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Abstract A traffic signal control mechanism is proposed to improve the dynamic
response performance of a traffic flow control system in an urban area. The nec-
essary sensor networks are installed in the roads and on the roadside upon which
reinforcement learning is adopted as the core algorithm for this mechanism. A
traffic policy can be planned online according to the updated situations on the
roads based on all the information from the vehicles and the roads. The optimum
intersection signals can be learned automatically online. An intersection control
system is studied as an example of the mechanism using Q-learning based algo-
rithm and simulation results showed that the proposed mechanism can improve
traffic efficiently more than a traditional signaling system.
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1 Introduction

Intelligent Transportation Systems (ITS) utilizes synergistic technologies and
systems engineering concepts to develop and improve transportation systems of all
kinds [1]. Machine intelligence on the road has been a popular research area with
the advent of modern technologies especially artificial intelligence, wireless
communication and advanced novel sensors.

Current traffic signal control system design is based on historic traffic flow data
which cannot adapt itself to the rapidly varying situations at a crossroad. In some
extreme situations, there are no vehicles during a green light and lots of vehicles
waiting at a red one.

Many researchers have proposed schemes to solve the afore-mentioned prob-
lems like Choy et al. [2] who introduced hybrid agent architecture for real-time
signal control. He suggested in his paper a dynamic database for storing all rec-
ommendations of the controller agents for each evaluation period. Liu et al. [3]
proposed a calculating method of intersection delay under signal control while
Bao et al. [4] studied an adaptive traffic signal timing scheme for an isolated
intersection. However all these papers solve the problem according to the history
flow data but not the current information [5, 6].

This paper makes the following contributions in particular:

(a) A novel traffic flow control mechanism is proposed based on the cooperation
of the vehicle, road and traffic management systems. A roadside wireless
communication network supports a dynamic traffic flow control method.

(b) Reinforcement learning is introduced as the core algorithm to dynamically
plan traffic flow in order to improve efficiency. A Q-learning based intersec-
tion traffic signal control system is studied as an example of the proposed
mechanism.

2 Study of Intersection Signal Control

In this section, a Q learning algorithm will be used to create a real time cooper-
ation policy for an isolated intersection control under the proposed Traffic Control
Mechanism. The algorithm and the simulation are both described in detail. The
result shows the advantage of the proposed method.

2.1 Q-Learning Algorithm

Q learning, a type of reinforcement learning, can develop optimal control strate-
gies from delayed rewards, even when an agent has no prior knowledge of the
effects of its actions on the environment [7].
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The agent’s learning task can be described as follows. We require that the agent
learn a policy p that maximizes VpðsÞ for all states s. We will call such a policy an
optimal policy and denote it by p�

p� � arg max
p

VpðsÞ; ð8sÞ ð1Þ

To simplify notation, we will refer to the value function Vp� ðsÞ of such an
optimal policy as V�ðsÞ. V�ðsÞ gives the maximum discounted cumulative reward
that the agent can obtain starting from state s; that is, the discounted cumulative
reward obtained by following the optimal policy beginning at state s.

However, it is difficult to learn the function p� : S! A directly, because the
available training data does not provide training examples of the form \s; a [.
Instead, the only training information available to the learner is the sequence of
immediate rewards rðsi; aiÞfor i ¼ 0; 1; 2; . . .. As we shall see, given this kind of
training information it is easier to learn a numerical evaluation function defined
over states and actions, then implement the optimal policy in terms of this eval-
uation function.

What evaluation function should the agent attempt to learn? One obvious
choice is V�. The agent should prefer state s1 over state s2 whenever
V�ðs1Þ[ V�ðs2Þ, because the cumulative future reward will be greater from s1.
The agent’s policy must choose among actions, not among states. However, it can
use V� in certain settings to choose among actions as well. The optimal action in
state s is the action a that maximizes the sum of the immediate reward rðs; aÞ plus
the value V� of the immediate successor state, discounted by c.

p�ðsÞ ¼ arg max
a
½rðs; aÞ þ cV�ðdðs; aÞÞ� ð2Þ

where dðs; aÞ denotes the state resulting from applying action a to state s.
Thus, the agent can acquire the optimal policy by learning V�, provided it has

perfect knowledge of the immediate reward function r and the state transition
function d. When the agent knows the functions r and d used by the environment to
respond to its actions, it can then use Eq. (2) to calculate the optimal action for any
state s.

Unfortunately, learning V� is a useful way to learn the optimal policy only
when the agent has perfect knowledge of d and r.

Let us define the evaluation function Q(s, a) so that its value is the maximum
discounted cumulative reward that can be achieved starting from state s and
applying action a as the first action. In other words, the value of Q is the reward
received immediately upon executing action a from state s, plus the value (dis-
counted by c) of following the optimal policy thereafter.

Qðs; aÞ � rðs; aÞ þ cV�ðdðs; aÞÞ ð3Þ

Note that Q(s, a) is exactly the quantity that is maximized in Eq. (3) in order to
choose the optimal action a in state s. Therefore, we can rewrite Eq. (3) in terms of
Q(s, a) as
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p�ðsÞ ¼ arg max
a

Qðs; aÞ ð4Þ

Why is this rewrite important? Because it shows that if the agent learns the
Q function instead of the V� function, it will be able to select optimal actions even
when it has no knowledge of the functions r and d. As Eq. (4) makes clear, it need
only consider each available action a in its current state s and choose the action
that maximizes Q(s, a). This is exactly the most important advantages of
Q learning, and also is the reason why we choose Q learning in this paper.

How should the Q learning algorithm be implemented? The key problem is
finding a reliable way to estimate training values for Q, given only a sequence of
immediate rewards r spread out over time. This can be accomplished through
iterative approximation. To see how, notice the close relationship between Q and
V�, V�ðsÞ ¼ max

a0
Qðs; a0Þ, which allows rewriting Eq. (3) as follows:

Qðs; aÞ ¼ rðs; aÞ þ c max
a0

Qðdðs; aÞ; a0Þ ð5Þ

Equation (5) provides the basis for algorithms that iteratively approximate Q. In
the algorithm, Q will be the learner’s estimate, or hypothesis of the actual Q func-
tion. Q will be represented by a large table with a separate entry for each state-action
pair. The table can be initially filled with random values (though it is easier to
understand the algorithm if one assumes initial values of zero). The agent repeatedly
observes its current state s, choose some action a, executes this action, then observes
the resulting reward r ¼ rðs; aÞ and the new state s0 ¼ dðs; aÞ. It then updates the
table entry for Qðs; aÞ following each such transition, according to the rule:

Qðs; aÞ  rðs; aÞ þ c max
a0

Qðs0; a0Þ ð6Þ

Note that the above training rule uses the agent’s current Q values for the new
state s0 to refine its estimate of Qðs; aÞ for the previous state s.

The iterative training rule (6) will be replaced by

Qðs; aÞ  gðs; aÞ þ c min
a0

Qðs0; a0Þ: ð7Þ

It means that the learning target is to minimize the Q function by minimizing
the total cost when acting based on the optimum action sequences. This is exactly
the algorithm used in this paper.

2.2 Model of the Intersection Signal System

A traffic system consists of various components, among which the traffic inter-
section is one of the most important [8]. Our method is applied to a traffic inter-
section that consists of two intersecting roads, each with several lanes and a set of
synchronized traffic lights that manage the flow of vehicles, as shown in Fig. 1.
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In this intersection, the rule of traffic management is right-hand based, which is
used in China and South Korea. The vehicles in lanes �, ´, ˜ and þ, are
approaching the intersection. Vehicles in `, ˆ, Þ and ¼, are leaving the inter-
section. For each of the approaching lanes, there are three directions for vehicles to
choose: turn left, turn right and go straight, as shown in Fig. 1.

We will not consider the turn right direction because it does not impact other
directions. In order to make this problem easy to model, we will not consider the
pedestrian crossing the road. It will be very easy to add an additional rule for a
pedestrian under our proposed mechanism.

Therefore, this problem can be modeled as 8 queues for different paths, as
shown in Table 1.

We assume that there are a random number of vehicles spreading on different
queues at the beginning of a signal period. This is the initial state of the envi-
ronment. The final state must be that all the vehicles in the initial state have
crossed the intersection. The intersection signal control system is modeled as a
leader agent to manage the actions of all vehicle agents around the intersection.
Since the action libraries of vehicle agents include actions from A1 to A8, the
leader agent can choose any one action or their reasonable combination to reach
the final state.

If two of the actions from A1 to A8 are nonintervention, they are possible
action combinations. We call these different combinations a signal phase. All
possible combinations are shown in Table 2.

Therefore, the problem can be described as how to find the optimum sequence
of action combinations to reach the final state. This is the main function of the
intersection signal control agent.

For each of the discrete states from the initial state to the final state, the
optimum policy will be independent of the previous state. The successor state will
be deterministic after one action combination is done. Therefore, this problem can
be modeled as a deterministic Markov decision process.

Fig. 1 Isolated intersection
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2.3 Parameters of Learning Process

(1) Cost function

We suppose that the vehicle number is n at state s. After the selected action
a completed, the current vehicle number will be n1. The cost of this action depends
on the waiting time t, and the remainder of vehicles n1.

gðs; aÞ ¼ n1 � ðt þ ttransitionÞ: ð8Þ

where ttransition equals one of the three numbers {0, 1.5, 3} shown in Table 3. The
average time for each vehicle passing the crossroad is supposed to be 3 s.

Table 1 Basic action
definition of different queues

Queue Basic action symbol Path

Que1 A1 � ? ˆ

Que2 A2 � ? Þ
Que3 B1 ˜ ? ¼
Que4 B2 ˜ ? `

Que5 C1 ´ ? Þ
Que6 C2 ´ ? ¼
Que7 D1 þ ? `

Que8 D2 þ ? ˆ

Table 2 Action combination
symbol

Phase Action combination symbol Component

Ph1 Ac1 A1 ? A2
Ph2 Ac2 A1 ? B1
Ph3 Ac3 B1 ? B2
Ph4 Ac4 C1 ? C2
Ph5 Ac5 C1 ? D1
Ph6 Ac6 D1 ? D2

Table 3 ttransition of different
phase transition

Phase transition
type

Comment ttransition(s)

No transition Current phase is the same
as the previous one

0

Half transition Ac1, Ac2; Ac2, Ac3;

Ac4, Ac5; Ac5, Ac6;

1.5

Full transition Phase transfer except
half transition

3
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(2) Discount factor

In the simulation we set the discount factor, c ¼ 0:8.

2.4 Simulation and Results

We wrote some MATLAB code to complete the simulation with the following
configuration.

CPU: Intel Pentium 4 Processor 2.40 GHz,
Memory: 1047792 KB,
Operation System: Microsoft Windows XP Professional (SP3).

In order to show the advantage of our proposed mechanism, the traditional
signal mechanism was introduced to create a comparative study. In the traditional
mechanism, the signal phase transition is in a fixed sequence as shown by Ph1,
Ph2, Ph3, Ph4, Ph5 and Ph6. However, our proposed method can determine the
optimum phase sequence automatically based on the updated situation.

In the following, we will show the comparative result for three different periods
T and different phase time interval tphase.

In the above-mentioned tables, Ps is the simulation period series, NIV is the
total number of vehicles at the initial state, Random Queues the number of vehicle
queues that are randomly created, TIQ is the time interval from the initial state to
the final state for a Q learning method, TWQ is the total waiting time for the Q
learning method, TIT is the time interval from the initial state to the final state for
the traditional method, TIT ¼ 6� tphase,

TWT is the total waiting time for the traditional method,

PEI ¼
TIT � TIQ

TIT
� 100 % ð9Þ

Equation (9) determines the percent improvement in the traffic efficiency,

PWD ¼
TWT � TWQ

TWT
� 100 % ð10Þ

Equation (10) shows the percent decrease in total waiting time.
OA is the optimum phase sequence from Q learning, TL is the running time of

the Q learning program on the above mentioned computer.
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2.5 Analysis of the Results

From Table 4, we find that all the running times of the Q learning program TL in
every period are less than one second. This is short enough for the application of
the intersection signal control system.

Table 4 Simulation result when tphase = 60 s

Pa NIV Random queues TIQ

(s)
TWQ

(s)
TWT

(s)
PEI

(%)
PWD

(%)
OA TL (s)

1 180 {20 20 40 20 20 20 20
20}

312 18900 24000 13.33 21.25 {4 5 6 1 2
3}

0.8438

2 175 {20 20 19 19 38 19 20
20}

303 17916 23280 15.83 23.04 {1 2 3 6 5
4}

0.9375

3 176 {20 20 18 18 40 20 20
20}

306 18048 23640 15.00 23.65 {1 2 3 6 5
4}

0.4375

4 202 {17 17 36 18 36 18 40
20}

345 28479 30600 4.17 6.93 {1 2 3 6 5
4}

0.8438

5 183 {38 19 16 16 17 17 40
20}

345 21939 26880 4.17 18.38 {3 2 1 4 5
6}

0.8906

6 189 {19 19 36 18 20 20 38
19}

351 23418 28380 2.50 17.48 {1 2 3 4 5
6}

0.9063

7 157 {14 14 16 16 38 19 20
20}

276 14331 22740 23.33 36.98 {3 2 1 6 5
4}

0.8750

8 174 {38 19 26 13 20 20 19
19}

282 18852 22020 21.67 14.39 {4 5 6 1 2
3}

0.9063

9 123 {30 15 14 14 13 13 12
12}

219 8916 14280 39.17 37.35 {4 5 6 3 2
1}

0.8906

10 133 {15 15 17 17 30 15 12
12}

234 10413 16440 35.00 36.66 {3 2 1 6 5
4}

0.9219

11 130 {11 11 34 17 22 11 12
12}

249 11007 16140 30.83 31.80 {6 5 4 1 2
3}

0.8594

12 152 {22 11 15 15 16 16 38
19}

285 14904 24480 20.83 39.12 {3 2 1 4 5
6}

0.8750

13 171 {36 18 32 16 24 12 22
11}

273 19292 19500 24.17 1.07 {4 5 6 1 2
3}

0.9531

14 183 {26 13 36 18 26 13 34
17}

300 22265 25560 16.67 12.89 {6 5 4 3 2
1}

0.9375

15 120 {32 16 20 10 20 10 6
6}

216 10221 11760 40.00 13.09 {6 5 4 1 2
3}

0.8750

16 128 {19 19 20 10 15 15 15
15}

219 9768 15900 39.17 38.57 {4 5 6 1 2
3}

0.8906

17 112 {14 14 9 9 28 14 16 8} 189 7905 14220 47.50 44.41 {1 2 3 4 5
6}

0.8906

18 100 {16 8 8 8 34 17 6 3} 195 6480 11760 45.83 44.90 {3 2 1 6 5
4}

0.9375

19 128 {16 16 32 16 16 8 16
8}

228 9960 15120 36.67 34.13 {4 5 6 1 2
3}

0.8906

(continued)
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At the same time, the percent traffic efficiency improvement PEI, is located in
[4.17 % 47.5 %], the percent total waiting time decrease PWD is located in
[1.07 % 56.95 %]. The average percents of PEI are 32.2 % and the average per-
cents of PWD are 37.5 %.

3 Conclusion

A new traffic control based mechanism based on a combination of machine
learning and multiagent modeling methods is proposed for future intelligent
transportation systems. The control systems, the vehicles, and some necessary
roadside sensors are all modeled as intelligent agents in the proposed systems,
therefore the ITS system will be a multiagent system. It is possible to improve the
traffic control efficiency by some artificial intelligence algorithm.

The control method for an isolated intersection was studied specifically. The
intersection signal was first modeled according to the proposed mechanism then a
new algorithm based on reinforcement learning, especially Q-learning, was pro-
posed and studied in detail. A simulation for such an intersection system was
finally carried out and a comparative study with the traditional intersectional signal
method was done.

Simulation results showed that the proposed intersection control mechanism
can improve traffic efficiency by more than 30 % over the traditional method and
simultaneously bring the drivers some benefit by decreasing the waiting time by
more than 30 %. This proves that the proposed traffic control mechanism is
applicable in the near future.

Acknowledgments This work was supported by the National Research Foundation of Korea
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0002434).

Table 4 (continued)

Pa NIV Random queues TIQ

(s)
TWQ

(s)
TWT

(s)
PEI

(%)
PWD

(%)
OA TL (s)

20 128 {15 15 30 15 147 16
16}

237 10431 16620 34.17 37.24 {6 5 4 1 2
3}

0.8906

21 108 {16 8 36 18 14 14 1 1} 189 6906 10860 47.50 36.41 {4 5 6 3 2
1}

0.8750

22 81 {5 5 24 12 18 9 4 4} 165 4365 10140 54.17 56.95 {6 5 4 1 2
3}

0.4844

23 109 {14 14 18 9 30 15 6 3} 207 7740 11400 42.50 32.11 {1 2 3 6 5
4}

0.4375

24 144 {9 9 16 16 40 20 17
17}

258 11772 21660 28.33 45.65 {3 2 1 6 5
4}

0.5156

25 77 {5 5 30 15 8 4 5 5} 156 3501 9060 56.67 61.36 {6 5 4 1 2
3}

0.4219
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