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    Abstract     In recent years there have been striking advances in our understanding of 
not only intra-bacterial communication but also the existence of inter-kingdom 
crosstalk between bacterial pathogens and their eukaryotic hosts. The intimate 
co- evolution of host and bacterial chemical communication systems appears to have 
generated an array of specialised signalling molecules which enable this dialogue. 
Bacterial pathogens are able to eavesdrop on their host and constantly adjust their 
metabolic and virulence status in order to survive and cause disease. Host neuro-
endocrine stress hormones like adrenaline and noradrenaline play a key role in 
modulating the response of many pathogens during host infection. The huge 
benefi ts of unravelling such a complex interplay in inter-kingdom signalling merits 
additional efforts in reaching the ultimate goal of decoding and interfering with the 
dialect of hormones.  

25.1         Introduction 

 Bacterial pathogens use an array of molecular sensors to perceive and facilitate 
adaptation to changes in their environment. Mechanisms which allow bacterial 
pathogens to eavesdrop on mammalian host signalling systems such as neuroendo-
crine (NE) stress hormones may aid towards their successful adaptation and survival 
within the host (Pacheco and Sperandio  2009 ). Upon entering the host, pathogens 
come in contact with a wide range of chemical signals including the NE stress 
hormone noradrenaline which is abundant in the gut as well as adrenaline which is 
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found mostly in the bloodstream (Aneman et al.  1996 ; Eisenhofer et al.  1996 ; 
Furness  2000 ). Interestingly, bacterial lipopolysaccharide has the ability to signal 
the formation of adrenaline and noradrenaline by macrophages in the bloodstream 
(Flierl et al.  2007 ,  2009 ). It was therefore suggested that the phagocytic system 
represents a diffusely expressed adrenergic organ (Flierl et al.  2007 ,  2009 ). 

 Faced with such a wide repertoire of host signals and environments, bacteria 
employ collective decision making, synchronizing their responses effi ciently, in 
order to circumvent host defences and survive. Successful pathogens have, therefore, 
evolved a communication protocol which employs producing and sensing the 
concentration of autoinducer molecules in a process called quorum sensing (QS) 
(Pacheco and Sperandio  2009 ; Williams  2007 ). Following detection of the autoinducer, 
bacteria coordinate their gene expression in such a way as to behave in a “multicellular” 
fashion. Thus, organised bacterial attack against host defences ensures maximum 
chances of survival. More recently, a bacterial autoinducer, AI-3, was shown to 
cross talk with the host NE stress hormones adrenaline and noradrenaline (Sperandio 
et al.  2003 ). 

 Host-pathogen interactions are extremely important in determining the overall 
outcome of an infection. There is increasing evidence to suggest that bacteria can 
sense host NE stress hormones such as adrenaline and noradrenaline to modulate 
their virulence (Karavolos et al.  2008b ,  2011a ,  b ; Pacheco and Sperandio  2009 ; 
Spencer et al.  2010 ). In this chapter we will present the latest evidence supporting 
this inter-Kingdom signalling hypothesis and discuss aspects of the newly evolving 
concepts of bacterial-host communication.  

25.2     Autoinducers and Hormones 

 In Gram-negative bacteria QS is usually mediated by  N- acylhomoserine lactones 
(AHLs), 2-alkyl-4-quinolones (AQs) and furanones such as autoinducer-2 (AI-2) 
(Bassler et al.  1994 ; Winson et al.  1995 ). QS presents an advantage to the bacteria 
in terms of allowing coordinated expression of mechanisms aiding bacterial 
survival whilst simultaneously modulating metabolic fi tness (Fuqua and Greenberg 
 1998 ; Miller and Bassler  2001 ; Winzer et al.  2002 ,  2003 ; Winzer and Williams 
 2001 ). 

 AHLs represent a class of freely diffusible autoinducers produced solely by 
Gram-negative bacteria. AHLs mediate signalling via critical concentration- mediated 
activation of LuxR family transcriptional regulators via the LuxNUO signal trans-
duction system (Taga and Bassler  2003 ; Xavier and Bassler  2003 ). In Gram-positive 
bacteria, the autoinducers are actively secreted, post-translationally modifi ed, 
autoinducing peptides resulting from the cleavage of larger precursors. Signalling is 
achieved by interaction with membrane receptors using the classical two-component 
signal transduction system, or intracellularly following internalisation by oligopep-
tides permeases (Dunny and Leonard  1997 ; Lazazzera  2000 ; Lyon and Novick 
 2004 ; Schauder and Bassler  2001 ). 
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 AI-2 is a signal molecule deriving from rearrangement of 4,5-dihydroxy-
2,3-pentanedione (DPD) which is itself a by-product in a reaction catalysed by the 
enzyme LuxS (Surette et al.  1999 ). It has been suggested that different bacteria 
use a variety of rearranged forms of DPD as AI-2 (Xavier and Bassler  2005 ). For 
example, in  Vibrio harveyi  AI-2 is a furanosyl borate diester (Chen et al.  2002 ), 
while  Salmonella enterica  serovar Typhimurium ( S . Typhimurium) produces a different 
form of AI-2, (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran ( R -THMF), 
lacking boron (Miller et al.  2004 ). In  S . Typhimurium, AI-2 is thought to freely 
diffuse and accumulate extracellularly where upon reaching a critical concentration 
it is internalised and activated by phosphorylation via the Lsr system (Xavier and 
Bassler  2005 ). LuxS-dependent AI-2 activity has been detected in spent culture 
supernatants of a wide variety of bacteria leading to the hypothesis that AI-2 represents 
a “universal” bacterial communication signal (Miller and Bassler  2001 ; Xavier and 
Bassler  2005 ). In a number of species studied so far LuxS and AI-2 have been 
shown to affect the regulation of genes encoding a wide variety of virulence factors, 
motility, cell division, antibiotic production, biofi lm formation, and carbohydrate 
metabolism (Sircili et al.  2004 ; Vendeville et al.  2005 ; Xavier and Bassler  2003 ,  2005 ). 
In  S . Typhimurium, AI-2 only affects the expression of the Lsr system involved in 
its own uptake (De Keersmaecker et al.  2005 ; Taga et al.  2003 ; Xavier and Bassler 
 2003 ). LuxS exhibits quorum sensing-independent activity in  S . Typhimurium by 
modulating fl agellar phase variation to favour expression of the more immunogenic 
phase-1 fl agellin (Karavolos et al.  2008a ). 

 The LuxS enzyme, due to its pleiotropic effects on bacterial metabolism, has also 
been indirectly implicated in the production of another autoinducer (AI-3) in 
 Escherichia coli  (Sperandio et al.  2003 ; Walters et al.  2006 ). In enterohemorrhagic 
 Escherichia coli  (EHEC), AI-3 acts synergistically with adrenaline and noradrena-
line to regulate motility and virulence via the two-component signal transduction 
systems QseBC and QseEF (Pacheco and Sperandio  2009 ; Rasko et al.  2008 ). In spite 
of AI-3 being described almost 10 years ago, its structure is still unknown, and its 
role in quorum sensing is currently under investigation.  

25.3     Role of Host Neuroendocrine Stress Hormones 
in Bacterial Growth and Virulence 

 The mammalian endocrine system represents a very fi ne and sensitive tool that 
synchronises the responses of host cells to a vast array of internal or external 
signals. Many forms of stress have profound effects on the functions of the gastro-
intestinal tract (Elenkov and Chrousos  2006 ). The intestinal mucosa, therefore, with 
its large commensal bacterial population, represents a highly interactive niche 
where bacteria- host communications can potentially thrive (Freestone et al.  2008 ; 
Lyte et al.  2011 ). 
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 NE stress hormones have been shown to infl uence the growth of bacteria 
(Freestone et al.  2007 ,  2008 ). Indeed, recently it was demonstrated that NE stress 
hormones, can contribute to the ability of Gram-negative pathogens to replicate in 
iron-restrictive media that may refl ect the conditions of the gastrointestinal tract 
(Freestone et al.  2007 ). This action of NE stress hormones is related to their natural 
ability to remove iron from mammalian iron-sequestering proteins like transferrin 
and lactoferrin and hence make it available for bacteria to use in growth-related 
processes (Freestone et al.  2000 ; Sandrini et al.  2010 ). NE stress hormones improve 
growth of coagulase-negative  Staphylococci  but have no signifi cant effect on the 
growth of the important Gram-positive pathogen  Staphylococcus aureus  (Beasley 
et al.  2011 ; Neal et al.  2001 ). 

 While there has been extensive coverage in the literature of the ability of NE 
stress hormones to affect bacterial growth, this is by no means the only effect of 
NE stress hormone exposure on bacterial physiology and ability to cause disease. In 
enterotoxigenic  Escherichia coli , NE stress hormones infl uence the expression of 
the virulence-associated K99 pilus adhesin (Lyte et al.  1997 ). Additionally, NE 
stress hormones affect expression of Shiga-like toxins produced by  Escherichia coli  
O157:H7 (Lyte et al.  1996 ). Bacterial exposure to NE stress hormones increases the 
adherence of EHEC to bovine intestinal mucosa (Vlisidou et al.  2004 ) and upregu-
lates Type 3 secretion in  Vibrio parahaemolyticus  (Nakano et al.  2007 ). Exposure of 
 Campylobacter jejuni  to NE stress hormones increases invasion of epithelial cells 
and breakdown of epithelial tight junctions (Cogan et al.  2007 ). Furthermore, there 
is evidence to suggest that  Borrelia burgdorferi  may intercept host NE stress 
hormone signalling to modulate its virulence (Scheckelhoff et al.  2007 ). Most 
recently, exposure of  Porphyromonas gingivalis  to NE stress hormones increased 
expression of the protease arg-gingipainB, a major virulence factor (Saito et al. 
 2011 ). These observations put forward a possible role of NE stress hormones in the 
establishment of infection via the induction of bacterial virulence factors. 

 In  S . Typhimurium NE stress hormones have been reported to affect motility 
(Bearson and Bearson  2008 ; Moreira et al.  2010 ) and Type 3 secretion (Moreira 
et al.  2010 ). These observations have introduced a measure of controversy in the 
fi eld since other groups have been unable to replicate such fi ndings (Karavolos et al. 
 2008b ,  2011a ; Pullinger et al.  2010 ). It is possible that these observations may 
constitute an indirect effect of the natural ability of NE stress hormones to provide 
iron to the cells and hence affect motility and Type 3 secretion (Bearson et al.  2010 ; 
Ellermeier and Slauch  2008 ; Teixidó et al.  2011 ; Troxell et al.  2011 ). 

 The major feature of the  S.  Typhimurium adrenaline response is the upregulation 
of genes involved in metal homeostasis and oxidative stress (Karavolos et al.  2008b ). 
When  S . Typhimurium, is exposed to NE stress hormones there is an induction of 
key metal transport systems within 30 min of treatment (Karavolos et al.  2008b ). 
The oxidative stress responses employing manganese internalisation were also 
elicited. Cells lacking the key oxidative stress regulator OxyR showed reduced sur-
vival in the presence of adrenaline and complete restoration of growth upon addition 
of manganese. Hence, through iron transport, adrenaline may affect the oxidative 
stress balance of the bacteria requiring OxyR for physiological growth. Adrenaline 
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sensing may therefore provide an environmental cue for the induction of the  Salmonella  
stress response in anticipation of imminent host-derived oxidative stress. 

 Furthermore, a signifi cant reduction in the expression of the  pmrHFIJKLM  
antimicrobial peptide resistance operon reduced the ability of  Salmonella  to survive 
polymyxin B following addition of adrenaline (Karavolos et al.  2008b ). Resistance 
to antimicrobial peptides has been shown to contribute to persistence of  S . Typhimu-
rium in a variety of niches ranging from the phagosomes within macrophages to 
the  C. elegans  intestine (Alegado and Tan  2000 ; Prost et al.  2007 ). In  S . Typhimurium, 
the  pmr  locus is under the control of the BasSR two component system (Gunn et al. 
 1998 ; Hagiwara et al.  2004 ). According to the above, we have a direct reduction of 
bacterial antimicrobial peptide resistance by a mammalian hormone and hence a 
novel “antibacterial” role for adrenaline. However, we note that  Salmonella  may have 
adapted to this negative effect of adrenaline within mammalian hosts by increasing 
lipid A deacylation and palmitoylation, thus favouring survival via reduced TLR-4 
receptor-based bacterial signalling (Kawasaki et al.  2004b ,  2005 ). Systemic or 
macrophage produced adrenaline may therefore regulate the fi ne balance between 
the host and  Salmonella  defence mechanisms, and impact upon the development 
of disease. 

 To add to the above observations, treatment of  S . Typhimurium with NE stress 
hormones reduces its resistance to the peptide cathelicidin LL-37, a human antimi-
crobial peptide. LL-37 is produced in the gastrointestinal tract, bone marrow 
and macrophages, and has antimicrobial activity against many Gram-positive and 
Gram- negative bacteria (Bals et al.  1998 ). A NE stress hormone-mediated increase 
in sensitivity to LL-37 may act as a host defence system to combat infection, sug-
gesting that bacterial sensing of stress hormones may be a double-edged sword: 
although bacteria can sense and exploit these molecules, the host can use the same 
signals to manipulate the bacteria (Spencer et al.  2010 ). 

 Exposure of  S . Typhimurium to NE stress hormones also affects expression of 
 virK  and  mig14 , two genes involved in survival and persistence within the host. 
Genetic deletion of either gene reduces the virulence of  S . Typhimurium in a mouse 
infection model, and also reduces survival in macrophages, signifying a possible 
role in the late stages of infection (Brodsky et al.  2005 ; Detweiler et al.  2003 ). 
The down-regulation of  mig14  by NE stress hormones may hence reduce levels of 
persistent infection and promote clearance of bacteria (Spencer et al.  2010 ). All the 
above paradigms highlight the dual role of NE stress hormones in mediating 
host- bacterial interactions. 

  Salmonella enterica  serovar Typhi ( S . Typhi) is an exclusively human pathogen 
causing typhoid fever which is physiologically non-haemolytic (Huang and DuPont 
 2005 ). Exposure of  S . Typhi to NE stress hormones marks a signifi cantly increase in 
haemolytic activity (Karavolos et al.  2011a ,  b ). The haemolytic response is specifi c 
to outer membrane vesicles containing the haemolysin HlyE. Mechanistically, NE 
stress hormones interact with the CpxAR putative adrenergic sensory system to 
downregulate outer membrane protein A (OmpA) levels via upregulation of the 
sRNA  micA . Reduced OmpA levels increase outer membrane vesicle shedding 
and hence haemolysis via increased release of HlyE (Karavolos et al.  2011a ,  b ). 
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The signifi cantly increased ability of this important systemic pathogen to produce 
haemolysis upon interaction with NE stress hormones, may ultimately aid in 
enhancing its host invasiveness and survival.  

25.4     Signaling Through Bacterial Adrenergic Receptors 

 In EHEC adrenaline and noradrenaline can substitute for the bacterial autoinducer 
AI-3 implying the existence of cross talk between the two signalling systems 
(Sperandio et al.  2003 ). This observation raised the possibility of the presence of 
adrenergic receptors in bacteria (Sperandio et al.  2003 ). 

 Indeed, the sensor kinase QseC is autophosphorylated on binding either adrenaline 
or noradrenaline, demonstrating the existence of adrenergic receptors in bacteria 
(Clarke et al.  2006 ). Furthermore, these adrenergic responses can be inhibited by 
mammalian α- and β-adrenergic antagonists like phentolamine and propranolol. 
Remarkably, there is strong specifi city in the antagonistic effect with QseC only 
being blocked by phentolamine (Clarke and Sperandio  2005 ). In  Escherichia coli  
O157:H7 and  Salmonella  the QseBC system has been proposed as the adrenergic 
receptor. However, new emerging evidence supports the existence of alternative 
adrenergic receptors. For example, in  S . Typhimurium it has been demonstrated 
that QseBC is not required for norepinephrine-enhanced enteritis or intestinal colo-
nisation in calves (Pullinger et al.  2010 ). 

 In another example of adrenergic receptor antagonist inhibition, increased 
expression of  virK  and  mig14  in  S . Typhimurium was reversed by the addition of the 
β-adrenergic antagonist propranolol. Some adrenergic phenotypes in bacteria are 
associated with altered iron uptake via the siderophore enterobactin (Burton et al. 
 2002 ; Freestone et al.  2003 ). A  tonB  mutant, defective in siderophore uptake, 
showed the same differential gene regulation upon exposure to NE stress hormones 
as the parent strain, suggesting that the adrenergic regulation is mediated through a 
mechanism independent of TonB. Furthermore, in  S . Typhimurium, QseBC does 
not mediate the adrenergic signalling cascade leading to increased sensitivity to the 
antimicrobial peptide LL-37 (Spencer et al.  2010 ). Hence, it is likely that a different 
putative adrenergic receptor is involved in this response. 

 Additionally, the adrenaline-induced reduction in the ability of  Salmonella  to 
resist polymyxin B was fully reversible by the β-adrenergic blocker propranolol. 
This effect was dependent on the BasSR two component signal transduction system 
which is the likely putative adrenaline sensor mediating the antimicrobial peptide 
response (Karavolos et al.  2008b ). Adrenaline may, therefore, exert its effect on the 
 pmr  locus of S. Typhimurium via the reversible interaction of the β-adrenergic 
blocker with the BasS membrane sensor in a manner similar to the interaction of 
adrenaline with QseC in  E. coli . The low (31 %) amino acid sequence identity between 
BasS and QseC may provide a clue as to why we observe β-blockage in  Salmonella  
as opposed to α-blockage in  E. coli . 
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 The physiological phenotypes of NE stress hormones described above are not 
linked with QseBC or QseEF signalling (Karavolos et al.  2008b ,  2011a ,  b ; Spencer 
et al.  2010 ). This may refl ect differences in pathogenesis between  S . Typhimurium, 
an invasive pathogen infecting macrophages and epithelial cells and  E. coli , a mainly 
non-invasive pathogen which remains in the host intestine. The signifi cant divergence 
in niches occupied by these two pathogens requires different gene expression 
patterns for maximum infection effi ciency; hence NE stress hormones may modu-
late different genetic pathways to the advantage or disadvantage of the pathogen. 

 The inhibition of NE stress hormone-mediated haemolysis by the adrenergic 
β-blocker propranolol in the exclusively human pathogen  S . Typhi is another example 
of the existence of an additional putative novel bacterial adrenergic receptor. In 
 S.  Typhi, NE stress hormone-mediated haemolysis is clearly independent of the 
known  E. coli  O157:H7 adrenergic receptor QseBC and is mediated via the CpxAR 
two component system (Karavolos et al.  2011a ,  b ) 

 Based on the above observations, it is evident that natural selection has ensured 
that there is no monopoly in bacterial adrenergic signalling. Millions of years 
of evolution have culminated in a fi ne tuned bacterial sensing system composed of 
different adrenergic receptors, which through their fastidious specifi cities, orches-
trate the strategic responses of pathogens within their host milieu.  

25.5     Conclusions 

 In response to acute stress, the sympathetic nervous system is activated due to the 
sudden release of NE stress hormones in a response known as the “fi ght-or-fl ight” 
refl ex (Cannon  1915  – for more details see Chap.   2    ). This stress reaction evolved 
from our ancestral survival needs and causes immediate physical reactions in prepa-
ration of the muscular activity needed to fi ght or fl ee an imminent threat. 

 Recently, a number of groups, including ourselves, have made compelling observa-
tions that bacteria can also sense and respond to these host stress signals. Specifi cally, 
work from our laboratory has shown that  Salmonella  has evolved multiple specialised 
systems for directly sensing NE stress hormones. We have demonstrated that even 
brief exposure of  Salmonella  to physiological concentrations of stress hormones 
can result in marked changes in expression of virulence factors. These combined 
observations are summarised briefl y in Fig.  25.1 .

   The effects of adrenaline and noradrenaline are likely to be complex, involving 
multiple effects on both bacteria and host gene expression signatures to actively 
infl uence the outcome of the infection. It is possible that the adrenergic modulation 
of these genes may confer an advantage to the bacteria under certain  in vivo  condi-
tions but an unavoidable disadvantage in others; for example down-regulation of the 
lipopolysaccharide (LPS) modifying enzymes PmrF and PagL causes an increase in 
sensitivity to polymyxin B, but also concomitantly reduces activation of the TLR-4 
Toll-like receptors, reducing the host infl ammatory response to infection (Kawasaki 
et al.  2004a ; Miller et al.  2005 ). 
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 Thus, host NE stress hormones can provide vital environmental cues for bacterial 
pathogens to navigate their way through their specifi c infectious cycle. On the other 
hand, NE stress hormones can provide the host with a unique tool to manipulate 
bacterial pathogens. The observations described in this Chapter provide important 
insights into the intriguing pathways leading to host-pathogen cross-talk and illus-
trate some of the unique ways bacterial pathogens intercept host communication 
signals to their advantage or detriment.     
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