
Chapter 3
Considerable Analytical Methods

3.1 Harmonic Balance Method

3.1.1 Introduction

The harmonic balance method (HBM) is a technique used in systems including
both linear and nonlinear parts. The fundamental idea of HBM is to decompose the
system into two separate subsystems, a linear part and a nonlinear part. The linear
part is treated in the frequency domain, and the nonlinear part in the time domain.
The interface between the subsystems consists of the Fourier transform pair.
Harmonic balance is said to be reached when a chosen number of harmonics
N satisfy some predefined convergence criteria. First, an appropriate unknown is
chosen to use in the convergence check, which is performed in the frequency
domain. Then the equations are rewritten in a suitable form for a convergence
loop. One starts with an initial value of the chosen unknown, applies the different
linear and nonlinear equations, and finally reaches a new value of the chosen
unknown. If the difference between the initial value and the final value of the first
N harmonics satisfies the predefined convergence criteria, harmonic balance is
reached. Otherwise, an increment of the initial value is calculated by using a
generalized Euler method—namely, the Newton–Raphson method.

It should be mentioned that HBM is similar to other proposed coupling tech-
niques, but one advantage of HBM is the calculation of the increment of the initial
value. The method proposed by Gupta and Munjal (1992) also includes an iterative
process with a convergence condition. The main difference between their method
and the HBM is how the chosen convergence unknown is treated. In HBM, one
calculates an increment that depends on the difference of the value at the beginning
of the convergence loop and the final value after the loop. This implies a faster and
more robust convergence. In the method of Gupta and Munjal, the final value is
entered as a new initial value, which easily leads to slower convergence or
divergence.

For general dynamical systems, the HBM is widely used, from the simplest
Duffing oscillation (Liu et al. 2006), to fluid dynamics (Ragulskis et al. 2006), and
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to complex fluid structural interactions (Liu and Dowell 2005). Wu and Wang
(2006) developed Mathematica/Maple programs to approximate the analytical
solutions of a nonlinear undamped Duffing oscillation.

For considering this method HBM deals with free vibration of a nonlinear
system, having combined the linear and nonlinear springs in series and Nonlinear
Normal Modes.

Example 3.1
The conservative oscillation system is formulated as a nonlinear ordinary dif-

ferential equation having linear and nonlinear stiffness components. The governing
equation is linearized and associated with the HBM to establish new and accurate
higher-order analytical approximate solutions. Unlike the perturbation method,
which is restricted to nonlinear conservative systems with a small perturbed
parameter and also unlike the classical HBM which results in a complicated set of
algebraic equations, the approach yields simple approximate analytical expressions
valid for small as well as large amplitudes of oscillation. Some examples are solved
and compared with numerical integration solutions, and the results are published.

3.1.2 Governing Equation of Motion and Formulation

Consider free vibration of a conservative, single-degree-of-freedom system with a
mass attached to linear and nonlinear springs in series, as shown in Fig. 3.1. After
transformation, the motion is governed by a nonlinear differential equation of
motion (see Telli and Kopmaz 2006) as

ð1þ 3e z v2Þv00 þ 6e z v v02 þ x2
evþ e x2

ev3 ¼ 0; ð3:1Þ

where

e ¼ b
k2
; ð3:2Þ

Fig. 3.1 Nonlinear free vibration of a system of mass with serial linear and nonlinear stiffness on
a frictionless contact surface
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n ¼ k2

k1
; ð3:3Þ

z ¼ n
1þ n

; ð3:4Þ

xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

mð1þ nÞ

s

ð3:5Þ

with the initial conditions

vð0Þ ¼ A; v0ð0Þ ¼ 0; ð3:6Þ

in which e; b; v; xe; m, and n are perturbation parameter (not restricted to a small
parameter), coefficient of nonlinear spring force, deflection of nonlinear spring,
natural frequency, mass and the ratio of linear portion k2 of the nonlinear spring
constant to that of the linear spring constant k1, respectively. Note that the nota-
tions in Eqs. (3.1)–(3.5) follow those in Telli and Kopmaz (2006). The deflection
of linear spring y1ðtÞ and the displacement of attached mass y2ðtÞ can be repre-
sented by the deflection of nonlinear spring v in simple relationships as:

y1ðtÞ ¼ n vðtÞ þ e n vðtÞ3 ð3:7Þ

and

y2ðtÞ ¼ vðtÞ þ y1ðtÞ: ð3:8Þ

Introducing a new independent temporal variable, s ¼ xt (Eqs. 3.1 and 3.6), we
have

x2 ð1þ 3ezv2Þ€vþ 6ezv _v 2
� �

þ x2
evþ e x2

ev3 ¼ 0 ð3:9Þ

and

vð0Þ ¼ A; _vð0Þ ¼ 0; ð3:10Þ

where a dot denotes differentiation with respect to s. The deflection of nonlinear
spring v is a periodic function of s with the period of 2p. On the basis of Eq. 3.9,
the periodic solution vðsÞ can be expanded in a Fourier series with only odd
multiples of s as follows:

vðsÞ ¼
X

1

n¼o

h2nþ1 cosð2nþ 1Þs: ð3:11Þ

To linearize the governing differential equation, we assume vðsÞ as the sum of a
principal term and a correction term as

vðsÞ ¼ v1ðsÞ þ Dv1ðsÞ: ð3:12Þ

Substituting Eq. 3.11 into Eq. 3.9 and neglecting nonlinear terms of Dv1ðsÞ
yields
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x2 1þ 3ezv2
1

� �

€v1 þ 6ezv1 _v 2
1

� �

þ x2
ev1 þ e x2

ev3
1 þ x2

e þ 3e x2
ev2

1

� �

Dv1

þ x2 1þ 3ezv2
1

� �

D€v1 þ 2 6ezv1 _v1ð ÞD _v1 þ 6ezv1€v1 þ 6ez _v 2
1

� �

Dv1
� �

¼ 0;
ð3:13Þ

and

Dv1ð0Þ ¼ 0; D _v1ð0Þ ¼ 0; ð3:14Þ

where v1ðsÞ ¼ A cos s is a periodic function of s period 2p.
Making use of v1ðsÞ ¼ A cos s, we have the following Fourier-series

expansions:

1þ 3ezv2
1

� �

€v1 þ 6ezv1 _v 2
1 ¼

X

1

i¼0

a2iþ1 cosð2iþ 1Þs

¼ �Að4þ 3A2zeÞ
4

cos s� 9A3ze
4

cos 3s; ð3:15Þ

x2
ev1 þ e x2

ev3
1 ¼

X

1

i¼0

b2iþ1 cosð2iþ 1Þs ¼ Ax2
eð4þ 3A2eÞ

4
cos sþ A3ex2

e

4
cos 3s;

ð3:16Þ

1þ 3ezv2
1 ¼

1
2

c0 þ
X

1

i¼1

c2i cos 2is ¼ 2þ 3A2ze
4

þ 3A2ze
2

cos 2s; ð3:17Þ

2ð6ezv1 _v1Þ ¼
X

1

i¼0

d2ðiþ1Þ sin 2ðiþ 1Þs ¼ �6A2ze sin 2s; ð3:18Þ

6ezv1€v1 þ 6ez _v 2
1 ¼

1
2

c0 þ
X

1

i¼1

e2i cos 2is ¼ �6A2e cos 2s; ð3:19Þ

x2
e þ 3e x2

ev2
1 ¼

1
2

f0 þ
X

1

i¼1

f2i cos 2is ¼ ð2þ 3A2eÞx2
e

2
þ 3A2ex2

e

2
cos 2s; ð3:20Þ

where a2iþ1; b2iþ1; c2i; d2ðiþ1Þ; e2i and f2i for i ¼ 0; 1; 2; . . . are Fourier-series
coefficients.

3.1.3 First-Order Analytical Approximation

For the first-order analytical approximation, we set

Dv1ðsÞ ¼ 0; ð3:21Þ

and, therefore,

vðsÞ ¼ v1ðsÞ ¼ A cos s: ð3:22Þ
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Substituting Eqs. 3.15–3.20 into Eq. 3.13, expanding the resulting expression in
a trigonometric series and setting the coefficient of cos s to zero yield the solution
of the angular frequency x1, where subscript x1 indicates the first-order analytical
approximation. The analytical approximation of x1 can be expressed as

x1ðAÞ ¼ xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3eA2 þ 4
3ezA2 þ 4

r

ð3:23Þ

and the periodic solution is

v1ðsÞ ¼ A cos½x1ðAÞt�: ð3:24Þ

3.1.4 Second-Order Analytical Approximation

For the second analytical approximation, we set

Dv1ðsÞ ¼ x1ðcos s� cos 3sÞ: ð3:25Þ

Substituting Eqs. 3.15–3.20 and 3.25 into Eq. 3.13, expanding the resulting
expression in a trigonometric series, and setting the coefficients of cos s and cos 3s
to zero result in a quadratic equation of x2

2, where subscript 2 indicates the second-
order analytical approximation. The angular frequency x2 can be expressed as

x2ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a

s

; ð3:26Þ

where

a ¼ �144A� 252zA3e� 135z2A5e2; ð3:27Þ

b ¼ 160Ax2
e þ 124A3e x2

e þ 156zA3e x2
e þ 150zA5e2x2

e ; ð3:28Þ

c ¼ �16Ax4
e � 28A3e x4

e � 15A5e2x4
e ð3:29Þ

where a; b and c are the coefficients of the quadratic equation of x2
2. The solution

of x2 in Eq. 3.26 with respect to þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

is omitted, so that, x2=x1 � 1, and
the periodic solution is

v2ðsÞ ¼ ½Aþ x1ðAÞ� cos½x2ðAÞt� � x1ðAÞ cos½3x2ðAÞt�: ð3:30Þ

where

x1ðAÞ ¼ � ½32Ax2
e þ 25A3e x2

e þ 15A3ze x2
e þ 6A5ze2x2

e � ð1024A2x4
e þ 1472A4e x4

e

þ 2112A4ze x4
e þ 421A6e2x4

e þ 365A6ze2x4
e þ 981A6z2e2x4

e þ 1380A8ze3x4
e

þ 1980A8z2e3x4
e þ 900A10z2e4x4

eÞ
1=2�=½2x2

eð32þ 51A2eþ 21A2zeþ 36A4ze2Þ�:
ð3:31Þ
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3.1.5 Third-Order Analytical Approximation

Although the first- and second-order analytical approximations are expected to
agree with other solutions, the agreement deteriorates as t progresses during the
steady-state response. Therefore, the third-order analytical approximation is
derived for a more accurate steady-state response. To construct the third-order
analytical approximation, the previous related expressions must be adjusted, due to
the interaction between lower-order and higher-order harmonics. Here, Dv1ðsÞ and,
in Eqs. 3.12, 3.13, and 3.15–3.20, is replaced by Dv2ðsÞ and v2ðsÞ, respectively,
and Eq. 3.13 is modified as

x2 1þ 3ezv2
2

� �

€v2 þ 6ezv2 _v2
2

� �

þ x2
ev2 þ e x2

ev3
2 þ x2

e þ 3e x2
ev2

2

� �

Dv2

þ x2 1þ 3ezv2
2

� �

D€v2 þ 2 6ezv2 _v2ð ÞD _v2 þ 6ezv2€v2 þ 6ez _v2
2

� �

Dv2
� �

¼ 0:
ð3:32Þ

The right-hand sides of Eqs. 3.15–3.20 in the third-order analytical approxi-
mation are completely different from the first- and second-order analytical
approximations because v1ðsÞ is replaced by v2ðsÞ of Eq. 3.30. It can be solved
directly by substituting the corresponding coefficients of Fourier series in any
symbolic software, such as Mathematica.

For the third-order analytical approximation, we set

Dv2ðsÞ ¼ x1ðcos s� cos 3sÞ þ x3ðcos 3s� cos 5sÞ: ð3:33Þ

Substituting the modified Eqs. 3.15–3.20 with v1ðsÞ replaced by v2ðsÞ and
Eq. 3.33 into Eq. 3.32, expanding the resulting expression in a trigonometric
series, and setting the coefficients of cos s; cos 3s, and cos 5s to zero yield x3 as a
function of A. The corresponding approximate analytical periodic solution can
then be solved as

v3ðsÞ ¼ ½Aþ x1ðAÞ þ x2ðAÞ� cos½x3ðAÞt� þ ½x3ðAÞ � x2ðAÞ � x1ðAÞ� cos½3x3ðAÞt�
� x3ðAÞ cos½5x3ðAÞt�:

ð3:34Þ

The angular frequency x3 is the squared-roots of a quadratic equation of x2
3 in

the form of

a0 x2
3

� �4 þ b0 x2
3

� �3 þ c0 x2
3

� �2 þ d0 x2
3

� �

þ e0 ¼ 0; ð3:35Þ

where subscript 3 indicates the third-order analytical approximation and
a0; b0; c0; d0, and e0 are coefficients of the quartic equation of x2

3. There is a total
of eight roots, and the particular root which is closest to x2 is identified as the most
appropriate solution because x3 is a more accurate and of a higher-order
approximation to x3. Comparison of x3 in the following section shows that it is in
excellent agreement with the numerical integration solution for small, as well as
large, amplitudes of oscillation. The quartic equation can be subsequently solved
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by any symbolic software, such as MATHEMATICA, for x3. The constants x2 and
x3 in Eq. 3.34 derived in terms of the coefficients of Fourier series are obtained.

3.1.6 Approximate Results and Discussion

The solutions of Eq. 3.1 using the second-order LP perturbation method is briefly
derived here. Expanding the frequency x2 ¼ x2

LP and the periodic solution vðsÞ ¼
vLPðsÞ of Eq. 3.9 into a power series as a function of e as follows:

x2
LP ¼ x2

e þ ex1 þ e2x2 þ � � � ð3:36Þ

vLPðsÞ ¼ v0ðsÞ þ ev1ðsÞ þ e2v2ðsÞ þ � � � ; s ¼ xLPt ð3:37Þ

Fig. 3.2 a Comparison of deflection of nonlinear spring vðtÞ for various analytical approxima-
tions and the numerical integration solution for m ¼ 1;A ¼ 0:5; e ¼ 0:5, and
n ¼ 0:1ðk1 ¼ 50; k2 ¼ 5Þ. b Comparison of the deflection of linear spring y1ðtÞ for various
analytical approximations and the numerical integration solutions for m ¼ 1; e ¼ 0:5. c Compar-
ison of the displacement of mass y2ðtÞ for various analytical approximations and the numerical
integration solutions for m ¼ 1; e ¼ 0:5, and n ¼ 0:1 ðk1 ¼ 50; k2 ¼ 5Þ
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and setting the coefficients of e0; e1, and e2 as zero yield

v000 þ v0 ¼ 0; v0ð0Þ ¼ A; v00ð0Þ ¼ 0; ð3:38Þ

v001 þ v1 ¼ �v3
0 � 6zv0v020 � 3zv2

0v000 �
x1v000
x2

e

; v1ð0Þ ¼ 0; v01ð0Þ ¼ 0; ð3:39Þ

v002 þ v2 ¼ � 3v2
0v1 � 6zv1v020 �

6zx1v0v020
x2

e

� 12zv0v00v01 � 6zv0v1v000 �
3zx1v2

0v000
x2

e

� x2v000
x2

e

� 3zv2
0v001 �

x1v001
x2

e

; v2ð0Þ ¼ 0; v002ð0Þ ¼ 0:

ð3:40Þ

Fig. 3.3 a Comparison of the deflection of nonlinear spring vðtÞ for various analytical
approximations and the numerical integration solutions for m ¼ 4;A ¼ 10; e ¼ �0:008, and
n ¼ 0:5ðk1 ¼ 6; k2 ¼ 3Þ. b Comparison of the deflection of linear spring y1ðtÞ for various
analytical approximations and the numerical integration solutions for m ¼ 4; e ¼ �0:008, and
n ¼ 0:5ðk1 ¼ 6; k2 ¼ 3Þ. c Comparison of the displacement of mass y2ðtÞ for various analytical
approximations and the numerical integration solutions for m ¼ 4; e ¼ �0:008, and
n ¼ 0:5ðk1 ¼ 6; k2 ¼ 3Þ
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Solving the linear second-order differential equations 3.38–3.40 with the cor-
responding initial conditions, we obtain

x1 ¼ �
3
4

A2x2
eðz� 1Þ; x2 ¼

3
128

A4x2
eð15z2 � 14z� 1Þ; ð3:41Þ

v0 ¼ A cos xLPt; v1 ¼
A3

32
ð9z� 1Þðcos xLPt � cos 3xLPtÞ;

v2 ¼ �
A5ð441z2 � 34z� 32Þ

1024
cos xLPt þ 3A5ð9z2 � 1Þ

128
cos 3xLPt

þ A5ð225z2 � 34zþ 1Þ
1024

cos 5xLPt:

ð3:42Þ

To further illustrate and verify accuracy of this approximate analytical
approach, a comparison of the time history response of nonlinear spring deflection
vðtÞ, linear spring deflection y1ðtÞ, and mass displacement y2ðtÞ is presented in
Figs. 3.2 and 3.3. Figure 3.2 considers the nonlinear hard-spring cases, while
Fig. 3.3 represents the nonlinear soft-spring cases.

3.2 He’s Parameter Expansion Method

3.2.1 Introduction

Parameter-expanding methods, including the modified Lindstedt–Poincaré method
and the bookkeeping parameter method, can successfully deal with such special
cases; however, the classical methods fail. The methods need not have a time
transformation like the Lindstedt–Poincaré method; the basic character of the
method is to expand the solution and some parameters in the equation.

The parameter expansion method is an easy and straightforward approach to
nonlinear oscillators. Anyone can apply the method to find an approximation of the
amplitude–frequency relationship of a nonlinear oscillator with only basic
knowledge of advance calculus. The basic idea of He’s parameter-expanding
methods (HPEMs) was provided by Prof. J. H. He in 2002, and the reader is
referred to He (2002).

In a case where no parameter exists in an equation, HPEMs can be used (2002).
As a general example, the following equation can be considered:

m u00 þ x2
0uþ ef ðu; u0; u00Þ ¼ 0; uð0Þ ¼ k; u0ð0Þ ¼ 0: ð3:43Þ

Various perturbation methods have been applied frequently to analyze Eq. 3.43.
The perturbation methods are limited to the case of small e and m x2

0 [ 0; that is,
the associated linear oscillator must be statically stable so that the linear and
nonlinear responses are qualitatively similar.
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3.2.2 Modified Lindstedt–Poincaré Method

According to the modified Lindstedt–Poincaré method (He 2001b), the solution is
expanded into a series of p or e in the form

u ¼ u0 þ e u1 þ e2u2 þ � � � ð3:44Þ

Hereby, the parameter e (or p) does not require being small (0� e�1 or
0� p�1).

The coefficients m and x2
0 are expanded in a similar way

x2
0 ¼ x2 þ e x1 þ e2x2 þ � � � or x2

0 ¼ x2 þ p x1 þ p2x2 þ � � � ð3:45Þ

m ¼ 1þ e m1 þ e2m2 þ � � � or m ¼ 1þ p m1 þ p2m2 þ � � � ð3:46Þ

x is assumed to be the frequency of the studied nonlinear oscillator; the values
for m and x2

0 can be any of these positive, zero, or negative real values.
Here, we are going to solve this problem using HPEM.

3.2.3 Bookkeeping Parameter Method

In this case, no small parameter exists in the equations, so a traditional pertur-
bation method cannot be useful. For this type of problem He introduced a tech-
nique in 2001 that provides for a bookkeeping parameter to be entered into the
original differential equation (He 2001a).

3.2.4 Application

Example 3.2
This section considers the following nonlinear oscillator with discontinuity

(Wang and He 2008):

u00 þ u uj j ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0: ð3:47Þ

There exists no small parameter in the equation. Therefore, the traditional
perturbation methods cannot be applied directly.

The parameter expansion method entails the bookkeeping parameter method
and the modified Lindstedt–Poincaré method.

In order to use the HPEM, we rewrite Eq. 3.47 in the form

u00 þ 0:uþ 1:u uj j ¼ 0: ð3:48Þ
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According to the parameter expansion method, we may expand the solution, u,
the coefficient of u, the zero, and the coefficient of u uj j, 1, in series of p:

u ¼ u0 þ pu1 þ p2u2 þ � � � ð3:49Þ

0 ¼ x2 þ pa1 þ p2a2 þ � � � ð3:50Þ

1 ¼ pb1 þ p2b2 þ � � � ð3:51Þ

Substituting Eqs. 3.49 and 3.50 into Eq. 3.48 and equating the terms with the
identical powers of p, we have

p0: u000 þ x2u0 ¼ 0 ð3:52Þ

p1: u001 þ x2u1 þ a1u0 þ b1u0 u0j j ¼ 0 ð3:53Þ

p2: ð1þ x2Þu002 þ a1u001 þ a2u000 þ b1 u000
�

�

�

�u001 þ u000 u001
�

�

�

�

� �

þ b2u000 u000
�

�

�

� ¼ 0: ð3:54Þ

Considering the initial conditions u0ð0Þ ¼ A and u00ð0Þ ¼ 0, the solution of
Eq. 3.52 is u0 ¼ A cos xt. Substituting the result into Eq. 3.53, we have

u001 þ x2u1 þ a1A cos xt þ b1A2 cos xt cos xtj j ¼ 0: ð3:55Þ

It is possible to perform the Fourier series expansion

cos xt cos xtj j ¼
X

1

n¼0

c2nþ1 cos ð2nþ 1Þxt½ � ¼ c1 cos xt þ c3 cos xt þ � � � ; ð3:56Þ

where ci can be determined by the Fourier series, for example

c1 ¼
2
p

Z

p

0

cos2 xt cos xtj j dðxtÞ ¼ 2
p

Z

p
2

0

cos3 sds�
Z

p

p
2

cos3 sds

0

B

@

1

C

A

¼ 8
3p
: ð3:57Þ

Substitution of Eq. 3.56 into Eq. 3.55 gives

u001 þ x2u1 þ a1 þ b1A
8

3p

� 	

A cos xt þ
X

1

n¼1

c2nþ1 cos ð2nþ 1Þxt½ � ¼ 0: ð3:58Þ

Not to have a secular term in u1 requires that

a1 þ b1A
8

3p
¼ 0: ð3:59Þ

If the first-order approximation is enough, then, setting p ¼ 1 in Eqs. 3.50 and
3.51, we have

1 ¼ b1 ð3:60Þ
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0 ¼ x2 þ a1: ð3:61Þ

From Eqs. 3.59–3.61, we obtain

x ¼
ffiffiffiffiffiffi

8A

3p

r

� 2:6667

ffiffiffi

A

p

r

: ð3:62Þ

The obtained frequency, Eq. 3.62, is valid for the whole solution domain,
0 \ A \1. The accuracy of frequency can be improved if we continue the
solution procedure to a higher order; however, the amplitude obtained by this
method is an asymptotic series, not a convergent one. For conservative oscillator

u00 þ f ðuÞu ¼ 0; f ðuÞ[ 0 ð3:63Þ

where f ðuÞ is a nonlinear function of u, we always use the zero-order approximate
solution. Thus, we have

uðtÞ ¼ A cos t

ffiffiffiffiffiffi

8A

3p

r

 !

: ð3:64Þ

Example 3.3

3.2.5 Governing Equation

Considering the mechanical system shown in Fig. 3.4, we determine that there is a
mass m grounded by linear and nonlinear springs in series. In this figure, the
stiffness coefficient of the first linear spring is k1; the coefficients associated with
the linear and nonlinear portions of spring force in the second spring with cubic
nonlinear characteristic are called k2 and k3, respectively, by definition e:

e ¼ k3

k2
; ð3:65Þ

The case of k3 [ 0 corresponds to a hardening spring, while k3\ 0 indicates a
softening one. x and y are absolute displacements of the connection point of the
two springs and the mass m, respectively. Two new variables have been introduced
as follows:

Fig. 3.4 Geometry of the
example
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u ¼ y� x; r ¼ x: ð3:66Þ

The following governing equations have been obtained by Telli and Kopmaz
(2006):

ð1þ 3e g u2Þ d
2u

dt2
þ 6 e g u

du

dt

� 	2

þ x2
0ðuþ e u3Þ ¼ 0; ð3:67Þ

r ¼ x ¼ n ð1þ e u2Þu; y ¼ ð1þ nþ n e u2Þ u; ð3:68Þ

n ¼ k2

k1
; g ¼ n

1þ n
; x2

0 ¼
k2

mð1þ nÞ ; ð3:69Þ

and the initial conditions are

uð0Þ ¼ k;
du

dt
ð0Þ ¼ 0: ð3:70Þ

3.2.6 HPEM for Solving Problem

According to the HPEM, Eq. 3.67 can be rewritten as (Kimiaeifar et al. 2010):

d2u

dt2
þ x2

0uþ e 3g u2 d2u

dt2
þ 6 g u

du

dt

� 	2

þx2
0u3

 !

¼ 0: ð3:71Þ

And initial conditions are

uð0Þ ¼ k;
du

dt
ð0Þ ¼ 0: ð3:72Þ

The form of solution and the constant one in Eq. 3.71 can be expanded as

uðtÞ ¼ u0ðtÞ þ e u1ðtÞ þ e2u2ðtÞ þ � � � ð3:73Þ

x2
0 ¼ x2 þ e b1 þ e2b2 þ � � � ð3:74Þ

Substituting Eqs. 3.72–3.74 into Eq. 3.71 and processing as the standard per-
turbation method, we have

d2u0

dt2
þ x2u0 ¼ 0; u0ð0Þ ¼ k;

du0

dt
ð0Þ ¼ 0: ð3:75Þ

The solution of Eq. 3.75 is

u0ðtÞ ¼ k cosðx tÞ: ð3:76Þ

3.2 He’s Parameter Expansion Method 145



Substituting x0(t) from the above equation into Eq. 3.76 results in

d2u1ðtÞ
dt2

þ x2u1ðtÞ þ b1k cosðx tÞ � 3gk3 cos3ðx tÞx2 þ x2
0k

3 cos3ðx tÞ

þ 6gk3 cosðx tÞ sin2ðx tÞx2 ¼ 0:
ð3:77Þ

But considering Eq. 3.74 and assuming two first terms, we have

b1 ¼
x2

0 � x2

e
: ð3:78Þ

On the basis of trigonometric functions properties, we have

cos3ðx tÞ ¼ 1=4 cosð3x tÞ þ 3=4 cosðx tÞ: ð3:79Þ

Substituting Eq. 3.79 into Eq. 3.77 and eliminating the secular term leads to

b1kþ
3
4
x2

0k
3k � 3

4
gk3x2 ¼ 0: ð3:80Þ

Substituting Eq. 3.79 into Eq. 3.80, two roots of this particular equation can be
obtained as

x ¼ �
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3gk2eþ 4Þð4þ 3k2eÞ
q

3gk2eþ 4
: ð3:81Þ

Replacing x from Eq. 3.81 into Eq. 3.77 yields

uðtÞ ¼ u0ðtÞ ¼ k cos
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3gk2eþ 4Þð4þ 3k2eÞ
q

3gk2eþ 4
t

0

@

1

A: ð3:82Þ

3.3 Differential Transformation Method

3.3.1 Introduction

The differential transform method (DTM) is an analytic method for solving dif-
ferential equations. The concept of a differential transform was first introduced by
Zhou in 1986. Its main application therein is to solve both linear and nonlinear
initial value problems in electric circuit analysis. This method constructs an
analytical solution in the form of a polynomial. It is different from the traditional
higher order Taylor series method. The Taylor series method is computationally
expensive for large orders. The DTM is an alternative procedure for obtaining an
analytic Taylor series solution of the differential equations. By using DTM, we get
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a series solution—in practice, a truncated series solution. The series often coin-
cides with the Taylor expansion of the true solution at point x = 0, in the initial
value case.

Such a procedure changes the actual problem to make it tractable by conven-
tional methods. In short, the physical problem is transformed into a purely
mathematical one for which a solution is readily available. Our concern in this
work is the derivation of approximate analytical oscillatory solutions for the
nonlinear oscillator equation (Hassan 2002; Momani 2008):

y00ðtÞ þ cyðtÞ ¼ ef ðyðtÞ; y0ðtÞÞ; yð0Þ ¼ a; y0ð0Þ ¼ b; ð3:83Þ

where c is a positive real number and e is a parameter (not necessarily small). We
assume that the function f ðyðtÞ; y0ðtÞÞ is an arbitrary nonlinear function of its
arguments. The modified DTM will be employed in a straightforward manner
without any need for linearization or smallness assumptions.

3.3.2 Differential Transformation Method

This technique, the given differential equation, and related boundary conditions are
transformed into a recurrence equation that finally leads to the solution of a system
of algebraic equations as coefficients of a power series. This method is useful for
obtaining exact and approximate solutions of linear and nonlinear differential
equations. There is no need for linearization or perturbations; large computational
work and round-off errors are avoided. It has been used to solve effectively, easily,
and accurately a large class of linear and nonlinear problems with approximations.
The method is well addressed in Ayaz (2004), Hassan (2004) and Liu and Song
(2007). The basic definitions of differential transformation are introduced as
follows:

Definition 3.1 If f ðtÞ is analytic in the time domain T , then it will be differentiated
continuously with respect to time t:

/ðt; kÞ ¼ dkf ðtÞ
dtk

; 8t 2 T: ð3:84Þ

For t ¼ ti, /ðt; kÞ ¼ /ðti; kÞ, where k belongs to the set of nonnegative integers,
denoted as the K-domain. Therefore, Eq. 3.84 can be rewritten as

FðkÞ ¼ /ðti; kÞ ¼
dkf ðtÞ

dtk


 �
�

�

�

�

t¼ti

; 8t 2 K; ð3:85Þ

where FðkÞ is called the spectrum of f ðtÞ at t ¼ ti in the K-domain.

Definition 3.2 If f ðtÞ can be represented by the Taylor series, then it can be
indicated as
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f ðtÞ ¼
X

1

k¼0

ðt � tiÞk
.

k!
h i

FðkÞ: ð3:86Þ

Equation 3.86 is called the inverse transform of FðkÞ. With the symbol D
denoting the differential transformation process, and upon combining Eqs. 3.85
and 3.86, we obtain

f ðtÞ ¼
X

1

k¼0

ðt � tiÞk
.

k!
h i

FðkÞ � D�1FðkÞ:

Using the differential transformation, a differential equation in the domain of
interest can be transformed into an algebraic equation in the K-domain, and f ðtÞ
can be obtained by the finite–term Taylor series expansion plus a remainder such
as

f ðtÞ ¼
X

N

k¼0

ðt � tiÞk
.

k!
h i

FðkÞ þ RNþ1ðtÞ:

The fundamental mathematical operations performed by DTM are listed in
Table 3.1.

In addition to the above operations, the following theorem, which can be
deduced from Eqs. 3.85 and 3.86, is given below:

Theorem 3.1 If f ðxÞ ¼ g1ðxÞg2ðxÞ � � � gm�1ðxÞgmðxÞ, then

FðkÞ ¼
X

k

kn�1¼0

X

kn�1

kn�2¼0

. . .
X

k3

k2¼0

X

k2

k1¼0

G1ðk1ÞG2ðk2 � k1Þ � � �Gn�1ðkn�1 � kn�2Þ

Gnðk � kn�1Þ:
ð3:87Þ

Table 3.1 The fundamental
operations of the differential
transform method

Time function Transformed function

wðtÞ ¼ auðtÞ � bvðtÞ WðkÞ ¼ aUðkÞ � bVðkÞ
wðtÞ ¼ dmuðtÞ=dtm

WðkÞ ¼ ðkþmÞ!
k! Uðk þ mÞ

wðtÞ ¼ uðtÞvðtÞ WðkÞ ¼
Pk

l¼0 UðlÞVðk � 1Þ
wðtÞ ¼ tm

WðkÞ ¼ dðk � mÞ ¼
1; if k ¼ m;

0; if k 6¼ m:

(

wðtÞ ¼ expðtÞ WðkÞ ¼ 1=k!

wðtÞ ¼ sinðxt þ aÞ WðkÞ ¼ ðxk
�

k!Þ sinðkp=2þ aÞ
wðtÞ ¼ cosðxt þ aÞ WðkÞ ¼ ðxk

�

k!Þ cosðkp=2þ aÞ
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The series solution (3.8) does not exhibit the periodic behavior that is char-
acteristic of oscillator equations. It converges rapidly only in a small region; in
the wide region, they may have very slow convergence rates, and then their
truncations yield inaccurate results. In the modified DTM of Shaher Momani, we
apply a Laplace transform to the series obtained by DTM, then convert the
transformed series into a meromorphic function by forming its Padé approximants,
and then invert the approximant to obtain an analytic solution, which may be
periodic or a better approximation solution than the DTM truncated series solu-
tion (Momani 2008).

3.3.3 Padé Approximations

A Padé approximant is the ratio of two polynomials constructed from the coeffi-
cients of the Taylor’s series expansion of a function yðxÞ. The L=M½ � Padé
approximations of a function yðxÞ are given by Baker in 1975 as

L=M½ � ¼ PLðxÞ
QMðxÞ

: ð3:88Þ

where PLðxÞ is a polynomial of degree at most L and QMðxÞ is a polynomial of
degree at most M. The formal power series are

yðxÞ ¼
X

1

i¼1

aix
i; ð3:89Þ

yðxÞ � PLðxÞ
QMðxÞ

¼ OðxLþMþ1Þ; ð3:90Þ

which determine the coefficients of PLðxÞ and QMðxÞ by the equation.Since we can
clearly multiply the numerator and denominator by a constant and leave L=M½ �
unchanged, we impose the normalization condition

QMð0Þ ¼ 1:0: ð3:91Þ

Finally, we require that PLðxÞ and QMðxÞ have no common factors. If we write
the coefficient of PLðxÞ and QMðxÞ as

PLðxÞ ¼ p0 þ p1xþ p2x2 þ � � �PLxL

QMðxÞ ¼ q0 þ q1xþ q2x2 þ � � � qMxM

)

: ð3:92Þ

then, by Eqs. 3.91 and 3.92, we may multiply Eq. 3.90 by QMðxÞ, which linearizes
the coefficient equations. We can write out Eq. 3.90 in more detail as
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aLþ1 þ aLq1 þ � � � aL�Mþ1qM ¼ 0;

aLþ2 þ aLþ1q1 þ � � � aL�Mþ2qM ¼ 0;

..

.

aLþM þ aLþM�1q1 þ � � � aLqM ¼ 0;

9

>

>

>

>

>

=

>

>

>

>

>

;

ð3:93Þ

ao ¼ p0;

a0 þ a0q1 ¼ p1;

a2 þ a1q1 þ a0q2 ¼ p1;

..

.

aL þ aL�1q1 þ � � � þ a0qL ¼ pL

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

: ð3:94Þ

To solve these equations, we start with Eq. 3.93, which is a set of linear
equations for all unknown qs. Once the qs are known, Eq. 3.94 gives an explicit
formula for the unknown ps, which completes the solution. If Eqs. 3.93 and 3.94
are nonsingular, then we can solve them directly and obtain Eq. 3.95 (Baker 1975),
where Eq. 3.95 holds, and if the lower index on a sum exceeds the upper, the sum
is replaced by zero:

L

M


 �

¼

det

aL�Mþ1 aL�Mþ2 . . . aLþ1

..

. ..
. . .

. ..
.

aL aLþ1 . . . aLþM
PL

j¼M aj�Mx j
PL

j¼M�1 aj�Mþ1x j . . .
PL

j¼0 ajx j

2

6

6

6

6

4

3

7

7

7

7

5

det

aL�Mþ1 aL�Mþ2 . . . aLþ1

..

. ..
. . .

.

aL aLþ1 . . . aLþM

xM xM�1 . . . 1

2

6

6

6

4

3

7

7

7

5

: ð3:95Þ

To obtain diagonal Padé approximants of different order, such as [2/2], [4/4], or
[6/6], we can use the symbolic calculus software, MATHEMATICA.

3.3.4 Application

Example 3.4
In this example, the DTM is used to solve subharmonic resonances of nonlinear

oscillation systems with parametric excitations, governed by Hassan (2002)

d2xðtÞ
dt2

þ ð1� e cosð/tÞÞðkxðtÞ þ bxðtÞ3Þ ¼ 0 xð0Þ ¼ A; _xð0Þ ¼ 0; ð3:96Þ
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where e;/; b; k are known as physical parameters.
A comparison of the present results with those yielded by the established

Runge–Kutta method confirms the accuracy of the proposed method.
Applying the DTM to Eq. 3.96 with respect to t gives (Hassan 2002)

ðk þ 2Þðk þ 1ÞXkþ2 þ kXk � ke
X

k

l¼0

Xk�l/
l cos 1

2 pl
� �

l!

 !

þ b
X

k

l¼0

Xk�l

X

l

p¼0

Xl�pXp

 ! !

� be
X

k

l¼0

1
ðk � lÞ! /ðk�lÞ cos

1
2
ðk � lÞp

� 	� 	

X

l

p¼0

Xl�p

X

p

q¼0

Xp�qXq

 ! ! !

¼ 0:

ð3:97Þ

Suppose that X0 and X1 are apparent from boundary conditions. By solving
Eq. 3.97 with respect to Xkþ2, we will have

X2 ¼
1
2

beX3
0 �

1
2

kX0 þ
1
2
keX0 �

1
2
bX3

0 ; ð3:98Þ

X3 ¼ �
1
6
kX1 þ

1
6
keX1 þ

1
6

keX0/ cos
1
2
p

� 	

;

� 1
2
bX1X2

0 þ
1
6

be/ cos
1
2
p

� 	

X3
0 þ

1
2
beX1X2

0 ;

ð3:99Þ

X4 ¼ �
1
3
kbeX3

0 þ
1

24
k2X0 �

1
12

k2eX0 þ
1
6
kbX3

0

þ 1
6

kbe2X3
0 þ

1
24

k2e2X0 þ
1

12
keX1/ cos

1
2
p

� 	

þ � � �
ð3:100Þ

X5 ¼
1

20
beX3

1 þ
9

40
X4

0b
2X1 þ

1
120

k2e2X1 �
1

60
k2eX1 �

1
30

k2eX0/ cos
1
2

p

� 	

þ 1
120

k2X1 þ
1

120
keX0/

3 cos
3
2
p

� 	

þ 1
40

keX1/
2 cosðpÞ þ � � �

ð3:101Þ

The above process is continuous. Substituting Eqs. 3.98–3.101 into the main
equation on the basis of DTM, the closed form of the solutions can be obtained:

xðtÞ ¼X0 þ tX1 þ
t2

2!

1
2
beX3

0 �
1
2
kX0 þ

1
2
keX0 �

1
2

bX3
0

� 	

þ t3

3!
� 1

6
kX1 þ

1
6
keX1 þ

1
6
keX0/ cos

1
2

p

� 	

� 1
2
bX1X2

0

�

þ 1
6
be/ cosð1

2
pÞX3

0 þ
1
2

beX1X2
0Þ þ � � � ð3:102Þ
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In this stage, in order to achieve higher accuracy, we use a subdomain tech-
nique; that is, the domain of t should be divided into some adequate intervals. The
values at the end of each interval will be the initial values of the next one. For
example, at the first subdomain, it is assumed that the distance of each interval is
0.2. For the first interval, 0! 0:2, boundary conditions are the ones given in
Eq. 3.96 at point t ¼ 0. By exerting a transformation, we will have

X0 ¼ A: ð3:103Þ

And the other boundary conditions are considered as

X1 ¼ 0: ð3:104Þ

As was mentioned above, for the next interval, 0:2! 0:4, new boundary
conditions are

X0 ¼ xð0:2Þ: ð3:105Þ

The next boundary condition is considered as

X1 ¼
dx

dt
ð0:2Þ: ð3:106Þ

For this interval function, xðtÞ is represented by power series whose center is
located at 0:2, which means that in this power series t converts toðt � 0:2Þ.

In order to verify the effectiveness of the proposed DTM, by using the Maple
10, package, the fourth-order Runge–Kutta as a numerical method is used to
compute the displacement response of the nonlinear oscillator for a set of initial
amplitudes and different physical parameters. These results are then compared
with the DTM corresponding to the same set of amplitudes.

Fig. 3.5 The comparison between the differential transformation method (DTM) and numerical
solutions (NS) of x½m� to t½s�, for a A = 3, k = 3, b = 2, e ¼ 0:01;/ ¼ 10 and b A = 4, k = 2,
b = 2, e ¼ 0:01; / ¼ 10
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The results for the different methods of DTM and Runge–Kutta are compared in
Fig. 3.5.
Example 3.5

In order to assess the advantages and the accuracy of the modified DTM for
solving nonlinear oscillatory systems, we have applied the method to a variety of
initial-value problems arising in nonlinear dynamics. All the results are calculated
by using Mathematica.

Consider the Van der Pol equation,

y00ðtÞ þ yðtÞ ¼ e 1� y2ðtÞ
� �

y0ðtÞ; yð0Þ ¼ 0; y0ð0Þ ¼ 2; ð3:107Þ

With respect to the initial conditions, we have

yð0Þ ¼ 0; y0ð0Þ ¼ 2: ð3:108Þ

Taking the differential transform of both sides of Eq. 3.107, we obtain the
recurrence relation

Yðk þ 2Þ ¼ 1
ðk þ 1Þðk þ 2Þ

	 e ðk þ 1ÞYðk þ 2Þ �
X

k

k2¼0

X

k2

k1¼0

ðk � k2 þ 1ÞYðk1ÞYðk2 � k1ÞYðk � k2 þ 1Þ
 !

� YðkÞ
" #

:

ð3:109Þ

The initial conditions given in Eq. 3.109 can be transformed at t0 ¼ 0 as

Yð0Þ ¼ 0; Yð1Þ ¼ 2: ð3:110Þ

By using Eqs. 3.109, 3.110, and 3.107, the solution of the following series is
obtained:

yðtÞ ¼ 2 t � t3

3!
þ t5

5!
� t7

7!

� 	

þ e t2 � 5t4

6
þ 91t6

360
� 41t8

1008

� 	

þ � � � ð3:111Þ

This series does not exhibit the periodic behavior that is characteristic of the
oscillatory system (3.107 and 3.108). Comparison of the approximate solution
(3.111) for e ¼ 0:3 and the solution obtained by the fourth-order Runge–Kutta
method in Fig. 3.6 shows that it converges in a small region but yields a wrong
solution in a wider region. In order to improve the accuracy of the differential
transform solution (3.111), we implement the modified DTM as follows.

Applying the Laplace transform to the series solution (3.111), yields

L yðtÞ½ � ¼ 2
1
s2
� 1

s4
þ 1

s6
� 1

s8

� 	

þ e
2
s3
� 20

s5
þ 182

s7
� 1640

s9

� 	

þ � � � ð3:112Þ

For simplicity, let s ¼ 1=t; then

L yðtÞ½ � ¼ 2 t2 � t4 þ t6 � t8
� �

þ e 2t3 � 20t5 þ 182t7 � 1640t9
� �

þ � � � ð3:113Þ

3.3 Differential Transformation Method 153



The [4/4] Padé approximation for the terms containing e0; e1; . . . separately
gives

4
4


 �

¼ 2
t2

1þ t2

� 	

þ e
2t3

1þ 10t2 þ 9t4

� 	

:

Recalling t ¼ 1=s, we obtain [4/4] in terms of s as

4
4


 �

¼ 2
1

s2 þ 1

� 	

þ e
2s

s4 þ 10s2 þ 9

� 	

:

By using the inverse Laplace transform to the [4/4] Padé approximation, we
obtain the modified approximate solution

yðtÞ ¼ 2 sinðtÞ þ e cosðtÞ sin2ðtÞ: ð3:114Þ

3.4 Adomian’s Decomposition Method

3.4.1 Basic Idea of Adomian’s Decomposition Method

The Adomian decomposition method (ADM) is a nonnumerical method for
solving nonlinear differential equations, both ordinary and partial. The general
direction of this work is toward a unified theory for partial differential equations
(PDEs). The method was developed by George Adomian, chair of the Center for
Applied Mathematics at the University of Georgia, in 1984. This method is a
semianalytical method.

The ADM had been represented by Adomian (1994a, b, 1992). This method is a
semianalytical method and has been modified by Wazwaz (1999a, b, 2001) and,
more recently, by Luo (2005) and Zhang et al. (2006). This method is useful for
obtaining closed form or numerical approximation for a wide class of stochastic

Fig. 3.6 Plots of
displacement y versus time t:
Runge–Kutta method, (—);
Eq. 3.8, (– –)
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and deterministic problems in science and engineering. These problems involve
algebraic, linear or nonlinear ordinary or partial differential equations, and integro-
differential, integral, and differential delay equations.

Let us discuss a brief outline of the ADM. For this, we consider a general
nonlinear equation in the form

Luþ Ruþ Nu ¼ g ð3:115Þ

where L is the highest order derivative that is assumed to be easily invertible, R is
the linear differential operator of less order than L, Nu presents the nonlinear terms,
and g is the source term. Applying the inverse operator L�1 to both sides of
Eq. 3.115 and using the given conditions, we obtain

u ¼ f xð Þ � L�1 Ruð Þ � L�1 Nuð Þ ð3:116Þ

where the function f xð Þ represents the terms arising from integration of the source
term g xð Þ, using given conditions. For nonlinear differential equations, the non-
linear operator Nu ¼ F uð Þ is represented by an infinite series of the so-called
Adomian polynomials as

F uð Þ ¼
X

1

m¼0

Am: ð3:117Þ

The polynomials Am are generated for all kinds of nonlinearity so that A0

depends only on u0, A1depends on u0 and u1, and so on. The Adomian polynomials
introduced above show that the sum of subscripts of the components of u for each
term of Am is equal to n.

The Adomian method defines the solution u xð Þ by the series

u ¼
X

1

m¼0

um: ð3:118Þ

In the case of F uð Þ, the infinite series is a Taylor expansion about u0,

F uð Þ ¼ F u0ð Þ þ F0 u0ð Þ u� u0ð Þ þ F00 u0ð Þ
u� u0ð Þ

2!
þ F000 u0ð Þ

u� u0ð Þ2

3!
þ � � �

ð3:119Þ

Rewriting Eq. 3.118 as u� u0 ¼ u1 þ u2 þ u3 þ � � �, substituting it into
Eq. 3.119, and then equating two expressions for F uð Þ found in Eqs. 3.119 and
3.117 define formulas for the Adomian polynomials in the form of

F uð Þ ¼ A1 þ A2 þ � � �

¼ F u0ð Þ þ F0 u0ð Þ u1 þ u2 þ � � �ð Þ þ F00 u0ð Þ
u1 þ u2 þ � � �ð Þ2

2!
þ � � � ð3:120Þ
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By equating terms in Eq. 3.120, the first few Adomian’s polynomials A0; A1;
A2; A3, and A4 are given by:

A0 ¼ F u0ð Þ; ð3:121Þ

A1 ¼ u1F0 u0ð Þ; ð3:122Þ

A2 ¼ u2F0 u0ð Þ þ
1
2!

u2
1F00 u0ð Þ; ð3:123Þ

A3 ¼ u3F0 u0ð Þ þ u1u2F00 u0ð Þ þ
1
3!

u3
1F000 u0ð Þ; ð3:124Þ

A4 ¼ u4F0 u0ð Þ þ
1
2!

u2
2 þ u1u3

� 	

F00 u0ð Þ þ
1
2!

u2
1u2F000 u0ð Þ þ

1
4!

u4
1FðivÞ u0ð Þ:

ð3:125Þ
..
.

Since Am is known now, Eq. 3.117 can be substituted into Eq. 3.116 to specify
the terms in the expansion for the solution of Eq. 3.125.

3.4.2 Application

Example 3.6

3.4.2.1 Introduction

The aim of this example is to employ ADM to obtain the exact solutions for linear
and nonlinear Schrödinger equations, which occur in various areas of physics,
including nonlinear optics, plasma physics, superconductivity, and quantum
mechanics (Sadighi and Ganji 2008a).

We consider the linear Schrödinger equation:

ut þ iuxx ¼ 0; u x; 0ð Þ ¼ f xð Þ; i2 ¼ �1

and the nonlinear Schrödinger equation

iut þ uxx þ c uj j2u ¼ 0; u x; 0ð Þ ¼ f xð Þ; i2 ¼ �1

where c is a constant and u x; tð Þ is a complex function.
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3.4.2.2 Analysis of the ADM

To illustrate the basic concepts of ADM for solving the linear Schrödinger
equation, first we rewrite it in the following operator form (Sadighi and Ganji
2008a):

Ltu x; tð Þ þ iLxxu x; tð Þ ¼ 0

where the notations are

Lt ¼
o

ot
and Lxx ¼

o2

ox2
:

Assuming that Lt is invertible, then the inverse operator L�1
t is given by

L�1
t ¼

Z

t

0

:ð Þdt:

Operating with the inverse operator on both sides of equation
Ltu x; tð Þ þ iLxxu x; tð Þ ¼ 0, we obtain

u x; tð Þ ¼ u x; 0ð Þ � iL�1
t Lxxu x; tð Þð Þ:

The Adomian method defines the solution u x; tð Þ by the decomposition series

u x; tð Þ ¼
X

1

n¼0

un x; tð Þ:

Substituting the previous decomposition series into u x; tð Þ yields

X

1

n¼0

un x; tð Þ ¼ u x; 0ð Þ � iL�1
t Lxx

X

1

n¼0

un x; tð Þ
 ! !

:

To determine the components of un x; tð Þ, the Adomian decomposition method
uses the recursive relation

u0 x; tð Þ ¼ u x; 0ð Þ;
unþ1 x; tð Þ ¼ �iL�1

t Lxxun x; tð Þð Þ:

With this relation, the components of un x; tð Þ are easily obtained. This leads to
the solution in a series form. The solution in a closed form follows immediately if
an exact solution exists.

Proceeding as before, for solving the nonlinear Schrödinger equation by using
ADM, we rewrite it in the operator form

iLtu x; tð Þ þ Lxxu x; tð Þ þ cu x; tð Þ2�u x; tð Þ ¼ 0:
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By using the inverse operators, we can write

iu x; tð Þ ¼ iu x; 0ð Þ � L�1
t Lxxu x; tð Þð Þ � L�1

t cu x; tð Þ2�u x; tð Þ
 �

¼ 0:

Substituting u x; tð Þ ¼
P1

n¼0 un x; tð Þ into the previous equation yields

i
X

1

n¼0

un x; tð Þ ¼ iu x; 0ð Þ � L�1
t Lxx

X

1

n¼0

un x; tð Þ
 !

� cL�1
t Anð Þ ¼ 0:

Using the recursive relation to determine the components of un x; tð Þ, we obtain

u0 x; tð Þ ¼ u x; 0ð Þ; iunþ1 x; tð Þ ¼ �L�1
t Lxxun x; tð Þð Þ � cL�1

t An;

where An are Adomian’s polynomials and can be obtained as

A0 ¼ u2
0�u0;

A1 ¼ 2u0u1�u0 þ u2
0�u1;

A2 ¼ 2u0u2�u0 þ u2
1�u0 þ 2u0u1�u2 þ u2

0�u2;

A3 ¼ 2u0u3�u0 þ u2
1�u1 þ 2u1u2�u0 þ u2

0�u3 þ 2u0u2�u1 þ 2u0u1�u2:

..

.

3.4.2.3 Case 1

Consider the linear Schrödinger equation

ut þ iuxx ¼ 0

subjected to the initial condition

u x; 0ð Þ ¼ 1þ 2 cosh 2xð Þ:

Considering the given initial condition, we can assume u0 x; yð Þ ¼ 1þ cosh 2xð Þ
as an initial approximation. Next, we use the recursive relation to obtain the rest of
the components of un x; yð Þ :

u1 x; tð Þ ¼ �iL�1
t Lxxu0 x; tð Þð Þ ¼ �4it cosh 2xð Þ;

u2 x; tð Þ ¼ �iL�1
t Lxxu1 x; tð Þð Þ ¼ 4itð Þ2

2!
cosh 2xð Þ;

u3 x; tð Þ ¼ �iL�1
t Lxxu2 x; tð Þð Þ ¼ � 4itð Þ3

3!
cosh 2xð Þ:

Similarly, the remaining components can be found. The solution in a series
form is given by

158 3 Considerable Analytical Methods



u x; tð Þ ¼ 1þ cosh 2xð Þ 1� 4it þ 4itð Þ2

2!
� 4itð Þ3

3!
þ ..

.
 !

¼ 1þ cosh 2xð Þe�4it:

So the exact solution is

u x; tð Þ ¼ 1þ cosh 2xð Þe�4it:

3.4.2.4 Case 2

We then consider the linear Schrödinger equation

ut þ iuxx ¼ 0

subjected to the initial condition

u x; 0ð Þ ¼ e3ix:

Considering u x; 0ð Þ ¼ e3ix, we can assume u0 x; yð Þ ¼ e3ix as an initial approx-
imation. Next, we use the recursive relation to obtain the rest of the components of
un x; yð Þ.

u1 x; tð Þ ¼ �iL�1
t Lxxu0 x; tð Þð Þ ¼ 9ite3ix;

u2 x; tð Þ ¼ �iL�1
t Lxxu1 x; tð Þð Þ ¼ 9itð Þ2

2!
e3ix;

u3 x; tð Þ ¼ �iL�1
t Lxxu2 x; tð Þð Þ ¼ 9itð Þ3

3!
e3ix:

Similarly, the remaining components can be found. The solution in a series
form is given by

u x; tð Þ ¼ e3ix 1þ 9it þ 9itð Þ2

2!
þ 9itð Þ3

3!
þ � � �

 !

¼ e3i xþ3tð Þ:

So the exact solution is

u x; yð Þ ¼ e3i xþ3tð Þ:

This solution is the same as that of ADM.

3.4.2.5 Case 3

We now consider the nonlinear Schrödinger equation

iut þ uxx þ 2 uj j2u ¼ 0
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subjected to the initial condition

u x; 0ð Þ ¼ eix:

Considering the given initial condition, we can assume u0 x; yð Þ ¼ eix as an
initial approximation. We next use the recursive relation to obtain the rest of the
components of un x; yð Þ:

u1 x; tð Þ ¼ iL�1
t Lxxu0 x; tð Þð Þ þ icL�1

t A0 ¼ iteix;

u2 x; tð Þ ¼ iL�1
t Lxxu1 x; tð Þð Þ þ icL�1

t A1 ¼
itð Þ2

2!
eix;

u3 x; tð Þ ¼ iL�1
t Lxxu2 x; tð Þð Þ þ icL�1

t A2 ¼
itð Þ3

3!
eix:

Similarly, the remaining components can be found. The solution in a series
form is given by

u x; tð Þ ¼ eix 1þ it þ itð Þ2

2!
þ itð Þ3

3!
þ � � �

 !

¼ ei xþtð Þ:

Therefore, the exact solution in closed form will be

u x; tð Þ ¼ ei xþtð Þ;

which is the same as that obtained by ADM.

3.4.2.6 Case 4

Finally, we consider the nonlinear Schrödinger equation

iut þ uxx � 2 uj j2u ¼ 0;

subjected to the initial condition

u x; 0ð Þ ¼ eix:

Proceeding as before with the initial conditions, in the upper equation, gives

u x; tð Þ ¼ eix 1� 3it þ 3itð Þ2

2!
� 3itð Þ3

3!
þ � � �

 !

¼ ei x�3tð Þ:

Therefore, the exact solution in closed form will be

u x; tð Þ ¼ ei x�3tð Þ;

which is the same as that of ADM.
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3.5 He’s Amplitude–Frequency Formulation

3.5.1 Introduction

He’s amplitude–frequency formulation (HAFF), derived on the basis of an ancient
Chinese mathematical method, is an effective method for treating nonlinear
oscillators and is applied to obtain the amplitude–frequency relationship. This
method was used by He in 2004.

This method considers the general nonlinear oscillators

u00ðtÞ þ f uðtÞ; u0ðtÞ; u00ðtÞð Þ ¼ 0: ð3:126Þ

Oscillation systems contain two important physical parameters—that is, the
frequency x and the amplitude of oscillation, A. Therefore, let us consider initial
conditions

uð0Þ ¼ A ; u0ð0Þ ¼ 0:

According to HAFF, we choose two trial functions, u1 ¼ A cos t and
u2 ¼ A cos xt.

Substituting u1 and u2into Eq. 3.126, we obtain the following residuals,
respectively:

R1 ¼ u001ðtÞ þ f u1ðtÞ; u01ðtÞ; u001ðtÞ
� �

ð3:127Þ

and

R2 ¼ u002ðtÞ þ f u2ðtÞ; u02ðtÞ; u002ðtÞ
� �

: ð3:128Þ

If, by chance, u1 or u2 is chosen to be the exact solution, then the residual,
Eqs. 3.127 or 3.128, vanishes completely. In order to use HAFF, we set

R11 ¼
4
T1

Z

T1
4

0

R1 cosðtÞ dt;T1 ¼ 2p ð3:129Þ

and,

R22 ¼
4
T2

Z

T2
4

0

R2 cosðxtÞ dt ; T2 ¼
2p
x
: ð3:130Þ

Applying HAFF, we have

x2 ¼ x2
1R22 � x2

2R11

R22 � R11
; ð3:131Þ
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where

x1 ¼ 1; x2 ¼ x: ð3:132Þ

Finally, we solve this integral to determine both k and x:

uðtÞ ¼ A cos xt; ð3:133Þ

Z

T=4

0

ðx2uðtÞ þ f ðuðtÞÞÞ 	 cos xtdt ¼ 0; ð3:134Þ

T ¼ 2p
x
: ð3:135Þ

3.5.2 Applications

In order to assess the advantages and the accuracy of HAFF, we will consider the
following examples:
Example 3.7

Consider a nonlinear oscillator governed by

u00 þ u ¼ eu02u

with initial condition

uð0Þ ¼ A ; u0ð0Þ ¼ 0;

where

f uðtÞ; u0ðtÞ; u00ðtÞð Þ ¼ uðtÞ � eu02ðtÞuðtÞ:

According to HAFF, we choose two trial functions u1 ¼ A cos t and
u2 ¼ A cos xt,where x is assumed to be the frequency of the nonlinear oscillator
upper equation. Substituting u1 and u2 into the previous equation, we obtain the
following residuals, respectively (Ganji 2010):

R1 ¼ �eA3 sin2 t cos t

and

R2 ¼ �A cosðxtÞx2 þ A cosðxtÞ � eA3 sin2ðxtÞx2 cosðxtÞ:

In order to use HAFF, we set
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R11 ¼
4
T1

Z

T1
4

0

R1 cosðtÞ dt ¼ � 1
8

eA3 ; T1 ¼ 2p

and

R22 ¼
4
T2

Z

T2
4

0

R2 cosðxtÞ dt ¼ � 1
8

A A2ex2pþ 4x2p� 4pð Þ
p

; T2 ¼
2p
x
:

Applying HAFF, we have

x2 ¼ x2
1R22 � x2

2R11

R22 � R11
;

where

x1 ¼ 1; x2 ¼ x:

We therefore obtain

x2 ¼ 4
eA2 þ 4

:

The first-order approximate solution is obtained, which leads to

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ 1
4 eA2

s

:

For small e, it follows that

x ¼ 1� 1
8
eA2

� 	

:

This agrees with Nayfeh’s (2000) perturbation result.
In order to compare this argument with the homotopy perturbation method, we

write He’s result:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ 1
4 eA2

s

:

Therefore, it may be concluded that the perturbation method is not reliable for
large amplitudes, whereas the method presented in this study yields reasonable
results.
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Example 3.8
The next example considered here is the motion of a particle on a rotating

parabola. The governing equation of motion and initial conditions can be
expressed as (Ganji et al. 2009b)

u00ð1þ 4q2u2Þ þ a2uþ 4q2uu02 ¼ 0

with the initial condition

uð0Þ ¼ A ; u0ð0Þ ¼ 0:

We consider the motion of a ring of mass m sliding freely on a wire described
by the parabola z ¼ qx2, which rotates with a constant angular velocity about the
z-axis.

According to HAFF, we choose two trial functions u1 ¼ A cos t and
u2 ¼ A cos xt, where x is assumed to be the frequency of the nonlinear oscillator
of the upper equation. Substituting u1 and u2 into the equation of motion, we
obtain the following residuals, respectively:

R1 ¼ �A cos tð1þ 4q2A2 cos2 tÞ þ a2A cos t þ 4q2A3 cos t sin2 t

and

R2 ¼ � A cosðxtÞx2ð1þ 4q2A2 cos2ðxtÞÞ
þ a2A cosðxtÞ þ 4q2A3 cosðxtÞ sin2ðxtÞx2:

In order to use HAFF, we set

R11 ¼
4
T1

Z

T1
4

0

R1 cosðtÞ dt ¼ 2
p
� 1

4
Ap� 1

2
A3q2pþ 1

4
a2Ap

� 	

; T1 ¼ 2p

and

R22 ¼
4
T2

Z

T2
4

0

R2 cosðxtÞ dt ¼ � 1
2

A 2q2A2x2pþ x2p� a2pð Þ
p

; T2 ¼
2p
x
:

Applying HAFF, we have

x2 ¼ x2
1R22 � x2

2R11

R22 � R11
;

where

x1 ¼ 1; x2 ¼ x;
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from which we therefore obtain

x2 ¼ a2

2A2q2 þ 1
:

The first-order approximate solution is obtained, which leads to

x ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðAqÞ2 þ 1
q :

In order to compare with the Parameterized perturbation method, we write He’s
results:

x ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðAqÞ2 þ 1
q :

Its approximate period can be written in the form

T ¼ 2p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðAqÞ2 þ 1
q

:

In the case where qA is sufficiently small—that is, 0 \ qA \\ 1—it follows
that

Tperturbation ¼
2p
a
ð1þ q2A2Þ:

In our present study, qA needs not be small, and even in the case of qA!1,
the present results still show high accuracy;

lim
qA!1

Tex

T
¼

2
p

R p
2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4q2A2 cos2 t
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðAqÞ2 þ 1
q dt ¼ 2

ffiffiffi

2
p

p
¼ 0:900:

Therefore, for any value of qA!1, it can be easily proved that the maximal
relative error is less than 10 % on the whole solution domain.
Example 3.9

Considering the following nonlinear oscillator (Ganji et al. 2009b) governed by

u00 þ X2uþ 4eu2u00 þ 4euu02 ¼ 0

with initial condition

uð0Þ ¼ A ; u0ð0Þ ¼ 0:

According to HAFF, we choose two trial functions u1 ¼ A cos t and
u2 ¼ A cos xt, where x is assumed to be the frequency of the nonlinear oscillator
of the upper equation, and then substituting u1 and u2 in this equation, we obtain
the following residuals, respectively:
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R1 ¼ �A cos t þ X2A cos t � 4eA3 cos3 t þ 4eA3 cos t sin2 t

and

R2 ¼ �A cosðxtÞx2 þ X2A cos xt � 4eA3 cos3ðxtÞx2 þ 4eA3 cosðxtÞ sin2ðxtÞx2:

In order to use HAFF, we set

R11 ¼
4
T1

Z

T1
4

0

R1 cosðtÞ dt ¼ 2
p
� 1

4
Apþ 1

4
X2Ap� 1

2
A3ep

� 	

; T1 ¼ 2p

and

R22 ¼
4
T2

Z

T2
4

0

R2 cosðxtÞ dt ¼ 1
2p
�2eA2x2p� x2pþ X2p
� �

; T2 ¼
2p
x
:

Applying HAFF, we have

x2 ¼ x2
1R22 � x2

2R11

R22 � R11
;

where

x1 ¼ 1; x2 ¼ x:

We therefore obtain

x2 ¼ X2

2eA2 þ 1
:

The first-order approximate solution is obtained, which leads to

x ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2eA2
p ;

where the period is

T ¼ 2p
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2eA2
p

;

while the exact period reads

Tex ¼
4
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4eA2
p

Z

p
2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k sin2 t
p

dt;
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where

k ¼ 4eA2

1þ 4eA2
:

It is evident that our result is valid for all e [ 0. Even in case e!1, we have

lim
e!1

Tex

T
¼ 0:9003:

For a relatively comprehensive survey on the concepts, theory, and applications
of the methods cited in this chapter, see more examples in Ganjia and Seyed
(2013a, b, 2011a, b), Momeni et al. (2011a, b), Ganji and Esmaeilpour (2010),
Fereidoon et al. (2010), Safari et al. (2009), Ganji et al. (2009a, 2010a, b, 2007),
Sadighi et al. (2008), Sadighi and Ganji (2008b, 2007), Kimiaeifar et al. (2009a).

3.5.3 Problems

Solve the following problems using presented methods in this chapter.

3.1 We consider the free oscillation of a nonlinear oscillator with quadratic and
cubic nonlinearities:

€xþ x2xþ ax2 þ bx3 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0

where a and b are constants.
3.2 Consider a family of nonlinear differential equations

€xþ axþ cx2nþ1 ¼ 0; a
 0; c[ 0; n ¼ 1; 2; 3; . . .

with the initial conditions

xð0Þ ¼ A; _xð0Þ ¼ 0:

The corresponding exact period T is

Tex ¼ 4
Z

p
2

0

dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ c
nþ1 A2nð1þ sin2 hþ sin4 hþ � � � sin2n hÞ

q :

3.3 In this problem the vibration of a mass–spring oscillator with strong qua-
dratic nonlinearity and one degree of freedom is analyzed. Both hard and soft
springs are considered.
The vibration of a one-degree-of-freedom mass–spring system is described
by differential equation

€xþ cxþ ð�Þ a2sign xj jðx2Þ ¼ 0;
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subject to the initial conditions

xð0Þ ¼ x0; _xð0Þ ¼ _x0:

3.3.1 Hard Spring
For the case of the hard spring, there exists only one fixed point
ðx1; y1Þ ¼ ð0; 0Þ, which is denoted by the vanishing of the vector field
�cx� a2sign xj jðx2Þ.

3.3.2 Soft Spring
For the soft spring and vector field �cxþ a2sign xj jðx2Þ, the following fixed
points exist:

ðx1; y1Þ ¼ ð0; 0Þ; x2j j; y2ð Þ ¼ c

a2
; 0

 �

:

3.4 Consider a more complex example in the form

u00 þ auþ bu3 þ cu1=3 ¼ 0

with the exact one

Tex ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bA2
p

Z

p=2

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k sin2 x
p ;

where k ¼ 0:5bA2
�

ð1þ bA2Þ.
3.5 When damping is neglected, the differential equation governing the free

oscillation of the mathematical pendulum is given by

ml€hþ mg sin h ¼ 0

or

€hþ a sin h ¼ 0:

Here m is the mass, l the length of the pendulum, g the gravitational
acceleration, and a ¼ g=l. The angle h designates the deviation from the
vertical equilibrium position.
We rewrite the equation in the form

€hþ X2h ¼ h X2 � a
sin h
h

� 	

;

where X is an unknown frequency of the periodic solution. Here, the initial

conditions are hð0Þ ¼ A; _hð0Þ ¼ 0, the inputs of the starting function are

h�1ðtÞ ¼ h0ðtÞ ¼ A cos Xt and gðt; h; _h; €hÞ ¼ X2 � a sin h
h , while the exact

period reads
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Tex ¼
4
ffiffiffi

a
p
Z

p
2

0

d/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 /
p ; k ¼ sin

A

2
:

3.6 We consider the structure shown in Fig. 3.7. The mass m moves in the
horizontal direction only. Neglecting the weight of all but the mass, the
governing equation for the motion of m is

m€uþ k1 �
2p

l

� 	

uþ k3 �
p

l3

 �

u3 þ � � � ¼ 0;

The previous equation can be put in the general form

€uþ a1uþ a3u3 þ � � � ¼ 0:

where the spring force is given by

Fspring ¼ k1uþ k3u3 þ � � � :

3.7 In this problem, we consider a particle of mass m moving under the influence
of the central force field of magnitude k

�

r2nþ3. The equation of the orbit in
the polar coordinates ðr; hÞ is

d2u

dh2 þ u ¼ �cu2nþ1;

Fig. 3.7 Model for the buckling of a column

3.5 He’s Amplitude–Frequency Formulation 169



where k and c are constants and u ¼ 1=r In this case, let us consider a family of
nonlinear differential equations:

u00 þ auþ cu2nþ1 ¼ 0; a[ 0; c[ 0; n ¼ 1; 2; 3; . . .;

uð0Þ ¼ A; u0ð0Þ ¼ 0:

The corresponding exact period T is

Tex ¼ 4
Z

p
2

0

dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ c
nþ1 A2nð1þ sin2 hþ sin4 hþ � � � sin2n hÞ

q :

3.8 Consider the nonlinear equation

y00ðtÞ þ yðtÞ ¼ �ey2ðtÞy0ðtÞ;

subject to the initial conditions

yð0Þ ¼ 1; y0ð0Þ ¼ 0:

This equation can be appropriately called the ‘‘unplugged’’ Van der Pol
equation, and all of its solutions are expected to oscillate with decreasing
amplitude to zero.

3.9 Consider the following Duffing equation:

y00ðtÞ þ yðtÞ þ 0:3y3ðtÞ ¼ 0;

3.10 The example of a nonlinear vibrating system is a nonlinear periodic system.
It can be describe by its governing motion equation as

x2ðtÞ � dx1ðtÞ
dt
¼ 0

dx2ðtÞ
dt
þ 2:25x1ðtÞ þ ½x1ðtÞ � 1:5 sinðtÞ�3 � 2 sinðtÞ ¼ 0

8

<

:

;

for which the boundary conditions are in the form

x1ð0Þ ¼ 0; x2ð0Þ ¼ 1:59929:

Guidance: With the effective initial approximation for x10; x20 from the
boundary conditions to the previous equation, we construct x10ðtÞ; x20ðtÞ as

x10ðtÞ ¼ sinðtÞ; x20ðtÞ ¼ 1:59929 cosðtÞ:

3.11 The example is the initial-value problem of an ordinary nonlinear dynamic
equation. The nonlinear motion equation of this system can described as
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d2xðtÞ
dt2

þ dx

dt

� 	2

þ xðtÞ � ln t ¼ 0;

whose boundary conditions are in the form

xð1Þ ¼ 0; _xð1Þ ¼ 1:

Hint: With the effective initial approximation for xð0Þ from the boundary
conditions to the previous equation, we construct x0ðtÞ as x0ðtÞ ¼ t � 1.

3.12 A particle of mass m1 is attached to a light rigid rod of length l, which is
free to rotate in the vertical plane as shown below (see Fig. 3.8). A bead of
mass m2 is free to slide along the smooth rod under the action of the spring.
Show that the governing equations are

€uþ x2
1u� u _h 2 þ x2

2ð1� cos hÞ ¼ x2
1ue;

ð1þ mu2Þ€hþ ð1þ muÞx2
2 sin hþ 2mu _u _h ¼ 0;

where x2
1 ¼ k= m; x2

2 ¼ g=l; m ¼ m2=m1; u ¼ x=l, and ue is the equilibrium
position, and then solve it.

3.13 The nonlinear parametric pendulum is described by

d2h
dt2
þ 2c

dh
dt
þ x2

0½1þ h cos 2ðx0 þ eÞt� sin h ¼ 0:

For this problem, choose x0 ¼ 1. Unless otherwise specified, use c ¼ 0
and e ¼ 0.
The initial conditions are

iÞ _hð0Þ ¼ 0; hð0Þ ¼ 0:01:

iiÞ _hð0Þ ¼ 0; hð0Þ ¼ 3:0:

Fig. 3.8 A particle of mass
m1 is attached to a light rigid
rod of length l, which is free
to rotate in the vertical plane
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3.14 The motion of a damped pendulum can be described by

d2h
dt2
þ c

dh
dt
þ x2 sin h ¼ 0;

where h is the angle the pendulum makes with the vertical (h ¼ 0 is down), c

is a damping factor, and x ¼
ffiffiffiffiffiffiffi

g=l
p

is the natural frequency of the pendulum.
3.15 Figure 3.9 shows the standard system normally used to test control algo-

rithms. It contains a cart used to balance a pendulum in the up-pointing
position against the gravitation force. The system state can be described
through two degrees of freedom—the position of the cart S and pendulum
angle h as observed from the rigid platform. The cart has the mass M and the
linear damping coefficient d. The pendulum has the mass m and the torsion
inertia J about its center of gravity at distance L from the loss free hinge. The
system’s reaction to perturbations is governed by a feedback control force

U ¼ UðS; _S; h; _hÞ. The rigid platform can be excited kinematically relative to
the fixed inertial frame.

The system’s motion is governed by the equations

€sþ 2b s
: þa €h cos h� €h 2 sin h

 �

¼ uþ ax2 sin xt

€h� 1� bx2 sinðxt þ cÞ
� �

sin hþ €s cos h ¼ ax2 sin xt cos h

3.16 For the damped pendulum equation with a forcing term,

xþ kxþ x2
0x� 1

6
x2

0x3 ¼ F cos xt:

3.17 The equation of motion in the Van der Pol plane for the forced, damped
pendulum equation is

xþ kxþ x� 1
6

x3 ¼ C cos xt; k [ 0

Fig. 3.9 Inverted pendulum
balanced by a moving cart
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3.18 For the modal equation in a rotating coordinate system, if the x-, y-coor-
dinate system is rotating relative to a Newtonian frame with angular speed
x, the presence of Coriolis and centripetal accelerations produces the dif-
ferential equations

d2x

dt2
� 2x

dy

dt
� x2x ¼ � oV

ox
;

d2y

dt2
þ 2x

dx

dt
� x2y ¼ � oV

oy
:

3.19 The cylinder rolls back and forth without slip, as shown in Fig. 3.10.
Fig. 3.10a show that the equation of motion can be written in the form

_xþ x2½1� lð1þ x2Þ�1=2�x ¼ 0;

where x2 ¼ 2k=3M and l is the free length of the spring. All lengths were made
dimensionless with respect to the radius r. Fig. 3.10b solve this problem.

3.20 The motion of a particle restrained by a linear Coulomb and square
damping is governed by

€uþ x2
0uþ e l0sgn _uþ l2 _u _uj jð Þ ¼ 0;

where ðl0; l2Þ[ 0 and e� 1.
Show that

u ¼ a cosðx0t þ bÞ þ OðeÞ;

where

_a ¼ �e
2l0

p x0
þ 4

3p
l2x0a2

� 	

and

_b ¼ 0:

3.21 Consider a two-degree-of-freedom system consisting of two concentrated
masses and two springs with a linear damper, under a harmonic excitation

Fig. 3.10 The cylinder rolls
back and forth without slip
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as shown in Fig. 3.11. One of the springs is linear with the stiffness coef-
ficient k10, and another one is a cubic nonlinear spring. The restoring force
is defined as

f ¼ k12ðx1 � x2Þ þ k3ðx1 � x2Þ3:

The governing equations of the system can be expressed in the following matrix
form:

m1 0
0 m2


 �

€x1

€x2

" #

þ c1 0
0 c2


 �

_x1

_x2

" #

þ k10 þ k12 �k12

�k12 k12


 �

x1

x2

" #

¼
p cos xt � k3ðx1 � x2Þ3

k3ðx1 � x2Þ3

" #

:

In the above equation, x1 and x2 are the displacements of the concentrated
masses m1 and m2, and k10; k12; k3; c; p;x; t designate the coefficients of linear
stiffness, coefficient of nonlinear stiffness, coefficient of damping, excitation
amplitude, excitation frequency, and time, respectively. Solve this problem by
the present methods.

3.22 In this problem, consider large time behavior of the solutions of the linear
PDE problem

uttðx; tÞ � uxxðx; tÞ �txx ðx; tÞ ¼ 0
uð0; tÞ ¼ 0
uttð1; tÞ ¼ �e½uxð1; tÞ þ autxð1; tÞ þ r utð1; tÞ�

8

<

:

for x 2 ð0; 1Þ; t [ 0 a; e 
 0 and r [ 0. In this model, uðx; tÞ represents the
longitudinal displacement at time t of the x particle of a viscoelastic spring.
This spring is attached at one end ðx ¼ 0Þ to a fixed wall, and it is attached
to a rigid moving body of mass 1=e at the other end ðx ¼ 1Þ. The possible
spring inner viscosity or damping is represented by the parameter a
 0.

3.23 Consider the free oscillation of a suspension system, which is represented
schematically in Fig. 3.12 by two bodies of mass m1 and m2 linked with
each other by a nonlinear spring ðk3Þ, a linear one ðk1Þ, and a shock damper
with viscous damping ðd1Þ. Mass m2 is contacting with the ground through

Fig. 3.11 Mechanical model
of a two-degrees-of-freedom
oscillatory system with cubic
nonlinearity
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a linear spring ðk2Þ. The free vibration without damping d1 ¼ 0 is governed
by the nonlinear equations

€z1 ¼ b11z1 þ b12z2 þ b13z3
1;

€z2 ¼ b21z1 þ b22z2 þ b23z3
1;

where it is written as

z1 ¼ y1 � y2; z2 ¼ y2; x2
1 ¼ k1=m1; x2

2 ¼ k2=m2; b ¼ k3=m1; b11 ¼ �x2
1ð1þ lÞ

b12 ¼ x2
2; b13 ¼ �bð1þ lÞ; b21 ¼ x2

1l; b22 ¼ �x2
2; b23 ¼ bl; l ¼ m1=m2:

3.24 Consider the forced periodic vibration of the suspension system shown in
Fig. 3.12, which is governed by the differential equation system

€z1 ¼ �x2
1ð1þ lÞz1 þ x2

2z2 � bð1þ lÞz3
1 � fð1þ lÞ_z1 � p cos mt;

€z2 ¼ x2
1lz1 � x2

2z2 þ blz3
1 þ fl_z1 þ p cos mt;

where

f ¼ d1=m1; p ¼ k2ðm1 þ m2Þ=2m2:

3.25 Consider an MEMS translational gyroscope. Focusing attention on the drive
direction and considering only rigid modes, the gyroscope’s dynamic
behavior is equivalent to that of the lumped parameter model shown in
Fig. 3.13. The equation of motion of the modal system is

m�€xþ r� _xþ k�xþ 4k3x3 ¼ F�:

Fig. 3.12 The free
oscillation of a suspension
system

Fig. 3.13 Equivalent
lumped-parameter model of
the designed gyroscope while
moving along drive direction
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Since the actuation forces are in counterphase, only one vibration mode is
excited. Therefore, using the modal superposition approach, it is possible to
further simplify the two-degrees-of-freedom lumped-parameter model to a
one-degree-of-freedom modal system having the following mass and stiffness
parameter values:

m� ¼ 2m; k� ¼ 4kd þ 4kc þ 4k1; k�NL ¼ 4k3; F� ¼ F1 � F2:

This property is useful to easily synchronize sense and drive resonances, thus
increasing the sensibility of the MEMS gyroscope.

3.26 The equation of motion is given by

M€xþ kx 1þ gsgnðx _xÞð Þ ¼ 0;

xð0Þ ¼ a; _xð0Þ ¼ 0;

where k is the spring constant and g is the ‘‘nonlinearity parameter.’’ The
‘‘signum’’ function is defined as

sgnðhÞ ¼
þ1 for h [ 0
0 h ¼ 0
�1 for h \ 0

8

<

:

:

3.27 We consider the system depicted in Fig. 3.14, composed of a chain of 10
strongly coupled linear oscillators (designated as the ‘‘primary system’’)
with a strongly nonlinear (nonlinearizable) end attachment [designated as
the nonlinear energy sink (NES)]. The system possesses weak viscous
damping, and the mass of the NES is assumed to be small, as compared
with the overall mass of the chain. The governing equations of motion of
the system are given by:

Fig. 3.14 The chain of linear coupled oscillations (the primary system) with strongly nonlinear
end attachment (the NES)
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e€vþ ekð _v� _y0Þ þ Cðv� y0Þ3 ¼ 0;

€y0 þ ek _y0 þ x2
0y0 � ekð _v� _y0Þ � Cðv� y0Þ3 þ dðy0 � y1Þ ¼ 0;

€yj þ ek _yj þ x2
0yj þ dð2yj � yj�1 � yjþ1Þ ¼ 0; j ¼ 1; . . .8;

€y9 þ ek _y9 þ x2
0y9 þ dðy9 � y8Þ ¼ 0;

where we introduce the small parameter e; 0 \ e \\ 1 and all other
parameters are assumed to be quantities of Oð1Þ. In addition, we assume that
the system is initially at rest and that an impulse of magnitude F is applied at
t ¼ 0 at the left boundary of the linear chain, corresponding to the following
initial conditions for the system:

vð0Þ ¼ _vð0Þ ¼ 0; ypð0Þ ¼ 0; p ¼ 0; . . .; 9;

_ykð0Þ ¼ 0; k ¼ 0; . . .; 8; _y9ð0þÞ ¼ F:

3.28 We consider a nonlinear damping term with a fractional exponent covering
the gap between viscous, dry friction, and turbulent damping phenomena.
The equation of motion has the form

€x þ a _x _xj jp�1 þ dx þ csgnðxÞ xj jq�1¼ l cos xt;

where x is displacement and x
:

velocity, respectively, while the external force is

Fx ¼ �dx� csgnðxÞ xj jq�1;

3.29 We consider the stochastic dynamical system

€xþ r þ ax2 � nðtÞ
� �

_xþ ax ¼ �bx3;

where nðtÞ is a white noise with intensity D and the parameters a and b are
taken to be positive in order to have a stabilizing effect.

3.30 The quadratically-damped Mathieu equation is

€xþ dþ e cos tð Þxþ l _x _xj j ¼ 0;

where the parameter l is assumed to be small.
Guidance: We further expand d and x as follows:

x ¼ x0 þ lx1 þ l2x2 þ l3x3 þ l4x4 þ l5x5 þ � � �
d ¼ d0 þ ld1 þ l2d2 þ l3d3 þ l4d4 þ l5d5 þ � � �

And we further introduce the parameter e1 defined by

e ¼ e0 þ le1:
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3.31 The response of a nonlinear system to harmonic excitation is governed by
the equation

€xþ 21 _x _xj j þ xþ bex3 ¼ cos
X
x0

t;

where X=x0 � 1. Assume light damping ð1� 1Þ and weak nonlinearity
ð0\ e � 1Þ with

b ¼ Oð1Þ:

3.32 The system considered in the present problem consists of a harmonically
excited 2d system of linear coupled oscillators (with identical masses) and
NES attached to it. By the term NES, we mean a small mass (relative to the
linear oscillator mass) attached via essentially a nonlinear spring (pure
cubic nonlinearity) and linear viscous damper to the linear subsystem, as
illustrated in Fig. 3.15.
As was mentioned above, masses of linear oscillators are identical and,
therefore, may be taken as unity without loss of generality ðM ¼ 1Þ. The
system is described by the following equations:

€y2 þ k2y2 þ k1ðy2 � y1Þ ¼ eF2 cosðxtÞ;
€y1 þ k2y1 þ k1ðy1 � y2Þ þ ekvðy1 � vÞ3 þ ekð _y1 � _vÞ ¼ eF1 cosðxtÞ;
e€vþ ekvðv� y1Þ3 þ ekð _v� _y1Þ ¼ 0;

where y1; y2; v are the displacements of the linear oscillators and NES,
respectively, ek is the damping coefficient, and eFiði ¼ 1; 2Þ are the
amplitudes of excitation of each linear oscillator.

3.33 To show the response of a nonlinear oscillator under a harmonic excitation,
we consider the weakly nonlinear system

€uþ l _uþ x2uþ l3 _u 3 þ a2u2 þ a3u3 þ a4u4 þ a5u5 ¼ F cosðXt þ cÞ;

Fig. 3.15 Mechanical model
of the system
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where _u ¼ du=dt, t is the time, ai are constants, l and l3 are damping coeffi-
cients, F is the excitation amplitude, x is the linear natural frequency,
Xð� xÞ is the excitation frequency, and c is the phase angle of the exci-
tation w.r.t. the response.

3.34 Consider a nonlinear oscillator in the form

u00 þ x2
nuþ lu3 ¼ F0 cosðxtÞ

with the initial condition

uð0Þ ¼ A; u0ð0Þ ¼ 0

3.35 Consider the nonlinear cubic-quintic Duffing equation, which reads

u00 þ f ðuÞ ¼ 0 ; f ðuÞ ¼ auþ bu3 þ cu5

with the initial conditions

uð0Þ ¼ A;
du

dt
ð0Þ ¼ 0:

3.36 We assume that the anchor spring is nonlinear with a force–displacement
relation (see Fig. 3.16):

f ¼ dþ d3:

The second spring is assumed to be linear with characteristics f ¼ d. The
equations of motion are given by

d2x

dt2
þ 2x� yþ x3 ¼ 0;

d2y

dt2
þ y� x ¼ F cos xt

3.37 Consider the nonlinear oscillator in Fig. 3.17.
This oscillator is very applicable in automobile design where a horizontal
motion is converted into a vertical once or vice versa.
The equation of motion and appropriate initial conditions for this case can
be given as

Fig. 3.16 Forced mass–
spring system with nonlinear
spring
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ð1þ RuðtÞ2Þ d2

dt2
uðtÞ

� 	

þ RuðtÞ d
dt

uðtÞ
� 	2

þx2
0uðtÞ þ 1

2
RguðtÞ3

l
¼ 0

uð0Þ ¼ A;
du

dt
ð0Þ ¼ 0;

where

x2
0 ¼

k

m1
þ Rg

l
; R ¼ m2

m1
:

3.38 We consider the motion of a ring of mass m sliding freely on the wire
described by the parabola y ¼ qu2, which rotates with a constant angular
velocity k about the y-axis. The equation describing the motion of the ring
is

€uþ x2u ¼ �4quðu€uþ _u 2Þ;

where x2 ¼ 2gq� k2 and the initial conditions are uð0Þ ¼ A; _uð0Þ ¼ 0.
3.39 The generalized Huxley equation

ut � uxx ¼ b uð1� udÞðud � cÞ; 0� x� 1; t
 0

with the initial condition

uðx; 0Þ ¼ c
2
þ c

2
tanhðr cxÞ

h i1
d

.
3.40 This problem considers a nonlinear oscillator with discontinuity,

d2x

dt2
þ sgnðxÞ ¼ 0

Fig. 3.17 Geometry of the
problem
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with initial conditions

xð0Þ ¼ A and
dx

dt
ð0Þ ¼ 0

and sgnðxÞ defined by

sgnðxÞ ¼
�1; x\0;

þ1; x
 0:

(

3.41 Here, a system consisting of a block of mass m that hangs from a viscous
damper with coefficient c and a nonlinear spring of stiffness k1 and k3 is
considered. The equation of motion is given by the nonlinear differential
equation

d2xðtÞ
dt2

þ k1

m
xðtÞ þ k3

m
x3ðtÞ þ c

m

dxðtÞ
dt
¼ 0;

with the initial conditions

x0ð0Þ ¼ A;
dx0

dt
ð0Þ ¼ 0:

3.42 In this problem, we shall consider a system consisting of a (1+1)-dimensional
long-wave equation:

ut þ uux þ vx ¼ 0;

vt þ ðvuÞx þ
1
3

uxxx ¼ 0

with the initial conditions of uðx; 0Þ ¼ f ðxÞ and vðx; 0Þ ¼ gðxÞ, where v is the
elevation of the water wave and u is the surface velocity of water along the
x-direction.
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