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Abstract Sustainable and economical farming needs precise adaptation to the 
varying soil- and plant properties within fields. Consequently, farming operations 
have to be adjusted to this in a site-specific way.

An important question is, on which spatial resolution or cell size within a field 
these adjustments should be based. It is reasonable to expect that this depends on the 
spatial variations of the respective soil- or crop properties. Consequently, it is shown 
how the cell sizes needed can be derived from semivariances and its complement 
functions, the covariances.

Once thus suitable cell sizes are known, they should not be exceeded on any site- 
specific stage, whether this is sampling, mapping or the operations of the farm 
machinery.
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2.1  Variation and Resolution

A traveller attentive to agricultural land will notice that uniform fields are not the 
rule (Fig. 2.1). This becomes especially obvious to farming experts, who look more 
closely at soils and crops.

Many soil- and crop properties can vary within fields, such as e.g.

• texture (content of sand, silt, loam or clay) and pH of topsoil and subsoil
• soil content of organic matter, of water and of various minerals
• slope and orbital orientation of the soil
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• density and morphology of crops
• crop content of water and of various minerals
• infestation of crops by different weeds and by various pests.

Nowadays, many of these soil- or crop properties can be detected and recorded 
within a field in a site-specific way via modern sensing techniques. Yet before these 
techniques are dealt with in detail in subsequent chapters, the question arises, how 
in principle variations of these soil- or crop properties can show up.

These variations of soil- or crop properties within a field can occur in different 
ways. They can show up in a complete random pattern, i.e. in a similar manner as 
raindrop spots within a field. All locations within the field are affected by the rain in 
a similar way.

Yet the variations can also show up in a nested pattern. This is the case, if the 
respective property, e.g. the clay content of the soil, is not uniform on the whole 
field, but instead there are parts in various directions where it is lower and vice versa 
higher. The respective property in this case varies with the distance.

Thus the spatial variation can be uncorrelated or correlated (Fig. 2.2), depending 
how it presents itself in a graph with a distance scale. However, the distance scale 
too can change. And if it does, the appearance of variations can be different. What 
looks as random arrangement or noise at one scale can be recognized as structure at 
another scale. This is why looking through a microscope can be so fascinating.

Therefore, we have to deal with resolutions. What is meant is not a resolution 
taken by a political assembly. Here the term resolution stands for the “resolving” or 
the dividing up of physical properties involved, such as the area of the field, the time 
or the measurement units that belong to the signals of a sensor (Fig. 2.3).

The temporal resolution that is required depends very much on the respective 
soil- or crop property. Textures and organic matter contents of soils hardly change 

Fig. 2.1 Aerial view of a farming area in Schleswig-Holstein, Germany
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over time. Therefore, these properties can be recorded once on a long-term basis in 
field maps that can be used for several years. The situation is quite different when it 
comes to the water-, the nitrogen- and the pesticide supply of crops in the growing 
season. In these cases, the best temporal resolution would be obtained with a control 
system that adjusts the supply in real-time, which means immediately after sensing 
and “on-the-go” during the application.

The signal resolution refers to the physical quantities that are sensed. In case of 
spectral sensing, the bandwidth-ranges of the light waves in the visible- or infrared 
region are important and can be very different (Fig. 2.3).
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Fig. 2.2 Types of spatial variation in a dimensionless diagram (From Oliver 1999, altered)
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Finally, precision farming aims at a high spatial resolution. It should be noted 
that instead of the term “resolution”, the denotation “cell size” often is used. This 
stands for the area, for which the respective farming operations are uniformly 
adjusted. Therefore, a low resolution means a large cell size and vice versa. The 
traditional and still rather common cell size is the individual field. Whilst the sizes 
and basic operations of present farm machinery are maintained, about the smallest 
cell size that can be realized would be an area that corresponds to the square of the 
working width. This approach is derived from the assumption that the basic shape 
of a cell would be a square. So if a working width of 20 m for fertilizing and spray-
ing is used, a cell size of 400 m2 would result. And if fields that are controlled by 
small robots become a reality, a high regional resolution based on treating individ-
ual plants or even leaves might become feasible.

Yet these considerations emanate from technical possibilities with the respec-
tive farm machinery, provided the control components are available. A better 
approach is to base the resolution on the respective soils and crops and to adapt the 
technical solutions as well as possible to these.

If theoretically the soil- and crop properties would be completely uniform within 
a field, no site-specific treatments would be necessary. And if on the other hand 
significant variations would show up within short distances, small cell sizes would 
be reasonable. This leads to the question, how – based on variations existing within 
fields – proper cell sizes can be deduced. Statistical indices of soil- or crop proper-
ties like averages or standard variations are no help in this respect. This is because 
intrinsically these indices are independent of location. What is needed are statistical 
indices that rely on distances within a field. The semivariance and its graph – the 
semivariogram – do this.

2.2  Semivariance and Semivariogram

The geostatistical concept behind semivariances and semivariograms is Matheron’s 
(1963) regionalized variable theory. It states that the differences in the values of a 
spatial variable – such as a soil- or crop property – between points in a field depend 
on the distance between these points. In short, the smaller the distances, the smaller 
the differences.

As a logical consequence, the semivariance v expresses the dissimilarity of 
paired property values as a function of the distances between two sampling points. 
The general equation of the semivariance v is:

 
v

N
f x h f x

N

= +( ) − ∑1

2

2

1

( )
 

Here, x and x + h stand for the vectors of areal coordinates at two locations in the 
field. These locations are separated by the distance h. The functions f(x) and f(x + h) 
together represent thus a pair of soil- or crop properties at these places. N is the 
number of location pairs that are involved.
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The equation resembles the general formula for the standard variance. However, 
the basic data for the standard variances are not pairs that are related by distances 
and orientation; they just come from a common population and not more. And 
because of the pairs that are used when calculating the semivariance, the summed 
result is halved. This explains the denotations semivariance for the numerical values 
and semivariogram for the graphical description.

Most semivariance curves – the semivariograms – are bounded, which means 
that they reach an asymptote (Fig. 2.4). This asymptote is called the sill variance. 
But unbounded variogram curves also can occur. Note that the semivariograms are 
standardized to a sill variance of 1.

The distance at which the sill variance is approached is called the range (Fig. 2.5). 
Since this is an asymptotic approach, the range is arbitrarily set to be the distance 
needed to get 95 % of the sill variance (Tollner et al. 2002). All points that are sepa-
rated by distances smaller than the range are spatially correlated. Whenever the 
distances are larger than the range, the points are spatially independent. This is very 
important: it means that any site-specific operation that is based on squared cells 
with sides longer than the range is useless. This is, because with cells of this size it 
is not possible any more to detect or catch regional differences of the respective 
property. So the control distance that is used for site-specific operations must be 
smaller than the range of the semivariogram.

Theoretically, the semivariogram curves start with zero variance and zero 
distance. But in reality, this seldom occurs. In practice there always is some 
variance already at zero distance. It is called nugget variance and represents 
variability at distances smaller than the typical sample spacing as well as mea-
surement errors. In rare occasions, there is only nugget variance (Fig 2.4, right), 
which means that any site-specific treatment – at least based on the respective 
property – is useless.
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2.3  Cell Sizes

Knowing that the cell squares should have side lengths between zero and the range 
alone is not sufficient. Very small cells result in high costs, and rather large cells can 
impair the precision. And since the number of cells that must be dealt with qua-
druples with each halving of cell-side length, more precise information about the 
size that should be used is desirable. This information can be derived from the semi-
variance (Fig. 2.5).

An interesting approach for this was developed by Russo and Bresler (1981) as well 
as by Han et al. (1994). It is based on the notion that as the semivariance is an indicator 
of dissimilarity of a site-specific soil- or crop property, vice versa the complement 
function to the semivariance provides information of similarity or relatedness. For 
normalized situations, the semivariance plus its complement function for all respective 
distances or lags add up to one (1). Therefore, the complement function is the vertical 
mirror image of the semivariance (Fig. 2.5). It can be shown that for the pairs involved, 
this complement function of the semivariance is a well known statistical function – the 
covariance (Davis 1973; Gringarten and Deutsch 2001). In contrast to this: the sill of 
the semivariogram is the standard variance, which in this case stands for zero correla-
tion. Therefore, the semivariance is standard variance minus covariance.

The area under the curve of the complement function to the semivariance can be 
regarded as an accumulation of all relatedness or similarity of the respective 
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property. It can be computed by integrating the equation of the complement function 
between the range and zero. This integral of the complement function is represented 
by the hatched area in Fig. 2.5.

If differences based on location exist, theoretically only cells of zero size would 
be completely uniform. For practical purposes, a compromise in a cell size with 
side-length between zero and range is necessary. The proposal of Russo and Bresler 
(1981) as well as of Han et al. (1994) for this compromise is based on a rectangle 
with a height of the sill and an area that equals the integral of the complement func-
tion. This rectangle contains all the similarity or relatedness that can be obtained 
from the respective semivariance from which it was derived. For this reason, the 
length of the rectangle side along the abscissa can be regarded as an indication of 
the upper limit of the cell-size (Fig. 2.5). Any larger cell-size overlaps into areas of 
pure dissimilarity. It thus deteriorates the precision in site-specific management. 
This upper limit of cell-size represents the largest distance for which the soil or crop 
property is well correlated with itself.

It is also obvious that the upper limit of the cell-size depends largely on the dis-
tance of the range. Kerry and Oliver (2004, 2008) propose to use a sampling interval 
– or upper limit of cell size – of less than half the range. It can be seen that less than 
half the range results in approximately the same limit of cell size.

However, these determinations of cell sizes are possible only after the semivari-
ance has been recorded. The problem is that cell-sizes for sampling of soil- or crop 
properties must be known beforehand in order to arrive at reliable resolutions for 
subsequent farming operations. If the sampling is based on too large cell-sizes, no 
detailed computation afterwards any more can result in a reliable control for site- 
specific farming. The resolution that is needed depends on the respective variability 
of the soil or crop property. It must be met at the first site-specific operation, other-
wise subsequent procedures cannot be controlled with precision. And this first oper-
ation is the sampling.

Ways out of this situation are either sampling with a very high resolution from 
the outset so that any site-specific requirements definitely are met or alternatively 
the use of standardized, default cell-sizes for sampling. The first method lends itself 
whenever the data are recorded automatically online and on-the-go, since many 
modern sensors can provide for several signals per m of travel and thus for a high 
resolution.

The use of standardized, default cell-sizes for sampling is advisable if manual 
sampling and processing is needed as with e.g. the conventional and traditional col-
lection of data about soil texture, -nutrients or crop properties. Because of the high 
amount of labour involved, in these cases sampling with a very high resolution from 
the outset as with online and on-the-go methods cannot be practised. Therefore, the 
information about the sampling cell-sizes that are needed must be obtained from 
previously made semivariograms, which are based on data of soils or crops under 
conditions that are similar. Information about such standardized semivariograms 
has been published (Kerry and Oliver 2004, 2008; McBratney and Pringle 1999). 
These standardized semivariograms are based on sampling with a high resolu-
tion. They thus provide the default cell-sizes for subsequent site-specific sampling.

2 Heterogeneity in Fields: Basics of Analyses
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It should be noted that reliable semivariograms cannot be obtained from fewer 
than 100 data. The nugget to sill ratios of the standardized default semivariograms 
should match those of the respective fields (Kerry and Oliver 2008).

The term “standardized semivariogram” should not conceal the fact that in real-
ity the curves for the semivariances are rather unique and different for every field. 
Yet precise sampling and site-specific management relies on the semivariograms for 
information about the cell-size that should be used. If the cell-size is oriented at less 
than half the range (Kerry and Oliver 2004, 2008) as outlined above, what ranges for 
soil- and crop properties do actually occur?

Actually, the ranges that have shown up in research with semivariograms vary 
immensely – as do the local conditions around the globe. In extreme cases, ranges 
on the one hand as short as 1 m (Solie et al. 1992) and on the other hand as long as 
26 km (Cemek et al. 2007) have been recorded. However, the vast majority of 
ranges for soil- and crop properties is between 20 and 110 m (McBratney and 
Pringle 1999). So for most cell-sizes, the upper limits of side lengths should be 
between 10 and 55 m. This is still a rather wide span. Therefore, to define the 
actual need more closely, a careful deduction of required cell-sizes from suitable 
standardized semivariograms is necessary.

2.4  Processing and Adjusting the Resolution

Finding the appropriate upper limit of cell-sizes deserves some effort. This is 
because knowing about it is important on several stages of site-specific farming, 
first when sampling, then for mapping and finally when the machinery operates in 
the field. It is obvious that the sampling must occur within the distance limits defined 
by about half the range. But the same holds for techniques used to make the maps 
and finally for the cell-sizes, on which the farm machinery works in a site-specific 
way. If on any of these stages the distance limits that are defined by less than half 
the range of the respective semivariogram are exceeded, the precision of site- specific 
farming is impaired.

The question is, at which stage – sampling, mapping or machine operations – 
striving for small cell-sizes is most difficult. As long as sampling of soil properties 
and of nutrient contents is done in a manual way, this will be the sampling stage. In 
the long run, however, manual sampling will be more and more replaced by online 
and on-the-go sensing methods. Many of these methods will allow for sensing of 
small cell-sizes. As a consequence, then the cell-sizes that can be realized with wide 
farm machinery become important.

It is not recommended to directly combine fine grid spacings for sampling or 
sensing on the one hand with a much coarser resolution for the machinery operations 
on the other hand without any signal corrections. This is because the control of the 
machinery is less erratic and is more stable if averages of highly resolved signals are 
used. If the machinery is controlled via online and on-the-go sensing, this averaging 
step can easily be implemented into the processing computer program. In case a field 
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map for later use is made from the sampled or sensed data, the averaging can occur 
during mapping.

The sampling or sensing of the data usually occurs on a punctual basis. Hence for 
mapping of a continuous surface, some interpolation is needed. This interpolation 
of the punctual signals is called kriging in honour of D.G. Krige, a South African 
geologist, who was a pioneer in this processing of data for mapping. Today, many 
kriging methods are available. These methods are based on the assumption that geo-
logical properties in close proximity to each other are more likely to be similar than 
those separated by longer distances. So the basic premise – the concept of spatial 
dependence – is the same as for semivariances (Sect. 2.2).

Kriging can be subdivided into either block- or point methods, depending on the 
size of the respective map area, for which the property is estimated by interpolation. 
In block kriging, the average value of the property for a block within the map is 
calculated, whereas in point kriging the target is just a point within the area. This 
means that point kriging can be considered as the limiting case of block kriging 
when the block size approaches the sampling- or sensing size (Fig. 2.6). For details 
to interpolation methods and to computer programs for this see Hengl (2007), 
Webster and Oliver (2007) and Whelan et al. (2002).

An important feature of block-kriging is that its estimate – the block mean – may 
gain in reliability as the block area increases. This follows from basic features of 
means. This averaging advantage of block-kriging is effective as long as the size of 
the blocks does not exceed the cell-size that is effective in the machinery operations. 
But when the sizes of the kriged blocks get larger than the cells of the machines, this 
averaging gets detrimental. This is because then another averaging feature – its 
leveling effect – has consequences. This leveling effect deteriorates the objectives of 

point kriging

block kriging

sampled point

Fig. 2.6 Principles of block-kriging and point-kriging (From Whelan et al. 2002, altered)
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site-specific farming, since it artificially erases local differences and thus eliminates 
possibilities to react on them. Yet as long as the kriged blocks are smaller than the 
cells of the machinery, any leveling effects of averaging are unavoidable – just 
because the size of the machinery does this anyway.

With point-kriging, there is no processing error at the actual sampling- or sensing 
point. However, this theoretical advantage of point-kriging can only improve the 
overall precision, if the farm machinery too can do punctual work. As long as this is 
not the case, block kriging will primarily be the choice for creating maps.

The objective is that maps should only show the spatial distribution of the respective 
soil- or crop property. However, maps always too reflect the influence of the sampling- 
or sensing techniques and in addition of the kriging method that was used (Fig. 2.7). 
Maps from the same basic data therefore can look very different.

The averaging and estimating that is connected with kriging should be fine- tuning 
of the spatial resolution as it is needed for the respective site-specific operation. 
A fine-tuning by averaging that is oriented at the cell-size of the machine operations 
should be the objective. This adjusting of the resolution can take place either during 
online and on-the-go control or when maps are processed.
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Maps can act as precious time-bridges between sampling or sensing on the one 
hand and machine operations on the other hand. These time-bridges are essential or 
useful with soil- or crop properties that have a low temporal resolution, thus remain 
constant over a rather long time. Prime examples for this are topography, texture, 
organic matter and pH of the soil.

However, there are also soil- or crop properties that vary rather fast over time, 
thus have a high temporal resolution. Examples for this are water and nitrate in 
the soil or some crop properties. The temporal variance in these cases may in fact 
be more important than the spatial variance (McBratney and Whelan 1999), and 
consequently maps should then be viewed and used with caution.
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