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    Abstract     Spatial and temporal variations in weed seedling distributions in arable 
fi elds are analysed. It is described how weed distributions can be assessed by  manual 
grid sampling and by using sensor technologies from the near range. The potential 
for herbicide savings using site-specifi c weed management in different crops is 
 calculated. Two different approaches for site-specifi c weed control are presented. 
First, an offl ine-approach based on georeferenced weed distribution maps and sec-
ondly a real-time approach combining sensor– and patch spraying technologies. 
The decision rules for patch spraying should take into account density, coverage and 
yield loss effects by weed species, its growth stages and costs of weed control. 
Herbicide savings using precision weed control varied from 20 to 70 %. Real-time 
patch spraying is the most economic treatment followed by map-based site-specifi c 
weed control. Uniform herbicide applications and uncontrolled treatments gave the 
lowest economic return. Several studies showed that weed species distribution 
remained stable over time when site-specifi c herbicide applications were realized 
based on economic weed thresholds   .  

  Keywords   Direct injection system • Distribution • Image analysis • Mapping 
• Multiple fi eld sprayer • Patches • Shape features • Site-specifi c control  

10.1         Introduction 

 Weed seedling distribution changes spatially and temporally within agricultural 
fi elds. It often presents itself in  aggregated patches   of varying size or in stripes 
along the direction of cultivation (Marshall  1988 ; Gerhards et al.  1997 ; Christensen 
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and Heisel  1998 ). The variation in weed seedling population has often been ignored 
for weed management decisions since techniques to assess the weed seedling distri-
bution in acceptable time were not available. Many studies were conducted to apply 
post-emergence herbicides in winter wheat and maize based on georeferenced maps 
of the weed seedling distribution (Nordmeyer and Niemann  1992 ; Tian et al.  1999 ; 
Gerhards and Christensen  2003 ). Herbicide use with this map-based approach was 
reduced some 40–50 %. With a large within-fi eld variation in weed occurrence, 
patch spraying that is based on the need for weed control reduces costs, herbicidal 
pollution of the environment and the risk of herbicide residues in the food chain 
(Dammer et al.  2003 ; Timmermann et al.  2003 ; Gerhards and Oebel  2006 ). 

 In many studies, weed species were grouped into grass weeds, annual broadleafs 
and perennial weeds. Perennials such as bindweed ( Convolvulus arvensis ) and thistle 
( Cirsium arvense ) were found to be highly aggregated in arable crops with less than 
20 % of the fi eld being infested. Grass weeds covered on average 30–40 % of the 
fi elds at infestation levels higher than the economic thresholds and annual broad-
leaves between 20 and 90 % (Timmermann et al.  2003 ; Gerhards and Oebel  2006 ). 

 Site-specifi c weed management needs patch sprayers as well as automatic and 
real-time sensors for weed detection. The objective of this study is to describe the 
state-of-the-art and evaluate current  patch spraying systems  .  

10.2       Weed Mapping  

 Weed seedling distribution in the fi eld was usually assessed using discrete weed 
mapping or continuous-area sampling (Rew and Cousens  2001 ). In most studies, 
discrete  weed mapping   was applied in a regular sampling grid that was established 
in the fi eld. The side length of the squared grid varied from a few meters up to 
approximately 50 m and depended on the width of the spray boom used for site- 
specifi c herbicide application. Density and/or coverage of emerged weed seedlings 
were counted and measured prior to and after post-emergence herbicide application 
in a sampling frame placed at all grid intersection points. 

  Effi cacy of weed control    was determined relating weed density after post- 
emergence herbicide application to prior herbicide application. Different mapping 
programs have been applied to characterize spatial distribution of weeds within 
fi elds. Maps differed based on the interpolation method that was applied, the area 
sampled and the distance between sampling points (Isaaks and Srivastava  1989 ; 
Johnson et al.  1995 ; Rew and Cousens  2001 ; Gerhards et al.  1997 ). Geostatistics 
and interpolation methods were applied to overcome the problem of discontinuities 
between adjacent sampling points that result from grid sampling. Interpolated weed 
maps were reclassifi ed based on weed infestation levels (Gerhards et al.  1997 ). 
Most weed patches will be detected when sampling grids are not wider than 6 × 6 m 
(Gerhards and Oebel  2006 ). 

 A weed treatment map was derived from the weed distribution maps using weed 
control thresholds to provide a decision rule for the patch sprayer (Fig.  10.1 ). 
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Different methods to continuously record in-fi eld variation of weed distributions 
were to surround and record the borders of aggregated patches of weed species such 
as wild oats ( Avena fatua ) using a data logger connected to a differential global 
positioning system (DGPS) (Colliver et al.  1996 ) or to map weed patches during 
harvest operations (Barroso et al.  2005 ).

   A major step towards a practical solution for site-specifi c weed management 
was the development of sensor technologies and of differential global positioning 
systems (DGPS) to automatically and continuously determine in-fi eld variation of 
 weed seedling populations  . Airborne remote sensing was found to be capable for 
detection of high density weed patches of wild oats ( Avena fatua  L.) and of sterile 
oats ( Avena sterilis  ssp.  ludoviciana   D urieu )  in wheat as well as of infestations 
of perennial weed species (Lamb and Brown  2001 ). However, weed seedling 

  Fig. 10.1    Distribution of different weed species ( a – c ) in a 3 ha spring barley fi eld in the year 2003 
and application maps as a decision rule for the patch sprayer ( d – f ). Maps were created according 
to economic weed thresholds for all three weed species classes (Gerhards et al.  1997 )       
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populations and weed infestations lower to or equal to the economic weed thresh-
olds could only be detected with sensors from a low distance because of the lim-
ited spatial resolution of the sensors and the small area of weed seedlings. Many 
scientists therefore mounted the sensors on the tractor. Three groups of optical 
sensors have so far been applied for weed detections:

•    spectrometers  
•   fl uorescence sensors  
•   digital cameras with subsequent image analysis.    

10.2.1     Spectrometers  

 Intact green plants transform the incoming light by their chlorophyll pigments, 
which absorb mostly red as well as violet and blue light. Only some part of the 
green and most of the near-infrared light is refl ected. The spectral refl ectance  of 
plants has a minimum in the visible wavelengths of about 650 nm and increases 
considerably towards the invisible near infrared above 700 nm (Fig.  10.2 ).

   The steep part of the curve is called the “red edge ” (Guyot et al.  1992 ). 
Important properties of plants, such as chlorophyll content, leaf-area-index   
(LAI) , biomass and water status, age, plant health levels can be derived from the 
position of the red edge  (REP). The spectral curves of different plants have a 
similar nonlinear shape , but the soil curve in Fig.  10.2  is linear. The local 
extremes of the plant curves are within the green band (550 nm, maximum), the 

  Fig. 10.2    Refl ectance curves for soil ( fi lled dots ) and for different plant species with the typical 
steep incline (red edge ) between 680 and 750 nm wavelength (Weis and Sökefeld  2010 )       
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red band (660 nm, minimum) and near-infrared (750 nm, maximum) (Weis and 
Sökefeld  2010 ). 

 Vrindts and de Baerdemaeker ( 1997 ) as well as Biller ( 1998 ) used spectrometers 
to detect weeds between the crop rows or before sowing and after harvesting the 
crop by measuring the refl ectance in the green, red and near-infrared light wave 
bands. Green leafs were characterised by a high refl ectance in the green and near- 
infrared and a low refl ectance in the red spectrum compared with the refl ectance 
curve of bare soil. A few commercial products for weed control with optoelectronic 
equipment exist that use this spectral information;  e.g.  DetectSpray® (evaluated by 
Biller  1998 ) and WeedSeeker® (used by Sui et al.  2008 ).  

10.2.2     Fluorescence Sensors  

 After exposing green plants with radiation for a specifi c amount of time, leafs emit 
radiation of a longer wavelength as the excitation light. The intensity of this radia-
tion named fl uorescence highly depends on the leaf properties and on the physiolog-
ical state of plants (Cerovic et al.  1999 ). 

 UV-induced  chlorophyll fl uorescence  has also been applied to discriminate 
plant species based on the characteristic leaf structure. Longchamps et al. ( 2010 ) 
measured a range of fl uorescence spectra of maize, grass-weeds and broadleaved 
weeds under greenhouse conditions with natural illumination. They classifi ed the 
three plant species groups based on their distinct spectral signatures with a recogni-
tion rate above 90 %. Tyystjärvi et al. ( 1999 ) developed a method called fl uores-
cence fi ngerprinting with which leafs are exposed to a series of different spectra and 
intensities of light to record changes in the fl uorescence of chlorophyll a. The emit-
ted light curve could be used to identify plant species with an accuracy of more than 
90 % under laboratory conditions. Later, Tyystjärvi et al. ( 2011 ) applied a similar 
approach under fi eld condition and achieved 90 % recognition in maize and weeds 
when plants were shaded for 1 s before measuring. 

 In our working group, the MiniVeg® sensor (Fritzmeier Umwelttechnik) has 
been used in fi eld and greenhouse studies to map the spatial distribution of weed 
species in arable crops. Red- plus far red fl uorescence was induced by a red laser. 
When the laser hit plants, fl uorescence was induced and recorded in the processor 
of the sensor. Due to the high frequency of measurements (500 s −1 ),  plant density  
highly correlated with the number of hits. As crop density was rather homogeneous 
within the fi elds at early growth stages, variations of the hit-number correlated with 
the weed density. Therefore, weed distributions maps could be derived from the 
sensor measurements when a GPS-receiver was mounted on the sensor vehicle 
(Fig.  10.3 ). Blackgrass ( Alopecurus myosuroides  Huds.) was the dominant weed 
species in the winter wheat fi eld sampled in 2008. Forty-four percent of the area 
remained untreated when site-specifi c weed control was applied in this fi eld using a 
weed control threshold. The MiniVeg®-sensor provided 75 % correct decisions 
compared to manual weed countings.
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10.2.3        Digital Image Analysis  Based on Shape Features  

10.2.3.1     The Sensing and Processing Concept 

 A very promising approach for weed detection and identifi cation is a continuous 
ground-based detection method based on  image analysis  (Weis et al.  2008 ). With 
this method, weeds and crops are segmented from digital images in real-time using 
a bi-spectral camera  system connected to DGPS. Weed species as well as crops are 
identifi ed and counted based on automatic classifi cation of  shape features . The 
entire system for site-specifi c weed control consists of three parts, which are sepa-
rated and can communicate via interfaces:

    1.    A bi-spectral camera  system with practical suitability for the fi eld connected to 
DGPS.   

   2.    An image processing and classifi cation component including a weed/crop- 
database used for the classifi cation.   

   3.    A GPS-controlled patch sprayer.    

  First, laboratory studies were conduced to analyze refl ection properties of 
green plants, different soils (organic, sandy, stony, wet, dry), stones and organic 
mulch using a video spectrometer (Fig.  10.4 ). The refl ectance of all objects men-
tioned above within the fi eld of view of the video spectrometer in the spectral 
band between 338 and 925 nm was visualized using grey levels from 0 (black) to 
255 (white).

  Fig. 10.3    Weed distribution maps derived from visual countings, bi-spectral imaging and 
MiniVeg® measurements in a 5.6 ha fi eld at Ihinger Hof in winter wheat in autumn 2008. For 
details to bi-spectral imaging see the next section (After Gerhards et al.  2012 )       
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   Figure  10.4  shows an image of a typical video spectrometer scene. Nearly over 
the entire analyzed spectrum, stones show a strong refl ection. The refl ection of dead 
organic material like straw is very similar to the refl ection of stones. Living plants 
refl ect moderately below 570 nm and have a strong refl ection above 690 nm. The 
characteristic decrease of refl ection between 610 and 690 nm is typical for green 
plants because of the absorption of this band by chlorophyll. 

 Based on these studies, it was concluded that a normalized difference between 
images above 700 nm and images between 610 and 690 nm would result in high 
quality images with a strong contrast between green plants and background. A bi- 
spectral camera was developed computing differential images of the infrared and 
red wavebands (Figs.  10.5  and  10.6 ). The resulting images were saved on the hard 
disc of a computer for further processing. The  bi-spectral camera   allows real-time 
detection and identifi cation of weed species in arable crops. The speed of the image 
analysis is high enough to use the cameras for online weed control in combination 
with a fi eld sprayer.

    In the subsequent text, the processing of the data is dealt with in an abbreviated 
and condensed manner. Details to this are explained in the literature cited. 

 A  circular closing operator   of size fi ve was used to connect most leafs of a 
single plant. For the extracted plants, various numerical features  were computed 
that refl ect the form of the plant species:

•    Region-based: these features are based on the region pixels, which are defi ned as 
a connected set of pixels. Examples are the size, compactness, minimum and 
maximum diameter and several statistical measures (statistical moments (Jähne 
 2001 ), Hu moments (Hu  1962 ))  
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  Fig. 10.4    Video spectrometer image with typical refl ections of a stone, weed and straw in the 
spectrum of 338–925 nm with soil as background (Sökefeld et al.  2007 )       
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•   Contour-based: these features were calculated from a contour representation of 
the region. Fourier descriptors and curvature scale space representation (CSS) 
were calculated (Mokhtarian et al.  1996 ).  

•   Skeleton-based: the skeleton of a region is a “thinned” representation of the 
region (Soille  2003 ). Several numerical features as well as structural ones can be 
derived from the skeleton.    
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  Fig. 10.5    Principle of a 
bi-spectral camera system for 
the pixel congruent 
acquisition of two images in 
different spectral bands 
(Sökefeld et al.  2007 )       
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  Fig. 10.6    Difference image  ( c ) calculated from the infrared ( b ) and red image ( a ) to remove soil, 
stones and mulch; followed by binarization ( d ) using automatic thresholding (Sökefeld et al.  2007 )       
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 The  skeleton   is the “middle line” of the objects as shown in Fig.  10.7 , center. A 
distance transform is computed for the leafs, assigning each pixel a value for the 
minimum distance to the border of the leaf (Fig.  10.7  right). All border pixels have 
the value one, all others inside the region get a higher value. The combination of the 
skeleton with the distance transform leads to a distance function that describes the 
“thickness” of the leaves. Statistical values (maximum, mean, variance, number of 
skeleton pixels) can be derived which were found to discriminate especially grasses 
from broadleafs.

   Every  feature set  , consisting of more than a 100 features, is associated with a 
class. The class assignments are determined from training sets of images. To be able 
to reuse the training sets, all training samples are stored in a database. The database 
contains the segmented images and the feature sets as well as the class assignments. 
A few examples of the images stored in the database are shown in Fig.  10.8 .

   An  image database   was created for six crops (sugar beet, wheat, barley, maize, 
peas and oil seed rape) and 40 weed species. In the database, prototypes for the dif-
ferent classes are stored. The images are split up into segments each containing only 
one plant of known class. This allows the images to be re-used for the development 
of new feature extraction algorithms and classifi ers. A comparison of different image 
segmentation approaches and feature sets can be achieved using the database.  

10.2.3.2     Identifi cation Results and the Classifi cation of Plant Species 

 For the identifi cation of weed species, a knowledge-based image analysis system 
was used (Gerhards and Oebel  2006 ; Oebel et al.  2004 ; Sökefeld and Gerhards 
 2004 ). First, shape features were extracted and calculated from all plants in the 
image. Those features were used to discriminate and classify plant species. In order 
to test the accuracy of the  classifi cation algorithm  , images taken in the fi eld were 
analyzed visually and by the image analysis system. Between 400 (maize) and 

  Fig. 10.7    Gray level image of an object with – from  left  to  right  – overlapping leafs, skeleton and 
distance transform (Weis and Gerhards  2007 )       
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2,100 (winter wheat) images of unknown plants were taken for the testing. The 
 automatic classifi cation  resulted in an average of about 90 % correct identifi cation 
when weed species and crops were grouped into 4–5 classes. The results of the 
automatic classifi cation in maize and winter wheat are presented in Tables  10.1  and 
 10.2 . As must be expected, the identifi cation in % depended on the plant species that 
were grouped together.

    The classifi cation results of the images and the corresponding GPS data were used 
for weed mapping and site-specifi c herbicide application. During the past 3 years, the 
camera system was used for weed identifi cation in more than 100 ha of cereals, 

  Fig. 10.8    Classifi cation examples: each classifi ed region denoted by a  color  and a  number  for the 
class. The latter is defi ned by a so-called EPPO code (Weis et al.  2008 )       

   Table 10.1    Automatic classifi cation of plant species in maize (Zea mays) using digital image 
analysis (data of 400 images) (Sökefeld et al.  2007 )   

 Identifi cation in % (identifi cation fi gures in horizontal lines add up 
to 100 %) 

 Maize 
(Zea mays) 

 Grass 
weeds 

 Lambsquart. 
(Ch. album) 

 Other 
broadleafs  Sum 

 Maize  100  0  0  0  100 
 Grass weeds  0  90  4  6  100 
 Lambsquarters  10  0  90  0  100 
 Other broad-leaved species  0  1  1  98  100 
 Total  94 
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maize, sugar beet, rape-seed and peas. No problems with the camera technology 
arose due to vibration of the fi eld vehicle, dust and moisture. 

 A different dataset was classifi ed including images of four plant species groups: 
Winter barley (HORVU), grass-weeds (MOKOT), rape ( Brassica napus  BRSNN) 
and other broadleafs (DIKOT). Plant species groups that were in different growth 
stages are partly overlapped. This led to a high variation in the features (Fig.  10.9 ).

   Approximately 40 different  classifi ers   including Bayes functions, nearest neigh-
bor, classifi cation trees were applied to classify the dataset. All of them performed 
better than 95 % (correct classifi cation rate) in a 10-fold cross validation. The main 
result of this test was that the type of classifi er was less important than the selection 
of the right features and grouping of plant species into meaningful classes. 

   Table 10.2    Automatic classifi cation of plant species in winter wheat (Triticum aestivum) using 
digital image analysis (data of 2,100 images) (Sökefeld et al.  2007 )   

 Identifi cation in % (identifi cation fi gures in horizontal lines add up to 100 %) 

 Wheat 
(Tritic. aest.) 

 Grass 
weeds 

 Catchweed 
(Galium aparine) 

 Mayweed 
(Matricaria 
chamonilla) 

 Other 
broad- leafs   Sum 

 Wheat  80  13  7  0  0  100 
 Grass weeds  0  100  0  0  0  100 
 Catchweed  0  0  92  0  8  100 
 Mayweed  0  0  0  100  0  100 
 Other broadleafs  0  0  20  0  80  100 
 Total  86 

  Fig. 10.9    ( left ) Two dimensions of the feature space: skeleton mean and size; ( right ) the fi rst two 
discriminant functions. The classes are:  HORVU  Hordeum vulgare,  MOKOT  grass weeds, 
 BRSNN  Brassica napus,  DIKOT  broad-leaved weeds (Weis and Gerhards  2007 )       
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 The shape based approach has problems in situations when the plants are in late 
growth stages and overlap each other. A proposal for the handling of these situations 
was made that uses a structural description for the separation of the objects into 
parts (Weis and Gerhards  2007 ).    

10.3     Temporal and Spatial Dynamics of Weed Population 

 The temporal and spatial stability of weed populations are important for map based 
site-specifi c herbicide applications that take place in subsequent seasons of a rota-
tion. Any  pre-emergence site-specifi c applications   rely on this, they would not be 
possible without some stability of weed populations between subsequent crops. 
Yet also post-emergence spraying in subsequent crops might be map based. 

 The actual  dynamics of weed populations   are infl uenced by the biological char-
acteristics of weed species, by farming practices such as tillage, crop rotation, time 
of seeding, by harvesting competitiveness of the crop and direct weed control meth-
ods as well as by soil parameters (Mortensen et al.  1998 ; Nordmeyer and Niemann 
 1992 ; Timmermann et al.  2002 ). The major weed species have developed specifi c 
adaption- and  survival strategies   to persist in cropping systems (Radosevich et al. 
 1997 ). Those strategies include the production of a high number of seeds over a 
long period of time and seed dormancy ( e.g.  lambsquarter  C. album ). In addition, 
successful weed species have the capacity to survive under variable environments 
based on high phenotypic and genetic plasticity to invade new sites ( e.g.  velvetleaf 
 Abutilon theophrasti ). Many weeds are able to strongly compete for space, light, 
water and nutrients with the crops by high growth rates and effi ciency in using water 
and nutrients. Several weeds produce mature seeds in a much shorter time than 
crops so that the seeds are spread long before a dense crop stand has been estab-
lished ( e.g.  gallant soldier  Galingsoga parvifl ora ). Other weed species, such as 
thistle ( Cirsium arvense ) and quackgrass ( Agropyron repens ) have the ability to 
persist and spread via seeds and vegetative reproduction tissues. Those  perennial 
weeds   can emerge much faster than annual plants. These are only few reasons for 
spatial and temporal dynamics of weed populations. 

 Nordmeyer and Niemann ( 1992 ) found that blackgrass ( Alopecurus myosuroi-
des ) populations mostly occurred at locations in the fi eld where the clay content was 
relatively high. Timmermann et al. ( 2002 ) reported that the crop rotation had a long- 
term effect on weed density and weed species composition. In fi elds that had been 
planted with 50 % maize in the rotation more than 20 years ago, the density of 
lambsquarter ( C. album ) was still much higher than in fi elds with a high percentage 
of winter annual grains in the rotation. The crop rotation had also a very strong 
effect on the organic matter content. Fields that had been planted with potatoes were 
lower in the organic matter content than fi elds where mostly grains were planted. 
The difference in organic matter content again had a strong infl uence on the weed 
species composition. Catchweed ( Galium aparine ) predominantly occurred in fi elds 
with high organic matter contents (Timmermann et al.  2002 ). 
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 Krohmann et al. ( 2002 ) studied the dynamics of weed seedling distribution over 
5 years in a rotation of maize, sugar beet, winter wheat and winter barley and in 
continuous maize. They found that  weed distribution maps   obtained in maize and 
sugar beet were suitable for site-specifi c weed control in winter wheat and winter 
barley (Fig.  10.10 ).

   Ritter and Gerhards ( 2008 ) reported that populations of blackgrass ( Alopecurus 
myosuroides ) did not signifi cantly change in density, location and size when site- 
specifi c weed control methods were applied over a period of 8 years in a rotation of 
winter annual cereals, maize and sugar beet. In all of the three fi elds studied,  weed 
seedling distribution   was heterogeneous. Density was higher in maize and sugar 
beet than in winter cereals. High density patches with densities higher than 25 plant 
per m 2  consistently recur over the years at the same areas in the fi elds.  Weed den-
sity reduction   due to herbicides and other weed control methods was satisfying in 
each year indicating that site-specifi c weed control methods are sustainable for 
long-term weed suppression. Herbicide savings with blackgrass ( A. myosuroides ) 
ranged from 50 % in sugar beet to 75 % in winter barley. 

 Ritter and Gerhards ( 2008 ) also studied weed  population dynamics   of catch-
weed ( Galium aparine ) and blackgrass ( A. myosuroides ) under the infl uence of site- 
specifi c weed management. Most of the tested population parameters were weed 
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0 - 5 5 - 20 20 - 50 > 50 plants / m2

  Fig. 10.10    Distribution of fi eld violet ( Viola arvensis ) in maize, sugar beet, winter wheat and 
winter barley in a 5 ha arable fi eld at Dikopshof Research Station near Bonn, Germany (Modifi ed 
after Krohmann et al.  2002 )       

 

10 Site-Specifi c Weed Control 



286

density dependent. It was presumed that individual weeds without competition 
evolve better and produce more seeds, but this study showed opposing results. With 
increasing weed density, weed biomass and fecundity increased in this study 
(Figs.  10.11  and  10.12 ). All fi ndings support that weed density has to be considered 
in weed management strategies.

    An understanding of fundamental weed population biology would improve our 
ability to develop site-specifi c management decisions.  Weed populations models   
have been applied to quantify the effects of site-specifi c weed management practices 
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  Fig. 10.11    Weed density and seed production of catchweed (Galium aparine) and blackgrass 
(Alopecurus myosuroides) in various crops (Ritter and Gerhards  2008 )       
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  Fig. 10.12    Correlation of weed biomass and seed production of catchweed (Galium aparine) and 
blackgrass (Alopecurus myosuroides) over all crops (Ritter and Gerhards  2008 )       
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(Paice et al.  1997 ). However, the mechanism of weed patch stability is rather 
untapped. A few results show that effi cacy of weed control methods (see Sect.  10.2 , 
top) was lower in weed patches than at low density locations (Mortensen et al.  1998 ). 
Krohmann et al. ( 2002 ) found that the persistence of weed populations was also 
attributed to weed seedlings that emerged after weed control methods had been 
applied. Those individuals were able to produce viable seeds in maize and sugar beet 
but not in winter wheat and winter barley. The authors assume that competition of the 
crop was higher in winter annual grains and therefore late emerging weed seedlings 
were suppressed. 

 Few studies have attempted to quantify spatial stability of  weed patches   in 
agricultural fi elds. If weed patches were consistent in density and location over 
years, maps from 1 year could be used to direct sampling plans and to regulate weed 
control methods in subsequent years. Wilson and Brain ( 1991 ) found that the pat-
tern of blackgrass ( A. myosuroides  Huds.) patches persisted during a 10 year study. 
Persistence of patches was attributed to the poor ability of blackgrass to colonize 
new locations when effective herbicides were applied. The pattern of patches was 
most stable in fi elds planted to cereals. Pester et al. ( 1995 ) observed signifi cant 
stability for velvetleaf ( Abutilon theophrasti ) populations using Pearson, Spearman 
rank and chi-square correlation analysis to quantify year by year relationships 
between weed density at individual X, Y-coordinates of the sampling grid in four 
fi elds. Walter ( 1996 ) also used the chi-square correlation method and found that 
fi eld violet ( V. arvensis  Murr.), common lambsquarters ( C. album  L.) and prostrate 
knotweed ( Polygonum aviculare  L.) distributions were stable in cereal grain fi elds 
over 3 years. 

 Gerhards et al. ( 1996 ) studied the spatial stability of velvetleaf ( A. theophrasti  
Medik.), hemp dogbane ( Apocynum cannabinum  L.), common sunfl ower 
( Helianthus annuus  L.), yellow foxtail ( Setaria glauca  L.) and green foxtail ( Setaria 
viridis  L.) over 4 years (1992–1995) in two fi elds in eastern Nebraska. The fi rst fi eld 
was planted to soybean in 1992 and corn in 1993, 1994 and 1995. The second fi eld was 
planted to corn in 1992 and 1994 and soybean in 1993 and 1995. Weed density was 
sampled prior to post-emergence herbicide application at approximately 800 loca-
tions per year in each fi eld on a regular 7 m grid. The same locations were sampled 
every year. Weed density at locations between the sample sites was determined by 
linear triangulation interpolation. Weed seedling distribution was signifi cantly 
aggregated with large areas being weed free in both fi elds. Common sunfl ower, 
velvetleaf and hemp dogbane patches were very persistent in the east–west and 
north–south directions and in location as well as in area over the 4 years in the fi rst 
fi eld. Foxtail distribution and density continuously increased in each of the 4 years 
in the fi rst fi eld and decreased in the second fi eld. A Geographic Information System 
was used to overlay maps from each year for a species. This showed that 36 % of 
the sampled area was free of common sunfl ower, 62.5 % was free of hemp dogbane 
and 11.5 % was free of velvetleaf in the fi rst fi eld, but only 1 % was free of velvetleaf 
in the second fi eld. The persistence of broadleaf weed patches observed in this study 
suggests that  weed seedling distributions   mapped in 1 year are good predictors of 
future seedling distributions. 
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 Heijting et al. ( 2007 ) found strong spatial correlations for cockspur ( Echinochloa 
crus-galli ), lambsquarter ( C. album ), goosefoot ( C. polyspermum ) and black night-
shade ( Solanum nigrum ) in 3 years continuous maize cultivation. They attributed 
spatial and temporal stability of weed populations to their high recruitment 
capacity. 

 Summing up, it can be concluded that in many cases the weed maps from 1 year 
might provide the site-specifi c control basis for either pre-emergence or post- 
emergence herbicide applications in next years. So it might be reasonable to use the 
results of one sensing operation initially for an simultaneous in-season real-time 
application followed by map based site-specifi c sprayings in next crops.  

10.4     Site-Specifi c Weed Control 

 The weed population can vary spatially as well as on a species basis. Precise appli-
cation of herbicides thus has two objectives:  adapting the mass    to the spatial weed 
density  as well as  adjusting the formulation    to the plant species . Hence site- and 
species-specifi c control might be needed. 

 For this purpose, a  multiple fi eld sprayer   was developed (Fig.  10.13 ). Each of 
the three sprayer circuits led to a boom width of 21 m divided into 7 sections of 3 m. 
Each sprayer circuit and each boom section was turned on and off separately via 
solenoid valves. This sprayer allowed a separate control of each hydraulic circuit 
according to information from herbicide application maps. The application rate was 
regulated from 200 to 290 l ha −1  over the whole boom width of each circuit by pres-
sure variation (Gerhards and Oebel  2006 ).

   Another approach for site- and species specifi c weed control is to employ spray-
ers with an integrated  direct injection system  . With such injection sprayers, herbi-
cides and carrier (water) are kept separate. According to the indications of the weed 
treatment map (off-line application) or the sensor data (on-line application), the 
herbicides are metered into the carrier and mixed immediately before entering the 
nozzles. 

 In both scenarios, short  reaction times   of less than 1 s and adequate mixing of 
the herbicides into the carrier are basic requirements for high weed control effi cacy. 
Figure  10.14  shows an experimental direct injection system with one injection point 
for each boom section (3 m each). With this confi guration, a lag time of 4–7 s was 
obtained. A shorter lag of approximately 1.0 s can be achieved by the injection of 
the herbicide at each nozzle.

   Site- and species specifi c weed control was performed in cereals, sugar beet, 
maize and oil-seed rape resulting in signifi cant areas that remained untreated with 
herbicides (Table  10.3 ). Combinations of weed mapping and application technolo-
gies for site- and species specifi c weed control increased the potential for herbicide 
savings. From the results it is obvious that the herbicide savings can be considerably 
enhanced when the site-specifi c application is supplemented with species-specifi c 
spraying .
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  Fig. 10.13    Schematic confi guration of the multiple sprayer (Gerhards and Oebel  2006 ) with: 
 1  board computer with application map,  2  control unit for spray computer,  3  spray computer,  4  
tanks,  5  manometers,  6  pressure valves,  7  pumps,  8  solenoid valves,  9  boom sections with nozzles       

   Effi cacy of site-specifi c weed control (see Sect.  10.2 , top) attained on the average 
85–98 % and was similar to uniform herbicide applications. 

 Knowledge of spatial and temporal variability of weed populations offers large 
potentials for precise control methods and thus for using less herbicides resulting 
in less herbicide residues in the environment and food chain. Site-specifi c weed 
control methods can be realized when automatic sensor technologies for weed 
detection and patch spraying technologies are combined with precise decision 
algorithms. 

 In addition to this practical benefi t, weed mapping helps to understand weed- 
crop interactions and population dynamics of weed species. It allows quantifying 
yield effects of different weed infestations in the fi elds and modelling the spatial 
and temporal variability of weed populations under different crop management 
systems.  
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  Fig. 10.14    Schematic view of the hydraulic system for the direct injection of herbicides (Sökefeld 
et al.  2005 )       

10.5     Outlook and Perspectives 

 The potential of savings in herbicides by site-specifi c as well as by species-specifi c 
application is impressive (Table  10.3 ). The technical expenditures for this approach 
probably will be lower when – instead of expensive techniques for multiple spray-
ing systems – concepts for direct injection will become state of the art (Figs.  10.13  
and  10.14 ). Hence developments in this direction will be important. 

 Important will also be, whether the attempts of  orienting herbicides at weeds   or 
instead of this  adapting crops to herbicides   will prevail. The techniques dealt with 
so far in this chapter mainly aim for an orienting of herbicides at weeds, on a site- 
specifi c basis as well as species-directed. Yet the advances that have been made in 
adapting crops to herbicides are impressive as well.  Genetically modifi ed crops  that 
are herbicide resistant are widely used in both North- and South America. They 
allow using singular and uniform chemical formulations of herbicides that in the past 
destroyed crops but effectively remove all weeds. Recent developments have proved 
that these  herbicide resistant crops   must not necessarily result from transgenic 
methods, for which there exist objections in the public of some European countries. 
These herbicide resistant crops can be developed by traditional breeding methods as 
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well. The new “Clearfi eld” crop varieties verify this. However, one fundamental 
problem may arise with herbicide resistant crops. Their outgrowth can appear in 
subsequent crops of a rotation as weeds that cannot be removed by herbicides any 
more. This might be important especially with rape (colza). 

 And still another alternative should be considered,  i.e.  future weed control by 
small  robots   that might loiter through fi elds (Chap.   11    , Fig.   11.6    ). These robots 
might remove weeds either by applying herbicides or by hoeing. It would be feasi-
ble to program the robots by precise georeferencing in such a way that they can 
differentiate between weeds and plants of the crop. This can be achieved by meticu-
lously georeferencing all positions within a fi eld, where the seeds were placed dur-
ing the planting operation. This might not be feasible with small cereals or grass 
crops, yet it is possible with more widely spaced crops such as maize, beans and 
beets. In case of control by herbicides, the robots could by and large apply these 
only on weeds and leave out any deposition on plants of the respective crop. Hence 
there would be neither a need for herbicide resistant crops nor for selective herbi-
cides. If the control is done by hoeing, this could include the removal of weeds that 
result from herbicide resistant outgrowth. 

    Table 10.3    Relative untreated area using two different patch spraying systems compared to a 
uniform herbicide application across the whole fi eld (Gutjahr et al.  2012 )   

 Field 

 % untreated area 

 Site-specifi c 
control only 
with uniform 
tank mixture 

 Site-specifi c as well as species-specifi c weed control 
with multiple-tank sprayer 

 Broadleaf- weeds  Grass- weeds  
 Catchweed 
( G. aparine ) 

 Winter wheat  1  64  82  81  96 
 2  4  99  11  15 
 3  40  68  52  100 a  
 4  63  67  96  96 
 5  89  94  96  100 a  
 6  76  88  89  93 
 7  2  85  14  40 
 8  40  88  44  89 
 9  6  10  71  95 

 10  2  66  2  73 
 11  23  25  98  84 
 Mean  37  70  59  80 

 Broadleaf- weeds  Grass- weeds   Perennials 
 Maize  12  0  0  30  100 a  

 13  0  0  2  98 
 14  0  3  14  100 a  
 15  23  37  90  74 
 Mean  6  10  34  93 

   a It was assumed that farmers always apply herbicides against all three weed- species groups in 

uniform application.  
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 Actually, an  intelligent combination of control techniques   might be sensible. 
With herbicide resistant crops, any species-specifi c application can be put aside. But 
a site-specifi c application still might substantially save herbicides and reduce the 
impact on the environment. And with crops that are not resistant to herbicides, it 
might be wise to supplement the site- and species specifi c application as dealt with 
in the sections above with occasional or partial weed control by robots. Because it 
will hardly be possible to take into account all kinds of weeds in a species- specifi c 
application. 

 Anyway, the variety of feasible control techniques will largely allow to dispense 
with  soil cultivation  as a means for weed killing.     
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