
database example is PeptideAtlas, which is a publicly accessible database of pep-
tides identified in many tandem mass spectrometry proteomics studies [38]. Raw
data from mass spectrometry experiments are collected from the community,
processed through a consistent analysis pipeline with several established algo-
rithms, and made available together with additional information on PeptideAtlas.
However, not all data is publicly accessible and the expression values of the pep-
tides corresponding to a particular protein over various experiments are given only
as images.

Model Organism Protein Expression Database (MOPED) is another proteomics
data resource of publicly available studies in human and model organisms [90].
Over the web-interface users are able to access protein level expression data
together with meta-analysis results with standardized methods. MOPED also
supports the comparison of proteomics data and visualization of patterns of
expression values within and across sample sets.

A meta resource for absolute protein abundance levels is PaxDB [164]. Publicly
available experimental data from various tissues and organisms are reprocessed
and averaged over various samples, conditions, and cell types. Contributing data
sets are ranked based on a calculated score of consistency against externally
provided protein network information. The protein abundance values are expressed
in parts per million, i.e., each protein entity is enumerated relative to all other
protein molecules in the same sample. All data, including expression data and
functional information linked to other resources is accessible via the website.

14.2.4 Metabolomics and Metabonomics Data

Metabolites are small molecules acting as intermediates and products of the cel-
lular metabolism. Metabolite’s concentrations can directly be influenced by
changes of transcriptome, proteome, and interactome, e.g., due to responses to a
stimulus. Therefore, the metabolome provides an instantaneous snapshot of the
cellular state of the system under study. Metabolomics and metabonomics studies
seek to analyze and characterize the metabolome. Whereas metabolomics is a
comprehensive and quantitative analysis of all metabolites in a biological sample,
metabonomics focus on quantitative measurements of the dynamic metabolic
response of living systems to pathophysiological stimuli or genetic modification.
However, these terms are often used interchangeably [116].

Two main techniques, nuclear magnetic resonance (NMR) spectroscopy and
mass spectrometry (MS), exist to measure, analyze, and quantify the metabolome
of biological fluids, tissues, and cell extracts [39]. Both methods have been applied
to many multivariate metabolic profilings (e.g., [15, 26, 66, 145]). NMR
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spectroscopy has the advantage that the biological sample does not require any
physical or chemical treatment prior to the analysis, therefore, it does not destruct
the nature of the metabolites in the fluid. In contrast, in mass spectrometry studies,
the metabolites have to be separated from the biological fluid, typically by using
liquid or gas chromatography, in order to be analyzed [116]. However, mass
spectrometry technology is considered to be more sensitive than NMR.

Although a number of genomics, transcriptomics, and proteomics databases are
available until now, metabolomics databases being appropriate for systems biology
applications are still rare and limited. Most databases provide structural infor-
mation of metabolites but no quantitative data. However, the Human Metabolite
Database (HMDB) contains detailed information of about 8,000 metabolites
including chemical, clinical, and enzymatic data (linked to external databases, e.g.,
BioCyc, ChEBI, and KEGG, among others) as well as concentration data in
various human biofluids, such as urine, blood, or sweat [174]. A large collection of
metabolites and their quantification in multiple tissues in mice is covered by
Mouse Multiple Tissue Metabolome Database (MMMDB; [157]). Non-targeted
analyzes were performed and over 200 metabolites were successfully identified.
Users can upload normalized data to visualize them in parallel to other data in the
MMMDB.

14.2.5 Pathway Data

Besides experimental data, the development of models of biological systems
builds also on the basis of existing knowledge about molecular entities like genes,
enzymes, metabolites etc. as well as their interaction networks. This is usually
documented in the primary scientific literature, which is difficult to be used
directly for the development of models on a large scale and which is also very
costly and error-prone. In recent years also a lot of this information became
integrated in interaction and pathway databases. PathGuide is providing a com-
prehensive list of pathway databases [5]. It covers, e.g., lists of databases for
protein–protein interactions, metabolic, signaling, and gene regulatory networks as
well as other information on molecular interactions. This kind of data is an ideal
resource for the development of the topological structure of a model.

One of the earliest and most popular pathway database is KEGG, the Kyoto
Encyclopedia of Genes and Genomes [82, 83]. A detailed description of the usage
of the KEGG pathway database is given in Tanabe and Kanehisa [159]. KEGG
provides a broad spectrum of genomic data from multiple species and organisms
and it integrates comprehensive data on metabolic, signal transduction, and gene
regulatory processes and pathways. Pathways in KEGG are displayed as reference
maps that can be overlaid with species specific information of enzymes and genes.
Another comprehensive and well curated pathway database is Reactome. Reac-
tome is an online database of predominantly human biological processes [34, 106].
It provides a comprehensive description of mostly metabolic and signal
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transduction pathways and it is well annotated by reference literature. Besides
these databases on metabolic and signaling data, there are also databases providing
information on gene regulation such as Transfac and TRED [75, 108].

Furthermore, meta-databases can integrate different types of functional inter-
actions from heterogeneous interaction data resources. One of such meta-databases
is the ConsensusPathDB database that has currently integrated data of 31 different
pathway and interaction databases covering information about protein interactions,
signaling and metabolic reactions, gene regulations, drug-target interactions, and
pathway annotations [80, 81]. ConsensusPathDB provides methods to search for
components and pathways and to visualize individual sub-networks. Moreover,
ConsensusPathDB has methods for gene set and metabolite set over-representation
and enrichment analysis to identify, e.g., pathways, network neighborhood-based
entity sets (NESTs) or gene ontology (GO) categories based on a list of, e.g.,
differentially expressed genes or gene expression data. For instance, this is useful
to identify pathways or network modules that are relevant in a certain study hence
subject to modeling. Another collection of publicly available pathway data from
multiple organisms is Pathway Commons [25].

14.2.6 Quantitative Data for Kinetic Modeling

Important for the set up and development of quantitative models is also infor-
mation about appropriate abundances of molecules and enzyme properties, such as
enzyme-specific kinetic parameters or dissociation constants. One of the main
collections of enzyme function and property data is the BRENDA database inte-
grating manually extracted data from the primary literature [140]. Another
resource providing comprehensive information about biochemical reactions and
their kinetic properties is the SABIO-RK database [175]. The database integrates
kinetic parameters in relation to biochemical reactions and their biological sources.

14.3 Modeling Biological Systems

Modeling starts usually with a description of the relevant components and inter-
actions of the system under study. Different mathematical and algorithmic
approaches have been proposed for the description, modeling, and simulation of
molecular and cellular processes. As a first approximation, it can be described by a
Boolean network where the state of a component can be ‘‘on’’ (1) or ‘‘off’’ (0)
indicating whether the component is present or absent or active or inactive.
Interactions can be represented by Boolean functions calculating the state of the
components from the activity state of other components. The Boolean approach
has frequently been used for the description of gene regulatory and signaling
networks (e.g., [27, 46]). Latter and in particular metabolic networks are often
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modeled by ordinary differential equation (ODE) systems. Therefore, for a set of
reactions the concentration changes of a single component Si over time t is given
by the sum of in- and out-fluxes as follows:

d Si½ �
dt
¼
Xr

j¼1

nijvj with i ¼ 1; . . .;m;

where m is the number of components, nij the stoichiometric coefficient of the ith
component in the jth reaction, and vj the reaction rate of the jth reaction. Reaction
rates can be described, e.g., by mass action kinetics v ¼ k

Q
Sl½ � with l ¼ 1; . . .; p;

where [Sl] is the concentration of the lth substrate and k is a specific kinetic
constant, or by more complex kinetic laws such as the Michaelis–Menten equation.

The Boolean and the ODE approach are deterministic descriptions in which the
exact system dynamics can be predicted from the knowledge of the initial state. In
contrast to this a stochastic description gives a probability distribution for the
succeeding states. The stochastic approach is frequently used to model gene reg-
ulatory processes.

Petri nets are another widely used approach for the analysis of biochemical
systems. A Petri net is a graphical and mathematical modeling tool for concurrent
systems, in which several processes can occur at the same time. Basic elements of
a Petri net are places, shown as circles and representing objects (e.g., small
molecules or proteins), transitions, shown as bars and representing events (e.g., a
molecular reaction), and arcs connecting places with transitions and vice versa.
Places can hold tokens indicating the number of objects at a certain state and
transitions can fire depending on the number of tokens of the places of incoming
arcs leading to a state transition of the system. Many tools are available to explore
Petri nets. The Petri Nets World website (http://www.informatik.uni-hamburg.de/
TGI/PetriNets) is a good starting point for this. For a further introduction to
different modeling techniques we refer to other literature, such as [77, 88].

14.3.1 Standards for Systems Biology

The description of large and heterogeneous data types and subject areas, such as
experimental data of expression analysis or a graphical or mathematical model
requires standards with controlled vocabularies and semantics. Standards in life
sciences can be divided in three different categories, namely content standards
defining what should be stored for a particular data type or subject area, syntax
standards defining structures for formatting the information (e.g., the extensible
markup language, XML, that is frequently used), and semantics standards pro-
viding a unified common definition or vocabulary of the data type or subject area
[32]. Standards are also very important for the computational work, since software
tools usually require data in a well defined machine-readable format.
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Different standards have been developed for the definition and implementation
of mathematical models of molecular interaction networks in systems biology.
Most popular are the Systems Biology Markup Language (SBML) and the Cell
Markup Language (CellML) [71, 98]. Moreover, a standard for the exchange of
pathway data has been defined by BioPAX [37].

Furthermore, standards for the graphical representation of models has been
proposed. Traditionally molecular models of biological systems are described by
block-and-arrow diagrams. While useful for the description of hypotheses, such
diagrams often lack comprehensive definitions for the description of complex
interaction networks with types of interactions and interaction partners. In recent
years the systems biology graphical notation (SBGN) was developed [118]. It is a
standard graphical notation to foster the reuse of information of cellular interaction
networks and it defines comprehensive sets of symbols syntactic rules regarding
the construction of interaction maps. SBGN has been accepted as a general
notation standard and is used by several computational tools.

14.3.2 Model Databases

In recent years several databases collecting mathematical models of biochemical
and molecular processes have been developed. JWS Online is one of the first
repositories of kinetic models describing biochemical systems [121]. Besides
acting as a model resource, JWS also provides online methods for model simu-
lation and analysis via its website. Other comprehensive model collections are
BioModels and the CellML model repository providing models either as SBML or
CellML [95, 99, 119].

14.4 Tools for Data Analysis

The thorough analysis of omics data including data collection, processing, nor-
malization, exploration, selection, classification, and interpretation is essential for
the integration of such data into cellular network models. Many software tools,
ranging from large software packages to small and specialized tools, have been
developed to accomplish theses bioinformatic tasks. Table 14.2 summarizes sev-
eral tools for data analysis that are discussed in the following in more detail.

14.4.1 Topological Analysis

The representation of cellular networks, such as gene regulatory networks, signal
transduction networks, protein–protein interaction networks, or metabolic
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networks as graphs makes it possible to investigate the topology and function of
these networks using graph-theoretical topological measures. These measures are
used to characterize and classify biological networks and to identify certain

Table 14.2 General purpose and bioinformatics tools for data analysis and modeling in systems
biology

Name Web-link Short description

Analysis tools
Bioconductor http://www.bioconductor.org/ R packages for bioinformatics
Biopython http://biopython.org/ Python package for biological

computation
SciPy http://www.scipy.org/ Python package for scientific

computing
Matplotlib http://matplotlib.sourceforge.net/ Python graph library
MATLAB http://www.mathworks.com/

products/matlab/
Programming environment

SystemsBiologyToolbox http://www.sbtoolbox.org/ Matlab package for systems
biology

COBRA http://opencobra.sourceforge.net/ Matlab package for constraint-
based modeling

ManLab http://manlab.lma.cnrs-mrs.fr/ Matlab package for bifurcation
analysis

SensSB http://www.iim.csic.es/*gingproc/
SensSB.html

Matlab package for sensitivity
analysis

CellNetAnalyzer http://www.mpi-
magdeburg.mpg.de/projects/
cna/cna.html

Matlab package for structural
and functional analysis

DBSolve http://insysbio.ru/en/soft/
dbsolveoptimum.html

Model analysis

WebCell http://www.webcell.org/ Model analysis
BioMet http://www.sysbio.se/BioMet/ Model analysis
J-Express http://jexpress.bioinfo.no/site/ Gene expression data analysis
GEDAS http://sourceforge.net/projects/

gedas/
Microarry data analysis

GenePattern https://
genepattern.genome.duke.edu/

Analysis platform

Expander https://
genepattern.genome.duke.edu/

Gene expression data analysis

BioMart http://www.biomart.org/ Data service
Cytoscape http://www.cytoscape.org/ Data visualization
Simulation tools
CellDesigner http://www.celldesigner.org/ Modeling and simulation
PyBioS http://pybios.molgen.mpg.de/ Modeling and simulation
Copasi http://www.copasi.org Modeling and simulation
Petri nets world http://www.informatik.uni-

hamburg.de/TGI/PetriNets/
Modeling and simulation

overview
SBML software guide http://sbml.org/

SBML_Software_Guide
Modeling and simulation

overview
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universal laws governed by networks or subnetworks with similar cellular func-
tions [2, 68, 139, 177, 178, 182].

The exact graphical representation of a cellular network depends on the type of
network, e.g., protein–protein interaction, signaling, gene regulatory, or metabolic
network [100]. Protein–protein interaction networks are modeled as undirected
graphs, where the nodes are proteins and two nodes are connected by an undirected
edge if the corresponding proteins physically interact. In contrast, signaling net-
works are often represented as directed graphs with nodes corresponding to
molecules and directed links representing activation or inhibition of another
molecule’s activity. Similar to signaling networks, gene regulatory networks are
commonly represented as directed graphs. A node within such a graph represents a
gene and its coded protein simultaneously. A directed link between two nodes
indicates a regulatory interaction of the source node protein on the transcription of
the target node gene. Furthermore, bipartite graphs are used to represent metabolic
networks, whose two types of nodes are metabolites/enzymes and reactions, and
two types of edges are representing mass flow and catalytic regulations, respec-
tively. Mass flow edges connect substrates to reactions and reactions to products,
whereas regulatory edges correspond to catalytic regulation of the connected
reaction by an enzyme node.

Given a network topology, several local and global structural properties can be
calculated to characterize the network [10, 101]. Local properties include in- and
out-degree, closeness centrality [136], betweenness centrality [50], and clustering
coefficient [167]. Global topological characteristics of networks include degree
distributions, clustering coefficient distribution, characteristic path length, averaged
clustering coefficient, and network diameter (Fig. 14.2). These topological mea-
sures can be used to capture cellular network organization, providing new insights
into function, stability, dynamic behavior, and evolution. For instance, compared to
random networks most biological networks are identified as scale-free (power law
degree distribution), small-world (small characteristic length), and hierarchical
(high average clustering coefficient and scale-free clustering distribution). Typi-
cally, for real world networks the degree exponent of the power law degree dis-
tribution ranges between two and three, the characteristic length is proportional to
the logarithm of the network size, and the degree exponent of the power law
clustering coefficient distribution is around one [10]. Networks with such topology,
e.g., protein–protein interaction and gene regulatory networks, capture specific
features, such as complexity, stability, robustness against perturbations, and mod-
ularity, i.e., occurrence of subnetworks with specific cellular functions [10].
However, considering only the topology has limitations in explaining the entire
functional or dynamical behavior of biological networks [7, 74, 179].

Several global analyses of transcriptional regulatory networks in various
organisms revealed that small network motifs, i.e., subnetworks with defined
characteristics, occur more often in gene regulatory networks than expected by
chance [148, 111, 94, 103, 120, 17]. Some motifs show certain dynamical char-
acteristics, e.g., single-input motifs control temporal order of expression [180],
feedback loops directly affect robustness [85, 86] and fragility [92], and feed-
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forward loops provide temporal control, dynamical stability, and signal amplifi-
cation [103].

Several tools have been developed to calculate various topological measures for
a given network structure. For instance, Cytoscape [146, 152] enables the visu-
alization and analyses of complex networks. Its features are extended by several
plugins, for instance, NetworkAnalyzer which computes and visualizes several
topological parameters including some of the measures mentioned above [4].
Many stand-alone and web-based tools support visualization even of large net-
works (see [52] for a comprehensive overview of tools). Some of them integrate
advanced network analysis functions, such as VisANT which is a web-based
application [69] and GraphCrunch 2 which compares properties with random
networks [91]. Programming languages can be extended by specialized libraries,
such as igraph for Python and R [35], graph-tool for Python, and Boost Graph
Library for C++ [151 ] which support the development of simple as well as
complex network analysis algorithms.

14.4.2 Flux-Balance Analysis

An analysis approach for metabolic systems is flux-balance analysis (FBA). It is a
mathematical approach to optimize the fluxes of the metabolic system under a
number of constraints, such as steady state or homeostasis assumption, thermo-
dynamic consistency, or limitations of certain enzyme reactions. Together with
one or more of such constraints, an objective function, e.g., ATP production,
nutrient uptake, or total biomass, will be maximized with respect to the flux
distribution. FBA does not require metabolite concentrations or enzyme kinetics of
the systems for optimization, but it assumes a steady state or homeostasis and it
makes use of the stoichiometic matrix of the system (see [84] for a brief history
and [93, 123, 133] for more details about FBA). FBA has been applied in many
metabolic studies, for instance in order to accurately predict in silico the growth

Fig. 14.2 Local and global topological measures. Local measure values are given for the
example network from the left panel. See Albert and Barabasi [3, 10, 102] for further details
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rates of Escherichia coli under different culture conditions [44], to characterize the
optimal flux distributions for maximal ATP production in the mitochondrion [132],
or to predict the metabolic steady state and overall lethality after gene knockouts
[150].

14.4.3 Sensitivity Analysis

Sensitivity analysis of a biochemical network reveals the behavior of the system,
e.g., the steady state or frequency of an oscillation, against various parameter
changes [137]. For instance, robustness and fragility of a system, i.e., stability
against various parameter perturbations, can be investigated given the model as an
ODE system. Usually, the equations are linearly approximated around a fixed point
in the parameter space (local sensitivity analysis). Therefore, only small changes
around that point are considered. In contrast to local sensitivity analysis, global
sensitivity analysis addresses the system’s behavior over a wide range of param-
eter values using statistical models [138]. To capture the dynamical behavior after
parameter perturbations a time-varying sensitivity analysis has to be carried out
[125, 176].

14.4.4 Metabolic Control Analysis

A classical approach for sensitivity analysis is metabolic control analysis (MCA)
[62, 79]. It is a powerful quantitative and qualitative framework for understanding
the relationship between steady state properties of a biochemical network and
component’s concentrations, reaction’s fluxes, or model parameters. In contrast to
FBA, MCA utilizes not only the stoichiometic matrix but also the detailed kinetic
description of the reactions. In order to quantify its behavior, the system is line-
arized at a fixed point and only small changes are considered. MCA is widely
applied in the regulation of metabolic systems, e.g., see [112, 172].

MCA distinguishes several coefficients, namely elasticity, control, and response
coefficients, to reflect and quantify local and global effects of changes and per-
turbations on network properties, e.g., steady state concentrations or reaction
fluxes. The elasticity coefficients are local coefficients to quantify the local sen-
sitivity of a reaction rate to changes of a component’s concentration or a model
parameter, such as enzyme concentration. Other parameters and concentrations in
the network are kept fixed. Elasticity coefficients can be calculated in any given
state of the system, even in a non-steady state. In contrast, control coefficients and
response coefficients are global measures and require a steady state of the entire
system. Flux and concentration control coefficients measure the changes of the
system’s fluxes and concentrations, respectively, in response to a perturbation of a
parameter and, hence, a small change of an individual reaction rate. The response
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coefficient describes the direct dependence of steady state variables on model
parameters. Please consult textbooks, such as Klipp et al. [88] for more details.

14.4.5 Bifurcation Analysis

Dynamical systems can show different types of qualitative behavior, such as
oscillation or equilibrium, under different parameter values. Transitions between
such states, i.e., bifurcations, are studied within bifurcation analysis given the
ordinary differential equation system of the model. Critical parameter values
where bifurcations occur are identified and help to predict systems behavior under
parameter perturbations [16, 28, 63].

Various software tools support model analysis by providing implementations of
one or more of the above mentioned methods. For instance MATLAB is widely
used in the community due to its rich analysis functionalities and expandability by
specialized toolboxes, such as Systems Biology Toolbox (multitude of functions/
methods for analysis and simulation of biological and biochemical systems) [142],
COBRA (scripts for constraint-based modeling, including FBA), ManLab (sta-
bility and bifurcation analysis), SensSB (local and global sensitivity analysis
methods) [135], and CellNetAnalyzer (structural and functional analysis of bio-
chemical networks) [87]. Moreover, several stand-alone or web-based tools are
available for model analysis, for instance DBSolve (development and analysis of
kinetic models as well as parameter estimation with experimental data) [55],
WebCell (web-based and SBML compliant simulation environment which pro-
vides analysis techniques, such as MCA), and BioMet Toolbox (web-based
resource for stoichiometric analysis and data integration) [36]. Software tools for
the modeling and simulation of cellular systems, such as PyBioS [88, 171] and
Copasi [67], also often provide powerful collections of tools and algorithms for
structural and functional model analysis.

14.4.6 General Purpose Software Packages for Data
Analysis

The statistical software package R provides a wide variety of statistical (linear and
nonlinear modeling, classical statistical tests, time-series analysis, classification,
clustering, and many more) and graphical techniques [131]. R is also a pro-
gramming language and is extensible through self written functions or a multitude
of user-submitted software packages for specific tasks. There are currently almost
4,000 packages available in the R package repository. More R packages appro-
priate for biological data analyses are provided for instance by the Bioconductor
project [53]. It is an open source software for bioinformatics and provides a variety
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of R packages for the analysis and comprehension of high-throughput genomic
data.

Another large software suite is MATLAB. It is a programming environment for
algorithm development, data analysis, visualization, and numerical computation. It
is used, e.g., in systems biology for mathematical analysis and modeling. MAT-
LAB can be extended by toolboxes, such as Bioinformatics or SimBiology
Toolbox to provide algorithms and visualization techniques for next generation
sequencing, microarray, and mass spectrometry data analysis and visualization.

Programming languages, such as Python, Perl, and C++, are often used for the
development of data analysis functions and tools. For instance, Python together
with packages such as Biopython [31], SciPy [76], Pandas, and Matplotlib [73] is
commonly used in bioinformatics for instance for data management, statistical
data analysis, and graphical visualization.

Besides these large software suites, many specialized tools are widely used in
the context of biological data analysis. Some examples are J-Express (a java
application with a free of charge license to explore gene expression data equipped
with a user-friendly interface) [42] and GEDAS (a gene expression data analysis
suite which integrates standardized tools and techniques, such as hierarchical
clustering, k-means, SVM, and PCA in one system) [129]. GenePattern is a
powerful genomic analysis platform that provides via a web-based interface more
than 150 tools for a wide range of studies, including gene expression analysis,
pathway analysis, RNA-seq analysis, and data processing tasks [134]. Data tables
can be uploaded or retrieved from several data resources and multi-step data
analyses are performed on GenePattern’s computer cluster. Expander is also a
software tool for analysis and visualization of gene expression data [147]. Net-
work-based analyses of such data has been integrated.

Not only comparative genomics but also systems biology requires a consistent
handling and annotation of data from different databases and experiments [6]. An
accurate mapping between different experimental platforms is crucial for a com-
prehensive biological interpretation and integration of such data [8]. For instance,
BioMart has been developed to make data available over a single interface [58]. It
links currently more than 40 databases; among them are Ensembl [48], HGNC
[144], Reactome [107], and COSMIC [49]. BioMart enables users to perform
advanced querying of biological data sources through biomaRt [41], an R package,
or a web-interface.

14.4.7 Data Visualization

Another important aspect in systems biology is data visualization. Besides the
generation of standard diagrams as provided by spreadsheet or general purpose
software, also the visualization of omics data on the top of network graphs is
important for data interpretation and significantly important in systems biology
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[52]. Several specialized software tools for this purpose have been developed, such
as Cytoscape [146, 152], VANTED [78], VisANT [68], and NAViGaTOR [19].

Cytoscape is a stand-alone application that allows the visualization of diverse
types of attribute data on the nodes and edges of a biological network. This
mapping of data to visual attributes allows to study multiple types of data in a
network context. Moreover, a large number of different plugins allows the user to
extend Cytoscape with additional functionalities such as network query and
download services, additional network layout algorithms, Gene Ontology (GO)
enrichment analysis, or network motif and functional module detection. Cline et al.
[29] describe how to obtain gene and protein networks, displaying networks using
different network layout algorithms, integrating gene expression or other func-
tional attributes, identifying putative complexes of functional modules or enriched
GO annotations within a network.

14.4.8 Reverse Engineering

Data-driven approaches that elucidate network structures from experimental
(temporal) observations are classified as reverse engineering approaches. They aim
to reveal interactions between cellular entities from high throughput data all at
once rather than one interaction at time. To tackle this problem regarding gene
regulatory networks, a battery of reverse engineering methods has been developed
based on different mathematical approaches [9, 20, 56, 60, 61, 77, 115, 153, 168].
These methods are adapted to different problem domains, such as perturbation and
time series analyzes, and have to cope with several difficulties, such as small size,
noisy, and incomplete data. The underlying models of each approach are of
varying level of detail. They are static or dynamic, continuous or discrete, linear or
nonlinear, deterministic or stochastic. Furthermore, they can differ in the infor-
mation they provide and, thus, have to be interpreted differently. Some methods
result in correlation measures (e.g., relevance networks), some calculate condi-
tional independencies (e.g., Bayesian networks), and others infer regulation
strengths (e.g., ODE models).

Reverse engineering approaches usually use data from high-throughput gene
expression measurements to infer network structures of transcriptional regulation.
However, several recent studies have integrated heterogeneous data, such as gene
and protein expression data, protein–protein interaction data, and DNA–protein
binding data, to identify regulatory interactions. For instance, Belcastro et al. [13]
collected heterogeneous data from human and mouse samples to identify both
functional and physical interactions among genes; Zhao et al. [181] determined
posterior probabilities for all gene-pair interactions based on chromatin immu-
noprecipitation data and utilized this additional information in combination with
gene expression data in gene network reconstruction; Wang and Chen [165]
integrated different kinds of omics data and reconstructed a cellular network of
S. cerevisiae based on coupling dynamic models; and Bauer et al. [12] employed
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support vector machines trained on known interactions from public databases in
order to predict (unknown) regulatory interactions.

Almost every reverse engineering application is adapted and specialized in a
certain problem domain and often is not suitable for other applications. Further-
more, a well-performing method might be a result of over-fitting to the test data.
Application parameters have to be chosen accurately in order to obtain best
learning results. Therefore, a significant amount of time is required not only for
data collection and processing but also for adjustment of application parameters.
Hence, simple-to-use software tools are rare. A few of them are ARACNE [106],
GeneNet [122], and qp-graph [24], among others.

Besides the algorithmic developments, the actual assessment of methods per-
formance remains a challenge, primarily due to the lack of experimental bench-
mark data (gold-standards), with only a few exceptions, e.g., Cantone et al. [23]
built a five genes yeast synthetic network and measured time series and steady
state expression data after multiple perturbations. Therefore, simulated data is
often used to perform systematic validations showing strength and weaknesses of
the individual methods [21, 57].

Several reverse engineering comparison studies have revealed that there is no
definitive best-performing method or approach over various problem domains
[104, 115]. To foster a concerted effort to address a critical and independent
performance assessment of reverse engineering methods the Dialogue on Reverse
Engineering Assessment and Methods (DREAM) project has been initiated [130,
155, 156]. Within this project the performances of multitude of reverse engi-
neering methods developed by participating teams are rigorously assessed in an
annual community challenge. This challenge, based on anonymized in silico and
real gene expression data, evaluates the submitted network predictions by several
statistical measures. The results revealed that the majority of predictions were
equivalent to random and that even the best performing methods show weaknesses
[105]. However, it was shown that combining the predictions of all methods
improves in some cases predictive power beyond that of any single method. Even
if not best-performing the community prediction still ranked under the best
methods. Moreover, the community prediction is also robust to inclusion of
methods with low performance. It seems that the methods complement each other
and compensate their weaknesses [104].

14.5 Tools for Modeling and Simulation

Several tools for the design, simulation, and analysis of mathematical models of
biological systems have been developed. CellDesigner is one of the most popular
specialized stand-alone tool for systems biology [51]. It is a free and easy-to-use
application implemented in Java and hence running on all major operating sys-
tems. As a native model format it uses SBML and supports SBGN for model
visualization. The graphical user interface of CellDesigner has a comprehensive
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collection of predefined node icons such as nodes for genes, proteins, receptors etc.
and edge types for the definition of reactions that can be used for the design of a
model in the main window. It provides also several icons for special reaction types
such as transport, catalysis, inhibition, and activation. For reaction definition
CellDesigner allows entering arbitrary kinetic equations. Simulations in CellDe-
signer can be performed using its integrated simulation engine. CellDesigner is a
very user-friendly software with a good set-up for model development and
simulation.

Another platform-independent and user-friendly software for modeling is
COPASI [67] the successor of Gepasi [109, 110]. COPASI offers rich function-
alities for model simulation and analysis and it provides methods for stochastic and
deterministic simulation. It supports the computation of steady states, the analysis
of the stoichiometry of a model, e.g., for the computation of elementary modes
[143], metabolic flux analysis and methods for parameter estimation and
optimization.

Besides stand-alone tools, like CellDesigner and Copasi, there exist also several
web-based tools for modeling and simulation. Web-based tools are easily

Fig. 14.3 (a) PyBioS (http://pybios.molgen.mpg.de) acts as a repository for mathematical
models of biological systems. Different tabs of the web interface provide functions for model
design, simulation, analysis, and visualization (b)
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accessible via the web browser without any previous installation. One web-based
tool tailored for modeling and simulation is PyBioS (Fig. 14.3). PyBioS is
designed for modeling and simulation of cellular and biochemical systems [88,
171 ]. It offers a high level of automation in model design integrating a number of
public interaction resources via ConsensusPathDB [81], an integrated resource of
human and mouse interaction information. Models can be simulated as deter-
ministic ordinary differential equation systems (ODEs) and as Petri nets. Simu-
lation results can be visualized and explored in the context of the network
interaction graph. Moreover, PyBioS provides functions for network and sensi-
tivity analysis. PyBioS is an SBML-compliant application, supports direct import
of models from BioModels and keeps track of model annotation using Ensembl,
UniProt and ChEBI as component references.

Ghosh et al. [54] give a comprehensive overview of multiple software tools and
integrated platforms for systems biology ranging from tools for data management
and analysis and data-driven network-inference to tools for physiological
modeling.
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Chapter 15
Agent-Based Modeling Approaches
to Multi-Scale Systems Biology:
An Example Agent-Based Model
of Acute Pulmonary Inflammation

Gary An, Michael Wandling and Scott Christley

Abstract Implicit in systems biology is the concept that the whole is greater than
the sum of its parts. Agent-based modeling, an object-oriented, discrete event,
population-based computational modeling method, is well suited to meeting this
goal. By viewing systems as aggregates of populations of interacting components,
agent-based models (ABMs) map well to biological conceptual models and present
an intuitive means by which biomedical researchers can represent their knowledge
in a dynamic computational form. ABMs are particularly suited for representing
the behaviour of populations of cells (i.e. ‘‘cell-as-agents’’), but ABMs have also
been used to model molecular interactions, particularly when spatial and structural
properties are involved. Presented herein are a series of ABMs of biomedical
systems that cross multiple scales of biological organization, as well as a detailed
description of an example ABM of acute pulmonary inflammation. Because of
these characteristics agent-based modeling is a useful addition to the suite of
equation-based mathematical modeling methods found in systems biology, and can
serve as an integrating framework for dynamic knowledge representation of
biological systems.
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Abbreviations

ABM Agent-Based Modeling
ABMF Agent-Based Modeling Format
AI Artificial Intelligence
ALI Acute Lung Injury
APIABM Acute Pulmonary Injury Agent-Based Model
ARDS Acute Respiratory Distress Syndrome
CMA Computational Modeling Assistant
DAMP Damage-Associated Molecular Products
EINISI Enteric Immunity Simulator
I-jB I-kappa-B
NCBO National Center for Biomedical Ontology
NEC Necrotizing enterocolitis
NF-jB Nuclear Factor kappa-B
ODD Overview, Design and Detail Protocol
ODE Ordinary differential equation
PMN Polymorphonuclear neutrophils
TGF-b1 Transforming growth factor-b1
TNF-a Tumor necrosis factor-a
VILI Ventilator Induced Lung Injury

15.1 The Translational Dilemma in Biomedical Research

The greatest challenge facing the biomedical research community is the ability to
translate the successes at obtaining basic mechanistic knowledge about biological
processes into clinically effective therapeutics. There is a growing gap between the
capability to acquire and analyze data and the ability to effectively and efficiently
evaluate the hypotheses generated from that data. This is the Translational
Dilemma. Recognition of this gap was made evident in 2004 when the United
States Food and Drug Administration released a white paper titled: ‘‘Innovation or
Stagnation: Pathways for the Future of Biomedical Research’’ [1]. This report
noted that while there has been steady increase in funding for basic biomedical
research there has been a concurrent steady decrease in the number of new clin-
ically effective therapeutics brought to the bedside. These divergent trends are not
sustainable. A recent review analyzed the roots of the Translational Dilemma and
defined it as: the inability to efficiently translate data into viable mechanistic
hypotheses across levels of biological organization, and limitations in the ability
to test those hypotheses in a meaningful and efficient way (see Fig. 15.1) [2].
Currently, biomedical research faces two fundamental limits to its goal of being
able to develop new interventions that can beneficially affect human health:
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(1) achieving the breadth of hypothesis testing necessary to deal with the multi-
plicity of possible explanations of high-resolution data (throughput problem) and
(2) adequately representing the complexity of integrative hypotheses (multi-scale
problem). Both of these issues are directly related to the need to greatly increase
the ability to evaluate the plausibility of mechanistic hypotheses, and will almost
certainly involve using computational modeling and simulation for dynamic
knowledge representation and hypothesis instantiation. The ability to execute in
silico experiments offers the potential to substantially accelerate and enhance the
Scientific Cycle by providing a plausibility filter for putative hypotheses to help
direct traditional experimental design to separate sets of plausible hypotheses and
provide a wider search capability for plausible solutions. This chapter will discuss
the use of agent-based modeling (also known as individual based modeling), for
dynamic knowledge representation, and provide specific examples in the area of
acute inflammation.

Fig. 15.1 The current imbalance in the scientific cycle. Technological advances in the past few
decades have greatly increased the ability to generate, collect and correlate data, but a process
bottleneck has developed at the point of being able to evaluate hypotheses via experiment. This
bottleneck restricts the ability of the biomedical research community to efficiently and
systematically reduce the space of possible hypotheses to those that are plausible. Augmenting
this iterative cycle will identify those hypotheses that will be targeted for further investigation
and refinement, and serve as potential points of therapeutic control. Reprinted with permission
from Ref. [2]
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15.2 Dynamic Knowledge Representation
with Agent-Based Modeling

Agent-based modeling is an object-oriented, discrete-event, rule-based computa-
tional modeling method [3–7]. An agent-based model (ABM) represents a system
as populations of components where the simulation agent level of the ABM cor-
responds to the primary component of the system being studied. An ABM agent
class is defined by specific properties governing its identity and behavior, and an
ABM creates a population of individual computational instances of each agent-
class. Each individual agent therefore possesses the behavioral rule sets and
defined properties of its agent class, but once created can have diverging behav-
ioral trajectories based on differing inputs within a heterogeneous simulation
environment. ABM rules are often expressed as conditional statements (‘‘if-then’’
statements), making ABM suited to expressing the hypotheses that are generated
from basic science research, though it should be noted that the general conditional
nature of simulation agent rules does not preclude the encapsulation of other types
of mathematical or computational models (i.e. differential equation, stochastic or
network) as rule systems [8–10]. Regardless of the specific ABM rules, ABMs
offer the ability to achieve a close mapping between the natural language
expression of hypotheses present in publications (the current means by which this
knowledge is communicated within the community), and the structure of ABM
[11, 12]. This property facilitates the use of agent-based modeling as a means of
dynamic knowledge representation, particularly for non-mathematicians/compu-
tational scientists. ABMs are also intrinsically multi-scale, utilizing behavioral
rules (Scale #1) to determine individual agent behavior (Scale #2) and then
aggregating individuals into population dynamics of the global system (Scale #3).
These levels can theoretically be nested, to provide a comprehensive depiction of a
multi-scale biological system (see Fig. 15.2), making ABMs well suited for cre-
ating modular models [7, 8, 13–15].

15.2.1 Properties of Agent-Based Models

ABMs are related to other spatially discrete modeling methods, most notably
cellular automata, though the mobile capability ABM agents and ability to rep-
resent a wider range of model topologies could lead to consideration of cellular
automata as a special type of ABM. Similarly, neural nets can be considered
ABMs, with the nodes representing instances of an agent class, and the network
structure being the model topology. However, in practice, many ABMs have
several characteristics of agent-based modeling that set it apart from other object-
oriented, rule-based modeling systems (such as Petri nets, Boolean or Bayesian
Networks), even though at its purest definition, they could all be potentially
viewed as ABMs:
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1. Agent-based models (ABMs) readily incorporate space. In an ABM agent
behavior is driven by interactions determined by agent neighborhoods defining
the communication and interaction network for each agent. An agent neigh-
borhood can be represented as a two-dimensional square grid (very common), a
3-dimensional cubic space [8, 13], 2- or 3-dimensional hexagon cal space
[12, 16] or as a network topology, as a neighborhood does not necessarily mean
physical proximity but rather the configuration of some set of other agents with
whom an agent can interact. This definition of an agent neighborhood is con-
sistent with the bounded nature of the sense-and-respond and message passing
capabilities of biological objects.

2. ABMs utilize parallelism. In general, each ABM agent class has multiple
computational instantiations that form a population of agents, each capable of
having different behavioral trajectories. These heterogeneous behaviors pro-
duce population dynamics that are the observable, system-level output of the
ABM. A classic example of this phenomenon is the behavior of flocks of birds,

Fig. 15.2 The mapping between scales of biological organization, research community structure
and agent-based models. This diagram maps the similar structure of organizational scales present
in biological systems, the research communities studying them and the architecture of an ABM.
Note that scales of organization are nested in the biological system and the ABM, reflecting the
trans-scale coupling seen in both systems. Alternatively, the research community structure is
disparate and compartmentalized, arising from both social and pragmatic logistical factors.
Reprinted with permission from Ref. [12]
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in which simulations utilizing relatively simple interaction rules among birds
can lead to sophisticated flocking patterns without an overall controller [17].

3. ABMs incorporate stochasticity. Many biological systems have behaviors that
appear to be random [18, 19]. Probabilities of a particular behavior can be
determined for the population as a whole, and used to generate a probability
function for the behavior of a single agent that is then incorporated into the
agent’s rules. As a population of agents executes their rules during the course of
a simulation, each agent follows a particular behavioral trajectory as its
behavior rules’ probabilities are resolved as the simulation progresses. A set of
behavioral outputs is thusly generated from a single ABM, producing system
behavioral state spaces representing the set of population-level biological
observations.

4. ABMs are modular. Agents represent a modular level into which new infor-
mation can be added either through the introduction of new agent-types or by
the modification of existing agent rules without having to re-engineer the entire
simulation. Agent classes representing generic cell types can be subdivided and
expanded to include a finer degree of detail with respect to sub-categories of
cells while the remainder of the ABM remains essentially intact. New media-
tors can be similarly added by creating new cellular-state or environmental
variables and rules. Multiple ABMs can be aggregated, providing that their
points of contact and interaction are consistent across the incorporated ABMs
[12, 13].

5. ABMs produce emergent properties. A central hallmark of ABM is that they
generate system-level behaviors that could not have been reasonably inferred
from, and often may be counter-intuitive to, examination of the rules of the
agents alone. This is our definition of emergent behavior. ABMs are able to
generate this type of behavior due to the locally constrained and stochastic
nature of agent rules, and the population effects of their aggregated interactions.
For example, in the bird flock an initial observation would suggest an overall
leader, thereby requiring a means of determining rules for flock-wide command
and control communication. This, however, is not the actual case; birds func-
tion on a series of locally-constrained, neighborhood-defined interaction rules,
and the flocking behavior emerges from the aggregate of these interactions [17].
The capacity to generate non-intuitive behavior is a vital advantage of using
ABM for conceptual model verification, as often the translation of generative
mechanisms to system-level behavior produces paradoxical and un-anticipated
results that break a conceptual model.

6. ABMs can be readily constructed using incomplete and abstracted knowledge.
When constructing an ABM it is advantageous at the outset to keep the rules as
simple and verifiable as possible, even at the expense of some detail. As such,
meta-analyses of existing basic research often guide the development of an
ABM [20]. ABMs constructed with admittedly incomplete and uncertain
mechanisms representing statements of hypotheses can provide qualitative
verification of those hypotheses [21]. As with all computational models, the
greater fidelity of mapping between the ABM and its biological counterparts
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enhances the correlation between simulation results and the real-world
behaviors. An iterative process of refinement of an ABM will lead to increased
detail, possibly a stronger correlation to real-world data and a greater confi-
dence in the ability of the ABM to describe observable phenomena.

Agent-based modeling is an integrative modeling framework that can readily be
used for communicable dynamic knowledge representation [11–13, 22] (see
Fig. 15.2). Agent-based modeling, because of its emphasis on ‘‘things doing
things’’, is generally more intuitive for non-mathematicians/computer scientists
than more formal mathematical modeling methods such as ordinary differential
equations, partial differential equations, and their stochastic variants. Agent-based
modeling presents a lower threshold barrier for researchers to ‘‘bring to life’’ their
conceptual models and integrate in silico methods with traditional in vitro and
in vivo experiments [22].

Since ABMs are knowledge-based models, constructed by instantiating bottom-
up mechanisms (as opposed to inductive models, where mechanisms are inferred
with the goal of explaining data), agent-based modeling addresses different
modeling questions than equation-based inductive models. For instance, ABMs are
not readily developed directly from a mass of raw data; they require that the
modeler have a mechanistic hypothesis that, when instantiated in an ABM, can be
used to generate simulated data, which can then be compared to the real-world data
set. One can envision an iterative process by which inductive models are applied to
large data sets, wet lab experiments are carried out to investigate the mechanisms
inferred from the inductive model, and the experimentally confirmed mechanisms
are used as a basis of an ABM which would close the discovery loop by reca-
pitulating the original data set.

Agent-based modeling was pioneered in the areas of ecology, social science and
economics, but in the last decade they have been used to in the biomedical arena to
study sepsis [12, 13, 23, 24] cancer [8, 16, 25–27] cellular trafficking [28–32]
wound healing [33–35] and intracellular processes and signaling [9, 36–42]. Many
biomedical ABMs focus on cells as the primary simulation agent level (with the
notable exceptions of modeling intracellular processes from Refs. [9, 36–42]
above). From a knowledge translation standpoint, cells form an easily identifiable
level of ‘‘encapsulated complexity’’ that is both highly studied as a unit (i.e.
cellular biology) and can be addressed with relatively straightforward input-output
rules [7]. As noted above, while ABM agent rules are often logical or algebraic
statements, rules can be a mathematical model in itself. There are multiple
examples of embedding complex mathematical models within a cell-level ABM
agent [7–10, 15, 35, 43]. These examples emphasize the potential unifying role of
agent-based modeling as a means of ‘‘wrapping’’ different simulation methodol-
ogies. This suggests that the meta-structure of an ABM can be used as a template
into which structured biomedical knowledge can be integrated to facilitate the
instantiation of multiple mechanistic hypotheses [44].
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15.2.2 Tools for Agent-Based Modeling

Agent-based modeling environments require addressing certain software issues
beyond the basic capabilities of more traditional object-oriented programming
tools. These issues include emulating parallel processing to represent the actions of
multiple agents within populations, dealing with associated execution concurrency
issues within those populations, establishing means of defining model topology (i.e.
agent interaction neighborhood), and the development of task schedulers to account
for the multiple iterations that constitute an ABM run. As a result of these issues,
along with the case that many researchers who utilize ABMs are not trained
computer scientists or programmers, many biomedical ABMs are created using
existing ABM development software packages. These agent-based modeling
environments attempt to strike a balance between representational capacity, com-
putational efficiency, and user-friendliness. A non-comprehensive list of such ABM
toolkits includes Swarm (http://www.swarm.org/index.php/Swarm_main_page),
Mason (http://cs.gmu.edu/*eclab/projects/mason/), RePast (http://repast.source
forge.net/), NetLogo (http://ccl.northwestern.edu/netlogo/), StarLogo (http://
education.mit.edu/starlogo/) and SPARK (Simple Platform for Agent-based Rep-
resentation of Knowledge www.pitt.edu/*cirm/spark [45]). All these platforms
represent some trade-off among the triad of goals mentioned above. For an
excellent review and comparison of many of these agent-based modeling toolkits,
see Ref. [46].

15.2.3 Agent-Based Modeling of Inflammation

The use of agent-based modeling has dramatically increased since the year 2000,
and is now a generally accepted means of performing computational biology. As is
the case when discussing any specific modeling method, it should be reemphasized
that agent-based modeling is only one of an array of methods that can be used to
represent and investigate biological systems (such as those covered in other
chapters in this book). Each of these modeling techniques has its strengths and
weaknesses, and potential modelers need to recognize that the modeling method
chosen should be tailored to the question(s) being asked of the model [47]. One of
the most effective ways of communicating the capabilities (and limitations) of a
particular modeling method is through the use of examples. Towards this end, the
following sections list a series of ABMs of different aspects of inflammation,
followed by a more detailed description of the development and use of an ABM
directed at a specific issue, that of acute pulmonary inflammation.

We focus on ABMs of the inflammatory response because inflammation is one
of the most basic and ubiquitous processes in biology: in addition to growth,
metabolism and replication, the response to injury leading into repair is a core
function of all organisms. It is highly evolutionarily conserved, and in multi-
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cellular organisms is a well-coordinated network consisting of specialized cell
types and molecular mediators [47, 48]. The inflammatory response can be
described simply as: (1) Sensing of damage or threat, (2) Containment and
clearance of the threat, and (3) Repair of the damaged tissue. Intrinsic to all of
these steps are counter-regulatory controls intended to limit and modulate the
response. Evolution has operated on the components of the inflammatory response
to produce systems that are robust over a wide range of heterogeneous insults, with
trade offs on the efficacy of the pro-inflammatory response versus the negative
consequences of an overly sensitive and exuberant response. While this balance
generally operates well it is subject to disordered behaviour with significant
consequences on the development of disease. Diseases such as sepsis, trauma,
inflammatory bowel diseases, chronic wounds, autoimmune diseases and asthma
are the direct result of disordered and inappropriate inflammation, while many
other diseases, such as cancer, diabetes, atherosclerosis, Alzheimer’s, and obesity
are associated with inflammatory processes as either a generative mechanism or a
means of perpetuating the disease. This is because inflammation can damage
normal healthy tissues, which in turn leads to the production of molecules that re-
stimulate inflammation. Acceleration of this forward feedback loop can lead to
disordered inflammation that promotes organ dysfunction and death [47–51],
Inflammation may also manifest in slower degenerative processes that share many
common mediators with acute pro-inflammatory insults [52]. However, experience
has shown that caution must be exercised in targeting inflammation with phar-
macological agents. Because of its ubiquitous role in homeostasis, modulation of
inflammation is fraught with unintended systemic consequences, such as gastro-
intestinal toxicity of cyclooxygenase-2 inhibitors [53, 54] or increased suscepti-
bility to infection in persons taking TNF-a inhibitors [55, 56] or the general failure
of anti-cytokine therapies for sepsis [24]. The difficulty in engineering safe and
effective therapeutic agents directed at inflammation is a primary example of the
Translational Dilemma in biomedical research. Because of these characteristics
inflammation represents perhaps the ideal target for systems biology and com-
putational modelling with agent-based modelling, and the following sections list a
series of ABMs of different aspects of inflammation across a range of organiza-
tional scales. This brief survey of inflammation-related ABMs is followed by an
example describing in more detail the development and use of an ABM directed at
a specific issue, namely that of acute pulmonary inflammation.

15.2.3.1 ABMs of Inflammation-Related Intracellular Processes

The characterization of intracellular pathways is the traditional focus of systems
biology, with a long history of work and achievement in the development of
mathematical models of cellular signaling and metabolic control. These models are
generally biochemical kinetic models, utilizing differential equations and sto-
chastic methods based on the Gillespie Algorithm. However, the use of discrete-
event, particle based modeling, exemplified by agent-based modeling, is growing
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in this arena. With increasing awareness of the influence of the complex, com-
partmentalized environment of the intracellular milieu on intracellular dynamics,
there is a need to account for issues of molecular crowding and spatial hetero-
geneity of the reaction milieu and how they affect enzymatic reactions within the
intracellular environment. Additionally, the presence of sub-cellular structures,
cytoskeletal elements, organelles, and compartments call for the increasing
incorporation of spatial properties and detail. Ridgway et al. [40] used an ABM of
intracellular signaling to demonstrate that the reaction dimension determining
biochemical kinetics within a prokaryotic cytoplasm was reduced from the
expected three dimensions to nearly two, with significant consequences for the
dynamic modeling of control loops in which subtle changes in feedback determine
the direction of a molecular switch. Pogson et al. [39] developed an ABM of
control pathways affecting the transcription factor Nuclear Factor kappa B
(NF-kB). These studies demonstrating the importance of the spatial distribution in
terms of nuclear translocation of the constitutive inhibitor of NF-kB, I-kappa-B
(IkB), and the binding of IkB to actin, a cytoskeletal protein, a mechanism sub-
sequently identified in their laboratory [38]. We developed an agent-based
architecture called Spatially Configured Stochastic Reaction Chambers to dem-
onstrate that even an abstract representation of enzyme kinetics could, if sufficient
pathway component detail was included, reproduce canonical behavior at the
cellular level, as in the effect of preconditioning on the behavior of the Toll-like
Receptor 4 (TLR-4) signaling pathway [36]. Similarly, an ABM of NF-kB
response to endotoxin utilized molecular level agents nested within ‘‘mega-
agents’’ representing different inflammatory cell types to reproduce recognizable
dynamics of endotoxin response, including priming and tolerance at both the
transcription factor and cellular activation level [42].

15.2.3.2 Cell-Level ABMs of Systemic Inflammation and Simulated
Trials for Sepsis

The cell-as-agent level of component representation provides perhaps the most
intuitive link between the laboratory-derived basic mechanistic knowledge and the
structure of an ABM. Some of the earliest examples of biomedical ABMs were
focused at this level [23, 24, 26], leading to the realization that even abstract agent-
rules could produce very recognizable dynamics that could provide deep insights
into the essential characterization of a disease process. For example, an early ABM
of systemic inflammation and sepsis viewed the inflammatory process as being
governed by interactions at the endothelial blood interface [23]. This ABM gen-
erated four clusters of distinct trajectories of model-system behavior purely by
altering the degree of initial perturbation, trajectories that matched the four pri-
mary clinical scenarios associated with systemic inflammatory response. This
ABM also demonstrated that the mechanistic basis of inflammation was the same
whether the initiating insult was infectious, as in classical sepsis, or tissue damage,
as in severe trauma.
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The endothelial-surface systemic inflammation ABM was further extended to
perform in silico clinical trials based on published and hypothetical inflammatory-
mediator-based interventions [24]. Published pharmacologic properties of a series
of mediator-targeting compounds were inputted into the ABM simulating a sepsis
population. The efficacies of the interventions were then evaluated against a
simulated control population. None of the mediator-directed interventions led to a
statistically significant improvement in simulated patient outcome, including a set
of immune augmenting interventions (e.g. addition of Granulocyte Colony Stim-
ulating Factor) and combination anti-cytokine therapy (intended to overcome
possible pathway redundancy). While these results were not totally unexpected,
the exercise demonstrated that the ABM could be used as a means of assessing the
veracity of the proposed intervention: i.e. what are the global consequences of
intervening in a particular pathway, and is it actually a good idea to intervene at
this point? The confirmation that what appeared to be intuitively plausible points
of mechanistic intervention did not in fact behave as expected when placed in a
systemic context demonstrated the potential usefulness of agent-based modeling
and dynamic knowledge representation for hypothesis verification. We suggest
that one of the primary roles of dynamic knowledge representation is exactly this
type of hypothesis evaluation and verification, intended to reduce the set of
plausible hypotheses and thereby help direct future investigation by eliminating
therapeutic dead-ends.

15.2.3.3 Cell-Level ABMs of Wound Healing of Skin
and Soft Tissue

As a system of response and repair, inflammation is intimately tied to healing.
Many cellular and molecular mediators are shared between acute inflammation and
healing; for instance the anti-inflammatory mediators that limit and contain the
propagation of the pro-inflammatory response, such as Interleukin-10 and trans-
forming growth factor-b1(TGF-b1) are themselves growth factors. Wound healing
is also an intrinsically spatial process, as damaged tissue is removed and replaced
by surrounding ‘‘normal’’ tissue. Therefore, ABMs of wound healing represented a
natural direction of development arising from the early inflammatory ABMs.
Wound healing ABMs have been used to shed basic insights on the spatial nature
of skin wounds and their healing [34, 57], to represent the mechanistic patho-
physiology of diabetic wounds and to posit potential mechanistic targets for
therapeutics development [33], and offer the potential for personalized medicine
by modeling individual responses to injury and therapy in vocal chord trauma
[58, 59]. The diabetic wound ABM [33] was used to determine the phenotypic
effects of under-activation of latent TGF-b1 and over-production of tumor necrosis
factor-a (TNF-a), both associated with diabetes, and generated a host of emergent
features characteristic of diabetic ulcers. Moreover, this ABM was used to test in
silico the effects of both current therapies for diabetic ulcers (namely wound
debridement and treatment with platelet-derived growth factor) as well as novel

15 Agent-Based Modeling Approaches to Multi-Scale Systems 439



interventions (e.g. inhibition of TNF-a or addition of TGF-b1) [33]. The ABM of
vocal fold inflammation and healing attempted to create personalized sets of
models by calibrating parameters using data on cytokine levels in laryngeal
secretions of individual human volunteers subjected to experimental phonotrauma.
Patient-specific computational simulations were created based on baseline levels
of cytokines as well as at 1 and 4 h after phonotrauma. These simulations gen-
erally predicted the levels of cytokines at much later time points (24 h), and were
used as the basis for simulated therapy [58, 59].

15.2.3.4 ABMs of Organ-Level Inflammation

A critical point of the translational dilemma is the transfer of cellular and
molecular mechanisms, which are measured and characterized in the laboratory
environment, to the level of organ level physiology and phenotype, which is the
primary means by which disease is defined and diagnosed. It is here that the
population-oriented capabilities of agent-based modeling can serve an important
translational role. As a result there has been a great deal of interest in producing
ABMs that represent organ-level manifestations of inflammation.

Intestinal Inflammation

The intestinal tract is subject to a variety of inflammatory conditions, both acute,
such as in systemic shock, gut-derived sepsis and necrotizing enterocolitis, as well
as in more chronic diseases, such as inflammatory bowel disease. The nature of the
inflammatory processes in the gut is particularly notable due the persistent pres-
ence of huge numbers of microbes that can initiate and propagate inflammation.
While the study of the gut ecology has been traditionally divided into those who
study the host (epithelial biology and immunology) and those who study the
microbes (microbiology), there is an increasing recognition that these two fields
need to be merged into a comprehensive characterization of the host-microbe
environment [60]. The integrative capabilities of agent-based modeling may play a
particularly important role in this arena, and there has already been some pre-
liminary work in this direction. A group at the Virginia Bioinformatics Institute
has developed the Enteric Immunity Simulator (EINISI), an ABM environment to
investigate the pathogenesis of enteric diseases related to the immune response to
pathogen and reproduced the dynamics of bacterial dysentery [61]. Our group at
the University of Chicago has developed an ABM of gut host-pathogen interac-
tions specifically related to virulence activation of Pseudomonas aeruginosa, an
important nosocomial pathogen, and the development of gut-derived sepsis [62].
This ABM contains a detailed representation of P. aeruginosa virulence activation
pathways integrated with an abstracted gut epithelial surface. The ABM’s output is
mapped to in vitro and in vivo experimental platforms of gut-derived sepsis, used
to simulated a more clinically relevant manifestation of intestinal ischemia
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resulting from systemic shock than currently possible using in vivo techniques (i.e.
non-lethal systemic shock), and has been used to identify gaps in the low-phos-
phate-sensing model of P. aeruginosa virulence activation in circumstances of
major abdominal surgical stress. Additional laboratory experiments are in the
process of being performed to more comprehensively characterize the factors
involved in low-phosphate-related P. aeruginosa virulence activation. Finally, we
have also developed an ABM that represents a unifying hypothesis underlying the
pathogenesis of necrotizing enterocolitis (NEC), the leading cause of gastroin-
testinal morbidity and mortality in the premature infant population [63]. NEC is a
complex, multi-factorial disease that involves prematurity, enteral feeding and a
bacterial component resulting in bowel inflammation and necrosis. The research
community has found it extremely challenging to create laboratory models that can
comprehensively reproduce the range of pathogenic components associated with
NEC, mainly related to the extreme degree of experimental perturbations required
to generate the NEC phenotype in vivo. We have formulated a minimally sufficient
unifying hypothesis of NEC that posits that the fundamental deficit in infants
susceptible to NEC is immaturity of the ability of the neonatal gut epithelial cells
to manage reactive oxygen species, including those produced as a byproduct of
cellular respiration. When this basic feature was instantiated in the NEC ABM, and
then overlaid with the other recognized contributing factors, a recognizable pattern
of cascading systems failure was demonstrated to be necessary for the generation
of the NEC phenotype. Specifically, immature neonatal gut epithelial cells had
increased fragility to inflammation propagating challenges, such as metabolic
stress (from feeding), decreased mucus barrier integrity and bacterial contacts. It is
hoped that this ABM can be used to integrate the multiple theories and mecha-
nisms currently studied concerning the pathogenesis of NEC.

Pulmonary Inflammation

The lung is an organ that is commonly subjected to inflammatory insults and
responses, either through direct infection, inhalation of particulate matter, or in a
‘‘bystander’’ role associated with systemic inflammation. One type of pulmonary
infection that has been the subject of extensive agent-based modeling is tuber-
culosis. ABMs have been used to study inflammatory cell control mechanisms
associated with the generation of pulmonary granulomas [64], and the pathogen-
esis of pulmonary tuberculosis has been modeled using a multi-scale architecture
where ODEs representing the molecular dynamics of TNF-a signaling were
embedded within inflammatory cell agents [10]. Another ABM examined the
pulmonary inflammatory response to inhaled particulate matter and the subsequent
transition from acute inflammation to fibrosis [65]. While relatively simple in
terms of cellular agent rules and types of mediators represented, this ABM was
able to reproduce histological patterns of pulmonary inflammation and fibrosis
seen in a clinically relevant murine model of particulate inhalation. Finally, in
Sect. 15.2.4 we present a detailed description of an ABM of acute pulmonary
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inflammation designed to examine the dynamics of acute lung injury from trauma,
pneumonia, and systemic sepsis.

15.2.3.5 Multi-Organ Inflammation and Failure

The structural/anatomic approach to multi-scale modeling can be taken one step
further by using the modular property of agent-based modeling to link individual
organ ABMs in a multi-scale architecture. The approach was introduced in an
ABM of the gut-lung axis of systemic acute inflammation and multiple organ
failure [13]. This ABM incorporates multiple structural and anatomic spaces, e.g.
endothelial and epithelial surfaces as aggregated by cell-type into organ-specific
tissues and finally to organ-to-organ interconnections and cross-talk. This archi-
tecture also translates knowledge across domain specialties (molecular biology to
clinical critical care), representing molecular and cellular mechanisms and
behaviors derived from in vitro studies, extrapolated to ex vivo tissue experiments
and observations, leading to patterns of organ-specific physiology, and finally
simulating clinically relevant, interconnected, multi-organ physiology including
the response to ventilator support of acute respiratory failure. This ABM also
posited certain characteristics of the gut-derived pro-inflammatory compound that
is circulated in the mesenteric lymph and induces pulmonary inflammation.
Examining the time course of pulmonary inflammation and comparing that to
generated factors following intestinal ischemia suggested that the mesenteric
lymph inflammatory compound was not an initial inflammatory cytokine, nor a
translocating luminal compound manifesting decreased intestinal permeability, but
rather a substance reflecting cellular damage of gut tissue with properties con-
sistent with damage-associated molecular patterns (DAMPs). This last hypotheses
remains to be completely confirmed by the sepsis research community, but at this
time appears to be consistent with ongoing research in this area [66].

15.2.4 An Example ABM of Acute Pulmonary Injury

Herein we present a description of the development of an ABM focused on rep-
resenting existent knowledge concerning acute pulmonary inflammation and the
dynamics of various types of acute lung injury. We term this ABM the Acute
Pulmonary Injury ABM (APIABM). The primary goal of this example is to
demonstrate some of the steps and modeling issues related to the development and
use of an ABM. While the APIABM is a relatively simple model and its output is
qualitative in nature, these characteristics actually emphasize one of the greatest
advantages of agent-based modeling, namely the ability to relatively quickly and
with limited computational overhead instantiate mechanistic biological knowledge
into a computational model that can produce recognizable behaviors. There is a
significant role for qualitative modeling within the greater context of the discovery
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phase of science [2, 36] and in particular the ease with which agent-based mod-
eling maps to biological knowledge and can be performed with a ‘‘low threshold,
high ceiling’’ strategy [22] that allows for future modular expansion of the ABMs.
As all modeling can be considered as selective abstraction, we have abstracted out
a fair amount of molecular detail in the APIABM as to not distract from the
cellular functions of interest. Additionally, rather than presenting detailed simu-
lation experiments we instead emphasize the calibration/validation steps, and then
discuss future directions that can be taken with this model. For interested readers,
the entire APIABM can be downloaded from http://bionetgen.org/SCAI-wiki.

The process of ABM construction and use is described in the general context of
the Overview, Design Concepts and Details (ODD protocol), an attempt to help
standardize the description of ABMs and their uses [67]. The ODD protocol was
originally developed for ABMs studying ecological and social systems, and though
it does not present an exact fit with the use of agent-based modeling as a means of
biomedical dynamic knowledge representation (notable discrepancies include:
format-driven redundancies; potential disruption of explanatory flow, particularly
in terms of describing the mapping between the biology and the ABM; non-
applicability of certain categories, such as learning and adaptation; the inherent
imprecision of the term ‘‘emergence’’; and lack of section concerning calibration)
it does provide a useful framework in which the rationale and process behind the
design of an ABM can be communicated. We utilize a modified version of
the ODD protocol as the organizational framework for the description of the
APIABM.

15.2.4.1 Purpose

The modelling purpose of this ABM is to dynamically represent the molecular,
cellular and organ-level dynamics of acute pulmonary inflammation and provide a
unifying basis for the response to multiple types of acute lung injury, namely direct
trauma (pulmonary contusion), bacterial infection (primary pneumonia), and
systemic inflammation (acute lung injury/acute respiratory distress syndrome or
ALI/ARDS). These disease processes represent a major source of morbidity and
mortality in the acutely and critically ill patient, and present significant diagnostic
and therapeutic challenges to medical practitioners. The complexity of the
inflammatory response means that effective modulating therapies need to be the
‘‘right drug for the right condition at the right time,’’ a criteria that requires disease
characterization at a level of resolution not currently achieved (and this includes –
omic characterization, which just provides for a series of high-dimensional
snapshots). By integrating existing mechanistic knowledge, down to the scale of
putative molecularly targeted interventions, to produce a recognizable organ-level
phenotype in the form of edema patterns, the APIABM can serve as a dynamic
bridge to fill in the gaps in existing knowledge and data.
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15.2.4.2 Entities, State Variables, and Scales

The Entities in the ODD refer to the objects from the reference system represented
in the ABM. Entities can refer to the active components of the system (i.e. the
agents/individuals), subcomponents sensed/used/manipulated by the agents (i.e.
variables in the agent or the environment) or aggregated collections of agents or
sections of space that make up the ABM’s environment. Each entity has a set of
state variables that defines its current state. For agents these state variables would
correspond to molecular components such as receptors, enzymes and genes, for the
spatial environment, these state variables would represent levels of secreted
mediators or extracellular structures. The set of state variables is consistent for a
particular entity type, but individual values of the state variables distinguish one
entity from other entity of the same type and are used to track how a particular
entity changes over time [67]. In the APIABM entities range from cellular
mediators to alveolar space, and are discussed in more detail in the sections below.
In order to distinguish computational components in the APIABM from their
biological referents, we will use a different font to denote APIABM
components.

We have elected to abstract the large number of specific molecular species into
functional groups, which are then assigned to aggregated descriptive variables. For
instance, the plethora of pro-inflammatory cytokines involved in pulmonary
inflammation is represented by a single variable called pro-inflammatory
cytokine. We justify this modelling decision based on the fact that we are not
interested in high-resolution examination of molecular interactions, but rather
what the overall consequences of these types of interactions have on the behaviour
of cellular populations. This is one example of how the ‘‘encapsulated complex-
ity’’ offered by agents allows investigation of higher-level system properties even
given incomplete knowledge, as is often the case, of lower-level detail.

Agents/Individuals

In developing an ABM one of the first modelling decisions to be made involves
selection of the agent level. As noted above, the agent-level should represent a
level of ‘‘encapsulated complexity’’ that exists in sufficient numbers such that a
population of agents can be modelled, but not too many numbers such that the
population size abuts computational limitations. The cell types represented include
alveolar epithelial cells, monocytes, macrophages, neutrophils, and bacteria. The
behaviours exhibited by each cell type reproduce those that are known to exist
in situ and vary in response to changes in the inflammatory milieu of the tissue in
which they are located. A description of the agent classes and their state variables
with their process flow can be seen in Table 15.1. A more detailed explanation of
the rules for each agent class is found in the Process Overview and Scheduling
Sect. 15.2.4.3.
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Spatial Units and Environment

The topology of the APIABM is a 2-dimensional square grid with edges that wrap
forming a torus. This world structure was selected in great part due to the con-
straints placed by the software system, NetLogo [68], in which the APIABM was
implemented. We were willing to accept these limitations given the ease with
which models of biomedical systems can be rapidly implemented and prototyped
in NetLogo [22]. The two-dimensional grid spaces (‘‘patches’’ in NetLogo ter-
minology) are the fundamental spatial units of the APIABM, each possessing state
variables representing extracellular mediators and structures that make up the
microenvironment experienced by the cellular agents occupying them. A screen-
shot of the APIABM can be seen in Fig. 15.3. The patches represent an abstract
cross-sectional depiction of the lung parenchyma, with specific focus on repre-
senting the alveolar air spaces and their interposing interstitial tissue. Patches at
x- and y-coordinates that are multiples of 5 are given the state variable ‘‘alveolar
interstitium’’, while the rest are given the state variable ‘‘alveolar space’’. For a
complete list of the state variables of the spatial units see Table 15.2. A detailed
explanation of these can be found below in the Process Overview and Scheduling
section.

Fig. 15.3 Screenshot of acute pulmonary injury agent-based model (APIABM). This screenshot
displays the overall architecture of the APIABM, which includes a regular lattice of alveolar
interstitium, on which move the inflammatory cells, with interposed areas corresponding to
alveolar space. This screenshot also displays an initial localized inoculum of bacteria prior to the
execution of the model. Pulmonary edema is seen as bluish-white patches within the alveolar
spaces (see Figs. 15.4, 15.5, and 15.6), with brighter areas corresponding to higher levels of
edema fluid
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Scale

Since ABMs iteratively execute a set of rules and commands, the time scale of the
ABM is often tied to the length of time it takes for the reference system to perform
the actions reflected in the ABM rules. For the ALIABM, each iteration of the
program (or ‘‘tick’’) represents *7 min in reference system time. The disease
processes being simulated have general time courses of *72 h for development,
with recovery (should it happen) taking *14 days. Based on these timeframes the
simulations were run for 14 days of simulated time.

15.2.4.3 Process Overview and Scheduling

The dynamics of the pulmonary inflammation arise from the actions and inter-
actions of the cellular agents in response to the conditions of the patch on which
they are located. Cellular agents are also able to sense certain variables on the
patches immediately adjacent to them (such as for allowing the simulation of
chemotaxis). As noted above the cells of interest are alveolar epithelial cells,
monocytes, macrophages, neutrophils and generic bacteria; the rule sets for each of
these agent-classes constitute a submodel of the APIABM. An overview of these
cell submodels is presented in this section. For a comprehensive list of the state
variables for each type of agent class, refer to Table 15.2.

Monocytes

Under baseline conditions, monocytes move/circulate throughout the alveolar
interstitium and represent a potential source of additional pulmonary tissue mac-
rophages with a differentiation rate corresponding to the lifespan of the macro-
phages (see Macrophages). After an insult is applied, pro-inflammatory
cytokines and damage signals are released secondary to inflammation and
when they are present above a set chemotaxis threshold, the transformation rate is
accelerated as monocytes migrate to the focus of inflammation and subse-
quently differentiate into macrophages. Monocytes are repleted by an ‘‘off-
screen’’ monocyte-maker that represents the hematopoietic activity of the bone
marrow.

Macrophages

Under baseline conditions, macrophages move randomly through the alveolar
interstitium. When they encounter pro-inflammatory stimuli they migrate towards
the focus of inflammation. Additionally, in response to inflammatory mediators,
macrophages release pro-inflammatory, anti-inflammatory, and tissue repair
cytokines.
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As seen in Table 15.1, the macrophages in the APIABM have numerous
state variables. Macrophages have an age, which is initially set at 3,000 ticks,
which corresponds approximately to a 14 days lifespan [69]. This value decreases
by 1 with every tick until it reaches 0, at which time the macrophage dies and is
removed from the simulation. We note that given the time frame of the current set
of simulations (14 days) we could have excluded age as a macrophage state
variable; however, our goal is to not produce ‘‘one-off’’ models, but rather
incorporate selected aspects from the reference system with an eye towards
additional simulation experiments in the future. For instance, a natural next set of
simulation experiments using the APIABM would examine the immunocompro-
mised phase of sepsis, which extends the simulated time frame out to 28 days or
beyond. Additionally, the inclusion of the age variable eases the possible inclu-
sion of mechanisms that may either speed or attenuate programmed cell death
(apoptosis).
Macrophages include representation of both pro-inflammatory and anti-

inflammatory state signalling pathways. The state variables that make up these
pathways represent the various components of the molecular signalling cascades
that drive the response to and the release of cytokines during the inflammatory
response. These include representations of receptors, signalling kinases, genes and

Table 15.2 Spatial units and patch variables

Spatial unit State variables

Alveolar space: Represents air-fill spaces
of the lung parenchyma. Volume and
surface area represent the gas-exchange
surface of the lung

• Capillary-Leak: Represents the rate at
which edema fluid is produced and
transferred into the alveolar space.
Determined by the presence of damaged
alveolar epithelial cells

Alveolar interstitium: Represents the
tissue of the lung, forms the walls of the
alveolar space

• Fluid: Represents edema fluid that has
leaked from the interstitium into the
airspace

General patch variables: These are extracellular
variables, generally representing secreted/
produced mediators that are sensed by and
responded to by the different cell types

• Pro-inflammatory-cytokine:
Produced and sensed by macrophages,
monocytes and neutrophils

• Anti-inflammatory-cytokine:
Produced and sensed by macrophages
and neutrophils

• Damage-signal: Produced by
alveolar-epithelial-cells and
sensed by macrophages, monocytes
and neutrophils

• Cytotoxic-compound: Produced by
neutrophils and results in damage to
alveolar-epithelial-cells and
kills bacteria

• Nutrients: Produced by bacteria
damaging alveolar-epithelial-
cells and consumed by bacteria to
increase their energy
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transcription/translational events. Patch variables representing pro-inflammatory
stimuli are sensed by macrophages, which respond by activating pro-
inflammatory receptor variables, which in turn leads to activation of pro-
inflammatory-kinases, activation of pro-inflammatory-genes, with
subsequent production and release pro-inflammatory cytokines. Similarly,
a macrophage’s anti-inflammatory receptors can be activated,
leading to activation of anti-inflammatory-kinases of two types leading
to two sets of genes; those associated with inhibiting pro-inflammatory
cytokine production, and those associated with the production of anti-
inflammatory cytokines. These two pathways represent positive and nega-
tive feedback control systems, respectively, on macrophage function.

Neutrophils

Under baseline conditions, neutrophils move randomly throughout the
alveolar interstitium. Neutrophils respond to pro-inflammatory stimuli by
turning on their activation state variable. Activated neutrophils migrate
towards the pro-inflammatory signals, which triggers the activation of signal
cascades, pro-inflammatory-kinases, that result in the release of further
pro-inflammatory cytokines as well as cytotoxic-compounds rep-
resenting reactive oxygen species (ROS). Neutrophils also have an age,
which is set to 1,000 ticks, approximating a life span of 5 days, and are repleted by
an ‘‘off-screen’’ neutrophil-maker representing the hematopoietic activity of
the bone marrow.

(Generic) Bacteria

Bacteria represent the introduced pathogens that cause primary pneumonia.
Bacteria induce tissue damage, leading to the release of tissue damage
compounds that stimulate the activation of the host inflammatory response. The
primary bacteria state variable is energy. Bacteria acquire energy
through their tissue damage induction, and when they reach a set energy
threshold they will replicate. If they are prevented from inducing tissue damage,
their energy degrades at a rate of 1 per tick until it reaches 0, at which time the
bacteria die. Bacteria are also killed by activated neutrophils and the
presence of cytotoxic-compound.

Alveolar Epithelial Cells

Alveolar epithelial cells are stationary cells representing the cellular
components of the alveolar interstitium comprising the lung parenchymal tissue.
Alveolar epithelial cells sense and respond to inflammatory stimuli in
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their local microenvironment, and also form the barrier between the fluid in the
interstitial space and the gas-exchange spaces of the alveoli.

The primary state variable determining the function of the alveolar epi-
thelial cells is damage. When high levels of pro-inflammatory
cytokines or cytotoxic-compounds are present, the alveolar epi-
thelial cells become damaged, releasing their own pro-inflammatory
damage signal molecules, which in turn leads to further propagation of inflam-
mation. Also, damaged alveolar epithelial cells release fluid into the
surrounding alveolar space, simulating the formation of alveolar edema. It is the
spatial distribution of the alveolar edema pattern that forms the qualitative metric
used for validation of the APIABM.

Pulmonary Compartment Spatial Units

The APIABM abstractly depicts the gas-exchange structure of the lung, and is
divided into patches that are either alveolar interstitium or alveolar
space. Under normal conditions, mobile cellular agents have their movement
confined to the patches possessing the alveolar interstitium state vari-
able and therefore do not enter patches possessing the alveolar space state
variable. The patches comprising the alveolar interstitium further pos-
sess a capillary leak state variable. In response to a set level of pro-
inflammatory mediators at a given patch, the capillary leak state variable
activates, allowing inflammatory mediators to leave the interstitium and enter the
alveolar space, as occurs in situ. Additionally, the alveolar space patches
have a fluid level state variable, which represents the degree of fluid leaking
from the alveolar interstitium into the alveolar space through the
damaged alveolar epithelial cells. The distribution and degree of
alveolar edema represents the qualitative metric used for validation of the APIABM.
The spatial unit categories and their respective state variables can be seen in
Table 15.2.

15.2.4.4 Design Concepts and Initialization

In initiating a modeling project, it is of the utmost importance to define the
experimental frame, thereby establishing what can and cannot be examined by the
particular model. The experimental frame is defined by the scientific questions at
hand, and provides direction as to the degree of abstraction used in the develop-
ment of the model [70]. The APIABM is a highly abstracted representation of
acute inflammation of the pulmonary parenchyma. The parenchymal focus of the
APIABM is directed by the scientific goal of understanding and mechanistically
unifying diseases such as pulmonary contusion (i.e. direct lung trauma), bacterial
pneumonia and acute lung injury/acute respiratory distress syndrome (ALI/
ARDS). There are many details of the real lung that are left out. The APIABM
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does not incorporate the mechanical forces associated with ventilation, sponta-
neous or mechanical, and therefore cannot be used to examine the effects of
ventilator associated lung injury (VILI). Our modeling focus does not require
addressing the bronchial airways, and therefore specifically excludes the conse-
quences of inflammation in the airways as is seen in asthma. The focus on acute
inflammation also excludes the ability of the APIABM to represent more chronic
processes such as pulmonary fibrosis, or the development of chronic obstructive
pulmonary disease. While some may consider such restrictions as highly limiting
the potential utility of the APIABM, the fact is that one should strive to develop
the simplest model that can address a defined scientific focus and provide a rec-
ognized use for the researcher. In this case, our interest is in the acute processes
that might affect the lung in a acutely ill patient, and given the role of the
inflammatory response in this setting, we make the modeling decision to focus on
the consequences of inflammation on the gas-exchanging parenchymal aspect of
the lung, specifically manifest in the patterns of production of alveolar edema.

15.2.4.5 Initialization

One critical point to remember when using ABMs for biomedical processes is that
the baseline state is one of dynamic equilibrium, i.e. health. This means that the
state of the system prior to any perturbation that would lead to disease is
dynamically stable. The corollary to this fact is that biomedical ABMs are not
models of disease, but rather models of health that can be subsequently perturbed
to generate system trajectories that correspond to disease. As such, part of the
initialization process involves making sure that the APIABM produces stable
behaviour absent an invoked perturbation, including stability of those cellular
populations that have their life-cycle represented (namely monocytes, mac-
rophages and neutrophils).

15.2.4.6 Simulations

The simulations carried out here using APIABM are geared towards demonstrating
calibration and validation. Calibration involves the adjustment of parameters of the
ABM to attempt to fit some set of defined descriptors of the reference system, be
they a quantitative data set or some more qualitative pattern/phenotype. This latter
approach, called Pattern Oriented Modeling [21], is very commonly used as a
means of calibrating and validating ABMs. Initial validation of an ABM is
accomplished when calibration results in satisfactory matching between the ABM
and its referent with parameter values that are not clearly implausible, a level of
validation is termed face validity [71]. Despite being the lowest level of validation
possible for a simulation, establishing face validity is of extreme importance in the
use of computational models for dynamic knowledge representation of biomedical
systems. This is because biomedical research is primarily a discovery-oriented
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endeavour, where the primary procedural challenge is being able to separate
plausible hypotheses from those that are not [2, 44]. Conversely, the inability to
identify a set of parameters that can achieve plausible behaviour represents a
failure of face validity; in these cases the underlying rules of the ABM need to be
re-evaluated. Unfortunately, there are not clear guidelines about how to identify
the transition point between inadequate sampling of parameter space and deter-
mination of model insufficiency, and the fact remains that this is a heuristic process
that is enhanced by modelling experience.

We utilize pattern oriented analysis in the evaluation of the APIABM, focusing
on two primary system patterns: (1) matching between the time courses of the
modelled processes and the known disease pathophysiology, and (2) matching
between the spatial patterns of alveolar edema generated by the APIABM and
those recognized in the clinical setting. Each of the simulated disease processes
below will include a brief description of the nature of the perturbation, confir-
mation of the expected time course and APIABM screenshots demonstrating the
resulting patterns of pulmonary edema. Of note, other than the code changes to
implement the specific type of perturbation, there were no differences or alteration
in the code of the APIABM between the different disease state simulations.

Simulation of Pulmonary Contusion

A pulmonary contusion arises from direct trauma to the chest wall with force
transmitted to the pulmonary parenchyma. It is, literally, a bruising of the lung.
The traumatic force leads to locally distributed tissue damage, with subsequent
activation of inflammation. Pulmonary contusion was simulated in the APIABM
by applying a roughly circular injury pattern centered on the Cartesian coordinates
of the APIABM with increasing radius of the applied injury pattern representing
progressively increasing trauma. The dynamics of the inflammatory response
followed the expected trajectory, peaking at approximately 3 days for those runs
able to recover. A sequence of APIABM pulmonary contusion screenshots can be
seen in Fig. 15.4.

Simulation of Pneumonia

Pneumonia arises from the introduction of pathogenic bacteria into the lung, with
subsequent bacterial growth, tissue damage and inflammatory response. Pneu-
monia was simulated in the APIABM by applying a roughly circular distribution
of bacteria agents, where increasing number of bacteria and corresponding
size of the inoculated area represent progressively increasing inoculum. The
dynamics of the inflammatory response followed the expected trajectory, with
development of a significant ‘‘infiltrate’’ by 3 days in those levels of initial
inoculum not spontaneously cleared. A sequence of APIABM pneumonia
screenshots can be seen in Fig. 15.5.
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Simulation of Acute Lung Injury/Acute Respiratory Distress Syndrome

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) arises from
activation of pulmonary inflammation by circulating inflammatory products gen-
erated by non-pulmonary systemic inflammation, such as sepsis. The multi-scale
gut-lung ABM mentioned in Sect. 15.2.3.5 [13] examines the role of the mesen-
teric lymph in activating pulmonary inflammation, and we use the putative
mechanism described by that ABM to simulate the effects of remote systemic
inflammation on the lung. Systemic inflammation and subsequent production of
inflammatory mesenteric lymph were abstractly represented by introducing a
probability of spontaneous activation of neutrophils; this reflects both the priming
of neutrophils and activation of pulmonary endothelium by inflammatory

Fig. 15.5 Screenshots of 3-day course of bacterial pneumonia simulated in the APIABM. This
series of screenshots demonstrate the progression of pneumonia resulting from a localized
inoculation of bacteria. The pattern of alveolar edema corresponds to the evolution of a
pneumonia-induced infiltrate seen radiographically

Fig. 15.4 Screenshots of 3-day course of pulmonary contusion simulated in the APIABM. This
series of screenshots demonstrate the progression of alveolar edema resulting from a localized
injury (sterile) corresponding to blunt pulmonary trauma. This is consistent with the time course
seen both clinically and radiographically
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mesenteric lymph. The dynamics of the inflammatory response followed the
expected trajectory, with the development of extensive patchy infiltrates by Day 3.
A sequence of APIABM ALI/ARDS screenshots can be seen in Fig. 15.6.

15.2.4.7 Possible Extensions of the APIABM

The APIABM is a very abstract model, but due to the modular nature of ABMs it
is readily extensible along a series of future development paths. Certainly more
molecular detail can be included into the representation of the pro- and anti-
inflammatory pathways; this could be driven by a researcher’s particular interest
area and desire to examine/confirm higher order behaviour related to that partic-
ular pathway. While the APIABM currently represented the alveolar airspaces
involved in gas exchange, there is no functional consequence of the alveolar
edema; it would be relatively straightforward to tie the edema state of each rep-
resented airspace to a gas exchange function, thereby being able to tie the
inflammatory biology to a functional output of the lung. Pharmacological inter-
ventions can also be simulated: standard therapies such as antibiotics could be
represented by a culling function applied to the bacterial populations, while anti-
mediator interventions could be simulated as has been previously shown in in
silico clinical trials [24]. More detail concerning the functions and characteristics
of bacteria can be added where the specific virulence properties can be embedded
into the bacterial agents to more closely approximate the complex of host-path-
ogen interactions in the face of inflammation [62]. Finally, the APIABM can be
linked to other organ-level ABMs in a modular fashion [13], in order to capture
the broader, systemically oriented genesis and consequences of pulmonary

Fig. 15.6 Screenshots of 3-day course of acute lung injury/acute respiratory distress syndrome
(ALI/ARDS) simulated in the APIABM. This series of screenshots demonstrate the progression of
diffusely heterogeneously distributed alveolar edema arising for diffuse pro-inflammatory
activation of the alveolar epithelium. This perturbation is consistent with the pulmonary effects of
acute systemic inflammation as would be seen in sepsis or severe trauma. The time course and
qualitative pattern of edema formation are consistent with the development of ARDS in the
clinical setting
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inflammation. Interested readers are encouraged to download the APIABM from
http://bionetgen.org/SCAI-wiki and explore the possibilities available from agent-
based modelling.

15.3 Discussion

15.3.1 Challenges to the use of Agent-Based Modeling

As with all modeling methods, agent-based modeling is not without its limitations.
One common issue shared with all computational and mathematical modeling
methods is that the quality and reliability of the models are directly related to the
reliability of the underlying assumptions of the model and the quality of their
implementation during construction of the model. This issue can be addressed by
emphasizing transparency of both underlying assumptions and implementation
details with respect to the construction of an ABM. The ODD protocol, while not
developed specifically with biomedical ABMs in mind, provides a useful reference
point with respect to documenting the structure and goals associated with an agent-
based modeling project [67].

One shortcoming of agent-based modeling is the difficulty in applying formal
analysis to the relationship between the agent-rules and the behavior of the system.
Due to the combined stochastic behaviour of agents and the difficulty in assigning
scalar metrics to account for the spatial aspects of an ABM’s output it can be very
challenging to evaluate the effect of parameter values and model structure on an
ABM’s behaviour. Alternatively, equation-based models have well-established
procedures for analytical tasks such as parameter sensitivity analysis, bifurcation
analysis, and behaviour-state-space determination. Work on developing mathe-
matical descriptions of ABMs offer the prospect that formal analysis may be
available in the future [72]. In the meantime, ABM researchers use a variety of
strategies, such as heuristics [6, 24], literature-based constraints [28, 31] and Latin
Hypercubes [10, 64] for parameter estimation and sensitivity analysis.

Some of the apprehension associated with the analysis of ABMs can be
addressed by viewing ABMs as objects more akin to wet lab experimental plat-
forms rather than more traditional, equation-based mathematical models. Pattern-
oriented analysis, in which corresponding patterns of dynamic behaviour are used
to relate the computational ABM to its real-world referent, allows ABMs to be
evaluated much in the same way as wet lab systems or model organisms [21].
From this regard, the stochastic and emergent properties of ABMs reinforce their
ability to capture the robustness of dynamic behaviour seen in complex systems,
thereby allowing more insight into their core organizational structure.

ABMs are, in general, more computationally intensive than equation based
models. The increased computational requirements place constraints on both the
size of ABMs in terms of number of agents as well as the complexity of their
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internal rule systems. The natural solution to this bottleneck is to implement very
large scale ABMs on current high performance computing platforms. However,
there are intrinsic properties of ABMs, primarily related to the high degree of
dynamics in the agent-to-agent interaction and communication network, that
challenge the ability to implement ABM on highly distributed memory systems.
Certain types of model architectures, mostly incorporating limited or relatively
static interaction neighbourhoods with a high ratio of intra-agent computation (i.e.
very complex mathematical rules) to inter-agent communication, are more suited
to implementation on these massively parallel computer architectures. These types
of models are also suited to implementation using Graphical Processing Units
(GPUs), which offers the possibility of ‘‘supercomputer on a desk’’ computational
power for selected types of ABMs [73–75]. It should be noted that there are also
nontrivial modeling issues associated with parallel implementation of ABMs, aside
from the computer science challenges just noted above. The selection of the scale
of process to be distributed across multiple processors may have consequences
with respect to concurrency and event scheduling and to the mapping of the
simulation behaviour back to the biological referent; for instance attempting to
distribute a single agent’s rules over a series of processors. Thus far parallel ABM
implementations have not explored the distribution of a single agent’s execution
across multiple processors, and have opted for a more organizationally defined
distribution strategy that expands the overall size of the ABM (i.e. more agents)
and keeps the implementation of agent-scale behaviour at the processor and sub-
processor level.

15.3.2 Conclusion

The Translational Dilemma is the greatest challenge facing the biomedical
research community today. Future operational procedures for biomedical science
should involve technological augmentation of all the steps of the scientific cycle
and allow the knowledge generated from such research to manifest in multiple
areas. These include the development of highly predictive, personalized simula-
tions to streamline the development and design of therapies, simulating the clinical
application of these therapies in population studies (in silico clinical trials), and
predicting the effects of drugs on individuals. We suggest that the agent-based
paradigm, incorporating knowledge encapsulation, modularity and parallelism, can
play an important role in the development of this meta-engineering process.
Agent-based modeling can provide an integrative architecture for the computa-
tional representation of biological systems. Expanding the tools for AI-augmen-
tation of computational dynamic knowledge representation and ties to biomedical
ontologies [44, 76] can significantly reduce the threshold for the general researcher
to utilize computational modelling and allow investigators to ‘‘see’’ the conse-
quences of a particular hypothesis-structure/conceptual model, such that the
mechanistic consequences of each component of the hypothesis can be probed and
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evaluated. Dynamic knowledge representation enables the instantiation of
‘‘thought experiments:’’ the exploration of possible alternative solutions and
identifying those that are plausible, i.e. consistent with the observed data. These
models can aid in the scientific process by providing a transparent framework for
this type of speculation, which can then be used as jumping off points for the
planning and design of further laboratory experiments and measurements. It is
hoped that the increasing use of this type of knowledge representation and com-
munication will foster the further development of ‘‘virtual laboratories’’ and in
silico investigations.
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Chapter 16
Reconstruction and Comparison
of Cellular Signaling Pathway Resources
for the Systems-Level Analysis
of Cross-Talks

Máté Pálfy, László Földvári-Nagy, Dezs}o Módos, Katalin Lenti
and Tamás Korcsmáros

Abstract Signaling pathways control a large variety of cellular processes and their
defects are often linked with diseases. Reliable analyses of these pathways need
uniform pathway definitions and curation rules applied to all pathways. Here, we
compare KEGG, Reactome, Netpath and SignaLink pathway databases and examine
their usefulness in systems-level analysis. Further on, we show that the integration of
various bioinformatics databases allows a comprehensive understanding of the
regulatory processes that control signaling pathways. We also discuss the drug target
relevance of cross-talking (i.e., multi-pathway) proteins and signal transduction
regulators (e.g., phophatases and miRNAs). Accordingly, modern integrated dat-
abases are not only essential for studying signaling processes at the systems level, but
will also serve as invaluable tools for pharmacology and network-based medicine.
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16.1 Signaling Pathways and Cross-Talks

Intracellular signaling, from the simplest cascades to the highly intertwined net-
works of kinases, contributes to the diversity of developmental programs and
adaptation responses in metazoans [1]. In humans, defects in intracellular signaling
can cause various diseases, e.g., cancer, neurodegeneration, or diabetes. Thus,
understanding the structure, function, and evolution of signal transduction is an
important task for both basic research and medicine.

Signaling pathways, the functional building blocks of intracellular signaling,
transmit extracellular information from ligands through receptors and mediators to
transcription factors, which induce specific gene expression changes. In contrast to
the wide variety of signaling functions and the macroscopic and microscopic
diversity of living forms, the number of signaling pathway types are relatively low
(a few dozen) [2]. The basic mechanisms of each pathway are conservative,
characteristic to large taxon groups, and present ubiquitously in different tissues [1,
2]. Interestingly, most of the pathways have a maximum of 10–20 protein com-
ponents [1]. These numbers apparently contradict to the number of cell types that
signaling pathways can create and maintain. The major sources to generate diverse
and complex signaling flow with such few pathways are specific co-factors and
positive/negative feedback loops [3, 4]. Over the past decade, it has been realized
that signaling pathways are highly structured and rich in cross-talks (where cross-
talk is defined here as a directed physical interaction between pathways) ([84],
[5]). Cross-talks can form and change more frequently than the interactions within
pathways [6, 7]. As the number and combination of transducable signals are
limited, new cross-talks between pathways can create novel input/output combi-
nations, which increase the possible ways of signaling flow and thus contribute to
diverse phenotypes.

However, to ensure that an appropriate response is elicited, the signaling system
has to maintain the pathways’ output specificity (inputs preferentially activate their
own output) and input fidelity (outputs preferentially respond to their own input) [8].
Thus, new interactions between pathways need to be precisely regulated. Regulation
of cross-talks to prevent ‘leaking’ or ‘spillover’ can be achieved with different
insulating mechanisms [8]. Signaling cross-talks are controlled mainly by scaffold
proteins, cross-pathway inhibitions, kinetic insulation, and the spatial and temporal
expression patterns of proteins [4, 9–11]. One can find all these mechanisms in the
concept of critical nodes, defined by Kahn and co-workers, and demonstrated for the
insulin pathway [12]. Critical nodes are defined as protein groups, where the
members are (1) essential in the signal transduction of a given pathway, (2) related to
each other (isoforms), (3) regulated and function in a partially different way, and
where (4) at least one of the members participates in a cross-talk with another
pathway [12]. The relative concentration of the critical node members and their
differential regulation determine the way of the signaling flow [12]. The default way
of signaling flow is from a pathway-specific ligand via a critical node to a pathway-
specific transcription factor. But when a critical node contains multiple protein
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isoforms, which include a member that can cross-talk, the signal can be switched to
another pathway, i.e., generating another output. Consequently, two pathways can
specifically cross-talk with a shared protein group, where the partially regulated
protein isoforms serve as a source of divergence [12].

16.2 Challenges to Study Cross-Talk at the Systems-Level

Despite the general prevalence of network approaches, the definition of pathways
has seen little change. As structural, functional, tissue- and disease-specific aspects
come into consideration while identifying individual pathways, these differing
aspects also have to be taken into account when studying cross-talks. Different
studies address the role of cross-talks in the context of distinct cell fates, cell types,
single or multiple pathways. In Table 16.1 we list some examples for these dif-
ferent approaches.

Nowadays, systems-level and network-based methods have started to dominate
the study of signaling pathways, accordingly the systems level analyses of cross-
talks has become a major task. First of all, this requires a precise definition of
pathways and pathway borders. By reviewing the major issues of studying cross-
talks at the systems level, Gerstein and colleges point out that pathways compiled
from different systems and constructed for distinct purposes are not suitable for
examining cross-talks [13]. Bauer-Mehren et al. came to the same conclusion
while testing the cPath integrated database [14] and argue the need of new dat-
abases that make the study of cross-talks possible at the systems level [15]. These
require a compilation based on general principles and importantly, the use of
standardized methods. Among these, high-throughput (HTP) methods provide the
greatest number of protein–protein interactions (PPIs) and are therefore commonly
used in network biology research. However, for methodological reasons, these
HTP screens are unable to reveal interactions of extracellular, membrane-bound
and nuclear proteins—all of them important players in signal transduction. A
further problem of PPIs from HTP data is that they are mostly undirected, while
most of the reactions in the signaling network are directed.

Due to these limitations, manually curated databases have emerged as indis-
pensable tools for systems-level research of signaling pathways. Although usually
containing less information, they are more detailed and reliable. However, most of
these curated signaling databases both lack a precise definition of the pathways and
a standardized curation protocol. Consequently, it is difficult to compare the dis-
tinct pathways even within the same database, or to analyze interactions between
pathways. For extensive cross-talk analysis, a signaling database is required, that:
(1) has a structure fulfilling the modern requirements of systems biology; (2) is
objective and contains uniformly defined pathways; (3) contains sufficient and
reliable network information. Additionally, if the above criteria apply to multiple
species, this further allows prediction of new proteins, protein functions, and PPIs
based on orthology.
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Table 16.1 Examples of different approaches for the analysis of cross-talks ordered in growing
complexity

Cross-talk studies Cross-talking signaling
pathways

References Type and details
of the reference(s)

Modeling cross-talks in a
single pathway

Hyperosmolar and pheromone
MAPK pathway

[70] Research article on
mathematical
modeling and
experimental
validation

Cross-talks of a single
pathway in healthy
cell types

Cross-talks of TGF-b/BMP
with MAPK, PI3K/Akt,
WNT, Hh, notch, IL/TNF-
b/IFN-c pathways;

Cross-talks of notch with Hh,
JAK-STAT,TGF-b, RTK,
WNT pathways

[71, 72] Review articles

Cross-talks of a single
pathway in stem-cells

Cross-talk of WNT pathway
with FGF, notch pathways

[73] Review article

Cross-talks of two
pathways

EGF and Insulin pathways;
PI3K and ERK(MAPK)
pathways

[74, 75] Research articles on
computational
modeling and
experimental
validation

Cross-talks of specific
pathways in a specific
tissue

(many) [76] Research article

Interaction of multiple
pathways in stem
cells

Notch, WNT, TGF-b, BMP
pathways

[77] Review article

Coordination of multiple
pathways during
organ development

Hh, WNT, FGF, WNT, IGF;
EGF, notch, WNT

[86], [78,
79]

Review article

Cross-talk of multiple
pathways in an organ

Notch and WNT pathways [80] Research article on
experimental data

Cross-talk of multiple
pathways in the
development of
tumors

WNT, BMP, FGF, notch and
Hh pathways

[81] Review article

Interaction of multiple
pathways in normal
and stem cell
differentiation

JAK-STAT, notch, MAPK,
PI3 K/AKT, NF-jB, WNT,
TGF-b pathways

[85] Review article

Cross-talk of multiple (9)
pathways in a general
protein network

MAPK, TGF-b, notch, WNT,
Hh, mTOR, TLR, JAK-
STAT, VEGF pathways

[13] Review article

Extensive cross-talk
(580) of multiple
pathways in a general
protein network

(many) [82] Research article on
bioinformatic data

Cross-talks in
intercellular
communication of
two pathways in an
organ

FGF and BMP pathways [83] Research article on
experimental data
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16.3 Benchmarking Signaling Resources to Study
Cross-Talks

We examined 3 widely used, freely available general signaling pathway databases,
KEGG, Reactome and Netpath [16–19], and compared it with SignaLink, a
recently developed signaling pathway database intended for the analysis of sig-
naling cross-talks [6]. All four databases were constructed by utilizing different
sources and applying distinct methods, hence they greatly vary in a number of
aspects. KEGG contains pathway information from a large number of species,
whereas SignaLink deals only with data from the model organisms Caenorhabditis
elegans, Drosophila melanogaster and from human. In contrast, the data collected
in the Reactome and Netpath databases are restricted to human signaling path-
ways. In case of KEGG there is no clear pathway definition, thus, what is con-
sidered as an individual pathway is decided by the curator. In Netpath 10 immune
and 10 cancer signaling pathways were curated based on PPI data from the HPRD
resource [18, 19]. In contrast, the Reactome and SignaLink databases feature a
unified and available protocol for data collection. The pathways in SignaLink are
biochemically and evolutionarily defined and are identical with the pathway
grouping of [1]. It is important to note, that solely in virtue of the number of
pathways, these databases are not comparable. For example, in the SignaLink
database, the EGF/MAPK pathway contains the proteins and interactions between
the EGF ligand and the terminal MAPK proteins. While the grouping of these
interactions and proteins into a single pathway is biochemically and evolutionarily
reasonable, many databases scatter this pathway across many (sub)pathways (e.g.,
EGFR, RAS, p38, JNK, ERK, ASK). Although a relevant and objective pathway
definition decreases the overall number of pathways in the database, it avoids
artificial and biased pathway grouping.

An important aspect in manually curated databases is the assignment of proteins
to signaling pathways. In the Reactome and Netpath databases, this is entirely
dependent on individual experts who construct the pathways, but no references are
provided for the users. Similarly, in the KEGG and SignaLink pathways, to which
pathway a protein is annotated is decided by curators, but importantly, their
decision is based on published review papers from experts of the given pathway.
While KEGG collects the information from only a few (usually 5–10) reviews,
SignaLink uses 20–25 reviews per pathway and also adds additional PPI infor-
mation based on orthology. The reliability and utility of databases greatly depends
on the availability of published references, which underlie every single protein–
protein interaction. This is accessible for every interaction in the Reactome,
NetPath and SignaLink databases, however, KEGG only refers to review papers.

By comparing all 4 databases, SignaLink showed the largest overlap with the
other databases and contained the most references from the literature. Therefore,
we set SignaLink against the other databases comparing 7 human signal trans-
duction pathways in SignaLink (EGF/MAPK, IGF, Hedgehog, JAK/STAT, Notch,
TGF-b, WNT) with 7 human signaling pathways from KEGG (MAPK, Insulin,
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Hedgehog, JAK/STAT, Notch, TGF-b, WNT), 5 pathways from Reactome
(EGFR, Insulin receptor, Notch, TGF, WNT) and 5 pathways from NetPath
(EGFR1, Hedgehog, Notch, TGF, WNT). Regarding the number of proteins found
in the pathways, the 7 pathways in KEGG have 17 % less, the 5 pathways in
Reactome have 84 % less, while the 5 pathways in Netpath contain approximately
the same number of proteins as in the corresponding pathways in SignaLink. In the
case of so-called multi-pathway proteins [20], which participate in multiple
pathways and function in cross-talks, KEGG contains about the same number as
SignaLink, whereas only half of these types of proteins can be found in Reactome
and Netpath.

In comparing the number of PPIs, KEGG contains 52 % more interactions than
SignaLink, but notably, most of these interactions are artificial, as they were
obtained indirectly using a matrix method [21]. Interestingly, the number of cross-
talks linking distinct signaling pathways is about the same in SignaLink and
KEGG, therefore, the relative amount of cross-talks in SignaLink is probably
higher. In Reactome, when including all interactions within protein complexes,
this database has up to two times as many PPIsas SignaLink in overall, however,
without the protein complexes, the number of interactions is roughly equal.
Regarding the number of cross-talks, SignaLink contains almost three times as
many as Reactome, and this is not influenced by the presence of interactions within
protein complexes. In comparison to Netpath, SignaLink contains about three
times as many cross-talks, 1.5 times as many PPIs, while the number of proteins is
approximately the same, albeit with only about 30 % overlap between the two
databases [6].

Based on this comparison we can conclude, that the major advantage of Sig-
naLink over the other three databases is that it features precisely defined signaling
pathways, has detailed criteria for assigning proteins to pathways and uses a
unified curation method which makes a systems-wide analysis of signaling path-
ways possible. Furthermore, within the signaling pathways shared by all four
databases, SignaLink contains the most proteins, interactions and references. This
makes SignaLink an excellent resource for taking on the new challenges of signal
transduction research and for the efficient study of cross-talks.

16.4 Extending Signaling Pathways with Regulatory
Processes

Signaling networks can be divided into upstream and downstream subnetworks.
The upstream subnetwork contains the intertwined network of signaling pathways,
presented earlier, while the downstream, gene regulatory subnetwork (GRN)
contains transcription factor binding sites, transcription factors and microRNAs,
ultimately controlling global gene expression and the dynamics of protein output
in a living cell [22] (Fig. 16.1). The GRN can further be divided into
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transcriptional and post-transcriptional subnetworks. At the transcriptional level,
transcription factors (TFs) bind specific regions of DNA sequences (called tran-
scription factor binding sites (TFBS) or response elements) and regulate the
mRNA expression of transcription factor target genes. Post-transcriptionally, mi-
croRNAs (miRNAs) regulate gene expression by binding to complementary
sequences (i.e., miRNA binding-sites) on target mRNAs. The specific binding of a
miRNA to its target mRNA can suspend or permanently repress the translation of a
given transcript, thereby specifically inhibiting protein production [23, 24].
Despite the difficulties of identifying miRNA targets, it is predicted that nearly all
human genes can be controlled by at least one miRNA [25] and mutations in many
miRNA coding genes have pathological consequences [26]. The importance of
miRNAs in the regulation of protein–protein networks was highlighted by a
positive correlation between the number of repressing miRNAs and the protein
partners (i.e., degree) of a given protein [27]. Thus, proteins having many inter-
actors (i.e., protein hubs) are more tightly regulated than proteins with less in-
teractors [27]. In addition, a comprehensive analysis suggested that specific
biological processes are regulated by miRNAs through targeting the hub and
bottleneck proteins of the protein interaction network [28].

Recently, many databases comprising the downstream regulatory subnetwork
components of signaling pathways have been created. A compendium of human
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pathwayswith cross-talks

Network of 
transcription factors

Network of 

binding sites

Network of promoters 
and their transcripts

DNA

Signaling pathway components

Transcription factors (TFs)
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Layers of the signaling network

miRNAs

Network of miRNAs
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Fig. 16.1 Layers of the signaling network. In the upstream part the network of signaling
pathways contains the incoming signals (ligands) that activate receptors and mediator proteins to
reach the transcription factors in the nucleus. In the nucleus, the downstream, gene regulatory
network (GRN) contains four layers (networks): the network of transcription factors (TFs), the
network of TFs and their binding site in the promoter region of certain genes, the network
between these regions and their transcripts, and the network of microRNAs (miRNAs) and their
target mRNAs
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TFs have been collected and analyzed in [29], while their regulatory interactions
can be acquired from the resources JASPAR, MPromDB, PAZAR and OregAnno
[30–33]. Experimentally validated miRNA-mRNA interactions are available from
TarBase [34], while predicted interactions can be accessed at TargetScan and
PicTar [35, 36]. TransMir and PutMir contain TF-miRNA regulatory information
to examine how miRNAs are regulated [37, 38]. In addition, miRecords and
miRGen provide an integrated resource from where different miRNA-related
resources can be accessed [39, 40]. To examine the signaling network in a unified
fashion, integrated resources including IntegromeDB and TranscriptomeBrowser
3.0 have been developed, which allow the examination of all layers from signaling
pathways to miRNAs through TFs [41, 42].

As an update for SignaLink, we have recently developed an integrated database
on the regulation of signaling, containing information from C. elegans, D. mela-
nogaster, and humans (BMC Syst Biol. 7:1752-0509-7-7). Signaling pathway
information from SignaLink was integrated with major processes that regulate
signaling. First, on the bases of manual curation of primary literature and reviews,
we linked scaffold proteins, specific ubiquitin-ligases, and proteins involved in
endocytosis to pathway proteins. Next, we extended the network with the first
neighbors of the proteins based on directed protein–protein interactions (PPI). The
PPI data was retrieved from BioGRID, DroID, and WI8. The direction and the
confidence for each interaction was calculated based on domain–domain and
domain-motif interactions. In the next step, we included the underlying regulatory
network: (1) downstream transcription factors and their subnetworks, based on
manual curation of primary literature; (2) interactions between transcription fac-
tors and transcription factor binding sites of genes, using OregAnno, JASPAR, and
MPromDB; (3) mRNA transcripts (from ENSEMBL), miRNA transcripts (from
miRBase, miRGen and PutmiR), and their interactions (from miRecords and
Tarbase). The database can be freely downloaded for academic purposes in various
network file formats (BioPAX, SBML, CSV, etc.) via a BioMART-like download
page, where users can filter the datasets.

16.5 Pharmacological Relevance of Signaling Networks

Understanding the structure and mechanism of normal signaling networks can
reveal important targets for drug discovery. In many cases, these targets have no
direct relation to a particular disease but their stimulation or inhibition can have
beneficial systems-level effects on the cellular network, and lead to the survival of
the organism. Pharmacological modulation of key proteins of the signaling net-
work can influence the robustness of the cells for therapeutic purposes, e.g.,
increasing robustness in healthy cells and decreasing robustness in cancerous cells
during chemotherapy [43, 44]. Three members of the insulin signaling pathway
(PI3 kinase, AKT and IRS families) have already been identified as ‘critical nodes’
having distinctive roles in the junctions of signaling pathways and effecting the

470 M. Pálfy et al.



behavior of the cell during diabetes [12]. Hwang et al. developed the network
parameter bridging centrality to identify key proteins in signal flow-modulation as
promising drug targets [45]. The major strength of bridging centrality is that it
effectively combines local and global network properties. Proteins with high
bridging centrality (i.e., bridging nodes) are located in the critical sites of the
signaling network and connect different parts (regions or modules) to one another
[45]. They also found that many bridging nodes (e.g., SHC, JAK2, cortisol) had a
track record as effective drug targets [45].

On the other hand, gene expression and sequencing studies on pathologically
altered signaling networks can uncover possible drug targets whose malfunction
directly cause disease. For example, during tumorigenesis when cells acquire
continuous cell division and often increased mutation rate [46] most of the (driver)
mutations affect a limited number of central pathways [47]. Drug targeting of these
specific pathways could potentially prevent tumor growth. However, the devel-
opment of aggressive and malignant tumor cells cause a systems-level change in
the signaling network [48], thus their therapeutic treatment poses a major chal-
lenge. The pathological rewiring of the signaling network allows the appearance of
cancer hallmarks, including sustained angiogenesis and metastatic tissue invasion
capabilities [49], as well as the deregulation of cellular metabolism and avoidance
from immune destructions [50]. The effect of signaling rewiring on cancer hall-
marks was shown in prostate cancer [51]. Several works demonstrated that
changes of cross-talk (i.e., multi-pathway) proteins are important for the rewiring
of the signaling network [48, 52, 53]. Mutation even in one multi-pathway protein
can have a systems-level effect as it can significantly alter the signaling flow, for
example, transducing a ‘death’ signal to a ‘survival’ transcription factor [49, 54].
Similarly, we found a significant change in the expression level of multi-pathway
proteins in hepatocellular carcinoma [6]. Accordingly, multi-pathway proteins are
often altered in systems diseases such as cancer, thus, they are among the most
promising drug targets [20]. Pharmacological modification of these proteins can
re-transform the rewired cancerous signaling network.

Kinases are traditionally among the most targeted proteins of the cellular sig-
naling network [55] although their selective targeting is a challenge for drug
development. Kinase domains and their target motifs (i.e., specific amino acid
sequences in the substrate proteins) are well-known and comprehensively com-
piled in resources such as Phosphosite [56], NetworKIN and NetPhorest [57, 58].
Regulatory domains of these kinases and scaffold proteins are also important to
maintain kinase-substrate or scaffold-substrate specificity [59] but our systems-
level knowledge on these (undirected) protein–protein interactions are less limited
than the directed phosphorylation data.

It is important to highlight that less attention has been taken on the other players
of the phosphorylation system: the protein phoshatases. As reviewed by Kholo-
denko and colleagues [60], protein phosphatases can play a dominant role in
determining the spatio-temporal behavior of protein phosphorylation systems in
the cell as both immediate and delayed negative regulators. Thus, pharmacological
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targeting of phosphatases can modify the signaling network at the systems-level.
Despite their promising effect, only a few protein tyrosine phosphatases are cur-
rently used as therapeutic targets [61]. The development of drugs specifically
targeting phosphatases is much more complicated than the development of anti-
kinase drugs for the following reasons: (1) high-level of homology between
phosphatase domains limits the development of selective compounds; (2) contrary
to kinases, phosphatase substrate specificity is achieved through docking of the
phosphatase complex at a site distant from the dephosphorylated amino acid [62,
63]; (3) the targeted sequences are highly charged, and many of the developed
drug compounds cannot cross the membrane [64]. Resolved phosphatase-complex
structures and detailed knowledge of their enzymatic activity will allow effective
drug development and their utilization as systems-level drug targets.

Recently, miRNAs have been recognized as highly promising, non-protein
intervention points in the signaling network. Therapeutic targeting of regulatory
components is a challenging task because of specificity and pharmacological
availability (i.e., therapeutic agents often have off-target effects and hardly enter
the nucleus). Pharmacological modulation of protein and miRNA expression with
an antisense strategy appears to be more specific than targeting TFs, TFBSs and
miRNA promoters [65]. Specificity comes from the fact that antisense strategy
affects single miRNAs and miRNA families that are specific for a given mRNA (or
mRNA cluster), while TFs and promoters have less specific effects on the whole
transcriptome [65].

Besides specificity, miRNAs can be important therapeutic targets, as their
down- or up-regulation is implicated in more than 270 diseases according to the
the Human MicroRNA Disease Database [66]. The diseases where altered
expression of miRNAs have been reported include cardiovascular, neurodegen-
erative diseases, viral infections like HIV and various types of cancer [67]. The
development of therapeutic strategies involving miRNAs requires the exploration
of the signaling network. Therapeutic miRNAs can only be selected if their
mRNA-interactions have been confidently identified and experimentally validated.
These interactions can be accessed in specific and integrated resources listed in the
previous section. In addition, evaluation of the cellular processes that are affected
by the given miRNA is also necessary to avoid side-effects and unwanted drug
effects. Web-services, such as Pathway Linker (http://PathwayLinker.org; [68])
have been developed for this purpose. As miRNAs often have multiple targets
analysis of the network of the affected proteins (encoded by target mRNAs) can
facilitate pharmacological development: identification of proteins whose knock-
down has limited side-effects and toxicity profiles can be promising agents for
miRNA-based therapeutics [65]. Such side-effects can be analyzed by databases
such as SIDER [69].
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16.6 Conclusion

The study of cross-talks has emerged as an important field in signal transduction
research. To identify cross-talks and understand their roles in development and
disease, one needs to analyze signaling networks at the systems level. Decades of
research on signaling pathways and modern high-throughput methods have pro-
vided large data sets on the signaling components. Still, only a small number of
databases fulfill the requirements of analyzing cross-talks at the systems level. By
comparing 4 signaling databases (KEGG, Reactome, Netpath and SignaLink) in
terms of pathway definition, curation methods, protein number, PPI number and
the number of cross-talks, we point out that the SignaLink database is a valuable
resource for cross-talk research. Signaling pathways are strictly regulated by
downstream components, including transcription factors and miRNAs. Informa-
tion on this gene regulatory subnetwork has been compiled into various databases
which serve specific needs. For a comprehensive analysis of signaling from ligand
binding to alterations in gene expression, integrated databases containing a great
number of regulatory components (including both posttranscriptional and post-
translational modifications) of signaling proteins are needed. These will contribute
to the understanding of systems biology diseases such as cancer, and help predict
more efficient drug targets for fighting against these diseases.
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Chapter 17
A Survey of Current Integrative Network
Algorithms for Systems Biology

Andrew K. Rider, Nitesh V. Chawla and Scott J. Emrich

Abstract The goal of systems biology is to gain a more complete understanding
of biological systems by viewing all of their components and the interactions
between them simultaneously. Until recently, the most complete global view of a
biological system was through the use of gene expression or protein-protein
interaction data. With the increasing number of high-throughput technologies for
measuring genomic, proteomic, and metabolomic data, scientists now have the
opportunity to create complex network-based models for drug discovery, protein
function annotation, and many other problems. Each technology used to measure a
biological system inherently presents a limited view of the system. However, the
combination of multiple technologies can provide a more complete picture. Much
recent work has studied integrating these heterogeneous data types into single
networks. Here we provide a survey of integrative network-based approaches to
problems in systems biology. We focus on describing the variety of algorithms
used in integrative network inference. Ultimately, the survey of current approaches
leads us to the conclusion that there is an urgent need for a standard set of
evaluation metrics and data sets in this field.

Keywords Network inference � Integrative networks � Systems biology

Acronyms

PPI Protein-protein interaction
GO Gene ontology
TF Transcription factor
TFBS Transcription factor binding site
eQTL Expression quantitative trait locus

A. K. Rider � N. V. Chawla (&) � S. J. Emrich
Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN, USA
e-mail: nvchawla@nd.edu

A. Prokop and B. Csukás (eds.), Systems Biology,
DOI: 10.1007/978-94-007-6803-1_17,
� Springer Science+Business Media Dordrecht 2013

479



17.1 Introduction

The history of genetics has been a process of uncovering increasing amounts of
complexity and depth in biological systems. In the past, we knew that DNA was
transcribed into RNA and then translated to proteins. Our growing knowledge of
alternative splicing and other post-transcriptional regulation complicated this
view. We knew that transcription factors were the primary regulators of gene
expression. This view became complicated by our increasing knowledge of the
regulating effect of phosphorylation on transcription factors. Given the complexity
of biological systems and the certain knowledge that we do not fully understand
fundamental aspects of biology, it is important to carefully consider how prior
knowledge and diverse data types are incorporated into computational models.

As we learn more about genetics, it is becoming increasingly clear that the traits
and behaviors of organisms are emergent: they are the product of complex
interactions between numerous biological components. In systems biology, net-
works are used to capture this complexity by modeling an entire biological system.
This approach gives scientists a global view of a biological system that can enable
further understanding of the nature of human disease as well as new tools to
understand the processes driving life [1].

Networks are versatile tools that have been used to model interactions between
numerous different biological concepts. Nodes can be used to represent genes,
proteins, metabolites, or any other discrete biological component or concept.
Edges in the network may represent the relationship between a gene and a protein,
similarity of function between genes, or any other pair of biological concepts.
Edges may represent multiple types of relationships simultaneously. Each type of
relationship reveals unique information about an organism. For example, protein-
protein interaction (PPI) data reveals which proteins can physically interact, but
alone it does not impart knowledge about how an organism will react to stimuli.
Similarly, gene expression data can reveal how an organism responds to stimuli in
terms of the amount of RNA produced but it does not impart any knowledge about
the physical mechanisms that cause change in the organisms behavior. Therefore,
the key to furthering our understanding of biological systems the integration of
diverse data types.

Differences in the underlying architecture of networks can affect their utility.
Directed networks such as Bayesian networks or networks that use asymmetric
edge weighting metrics implicitly contain some indication of causality [2, 3].
These methods are well suited for making specific inferences about how the effects
of a perturbation to one or more genes will propagate through the network.
Undirected networks make fewer assumptions about how nodes are connected and
are often less computationally demanding to construct but may yield less specific
information.
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17.1.1 Contributions

There are a number of review articles that cover network inference. De Smet and
Marchal [4] reviews network inference and integrative methods in the context of
how they approach the problem of underdetermination. Sharan et al. [5] reviews
several integrative network methods in the context of clustering. Hecker et al. covers
network models for time course behavior of gene expression data and integration of
heterogeneous data sources. They discuss a wide range of network inference algo-
rithms both within and outside of the context of integrative approaches. They cover
the inclusion of previous biological knowledge such as expected network topology.
In terms of the integration heterogeneous data types, they primarily cover Bayesian
networks [6]. Gitter et al. [7] survey a number of approaches to integrate time series
data with various heterogeneous data types gathered from single time points to create
dynamic regulatory networks. Califano et al. [8] review a number of integrative
networks approaches in terms of the combinations of data used. They describe how
different approaches use different combinations of data types to uncover specific
relationships in the data. They also address the need for more focus on awareness of
context specific regulation in network models. Bebek et al. [9] focus on integrative
approaches specifically used for the identification of biomarkers and the betterment
of clinical science. In this work, we focus on presenting a wide range of integrative
model types and exclusively on the integration of heterogeneous data. Our purpose is
to provide a familiarity with the variety of algorithms used for integration in network
models.

In Sect. 17.2 we discuss some of the most commonly used data types in inte-
grative network models. Section 17.3 covers the problem of network inference in
the abstract. In Sects. 17.3.1 through 17.3.4 we discuss various approaches to
network inference and cover examples of each in some detail. Sections 17.3.1 and
17.3.2 cover Bayesian and other probabilistic networks. Section 17.3.3 discusses
integration methods based on machine learning techniques. In Sect. 17.3.4 we
cover techniques that rely on identifying modules in networks and context specific
regulatory patterns. Finally, in Sect. 17.4 we discuss some of the patterns that
emerge from examining the variety of methods discussed in the previous sections.
We conclude that there is an urgent need for consensus about how to evaluate and
compare models.

17.2 Data

Each data type is measured in a unique way. Additionally, two data sets describing
the same type of data may not be comparable due to differences in scale, noisy
data, or measurement errors. Therefore, normalization and the use of well curated
data are essential for meaningful comparisons between data sets and the integra-
tion of diverse data types. For example, microarray results have been shown to
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vary based on the location of probes on the chip, complicating comparisons
between results gathered with different chips [10]. Even assuming identical chips,
different approaches to normalization can have significant impact on the meaning
of the data and on the validity of comparisons between data sets [11]. Another
complication is that there are multiple methods to measure the same data type.
There are many distinct methods to measure PPI, each with different strengths and
weaknesses [12]. For example, Affinity Capture-MS protein interactions are
determined by using a ‘‘bait’’ protein that is ‘‘captured’’ by a polyclonal antibody
or an epitope tag. The associated partner is then identified by mass spectrometry.
An alternative approach, co-immunoprecipitation, isolates a protein with anti-
bodies. Interacting partner proteins are then detected with western blotting. Dif-
ferent methodologies in data collection add noise or bias in different ways that
must be accounted for in the analysis.

Precursors to integrative networks used microarray expression data alone to
infer regulatory and other types of relationships between genes. Microarrays
enable high-throughput measurement of the expression level of genes. Expression
levels measure the relative amount of RNA produced from the transcription of
genes. RNA levels give some indication about the amount of protein that is
expected to be produced. Since proteins are the primary causes of change in a cell,
expression data can give indirect evidence towards answering many different
questions in systems biology. Many studies have relied on clustering and network
models to identify functionally similar genes or infer regulatory networks based on
expression data [13–17].

Protein-protein interactions provide more direct information in the form of
which proteins physically interact. Like expression data, PPI data is commonly
used to cluster genes or proteins or to infer networks in order to identify novel
interactions or determine function [5, 18].

Some data types are themselves integrative. The ChIP-chip technique combines
microarrays with chromatin immunoprecipitation to allow the identification of
protein binding sites on DNA [19]. This is particularly useful for the study of
transcription factors (TFs) which are proteins that transcribe DNA into RNA and
are thought to play a major role in the regulation of gene expression. Motifs or
identifiable strings of DNA can also be located computationally from sequence
data to identify potential transcription factor binding sites (TFBS). Expression
quantitative trait loci (eQTLs) use genetic variation between individuals in com-
bination with gene expression data to measure the association between expression
levels and genotypes. An expression trait refers to the amount of RNA produced by
a gene. Each eQTL represents a strong association between a position or locus in
the genome and the expression level of a gene. eQTLs describe the relationship
between genotype and phenotype and enable inferences about the regulatory
interactions between genes [20].

Annotation data can come from many sources and can describe experimentally
or computationally derived knowledge such as functions associated with biological
components or pathways that components are a part of. The Gene Ontology (GO)
keeps curated functional annotations for genes [21]. Annotations exist in a
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hierarchy such that a gene my have a number of general and specific functions.
Pathway information describes the chain of biological components involved in
causing some event or fulfilling some function in a cell. Many databases exist to
curate pathway and other data types, often for specific organisms [12, 22, 23].

One consideration that affects many data types is the experimental conditions
under which measurements are taken. For example, the expression level of genes
can change drastically based on environmental and genetic conditions [20, 24].
Common genetic conditions include gene knockout experiments, in which a gene
is made inoperative, and chemical or environmental treatments. Measurements
may also involve an element of time under a condition or after a treatment.

17.3 Network Inference

The basic problem of network inference is to create a network that has a mean-
ingful topology. Ultimately this means creating a sparse network in which only
important edges are present. This is accomplished in various ways by different
algorithms. In the abstract, there are two general types of networks: distance-based
networks and probabilistic networks.

Network inference algorithms universally depend on some measure of depen-
dence or distance between biological components. The approach used to calculate
edge weight can have a significant effect on what is contained in the resulting
network [25, 26]. Mason et al. [27] compared co-expression networks based on
Pearson’s correlation to co-expression networks based on the absolute value of
Pearson’s correlation and showed that modules in the signed network are more
biologically coherent. Probabilistic network inference faces a similar problem in
that conditional probabilities can be calculated in a number of different ways.

The fundamental assumption in relevance networks and other distance-based
networks is that relationships between biological components can be accurately
ranked in some meaningful way. Once the relationships between all components
have been quantified, edges are removed from the network. This results in a sparse
network with some meaningful topology that is determined in part by the edge
weighting method and in part by the pruning criterion. Each approach makes
different underlying assumptions that can impact the information contained in the
network. Relevance networks make inherent assumptions in the choice of
weighting method and the pruning approach. The underlying assumption is that the
weighting method correctly ranks edges in terms of importance. Zhou et al. [28]
use Pearson’s correlation to infer a co-expression network for yeast. They use the
shortest paths between all nodes in the network to identify functionally related
genes. This approach assumes that transitive relationships that are represented in
the network may be as important to understand relationships between genes as
direct relationships. ARACNE makes the opposite assumption and explicitly
disallows triangles in the network, assuming that all triangles contain an indirect
relationship that should not be explicitly represented in the network [16].
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Additional approaches in this category use LASSO (Least Absolute Shrinkage
and Selection Operator) or related linear methods to explicitly penalize and
eliminate weak relationships [29]. LASSO and related approaches optimize the
parameter vector of linear equations such that their ‘p norm is less than or equal to
a given value. LASSO’s constraint is based on the ‘1 norm whereas other
approaches may use different norms or a combination of norms as is the case with
elastic nets [30]. Such approaches are used to discover a sparse topology and
replace an arbitrary threshold with a more principled one [31–33]. One recent
related integrative approach uses Multi-Block Partial Least Squares (sMBPLS) to
find sets of input variables from multiple data types including copy number var-
iation, DNA methylation, and microRNA expression that together explain the gene
expression in cancer data [34]. Li et al. [35] use a tensor-based approach to
identify sets of recurring subgraphs from large sets of heterogeneous biological
networks. This approach is similar to LASSO and similar approaches in that the
sparseness of the resulting networks are controlled primarily through the choice of
‘p norm in the objective function.

Other approaches that can be described by the category of distance-based
networks focus on machine learning techniques such as feature selection and
decision trees. MRNET uses a maximum-relevance minimum-redundancy feature
selection method to identify important neighbors for every node. After the pair-
wise mutual information between expression levels of all genes is calculated,
edges are effectively pruned by the feature selection algorithm. For each node, the
algorithm selects the neighbor with the highest mutual information that has the
lowest redundancy with the neighbors already selected. Neighbor selection stops
when the score of the next best neighbor is below a threshold [17].

Probabilistic or graphical models represent the dependence between random
variables as nodes in a network. Edge weights represent conditional probabilities.
This approach naturally captures the noise and stochastic nature of biological data.

17.3.1 Bayesian Networks

Bayesian networks are one of the most commonly used methods of integrating
diverse biological data types. Using this approach, measurements of a gene’s
expression levels may be interpreted as samples from a random variable. Rela-
tionships in Bayesian networks are directed, reflecting the conditional dependence
between variables. As such, they are often interpreted as causal. This interpretation
allows Bayesian networks to represent pathways and to be used to predict the
effect of perturbations to the system. Bayesian networks can be discrete, contin-
uous, or a mixture of both.

Discrete Bayesian networks model the probability of discrete states. For
example, an edge between nodes A and B can indicate the probability that gene B
is highly expressed given the state of gene A. Discrete Bayesian networks may
require that each node have a prior distribution to represent the possible prior
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states of the variable. A model relying only on the frequency of observed values
may be unable to assign a probability to new observations if they do not fall within
the observed range. Discrete Bayesian networks can model relationships in the
data relatively concisely with a conditional probability table for each node that
lists the probability of each state given the inputs. One drawback is that discret-
ization of the data may lead to information loss. Bayesian networks that use
continuous variables rely on conditional probability densities instead of condi-
tional probability tables. Continuous variables may also be modeled using linear
conditional densities, in which the conditional density of a node X is dependent on
its parents as shown in Eq. 17.1. The equation shows that the conditional density
of X given its parents p is linearly dependent on the values of the parents. It is
common to use a normal distribution in this approach. Continuous Bayesian net-
works do not lose information due to discretization but it is more computationally
complex to infer the continuous model than the discrete model.

PðXjp1; . . .; pnÞ ¼ Nðb0 þ
Xn

i

bi � pi; r
2Þ ð17:1Þ

There are three major steps in Bayesian network inference. First, a structure
must be proposed. Second, the parameters or probabilities associated with edges
and nodes must be set. Third, networks must be evaluated to determine how well
they model the data. These steps are commonly used iteratively to propose a
structure and parameters, then evaluate the model against further structural
changes. This process allows a search through potential Bayesian network models.

Identifying edges in the network is a critical step in Bayesian network infer-
ence, as the direction of edges can greatly affect the interpretation of the model.
The presence or lack of edges between nodes can also have a large effect as it
determines the conditional relationships between variables. The most straightfor-
ward method to infer network structure would be to exhaustively compare every
possible network. This approach is prohibitively expensive, as the number of
possible networks grows super exponentially with the number of nodes [36].
Practical methods rely on sampling or heuristics to reduce the search space
dramatically.

The sparse candidate algorithm relies on simple local statistics such as corre-
lation to identify potential parents for each gene [2]. It greatly reduces the search
space by evaluating edges only between a node and its candidate set. The algo-
rithm can then use hill-climbing or a divide and conquer approach to determine
edges. Choices made early in the assignment of edges can result in a restricted
search space. Therefore, the algorithm iteratively creates a network then updates
the candidate parent sets for each node by replacing nodes in node X’s candidate
set with a transitive relationship with nodes that had a weaker dependency with X.

Sampling methods such as the Metropolis-Hastings algorithm can be used to
reduce computational cost of structure learning at the expense of an accurate
description of the data. Sampling and other inexact techniques are often used
repeatedly and then averaged to form a single network. Alternatively, one model
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or a few ‘good’ models can be selected as representative of all possible models.
This process is called model selection when one network is chosen or selective
model averaging if multiple representative networks are averaged [37].

Model parameters in Bayesian networks are conditional probability distribu-
tions or tables. A continuous node may assume that the observed data come from a
normal distribution. However, the parameters of the distribution, the mean and
standard deviation, may be incorrect. If the assumed distribution or prior is
incorrect then the calculated probability of an observed instance and the fit of the
network to the data will be incorrect. Parameter fitting is the process of calculating
the priors and conditional probabilities in the network.

In Eq. 17.2, D is the data, E is background knowledge, and h is the model.
pðhjEÞ and pðhjD;EÞ are the prior and posterior probability distributions for the
model h, respectively. The prior describes the agreement between the prior
knowledge and the network. The posterior describes how well the model fits the
observed data. We direct the reader to Heckerman [38] and Needham et al. [36] for
a more thorough treatment of parameter fitting and the selection of priors.

pðhjD;EÞ ¼ pðhjEÞpðDjh;EÞ
pðDjEÞ ð17:2Þ

There are two primary ways to include prior knowledge in Bayesian networks.
The first is to constrain the edges in the structure learning step. This is a commonly
used approach to integrate heterogeneous biological knowledge [39, 40]. The sec-
ond is to update the priors in an iterative process. Often, a Bayesian network will be
inferred and the parameters fitted to one type of biological knowledge, then priors
are updated to take into account additional sources of data iteratively [41, 42].

Zhu et al. use a mixture of constrained and prior-updated techniques to inte-
grate data types into a Bayesian network. They use the sparse candidate algorithm
to infer structure in Bayesian networks based on only expression data, based on
eQTL data, and based on expression data, eQTL data, TFBS, and PPI data [39].
For each network type, they learned 1,000 networks and determined a consensus
network that consisted of edges that were present in at least 30 % of the networks.
Loops were resolved by removing the weakest edge. Prior knowledge gained from
eQTL data was incorporated by constraining edge direction such that genes with
cis-acting eQTLs (as defined in Doss et al. [43]) are considered as potential parent
nodes for genes with trans-acting eQTLs in the same region of the genome.
Representative genes were used to incorporate TFBS and PPI data. They used a set
of genes that were determined to be the most strongly associated with a tran-
scription factor to represent each transcription factor in the network. The prior
probability that the gene associated with a transcription factor is the parent of other
genes that carry the TFBS was proportional to the number of expression traits
correlated with the transcription factor’s expression levels. The inferred networks
were evaluated in terms of predicting functional categories from the Gene
Ontology, predicting genes regulated by various transcription factors, and pre-
dicting the response of gene expression to gene knockout experiments.
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17.3.2 Other Probabilistic Networks

While Bayesian networks are a popular approach to integrating diverse data types,
there are many other network models that rely on a probabilistic interpretation of
the data. As is the case with Bayesian networks, learning the structure of proba-
bilistic models in general can be computationally prohibitive. Structure learning
for probabilistic graphical models has been the subject of much recent research.
Wainwright et al. [44] use ‘1 regularized logistic regression to learn the structure
of each node’s neighborhood in a Markov network. Other approaches make the
structure learning problem tractable by restricting the model’s structure. Choi et al.
[45] propose algorithms to learn tree-structured probabilistic models. Srebro [46]
controls the tree-width (maximum clique size) of Markov networks in order to
limit the computational cost of inferring network structure while providing a
provable performance bound. This is by no means an exhaustive list of approaches
to infer probabilistic networks. Many approaches fit a prior distribution to the data
in order to measure explanatory power. Friedman and Nachman [47] use Gaussian
processes to learn the structure of Bayesian networks. Gaussian processes model
the relationship between a set of variables and an output variable by defining a
mean function and a covariance function over the random input variables. In this
approach, response variables are modeled as mixtures of related Gaussians. The
structure of a candidate network can be evaluated by computing the marginal
likelihood of the data given the structure.

Tu et al. [48] use a stochastic network to integrate PPI, TFBS, phosphorylation,
eQTL, and expression data in order to identify causal genes and regulatory
pathways. Their model works under the assumption that causal or regulating genes
in the network regulate their targets through either direct or indirect affects on the
activity of transcription factors. They take into account the possibility that tran-
scription factors can be regulated at the protein level. They also make the common
assumption that gene activity correlates with gene expression. Protein-protein
interactions are represented in the network as undirected edges, protein phos-
phorylation and TFBS are represented as directed edges. Each node has a set of
transcription factors that bind to it and a set of genes with eQTLs that are candidate
regulators. For each node in the network they estimate the likelihood that every
neighboring gene is the cause for its expression by calculating Pearson’s corre-
lation between the expression level of the two genes. The algorithm determines the
causal regulator of gene G by taking random walks without cycles along the edges
in the network until it reaches a candidate eQTL gene. They used this algorithm on
subsets of expression data from specific treatments as well as with bootstrapped
samples to observe variation in transcription factor activity and account for vari-
ation in expression levels. The method was evaluated by comparing predicted
relationships against a compendium of gene knock-out expression data.

Lee et al. propose a method to represent functional associations between
biological components. They use a Bayesian statistics approach to determine the
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likelihood that genes are functionally linked based on evidence from heteroge-
neous data sources [49]. They use microarray data, philogenetic profiles, PPI,
functional linkages from text mining, as well as four other data types. Their log-
likelihood score compares the frequency of linkages in each data type between
genes that share a pathway to the frequency of linkages between genes that do not
share a pathway. In Eq. 17.3, PðLjEÞ is the frequency of linkages (L) in a data type
(E) between genes in the same pathway, � P(L|E) is the frequency of linkages
between genes in different pathways for the data type. P(L) and � P(L) are the
total frequency across data types of all linkages between genes sharing a pathway
and not sharing a pathway, respectively.

LLS ¼ PðLjEÞ=�PðLjEÞ
PðLÞ=�PðLÞ ð17:3Þ

This method relies on the use of the KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway and sub-cellular location data as ground truth data for the
calculation of LLS [22]. The use of a common ground truth allows scores for
different types of data to be meaningfully compared. The resulting integrative
network showed improved accuracy in terms of linking genes that share pathways
in the KEGG database over other methods.

Other methods integrate diverse data types and model the stochastic nature of
biological systems use hidden Markov models, Markov networks, and naïve Bayes
models [50–52].

17.3.3 Statistical and Machine Learning Approaches

Machine learning and statistical approaches are distance based as many provide
some confidence or probability that a prediction is correct. They tend to be dif-
ferent from other distance based methods in that the distances are often determined
in a supervised manner.

SEREND is a semi-supervised network construction method that integrates
TFBS, DNA sequence binding motifs, and gene expression data to predict tran-
scription factor-gene interactions [53]. It uses a logistic regression classifier for
expression data and sequence motif data, then combines the two in a hierarchical
classification scheme by training a third logistic regression classifier on the output of
the other two classifiers. In experimentation, features for the classification of
expression data were from 455 expression experiments from a compendium of
treatment experiments. Each instance corresponded to a gene. Class labels were
activated by a transcription factor, repressed by a transcription factor, or not regu-
lated by a transcription factor. The motif classifier used only a single feature to
classify genes as regulated by the transcription factor or not regulated by the tran-
scription factor. If the meta-classifier found that there was enough evidence that a
non-regulated gene was regulated by a transcription factor, then the algorithm would
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switch the label from not regulated to regulated and update the weights for all
classifiers. This process allows SEREND to iteratively expand its predictions
about transcription factor-gene relationships until they converge. SEREND was
evaluated in terms of how well it recovered gene targets that were verified in a ChIP-
chip data set.

Hwang et al. [54] use a few statistical methods to combine p-values from
different data sets. They use an ensemble of Fisher’s weighted F, Mudholkar-
George’s weighted T, and Liptak-Stouffer’s weighted Z where the weight is a
measure of the relative statistical power for each data set. They determine a
combined weight by comparing a hypothetical weight distribution to an observed
distribution. The resulting integrative network has a p-value for each node and
edge that indicates the confidence that the node or edge belongs in the network.
Multiple approaches were tested on simulated data sets, which allowed a com-
parison on the basis of ground truth data.

The modENCODE Consortium is a group that collects a great deal of diverse
data about model organisms [55]. They use correlated activity patterns from over
700 data sets to define a functional regulatory network. They use logistic regres-
sion to classify promoters as active or inactive based on chromatin modification,
TFBS, and nucleosome physical properties. The resulting probabilities are used to
weight the confidence of each regulatory edge in the network. They evaluated
inferred networks based on the enrichment in the network compared to randomized
networks of GO terms, correlation of gene expression across time, frequency of
protein-protein interactions in the network, and other metrics.

The STRING (Search Tool for the Retrieval of Interacting Genes) database is a
collection of data for the understanding of functional interactions among proteins
[56]. Interactions in the database come from many curated data sets from multiple
organisms as well as from text mining the literature, predicted interactions from
gene co-expression and cross-genome homology. Each interaction in the database
has a confidence score assigned to it based on benchmarks against a trusted PPI
data source, the KEGG database. Each data source is individually benchmarked
and then combined in a naïve Bayesian approach by simply multiplying the nor-
malized scores together. Interactions with more support from multiple sources of
data will naturally have a higher combined score. STRING is properly a search
tool rather than an integrative network inference method. As such, it does not
attempt to evaluate the resulting network but provides the ability to alter the data
types included, as well as access the raw data.

An alternative approach to modeling heterogeneous data in a single network is
to use multiple edge types in what is called a multi-relational network. Davis and
Chawla [57] use this approach to make predictions about disease occurrence in
patients and study the relationship between diseases and genes. They combine a
network of disease co-morbidity data with a network of genes related to each other
by their relationship to the same disease. They then use a link prediction method
that uses a triad census (counting the occurrences of sets of three nodes with each
possible combination of edges) as the basis to predict unknown genetic links.
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Predicted links were benchmarked against a number of canonical link prediction
methods and performance was measured in terms of area under the ROC curve,
and the precision-recall curve.

17.3.4 Modular Networks and Condition Specific Regulators

One of the fundamental problems in creating a network model for regulatory
interactions in the genome is that the regulatory program of a cell appears to
change under different conditions [58]. Network modules can be viewed as dis-
crete groups composed of many types of molecules whose function is separable
from other modules. The aggregate expression of these modules may have con-
dition specific regulators. Integrative network approaches to modeling condition
specific regulatory networks rely on compendiums of expression data from dif-
ferent experimental conditions and commonly use TFBS, ChIP-chip, or other
protein-DNA interaction data [59–61].

SAMBA integrates heterogeneous data from gene expression, PPI, phenotypic
sensitivity, and TFBS sources into a probabilistic bipartite network in order to
identify genes with common behavior across experiments [62]. The nodes on one
side of the network are genes and the other side are properties of genes or proteins.
Weighted edges in the network between node N and property P are interpreted as
the probability that node N has property P. Property nodes can indicate anything
from interaction with a specific protein to different levels of discretized gene
expression. Subgraphs are scored based on the log ratio of the observed topology
under two statistical models, a model for the dependency expected in modules and
a model for the background dependency. Biclustering is used to identify gene sets
that share sets of properties. Modules are evaluated in terms of functional
enrichment based on the Gene Ontology. It finds complete bipartite subgraphs with
high density by using a hashing technique to find ‘seed’ nodes and then using a
local search to identify other nodes in the module.

DISTILLER is an integrative framework to identify condition-dependent
modularity and regulatory relationships [63]. It uses an efficient item set mining
algorithm to identify modules. It starts with ‘‘seed’’ modules, consisting of a small
number of genes that are co-expressed in a sufficiently large number of conditions
and share motifs for the same regulators. Seed modules are expanded to nodes that
do not violate the module properties. A drawback of the item set mining approach
is that it can be difficult to identify the most interesting modules from the large
amount of potentially redundant output. DISTILLER ranks modules by a measure
that takes into account how much they help to cover the entire condition space and
their redundancy with already ranked modules. DISTILLER was evaluated in
terms of precision and recall on a ChIP-chip gold standard data set.
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17.4 Discussion

While there are many benefits to integrating diverse data types, integration of prior
knowledge may reinforce bias in network models to the detriment of new dis-
coveries. For example, a number of networks papers have observed that many
biological networks appear to have scale-free topology [64, 65]. In response,
methods to infer or evaluate networks based on their topology have been devel-
oped. Networks inferred using this criterion will systematically overlook possible
networks with alternative architectures [66]. There is evidence that this may be
happening as many of the observed scale-free topologies in biological networks
may not truly be scale free. Clauset et al. [67] showed that the methods used to
measure scale-free topology in many preceding studies of biological networks
were unable to distinguish between power-law distributions (such as scale-free)
and a number of other distinct distributions. Bias may also enter into models
through other prior knowledge. For example, Zhu et al. [39] and Tu et al. [48] both
constrain their models to use trans-acting eQTLs to constrain edges but the defi-
nition of trans acting is different.

Network inference methods that are constrained to include edges from PPI,
TFBS, eQTL, or other data may reinforce bias in the models as they do not allow
room for error in the data. Less constrained approaches avoid this problem but may
add a more subtle bias to the model. Many integrative network approaches con-
struct a single network by integrating data based on a single algorithm [39, 40, 53].
As is the case with different types of data, different algorithms contain different
biases. Bayesian approaches that create an ensemble or consensus model with
Monte Carlo techniques may suffer less from this type of bias but may reduce bias
further by use of fundamentally different algorithms.

The problem of evaluation is made extraordinarily difficult in systems biology
by the scarcity of ground truth data. Even curated data sets such as PPI data from
KEGG that are used to benchmark novel methods are based on uncertain data. The
problem of network evaluation has been noted before in the single data type
network inference problem [68]. Marbach et al. propose a unifying approach to the
evaluation of network models that includes common evaluation metrics and
simulated data. While these are excellent suggestions, the problem is made much
more complicated by the diversity of data involved in integrative methods.

Any single type of data presents a one-dimensional view of a biological system.
Therefore, evaluation based on a single data type may not be a baseline for the
performance of an integrative method. Furthermore, different approaches tend to
use different amounts and types of data, making the actual methods themselves
very difficult to compare. There are, of course, high-confidence experimentally
derived interactions, but it can be difficult to locate and identify them. Databases
such as STRING, KEGG, and modENCODE will be critical for the future progress
of integrative network models because they provide this service. The creation of a
common body of data for evaluation and a standard for evaluation methods for
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integrative network approaches would allow integrative network algorithms to be
truly compared. This in turn could help us to better understand the complex
interplay of diverse data types.
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Chapter 18
Direct Computer Mapping Based
Modeling of a Multiscale Process
Involving p53/miR-34a Signaling

Béla Csukás, Mónika Varga and Aleš Prokop

Abstract We studied a simplified multiscale biosystem with a new modeling and
simulation methodology. The biosystem was a consciously, but arbitrarily selected
multiscale part of the p53/miR-34a related signaling process that has an important
role in tumor resistance, in cancer diagnostics, as well as in the therapy of various
tumors. The multiscale model covered a vertical slice of the system from the
change of a pathologic stage to the detailed dynamic molecular processes and vice
versa. We employed the Direct Computer Mapping of process models for dynamic
simulation of this typical multiscale, hybrid biosystem. The major advantage was
the unified representation of the various quantitative and qualitative sub-models, as
well as the easy combination of these various models within the unified simulating
environment. Regardless to the limited number of components and interactions,
the investigated fictitious illustrative example demonstrated many important and
interesting features of the multiscale, hybrid biosystems. The model illustrates how
the typical properties of the low level molecular events project onto the state
properties of the higher scales. These properties (often called emergent properties)
determine typical scenarios of lower scale states and actions. The simplified
example, extracted from the independently developed, but coherent references,
described some essential features about the modeled biological processes. We
simulated the natural functioning of the p53/miR-34a signaling for the tumor
suppression, as well as the various malfunctions of the system, resulting from
tumor development. The simulation of addition of ectopic miR-34a demonstrates
possible therapeutic intervention.Considering the uncertainties coming from the
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very limited set of modeled components and interactions, as well as from the
roughly estimated numerical parameters, constraints and initial values, the sim-
plified model worked feasibly. Probably, this came from the more or less correct
consideration of the feedback loops in the compact low level quantitative model.
The studied process provides a good example for combining conservational
(material balance based) and informational (sign based) models. This helps to
understand the relativistic notion of informational process, as a well defined sub-
process of the conservational process. This sub-process consumes and produces
less amount of conservational measures than its complement, but effects more on
its complement than vice versa. Conscious consideration of conservation based
informational processes is an important lesson from biosystem modeling for
computational tools and from computer simulations for biosystem research.

Keywords Biosystem modeling � Biosystem simulation � Hybrid process �
Multiscale process � p53 � miR-34a � Signaling � Tumor development � Tumor
suppression � Direct Computer Mapping � Conservational process � Informational
process

Acronyms

AKT Also known as Protein Kinase B (PKB), is a serine/threonine-
specific protein kinase that is involved in cellular survival
pathways, by inhibiting apoptotic processes

ATM Ataxia telangiectasia mutated (ATM) is a protein kinase,
involved in cellular survival pathways, by inhibiting apoptotic
processes

ATR Ataxia telangiectasia protein kinase that regulates phosphoryla-
tion of serine in DNA-damaged cells

B99 Provisionally named protein, whch transcriptional induction is
dependent on wt p53 function after DNA damage

BAX Bcl-2–associated X protein of the Bcl-2 gene family that
promotes apoptosis by competing with Bcl-2

BCL2 B-cell lymphoma 2
CBP CREB-binding protein, also known as CREBBP or CBP, is a

protein that in humans is encoded by the CREBBP gene
CDC7 Cell division cycle 7-related protein kinase is an enzyme that in

humans is encoded by the CDC7 gene
CDK 4/6 Cyclin-dependent kinase 4/6
Cyclin E2 A protein, binding to G1 phase Cdk2, which is required for the

transition from G1 to S phase of the cell cycle that determines
cell division.

Cyclin G1 Cdk-G1 cyclin complex begins to induce the initial processes of
DNA replication

CDKCYC An abbreviation referring to CDK4/6+CylinE2
c-Myc
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Transcription factor that activates expression of many genes
through binding on consensus sequences

Cop1 Protein believed to facilitate p53 degradation via the ubiquitin-
proteasome pathway (similarly to MDM2)

CUL5 Cullin-5 is a protein, inhibiting cellular proliferation (encoded by
the CUL5 gene)

DAE Differential Algebraic Equation
DBC1 Deleted Gene in Breast Cancer 1
DCM Direct Computer Mapping
DEVS Discrete Event Systems
DNA Deoxiribonucleonic Acid
E2F3 E2F transcription factor 3
EGF pathway Epidemial growth factor pathway
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
GADD45 Growth Arrest and DNA Damage or GADD45 genes are

implicated as stress sensors against genotoxic/physiological
stress, and modulate tumor formation

HDAC Histone deacetylase inhibitors that can induce p21 (WAF1)
expression, a regulator of p53’s tumor suppressor activity

HER-2 Human Epidermal Growth Factor Receptor 2, also known as
ErbB-2 or p185 is a protein encoded by the ERBB2 gene

HIF-1 beta Hypoxia-inducible factor that respond to changes in available
oxygen in the cellular environment, specifically, to decreases in
oxygen, or hypoxia

HMGA2 High-mobility group of proteins, containing structural DNA-
binding domains and functioning as a transcriptional regulating
factor

ICAMs Intercellular adhesive molecules
IGF-1 Insulin-like growth factor
IPDAE Integro Partial Differential Algebraic Equations
Killer/DR5 Alternative abbreviation for tumor necrosis factor receptor

superfamily, member 10b, official symbol TNFRSF10B
MAD2L1 MAD2L1 is a component of the mitotic spindle assembly

checkpoint that prevents the onset of anaphase until all chromo-
somes are properly aligned at the metaphase plate

MDA-MB231 Human breast carcinoma cell line.
MDM2 Murine Double Minute
miR Micro RNAs, small, non-coding RNA molecules
miR34a A specific miR, participating in p53 controlled signaling

processes
miR-34/a/b/c A specific family if miRs, participating in p53 controlled

signaling processes
MMPs Matrix metallopeptidases
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Notch A family of transmembrane proteins, involved in lateral inhibition
Noxa Phorbol-12-myristate-13-acetate-induced protein 1 encoded by

the PMAIP1 gene, is a pro-apoptotic member of the Bcl-2 protein
family

ODE Ordinary Differential Equation
p110 (PI3K) PI3K (p110 alpha and p110 beta) have differential effects on Akt

activation and protection against oxidative stress-induced apop-
tosis in myoblasts

p21 Cyclin-dependent kinase inhibitor 1, encoded by the CDKN1A
gene

p300 E1A binding protein p300 also known as EP300 or p300 is a
protein that, in humans, is encoded by the EP300 gene

p53 Tumor suppressor protein, in humans it is encoded by the TP53
gene

p53Ac Acetilated p53
p53mut Non-functioning, mutant p53
p85a Phosphatidylinositide 3-kinase (PI3K), involved in cell growth,

proliferation, differentiation, etc.
PDE Partial Differential Equation
PIG3 p53-inducible gene 3 (PIG3) identified in a screen for genes

induced by p53 before the onset of apoptosis
Pirh2 Protein believed to facilitate p53 degradation via the ubiquitin-

proteasome pathway (similarly to MDM2)
PP2A Protein phosphatase 2 is an enzyme that in humans is encoded by

the PPP2CA gene
PUMA p53 upregulated modulator of apoptosis, also known as Bcl-2-

binding component 3 (BBC3), is a pro-apoptotic protein encoded
by the BBC3 gene

Ras Family of proteins (discovered first as ’rat sarcoma protein’,
switching signaling that ultimately turn on genes involved in cell
growth, differentiation and survival

RNA Ribonucleonic acid
SIRT1 Silent Information Regulator 1
STN State Transition Net
SySML Systems Modeling Language
TGFb Transforming growth factor, beta receptor
UML Unified Modeling Language
Wip1 A human protein phosphatase that is induced in response to

ionizing radiation in a p53-dependent manner
Wt-p53 Wild type p53
XXX A fictitious component, designating the DNA damage (like

DBC1 in breast cancer)
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18.1 Introduction

18.1.1 Challenge of Multiscale Process Modeling in Systems
Biology

Computer assisted methods of process simulation and of simulation based process
design and control had been developed before the up-to-date biosystem (biologi-
cal) engineering appeared. The complexity of the multi-scale, hybrid bioengi-
neering systems requires new modeling and computational methodologies.

The general formal models of the process systems had defined before the
powerful Information Technology came. According to Kalman’s definition,
the State Space Model can be described by the state and output functions in the
continuous time [1]. The abstract automaton representation of the discrete pro-
cesses can be described by similar functions in the discrete time. These models
emphasize the functionalities and do not deal with the structures behind.

In contrary, the net models focus on the description of process structure. This
appeared first in the Petri Net [2], followed by the various State Transition Nets,
until the higher order and Quantitative Petri Nets [3]. All of them belong to the
General Net Theory [4].

The state-of-art in process modeling was analyzed by Marquardt [5], who
reviewed the methodologies and tools, developed for simulation based problem
solving. The significant evolution of process modeling methodologies has been
motivated by the process industries [6].

The conventional approach focuses on the functioning, that can be described by
a set of Ordinary Differential Equations (ODE’s), Partial Differential Equations
(PDE’s), Differential Algebraic Equatios (DAE’s) etc. [7]. This constructs do not
distinguish between the additive and over-writeable semantics of the variables.

Recently the agent based and the model-driven approaches came into the
limelight of modeling and simulation. There are two different approaches for
model driven simulation. The general purpose frameworks, like UML2 [E1],
SysML [E2], and Modelica [E3] offer a language, as well as a toolkit for any kind
of computer models, on the one hand. On the other side, there are various domain
specific model-driven solutions for the given fields of applications (e.g. for mar-
itime surveillance system [8], for industrial control applications [9], etc.). Agent
based approach offers another methodology to generate freely programmable
specific applications [10]. However, as a golden mean, we need intermediate
solutions that are not applicable for every simulation model, rather for a well
defined but broad enough set of models.

The term ‘‘multiscale’’ means that the complex model is built from various
parts with different spatial and/or temporal scales, while the more or less detailed
parts can belong to different disciplines. The need for multiscale models appeared
in many fields, e.g. in material science [7], in the computational system’s biology
[11, 12] and in process and product engineering [51].
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Multiscale methodology usually means linking together the quite different
modeling and computational methodologies, used for the description of the studied
parts and scales. Sometimes ‘‘multiscale’’ is confused with ‘‘hierarchical’’, where
the upper level models are decomposed into the more detailed lower levels.
However, according to our understanding, in multiscale process modeling there is
rather an event driven system in the organization of the complex simulation
problem.

Nowadays, the paradigm of hierarchical modeling has been replaced by the idea
of multiscale modeling. Comprehensive multilevel modeling of hierarchical sys-
tems underestimated the complexity of real world processes, as well as overesti-
mated the capability of computers and computer modelers. Probably, the reason
was that the respective ideas started from various isolated fields of natural science
and engineering. For example, chemical engineering served well for medium
complexity, where the processes are complex enough to form a tractable hierar-
chical systems, but simple enough to solve the problems by the available com-
putational tools.

During the last decade, computational methods of problem solving have been
more and more involved in the solution of biological and complex economical
systems, however use of hierarchical approach became difficult. Hierarchy is an
excellent methodology, applied originally for the recognition. However, because
of lack of other methodologies, people started to use hierarchical control and
design. The basic problem with it is that the space of problem solving is open,
because each level employs the objectives, coming from outside, from the upper
level.

On the other hand, very complex biosystem processes and global processes
produced dramatic, but useful lessons for computer modelers and computational
tool users. An interesting element of these lessons is that the model based control
and design of global processes can and must learn from the organization and
behavior of biological systems (e.g. the importance of the local solutions, coop-
erative feedback between the functionally connected neighbors, bi-directional
multiscale feedback loops between the bottom-up and top-down behavior, etc.). It
is less recognized that the study and understanding of biosystems can also learn
from the experiences coming from the successes and failures of human made
‘‘artificial’’ processes [13].

Complex biosystems (e.g. from the cellular interactions to the medicated body)
and complex global processes (e.g. agrifood process networks from the fork to the
table) nowadays requires new multiscale methodologies. In the field of biology,
new approaches are described, for example, in Meier-Schellersheim [12]. The
example treated in our chapter attempts to develop a new approach for multiscale
simulation in biology.
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18.1.2 Importance of p53/miR-34a System in Natural
and Therapeutic Tumor Suppression

Solving problems in system biology requires various approaches ranging from
molecular processes up to the macro-organism, thus requires special attitude to
handle these problems mathematically. Oncologic diseases are typical examples.
Although there is an obvious progress in knowledge and treatment, the numbers of
positively diagnosed patients are growing. As the oncologic diseases do not rep-
resent a single illness but a heterogeneous class of disorders with various causality
and consequences, the quest for common attributes or effective prevention and
therapy is a highly complicated task. Recent empiric procedures are frequently
failing and leading only to suppression of symptoms. Similarly, our knowledge on
prevention is coming from epidemiological studies based on previous observa-
tions. Meta-analysis of available data can help to identify some unexpected and
therefore unattended interactions. Systemic analysis using simulated experiments
and subsequent experimental (wet lab) validation may serve as a tool to search for
complex therapeutic procedures. These approaches require input to biomedical
research from bioinformatics and systems biology. Such approaches offer tools for
mathematical description and subsequent modeling of complex system’s behavior,
such as complex cellular processes. Understanding of malignant processes and
their modeling will open new possibilities for more exact prediction of preventive
or therapeutic approaches.

p53 related signaling processes have a keynote role in development, suppression
and therapy of tumors. A qualitative information of p53 signaling pathway is
available in standard repositories (Applied Biosystems/Life technologies Corp.,
Biocarta LLC, SA Biosciences/Qiagen, KEGG, etc.), listing about 10–20 reactants
and compartmentalization between cytoplasm and nucleus. None of them features
acetylated reactant of p53Ac [14] necessary for the activation (only Applied Bio-
systems lists the acetylation in their commentary). References on quantitative
simulation model are quite rare [15–17], and deal with a small sub-process in detail.
Likewise, no acetylation is considered. The basic p53/MDM2 feedback loop,
however, has been studied quite often, as a simple dynamic system (e.g. [18]).

Additional complication comes from the post-transcriptional control. The p53
mainly exerts its function through transcription regulation of its target genes to
initiate various cellular responses. To maintain its proper function, p53 is tightly
regulated by a wide variety of regulators in cells. Thus, p53, its regulators and
regulated genes form a complex p53 related network which is composed of
hundreds of genes and their products. Among the regulators, microRNAs are a
class of endogenously expressed, small non-coding RNA molecules which play a
key role in regulation of gene expression at the post-transcriptional level [19].
Among them miR-34a plays an important role in some cancer, particularly in
colon cancer, lung cancer, chronic lymphatic leukemia and others. Yamakuchi and
Lowenstein [20] outlined several outcomes (gene targets) of p53 activation, typ-
ically denoted as cellular responses (emergent properties, systemic properties).
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Among them are cell cycle, sustained proliferation, cell cycle arrest, senescence,
apoptosis, inhibition of angiogenesis, etc. The modeling and simulation of coupled
p53/miRs is very rare. Lai et al. [21] outlined a combined p53/miR-34a model as
an extension of the basic p53/MDM2 feedback loop (this model includes also
acetylation). It is to be noted that modeling of p53 signaling or coupled p53/miR-
34a loop would only represent a mere mathematical exercise, without the inclusion
of the gene targets in the model. In addition, understanding the connection
between the systemic (emergent) properties and p53/miR-34a control ought to
represent a new hybrid approach in modeling of signaling pathways.

The human miR-34a was discovered computationally [22] and later verified
experimentally [23]. This miR has recently been implicated in cancer, particularly
with its expression relating to TP53 status [24]. The expression of such miR has
also been confirmed in embryonic stem cells [25].

As a target of miR-34a the Silent Information Regulator 1 (SIRT1) gene is
showed [26]. The miR-34a inhibition of SIRT1 leads to an increase in acetylated
p53 and in expression of p21 and PUMA, transcriptional targets of p53 that
regulate the cell cycle and apoptosis, respectively. Furthermore, miR-34a sup-
pression of SIRT1 ultimately leads to apoptosis in wild-type human colon cancer
cells but not in human colon cancer cells lacking p53. Finally, miR-34a itself is a
transcriptional target of p53, suggesting a positive feedback loop between p53 and
miR-34a. Thus, miR-34a functions as a tumor suppressor, in part, through a
SIRT1/p53 pathway [27].

miR-34a inhibits human p53-mutant gastric cancer tumor spheres. In p53-defi-
cient human gastric cancer cells, restoration of functional miR-34a inhibits cell
growth and induces chemosensitization and apoptosis, indicating that miR-34a may
restore p53 function. Restoration of miR-34a inhibits tumor sphere formation and
growth, which has been reported to be correlated to the self-renewal of cancer stem
cells. The self-renewal appears to be related to the direct modulation of downstream
targets BCL2, Notch, and HMGA2, indicating that miR-34a may be involved in
gastric cancer stem cell self-renewal/differentiation decision-making [26, 27].

Cancer is usually caused by multiple mutations and alterations of multiple sig-
naling pathways which pose an extra challenge when defining the mechanisms
underlining cancer therapy. Development of drug combination therapies for cancer
can lead to more effective therapies to overcome drug resistance and to achieve
maximal drug efficacy. Application of single-drug therapies are failing frequently
due to the cell redundancy, drug-specific or multi-drug resistance formation. Con-
current application of two or more drugs helps to suppress resistance; however, it is
often based on empiric knowledge from medical praxis. Mathematical modeling of
signaling pathways and tumor cell behavior under in silico conditions may help to
rationalize expenses needed for experimental verification of hypotheses.

Historically, [28] introduced a direct search method to optimize cancer chemo-
therapy regimens while [29, 30] has developed a qualitative conceptual framework
for treating multiple genome abnormalities (blockage of multiple targets).

Al-Shyoukh et al. [31] established and validated a data-driven mathematical
approach to systematically characterize signal-response relationships. Their results
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demonstrate how mathematical learning algorithms can enable systematic char-
acterization of multi-signal induced biological activities. The proposed approach
enables identification of input combinations that can result in desired biological
responses. In retrospect, the results show that, unlike a single drug, a properly
chosen combination of drugs can lead to a significant difference in the responses of
different cell types, increasing the differential targeting of certain combinations.
The successful validation of identified combinations demonstrates the power of
this approach. Moreover, the approach enables examining the efficacy of all lower
order mixtures of the tested signals. The approach also enables identification of
system-level signaling interactions between the applied signals.

References on multiple targeting of signaling pathways are quite rare. Recently,
a method based on stepwise direct search for identifying optimal combination of
drugs for pain treatment has been introduced Curatolo and Sveticic [32]. Iadevaia
et al. [33] analyzed the insulin-like growth factor (IGF-1) signaling network in the
MDA-MB231 breast cancer cell line and the modeling predictions showed that
optimal drug combinations inhibited cell signaling and proliferation. Bloom and
Kloog [34] have considered targeting Ras pathway, while [35] described the
rationale and results of clinical trials using biologically targeted agents in HER2-
positive breast cancer patients. Single drugs that hit multiple targets and cocktails
of biologically targeted agents have been also considered. Concluding, the com-
binatorial drug treatment may offer huge improvement in overall response.

A transfer of know-how, i.e. understanding of mathematical modeling and
simulation principles by experimental biologists and vice versa, understanding of
experimental procedures and real problems of experimental biology by bioinfor-
matics is the main goal of future multi-disciplinary cooperation.

18.2 Example for a Hybrid Multiscale Biosystem

With the knowledge of the previous review we had a closer look at the p53/miR-
34a interactions and tried to find an example for studying an oversimplified, but
typical multiscale hybrid model.

18.2.1 Elements of the p53/miR-34a Related Puzzle

A wide variety of intracellular and extracellular stress signals are detected by the cell
and communicate with the p53 protein by numerous mediators [19]. Figure 18.1
shows representative mediators. Stress signals promote the activation of p53, but it is
mediated by MDM2 protein. Depending on the cell type, environmental context, as
well as on the type and/or degree of stress, activated p53 selectively transcribes a
group of its target genes (Fig. 18.1 shows representative examples) and initiates
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various cellular responses to exert its function in tumor suppression. The scheme
shows clearly the p53/MDM2 couple, as the ‘‘heart’’ of system.

Possible role of miRNAs (including miR-34a) has been shown in the same
paper [19], as it is illustrated in Fig. 18.2.

According to the authors, the p53 induces the expression of a set of miRNAs,
including miR-34/a/b/c, miR-145, miR-107, miR-192 and miR-215, which can all
contribute to the role of p53 in tumor suppression as a new group of p53 target
genes. miR-34a/b/c down-regulates CDK4 and CDK6 to induce cell cycle arrest,
and down-regulates BCL2 to promote apoptosis. miR-145 down-regulates c-Myc
to reduce cell proliferation. miR-192 and miR-215 down-regulate a group of genes
which regulate DNA synthesis and cell cycle checkpoints, including CDC7,
MAD2L1 and CUL5, to induce cell cycle arrest and reduce tumor cell growth.
miR-107 down-regulates HIF-1 beta to negatively regulate hypoxia signaling and
suppress angiogenesis. Consequently miR-34/a/b/c plays in intermediate role in
functioning of p53 on CDK4, CDK6, Cyclin E2 and BCL2.

However, the picture is a little bit more complicated if we have a look at the
feedback loops of miRNAs, inhibiting p53 (see Fig. 18.3, by [19]).

According to Feng et al. miR-125b and miR-504 directly down-regulate p53
protein levels and functions in apoptosis and cell cycle arrest through their direct
binding to p53 30-UTR. miR-34a up-regulates p53 activity and function by down-
regulating SIRT1, which is a negative regulator of p53 through deacetylating
acetylated p53 (p53Ac). miR-122 enhances p53 activity through its down-regu-
lation of Cyclin G1, which forms a complex with PP2A phosphatase and enhances
MDM2 activity to inhibit p53. miR-29 down-regulates p85a, a regulatory subunit
of PI3 K, and thereby enhances p53 activity through the negative loop between
PI3 K-AKT-MDM2 and p53.

Considering the single miR-34a, some essential features are summarized in
Fig. 18.4. [20].

Stress signals Mediators Core regulator Target genes Cellular responses

Kinases
(ATM, ATR)

Phosphatases
(PP2A, Wip1)

Acetyltransferases
(p300, CBP)

Deacetylases
(SIRT1, HDAC)

Ubiquit in ligases
(MDM2, Cop1, Pirh2)

MDM2

p53

etc.

DNA 
damage

Hypoxia

Nutrition
deprivation

Oncogene
activation

etc.

p21, GADD45
B99

Puma, BAX, Fax
PIG3, Killer/DR5

p21, PAI-1

p48, p53R2
GADD45

etc.

Cell cycle arrest

Apoptosis

Senescence

DNA repair

Fig. 18.1 p53 regulated mediators and target genes (according to [19])
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According to this scheme p53 induces miR-34a expression, which increases p53
acetylation by suppressing SIRT1 expression. Resultant increase of p53 activity
prolongs miR-34a expression. miR-34a induces apoptosis, cell growth arrest and
senescence.

All of the schemes contain useful qualitative information about the p53/miR-
34a system at a medium scale of processes. Considering the complexity of the
system, the above seems to be too complicated for a simplified rule based inter-
pretation on the one hand, as well as too ill-defined for a sophisticated quantitative
analysis. In addition we need more details for linking the investigated system to
the higher scale events and to lower scale dynamics.

p53

miR-145 miR-34a/b/c
miR-192
miR-215

miR-107

CDK4/6
Cyclin E2

c-Myc CDK6 BCL2 HIF-1 beta
CDC7
MAD2L1
CUL5

Cell survival Cell proliferation
Hypoxia signaling

Angiogenesis

Fig. 18.2 Transcription regulation of specific miRNAs by p53 (according to [19])

miR-125b
miR-504

miR-34a miR-122 miR-29

SIRT1 CyclinG1/ α
PP2A p110 (PI3K)

MDM2 AKT

p53

Fig. 18.3 Multiple miRNAs regulate the activity and function of p53 (according to [19])
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18.2.2 Three Independently Developed, Coherent Parts
for a Multiscale View

We tried to find a more or less coherent set of literature sources that helps to
narrow the horizontal complexity, but to traverse low, middle and high scale
processes vertically. Having studied many related papers we have found three,
more or less coherent key papers that make possible to study a p53/miR-34a
related example, as well as the application of our hybrid, multiscale modeling
methodology (Direct Computer Mapping of process models). In the following we
introduce the three key papers, applied for our trial to analyze a very simple
multiscale model.

18.2.2.1 High Scale: Role of p53/miR-34a System in Given Stage
of a Pathological Process

Many years before discovering the significance of p53/miR-34a related signaling,
[36] described the multistep process of colorectal tumorigenesis, emphasizing the
possible identification of the underlying molecular events. Based on the overview
of Vogelstein’s model, a decade later Slabý et al. [50] focused on the role of

P21, GADD45, 
etc.

p53 Acetylated p53

SIRT1

miR34a PUMA, BAX,
Noxa , etc.

Oxidative stress DNA damage

Cell cycle arrest Apoptosis

Cyclin / CDKs
E2F3
Myc BCL2

Fig. 18.4 Schematic representation of p53/miR-34a feedback loop (based on [20])
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microRNAs in colorectal cancer pathogenesis, as a possible translation of
molecular biology into clinical application.

In the subsequent stages of ‘‘Normal epithelium’’, ‘‘Early adenoma’’, ‘‘Inter-
mediate adenoma’’, ‘‘Late adenoma’’, ‘‘Colorectal cancer’’ and ‘‘Metastasis’’ let us
focus on the 4th stage called ‘‘Loss of p53 function’’, illustrated in Fig. 18.5.

According to Slabý et al., in the 4th stage, following the late adenoma, the
choice between survival or colorectal carcinoma is determined by the p53/miR-34/
a/b/c system. SIRT1, as well as CDK4, CDK6, Cyclin E2 and BCL2 are involved
in the basic loop of this stage. This shows a big picture about the involvement of
miR-34/a/b/c in the development of colorectal cancer. In the stage called ‘‘Loss of
p53 function’’ the question of ‘‘(cell cycle arrest and/or apoptosis) or carcinoma’’
is decided. The cited keynote actors are: p53, miR-34/a/b/c, SIRT1, CDK4, CDK6,
CyclinE2 and BCL2.

Loss of p53
function

Colorectal
cancer

p53SIRT1

DNA damage
Oncogenic stress

Late
adenoma

miR-34a

CDK4

CDK6

 CyclinE2

BCL2

Proliferation Apoptosisoff

EMT, MMPs, 
ICAMs, …

TGFβ response
inactivation

Fig. 18.5 MicroRNAs’ involvement in 4th stage of colorectal cancer pathogenesis (based on
Slabý et al. [50]). SIRT1 = silent information regulator 1, CDK4,6 = cyclin-dependent kinase
4,6, Cyclin E2 associates with Cdk2 in a functional kinase complex exhibiting catalytic control
over cell cycle and the G1/S transition, BCL2 = B cell lymphoma 2
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18.2.2.2 Low Scale: Description of the Feedback Loops in the p53/miR-
34a Interactions

In another context of breast cancer [37] described a possible, detailed low level
dynamic model of miR-34a/p53 feedback structure, while p53 was activated by
acetylation (see Fig. 18.6).

The authors studied a signaling module composed by p53, SIRT1 and miR-34a,
based on the integration of experimental evidence with quantitative mathematical
modeling. In the ODE based model the parameters were estimated heuristically,
considering experimental data of [20, 26, 38 ]. In the model DNA damage can
affect directly the p53 synthesis and activation, as well as indirectly through the
DBC1 that inhibits the effect of SIRT1 on the deactivation of p53.

They modeled four different silencing mechanism of miR-34a affecting on
SIRT1, and using numerical computations they compared the strength of the
SIRT10s two negative regulators (miR-34a and DBC1). Based on the analysis they
concluded that miR-34a silences SIRT1 through translational repression, but
DBC1 is a more efficient negative regulator of SIRT1 than miR-43a.

SIRT1

p53

Mdm2

p53AcDBC1

miR-34a

DNA damage

Fig. 18.6 Scheme of the detailed dynamic model of miR-34a/p53 feedback structure (based on
[37]). MDM2 murine double minute, p53 = deacetylated (inactive) p53, p53Ac = acetylated
(active) p53, SIRT1 Silent Information Regulator 1, DBC1 Deleted Gene in Breast Cancer 1
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18.2.2.3 Middle Scale: Qualitative Interpretation of the Cellular
Scenarios in Development or Suppression of Tumor

Wong et al. [39] published an excellent review comparing the control schemes,
corresponding to the various scenarios of the p53/miR-34 network, as follows

• regulated apoptosis and cell cycle arrest, resulting tumor suppression;
• abnormal regulation causing cell proliferation, resulting tumor development; and
• possible treatment of the dysregulated case by ectopic miR-34a expression.

Different scenarios for the signaling system involve SIRT1, CDK4, CDK6,
Cyclin E2 and BCL2. Interestingly, the findings are coherent with the above
described high and low scale models.

Figure 18.7 summarizes the molecular mechanisms in the p53/miR-34 network,
involved in regulating cell apoptosis. p53 activates miR-34 after DNA damage
and/or cellular stress, which subsequently inhibits expression of anti-apoptotic
genes and results in cell apoptosis and tumor suppression. Stars indicate that as a
consequence of the inhibition of anti-apoptotic cell cycle promoting proteins by
miR-34a, apoptosis and cell cycle arrest can start. We can see also the regulation
of SIRT1 by miR-34a as part of a positive feedback loop that leads to further
activation of p53 once it has been activated. Abbreviations of anti-apoptotic
proteins are the same as before, and E2F3 = E2F transcription factor 3. SIRT1 in
previous works appeared as a harmful agent promoting inactivation of p53. Here it
seems to have a direct effect on apoptosis and on cell cycle arrest.

Figure 18.8 explains the background of the ‘‘Loss of p53 function’’. It illus-
trates the abnormal regulation of the p53/miR-34 network causing cell prolifera-
tion and tumorigenesis. The function of miR-34 is lower in the presence of mutant
p53 and/or miR-34 dysregulations. Over-expression of anti-apoptotic genes and
proteins result in cell proliferation and tumor development. Stars indicate the lack
of the respective promotion and inhibitions, caused by the abnormality in the
downstream pathway.

Mutant p53 is not able to substitute for the role of p53. miR-34 dysregulation
means the lack of the appropriately functioning miR-34.

In Fig. 18.9 the ‘‘miR-34 therapy’’ case is shown. Obviously this improves the
failures caused by the dysregulated miR-34 and/or mutant p53. The function of
miR-34 is reduced in the presence of mutant p53 and/or miR-34 dysregulation.
Delivery of ectopic miR-34 recovers its function and results in cell apoptosis and
tumor suppression via inhibition of anti-apoptotic genes. Stars indicate the lack of
normal miR-34a promotion as well as the consequence of ectopic miR-34a,
starting apoptosis and cell cycle arrest.

Stars reflect to abnormal transcriptional activation, as well as to the downregu-
lation of anti-apoptotic proteins by miR-34. Ectopic expression is the expression of a
gene in an abnormal place in an organism. This can be caused by a disease, or it can
be artificially produced as a way to help determine what the function of that gene is,
e.g. via introducing of a gene into the target organism (transient or stable
transfection).
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Fig. 18.7 p53/miR-34 network in regulating cell apoptosis (based on [39]). Stars indicate the
lack of respective inhibitions
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Fig. 18.8 Abnormal regulation of the p53-miR-34 network (based on [39]). Stars indicate the
lack of respective promotion and inhibitions
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18.3 New Tool for Multiscale Process Modeling
and Simulation Methodology

Multiscale, hybrid processes of biosystems and of human-built process networks
contain more complex elements and structures compared to the well established
mathematical constructs. However these complex structures and functionalities
might be mapped onto quite uniform elements of executable dynamic models,
associated with local programs, while the simulation and the model based problem
solving can be organized by a general purpose kernel program.

18.3.1 Direct Computer Mapping of Multiscale,
Hybrid Processes

In our approach, called Direct Computer Mapping of process models [40, 41], the
natural building blocks of the elementary states, actions and connections are
mapped onto the elements of an executable code, directly.

The idea of Direct Computer Mapping (DCM) has evolved over last three
decades. The basic principle of the method [40, 42] is that the simple state and
action elements of the real world processes have to be mapped directly onto an
executable code without interpreting them in the language of any particular

Other stress
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Transcriptional activation

Post transcriptional genes

miR-34

SIRT1

Apoptosis and cell cycle arrest

Tumor suppression

Oncogenic stressDNA damage

BCL2

CDK4/6

Cyclin E2E2F3

Ectopic
miR-34

Fig. 18.9 Treatment of p53-mutant or miR34-dysfunctional cancer by ectopic miR-34 (based on
[39]). Stars indicate the lack of respective promotion and inhibitions
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mathematical constructs like ODE, PDE, DAE, IPDAE, STN, DEVS, etc. Hybrid
processes are built from more complex elements and structures, than the well
established mathematical constructs. However, these complex structures and
functionalities might be mapped onto quite uniform elements of executable
dynamic databases, associated with local (e.g. declarative) programs, while the
simulation and the model based problem solving can be organized by a general
purpose kernel program [43, 44, 45–47].

DCM contains a limited number of uniform computational building blocks for
various processes and for different spatial and temporal scales. These general
building blocks can be used for the flexible description of state and transition
elements, as well as reading and modifying connections of various conservation
based balance and rule based informational systems. The building elements can be
associated with dedicated programs or program prototypes; accordingly, the
functioning is embedded in the structure, flexibly. A general kernel, like an
operational system, can execute all of the process models. The execution supports
the spatial compartmentalization and the management of time-driven events, at
different time horizons. The set of building blocks and execution algorithms can
easily be adopted for building models with multiple spatial and temporal scales.

The key issue of multiscale paradigm is that it is impossible, and even not
necessary to describe and calculate the whole system of multiscale processes
simultaneously, in detail. Rather, depending on the investigated problem, the
various subsets of processes must be calculated with various and changing deta-
ilness, that is determined by the environment of a given subprocess, e.g. by the
signals coming from the lower or upper scales. The solution is supported by the
generic capabilities of the brief programs, associated with the building blocks. It
means that depending on the environmental situation, the building element can
activate and/or generate a more detailed model for the given part.

The building and execution of effectively scalable process models is supported
by the keynote feature that in our toolkit the structural skeleton of the quantitative
and qualitative models is the same. It makes possible to change between quanti-
tative ‘a priori’ models and qualitative rule based models automatically. It also
helps at the stepwise discovery of the models (i.e. the identification of the structure
and parameters). Accordingly, the qualitative expert knowledge can be trans-
formed into quantitative models, based on the data, coming from the real world
process (e.g. measurements). This is supported by the pair-wise joint set of
qualitative and quantitative primitives.

An interesting case for using mixed quantitative and qualitative models is, when
our model or a submodel runs at a given spatial and temporal scale, while the
neighboring upper and/or lower level models are described only qualitatively.
Depending on the experts’ knowledge, we can change between qualitative and
quantitative descriptions.

The robust solver, coming with the DCM, can be combined effectively by a
robust multi-objective, discrete/continuous genetic algorithm. The evaluation
feedback between dynamic simulation and genetic algorithm helps in identification
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and also in various problem solving activities (optimal control and/or design).
Sometimes, genetic coding can utilize the knowledge, embedded in the property
relationship lattice, too.

18.3.2 Declarative Syntax of Process Systems

The declarative description of the process model nets is summarized in Fig. 18.10.
The architectural relations are symbolized by lines between the corresponding
elements. Directed dashed lines help to understand the connection (unification)
between the state or action elements and the associated program clauses. The
coordination of the state and action elements with the reading and modifying
connections is illustrated by directed bold lines in this Figure.

The list of elementary data (symbols, numbers) are contained in the d(.)
functors, determining a Value by the triplet of the respective name, data list, and
dimension. The modifiable content of the higher order constructs is determined by
the list of these d(.) functors, called ValueList. All of the inputs, parameters and
outputs, as well as all of the connections contain a ValueList.

The syntax of the state(.) and action(.) predicates are identical. The changeable
content of these building elements is determined by the inputs (InpList), param-
eters (ParList) and outputs (OutList). InpList, ParList and OutList are dedicated
lists, built from the i(.), c(.) and o(.) functors, respectively. Considering the net
connections for the data flow, every functor corresponds to a so-called slot,
characterized by slot name, slot type and ValueList.

The structurally and functionally different, multiple connections, interpreted
between the state and action elements, connect the input and output slots, as it can be
seen from the declaration of the connections. It is to be noted that the parameter slots
can also be modified by special connections (e.g. coming from collaborating
applications in the verification of the model); however this is not seen in Fig. 18.10.

Besides the input, parameter and output slots, the state and action elements are
described by the following arguments: existence flag, identifying name, identifying
scale coordinate, name of the corresponding program and the so-called Timings.

The spatial scale coordinate is defined by a list of integers that determines the
spatial place (i.e. the functional and/or geometrical compartment) of the given ele-
ment. It is to be noted that the elements are determined by the identifying name
(StateName or ActName) and by its spatial scale (StateCoord, ActionCoord), together.

ProgramName identifies the program clause, associated with the given state or
action element. The cardinality of programs is usually significantly less, than the
number of elements. The program clauses can be defined with the so-called pro-
totype elements, and they are saved in a dedicated partition or file. The syntax of
the respective program clauses corresponds to the unification scheme (symbolized
by dashed lines in Fig. 18.10). Actually, the StateProgramCode or ActionPro-
gramCode clause bodies bind the free variables of OutList with the knowledge of
the bound variables of InpList and ParList.
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The syntax of the reading and modifying connections are also identical. The
arguments of both predicates determine the identifying names, coordinates and
slots for the sending and receiving sides of the connections. In addition, the
connections declare the reading and writing operators for the data coming from
and going to the specified slots, respectively. There are predefined, but extendable
sets of reading and writing operators. For example writing operators can prescribe
increases and decreases for the additive measures, removing or extending of d(.)
elements from or to the respective lists, as well as overwriting of the signs (e.g. in
case of rule based, qualitative models). The actual content is carried by the
ValueList of the connections. The connections have also Timings, effecting on the
execution of the model.

18.3.3 Model Driven Generation of the Executable Code

The above described declarative process architecture supports the model-driven,
automatic generation of the executable code. This can be based on the graphical
representation, extended with guarded data input, while the local programs can
also be edited and tested during the declaration of the state and action prototypes.

Data = atomic <number OR atom>
DataName = atom DataList = Data* <list of data> Dimension =atom <user defined>

Value = d(DataName, DataList, Dimension)
SlotName = atom <identifies the slot> ValueList = Value*  <list of values> SlotType = atom <user defined>

Input = i(SlotName,SlotType,ValueList) Parameter = c(SlotName,SlotType,ValueList) Output = o(SlotName,SlotType,ValueList)
InpList = Input* <list of input slots> ParList = Parameter* <list of parameter slots> OutList = Output* <list of parameter slots>

state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,OutList,Timings) stateprogram(ProgramName,InpList,ParList,OutList) :- 
StateProgramCode.

reading(StateName,StateCoord,StateSlot,ReadOperator,ActionName,ActionCoord,ActionSlot, WriteOperator,SlotType,ValueList,Timings)

action(Flag,ActionName,ActionCoord,ProgramName,InpList,ParList,OutList,Timings) actionprogram(ProgramName,InpList,ParList,OutList) :- 
ActionProgramCode.

modifying(ActionName,ActionCoord,ActionSlot, ReadOperator, StateName,StateCoord,StateSlot,WriteOperator,SlotType,ValueList,Timings)

state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,OutList,Timings)

Flag = y OR n <actual existence> Timings = Timing* <identifies temporal scale>
StateName,ActionName = atom <identifies element> Timing = t(From,To,When,Step)
StateCoord,ActionCoord = numberlist <identifyies spatial scale> When = Time*
ProgramName = atom <identifies local program> From,To,Time,Step = number OR date

Fig. 18.10 Declarative syntax for the model-driven generation of simulation program
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The model generation is based on the description of the state and action proto-
types. These prototypes determine also the number and type of the input,
parameter and output slots, as well as the local program prototypes. All of the
remaining state and action elements can be derived as the copies of the previously
defined prototypes.

The reading and modifying connections can be generated automatically, by
drawing edges between the respective sending and receiving slots.

The temporal behavior of the states, transitions and connections is described by
the above mentioned Timings. It is a list of functors t(.), that makes possible to
declare optionally different time scales and timings for the individual elements and
connections in form of time periods, discrete times and time steps.

The event driven operation of the multiscale processes can be controlled by the
informational connections, reading and modifying the respective state and transition
slots.

Having finished the declaration of the model, filled with the appropriate initial
data and parameters, the general purpose kernel program automatically generates
the input files consisting of the executable state(.), action(.), reading(.) and mod-
ifying(.) facts, as well as of the stateprogram(.) and actionprogram(.) clauses.

18.3.4 Model Driven Process Simulation

The model-driven execution of the process simulation consists of six cyclically
repeated, consecutive steps, as it can be seen in Fig. 18.11. The unification of the
identifiers is signed by bold italics argument names. The identifiers and variables,
determining the data flow, are symbolized by bold, underlined names in this
Figure. The steps of the model-driven dynamic simulation are the followings:

1. The modifying connections change the content of the input slots of the state
elements, according to the respective WriteOprator.

2. The state elements execute the associated program prototypes, which determine
the new outputs of the states.

3. The reading connections read the content of the various state output slots,
according to the prescribed ReadOperator.

4. The reading connections change the content of the input slots of the action
elements, according to the respective WriteOperator.

5. The action elements execute the associated program prototypes, which deter-
mine the new outputs of the actions.

6. The modifying connections read the content of the various action output slots,
according to the prescribed ReadOperator.

During the model-driven simulation, the prescribed spatial and temporal scales
are taken into consideration, automatically. The necessary output reporting abili-
ties may be embedded in the description of the model.
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Having finished the given full (or partial) simulations, the program automati-
cally saves the complete final state of the process, which, having supplied by the
additional parts (usually by additional connections) of the model, makes possible
the stepwise continuation of the dynamic simulation.

18.3.5 Spatial and Temporal Multiscale Features

The state and transition elements are prepared for the declaration of the spatial
scale in the form of a list of integer coordinates (see variable Coord). The list of
integers (see Fig. 18.12) determines the spatial place (i.e. the functional and
geometrical compartment) of the given element. The number of the ordered scales
is optional, while […,I] contains […,I,J,…]. It is to be noted that the elements are
determined by the identifying name (StateName or ActName) and Coord together.

This makes possible to use either the same identifying names with different
coordinates, or specific identifying names for the various compartments, according
to the user’s convenience. The state and connection elements can be saved in
individual, dedicated files. The only restriction is that the elements with same
Coord must be together in the same dynamic database. In a marginal case all of the

1) MODIFICATION OF STATE INPUTS
modifying(ActionName,ActionCoord,ActionSlot, ReadOperator, StateName,StateCoord,StateSlot,WriteOperator,SlotType,ValueList

state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,OutList,Timings)
,Timings)

state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,OutList,Timings)

2) EXECUTION OF PROGRAM PROTOTYPE ASSOCIATED WITH THE STATE ELEMENT
state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,OutList,Timings)
stateprogram(ProgramName,InpList,ParList,Outlist) :- StateProgramCode.

state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,OutList,Timings)

3) READING OF STATE OUTPUTS
reading(StateName,StateCoord,StateSlot,ReadOperator,ActionName,ActionCoord,ActionSlot, WriteOperator,SlotType

state(Flag,StateName,StateCoord,ProgramName,InpList,ParList,
,ValueList,Timings)

OutList,Timings)

reading(StateName,StateCoord,StateSlot,ReadOperator,ActionName,ActionCoord,ActionSlot,WriteOperator,SlotType,ValueList,Timings)

4) MODIFICATION OF ACTION INPUTS
reading(StateName,StateCoord,StateSlot,ReadOperator,ActionName,ActionCoord,ActionSlot, WriteOperator,SlotType,ValueList

action(Flag,ActionName,ActionCoord,ProgramName,InpList,ParList,OutList,Timings)
,Timings)

action(Flag,ActionName,ActionCoord,ProgramName,InpList,ParList,OutList,Timings)

5) EXECUTION OF PROGRAM PROTOTYPE ASSOCIATED WITH THE ACTION ELEMENT
action(Flag,ActionName,ActionCoord,ProgramName,InpList,ParList,OutList,Timings)
actionprogram(ProgramName,InpList,ParList,Outlist) :- ActionProgramCode.

action(Flag,ActionName,ActionCoord,ProgramName,InpList,ParList,OutList,Timings)

6) READING OF ACTION OUTPUTS
modifying(ActionName,ActionCoord,ActionSlot,ReadOperator, StateName,StateCoord,StateSlot,WriteOperator,SlotType

action(Flag,ActionName,ActionCoord,ProgramName,InpList,ParList,
,ValueList,Timings)

OutList
modifying(ActionName,ActionCoord,ActionSlot,ReadOperator, StateName,StateCoord,StateSlot,WriteOperator,SlotType,

,Timings)
ValueList,Timings)

…

…

…

… Inp

Par…

Out…

Out

Inp

Par

Fig. 18.11 Illustration of the model-driven execution of process simulation programs
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elements can be saved together in a single dynamic database, however it is usually
less effective. The universal complement of the multiscale model is symbolized by
Coord = [].

In the connections the input and output locations are taken into consideration by
the identifying names and by the respective coordinates, together. The unification
is based on both of them, as well as on the name of the respective slot. The
connection may be local within a given sub-model, inter-compartmental between
the compartments, as well as environmental between the compartments and the
universal complement. A possible convention is that the connections must be
stored with the sending compartment (except of the environmental input con-
nections that must be present in the receiving compartment). Many possible cases
are shown in Fig. 18.12, where the sub-models are symbolized with rectangles,
and the connections belong to that compartment, where the bigger dotted end of
the given edge is.

Temporal behavior of the states, transitions and connections can be described
by the above mentioned list of functors

Timings = Timing*

Timing = t(From, To, [When1, When2, …, WhenM], Step)

[ I ]

[ J ][   ]

[ K ]

[ I, J, 1 ]

[ I, J, 2 ]

[ I, J, 3 ]

[ K, X ] [ K, Y ]

Fig. 18.12 Illustration of
spatial scales and connections
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This makes possible to declare optionally different timings for the individual
elements or connections in the subsequent periods [From, To]. Timing may pre-
scribe the execution in a given interval according to the prescribed time step,
(Step) or at the prescribed times (When1, When2,…,etc.).

The event driven operation of the multiscale processes can be controlled by
signaling connections, reading and modifying the respective states and transitions.

18.3.6 Holistic net and Network Properties

The execution capabilities of the general kernel engine support also the investi-
gation of many tasks, including various sensitivity and flux analyses.

In the dynamic net structure of the process models the reading and modifying
(overwriting, increasing, decreasing, etc.) connections determine the network (in
abstract algebraic terminology: special ring) structure of the so-called influence
routes. The influence routes are the consecutively ordered alternating series of the
reading and modifying connections.

The influence routes make possible the analysis of the various kinds of struc-
tural and functional sensitivities (e.g. observability and controllability) of the
modeled processes.

Specially, in the conservational processes or sub-processes the set of increasing
or extending, and decreasing or removing connections determine the network (in
abstract algebraic terminology: special ring) structure of the balance routes (flux
routes). The balance routes are consecutively ordered alternating series of the
increasing (extending) and decreasing (removing) connections.

The batch or continuous transports, carried by the balance routes, determine the
partial changes of the measures along the connected series of transportations and
transformations. The changes, carried by the balance routes, make possible to
characterize the fluxes of the modeled process.

18.4 Direct Computer Mapping Based Implementation
of the Simplified Example Process

In our very simple three-scale model the scales are embedded in each other ver-
tically. Accordingly we shall designate the scale coordinates, as follows:

[1] = qualitative informational model of high scale pathological process;
[1,1] = hybrid coupling model of medium scale cellular events;
[1,1,1] = quantitative conservational model for low scale p53/miR-34a sig-

naling process.
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18.4.1 Quantitative Conservational Model for Low Scale
Core Processes of p53/miR-34a Signaling

The quantitative balance model of the low scale core processes, describing the
p53/miR-34a related control loops were prepared starting from the structure of
[37], shown in Sect. 2.2.2. This structure was extended by the minimal set of
signaling proteins, necessary for the simplified consideration of the main middle
scale signaling functionalities behind the high scale pathological process. The state
elements of the low scale model are summarized in Table 18.1.

The modeled components were the followings:

p53 = inactive p53,
p53Ac = active (acetylated) p53,
MDM2 = murine double minute,
miR-34a = investigated miRNA,
mutant p53 = non-functioning p53,
CDK4/6 ? CyclinE2 = lumped components, activating cell cycle arrest,
BCL2 = component, activating apoptosis,
XXX = a fictitious component, designating the DNA damage

(like DBC1 in breast cancer),
Resource = finite pool of building elements for synthesis,
Waste = pool of decomposed products.

Table 18.1 State elements of the low scale conservational model

Scale Original name Passive
name

Type Character Initial
value

Program

[1,1,1] p53 p53 cons permanantly existing [0 measure
[1,1,1] p53Ac p53Ac cons ad hoc appears 0 measure
[1,1,1] MDM2 mdm2 cons ad hoc appears? 0 measure
[1,1,1] miR-34a miR34a cons ad hoc appears? 0 measure
[1,1,1] mutant p53 p53_mut cons by mistake appears 0 measure
[1,1,1] CDK4/

6 ? CylinE2
cdkcyc cons permanantly existing [0 measure

[1,1,1] BCL2 bcl2 cons permanantly existing [0 measure
[1,1,1] SIRT1 sirt1 cons permanantly existing? [0 measure
[1,1,1] XXX (like

DBC1)
xxx cons ad hoc appears 0 measure

[1,1,1] Resource inp cons shows the overall
consumption

[0 measure

[1,1,1] Waste out cons shows the overall wastes 0 measure
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In Table 18.1 the original name of each component is followed by the sim-
plified name used in the computational databases. All of the state elements are of
conservational types, i.e. atom conservation based additive measures. The char-
acter of the components describes the behavior of the given component, during the
simulation that is determined by the initial and boundary conditions, as well by the
applied model equations. Initial values show that we start from the possible zero
initial conditions, as much as possible. Only the components with no modeled
expression (synthesis) and p53 have non-zero initial values. In some cases, signed
with question marks in the column of character, we could not decide about the
initial conditions clearly. All of the state elements use the same prototype program
called ‘measure’.

The applied program prototype of measure, written in the

stateprogram(ProgramName,ParList,InpList,OutList):—StateProgramCode

syntax (see Fig. 18.11) is the following:

stateprogram(y,measures,[],[i(comp,dl,Extensive)],[o(conc,dl,Intensive)]) :-  
  calculate_intensive(Extensive,Intensive),!. 
  calculate_intensive([d(Basis,[M],BDim)|EL],[d(Basis,[M],BDim)|IL]) :- 
    intensive(EL,M,BDim,[],IL). 
        intensive([],_,_,RIL,IL) :- 
      reverse(RIL,IL),!. 
    intensive([d(Name,[Ext],EDim)|Other],M,BDim,Old,Result) :- 
      atom_concat(EDim,'_',UDim), 
      atom_concat(UDim,BDim,IDim), 
      Int is Ext/M,!, 
      intensive(Other,M,BDim,[d(Name,[Int],IDim)|Old],Result). 

In this prototype the input slot accepts extensive quantities beginning with the
respective reference measure (mass or volume), followed by the molar (chemical)
quantity of the given biochemical component. In the simplified biological models
it is usually difficult to identify the reference measure of the compartments, as well
as the molar amounts are also uncertain. Considering this, similarly to other
authors, we used a hypothetic reference unit of 1, and estimated amounts. The
local program of prototype ‘measure’ is prepared for the calculation of concen-
trations from the extensive amounts. Assuming 1 for the reference unit this cal-
culation is meaningless, accordingly we shall speak about simulated units (SU) in
the interpretation of the results. Nevertheless in the possible further development,
with the exact knowledge of the compartments and amounts we can do more
realistic calculations for multiple, connected compartments ([1,1,1], [1,1,2],
[1,1,3],…,etc.).

The action elements of the low scale model are summarized in Table 18.2. It is
to be noted that two action elements have input data from the middle scale sig-
naling model.

In Table 18.2 the original name of the actions (transformations) is followed by
the simplified name used in the computational databases. The 19 action elements
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belong to 9 prototypes, as it signed in column Type. The action elements are
characterized by the following properties:

Type = name of the prototype transition;
Input data = list of input conditions and concentrations, necessary for the

calculations, where (State = Sign) means that the action takes
place if the given State contains the Sign and (Conc,
Component) means that calculation needs the actual concen-
tration of the Component;

Parameters = one or more numerical data for the calculation of the given
action;

Output signs = qualitative states, modified by the action directly;
Output decreases = components, decreased by the action;
Output increases = components, increased by the action;
Program = identifier of the local program, associated with the prototype

The applied program prototypes will be described by their associated local
programs written in the

actionprogram(ProgramName,ParList,InpList,OutList) :- ActionProgramCode

syntax (see Fig. 18.11) as follows:
Activation: if the signaling status from the middle scale is ‘active’, then cal-

culates the first order transformation of p53 to p53Ac, i.e.:

actionprogram (y,activation,
[c(kin,dl,[d(k,[K],nd)])],
[i(status,dl,[d(sign,[Status],nd)]),i(p53,dl,[d(conc,[C],su)])],
[o(p53,dl,[d(comp,[Dec],su)]),o(p53Ac,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Status = active,
Inc is K*C*DT,
Dec is (-1)*Inc,!.

Inactivation: considering the SIRT1 determined second order kinetics, inhibited
by XXX it deacetylates p53Ac, while the effect of XXX is controlled according to
parameter A, i.e.:

actionprogram (y,inactivation,
[c(kin,dl,[d(k,[K],nd)]),c(alfa,dl,[d(alfa,[A],nd)])],
[i(p53Ac,dl,[d(conc,
[Cp53Ac],su)]),i(sirt1,dl,[d(conc,[CSirt1],su)]),i(xxx,dl,[d(conc,[Cxxx],su)])],
[o(p53Ac,dl,[d(comp,[Dec],su)]),o(p53,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Inc is K*Cp53Ac*CSirt1/(1 ? A*Cxxx)*DT,
Dec is (-1)*Inc,!.
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Promoted synthesis: depending on the CP concentration of promoting compo-
nent ‘prom’, it decreases the amount of component ‘dec’ and increases the amount
of component ‘inc’, i.e.:

actionprogram (y,promsynth,
[c(kin,dl,[d(k,[K],nd)])],
[i(prom,dl,[d(conc,[CP],su)])],
[o(dec,dl,[d(comp,[Dec],su)]),o(inc,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Inc is K*CP*DT,
Dec is (-1)*Inc, !.

Inhibited synthesis: depending on the CI concentration of inhibiting component
‘inhib’ and on parameter A, it decreases the amount of component ‘dec’ and
increases the amount of component ‘inc’, i.e.:

actionprogram (y,inhibsynth,
[c(kin,dl,[d(k,[K],nd)]),c(alfa,dl,[d(alfa,[A],nd)])],
[i(inhib,dl,[d(conc,[CI],su)])],
[o(dec,dl,[d(comp,[Dec],su)]),o(inc,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Inc is K/(1 ? A*CI)*DT,
Dec is (-1)*Inc,!.

Conditional synthesis: if the signaling status from the middle scale is ‘active’,
then calculates the first order transformation of ‘dec’ to ‘inc’, i.e.:

actionprogram (y,condsynth,
[c(kin,dl,[d(k,[K],nd)])],
[i(status,dl,[d(sign,[Status],nd)])],
[o(dec,dl,[d(comp,[Dec],su)]),o(inc,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Status = active,
Inc is K*DT,
Dec is (-1)*Inc,!.

Mutated synthesis: with the knowledge of the mutation ratio MF, synthesizes
p53 (inc1) and p53mut (inc2) from the resource pool (‘dec’), while in normal
(healthy) synthesis MF = 0), i.e.:

actionprogram (y,mutsynth,
[c(kin,dl,[d(k,[K],nd)]),c(mut,dl,[d(m,[MF],nd)])],
[],
[o(dec,dl,[d(comp,[Dec],su)]),o(inc1,dl,[d(comp,[Incp53],su)]),o(inc2,dl,[d(comp,
[Incp53mut],su)])]) :-
g(dt,DT),
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Incp53 is K*(1-MF)*DT,
Incp53mut is K*MF*DT,
Dec is (-1)*K*DT,!.

Degradation: calculates the first order decomposition of ‘dec’, resulting waste
pool of ‘inc’, i.e.:

actionprogram (y,degradation,
[c(kin,dl,[d(k,[K],nd)])],
[i(dec,dl,[d(conc,[C],su)])],
[o(dec,dl,[d(comp,[Dec],su)]),o(inc,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Inc is K*C*DT,
Dec is (-1)*K*C*DT,!.

Promoted degradation: depending on the concentration of promoter ‘prom’,
calculates decomposition of ‘dec’, resulting waste pool of ‘inc’, i.e.:

actionprogram (y,promdegr,
[c(kin,dl,[d(k,[K],nd)])],
[i(dec,dl,[d(conc,[C],su)]),i(prom,dl,[d(conc,[CP],su)])],
[o(dec,dl,[d(comp,[Dec],su)]),o(inc,dl,[d(comp,[Inc],su)])]) :-
g(dt,DT),
Inc is K*C*(1 ? CP)*DT,
Dec is (-1)*Inc, !.

Inlet: transports an amount M of a given component ‘inc’ to the investigated
model, i.e.:

actionprogram (y,inlet,
[],
[i(transport,dl,[d(conc,[M],su)])],
[o(inc,dl,[d(comp,[Inc],su)])]) :-
Inc is M,!.

The structure of the low scale dynamic model is illustrated in Fig. 18.13. The
‘act’ elements indicate that the low scale model forwards data to the middle scale
signaling model (see later).

In the graphical representation of the process model net structures we use two
kinds of nodes and three kinds of edges, as follows:

• ellipse = state element,
• rectangle = action element,
• dotted line = reading of signs or concentrations from state to action,
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• solid line = increase of measures or overwriting the signs from action to state,
• dashed line = decrease of measures from action to state.

18.4.2 Qualitative Informational Model of High Scale Pathologic
Properties

The high scale pathologic process can be described by an informational model
consisting from sign representing state and rule representing action elements. This
can be solved with same programmable elements and connections, only the
operators and the local programs differ from the previously investigated conser-
vational model.

The state elements of the high scale model [1] are summarized in Table 18.3.
The three state elements have various, pre-defined possible values, as well as an
initial value, as follows:

Pathogenic status (p_s): determines the actual state of the illness in the sense of
the Vogelstein’s model, described in Sect. 2.2.1. The possible values might be
‘late_adenoma’, ‘tumor_suppression’, ‘tumor_development’ and ‘carcinoma’. Our
simulation starts form ‘late_adenoma’.

Oncogenic_status (o_s): contains information whether there exists any onco-
genic stress or not. Accordingly it may have ‘no’ or ‘yes’ values, while we pre-
sume ‘no’ as an initial condition. This sign expresses the oncogenic boundary
conditions for the investigated three scale process.

Signaling status (s_s): summarizes the state of the middle scale signaling sce-
narios. The possible values of the signaling status (‘no’, ‘normal_p53_function’,
‘loss_p53_function’ and ‘restore_p53_function’) can be understood as emergent
properties, resulted from the underlying signaling processes. The initial value of

p53 p53_activation

p53_degradation

act8

p53Ac p53_inactivation

p53Ac_degradation

mdm2_synthesis

miR34a_synthesis

MDM2 mdm2_degradation

p53mut_degradation

miR34a

miR34a_degradation

sirt1_synthesis

cdkcyc_synthesis

bcl2_synthesis

act9

p53_mutant

CDK4/6+CyclinE2 Cdkcyc_degradation

act3

BCL2 bcl2_degradation

act1

SIRT1

SIRT1_degradation

XXX XXX_degradation

Resource

xxx_synthesis

ectopic_miR34a

p53_synthesis

Waste

env

Fig. 18.13 Process model net structure of the low scale dynamic model. The ellipses and
rectangles correspond to the state and action elements, listed in Tables 18.1 and 18.2,
respectively
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‘no’ is in agreement of the temporary lack of oncogenic stress. The actual sig-
naling status (highlighted by grey) comes from the middle scale signaling model.

All of the state elements belong to the same type (info), associated with the
same program (sign). Accordingly the over-writeable (optionally multiple) content
of the input slot is copied and stored in the output slot in each step of execution.
The program of sign meta-prototype is the following:

stateprogram(y,sign,

[],

[i(Inp,dl,[d(sign,[InpSign],nd)])],

[o(Out,dl,[d(sign,[OutSign],nd)])]) :-

Out = Inp, OutSign = InpSign,!.

The action elements of the high scale model are summarized in Table 18.4.
The structure of the high scale informational model is illustrated in Fig. 18.14.

The ‘act’ elements indicate that the low scale model forwards data to the middle
scale signaling model (see later). The state element, determining the ‘status’ of the
middle scale model is determined by two rules of the high scale system.

The functioning of the action elements correspond to the usual condition/action
rules. The content of input slots corresponds to the various sets of conditions,
initiating the firing. Two rules have output sign to the middle scale signaling model
(highlighted by grey in Table 18.4). There are no measure decreases or increases
associated with the rules. All of the action elements belong to the same type (rule),
associated with the same program (rule). The program of rule meta-prototype is
declared as follows:

actionprogram(y,rule,Param,Condition,Action) :-
conditions(Condition,Param,Consequence,0,0),
action(Consequence,[],Action),!.
v(y,rule,Param,Condition,[]) :-
conditions(Condition,Param,_,0,N),N [ 0,!.
conditions([],Consequence,Consequence,Ack,Ack) :- !.

Table 18.3 State elements of the high scale pathologic model

Scale Original
name

Passive
name

Type Possible values Initial value Program

[1] Pathogenic status p_s info [late_adenoma, carcinoma,
tumor_suppression,
tumor development]

late_adenoma sign

[1] Signaling status s_s info [no,normal_p53_function,
loss_p53_fuction,
restore_p53_function]

no sign

[1] Oncogenic status o_s info [no,yes] no sign
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conditions([i(_,dl,[d(sign,[IContent],nd)])|OtherConditions],
[c(_,dl,[d(sign,[PContent],nd)])|OtherParam],RConsequence,Ack,RAck):-
identical(IContent,PContent,Check),
NAck is Ack ? Check,!,
conditions(OtherConditions,OtherParam,RConsequence,NAck,RAck).
identical(IContent,PContent,0) :- IContent = PContent,!.
identical(_,_,1) :- !.
action([],Action,Action) :- !.

Pathogenic_status

Rule1

Rule2

Rule3

Rule41

Rule42

Rule5

Signaling_status

Oncogenic_status

Rule61

Rule62

act5

act6

act7

act10

act11

act12

act13

act9

status

Rule7

Fig. 18.14 Process model net structure of the high scale pathologic model. The ellipses and
rectangles correspond to the state and action elements, listed in Tables 18.3 and 18.4,
respectively
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action([c(Info,dl,[d(sign,[PContent],nd)])|OtherConsequence],Action,RAction) :- !,
action(OtherConsequence,[o(Info,dl,[d(sign,[PContent],nd)])|Action],RAction).

This declarative program describes that if all of the input conditions are ful-
filled, then all of the consequential actions have to be executed.

18.4.3 Hybrid Coupling Model of Medium Scale Emergent
Properties

The middle scale signaling process is described by an informational model con-
sisting from sign representing state and rule representing action elements.

The state elements of the middle scale model [1,1] are summarized in
Table 18.5. The three state elements have various, pre-defined possible values, as
well as an initial value, as follows:

Cell Cycle (cellcycle): determines the actual state of the cell cycle (prolifera-
tion), that may be ‘functioning’ or ‘arrested’. The multiscale process model,
starting from ‘late adenoma’ with ‘no’ oncogenic stress is characterized by the
initial value of ‘functioning’.

Apoptosis (apopt): characterizes the actual state of the apoptotic pathways, that
may be ‘off’ or ‘on’. The multiscale process model, starting from ‘late adenoma’
with ‘no’ oncogenic stress is characterized by the initial value of ‘off’.

p53/miR-34a status (status): defines the actual state of the p53/miR-34a related
signaling system, that may be ‘inactive’, ‘active’ or ‘wrong’. The multiscale
process model, starting from ‘late adenoma’ with ‘no’ oncogenic stress is char-
acterized by the initial value of ‘inactive’.

All of the state elements belong to the same type (info), associated with the
same program (sign). The program of sign meta-prototype is the same as for the
high scale pathologic model.

The action elements of the middle scale model are summarized in Table 18.6.
The functioning of the action elements correspond also to the usual condition/

action rules. If the content of input slots corresponds to the various sets of con-
ditions, then the rule fires, according to the output slots. There are no measure
decreases or increases associated with the rules.

Table 18.5 State elements of the middle scale signaling model

Scale Original name Passive
name

Type Possible values Initial value Program

[1,1] Cell Cycle cellcyle info [functioning, arrested] functioning sign
[1,1] Apoptosis apopt info [off, on] off sign
[1,1] p53 miR34a status status info [inactive, active,

wrong]
inactive sign
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Part of the action elements belong to the type ‘rule’, with the program ‘rule,
introduced in high scale model. Another part of action elements is characterized by
the ‘cond’ type, using the ‘cond’ program that checks for one qualitative sign and
for one limit concentration, coming from the low scale model (highlighted grey).
The actual limit values are declared as local parameters of the given actions.

Action prototype ‘ratio’ determines the ratio of two components (in our case the
ratio of the normal and mutant p53, as follows:

actionprogram(y,ratio,
[c(limit_ratio,dl,[d(lr,[LR],nd)])],
[i(conc1,dl,[d(tomeg,[C1],su)]),i(conc2,dl,[d(tomeg,[C2],su)])],
[o(status,dl,[d(sign,[Result],nd)])]) :-
C2/(C1 ? C2) [ LR,
Result = wrong,!.

The structure of the middle scale model is illustrated in Fig. 18.15.

18.5 Simulation Based Reproduction of the Possible
Scenarios in the Example Process

18.5.1 Generation and Simulation of the Multiscale Process
Model

The generation and simulation of the multiscale process model is controlled by a
supervisory file that determines

Cell_cycle

Normal_p53_functioning_1

Normal_p53_functioning_2

Normal_p53_functioning_3

Loss_of_p53_function

Restore_p53_function_1

Restore_p53_function_2

Restore_p53_function_3

Apoptosis_switch_on Apoptosis

p53_miR34a_status p53_activation

xxx_synthesis

s_sCell_cycle_arrest

p53_mutation

miR34a_dysregulation

Fig. 18.15 Structure of the middle scale informational process. The ellipses and rectangles
correspond to the state and action elements, listed in Tables 18.5 and 18.6, respectively
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• the name and the multiscale coordinate of the individual models,
• the global time step of the system, and
• the simulation time (or the absolute starting and ending time).

The individual models are described in an extended Graphviz interface [48].
The general purpose interpreting program reads these files and prepares the User
and Expert files of the given models. The User file will contain the declaration of
the state(.) and action(.) elements, as well as the reading(.) and modifying(.)
connections in the form introduced in part 18.3. The individual programs can run
according to their optionally less time scale (with more frequent time steps), as
well as their execution can be limited by time or by event driven control. The
Expert file will contain the stateprogram(.) and actionprogram(.) clauses, declaring
the individual local programs, associated with the various prototypes (remember
the example programs, shown in part 18.4).

The simulation runs in a pseudo-parallel organization that supports the optional
real parallelism. The kernel opens the models one after the other and executes the
elements until the sum of the local time steps correspond to the global one. The
connection between the scales is organized by special reading(.) and modifying(.)
elements that are declared in the sending model or in the universal complement, in
the sense of Fig. 18.12. These scale connecting elements get value in the sending
model, and then they are copied to the receiving model to forward the data to the
addressed element in the other model.

There might be pure conservational, pure informational and mixed models.
Moreover the state and action prototypes can contain both conservational and
informational input or output slots. It gives a flexible environment for the com-
bined quantitative (e.g. conservation law based) and qualitative (e.g. rule based)
simulation. It is to be noted that depending on the state and action elements, as
well as on their local programs any other kind of modeling (e.g. stochastic, fuzzy,
etc.) can be implemented.

Next we shall illustrate the multiscale simulation with a set of case studies. We
emphasize that these case studies are based on the realistic knowledge, summa-
rized in Part 18.4, however they are only oversimplified illustrations with roughly
estimated data.

18.5.2 Tumor Suppression Resulted by the Normal
Functioning of p53/miR34a System

The normal functioning of the p53/miR34a signaling is illustrated in Fig. 18.16. In
this (and in the following) Figures the results obtained from the low, middle and
high scale models are shown above each other, while vertical arrows emphasize
the interaction between the scales. The abscissa shows the approximate time in
hours. The changes of the signs in the state elements of the upper and middle scale
models are illustrated by the vertical stepping of horizontal lines with. The low

534 B. Csukás et al.



0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600

p53 conc

p53_mutant conc

p53Ac conc

Low scale

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400 1600

sirt1 conc

cdkcyc conc

bcl2 conc

Low scale

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600

mdm2 conc

miR34a conc

Low scale

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600

xxx conc

Low scale

0 200 400 600 800 1000 1200 1400 1600

High scale

Signaling
status

Pathogenic
status

late_adenoma

tumor_development

tumor_supression

carcinoma

no

normal_p53_function

loss_p53_function

restore_p53_function

Oncogenic
status

no

yes

0 200 400 600 800 1000 1200 1400 1600

Cellcycle

Apoptosis

p53/miR34a 
status

off

on

inactive

active

wrong

functioning

arrested

Middle scale
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scale results are shown in four diagrams, showing the concentration of the typical
groups of components in arbitrary simulation unit (SU).

All case studies start from the pathogenic status of ‘late adenoma’ from
oncogenic status ‘no’ and with signaling status ‘no’. Cell cycle is functioning and
apoptosis is switched off by default. There are identical non zero initial conditions
for p53 (or mutant p53), miR-34a, cdkcyc (CDK4/6 ? CylinE2), bcl2 (BCL2) and
sirt1 (SIRT1). Except of the mentioned changes, all of the kinetic parameters,
concentration limits and other constants are identical in the case studies.

In case of normal p53/miR34a functioning, the oncogenic stress initiates tumor
development and loss of p53 functioning. However, it simultaneously promotes the
formation and activation (acetylation) of p53. If the stress is associated with a DNA
damage, then the specific component xxx (like DBC1) may appear. Activated p53
promotes miR-34a formation that inhibits the expression of SIRT1. SIRT1 can
accelerate deactivation of p53Ac, but the optionally present xxx inhibits this effect.
On the other hand activated p53Ac promotes the expression of MDM2 that accel-
erates the decomposition of p53 and of p53Ac. These apparently contradictory
influences help to avoid any kind of over-reaction. Every effect prepares its antag-
onistic one to keep the balance, suppressing the unnecessarily great changes.

Regardless to this equilibrium, miR-34a inhibits the expression of the anti-
apoptotic and proliferation supporting proteins, accordingly cell cycle arrest and
apoptosis will be promoted. In our case, because of the actually used arbitrary
initial concentrations and constrains, first cell cycle will be arrested, accordingly
normal p53 functioning will be reinstalled, and oncogenic stress will be survived.
After this transient, the dangerous state is avoided and the processes are going
toward a steady state, as well as cell cycle starts again. (It is to be noted that if it
does not succeed, than apoptosis would be initiated.)

18.5.3 miR-34a Dysregulation Caused Tumor Development
and its Ectopic miR-34a Therapy

Dysregulation of miR-34a formation means that the rate of miR-34a synthesis is
decreased in the cell. This case is illustrated by a simulation, where the only dif-
ference from the previous run was a decrease in the kinetics of miR-34a synthesis
with one order of magnitude. The calculated results are seen in Fig. 18.17. As the
Figure shows, regardless to the activation of p53, the miR-34a level decreases.

Accordingly, after the oncogenic effect, the tumor development will be stabi-
lized, resulting the loss of p53 function. Caused by the decreased miR-34a level, the
expression of the post transcriptional genes, inhibiting the cell cycle arrest and the
apoptosis will not be blocked, consequently proliferation and tumor development
continues.
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Higher p53Ac level promotes the MDM2 expression, but finally all of the
concentrations tend toward a modified steady state value, characterizing the per-
manent tumor development, going toward the next stage of carcinoma.

The fatal process can be avoided by a treatment with ectopic miR-34a. In the
simulation, illustrated in Fig. 18.18, at the 720th hour we started an miR34a treat-
ment, that increased the miR-34a concentration. Consequently, the expression of the
post transcriptional genes, inhibiting the cell cycle arrest and the apoptosis will be
blocked again, and the cell cycle will be arrested. This stops the proliferation,
resulting in the tumor suppression, corresponding to the normal p53 function.

Having survived the oncogenic stress, the activation of the p53 decreases,
causing a further decrease in the MDM2 and miR-34a synthesis. The lower MDM2
concentration decreases the degradation of p53 and p53Ac. Moreover the lower
miR-34a concentration decreases the inhibition of the SIRT1 synthesis that has a
positive feedback on p53 deactivation. Also the concentration of the anti-apoptotic
and cell cycle motivating components is getting to increase.

18.5.4 Mutant p53 Caused Tumor Development and its
Ectopic miR-34a Therapy

Another kind of miR_34a dysregulation is caused by the formation of mutant p53.
The mutant p53 cannot be activated, accordingly it is not able to promote the miR-
34a synthesis, accordingly the concentration of miR-34a decreases in the cell. This
case is illustrated by a simulation, where the only difference from the Fig. 18.16 run
is the formation of mutant p53 instead of the usual one. The calculated results are
shown in Fig. 18.19. As the Figure shows, the miR-34a level converges to zero.

Accordingly, after the oncogenic effect, the tumor development will be stabi-
lized, resulting the loss of p53 function. Again, caused by the decreased miR-34a
level, the expression of the post transcriptional genes, inhibiting the cell cycle
arrest and the apoptosis will not be blocked, consequently proliferation and tumor
development continues.

Lack of p53Ac level blocks also the MDM2 expression, but finally all of the
concentrations tend toward a modified steady state value, characterizing the per-
manent tumor development, going toward the next stage of carcinoma.

This fatal process can also be avoided by a treatment with ectopic miR-34a. In
the simulation, illustrated in Fig. 18.20, at the 720th hour we started an miR34a
treatment, that increased the miR-34a concentration. Consequently, the expression
of the post transcriptional genes, inhibiting the cell cycle arrest and the apoptosis
will be blocked again, and first the cell cycle will be arrested. This stops the
proliferation that results in the tumor suppression, corresponding to the normal p53
function (as seen experimentally, e.g. in [49]).
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18.6 Concluding Remarks on the Multiscale Simulation
of a Simplified Example

We studied a simplified multiscale biosystem with a new modeling and simulation
methodology. The biosystem was a consciously, but arbitrarily selected multiscale
part of the p53/miR-34a related signaling process that has an important role in the
tumor resistance, diagnostics, as well as in the therapy of various tumors.

The multiscale model covered the system from the change of a pathologic stage to
the detailed dynamic molecular processes and vice versa, however the set of the
considered components and interactions were extraordinarily limited, focusing on a
heuristically selected, important subsystem. This simplification makes possible to
provide an overview, and the critical evaluation of the difficulties and possibilities.

First of all we can conclude that Direct Computer Mapping of process models
can be applied for modeling and simulation of a typical multiscale, hybrid bio-
system. The major advantage is the unified representation of the various quanti-
tative and qualitative sub-models, as well as the easy combination of these various
models in a unified simulation environment. Another important feature is that the
model can be extended with new sub-models, as well as with new elements
(components, transformations, transportation) in the sub-models. Traversing of
scales can be solved by declaring connections between the sub-models with the
same syntax and semantics as within the sub-models, only the sending and the
receiving coordinates are different. The declarative approach uses local variables
and local programs for building elements that supports the free change (extension,
removal, modification) of the multiscale, hybrid model, without considering the
limitations of any mathematical construct or modeling language.

Regardless to the limited number of components and interactions, the investi-
gated example demonstrates many important and interesting features of the multi-
scale, hybrid biosystems. Especially, one can see how the typical scenarios of the
low level molecular events project onto the state properties in the higher scales.
These properties (often called emergent properties) determine typical scenarios of
lower scale states and actions. These properties express rather process based heu-
ristics, than the sometimes ‘‘mystically’’ denoted emergence. In the studied simple
model, the coupling of qualitative and quantitative information is viable, e.g. in the
form of numerical relations, like constraints in the middle scale. The simplified
example, extracted from the independently developed, but coherent references,
describes some essential features about the modeled biological processes. We could
simulate the natural functioning of the p53/miR-34a signaling for the tumor sup-
pression, as well as the various malfunctions of the system. The simulation of adding
ectopic miR-34a proved to be a possible therapeutic intervention.

Important findings of the investigated example are a new p53 model, featuring
the miRNA control and inclusion of systemic (emergent) properties as cellular
outputs and simulation of this model via new multiscale methodology. This
example aims to challenge the ‘‘one-target, one-disease’’ tradition and seeks to
develop multiple target strategies during the primary discovery steps by means of

542 B. Csukás et al.



systems biology of a particular disease signaling pathway. Detailed signaling
pathway description, including multiscale scenario, would then allow an interro-
gation of such pathway in silico, allowing for multi-hit scenario at drug discovery.
This is an ultimate goal of the research.

In principle, the proposed approach could be applied to any biological system of
any complexity. The simulation tool allows employing any kind of detail, is very
robust and could handle even much larger systems with many reactants. Consid-
ering that the knowledge of signaling pathways would increase considerably in a
near time, one would be able to simulate such detailed process system (for some
signaling pathways detailed reaction is already available, e.g. for EGF).

We emphasize that considerable uncertainty may come from the arbitrary
selection of the modeled part within a large biosystem. All of the biosystem
models are well defined sets of state, action and connection elements. Other
connections link the model with its (actually) non-modeled environment. The
investigated subsystem (called also as universe of discourse) has to be separated
from the non-modeled subsystem, unambiguously. State elements effect on action
elements and, action elements effect on state elements, vice versa. Also the
environment effects the studied model, as well as the given model effects on the
environment. A feasible limitation is that we locate the actions to the studied
model, while the environment can interact with the states. This separation means
neither a geometrical border, nor the restriction to any spatial or temporal scale.
Accordingly, the notion of environment refers to everything, outside of the con-
sciously and/or arbitrarily selected process model.

All of the biosystem models are open, i.e. they cannot be isolated from their
environment. However the feasible and useful biological models must be closed
enough, with respect to the given study. One of the most important challenges in
modeling is the appropriate and adequate outlining of the state and action elements
for a given model.

The uncertainty of our model is quite clear in the limelight of the complexity
shown in Figs. 18.2 and 18.3, as well as looking at the big picture in Fig. 18.1.
Considering this, it seems to be a surprise that our simplified model works, at all.
Probably this comes from the more or less correct consideration of the feedback
loops at the low level quantitative model. Nevertheless, in a real application we
have to make a systematic sensitivity analysis for the hidden increases and
decreases of each component.

Another kind of uncertainty comes from the roughly estimated numerical
parameters, constraints and initial values. However, it is to be noted that according
to our experiences, a quantitative process with the modeled mutual feedback loops
is less sensitive for the numerical values. Probably the robustness (and sustain-
ability) of the biological processes is the consequence of the mutual (cooperative)
feedback between the functionally connected neighbors.

Another important experience is that in the model development we had much
more problems with the qualitative signs and rules. Sometimes it is difficult to
avoid the deadlock and the hazard situations, appearing in the pure rule based
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parts. However the systematic analysis of the lower scale conservational sub-
model helps to improve the rule based scales, too.

The studied process gives a good example for combining conservational
(material balance based) and informational (sign based) models. In the lowest level
of our multiscale hybrid model biochemical and physical processes with bio-
chemical and physical entities take place, e.g.

– a protein comes from the environment;
– a protein goes out to the environment;
– a protein is synthesized;
– a protein is degraded;
– a protein regulates up (promotes) the synthesis of another one;
– a protein regulates down (inhibits) the synthesis of another one;
– proteins travel between and across the compartments;
– proteins react with each other (association, dissociation, etc.);
– proteins are activated and deactivated; etc.

All of the state elements are represented by various physical (or chemical)
entities, as well as they represent some information by their existence. For
example the proteins are built from a given amount of specifically sequenced
amino acids, and these amino acids are built finally from specifically arranged
atoms. However these proteins contain information about the possible actions,
promoted or inhibited by them.

All of the action elements are represented by a set of physical (or chemical)
changes, determined by the coordinated decreases or increases in the associated
entities. For example, in a binding process, the amounts of free and bound com-
ponent are decreased and increased, respectively, while the free binding site will
be occupied. Nevertheless the binding process determines a rule in the language of
signs (information), e.g. the bound protein switches off or on another action.

Finally, every component can behave either as a ‘‘conservational law based
matter’’ or as an ‘‘abstract sign expressing information’’:

• DNA behaves as information, coding all of the proteins, but in replication it
needs nucleotides;

• tRNAs, mRNAs behave as information, coding specific proteins, but they are
built from nucleotides;

• miRs promote and inhibit various coding processes, but they are built from
nucleotides;

• various proteins (enzymes) promote and inhibit various transformations and
transportations, but they are built from amino acids;

• metabolic processes have rather conservational than informational character,
etc.

Going down in the above list, the components and the processes seem to contain
less information. Obviously, we can use a relativistic notion of informational
process, as a well defined sub-process of the conservational process that consumes
and produces less amount of conservation law based measures, than its
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complement, but effects more on its complement, than vice versa. Accordingly in
biosystems all of the informational processes are conservation based information
processes. In addition there is a finite pool of nucleotides, amino acids, proteins,
metabolites etc. in the cell, while the over-expressions are limited by the con-
servation of the given building elements.

Conscious consideration of conservation based informational processes is an
important lesson, learnt from biosystem modeling for computational tools and
from computer simulations for biosystem research. Direct Computer Mapping
makes possible the unified knowledge representation. In the further developments
we must focus on the automatic model discovery, based on the common use of
various knowledge elements. On the other hand experimental study of biosystems
at various scales ought to be combined with multiscale modeling and simulation
tools, based on the conscious use of conservation based information processes.
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