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Abstract The half hypercube interconnection network, has been proposed as a
new variation of the hypercube, reducing its degree by approximately half with the
same number of nodes as an n-dimensional hypercube, Qn. This paper proposes an
algorithm for one-to-many broadcasting in an n-dimensional half hypercube, HHn,
and examines the embedding between hypercube and half hypercube graphs. The
results show that the one-to-many broadcasting time of the HHn can be accom-
plished in n ? 1 when n is an even number and in 2� dn=2e when n is an odd
number. The embedding of HHn into Qn can be simulated in constant time
O(n) and the embedding of Qn into HHn in constant time O(1).
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1 Introduction

There is increasing interest in parallel processing as a technique for achieving high-
performance owing to the need for many computations with real-time data pro-
cessing in modern applications [1, 2]. A parallel processing system can connect
hundreds of thousands of processors with their own memory via an interconnection
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network. The overall performance of the system is dependant on the performance of
each processor and the architecture of the interconnection network used [1–3].
Many interconnection network topologies have been described in the literature,
such as star, mesh, bubble-sort, and pancake graphs.

The hypercube, Qn, is a typical topology and is an n-regular and node- and edge-
symmetric graph with 2n nodes and diameter n (n C 2). The hypercube Qn has
simple routing algorithms and recursive structures with maximum fault-tolerance.
In addition, it has the advantage that its network structure can easily be embedded in
various types of commonly used interconnection networks. With such advantages,
it is widely used in various application areas [1, 4, 5]. However, its network cost is
increased considerably in relation to the increased degree when the number of
nodes increases. To resolve this drawback, several hypercube variations have been
introduced. We have proposed the half-hypercube interconnection network,
reducing its degree by approximately half, even though it has the same number of
nodes as a hypercube Qn. In this paper, we propose an algorithm for one-to-many
broadcasting in an n-dimensional half hypercube, HHn, and analyze the embedding
method of a half hypercube graph into a hypercube graph and vice versa.

The most common properties for measuring the performance of interconnection
networks include degree, diameter, connectivity, fault tolerance, broadcasting, and
embedding [6, 7]. In [1], we analyzed the degree, diameter, connectivity, and fault-
tolerance parameters of the half hypercube. Here, we examine the broadcasting and
embedding properties of a HHn to strengthen its effectiveness. Broadcasting is one of
the major primitives for communication of parallel processing involving message
disseminating from an origin node to all the other nodes (one-to-many broadcast) or
among the nodes (many-to-many broadcast) in an interconnection network.
Embedding is to evaluate the relative performance of two arbitrary interconnection
networks. This is of interest, because the properties and algorithms developed in a
certain topology can easily be adapted to anther network at less cost [8].

The organization of this paper is as follows. Section 2 presents the definition of
the half hypercube HHn. Section 3 proposes and analyzes a broadcasting algorithm
for an n-dimensional half hypercube, HHn. Section 4 examines the embedding algo-
rithms between hypercube and half hypercube graphs. Section 5 concludes the paper.

2 Definition of the Half Hypercube

The half hypercube HHn (n C 3) is defined as an n-dimensional binary cube where
the nodes of HHn are all binary n-tuples in the same way as the hypercube Qn

(n C 2). That is, an n-dimensional half hypercube is denoted as HHn and each
node is represented with n binary bits. The degree and node connectivity of HHn

are dn=2e þ 1 and dn=2e þ 1ðn� 3Þ, respectively. An HHn graph is expanded
with recursive structures and has 2bn=2cdn=2e-dimensional hypercube structures
with maximum fault-tolerance [1].
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In Qn, an edge exists between two arbitrary nodes S and S0 if and only if their
corresponding n-tuples differ in exactly one k position of the bit strings of S and
S0ð1� k� nÞ [9]. On the other hand, in HHn, two types of edge exist: the h-edge,
which connects node S to a node that has the complement in one bit at exactly one
h position ð1� h�dn=2eÞ, and the swap-edge (shortly, sw-edge), which connects
node S to a node where the bn=2c leftmost bits of the bit string of S and the bn=2c
bits on the right-side of S starting from the bn=2c position are exchanged
ðh ¼ bn=2cÞ. However, if two parts of bn=2c bits to swap in the bit string of node
S are the same, the node S connects to node �S, which is the one’s complement of
the binary number of node S [1]. Note that �S indicates the one’s complement of the
binary number of node S in this paper.

At node Sð¼snsn�1. . .sbn=2cþ1sbn=2csbn=2c�1. . .s2s1Þ of HHn, the address of node
S0 adjacent to node S via an sw-edge is considered using two cases depending on
whether n is even or odd. For instance, when n is even, node Sð¼snsn�1. . .
sbn=2cþ1sbn=2csbn=2c�1. . .s2s1Þ is adjacent to node S0ð¼sbn=2csbn=2c�1. . .s2s1snsn�1. . .

sbn=2cþ1Þwhere ðsnsn�1. . .sbn=2cþ1Þ and ðsbn=2csbn=2c�1. . .s2s1Þ of S are swapped.
When n is odd, node S is adjacent to node S0ð¼sbn=2csbn=2c�1. . .s2snsn�1. . .

sbn=2cþ1s1Þ where ðsnsn�1. . .sbn=2cþ1Þ and ðsbn=2csbn=2c�1. . .s2Þ of S are swapped.
Figure 1 presents a 5-dimensional half hypercube (HH5) [1].

3 Broadcasting Algorithm for HHn

Broadcasting is a basic data communication technique for interconnection net-
works involving message transmission between nodes and is used by parallel
algorithms [7, 10]. There are two types of broadcasting communication: one-to-
many transmission, which transmits messages from a node to all the other nodes,

Fig. 1 Example of a 5-dimensional half hypercube (HH5) [1]
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and many-to-many transmission, which transmits messages among nodes. Here,
we will demonstrate that the one-to-many broadcasting time of HHn is n ? 1 when
n is even and the broadcasting time is 2� dn=2e when n is odd.

Theorem 1 When n is even, the one-to-many broadcasting time of HHn is n ? 1
and when n is odd, the one-to-many broadcasting time of HHn is 2� dn=2e.

Proof Each cluster of HHn represents a hypercube and the one-to-many broad-
casting time of a hypercube Qm is m. A cluster is connected to all the other clusters
in HHn by an external sw-edge. The broadcasting process is divided into three
phases as follows:

(1) Phase 1: Node S transmits messages to all the other nodes within its cluster
(2) Phase 2: All nodes within the cluster to which node S belongs, including node

S transmit messages to an arbitrary node in all the other clusters of HHn using
an external sw-edge.

(3) Phase 3: Repeat the process of Phase 1 in each cluster of HHn.

When n is even, the one-to-many broadcasting time is as follows. As the
broadcasting time of an internal cluster of HHn is the same as the one-to-many
broadcasting time of a hypercube, the broadcasting time of Phase 1 is n/2. As
broadcasting is performed only once in Phase 2, its broadcasting time is 1. As
Phase 3 repeats the process of Phase 1, the broadcasting time is n/2. Therefore, the
one-to-many broadcasting time of HHn is n=2þ 1þ n=2 ¼ nþ 1 when n is even.

When n is odd, the one-to-many broadcasting time is as follows. As the broad-
casting time of an internal cluster of HHn is the same as the one-to-many broad-
casting time of a hypercube, the broadcasting time of Phase 1 is n=2. As broadcasting
is performed only once in Phase 2, its broadcasting time is 1. If n is odd, the number
of the sw-edges connecting clusters is 2 or 4. Thus, the number of nodes that initiate a
message transmission is 2 or 4 in Phase 3. If the number of start nodes is 2, the one-
to-many broadcasting time of a hypercube is reduced by 1. Therefore, the
broadcasting time of Phase 3 is dn=2e � 1. Consequently, the one-to-many
broadcasting time of HHn is dn=2e þ 1þ dn=2e � 1 ¼ 2� dn=2e when n is odd.

4 Embedding Between Hypercube and Half
Hypercube Graphs

Numerous parallel processing algorithms are being designed to solve many
problems in a variety of interconnection network structures. Whether such algo-
rithms designed for a specific interconnection network structure can be run on
different interconnection network structures is an important issue in parallel pro-
cessing. One of the most widely used measuring methods for this issue is
embedding [10, 11], which involves mapping the processors and communication
links of an interconnection network into those of another interconnection network.
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We can represent an interconnection network as a graph G(V, E), where
V(G) and E(G) are the set of nodes and edges of graph G, respectively, and the set
of paths of graph G is P(G). The embedding of an interconnection network G(V, E)
into another interconnection network G0(V0, E0) is defined as a function (U, q),
where U maps the set of vertices V(G) one-to-one into the set of vertices V0(G0) and
q maps the set of edges E(G) into the set of paths P0(G0); that is, U: V ? V0 and q:
E ? P(G0). The representative measurement parameters for embedding costs are
dilation and congestion. Dilation is the length of the shortest path from node S0 to
node T0 in G0 when the nodes S and T of an edge (S, T) in G are mapped to nodes S0

and T0 of G0; i.e., the number of edges comprising the shortest path from node S0 to
node T0 in G0. Congestion is the number of edges in G that pass an edge e in G0

when G is mapped to G0 [3, 4]. In this section, we analyze the embedding between
a hypercube Qn and a half hypercube HHn using dilation.

Theorem 2 An n-dimensional hypercube Qn can be embedded into an n-dimen-
sional half hypercube HHn with dilation 3.

Proof We can analyze the dilation of this mapping through the number of edges of
HHn required to map the k-dimensional edge 1� k� nð Þ, which represents the
adjacent relationships of the nodes in Qn, into edges in HHn. Theorem 4 is proven
by dividing the k-dimensional edge of Qn into two cases depending on the
dimension of k.

Case 1 k-dimensional edge, 1� k�dn=2e
It can be easily observed that the k-dimensional edge of hypercube

Qn ð1� k�dn=2eÞ are the same as the h-dimensional edge of half hypercube HHn

ð1� h� n=2eÞ. Therefore, it is clear that the embedding of an n-dimensional
hypercube Qn into an n-dimensional half hypercube HHn is possible with dilation 1
when the two adjacent nodes via a k-dimensional edge in Qn are mapped to two
adjacent nodes through an h-dimensional edge in HHn.

Case 2 k-dimensional edge, dn=2e þ 1� k� n
The address of node S0 adjacent to an arbitrary node Sð¼snsn�1sn�2. . .sk. . .

sn=2. . .s3s2s1Þ of Qn via a k-dimensional edge has the complement at exactly
one k position of the bit string of node S (i.e., bit sk). An edge of HHn that has the
same role as the k-dimensional edge of hypercube Qn can be presented by
sequentially applying the following edge sequence: \sw-edge, ðk � dn=2eÞ-edge,
sw-edge[ ðdn=2e þ 1� k� nÞ. That is, it reaches a node with the address
snsn�1sn�2. . .�sk. . .sn=2. . .s3s2s1 when the edge sequence \sw-edge, ðk � dn=2eÞ-
edge, sw-edge[ is applied sequentially to node Sð¼snsn�1sn�2. . .sk. . .sn=2. . .

s3s2s1Þ of HHn. Let a node S0 adjacent to node Sð¼snsn�1sn�2. . .sk. . .sn=2. . .

s3s2s1Þ of hypercube Qn via a k-dimensional edge ðdn=2e þ 1� k� nÞ be
S0 ¼snsn�1sn�2. . .�sk. . .sn=2. . .s3s2s1
� �

.

The address of node sw(S) adjacent to node Sð¼ snsn�1sn�2. . .sk. . .sdn=2eþ1sdn=2e. . .

s3s2s1Þ of HHn via an sw-edge is sdn=2e. . .s3s2s1snsn�1sn�2. . .sk. . .sdn=2eþ1. To invert
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the bit sk in the bit string of node sw(S) to the complement, we take a node
S00ð¼sdn=2e. . .s3s2s1snsn�1sn�2. . .�sk. . .sdn=2eþ1Þ adjacent to node sw(S) via a
ðk � dn=2eÞ-dimensional edge. The address adjacent to node S00 through an sw-edge
is snsn�1sn�2. . .�sk. . .sdn=2eþ1sdn=2e. . .s3s2s1. Therefore, the embedding of a
k-dimensional edge of Qn into a half hypercube HHn is possible with dilation 3.
Figure 2 presents an example of embedding between Q8 and HH8 with dilation 3.

Theorem 3 A half hypercube HHn can be embedded into a hypercube Qn with
dilation n.

Proof There exist two types of edges in half hypercube HHn. Thus, we proved
Theorem 5 by dividing it into two cases: h-edge and sw-edge.

Case 1 h-edge, 1� h�dn=2e
The address of node S0 adjacent to node Sð¼snsn�1sn�2. . .sn=2. . .s3s2s1Þ of half

hypercube HHn via an h-edge is snsn�1sn�2. . .sn=2. . .�sh. . .s3s2s1 ð1� h�dn=2eÞ.
The address of node S0 adjacent to node Sð¼snsn�1sn�2. . .sk. . .sn=2. . .s3s2s1Þ of
hypercube Qn through a k-dimensional edge ð1� k� nÞ is snsn�1sn�2. . .�sk. . .
sn=2. . .s3s2s1. Accordingly, the dilation of this embedding is 1 because the h-edge
in half hypercube HHn and the k-dimensional edge in Qn are equivalent
ð1� h; k�dn=2eÞ.

Case 2 sw-edge
The sw-edge of half hypercube HHn can be divided into two cases depending on

the address of node Sð¼snsn�1sn�2. . .sn=2. . .s3s2s1Þ. Here, we prove the case with
dilation n. If the n-address bits of node S are all binary 0, the n-address bits of node
S0 adjacent to node S through an sw-edge are all binary 1. The shortest path from
node Sð¼snsn�1sn�2. . .sn=2. . .s3s2s1Þ to node S0ð¼snsn�1sn�2. . .sn=2. . .s3s2s1Þ in
hypercube Qn is the same as the path to which the k-dimensional edges are all
applied. Therefore, a half hypercube HHn can be embedded into a hypercube Qn

with dilation n 1� k� nð Þ.

Fig. 2 Embedding example
between Q8 and HH8 with
dilation 3
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5 Conclusion

This paper proposes a one-to-many broadcasting algorithm for the half hypercube
interconnection network, HHn that we proposed in [1], and proved that the one-to-
many broadcasting time is n ? 1 when n is even and 2� dn=2e when n is odd in
HHn. We also showed that it is possible to embed an n-dimensional hypercube Qn

into an n-dimensional half hypercube HHn with dilation 3, and that it is possible to
embed HHn into Qn with dilation n. These results suggest that our half hypercube
interconnection network HHn has potential for implementation in large-scale
systems for parallel processing.
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