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Abstract Support Vector Machine (SVM) has been shown powerful in pattern
recognition problems. SVM-based speaker verification has also been developed to
use the concept of sequence kernel that is able to deal with variable-length patterns
such as speech. In this paper, we propose a new kernel function, named the
Log-Likelihood Ratio (LLR)-based composite sequence kernel. This kernel not
only can be jointly optimized with the SVM training via the Multiple Kernel
Learning (MKL) algorithm, but also can calculate the speech utterances in the
kernel function intuitively by embedding an LLR in the sequence kernel. Our
experimental results show that the proposed method outperforms the conventional
speaker verification approaches.
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1 Introduction

The task of speaker verification problem is to determine whether or not an input
speech utterance U was spoken by the target speaker. In essence, speaker
verification is a hypothesis test problem that is generally formulated as a Log-
Likelihood Ratio (LLR) [1] measure. Various LLR measures have been designed
[1–4]. One popular LLR approach is the GMM-UBM system [1], which is
expressed as

LUBMðUÞ ¼ log pðUjkÞ � log pðUjXÞ; ð1Þ
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where k is a target speaker Gaussian Mixture Model (GMM) [1] trained using
speech from the claimed speaker, and X is a Universal Background Model (UBM)
[1] trained using all the speech data from a large number of background speakers.
Instead of using a single model UBM, an alternative approach is to train a set of
background models {k1, k2,…, kN} using speech from several representative
speakers, called a cohort [2], which simulates potential impostors. This leads to
several LLR measures [3], such as

LMaxðUÞ ¼ log pðUjkÞ � max
1� i�N

log pðUjkiÞ; ð2Þ

LAriðUÞ ¼ log pðUjkÞ � log
XN

i¼1
pðUjkiÞ=N

� �
; ð3Þ

LGeoðUÞ ¼ log pðUjkÞ �
XN

i¼1
log pðUjkiÞ

� �
=N; ð4Þ

and a well-known score normalization method called T-norm [4]:

LTnormðUÞ ¼ LGeoðUÞ=rU ; ð5Þ

where rU is the standard deviation of N scores, log pðUjkiÞ; i ¼ 1; 2; . . .;N:
In recent years, Support Vector Machine (SVM)-based speaker verification

methods [5–8] have been proposed and successfully found to outperform tradi-
tional LLR-based approaches. Such SVM methods use the concept of sequence
kernels [5–8] that can deal with variable-length input patterns such as speech.
Bengio [5] proposed an SVM-based decision function:

LBengioðUÞ ¼ a1 log pðUjkÞ � a2 log pðUjXÞ þ b; ð6Þ

where a1, a2, and b are adjustable parameters estimated using SVM. An extended
version of Eq. (6) using the Fisher kernel and the LR score-space kernel for SVM
was investigated in [6]. The supervector kernel [7] is another kind of sequence
kernel for SVM that is formed by concatenating the parameters of a GMM or
Maximum Likelihood Linear Regression (MLLR) [8] matrices. Chao [3] proposed
using SVM to directly fuse multiple LLR measures into a unified classifier with an
LLR-based input vector. All the above-mentioned methods have the same point
that must convert a variable-length utterance into a fixed-dimension vector before
a kernel function is computed. Since the fixed-dimension vector is formed inde-
pendent of the kernel computation, this process is not optimal in terms of overall
design.

In this paper, we propose a new kernel function, named the LLR-based com-
posite sequence kernel, which attempts to compute the kernel function without
needing to represent utterances into fixed-dimension vectors in advance. This
kernel not only can be jointly optimized with the SVM training via the Multiple
Kernel Learning (MKL) [9] algorithm, but also can calculate the speech utterances
in the kernel function intuitively by embedding an LLR in the sequence kernel.
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2 Kernel-Based Discriminant Framework

In essence, there is no theoretical evidence to indicate what sort of LLR measures
defined in Eqs. (1)–(5) is absolutely superior to the others. An intuitive way [3] to
improve the conventional LLR-based speaker verification methods would be to fuse
multiple LLR measures into a unified framework by virtue of the complementary
information that each LLR can contribute. Given M different LLR measures, Lm(U),
m = 1, 2,…, M, a fusion-based LLR measure [3] can be defined as

LFusionðUÞ ¼ wTUðUÞ þ b; ð7Þ

where b is a bias, w ¼ ½w1 w2 . . . wM�T and UðUÞ ¼ ½L1ðUÞ L2ðUÞ . . . LMðUÞ�T are
the M 9 1 weight vector and LLR-based vector, respectively. The implicit idea of
U(U) is that a variable-length input utterance U can be represented by a fixed-
dimension characteristic vector via a nonlinear mapping function U(�). Equation (7)
forms a nonlinear discriminant classifier, which can be implemented by using the
kernel-based discriminant technique, namely the Support Vector Machine (SVM)
[10]. The goal of SVM is to find a separating hyperplane that maximizes the margin

between classes. Following [10], w in Eq. (7) can be expressed as w ¼
PJ

j¼1 yjajUðUjÞ; which yields an SVM-based measure:

LSVMðUÞ ¼
XJ

j¼1
yjajkðUj;UÞ þ b; ð8Þ

where each training utterance Uj, j = 1, 2,…, J, is labeled by either yj = 1 (the
positive sample) or yj = -1 (the negative sample), and k(Uj, U) = U(Uj)

T U(U) is
the kernel function [10] represented by an inner product of two vectors U(Uj) and
U(U). The coefficients aj and b can be solved by using the quadratic programming
techniques [10].

2.1 LLR-Based Multiple Kernel Learning

The effectiveness of SVM depends crucially on how the kernel function k(�) is
designed. A kernel function must be symmetric, positive definite, and conform to
Mercer’s condition [10]. There are a number of kernel functions [10] used in
different applications. For example, the sequence kernel [6] can take variable-
length speech utterances as inputs. In this paper, we rewrite the kernel function in
Eq. (8) as

kðUj;UÞ ¼ ½L1ðUjÞ . . .LMðUjÞ�½L1ðUÞ . . .LMðUÞ�T ¼
XM

m¼1
kmðUj;UÞ: ð9Þ

Complying with the closure property of Mercer kernels [10], Eq. (9) becomes a
composite kernel represented by the sum of M LLR-base sequence kernels [11]
defined by
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kmðUj;UÞ ¼ LmðUjÞ � LmðUÞ; ð10Þ

where m = 1, 2,…, M. Since the design of Eq. (9) does not involve any optimi-
zation process with respect to the combination of M LLR-base sequence kernels,
we further redefine Eq. (9) as a new form, named the LLR-base composite
sequence kernel, in accordance with the closure property of Mercer kernels [10]:

kcomðUj;UÞ ¼
XM

m¼1
bmkmðUj;UÞ; ð11Þ

where bm is the weight of the m-th kernel function km(�) subject to
PM

m¼1 bm ¼ 1
and bm� 0; 8m: This combination scheme quantifies the unequal nature of
M LLR-base sequence kernel functions by a set of weights {b1, b2,…, bM}. To
obtain a reliable set of weights, we apply the MKL [9] algorithm. Since the
optimization process is related to the speaker verification accuracy, this new
composite kernel defined in Eq. (11) is expected to be more effective and robust
than the original composite kernel defined in Eq. (9).

The optimal weights bm can be jointly trained with the coefficients aj of the
SVM in Eq. (8) via the MKL algorithm [9]. Optimization of the coefficients aj and
the weights bm can be performed alternately. First we update the coefficients aj

while fixing the weights bm, and then we update the weights bm while fixing the
coefficients aj. These two steps can be repeated until convergence. In this work, the
MKL algorithm is implemented via the SimpleMKL toolbox developed by
Rakotomamonjy et al. [9].

3 Experiments

3.1 Experimental Setup

Our speaker verification experiments were conducted on the speech data extracted
from the extended M2VTS database (XM2VTSDB) [12]. In accordance with
‘‘Configuration II’’ described in Table 1 [12], the database was divided into three
subsets: ‘‘Training’’, ‘‘Evaluation’’, and ‘‘Test’’. In our experiments, we used
‘‘Training’’ to build each target speaker GMM and background models, and
‘‘Evaluation’’ to estimate the coefficients aj in Eq. (8) and the weights bm in Eq. (11).
The performance of speaker verification was then evaluated on the ‘‘Test’’ subset.

As shown in Table 1, a total of 293 speakers in the database were divided into
199 clients (target speakers), 25 ‘‘evaluation impostors’’, and 69 ‘‘test impostors’’.
Each speaker participated in 4 recording sessions at approximately one-month
intervals, and each recording session consisted of 2 shots. In a shot, every speaker
was prompted to utter 3 sentences ‘‘0 1 2 3 4 5 6 7 8 9’’, ‘‘5 0 6 9 2 8 1 3 7 4’’, and
‘‘Joe took father’s green shoe bench out’’. Each utterance, sampled at 32 kHz, was
converted into a stream of 24-order feature vectors, each consisting of 12 mel-
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frequency cepstral coefficients (MFCCs) [13] and their first time derivatives, by a
32-ms Hamming-windowed frame with 10-ms shifts.

We used 12 (2 9 2 9 3) utterances/client from sessions 1 and 2 to train the
client model, represented by a GMM with 64 mixture components. For each client,
the other 198 clients’ utterances from sessions 1 and 2 were used to generate the
UBM, represented by a GMM with 256 mixture components; 50 closest speakers
were chosen from these 198 clients as a cohort. Then, we used 6 utterances/client
from session 3, along with 24 (4 9 2 9 3) utterances/evaluation-impostor, which
yielded 1,194 (6 9 199) client examples and 119,400 (24 9 25 9 199) impostor
examples, to estimate aj and bm. However, recognizing the fact that the kernel
method can be intractable when a huge amount of training examples involves, we
downsized the number of impostor examples from 119,400 to 2,250 using a
uniform random selection method. In the performance evaluation, we tested
6 utterances/client in session 4 and 24 utterances/test-impostor, which produced
1,194 (6 9 199) client trials and 329,544 (24 9 69 9 199) impostor trials.

3.2 Experimental Results

We implemented two SVM systems, LFusion(U) in Eq. (7) (‘‘LLRfusion’’) and
kcom(Uj,U) in Eq. (11) (‘‘MKL_LLRfusion’’), both of which are fused by five LLR-
based sequence kernel functions defined in Eqs. (1)–(5). For the purpose of
performance comparison, we used six baseline systems, LUBM(U) in Eq. (1)
(‘‘GMM-UBM’’), LBengio(U) in Eq. (6) (‘‘GMM-UBM/SVM’’), LMax(U) in
Eq. (2) (‘‘Lmax_50C’’), LAri(U) in Eq. (3) (‘‘Lari_50C’’), LGeo(U) in Eq. (4)
(‘‘Lgeo_50C’’), and LTnorm(U) in Eq. (5) (‘‘Tnorm_50C’’), where 50C represents
50 closest cohort models were used. Figure 1 shows the results of speaker veri-
fication evaluated on the ‘‘Test’’ subset in terms of DET curves [14]. We can
observe that the curve ‘‘MKL_LLRfusion’’ not only outperforms six baseline
systems, but also performs better than the curve ‘‘LLRfusion’’. Further analysis of
the results via the minimum Half Total Error Rate (HTER) [14] showed that a
5.76 % relative improvement was achieved by ‘‘MKL_LLRfusion’’ (the minimum
HTER = 3.93 %), compared to 4.17 % of ‘‘LLRfusion’’.

Table 1 Configuration of
the speech database

Session Shot 199 clients 25 impostors 69 impostors

1 1 Training Evaluation Test
2

2 1
2

3 1 Evaluation
2

4 1 Test
2
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4 Conclusion

In this paper, we have presented a new kernel function, named the Log-Likelihood
Ratio (LLR)-based composite sequence kernel, for SVM-based speaker verifica-
tion. This kernel function not only can be jointly optimized with the SVM training
via the Multiple Kernel Learning (MKL) algorithm, but also can calculate the
speech utterances in the kernel function intuitively by embedding an LLR in the
sequence kernel. Our experimental results have shown that the proposed system
outperforms the conventional speaker verification approaches.
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