
Chapter 3
Modeling Spatial Effects on Childhood
Mortality Via Geo-additive Bayesian
Discrete-Time Survival Model: A Case
Study from Nigeria

Gebrenegus Ghilagaber, Diddy Antai, and Ngianga-Bakwin Kandala

3.1 Introduction

Childhood mortality is an important indicator of overall health and development in
a country. It is the result of a complex interplay of determinants at many levels,
and as such several studies have recognized that, for instance, maternal (Caldwell
1979; Cleland and van Ginneken 1988), socio-economic (Castro-Leal et al. 1999;
Wagstaff 2001), and environmental (Wolfe and Behrman 1982; Lee et al. 1997)
factors are important determinants of childhood mortality. However, only a few
studies have incorporated environmental factors that are spatial in nature and derived
from geographic databases, such as distances from households or communities
(Watson et al. 1997).

While the commonly used approaches, such as correlation coefficients and
regression analysis may produce statistical outcomes and measures of association,
which are limited to a particular location, these relationships cannot be readily
generalized for other locations within a country. In order to determine that the
observed social phenomena are not distributed in a spatially random manner,
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spatial analysis is employed. Spatial analysis could be defined as a quantitative
data analysis, which focuses on the role of space and relies explicitly on spatial
variables in order to explain or predict the phenomenon under investigation (Cressie
1993; Chou 1997). It tests theories that stress that the location of an individual
influences social attitudes and behaviour, and that observed social phenomena are
not distributed in a spatially random fashion (Weeks 2004). Studies of childhood
mortality in developing countries using aggregated data and methodologies that
ignore spatial dimensions run the risk of explaining very little of the variations in
mortality rates as well as masking spatial variations. For instance, results of the 2003
Nigeria Demographic and Health Survey (NDHS), disaggregated by geopolitical
zones, shows that the infant mortality rate (IMR) for the period 10–14 years
preceding the 2003 NDHS (1989–1993) at the national level was 113 per 1,000
live-births, while the corresponding IMR for the then four geopolitical zones was
North East (129/1,000), North West (136/1,000), and South East (74/1,000), South
West (81/1,000) (NPC 2004).

Crude under-five mortality rates stratified by districts (states) are displayed in
Table 3.1, and reveal wide variations between districts within the same geopolitical
region, information that would otherwise be “hidden” in the overall picture of crude
mortality rate for that region or states had spatial analysis not been carried out,
thereby exemplifying the significance of spatial analysis.

This chapter is intended to account simultaneously for spatial and time-varying
effects on childhood mortality by employing a geo-additive Bayesian model with
dynamic and spatial extensions of discrete-time survival models in estimating
temporal and spatial variation in the determinants of childhood mortality, as well
as any associations between risk factors and childhood mortality in the presence
of spatial correlation. To ignore this correlation would mean an underestimation
of the variance of the effects of risk factors (Weeks 2004). The impact of some
determinant factors of child survival is allowed to vary over time, as well as allowing
for non-linear effects of some covariates on child survival. This model introduces
appropriate smoothness priors for spatial and non-linear effects, as well as Markov
chain Monte Carlo simulation techniques (Gelfand and Smith 1990; Smith and
Roberts 1993), used to estimate the model parameters. The models are subsequently
used to examine spatial variation in childhood mortality rates in Nigeria, and explore
district-level clustering of mortality rates across both space and time (Fig. 3.1). This
chapter will however be limited to the older 31 states (i.e. states created before
1996) due to lack of spatial data including the last five states. Figure 3.1 displays
spatial distribution of mortality rates (per 1,000) across these states/districts for
crude neonatal mortality (panel b); crude peri-natal mortality (panel c); crude infant
mortality (panel d); crude child mortality (panel e); and crude under-five mortality
(panel f).
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Table 3.1 Under-five mortality rates (per 1,000) by older states (districts) in
Nigeria for 0–4 years prior to the survey (1999–2003)

Region No. District Mortality rate (per 1,000)

North Central All 172
1 Plateau 65a

2 Benue 112a

3 Kogi 131
4 Kwara 96a

5 Niger 202
6 Abuja (FCT) 123a

North East All 270
7 Taraba 132a

8 Adamawa 270a

9 Borno 262
10 Bauchi 278a

11 Yobe 299

North West All 264
12 Jigawa 263a

13 Kano 266
14 Kebbi 240
15 Kaduna 221
16 Katsina 222
17 Sokoto 304a

South East All 92
18 Anambra 54a

19 Enugu 192
20 Abia 126
21 Imo 98a

South South All 187
22 Cross River 136a

23 Akwa Ibom 154a

24 Rivers 242a

25 Delta 117a

26 Edo 134a

South West All 101
27 Lagos 101
28 Oyo 52
29 Osun 86a

30 Ogun 124
31 Ondo 118a

aImputed rates, which correspond to Harmonic means of neighbouring states
whenever available
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Fig. 3.1 Map of Nigeria (a) and spatial distribution of mortality rates across the 36 states/districts
(b–f), in Nigeria 1999-2003 (Source: Table 3.1)

3.2 Study Area and Study Population

Nigeria, with a 2006 population of 140 million people, is the most populous country
in Africa (Onuah 2006). It is also the tenth largest country by population in the
world. The country lies on the west coast of Africa between 4ı and 14ı North
latitude and 2ı and 15ı East longitude, and is bordered by Benin, Niger, Chad,
Cameroon, and the Gulf of Guinea. It has a landmass extending over 923,768 km2

and is located on the eastern terminus of the bulge of West Africa (Population
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Resource Centre 2000). With an average density of approximately 124 persons
per square kilometer (Ali-Akpajiak and Pyke 2003) Nigeria is one of the most
densely populated countries in the world. The spatial distribution of the population
is uneven, with some areas of the country sparsely inhabited while other areas are
densely populated. With the exception of Lagos, which has the highest population
density in the country, the South East of Nigeria has the highest densities. Sixty four
percent of the population is concentrated in the rural areas (Ali-Akpajiak and Pyke
2003). Nigeria is made up of 36 states (districts) and a Federal Capital Territory
at Abuja. The 36 states are grouped into six geopolitical zones (regions). The mean
temperature ranges between 25 ıC and 40 ıC, and rainfall ranges between 2,650 mm
in the Southeast and less than 600 mm in some parts of northern Nigeria that lies
mainly in the Sahara desert. These climatic differences give rise to both vegetational
differences ranging from mangrove swamp forest in the Niger delta and Sahel
grassland in the North, and different soil conditions. This results in a variation in
agricultural produce and natural resources in the different parts of Nigeria. A map
of Nigeria indicating the geographical location of the states (districts) is shown in
Fig. 3.1.

3.3 Geo-Additive Bayesian Discrete-Time Survival Model

3.3.1 The Basic Model

Let T denote a discrete survival time, where t ç f1, : : : , q C 1g represents the t
th month after birth and let xi D (x1, : : : , xt) denote the history of a covariate up
to month t. The discrete-time conditional probability of death at month t is then
given by

œ.t; xi/ D pr.T D t jT � t; xi/; t D 1; : : : ; q: (3.1)

Survival information on each child is recorded by (ti, ıi), i ç f1, : : : , Ng, where
ti ç f1, : : : , 60g is the child’s observed survival time in months, and ıi is a survival
indicator with ıi D 1 if child i died, and ıi D 0 if it is still alive. Therefore for ıi D 1,
ti is the age (in months) of the child at death, and for ıi D 0, ti is the current age of
the child (in months) at the time of interview.

The assumption is non-informative censoring as applied by Lagakos (see
Lagakos 1979), so that the risk set Rt includes all individuals who are censored
in interval ending in t. A binary event indicator is then defined as:

yitfi çRt; t D 1; : : : ; tig
yit D f1 if t D ti and ıi D 1

f0 otherwise; (3.2)
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The event of death of individual i could then be considered as a sequence of
binary “outcomes” – dying at age t (yit D 1) or in the case of survival beyond age
t (yit D 0). Such formulation yields a sequence of 0 s and 1 s indicating survival
histories of each child at the various time points.

3.3.2 Incorporation of Fixed-, Time-Varying
and Spatial-Effects

Parallel with the sequence of 0 s and 1 s, the values of relevant explanatory variables
xit D (xi1, : : : , xit), i D1, 2, : : : could be recorded. These variables may be fixed
over time, for example sex, place of residence; or may vary over time, for example
breastfeeding of a child, at time t.

The indicator yit could be linked to the covariates xit by an appropriate link
function for binary response model such as probit, logit or multinomial link
function, and a predictor �it (xit). Assuming that yit has a binomial distribution and
using a probit link function for i ç Rt, the probability of death for a child i is denoted
by:

ˆ.˜it/ D pr .yit D 1jxit/: (3.3)

The usual form of the predictor is

˜it D f0 .t/ C xit “ (3.4)

where the baseline effect f0 (t), t D1, 2, : : : is an unknown, usually non linear,
function of t to be estimated from data and ˇ is the vector of fixed covariate effects.
In parametric framework, the baseline hazard is often modelled by a few dummy
variables, which divide the time-axis into a number of relatively small segments
or by some low-order polynomial. In practice however, it is difficult to correctly
specify such parametric functional forms for the baseline effects in advance. Non-
parametric modelling based on some qualitative smoothness restrictions offers a
more flexible framework to explore unknown patterns of the baseline.

Restriction to fixed effects alone might not be adequate in most cases, due to the
covariates whose value may vary over time. The predictor in (3.4) is subsequently
extended to a more flexible semi-parametric model, which could accommodate
time-varying effects. On further inclusion of another expression to represent spatial
effects, this semi-parametric predictor is given by

˜it D f0.t/ C f1.X/ C f.t/Xit C fspat.si/ C Xit “: (3.5)

Here, f0(t) is the baseline function of time, and f1 is a nonlinear effect of
metrical covariate X. The effects, f (t), of the covariates in Xit are time-varying,
while Xit comprises fixed covariates whose effect is represented by the parameter
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vector ˇ; and fspat is the non-linear spatial component of, for instance, district
s (s D1, : : : ,S), where the child lives. The spatial effects fspat (si) may be further
split-up into spatially correlated (structured) and uncorrelated (unstructured) effects
of the form fstr (si) C funstr (si). The fundamental reason behind this is that a spatial
effect is a surrogate of many unobserved influencing factors, some of which may
obey a strong spatial structure while others may only be present locally. The
analyses in this chapter are based on (3.4) and (3.5), and would be subsequently
referred to as “constant fixed effects model” and “geo-additive model” respectively.

3.3.3 The Estimation Process

The functions f0, f1, and f are smooth over by second-order random walk priors
using the MCMC techniques implemented in BayesX (Fahrmeir and Lang 2001a, b;
Brezger et al. 2002).

Let f D ff (1), : : : ,f (m),m � ng be a vector of corresponding function evaluations
at the observed values of x. The general form of the prior for f would be:

fj£2 ’ exp
��1=2£2.f2 f=Kf/

�
(3.6)

where K is a penalty matrix that penalizes too abrupt jumps between neighbouring
parameters. In most cases, K is rank deficient, therefore the prior for f is improper.

Traditionally, the smoothing parameter is equivalent to the variance parameter �2,
which controls the trade-off between flexibility and smoothness. A highly dispersed
but proper hyperprior is assigned to �2 so as to estimate the smoothness parameter
simultaneously with f. A proper prior for �2 is required in order to obtain a proper
posterior for f (Hobart and Casella 1996). In the event of the selection of an Inverse
Gamma distribution with hyper-parameters a and b, (�2 � IG (a, b)), a first- and
second-order random walk priors for f would be defined respectively by:

f.t/ D f.t � 1/ C u.t/; and f.t/ D 2f.t � 1/ � f.t � 2/ C u.t/; (3.7)

with Gaussian errors u(t) � N (0;�2) and diffuse priors f (1) ’ const, or f (1)
and f (2) ’ const, as initial values. A first order random walk penalizes abrupt
jumps f (t) � f (t � 1) between successive states, and a second order random walk
penalizes deviations from the linear trend 2f (t � 1) � f (t � 2). The trade-off be-
tween flexibility and smoothness of f is controlled by the variance parameter �2.
This chapter adopts the approach of estimating the variance parameter and the
smoothing function simultaneously; this is achieved by introducing an additional
hyperprior for �2 at a further stage of the hierarchy. A highly dispersed but proper
Inverse Gamma prior, p (�2) � IG (a; b) is chosen, with a D 1 and b D 0.005.
Similarly, a highly dispersed Inverse Gamma prior is defined for the overall
variance ¢2.
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For the spatially correlated or structured effect, fstr (s), s D 1, : : : ,S, Marked
random field priors common in spatial statistics are chosen (Besag et al. 1991) of
the form

fstr.s/j fstr.r/; r ¤ s; £2
str � N

�X
fstr.r/= Ns; £2

str=Ns
�

rç@s (3.8)

where Ns is the number of adjacent regions, and r ç @s indicates that region r is a
‘neighbour’ of region s. Therefore the conditional mean of fstr (s) is an unweighted
average of function valuations for neighbouring regions. In addition, the variance
parameter �2

str controls the degree of smoothness.
For a spatially uncorrelated (unstructured) effect, funstr, s D 1, : : : ,S, common

assumptions are that the parameters funstr (s), are i.i.d. Gaussian:

funstr.s/j�2
unstr � N.0; �2

unstr/: (3.9)

Variance or smoothness parameters �2
j, j D str, unstr, are also considered as

unknown in a fully Bayesian analysis, and are therefore estimated simultaneously
with the corresponding unknown functions fj. As such, hyperpriors are assigned
to them in a second stage of the hierarchy by highly dispersed Inverse Gamma
distributions p (�2

j) � IG (aj, bj) with known hyperparameters aj and bj.
Standard choices for the hyperparameters are a D 1 and b D 0.005 or

a D b D 0.001. The results of the illustration in this chapter are however not
sensitive to the choice of a and b, and the later choice is close to Jeffrey’s non-
informative prior. Fully Bayesian inference is based on the posterior distribution
of model parameter, which is not a known form. As such, MCMC sampling from
full conditionals for nonlinear effects, spatial effects, fixed effects and smoothing
parameters is used for posterior analysis. For the nonlinear and spatial effects,
the sampling scheme of Iterative Weighted Least Squares (IWLS) implemented in
BayesX (see Brezger et al. 2002) is applied. This is an alternative to the general
Metropolis–Hastings algorithms based on conditional prior proposals, suggested
first by Knorr-Held (1999) in the context of state space models as an extension to
Gamerman (1997), and given in more detail in Knorr-Held and Rue (2002).

An essential task in the model-building process is the comparison of a set
of plausible models, for instance, rating the impact of covariates and assessing
whether their effects are time-varying or not; or comparing geo-additive models
with simpler parametric alternatives. The measure of complexity and fit suggested
by Spiegelhalter et al. (2002) is adopted in this chapter for comparison, and the
model that takes all relevant structure into account while remaining parsimonious is
selected.

The Deviance Information Criteria (DIC), which may be used for model
comparison, is defined as

DIC.M/ D D.M/ C pD: (3.10)
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Therefore, the posterior mean of the deviance D.M / is penalized by the effective
number of model parameters pD. Models could be validated by analyzing the DIC,
which is smaller in models with covariates of high explanatory value.

3.3.4 Advantages of the Bayesian Geo-additive Model

There are several potential advantages of the Bayesian geo-additive model described
above over the more conventional approaches such as, discrete-time Cox models
with time-varying covariates and fixed or random districts effects, or the standard
2-level multilevel modelling with unstructured spatial effects (Goldstein 1999). In
the conventional models, it is assumed that the random components at the contextual
level (district in this case) are mutually independent. In practice however, these
approaches specify correlated random residuals (see Langford et al. 1999), which is
contrary to the assumption. Furthermore, Borgoni and Billari (2003) point out that
the independence assumption has an inherent problem of inconsistency. They argue
that if the location of the event matters, it is only logical to assume that areas close
to each other are more similar than areas that are far apart. In addition, treating
groups (in this case, districts) as independent is unrealistic and may lead to poor
estimates of the standard errors. As Rabe-Heskesth and Everitt (2000) stipulate,
standard errors for between-district factors are likely to be underestimated as a
result of observations from the same districts being treated as independent, and
thereby increasing the apparent sample size. In contrast, standard errors for within-
district factors are likely to be overestimated (see also Bolstad and Manda 2001).
Demographic and Health Survey data on the other hand are based on the random
sampling of districts that introduces a structured component, which allows for the
borrowing of strength from neighbors in order to cope with the posterior uncertainty
of the district effect and obtain estimates for areas that may have inadequate sample
sizes or are not represented in the sample. In order to highlight the advantages of
the Bayesian geo-additive model approach used in this chapter, and examine the
potential bias incurred when ignoring the dependence between aggregated spatial
areas, several models shall be fitted with, and without the structured and random
components, as seen in the illustration below.

3.4 Illustration: Spatial Modelling of Under-Five
Mortality in Nigeria

3.4.1 Data Set

Data from the 2003 Nigeria Demographic and Health Survey (NDHS) was used in
this chapter. The sample included 7,620 women aged 15–49 years, and all men aged
15–59 in a sub-sample of one-third (i.e. 2,346) of the households. The data contains
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6,029 children born within 5 years prior to the survey, which came from 3,725
mothers who contributed between 1 child and 6 children. Technical details of the
survey have been reported in the official 2003 NDHS report (NPC 2004). From the
data collected, a retrospective child file consisting of all children born to the sample
women was generated, of these, 1,559 children died before their fifth birthday. Each
live birth and each subsequent child health outcome contains information on the
household and each parent, thereby constituting the basic analytic sample.

The response variable used in this chapter is:

yit D
(

1 W if child i dies in month t

0 W if child i survives beyond time t;
(3.11)

3.4.2 Specification and Measurement of Variables

On the basis of previous studies, a selection of theoretically relevant variables was
chosen as covariates of childhood mortality, and these include: mab, mother’s age
at birth of the child (in years) – nonlinear; dobt, duration of breastfeeding – time-
dependent; dist, district (state) in Nigeria – spatial covariate; X, vector of categorical
covariates, such as: sex of the child (male or female), asset index (low, middle or
higher income household), place of residence (urban or rural), mother’s educational
level (no education, primary, secondary of higher), place of delivery (hospital or
home/other), preceding birth interval long birth interval [�24 months], or short birth
interval [<24 months], antenatal visits during pregnancy (at least one visit, or none),
marital status of mother (single or married), and district level mortality rate per
1,000 (at least 6 children, or at less than six children per woman).

The last levels of each covariate were selected as reference or baseline levels;
descriptive statistics of covariates used in the analysis are shown in Table 3.2.
Available statistics suggest that child mortality levels in Nigeria exhibit wide
geographic disparities (NPC 2000, 2004), with the northern regions and rural areas
generally having higher childhood mortality rates compared to the southern regions
and urban areas respectively. While the focus of previous studies in Nigeria have
mainly been on effect of individual and household factors in explaining childhood
mortality differences in the country, they have largely neglected the impact of
small area variations and community-level variables (see Iyun 1992; Adetunji 1994;
Folasade 2000; NPC 2004).

The aim of this present chapter is to highlight the regional- and district-level
variations in under-five mortality in Nigeria, while improving current knowledge
of district-level socio-economic and demographic determinants (thereby warranting
the inclusion of a geographic location [districts] covariate). It is also intended to
assist policy makers in evaluating and designing programme strategies needed to
improve child health services, and reduce childhood mortality levels in Nigeria.
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Table 3.2 Descriptive statistics of covariates used in the analysis, Nigeria
Demographic and Health Survey, 2003

Variables Frequency (%) Coding

Place of residence:
Urban 2,118 (35 %) 1
Rural 3,911 (65 %) Reference category

Sex of the child:
Male 3,062 (51 %) 1
Female 2,967 (49 %) Reference category

Preceding birth interval:
Long birth interval [25C months] 3,266 (58 %) 1
Short birth interval [<25 months] 2,326 (42 %) Reference category

Mother’s current age (in years):
Less than 20 years 264 (4 %) 1
20–35 years 5,765 (96 %) Reference category

Antenatal visits during pregnancy:
At least one visit 2,337 (64 %) 1
No antenatal visit 1,339 (36 %) Reference category

Place of delivery:
Hospital 2,094 (35 %) 1
Home/other 3,878 (65 %) Reference category

Asset index [economic status of the household]:
1st quintile 970 (16 %) 1
2nd quintile 2,332 (39 %) 2
3rd quintile 1,322 (22 %) 3
4th quintile 1,405 (23 %) Reference category

Mother’s educational level:
No education 3,033 (50 %) 1
Primary, secondary of higher 2,966 (50 %) Reference category

Partner’s educational level:
No education 2,343 (40 %) 1
Primary, secondary of higher 3,501 (60 %) Reference category

Marital status of mother:
Single 483 (8 %) 1
Married 5,546 (92 %) Reference category

Household size:
Large size 1,724 (29 %) 1
Medium size 2,927 (48 %) 2
Small size 1,378 (23 %) Reference category

3.4.3 Statistical Method

An analysis and comparison of simpler parametric probit models, and probit models
with dynamic effects, pr (yit D 1jxit) D· (�it), was made for the probability of dying
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in month t, i.e. the conditional probability of a child dying, given the child’s age in
months, the district where the child lived before death, and covariates in X above, is
modeled with the following predictors:

M1 W �it D f0.t/ C Xitˇ

M 2 W �it D f0.t/ C f1.mab/ C f .t/Xit C funstr.dist/ C fstr.dist/ C Xitˇ

The fixed effects in model M1 include all covariates described above with
constant fixed effects. Mother’s age at birth was split into three categories as shown
in Table 3.2, and duration of breastfeeding was included as dichotomous (0, 1)
variable. Model M2 will be superior to model M1 because Model M2 accounts for
the unobserved heterogeneity that might exist in the data, all of which cannot be
captured by the covariates (see Madise et al. 1999).

The effects of f0 (t), f1 and f (t) are estimated using second-order random walk
prior, and Markov random field priors for fstr (s). The analysis was carried out using
BayesX-version 0.9 (Brezger et al. 2002), a software for Bayesian inference based
on Markov Chain Monte Carlo simulation techniques. The sensitivity of the effects
to choice of different priors for the non-linear effects (P-splines) and the choice of
the hyperparameter values a and b are investigated.

Previous studies, for example, Berger et al. (2002), have shown that breastfeeding
is an important factor. In order to assess its effect, a time-varying indicator variable
(see Kandala 2002), that takes the value 1 in the months a child is breastfed,
and 0 otherwise, is generated. In addition, temporal and spatial variations in the
determinants of child mortality are also assessed. Common choices for discrete
survival models are the grouped Cox model and probit or logit models. For this
chapter, probit model for discrete survival data is used because binary response
models (3.3) can be written equivalently in terms of latent Gaussian utilities, which
lead to very efficient estimation algorithms. In addition, since survival time in the
DHS data set is recorded in months and the longest observation time for this study
is limited to 60 months, the data naturally contain a high amount of tied events. A
constant hazard within each month is assumed.

At the exploratory stage, a probit model with constant covariate effects (M1) for
the effects of breastfeeding and mother’s age are fitted with a view to compare them
to the dynamic probit models (M2).

3.5 Results

3.5.1 Fixed Effects

The estimates of posterior odds ratio of the fixed effect parameters for under-five
mortality in Nigeria (Model 2) together with their standard errors and quantiles
are presented in Table 3.3. Results indicate that children living in urban areas at
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Table 3.3 Posterior Odds ratio of the fixed effect parameters for under-five mortality in
Nigeria (Model 2)

Variable Odds ration (OR) 2.5 % quantile 97.5 % quantile

Place of residence
Urban 0.54* (0.38; 0.83)
Rural 1

Sex of the child
Male 1.08 (0.83; 1.40)
Female 1

Preceding birth interval
<25 months 1
25C months 0.71* (0.55; 0.94)

Antenatal visits during pregnancy
At least one visit 0.57* (0.40 ; 0.77)
No visit 1

Place of delivery
Home or other 1
Hospital 0.95 (0.68; 1.40)

Asset index
1st quintile 1
2nd quintile 0.86 (0.55; 1.23)
3rd quintile 1.09 (0.78; 1.54)
4th quintile 0.93 (0.64; 1.37)

Mother’s educational level
No education 1.51* (1.06; 2.25)
Primary, secondary, or higher 1

Partner’s educational level
No education 0.76 (0.54; 1.20)
Primary, secondary, or higher 1

Marital status of mother
Single 1.27 (0.66; 2.47)
Married 1

Household size
Small size 1
Medium size 0.99 (0.67; 1.68)
Large size 0.96 (0.64; 1.51)

*Estimate significant at 5% level. This is also indicated by the corresponding 95%
confidence interval (which doesn’t include 1)

lower risk of dying than children living in rural areas (posterior odds ratio 0.54),
with positive corresponding 2.5 %- and 97.5 % quantiles indicating that the effect
is statistically significant. Boys are only slightly at higher risk of dying than girls
(posterior odds ratio 1.08), and the corresponding 2.5 %- and 97.5 % quantiles are
both positive. The results also show that a short birth interval significantly reduces
a child’s chances of survival, as children with birth interval 25C months were at
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lower risk of dying compared to those < 25 months (posterior odds ratio 0.71),
the effect being statistically significant. In comparison to children whose mothers
had no antenatal visits during pregnancy, children whose mothers had at least one
antenatal visit were at lower risk of dying; the effect being statistically significant.

Children delivered in hospitals were at slightly lower risk of dying compared to
children born at home or elsewhere (posterior odds ratio 0.95). Findings also indi-
cate that child survival is associated with economic status of the household; while
children living in households within the 2nd and 4th quintiles were significantly
at lower risks of dying compared to those in the 1st quintile (richest households),
those living in households within the 3rd quintile had a slightly higher risk of dying
(posterior odds ratio 1.09) compared to those in the 1st quintile. Mothers’ education,
was associated with child survival and works in the expected direction (with children
of uneducated mothers having 50 % higher risk). Partner’s education, on the other
hand, was insignificant.

Children of single mothers were at higher risk of dying (posterior odds ratio
1.27) compared to children whose mothers were married; both quantiles were
positive, and therefore the relationship was significant. Remarkably, the larger the
household size, the lower the risk of the children dying. Children living in medium-
size households (posterior odds ratio 0.99), and those living in large-size households
(posterior odds ratio 0.96), were at lower risk of dying compared to children living in
small-size households; both relationships had positive quantiles and were therefore
significant.

3.5.2 Baseline Effects

The estimated nonlinear effect of child’s age (baseline time) and the time-varying
effects, modelled and fitted through Bayesian P-splines are shown in Fig. 3.2. The
posterior means are presented within 80–95 % credible intervals, and show that
starting from a comparably high level in the first month, the baseline effect remains
more or less constant until 25–26, and 40–41 months, where they peak. These
observed peaks are likely to be caused by a “heaping” effect from the large number
of deaths reported at these times (probably resulting from incorrect reporting of
large number of deaths at these ages).

3.5.3 Time-Varying Effects

Figure 3.3 displays the time-varying effect of breastfeeding in Nigeria, and indicates
that breastfeeding is on average associated with lower risk of mortality within the
first 16–18 months using 80–95 % credible intervals. However, given the wide range
of the 80–95 % credible region at the end of the observation period (most likely due
to fewer numbers of cases), the results beyond 18 months should be interpreted with
caution.
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Fig. 3.2 Estimated nonlinear effect of baseline time. Shown is the posterior mean within 80–95 %
credible intervals

Fig. 3.3 Estimated nonlinear effect of time-varying effect of breastfeeding. Shown is the posterior
mean within 80–95 % credible intervals

3.5.4 Nonlinear Effects

Figure 3.4 shows the non-linear or time-varying effect of mother’s age at birth of the
child. Children with younger mothers (<20 years) and older mothers (>35 years)
have higher (but statistically insignificant) risk of dying compared to children of
mothers within the middle age group (22–34 years). Figure 3.4 also shows that
children of mothers 42–48 years are even at higher risk of dying compared to
children of mothers <20 years.
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Fig. 3.4 Estimated nonlinear effect of mother’s age at child’s birth. Shown is the posterior mean
within 80–95 % credible intervals

0.82Dark coloured – high risk

Grey coloured  – low risk

1 1.21

Fig. 3.5 Estimated odd ratio of total residual spatial states effects for under-five mortality in
Nigeria. Dark coloured – high risk. Grey coloured – low risk

3.5.5 Spatial Effects

Posterior means of the estimated residual spatial states effects on under-five
mortality in Nigeria are presented in Fig. 3.5. This map shows a strong spatial
pattern, which suggests that survival chances of children under-5 years of age
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are highest within the North Western (Sokoto, and Kebbi) and South Western
(Lagos) regions compared to the other regions. On the other hand, the survival
chances of children under-5 years are lowest among children from Jigawa, Taraba,
Delta, Rivers and Adamawa states compared to the children from the rest of the
states. A comparison between the under-five mortality rates (Table 3.1) and the
estimated odds ratio (Fig. 3.5) reveals the emergence of a clear spatial pattern of
under-five mortality risk with the residual effects in Fig. 3.5. Therefore, failure to
take into consideration the posterior uncertainty in the spatial location (states or
districts) would invariably lead to an overestimation of the precision in predicting
childhood mortality risks in unsampled districts. The spatial effects could therefore
be interpreted as representing the cumulative effect of unidentified or unmeasured
additional covariates that may reflect impacts of environmental and socio-cultural
factors.

3.6 Discussion and Conclusion

After controlling for the spatial dependence in the data, almost all the covariates
associated with under-five mortality in the fixed part of the model were found to have
effects in the expected directions. A remarkable finding however, is that children
in larger households are at slightly lesser risk of dying compared to children in
small households; this may not be unconnected with factors that might contribute
to a household’s propensity to experience childhood deaths such as the burden of
child ill-health and mortality being borne by only a small fraction of all households
(Madise and Diamond 1995); household income (Vella et al. 1992); maternal
education (Cleland and van Ginneken 1988); physical access to care (Kuate Defo
1996); and rural as opposes to urban setting (Sastry 1997).

The time-varying effects of breastfeeding emphasize the importance of breast-
feeding, which is widely believed to be the most beneficial source of infant nutrition
for the attainment of health and well-being of the infant (Weimer 2001). Results
of this study show a lowered risk of mortality associated with breastfeeding within
the first 16–18 months. However, results at the end of the observation period do
not provide reliable information on the dynamic effect of breastfeeding (due to few
cases), and should therefore be interpreted with caution. Results of the nonlinear
effect of mother’s age at the birth of the child are in the expected direction,
emphasizing the risk associated with younger mother (also seen in Alam 2000) and
late childbirth (see Hobcraft et al. 1985), especially the higher risk associated with
children of women aged 42–48 years.

The estimated residual spatial effects for under-five mortality in Fig. 3.5 show
clear differences between the significantly better survival chances of children in the
North West (Sokoto, and Kebbi) and South West (Lagos) regions compared to the
North East (Adamawa, Taraba, Yobe, Borno), South South (Delta, Rivers, Akwa
Ibom) and South East (Enugu) regions. These state patterns are similar to analysis
of poverty in Nigeria in which the Northeast zone had the highest poverty incidence
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with 67.3 %, followed by the Northwest with 63.9 %; the South South zone had the
highest poverty rates (55 %) among the southern states, while the lowest poverty
rates were recorded in the South East at 34.2 %, followed by Southwest with 43.0 %
(National Bureau of Statistics 2005).

While some of these effects have been shown using traditional parametric
methods, using Bayesian geo-additive models uniquely shows subtle differences
when analysing for small-area spatial effects. Though the spatial effects do not
show causality, careful interpretation could identify latent and unobserved factors
that directly influence mortality rates. This geographic semi-parametric approach
therefore appears to be able to discern subtle influences of the determinants, and
identifies district-level clustering of under-five mortality.

The variation in the probability of childhood survival in Nigeria is spatially
structured. This implies that adjusted mortality risks are similar among neigh-
bouring states or districts, which may partly be explained by general health care
practices, similar prevalence of common childhood diseases, and the residual spatial
variation induced by variation in unmeasured district-specific characteristics (which
any standard 2-level model with unstructured spatial effects assuming independence
among districts would yield estimated that lead to incorrect conclusions).

References

Adetunji, J. A. (1994). Infant mortality in Nigeria: Effects of place of birth, mother’s education
and region of residence. Journal of Biosocial Science, 26(4), 469–477.

Alam, N. (2000). Teenage motherhood and infant mortality in Bangladesh: Maternal age-
dependent effect of party one. Journal of Biosocial Science, 32, 229–236.

Ali-Akpajiak, S. C. A., & Pyke, T. (2003). Measuring poverty in Nigeria. Oxfam: Oxfam Working
Papers. http://www.oxfam.org.uk/what we do/resources/wp poverty nigeria.htm

Berger, U., Fahrmeir, L., & Klasen, S. (2002). Dynamic modelling of child mortality in developing
countries: Application for Zambia. Sonderforschungsbereich 386 (Discussion Paper 299).
University of Munich, Germany.

Besag, J., York, Y., & Mollie, A. (1991). Bayesian image restoration with two applications in
spatial statistics. Annual Institute of Statistical Mathematics, 43, 1–59.

Bolstad, W. M., & Manda, S. O. (2001). Investigating child mortality in Malawi using family
and community random effects: A Bayesian analysis. Journal of the American Statistical
Association, 96(453), 12–19.

Borgoni, R., & Billardi, F. C. (2003). Bayesian spatial analysis of demographic survey data: An
application to contraceptive use at first sexual intercourse. Demographic Research, 83, 61–92.

Brezger, A., Kneib, T., & Lang, S. (2002). BayesX-software for Bayesian inference based on
Markov chain Monte Carlo simulation techniques. http://www.stat.uni-muenchen.de/�lang/

Caldwell, J. C. (1979). Education as a factor in mortality decline an examination of Nigerian data.
Population Studies, 33(3), 395–413.

Castro-Leal, F., Dayton, J., Demery, L., & Mehra, K. (1999). Public social spending in Africa: Do
the poor benefit? World Bank Research Observer, 14, 49–72.

Chou, Y.-H. (1997). Exploring spatial analysis in geographic information systems. Santa Fe:
OnWard Press.

http://www.oxfam.org.uk/what_we_do/resources/wp_poverty_nigeria.htm
http://www.stat.uni-muenchen.de/~lang/


3 Modeling Spatial Effects on Childhood Mortality Via Geo-additive. . . 47

Cleland, J. G., & van Ginneken, J. K. (1988). Maternal education and child survival in devel-
oping countries: The search for pathways of influence. Social Science & Medicine, 27(12),
1357–1368.

Cressie, N. A. C. (1993). Statistics for spatial data (Rev. ed.). New York: Wiley.
Fahrmeir, L., & Lang, S. (2001a). Bayesian Inference for generalized additive mixed models based

on Markov random field priors. Applied Statistics (JRSS C), 50, 201–220.
Fahrmeir, L., & Lang, S. (2001b). Bayesian semi-parametric regression analysis of multi-

categorical time-space data. Annual Institute of Statistical Mathematics, 53, 11–30.
Folasade, I. B. (2000). Environmental factors, situation of women and child mortality in south-

western Nigeria. Social Science & Medicine, 51(10), 1473–1489.
Gamerman, D. (1997). Efficient sampling from the posterior distribution in generalized linear

mixed models. Statistics and Computing, 7, 57–68.
Gelfand, A. E., & Smith, A. F. R. (1990). Sampling-based approaches to calculating marginal

densities. Journal of the American Statistical Association, 85, 398–409.
Goldstein, H. (1999, April). Multilevel statistical models. London: Institute of Education, Multi-

level Models Project. http://www.soziologie.uni-halle.de/langer/multilevel/books/goldstein.pdf
Hobart, J., & Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical

linear mixed models. Journal of the American Statistical Association, 91, 1461–1473.
Hobcraft, J. N., McDonald, J. W., & Rutstein, S. O. (1985). Demographic determinants of infant

and early child mortality: A comparative analysis. Population Studies, 39(3), 363–385.
Iyun, B. F. (1992). Women’s status and childhood mortality in two contrasting areas in south-

western Nigeria: A preliminary analysis. GeoJournal, 26(1), 43–52.
Kandala, N.-B. (2002). Spatial modelling of socio-economic and demographic determinants of

childhood undernutrition and mortality in Africa. Ph. D. Thesis, University of Munich, Shaker
Verlag.

Knorr-Held, L. (1999). Conditional prior proposals in dynamic models. Scandinavian Journal of
Statistics, 26, 129–144.

Knorr-Held, L., & Rue, H. (2002). On block updating in Markov random field models for disease
mapping. Scandinavian Journal of Statistics, 29, 597–614.

Kuate Defo, B. (1996). Areal and socioeconomic differentials in infant and child mortality in
Cameroon. Social Science & Medicine, 42, 399–420.

Lagakos, S. W. (1979). General right censoring and its impact on the analysis of survival data.
Biometrics, 35, 139–156.

Langford, I. H., Leyland, A. H., Rabash, J., & Goldstein, H. (1999). Multilevel modeling of the
geographical distributions of diseases. Journal of Royal Statistical Society, Series A (Applied
Statistics), 48, 253–268.

Lee, L.-F., Rosenzweig, M., & Pitt, M. (1997). The effects of improved nutrition, sanitation
and water quality on child health in high-mortality populations. Journal of Econometrics, 77,
209–235.

Madise, N. J., & Diamond, I. (1995). Determinants of infant mortality in Malawi: An analysis to
control for death clustering within families. Journal of Biosocial Science, 27, 95–106.

Madise, N. J., Matthews, Z., & Margetts, B. (1999). Heterogeneity of child nutritional status
between households: A comparison of six sub-Saharan African countries. Population Studies,
53, 331–343.

National Bureau of Statistics (NBS). (2005). Poverty profile for Nigeria report (1980–1996).
Federal Republic of Nigeria.

National Population Commission (NPC) [Nigeria]. (2000). Nigeria demographic and health survey
1999. Calverton: National Population Commission and ORC/Macro.

National Population Commission (NPC) [Nigeria]. (2004). Nigeria demographic and health survey
2003. Calverton: National Population Commission and ORC/Macro.

Onuah, F. (2006, Dec 30). Nigeria gives census result, avoids risky details. Reuters. http://za.today.
reuters.com. Accessed 30 March 2007

http://www.soziologie.uni-halle.de/langer/multilevel/books/goldstein.pdf
http://za.today.reuters.com
http://za.today.reuters.com


48 G. Ghilagaber et al.

Population Resource Centre. Nigeria Demographic Profile. (2000). Accessed at: http://www.prcdc.
org/summaries/nigeria/nigeria.html

Rabe-Heskesth, S., & Everitt, B. (2000). A handbook of statistical analysis using Stata (2nd ed.).
Boca Raton: Chapman and Hall/CRC.

Sastry, N. (1997). What explains rural-urban differentials in child mortality in Brazil? Social
Science & Medicine, 44, 989–1002.

Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related
Markov chain Monte Carlo methods. Journal of the Royal Statistical Society (B), 55, 3–23.

Spiegelhalter, D., Best, N., Carlin, B., & Van der Line, A. (2002). Bayesian measures of models
complexity and fit. Journal of the Royal Statistical Society Series B, 64, 1–34.

Vella, V., Tomkins, A., Nidku, J., & Marshall, T. (1992). Determinants of child mortality in South-
West Uganda. Journal of Biosocial Science, 24, 103–112.

Wagstaff, A. (2001). Poverty and health. Geneva: Commission on Macroeconomics and Health
working paper series. Washington, DC: The World Bank.

Watson, R. T., Zinyowera, M. C., & Moss, R. H. (Eds.). (1997). The regional impacts of climate
change: An assessment of vulnerability. A special report of the intergovernmental panel on
climate change, Working Group II. Cambridge: Cambridge University Press.

Weeks, J. R. (2004). The role of spatial analysis in demographic research. In M. F. Goodchild &
D. G. Janelle (Eds.), Spatially integrated social science. Oxford: Oxford University Press.

Weimer, J. P. (2001). The economic benefits of breastfeeding: A review and analysis. (Food and
Rural Food Assistance and Nutrition Research Report No. 13), U.S. Department of Agriculture.

Wolfe, B., & Behrman, J. (1982). Determinants of child mortality, health and nutrition in a
developing country. Journal of Devlopement Economics, 11, 163–193.

http://www.prcdc.org/summaries/nigeria/nigeria.html
http://www.prcdc.org/summaries/nigeria/nigeria.html

	Chapter 3: Modeling Spatial Effects on Childhood Mortality Via Geo-additive Bayesian Discrete-Time Survival Model: A Case Study from Nigeria
	3.1 Introduction
	3.2 Study Area and Study Population
	3.3 Geo-Additive Bayesian Discrete-Time Survival Model
	3.3.1 The Basic Model
	3.3.2 Incorporation of Fixed-, Time-Varying and Spatial-Effects
	3.3.3 The Estimation Process
	3.3.4 Advantages of the Bayesian Geo-additive Model

	3.4 Illustration: Spatial Modelling of Under-Five Mortality in Nigeria
	3.4.1 Data Set
	3.4.2 Specification and Measurement of Variables
	3.4.3 Statistical Method

	3.5 Results
	3.5.1 Fixed Effects
	3.5.2 Baseline Effects
	3.5.3 Time-Varying Effects
	3.5.4 Nonlinear Effects
	3.5.5 Spatial Effects

	3.6 Discussion and Conclusion
	References


