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Abstract A traffic signal control mechanism is proposed to improve the dynamic
response performance of a traffic flow control system in an urban area. The nec-
essary sensor networks are installed in the roads and on the roadside upon which
reinforcement learning is adopted as the core algorithm for this mechanism. A
traffic policy can be planned online according to the updated situations on the
roads based on all the information from the vehicles and the roads. The optimum
intersection signals can be learned automatically online. An intersection control
system is studied as an example of the mechanism using Q-learning based algo-
rithm and simulation results showed that the proposed mechanism can improve
traffic efficiently more than a traditional signaling system.
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1 Introduction

Intelligent Transportation Systems (ITS) utilizes synergistic technologies and
systems engineering concepts to develop and improve transportation systems of all
kinds [1]. Machine intelligence on the road has been a popular research area with
the advent of modern technologies especially artificial intelligence, wireless
communication and advanced novel sensors.

Current traffic signal control system design is based on historic traffic flow data
which cannot adapt itself to the rapidly varying situations at a crossroad. In some
extreme situations, there are no vehicles during a green light and lots of vehicles
waiting at a red one.

Many researchers have proposed schemes to solve the afore-mentioned prob-
lems like Choy et al. [2] who introduced hybrid agent architecture for real-time
signal control. He suggested in his paper a dynamic database for storing all rec-
ommendations of the controller agents for each evaluation period. Liu et al. [3]
proposed a calculating method of intersection delay under signal control while
Bao et al. [4] studied an adaptive traffic signal timing scheme for an isolated
intersection. However all these papers solve the problem according to the history
flow data but not the current information [5, 6].

This paper makes the following contributions in particular:

(a) A novel traffic flow control mechanism is proposed based on the cooperation
of the vehicle, road and traffic management systems. A roadside wireless
communication network supports a dynamic traffic flow control method.

(b) Reinforcement learning is introduced as the core algorithm to dynamically
plan traffic flow in order to improve efficiency. A Q-learning based intersec-
tion traffic signal control system is studied as an example of the proposed
mechanism.

2 Study of Intersection Signal Control

In this section, a Q learning algorithm will be used to create a real time cooper-
ation policy for an isolated intersection control under the proposed Traffic Control
Mechanism. The algorithm and the simulation are both described in detail. The
result shows the advantage of the proposed method.

2.1 Q-Learning Algorithm

Q learning, a type of reinforcement learning, can develop optimal control strate-
gies from delayed rewards, even when an agent has no prior knowledge of the
effects of its actions on the environment [7].
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The agent’s learning task can be described as follows. We require that the agent
learn a policy 7 that maximizes V7 (s) for all states s. We will call such a policy an
optimal policy and denote it by 7*

7w = arg max V”(s), (Vs) (1)
n

To simplify notation, we will refer to the value function V™ (s) of such an
optimal policy as V*(s). V*(s) gives the maximum discounted cumulative reward
that the agent can obtain starting from state s; that is, the discounted cumulative
reward obtained by following the optimal policy beginning at state s.

However, it is difficult to learn the function n* : § — A directly, because the
available training data does not provide training examples of the form <s,a >.
Instead, the only training information available to the learner is the sequence of
immediate rewards r(s;,a;)for i = 0, 1,2,.... As we shall see, given this kind of
training information it is easier to learn a numerical evaluation function defined
over states and actions, then implement the optimal policy in terms of this eval-
uation function.

What evaluation function should the agent attempt to learn? One obvious
choice is V*. The agent should prefer state s; over state s, whenever
V*(s1) > V*(s), because the cumulative future reward will be greater from s;.
The agent’s policy must choose among actions, not among states. However, it can
use V* in certain settings to choose among actions as well. The optimal action in
state s is the action a that maximizes the sum of the immediate reward r(s, a) plus
the value V* of the immediate successor state, discounted by 7.

7w (s) = arg:nax[r(s, a) +yV*(4(s,a))] (2)

where J(s,a) denotes the state resulting from applying action a to state s.

Thus, the agent can acquire the optimal policy by learning V*, provided it has
perfect knowledge of the immediate reward function r and the state transition
function 6. When the agent knows the functions r and ¢ used by the environment to
respond to its actions, it can then use Eq. (2) to calculate the optimal action for any
state s.

Unfortunately, learning V* is a useful way to learn the optimal policy only
when the agent has perfect knowledge of 6 and r.

Let us define the evaluation function Q(s, @) so that its value is the maximum
discounted cumulative reward that can be achieved starting from state s and
applying action a as the first action. In other words, the value of Q is the reward
received immediately upon executing action a from state s, plus the value (dis-
counted by ) of following the optimal policy thereafter.

O(s,a) = r(s,a) + yV*((s,a)) (3)

Note that Q(s, a) is exactly the quantity that is maximized in Eq. (3) in order to
choose the optimal action a in state s. Therefore, we can rewrite Eq. (3) in terms of

0O(s, a) as
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7" (s) = argmax Q(s, a) 4)

Why is this rewrite important? Because it shows that if the agent learns the
Q function instead of the V* function, it will be able to select optimal actions even
when it has no knowledge of the functions r and 0. As Eq. (4) makes clear, it need
only consider each available action a in its current state s and choose the action
that maximizes Q(s, a). This is exactly the most important advantages of
Q learning, and also is the reason why we choose Q learning in this paper.

How should the Q learning algorithm be implemented? The key problem is
finding a reliable way to estimate training values for Q, given only a sequence of
immediate rewards r spread out over time. This can be accomplished through
iterative approximation. To see how, notice the close relationship between Q and
V¥, V*(s) = max Q(s,d’), which allows rewriting Eq. (3) as follows:

a

Q(s,a) = r(s, a) + ymax Q(5(s, a), ) (5)

Equation (5) provides the basis for algorithms that iteratively approximate Q. In
the algorithm, Q will be the learner’s estimate, or hypothesis of the actual Q func-
tion. Q will be represented by a large table with a separate entry for each state-action
pair. The table can be initially filled with random values (though it is easier to
understand the algorithm if one assumes initial values of zero). The agent repeatedly
observes its current state s, choose some action a, executes this action, then observes
the resulting reward r = r(s,a) and the new state s’ = (s, a). It then updates the
table entry for Q(s,a) following each such transition, according to the rule:

O(s,a) «— r(s,a) + y max o(s',ad) (6)

Note that the above training rule uses the agent’s current Q values for the new
state s’ to refine its estimate of Q(s,a) for the previous state s.
The iterative training rule (6) will be replaced by

0(s,a) — gls,a) +ymin 0¥, ). ™

It means that the learning target is to minimize the Q function by minimizing
the total cost when acting based on the optimum action sequences. This is exactly
the algorithm used in this paper.

2.2 Model of the Intersection Signal System

A traffic system consists of various components, among which the traffic inter-
section is one of the most important [8]. Our method is applied to a traffic inter-
section that consists of two intersecting roads, each with several lanes and a set of
synchronized traffic lights that manage the flow of vehicles, as shown in Fig. 1.
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Fig. 1 Isolated intersection

In this intersection, the rule of traffic management is right-hand based, which is
used in China and South Korea. The vehicles in lanes @, ®, ® and @, are
approaching the intersection. Vehicles in @, @, ® and ®, are leaving the inter-
section. For each of the approaching lanes, there are three directions for vehicles to
choose: turn left, turn right and go straight, as shown in Fig. 1.

We will not consider the turn right direction because it does not impact other
directions. In order to make this problem easy to model, we will not consider the
pedestrian crossing the road. It will be very easy to add an additional rule for a
pedestrian under our proposed mechanism.

Therefore, this problem can be modeled as 8 queues for different paths, as
shown in Table 1.

We assume that there are a random number of vehicles spreading on different
queues at the beginning of a signal period. This is the initial state of the envi-
ronment. The final state must be that all the vehicles in the initial state have
crossed the intersection. The intersection signal control system is modeled as a
leader agent to manage the actions of all vehicle agents around the intersection.
Since the action libraries of vehicle agents include actions from Al to A8, the
leader agent can choose any one action or their reasonable combination to reach
the final state.

If two of the actions from Al to A8 are nonintervention, they are possible
action combinations. We call these different combinations a signal phase. All
possible combinations are shown in Table 2.

Therefore, the problem can be described as how to find the optimum sequence
of action combinations to reach the final state. This is the main function of the
intersection signal control agent.

For each of the discrete states from the initial state to the final state, the
optimum policy will be independent of the previous state. The successor state will
be deterministic after one action combination is done. Therefore, this problem can
be modeled as a deterministic Markov decision process.
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Table 1 Basic action

o - Queue Basic action symbol Path

definition of different queues
Quel Al ®->®
Que2 A2 D - ®
Que3 B1 ® —
Que4 B2 ® > ©
Que5 C1 ® - ®
Queb c2 ® -
Que7 Dl ®->®
Que8 D2 ®->®

Tab]lje 12 Action combination  p,qe Action combination symbol Component

Symbo Phl Acl Al + A2
Ph2 Ac2 Al + Bl
Ph3 Ac3 Bl + B2
Ph4 Ac4 Cl +C2
Ph5 Ac5 Cl1 + D1
Ph6 Ac6 D1 + D2

2.3 Parameters of Learning Process

(1) Cost function

We suppose that the vehicle number is n at state s. After the selected action
a completed, the current vehicle number will be r,. The cost of this action depends
on the waiting time ¢, and the remainder of vehicles n;.

g(S, a) =n X (t + trmnsition)-

(8)

where t,gusiion €quals one of the three numbers {0, 1.5, 3} shown in Table 3. The
average time for each vehicle passing the crossroad is supposed to be 3 s.

Table 3 tyansition Of different

phase transition type

Phase transition

Comment

ttransition(s)

No transition

Half transition

Full transition

Current phase is the same
as the previous one

Acl & Ac2;Ac2 & Ac3;
Acd < Ac5;AcS < Acb;
Phase transfer except

half transition

0

1.5
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(2) Discount factor

In the simulation we set the discount factor, y = 0.8.

2.4 Simulation and Results

We wrote some MATLAB code to complete the simulation with the following
configuration.

CPU: Intel Pentium 4 Processor 2.40 GHz,
Memory: 1047792 KB,
Operation System: Microsoft Windows XP Professional (SP3).

In order to show the advantage of our proposed mechanism, the traditional
signal mechanism was introduced to create a comparative study. In the traditional
mechanism, the signal phase transition is in a fixed sequence as shown by Phl,
Ph2, Ph3, Ph4, Ph5 and Ph6. However, our proposed method can determine the
optimum phase sequence automatically based on the updated situation.

In the following, we will show the comparative result for three different periods
T and different phase time interval tppage.

In the above-mentioned tables, Ps is the simulation period series, NIV is the
total number of vehicles at the initial state, Random Queues the number of vehicle
queues that are randomly created, TIQ is the time interval from the initial state to
the final state for a Q learning method, TWQ is the total waiting time for the Q
learning method, TIT is the time interval from the initial state to the final state for
the traditional method, Tir = 6 X t,pase,

TWT is the total waiting time for the traditional method,

Tir — Tio

IT

PEI: X 100% (9)

Equation (9) determines the percent improvement in the traffic efficiency,
Twr — T,
Pyp =2 "W . 100 % (10)
Tyr

Equation (10) shows the percent decrease in total waiting time.
OA is the optimum phase sequence from Q learning, TL is the running time of
the Q learning program on the above mentioned computer.
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2.5 Analysis of the Results

From Table 4, we find that all the running times of the Q learning program TL in
every period are less than one second. This is short enough for the application of
the intersection signal control system.

Table 4 Simulation result when #,,,, = 60 s

Pa NIV Random queues TIQ TWQ TWT PEI PWD OA TL (S)
OO (s) (B) (%)
1 180 {2020 4020202020 312 18900 24000 13.33 21.25 {45612 0.8438

2 175 {202;)3 1919381920 303 17916 23280 15.83 23.04 {1 ;}3 65 09375
3 176 {202;)5 18 18 40 20 20 306 18048 23640 15.00 23.65 {1 ;}3 65 04375
4 202 {172:)7} 36 18 36 18 40 345 28479 30600 4.17 6.93 {1 ;}3 65 0.8438
5 183 {382;)9} 16 16 17 17 40 345 21939 26830 4.17 1838 {3 ;}1 45 0.8906
6 189 {192;)9} 36 18 20 20 38 351 23418 28380 2.50 17.48 {1 26}3 45 0.9063
7 157 {14119j 16 16 38 19 20 276 14331 22740 2333 3698 {3 26}1 65 0.8750
8 174 {382:)9} 26 132020 19 282 18852 22020 21.67 1439 {4 :}6 12 0.9063
19} 3}

9 123 {301514 14131312 219 8916 14280 39.17 3735 {45632 0.8906
12} 1}
10 133 {151517 17301512 234 10413 16440 3500 36.66 {32165 09219

12} 4}

11 130 {11 113417221112 249 11007 16140 30.83 31.80 {65412 0.859%
12} 3}

12 152 {2211 151516 16 38 285 14904 24480 20.83 39.12 {32145 0.8750
19} 6}

13 171 {36 18321624 1222 273 19292 19500 24.17 1.07 {45612 0.9531
11} 3}

14 183 {26 1336 18 26 13 34 300 22265 25560 16.67 12.89 {65432 09375
17} 1}
15 120 {3216201020106 216 10221 11760 40.00 13.09 {65412 0.8750

16 128 {1961}9 2010 15 1515 219 9768 15900 39.17 38.57 ({4 53}6 12 0.8906

17 112 {141154i 992814168} 189 7905 14220 47.50 44.41 {1 5}3 45 0.8906

18 100 {16 8 8 8 34 17 6 3} 195 6480 11760 45.83 4490 {3 26}1 65 009375
4

19 128 {16 163216168 16 228 9960 15120 36.67 34.13 {4 5}6 12 0.8906
8} 3}

(continued)
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Table 4 (continued)
P-d NIV Random queues TIQ TWQ TWT PEI PWD OA TL (S)
ONRO) (s) (%) (%)
20 128 {151530 15 147 16 237 10431 16620 34.17 3724 {65412 0.8906
16) 3)
21 108 {168361814 1411} 189 6906 10860 47.50 3641 {45632 0.8750
1}
22 81 {55241218944} 165 4365 10140 54.17 5695 {65412 0.4844

3}

23 109 {1414189301563} 207 7740 11400 4250 32.11 {12365 0.4375
4}

24 144 {991616402017 258 11772 21660 2833 4565 {32165 0.5156
17} 4}

25 77 {5530158455) 156 3501 9060 56.67 6136 {65412 04219
3}

At the same time, the percent traffic efficiency improvement PEI, is located in
[4.17 % 47.5 %], the percent total waiting time decrease PWD is located in
[1.07 % 56.95 %]. The average percents of PEI are 32.2 % and the average per-
cents of PWD are 37.5 %.

3 Conclusion

A new traffic control based mechanism based on a combination of machine
learning and multiagent modeling methods is proposed for future intelligent
transportation systems. The control systems, the vehicles, and some necessary
roadside sensors are all modeled as intelligent agents in the proposed systems,
therefore the ITS system will be a multiagent system. It is possible to improve the
traffic control efficiency by some artificial intelligence algorithm.

The control method for an isolated intersection was studied specifically. The
intersection signal was first modeled according to the proposed mechanism then a
new algorithm based on reinforcement learning, especially Q-learning, was pro-
posed and studied in detail. A simulation for such an intersection system was
finally carried out and a comparative study with the traditional intersectional signal
method was done.

Simulation results showed that the proposed intersection control mechanism
can improve traffic efficiency by more than 30 % over the traditional method and
simultaneously bring the drivers some benefit by decreasing the waiting time by
more than 30 %. This proves that the proposed traffic control mechanism is
applicable in the near future.
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