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Abstract This paper proposes a new half hypercube interconnection network that
has the same number of nodes as a hypercube but reduces the degree by
approximately half. To evaluate the effectiveness of the proposed half hypercube,
its connectivity, routing, and diameter properties were analyzed. The analysis
results demonstrate that the proposed half hypercube is an appropriate
interconnection network for implementation in large-scale systems.
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1 Introduction

The need for high-performance parallel processing is increasing because modern
engineering and science application problems require many computations with
real-time processing. A parallel processing system can connect thousands of
processors with their own memory, or even more via an interconnection network
enabling inter-processor communication by passing messages among processors
through the network. An interconnection network can be depicted with an
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undirected graph. The most common parameters for evaluating the performance of
interconnection networks are degree, connectivity, diameter, network cost, and
broadcasting [1, 2].

In an interconnection network, degree (relevant to hardware cost) and diameter
(relevant to message transmission time) are correlated. In general, the throughput of
an interconnection network is improved with a higher degree because the diameter
of the network is increased when its degree is increased. However, a parallel
computer design increased the hardware costs of an interconnection network,
because of the increased number of processor pins. An interconnection network
with a lower degree can reduce hardware costs, but its latency and throughput are
degraded because the message transmission time is increased. Due to such char-
acteristics of interconnection networks, the network cost (= degree 9 diameter) is a
typical parameter used to evaluate interconnection network performance [3].

The hypercube is a typical interconnection network topology and is widely used
in both research and commercial fields due to its advantages that can easily pro-
vide a communication network structure as required in various application areas.
The hypercube is node- and edge-symmetric with a simple routing algorithm,
maximum fault tolerance, and simple recursive structure. Additionally, it can be
easily embedded in various types of existing interconnection networks [4, 5].
However, it has the drawback of increasing network costs associated with the
increased degree when the number of nodes increases. To improve this short-
coming, a number of variations of the hypercube have been proposed, such as
multiple reduced hypercube [3], twisted cube [6], folded hypercube [7], connected
hypercube network [8], and extended hypercube [9]. This paper proposes a new
variation of the hypercube that reduces the hypercube degree by approximately
half with the same number of nodes: the Half Hypercube (HH). We denote an n-
dimensional half hypercube as HHn. To validate the effectiveness of the proposed
HH, performance measurement parameters were analyzed, such as connectivity,
routing, and diameter.

This paper is organized as follows. Section 2 presents the definition of the
proposed HH and discusses its properties, including connectivity. Section 3 pro-
poses and analyzes a simple routing algorithm and the diameter of the HH.
Section 4 summarizes and concludes the paper.

2 Definition and Properties of the Proposed Half
Hypercube

The hypercube Qn (n C 2) is defined as an n-dimensional binary cube where the
nodes of Qn are all binary n-tuples. Two nodes of Qn are adjacent to each other if
and only if their corresponding n-tuples differ in one bit at exactly one position
[10]. Qn is an n-regular graph with 2n nodes and its diameter is n. In this paper, �S
indicates the complement of the binary string S ¼ snsn�1. . .s1ð Þ; that is, it is
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obtained by inverting all the bits in the binary number (inverting 1’s for 0’s and
vice versa).

We denote an n-dimensional half hypercube as HHn and represent its node with
n binary bits. Let the address of node S in HHn be snsn�1sn�2. . .si. . .s3s2s1ðn� 3Þ.
There are two types of edge in HHn: the h-edge, which connects node
Sð¼ snsn�1sn�2. . .si. . .s3s2s1Þ to a node that has the complement in exactly one
h position of the bit string of node Sð1� h�dn=2eÞ, and the sw-edge (i.e., swap-
edge), which connects node Sð¼ snsn�1sn�2. . .shsh�1. . .s3s2s1Þ to a node in which
the bn=2c leftmost bits of the bit string of S and the bn=2c bits on the right-side of
S starting from the bn=2c bit are swapped ðh ¼ bn=2cÞ. For example, when n is
even, node Sð¼ snsn�1sn�2. . .sbn=2cþ1sbn=2csbn=2c�1sbn=2c�2. . .s3s2s1Þ is connected to
node ðsbn=2csbn=2c�1sbn=2c�2. . .s3s2s1snsn�1sn�2. . .sbn=2cþ1Þ in which ðsnsn�1sn�2. . .

sbn=2cþ1Þ and ðsbn=2csbn=2c�1sbn=2c�2. . .s3s2s1Þ of S are exchanged. When n is odd,
node S is connected to node ðsbn=2csbn=2c�1sbn=2c�2 . . .s3s2snsn�1sn�2. . .sbn=2cþ1s1Þ in
which ðsnsn�1sn�2. . .sbn=2cþ1Þ and ðsbn=2csbn=2c�1sbn=2c�2. . .s3s2Þ of S are swapped.
However, if two parts of bn=2c bits to exchange in the bit string of node S are the
same, the node S connects to node snsn�1sn�2. . .s n=2j jþ1s n=2j js n=2j j�1s n=2j j�2. . .s3s2s1;

which is the one’s complement of the binary number of node S. Figure 1 shows an
example of a 5-dimensional half hypercube (HH5). The degree of HHn is
dn=2e þ 1, which adds the number of h-edges ð1� h�dn=2eÞ and one of the sw-
edges. Table 1 presents the degree of HH according to the dimension of HH
graphs.

Lemma 1 An HHn graph is expanded with recursive structures.

Proof An HHn graph is constructed with the nodes of two (n-1)-dimensional
HHn-1 graphs by adding one sw-edge or h-edge. The address of each node in an
HHj graph is represented as j bit strings with binary numbers {0, 1} (i.e., with a

Fig. 1 Example of a 5-dimensional half hypercube (HH5)
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binary number of length j). We denote HH0
j when the bit at the j ? 1 position of

the address of a node (i.e., at the j ? 1 position of the bit string of a node) is binary
0, and denote HH1

j when it is binary 1. Let us examine the expansion of HHn by
dividing it into two cases: when the dimension n is even and n is odd.

Case 1 When expanded from an odd-dimension (j) to an even-dimension (k),
k = j ? 1.

Let us construct an HHk graph by connecting a node of HH0
j and a node of HH1

j

in HHj (k = j ? 1). When expanded from an HHj graph to an HHk graph, the
sw-edges in HHj will be replaced with new sw-edges in the expanded HHk graph.
A node of HH0

j the address bit of which is binary 1 at the n=2 position, will be

connected to a node of HH1
j through an sw-edge in HHk. When the bit is binary 0,

the node will be connected to a node of HH0
j .

Case 2 When expanded from an even-dimension (k) to an add-dimension (l),
l = k ? 1.

We construct an HHl graph by connecting a node of HH0
k and a node of HH1

k in
HHk. When expanded from an HHk graph to HHl, the sw-edges in HHk will be
replaced with new sw-edges in the expanded HHl graph. A node of HH0

k , the
address bit of which is binary 1 at the dn=2e position, will be connected to a node
of HH1

k via an sw-edge in HHl. When the bit is binary 0, the node will be connected
to a node of HH0

k .

Lemma 2 There exist 2bn=2cdn=2e-dimensional hypercube structures in an HHn

graph.

Proof An h-edge of HHn connects node Sð¼ snsn�1sn�2. . .sh. . .s3s2s1Þ to a node,
the address bit of which is the complement of the bit string of node S at exactly one
h position ð1� h�dn=2eÞ. The h-edge of HHn is equal to the edge of a hypercube.
Therefore, the structure of a partial graph constructed from HHn via the h-edge is
the same as the structure of a dn=2e-dimensional hypercube. Let us assume that a
partial graph that has the same structure as an dn/2e-dimensional hypercube is
HH n=2½ �

n in HHn and refer to it as a cluster. Here, the address of each node in a
cluster is sh. . .s3s2s1. The number of clusters consisting of the HHn graph is 2bn=2c

because the number of bit strings that can be configured by the bit string
snsn�1sn�2. . .sh is 2bn=2c Node (or edge) connectivity is the minimum number of
nodes (or edges) that must be removed to disconnect an interconnection network to

Table 1 Degree of HHn according to its dimension

Dimension 3 4 5 6 7 8 … 13 14 15 16 … n

Edge Type h-edge 2 2 3 3 4 4 … 7 7 8 8 … dn=2e
sw-edge 1 1 1 1 1 1 … 1 1 1 1 … 1

Degree 3 3 4 4 5 5 … 8 8 9 9 … dn=2e þ 1
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two or more parts without duplicate nodes. If a given interconnection network
remains connected with the removal of any arbitrary k-1 or fewer nodes, but the
interconnection network becomes disconnected with the removal of any arbitrary
k nodes, then the connectivity of the interconnection network is k. When the
degree and node connectivity of a given interconnection network are the same, we
say that the interconnection network has maximum fault-tolerance [3]. It has been
proven that k(G) B k(G) B d(G) where the node connectivity, edge connectivity,
and degree of interconnection network G are denoted as k(G), k(G), and d(G),
respectively [6, 11]. Through the proving process of k(HHn) = k(HHn) = d(HHn)
in Theorem 1, we will demonstrate that the proposed HHn has maximum
fault-tolerance.

Theorem 1 The connectivity of HHn; kðHHnÞ ¼ dn=2e þ 1ðn� 3Þ.

Proof Let us prove that HHn remains connected even when n nodes are deleted
from HHn. Through Lemma 2, we know that an HHn graph is composed of
clusters, and all clusters in HHn are hypercubes and two arbitrary nodes are
connected via an sw-edge. Assuming that X is a partial graph of HHn where
|X| = n, it will be proven that kðHHnÞ� dn=2e þ 1 by demonstrating that HHn

remains connected even after the removal of X. This will be done by dividing two
cases in accordance with the location of X. We denote the HHn in which X is
deleted as HHn–X and a node of HHn as S.

Case 1 When X is located in one cluster of HHn:

The degree of each node in a cluster is dn=2e. If dn=2e nodes adjacent to an
arbitrary node S of the cluster are the same as the nodes to be deleted from X, HHn

is divided into two components: an interconnection network HHn–X and a node
S. However, all nodes in a cluster are linked to other clusters in HHn via sw-edges,
and 2bn=2c � 1 clusters in which X is not located are also connected to other clusters
via sw-edges. Therefore, HHn–X is always connected when X is included in only a
cluster of HHn.

Case 2 When X is located across two or more clusters of HHn:

As the nodes of X to be deleted are included across two or more clusters of HHn,
the number of nodes to be deleted from a cluster is at most dn=2e � 1. However,
even if dn=2e � 1 nodes adjacent to an arbitrary node S of a cluster are deleted, the
nodes of the cluster in which node S is included remain connected because the
degree of a node in a cluster is dn=2e. Although the other node to be removed is
located in a different cluster, and not in the cluster that includes node S, it is still
clear that HHn remains connected. Therefore, kðHHnÞ� dn=2e þ 1 because HHn

always remains connected after removing X from any clusters in HHn and
kðHHnÞ� dn=2e þ 1 because the degree of HHn is dn=2e þ 1. Consequently, the
connectivity of HHn; kðHHnÞ ¼ dn=2e þ 1.
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3 Routing Algorithm and Diameter of HHn

This section analyzes a simple routing algorithm and diameter of HHn. We assume
that an initial node S is snsn�1sn�2. . .sn=2. . .s3s2s1 and a destination node T is
tntn�1tn�2. . .tn=2. . .t3t2t1. A simple routing algorithm can be considered in two
cases depending on whether n is an even or an odd number.

Case 1 When n is an even number
If an initial node Sð¼ snsn�1sn�2. . .sn=2sn=2�1. . .s3s2s1Þ is presented with two dn=2e
bit strings Að¼ snsn�1sn�2. . .sn=2Þ and Bð¼ sn=2�1. . .s3s2s1Þ, node S can be denoted
as AB. In the same way, a destination node Tð¼ tntn�1tn�2. . .tn=2tn=2�1. . .t3t2t1Þ can

be denoted as CD where C ¼ tntn�1tn�2. . .tn=2

� �
and D ¼ tn=2�1. . .t3t2t1

� �
(i.e., C is

the dn=2e leftmost bits and D is the dn=2e rightmost bits in the bit string of node T).

Simple routing algorithm-even:

(1) Convert the bit string of B in node S(= AB) with the bit string C in node
T(= CD) using h-edge ð1� h�dn=2eÞ.

(2) Exchange the bit string of A with that of C in node S(= AC) using sw-edge.
(3) Convert the bit string of A in node Sð¼ CAÞ with D of node Tð¼ CDÞ using

h-edge.

In Phases (1) and (3), the bit string B is converted with C and A is converted
with D using the hypercube routing algorithm.

Corollary 1 When n is even, the length of the shortest path is 2� dn=2e þ 1 ¼
nþ 1 by the above simple routing algorithm-even.

Case 2 When n is an odd number
Let the initial node be Sð¼ snsn�1sn�2. . .sbn=2cþ1sbn=2csbn=2c�1. . .s3s2s1Þ, the bn=2c
leftmost bits of the bit string of S be Að¼ snsn�1sn�2. . .sbn=2cþ1Þ and the bn=2c bits
on the right-side of S starting from the bn=2c bit be Bð¼ sbn=2csbn=2c�1. . .s3s2Þ.
Then, node S can be denoted as (ABs1). In the same way, a destination node
Tð¼ tntn�1tn�2. . .tbn=2cþ1tbn=2ctbn=2c�1. . .t3t2t1Þ can be denoted as (CDt1), where
Cð¼ tntn�1tn�2. . .tbn=2cþ1Þ and Dð¼ tbn=2ctbn=2c�1. . .t3t2Þ.

Simple routing algorithm-odd:

(1) Convert the bit string of B in node Sð¼ ABs1Þ with the bit string C in node
Tð¼ CDt1Þ using h-edge ð1� h�bn=2cÞ.

(2) Exchange the bit string of A with that of C in node S(= ACs1) using sw-edge.
(3) Convert the bit string of As1 in node Sð¼ CAs1Þ with Dt1 of node Tð¼ CDt1Þ

using h-edge 1� h�bn=2cð Þ.

In Phases (1) and (3), the bit string B is swapped with C and As1 is swapped
with Dt1 using the hypercube routing algorithm.

542 J.-S. Kim et al.



Corollary 2 When n is odd, the length of the shortest path is 2� bn=2c þ 2 by the
above simple routing algorithm-odd.

Through the proposed simple routing algorithms, we can see an upper bound for
the diameter of HHn, thus proving Theorem 2.

Theorem 2 The upper bound on the diameter of HHn is n ? 1 when n is even and
2� bn=2c þ 2 when n is odd.

4 Conclusion

This paper proposed a half hypercube interconnection network HHn (a new vari-
ation of the hypercube) that reduced the degree by approximately half, n/2, even
though it has the same number of nodes as a hypercube. To evaluate the effec-
tiveness of the proposed half hypercube, we analyzed its connectivity and diameter
properties. We also analyzed a simple routing algorithm of HHn and presented an
upper bound for the diameter of HHn. These results demonstrate that the proposed
half hypercube is an appropriate interconnection network for implementation in a
large-scale system.
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