
Chapter 20

Spatiotemporal Analysis of Dengue

Infection Between 2005 and 2010

Sarwa Ali, Robert J. Corner, and Masahiro Hashizume

Abstract The high incidence of dengue fever in Dhaka is a constant threat to the

population and a recurring problem for the health authorities. This chapter

investigates the spatial and temporal epidemiology of dengue fever between 2005

and 2010. This epidemiological analysis provided important information about the

pattern of the virus cases with standard deviation ellipses being used for directional

examination of the incidences. To investigate spatial dependencies and examine the

occurrence pattern for clustering, Moran’s I and Local Indicators of Spatial Asso-

ciation (LISA) analysis were utilised. Results showed that there was obvious spatial

autocorrelation as well as significant clustering of dengue cases in Dhaka, revealing

that the virus is concentrated around the heart of the city.
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20.1 Introduction

Dengue is an arbovirus (an arthropod-borne virus), not dissimilar to yellow fever

and malaria (Gubler 1998). The virus infects 50–100 million people worldwide a

year, leading to approximately 500,000 severe case hospitalisations (many of whom

are children); out of which about 2.5 % (12,500 people) result in death (WHO
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2012). It is one of Dhaka’s most significant prevailing viral diseases (Choudhury

et al. 2008).

The name dengue covers two different manifestations of the disease: classic

dengue fever and dengue haemorrhagic fever/dengue shock syndrome (Erickson

et al. 2010). The more common of the two, classic dengue fever, is often asymp-

tomatic or similar to “the flu” but can sometimes cause headaches and muscle and

joint pains (Erickson et al. 2010). More severe cases can progress to dengue

haemorrhagic fever and dengue shock syndrome (Kalayanarooj et al. 1997).

Dengue virus infection is regarded as being emerging or re-emerging diseases

for three main reasons. Firstly, the number of reported cases worldwide is increas-

ing (through either increased infection rate or better diagnosis). Secondly, the virus

has a possibly fatal manifestation if left untreated (dengue haemorrhagic fever and

dengue shock syndrome), and finally, the areas endemic to the disease are

expanding (Igarashi 1997).

The consequence of simple dengue fever is loss of workdays for communities

dependent on wage labour. The consequence of severe illness (resulting in

haemorrhage) is high mortality rates, as late stages of the virus require tertiary

level management/care, which is beyond the reach of most of the people at risk

(Guha-Sapir and Schimmer 2005).

Another reason for the virus’s current significance is the lack of vaccine. Despite

much effort, currently there is no vaccine or specific therapy for the treatment of the

virus. Much of the focus has, therefore, been directed to vector control as being the

main measure for virus management. Consequently, an analysis of the recorded

dengue cases and an identification of risk patterns could improve decision-making

for controlling the disease in an endemic region (Castillo et al. 2011).

The disease is transmitted through the bite of the Aedes aegypti and

Ae. albopictus mosquitoes. These mosquitoes bite primarily during the day, espe-

cially in the hours just after dawn and before sunset, and an infection can be

acquired via a single bite. A female mosquito that takes a blood meal from a

dengue-infected person becomes infected itself with the virus in the cells lining

its gut. About 8–10 days later, the virus spreads to other tissues including the

mosquito’s salivary glands and is subsequently released into its saliva. The virus

seems to have no detrimental effect on the mosquito, which remains infected for

life. Dengue can also be transmitted via infected blood products and through organ

donation (Wilder-Smith et al. 2009).

The mosquito breeding cycle involves the laying of eggs on water, preferably in

shaded and dark locations. The eggs hatch into larvae which feed on material

suspended in water, eventually hatching into adult mosquitoes. The cycle from

egg to adult can take as little as 7–8 days, whilst an adult mosquito lives for about

3 weeks (CDC 2012).

Many factors have been linked to the recent increase of dengue virus transmis-

sion; the main focuses being on increased urbanisation, inadequate water supply

and storage and new trends in population movements (Hsueh et al. 2012; Wu 2009;

Nakhapakorn and Tripathi 2005; Ali et al. 2003). In recent decades, the expansion

of villages, towns and cities in endemic areas and the increased mobility of humans

have increased the number of epidemics and circulating viruses. Furthermore,
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migration of people from lower socioeconomic groups to the cities has created

slums which have poor sanitation and a deteriorating environment. Other factors

affecting transmission rate include the improper dumping of rubbish such as used

tyres, empty tin cans or food containers which provides breeding sites for Aedes
aegypti.

Using GIS (Geographic Information Systems), the spatial distribution of dengue

virus has been investigated in many regions of the world such as in Taiwan (Hsueh

et al. 2012; Wu 2009; Wen et al. 2006), Thailand (Nakhapakorn and Jirakajohnkool

2006; Vanwambeke et al. 2006; Nakhapakorn and Tripathi 2005), Sri Lanka

(Pathirana et al. 2009), Bangladesh (Ali et al. 2003), Brazil (Mondini et al. 2005;

Braga 2003), Puerto Rico (Morrison et al. 1998), Saudi Arabia (Khormi and Kumar

2011), India (Bohra and Andrianasolo 2001; Bhandari 2008), French Guinea (Tran

et al. 2004), Ecuador (Castillo et al. 2011) and in the United States (Erickson et al.

2010). Apart from mapping disease distribution, these studies have shown that GIS

also provides a useful range of spatial analytical tools that can yield valuable

information for the study of public health issues and enable health officials to

plan for informed decision-making (Rezaeian et al. 2007).

The World Health Organization (Martinez 2007) has explained how GIS and

related geospatial technology has the potential to aid in worldwide dengue preven-

tion and control programmes. It gives the relevant personnel the ability to organise

and link datasets from different sources. This enables them to access data from GPS

receivers and digital imagery from satellites and aerial photos. Remote sensing can

provide up-to-date information on soil moisture, vegetation type, land cover/use,

urban planning, crop monitoring, forestry and water and air quality that influence

the vector-borne disease occurrences. It also provides the capabilities for authorities

to synthesise and visualise information in maps.

The aim of this chapter is to present a straightforward approach using spatial

techniques to investigate and evaluate the spatial pattern of dengue virus in Dhaka

between the years of 2005 and 2010. Our intention was to determine whether

dengue virus cases in Dhaka are clustered or conform to the pattern known as

complete spatial randomness.

20.2 Data and Methods

20.2.1 Data

Data on dengue cases for the period of 2005–2009 and the first half of 2010 was

obtained from the record rooms of 11 major health service providers in Dhaka

megacity (see Chap. 19) with a standardised patient abstraction form that includes

date of admission, location of patient’s residence, demographic and clinical data

and date of discharge and outcome (dead/alive). Only those admitted to hospital

with dengue fever were included in the database, and outpatients were excluded.

The diagnosis of dengue was made by physicians at the respective hospitals, and
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some, but not all, were confirmed by laboratory investigation. To avoid data

duplication, we first matched data in the case records using all the demographic

variables and then cross-checked the data against the corresponding day/year in the

logbooks of the hospitals. If a case occurred in both these records, then we included

it in the database. We excluded cases residing outside of the study area (see

Chap. 1) along with duplicates which resulted in a total of 3,169 dengue cases

being available for analysis. Census tracts, the lowest level of census geography in

Bangladesh, were used as a geographic data. Case mapping, creation of geographic

feature dataset and encoding method were performed using procedures described

elsewhere (Dewan et al. 2013).

Population data from the 2001 census, including a breakdown into male and

female categories within different age groups, were obtained from the Bangladesh

Bureau of Statistics community series (BBS 2003). Since the data were in tabular

format, they were first encoded in a spreadsheet and then linked with the geographic

unit by using a unique ID.

20.2.2 Analytical Techniques

GIS modelling has been used to investigate disease patterns in a number of different

areas using a number of different methodologies. Morrison et al. (1998), for

example, performed a space-time analysis of reported dengue cases during an

outbreak in Florida and Puerto Rico in 1991–1992. Pratt (2003, p. 2) discussed

how “incorporating traditional epidemiological statistical techniques into a GIS

interface allows researchers to gain a greater insight into the spatial aspect of the

spread of disease”.

A study by Nakhapakorn and Tripathi (2005) followed two main processes for

the analysis of dengue. Firstly, the relationship between cases and the areas’

climatic variables was evaluated through multiple regressions, and then an Infor-

mation Value approach was used to determine which physical and environmental

factors are more crucial in dengue incidences. Mondini et al. (2008) examined the

spatial correlation between dengue incidents and socioeconomic, demographic and

environmental factors in a city in Brazil, whilst Haddow et al. (2009) claimed to be

“the first use of smoothing techniques, the global Moran’s I, and the Local

Indicators of Spatial Association (LISA) to detect spatial clustering of La Crosse

virus infections at a national level in the United States”. More recently, Hsueh et al.

(2012) examined the spatiotemporal patterns of dengue fever in Kaohsiung City,

Taiwan. Their study focused on three main variables (density, transportation

arteries and water bodies) and confirmed to some degree the importance of these

variables in the spread of dengue fever.

The methodology used in this study comprises three major parts: data processing

and inspection through visualisation, statistical testing to perform epidemiological

analysis and spatial analysis employing autocorrelation techniques and cluster

pattern identification.
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Visualisation is an important tool for showing the change in disease patterns

over time. An initial infection occurrence map was produced using ArcGIS 10 soft-

ware (ESRI 2011), with appropriate symbolisation and a suitable number of classes.

The resulting map (Fig. 20.1) portrays the frequency of virus occurrence over the

region for the study period. The main data file comprised 3,169 dengue cases over a

five-and-a-half-year period, attributed according to sex, season and age group.

Using the SPSS software (SPSS Inc 1999), the data were initially analysed

by year and season, to determine any obvious temporal pattern, and then by

the patient’s sex and age group, to determine any socio-statistical relationships.

The dependent variables used for this section were the recorded frequency counts

for the virus throughout the study period. The one exception to this is that in the

Fig. 20.1 Frequency of dengue cases by census tract, 2005–2010
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case of the standardised age-specific incidence analysis – the independent variable

used was not frequency count but rather the age-standardised incidences, computed

as the ratio of the virus count for each age group to population count of each age

group, standardised for a population of 100,000 people.

In order to visualise the directional diffusion of the virus, standard deviation

ellipsoids were derived to show whether or not the dengue occurrences followed a

directional pattern over the region and how this pattern moved over the years. This

was carried out using the Directional Distribution (standard deviational ellipse) tool

in ArcGIS 10. This process calculates the standard deviation of the x and y

coordinates differences from the mean centre to define the axes of the ellipse

(ESRI 2012). The orientation of the major axis of the standard deviation ellipse is

that rotation from geographic north which minimises the sum of the squares of the

deviation of the features from the axes. This can guide the analyst in terms of which

regions to focus on, and whether or not directional analysis should be considered in

later studies (Blewitt 2012). Due to the size of the study area, standard deviational

ellipses with a radius of two standard deviations were computed, allowing for a

wider directional perspective.

Spatial autocorrelation testing was used as a measure of the degree to which the

occurrence data are clustered/dispersed together in space. The Moran’s I index was
used in this study. This index can typically be applied to area units where numerical

ratio or interval data is used and yields an overall value for the whole dataset.

Moran’s I is defined as

I ¼ n
Pn

i¼1

Pn
j¼1 wijðxi � �xÞðxj � �xÞP

i6¼j

P
wij

� � Pn
i¼1 ðxi � �xÞ2

� � (20.1)

where n is the number of spatial units indexed by i and j, x is the variable of interest,
w is an element of a matrix of spatial weights and xi is the value of the interval or
ratio variable in area unit i. The value of Moran’s I ranges from �1 for negative

spatial autocorrelation to þ1 for positive spatial correlation.

The weights matrix can be constructed based on the contiguity (adjacency) of the

polygon boundaries or calculated from the distance between polygons centroids.

For this analysis, queen’s case contiguity was used, with a weight of 1 implying

that polygons are adjacent and a weight of 0 implying non-contiguity.

Finally, the geographical pattern of the occurrence points was examined in more

detail using the Local Indicators of Spatial Association (LISA) measure. LISA is a

local autocorrelation measure proposed by Anselin (1995) to assess spatial autocor-

relation and identify regions with disease rates statistically similar to and dissimilar

from their neighbours. LISA analysis yields a measure of spatial autocorrelation for

each individual location and allows us to identify high-high clusters (hotspots) in an

area indicating the area’s high values of a variable that are surrounded by high values

on the neighbouring areas, as well as the low-low clusters (cold spots) which are

areas of low values of a variable surrounded by low values. The procedure is

implemented in the GeoDa software (Anselin et al. 2006).
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The definition of the LISA measure is given below:

IðiÞ ¼ xi � x

δ
�
Xn
j¼1

Wij � ðxj � xÞ
δ

� �
(20.2)

where I(i) is the LISA index for region i, wij is weight describing the proximity of

region i to region j, xi � x is the deviation of region iwith respect to the mean, xj � x
is the deviation of the region j with respect to the mean, δ is the standard deviation

and n is the total number of the regions to be evaluated. The weights wij are set so

that if region i is adjacent to region j, a value of 1 is assigned; a value of 0 is

assigned otherwise. Adjacency may be assigned in a number of ways, usually in

relation to the hypothetical movements of chess pieces (Anselin 1995).

In this study, as for the Moran’s I calculations, the dependent variable used was

total frequency of dengue cases for the study area with adjacency defined as being

“queen’s case”. The GeoDA implementation of LISA uses a randomisation tech-

nique to infer significance of the results (Anselin 2003, 2004). Inference for

significance of both global and local Moran’s I was based on 499 permutations

with an alpha level of 0.01 to test the statistical significance.

20.3 Results

20.3.1 Visual Inspection

Figure 20.1 is a choropleth map showing the total dengue frequency in the study

period for each census tract with five classes determined by using a natural breaks

algorithm. The map shows that the dengue cases are most common closer to the

centre of the city with fewer occurrences towards the outer limits of the city.

Table 20.1 suggests that over the study period, there has been a general down-

ward trend in dengue cases, with the exception of 2008, when recorded occurrences

increased by 63 cases.

20.3.2 Epidemiology of Dengue

The monsoon season in Bangladesh runs from July to October, and the post-

monsoon season (winter) defines from November to February, and the

pre-monsoon season from March to June. Figure 20.2 shows the difference in

seasonal distribution of the dengue virus. It is evident that the dengue virus is

most active during the monsoon, with a few residual cases before and after. During
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this monsoon period, very heavy rainfall lashes the city as well as the entire country,

providing excellent damp breeding sites for the Aedes aegyptimosquito to thrive in.

Further descriptive analysis shows that there is a considerable difference

between the number of male and female dengue cases over the years. From 3,169

recorded dengue patients, 72.6 % of total (2,301) were male, giving a male/female

ratio of 2.65:1.

Table 20.2 shows that the age group of people most affected are between 18 and

34. This may be attributable to the fact that they are the most mobile and likely to be

involved in the workforce. The next most affected age group is 35–59, closely

followed by infants 0–4. The mean age of the dengue cases is within the 18–34 age

group, whilst the median age (26) also lies in the same category. Surprisingly, our

data does not show any cases for the age group of 5–9. This is similar to the result

found for the prevalence of typhoid case in the same area (Dewan et al. 2013).

In analysing the number of deaths recorded in the data, we found that out of the

3,169 patients, almost 8 % (251 instances) of dengue cases resulted in death from

the haemorrhagic complications of the disease, whilst 80 % (2,538 instances) of all

cases reported being nonfatal classic dengue fever (the outcome is unknown for 2 %

of the cases). Examining this in more detail, we found that the largest number of

Table 20.1 Annual dengue occurrences, 2005–2010

Year Number of cases Percent (%) of total Cumulative percent (%)

2005 727 22.9 22.9

2006 584 18.4 41.4

2007 497 15.7 57.1

2008 560 17.7 74.7

2009 421 13.3 88.0

2010 380 12.0 100.0

Total 3,169 100.0
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deaths from dengue is amongst the working age group (18–34) with 132 (53 % of

total deaths) cases, followed by the 35–59 age groups with 65 total cases (25 %).

However, the 0–4 age group had the highest number of deaths relative to the

number of recorded cases in that age group, with 31 (12 %) out of 52 cases resulting

in death. The 10–14 age group only made up 1 % of deaths, whilst the 15–17 and

60+ age groups together made up the remaining 9 %.

20.3.3 Spatial Analysis

A frequently used method of visualising the spatial trend, through time, of the

attributes of a set of points or areas is to calculate the standard deviation of the

points for each year. Figure 20.3 shows the overlapping standard deviational

ellipses of the dengue occurrences per census tract over the years 2005–2009

(half-year data for 2010 excluded), each year being represented by a different

colour. This shows that the dengue occurrences follow a diagonal South-South

Easterly to North-North Westerly pattern with little change over the years.

Figure 20.4 shows the scatterplot results for the autocorrelation test carried

out using GeoDa for each year of the dengue occurrence data. The Moran’s I
spatial statistic is visualised as the slope of the scatterplot with the spatially lagged

variable on the vertical axis and the original variable on the horizontal axis. The

slope of the regression line is Moran’s I statistic and is shown at the top of each

window.

In all instances, adjustment for outliers (highlighted with yellow in each dia-

gram) was made. However, this had little overall impact as outliers were few and

Table 20.2 Standardised age- and gender-specific incidences

Age Sex Cases (%) Population

Annual incidence

rate (per 100,000)

Annual incidence

rate for both sex

Total Male 23,011 (72.6) 4,548,189 506.94 289.60

Total Female 868 (27.4) 3,697,393 23.48

0–4 Male 244 401,545 60.77 47.70

Female 119 359,439 33.11

10–14 Male 43 482,972 8.90 6.16

Female 15 458,050 3.27

15–17 Male 140 279,568 50.08 36.15

Female 50 246,056 20.32

18–34 Male 1,223 1,752,085 69.80 52.03

Female 432 1,428,841 30.23

35–59 Male 579 1,048,331 55.23 47.38

Female 209 614,674 34.00

60+ Male 67 183,561 36.50 34.52

Female 40 126,443 31.63
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insignificant. The scatter plots show that the actual dengue cases (x-axis) were

positively correlated with the spatially lagged cases (y-axis) and follow a clustered

pattern.

To assess the significance of the Moran’s I statistic against a null hypothesis of
no spatial autocorrelation, GeoDa uses a permutation procedure; in this case

499 permutations were used. Since each set of permutations is based on a different

randomisation, the results will not be exactly replicable.

Results for the statistical significance testing is shown in Table 20.3, which

shows significant positive spatial autocorrelation in dengue occurrences for the first

5 years recorded, with Moran’s I statistics of 0.36 (p ¼ 0.01) in 2005, 0.25

(p ¼ 0.01) in 2006, 0.23 in 2007 (p ¼ 0.01), 0.31 (p ¼ 0.01) in 2008 and 0.42

Fig. 20.3 Standard deviation ellipsoids of dengue occurrences, 2005–2009
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Fig. 20.4 Moran’s I scatterplots for total dengue frequency, 2005–2010
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(p ¼ 0.01) in 2009. Whilst the 2010 data does not follow this trend, results for this

year are deemed unreliable since they are from an incomplete year.

Since the Moran’s I global spatial autocorrelation statistic indicated a clustered

pattern of dengue cases in Dhaka, the analysis proceeded to investigate that pattern

further. The LISA analysis produces two maps: a cluster map and a significance

map. The combination of the two allows us to see which locations are contributing

most strongly to the local outcome and in which direction.

The cluster map for dengue occurrences is shown in Fig. 20.5. The map

distinguishes between clusters of high values, shown in red, which also have

neighbours of high values (HH); clusters of low values, shown in blue, with

low-value neighbours (LL); outliers, in pink, where a high value is surrounded

primarily by low values (HL); and outliers, in pale blue, where low value is

surrounded primarily by high values (LH). The strongly coloured regions on the

map are therefore those that contribute significantly to a positive global spatial

autocorrelation outcome, whilst paler colours contribute significantly to a negative

autocorrelation outcome.

Figure 20.6 shows the statistical significance level of each region’s contribution

to the local autocorrelation outcome. This was determined using an automated

complex Monte Carlo randomisation procedure (O’Sullivan 2012).

20.4 Discussion

The data visualisation provides a perspective on the nature of the disease in Dhaka

megacity. Hanafi-Bojd et al. (2012) discuss how the maps produced by their study

provided a visual tool for decision-making about initiating and focusing control

programmes for malaria in Iran. However, whilst visualisation may be a powerful

tool for providing a “bigger picture” perspective, it is still only a stepping stone to

further analysis. As Wen et al. (2006) explained in a similar dengue study,

visualisation cannot definitively confirm clustering of cases or spatial correlations.

The results for the epidemiological analysis show that dengue incidences had a

yearly decreasing trend except in 2008. This may be due to higher virus awareness,

changing environmental conditions or even more use of control measures in

publicly accessible mosquito breeding sites. However, reporting on dengue in

Table 20.3 Spatial

autocorrelation for dengue,

2005–2010 (non-outlier

adjusted)

Period Moran’s I Mean SD E[I] p-value

2005 0.3578 �0.0018 0.0158 �0.0008 0.01

2006 0.2463 �0.0016 0.0195 �0.0008 0.01

2007 0.2259 �0.0027 0.0165 �0.0008 0.01

2008 0.3056 �0.0029 0.0197 �0.0008 0.01

2009 0.3204 �0.0005 0.178 �0.0008 0.01

2010 0.1751 �0.0018 0.0166 �0.0008 0.01
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Dhaka, the United Nations Environmental Programme (2006) stated, “Even though

the incidence of dengue fever has decreased, the mosquito problem prevails”

(UNEP 2006, p. 62).

In the seasonal analysis, a significant difference in seasonal distribution of the

dengue virus is noted, with cases being concentrated during the monsoon season

where rainfall is significantly heavy in the region. This concurs with findings by

Ahmed et al. (2007, p. 209) which showed that “the seasonal pattern of the

mosquitoes was fairly close to variations in rainfall [. . .] the highest rainfall

indicated the highest larval population except in May, which is the starting time

of the rainy season in Bangladesh”. Other studies related to the Aedes aegypti
mosquito have shown similar seasonal patterns. Vezzani et al. (2004) found that the

highest Aedes aegypti density was associated with accumulated rainfall above

Fig. 20.5 Spatial clustering of dengue, 2005–2010
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150 mm. Micieli and Campos (2003) observed the close relationship of the highest

peak of Aedes aegypti population with high rainfall and the fact that the mosquito

population decreased during months with less rainfall. Additionally, Hashizume

et al. (2012) presented strong evidence indicating that dengue fever increased with

river levels, proving that factors associated with both high and low river levels

increase the hospitalisations of dengue fever cases in Dhaka.

In regard to the significantly higher percentage of male patients than female

patients, we propose two possible explanations. One is that men are more exposed

to dengue-carrying mosquitoes during the daytime either at the workplace or whilst

travelling to and from work. The other is that adult men are more likely to seek

health care than adult women. A similar finding has been reported for typhoid

Fig. 20.6 Dengue significance map
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incidence in the same area (Dewan et al. 2013). Anker and Arima (2011) have

elaborated further on this issue in a paper looking at gender differences in dengue

cases in six Asian countries.

It is widely recognised that in many of the Asian communities, lower disease

incidence in women may be a statistical artefact related to lower reporting and

to women seeking care from traditional practitioners who do not report to public

surveillance systems. By the same token, women are less likely to be taken for care

at a hospital when ill or are taken at late stages of disease, when no other options are

available. Determining gender differences, both in infection and severity of disease,

requires well-designed and targeted studies to capture both the biological and social

factors that drive disease patterns in a community (Guha-Sapir and Schimmer

2005). Furthermore, dengue is typically regarded as a childhood disease and is an

important cause of paediatric hospitalisation in Southeast Asia. Severe disease in

Southeast Asia is also common in babies and young children, as found in this study,

due to their low immunity (Ranjit and Kissoon 2011).

Whilst it is possible to get a general sense of the spatial orientation of cases by

plotting a simple choropleth map such as Fig. 20.1, the use of standard deviation

ellipses makes the trend clear. By looking at the orientation and size of standard

deviation ellipses for several years, it is possible to predict which areas should

prepare for a rise in incidence of that disease (Blewitt 2012), or whether the pattern

remains largely static over time.

The global spatial autocorrelation analysis using Moran’s I showed that the

distribution of dengue virus was spatially clustered, for all years with complete

data. The scatter plots indicated the presence of spatial dependence across the years.

The highest indices were observed for the years 2005 and 2009 (0.45 and 0.5

(p ¼ 0.01), respectively (after outlier elimination)), with the rest of the years

remaining around the 0.3 value (p ¼ 001). It is not unusual for data of an infectious

disease, like dengue, to have a strong clustered spatial pattern due to the method of

propagation of the disease involving proximity and neighbourhood (Jeefoo et al.

2011). This information corresponds with the public health opinion that dengue

mainly occurs in clusters and does not spread regularly or randomly throughout the

area (WHO 2009). There are many reasons as to why dengue occurrences appear to

be strongly clustered around the heart of Dhaka City: urbanisation and population

density (Wu 2009; Bhandari et al. 2008; Hsueh et al. 2012; Khormi and Kumar

2011; Ali et al. 2003), land use (Pathirana et al. 2009; Vanwambeke et al. 2006),

presence of standing water and impervious surfaces in a high rainfall area

(Pathirana et al. 2009), and socioeconomic factors relating to literacy and correct

management of water awareness (Mondini and Neto 2008).

It is instructive to compare the land use maps shown in Chap. 5 with the cluster

map in Fig. 20.5. This shows an apparent correspondence between the areas with a

dense combination of both built-up and vegetation land use areas and the disease

case count. However, this relationship requires further examination as this apparent

causality may be due to multicollinearity of several external variables and needs to

be tested further.
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20.5 Conclusions

The incidence of dengue fever in Dhaka is a constant threat to the population and a

recurring problem for the health authorities. Through spatial autocorrelation, clus-

tering and epidemiological analysis, this chapter examines the spatial and temporal

distribution of dengue cases in the study area. It identifies potential dengue risk

areas in the city based on recorded virus frequency for 2005–2010. We have shown

that there is a clear pattern of clustering to dengue virus occurrences in Dhaka.

The spatial distribution of dengue occurrences was observed to follow a geo-

graphically clustered pattern. This was confirmed by statistical testing using

Moran’s I which indicated strong autocorrelation within the data. The largest

clusters of dengue cases were present around the centre of the city and around the

heavily urbanised regions of the city. Whilst this may seem to suggest that the

highest rate of dengue illness in Dhaka occurs in areas of high urbanisation, this is

an incomplete picture.

Overall, the spatial analyses that were carried out were capable of identifying

simple relationships within the data and will need to be taken further in order to

effectively bring about more census tract-specific findings. This would require

consideration of both the effects of urbanisation and other socioeconomic and

biophysical factors in the region. Further analysis could assist in focusing and

implementing precautionary and preventive strategies to more effectively monitor

and control the incidence of dengue.

Acknowledgement We acknowledge the support of the International Foundation for Science

(IFS), Sweden, for funding part of this work under a project (Reference: W4656-1) on which

Ashraf M. Dewan was the Principal Investigator.

References

Ahmed MTU, Rahman GMS, Bashar K, Shamsuzzaman M, Samajpati S, Sultana S, Hossain MI,

Banu NN, Rahman MS (2007) Seasonal prevalence of dengue vectors mosquito in Dhaka city,

Bangladesh. Bangladesh J Zool 35(2):205–212

Ali M, Wagatsuma Y, Emch M, Breiman RF (2003) Use of geographic information system for

defining spatial risk for dengue transmission in Bangladesh: role for Aedes Albopictus in an

urban outbreak. Am J Trop Med Hyg 69(6):634–640

Anker M, Arima Y (2011) Male-female differences in the number of reported incident dengue

fever cases in six Asian countries. West Pac Surveill Response J 2(2):17–23

Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27(2):93–115

Anselin L (2003) GeoDa 0.9 user’s guide, Urbana-Champaign, Spatial Analysis Laboratory

(SAL), Department of Agricultural and Consumer Economics, University of Illinois, Illinois

Anselin L (2004) GeoDa 0.95i release notes, Urbana-Champaign, Spatial Analysis Laboratory

(SAL), Department of Agricultural and Consumer Economics, University of Illinois, Illinois

Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal

38(1):5–22

382 S. Ali et al.



Bangladesh Bureau of Statistics (BBS) (2003) Community series-2001. http://www.bbs.gov.bd/

PageWebMenuContent.aspx?MenuKey=142. Accessed June 2011

Bhandari KP, Raju PLN, Sokhi BS (2008) Application of GIS modelling for dengue fever prone

area based on socio-cultural and environmental factors – a case study of Delhi city zone.

Int Arch Photogramm Remote Sens Spat Inf Sci 37(B8):165–170

Blewitt M (2012) Multiple sclerosis geographics, investigating aetiology through space/time

epidemiology. http://www.msgeographics.com/index_files/Page660.htm. Accessed 12 Dec 2012

Bohra A, Andrianasolo H (2001) Application of GIS in modeling of dengue risk based on

sociocultural data: case of Jalore, Rajasthan, India. Dengue Bull 25:92–102

Braga A (2003) Serious youth gun offenders and the epidemic of youth violence in Boston. J Quant

Criminol 19(1):33–54

Castillo KC, Korbl B, Stewart A, Gonzalez JF, Ponce F (2011) Application of spatial analysis to

the examination of dengue fever in Guayaquil, Ecuador. Proc Environ Sci 7:188–193

CDC (2012) Dengue and the Aedes aegypti mosquito. United States Center for Disease Control,

Atlanta. http://www.cdc.gov/dengue/resources/30jan2012/aegyptifactsheet.pdf. Accessed 25 Jan

2013

Choudhury Z, Banu S, Islam A (2008) Forecasting dengue incidence in Dhaka, Bangladesh:

a time series analysis. Dengue Bull 32:29–36

Dewan AM (2013) Floods in a megacity: geospatial techniques in assessing hazards, risk and

vulnerability. Springer, Dordrecht

Dewan AM, Corner RJ, Hashizume M, Ongee ET (2013) Typhoid fever and its association with

environmental factors in the Dhaka Metropolitan Area of Bangladesh: a spatial and time-series

approach. PLoS Negl Trop Dis 7(1):e1998

Environmental System Research Institute (ESRI) (2012) http://resources.esri.com/help/

9.3/ArcGISengine/java/Gp_ToolRef/spatial_statistics_tools/directional_distribution_standard

_deviational_ellipse_spatial_statistics_.htm. Accessed 15 Dec 2012

Erickson RA, Presley SM, Allen LJS, Long KR, Cox SB (2010) A dengue model with a dynamic

Aedes albopictus vector population. Ecol Model 221(24):2899–2908

ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis

4(3):442–450

Guha-Sapir D, Schimmer B (2005) Dengue fever: new paradigms for a changing epidemiology.

Emerg Themes Epidemiol 2(1):1–10

Haddow AD, Odoi A (2009) The incidence risk, clustering, and clinical presentation of La Crosse

virus infections in the Eastern United States, 2003–2007. PLoS ONE 4(7):1–8

Hanafi-Bojd AA, Vatandoost H, Oshagi MA, Charrahy Z, Haghdoost AA, Zamani G, Abedi F,

Sedaghat MM, Soltani M, Shahi M, Raeisi A (2012) Spatial analysis and mapping of malaria

risk in an endemic area, south of Iran: a GIS based decision making for planning of control.

Acta Trop 122(1):132–137

Hashizume M, Dewan AM, Sunahara T, Rahman MZ, Yamamoto T (2012) Hydroclimatological

variability and dengue transmission in Dhaka, Bangladesh: a time-series study. BMC Infect

Dis 12:98

Hsueh Y-H, Lee J, Beltz L (2012) Spatio-temporal patterns of dengue fever cases in Kaohsiung

City, Taiwan 2003–2008. Appl Geogr 34:587–594

Igarashi A (1997) Impact of dengue virus infection and its control. FEMS Immunol MedMicrobiol

18(4):291–300

Jeefoo P, Tripathi NK, Souris M (2011) Spatio-temporal diffusion pattern and hotspot detection of

dengue in Chachoengsao province, Thailand. Int J Environ Res Public Health 8:51–74

Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N,

Viramitrachai W, Ratanachu-eke S, Kiatpolpoj S, Innis BL, Rothman AL, Nisalak A, Ennis FA

(1997) Early clinical and laboratory indicators of acute dengue illness. J Infect Dis

176(2):313–321

20 Spatiotemporal Analysis of Dengue Infection Between 2005 and 2010 383

http://www.bbs.gov.bd/PageWebMenuContent.aspx?MenuKey=142
http://www.bbs.gov.bd/PageWebMenuContent.aspx?MenuKey=142
http://www.msgeographics.com/index_files/Page660.htm
http://www.cdc.gov/dengue/resources/30jan2012/aegyptifactsheet.pdf
http://resources.esri.com/help/9.3/ArcGISengine/java/Gp_ToolRef/spatial_statistics_tools/directional_distribution_standard_dev...
http://resources.esri.com/help/9.3/ArcGISengine/java/Gp_ToolRef/spatial_statistics_tools/directional_distribution_standard_dev...
http://resources.esri.com/help/9.3/ArcGISengine/java/Gp_ToolRef/spatial_statistics_tools/directional_distribution_standard_dev...


Khormi HM, Kumar L (2011) Modeling dengue fever risk based on socioeconomic parameters,

nationality and age groups: GIS and remote sensing based case study. Sci Total Environ

409(22):4713–4719

Martinez R (2007) Geographic information system for dengue prevention and control. World

Health Organization report of the scientific working group on dengue-on behalf of the special

programme for research and training in tropical diseases, WHO Regional Office for the

Americas (AMRO)/PanAmerican Health Organization (PAHO), pp 134–139

Micieli MV, Campos RE (2003) Oviposition activity and seasonal pattern of a population of Aedes

(Stegomyia) aegypti in Subtropical Argentina. Mem Inst Oswaldo Cruz 98(5):659–663

Mondini A, Neto FC (2008) Spatial correlation of incidence of dengue with socioeconomic, demo-

graphic and environmental variables in a Brazilian city. Sci Total Environ 393(2–3):241–248

Mondini A, Neto FC, Sanches MGY, Lopes JCC (2005) Spatial analysis of dengue transmission in

a medium-sized city in Brazil. Revista De Saude Publica 29(3):444–451

Morrison AC, Getis A, Santiago M, Rigau-Perez JG, Reiter P (1998) Exploratory space-time

analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992.

Am J Trop Med Hyg 58(3):287–298

Nakhapakorn K, Jirakajohnkool S (2006) Temporal and spatial autocorrelation statistics of dengue

fever. Dengue Bull 30:171–183

Nakhapakorn K, Tripathi NK (2005) An information value based analysis of physical and climatic

factors affecting dengue fever and dengue haemorrhagic fever incidence’. Int J Health Geogr

4(13):177–183

O’Sullivan D (2012) Local indicators of spatial association. Penn State College of Earth andMineral

Sciences. https://www.e-education.psu.edu/geog586/l9_p11.html. Accessed 12 Dec 2012

Pathirana S, Kawabata M, Goonetilake R (2009) Study of potential risk of dengue disease outbreak

in Sri Lanka using GIS and statistical modelling. J Rural Trop Publ Health 8:8–17

Pratt M (2003) Down-to-earth approach jumpstarts GIS for dengue outbreak, The magazine for

ESRI software users. http://www.esri.com/library/reprints/pdfs/arcuser_dengue-outbreak.pdf.

Accessed 8 Aug 2012

Ranjit S, Kissoon N (2011) Dengue hemorrhagic fever and shock syndromes. Paediatr Crit Care

Med 12(1):90–100

Rezaeian M, Dunn G, Leger SS, Appleby L (2007) Geographical epidemiology, spatial analysis

and geographical information systems: a multidisciplinary glossary. J Epidemiol Community

Health 61(2):98–102

SPSS Inc (1999) SPSS Base 10.0 for Windows user’s guide. SPSS Inc., Chicago

Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, Remy F, Polidori L, Gardon J (2004)

Dengue spatial and temporal patterns, French Guiana, 2001. Emerg Infect Dis 10(4):615–621

United Nations Environmental Programme (UNEP) (2006) Regional resource centre for Asia and

the Pacific State of the Environment report. Asian Institute of Technology, Dhaka

Vanwambeke SO, Van-Benthem BHB, Khantikul N, Burghoorn-Mass C, Panart K, Oskam L

(2006) Multi-level analyses of spatial and temporal determinants for dengue infection.

Int J Health Geogr 5(5)

Vezzani D, Velazquez SM, Schweigmann N (2004) Seasonal pattern of abundance of Aedes
aegypti in Buenos Aires City, Argentina. Mem Inst Oswaldo Cruz 99(4):351–356

Wen T, Lin N, Lin C, King C, Su M (2006) Spatial mapping of temporal risk characteristics to

improve environmental health risk identification: a case study of a dengue epidemic in Taiwan.

Sci Total Environ 367(2–3):631–640

Wilder-Smith A, Chen LH, Massad E, Wilson ME (2009) Threat of dengue to blood safety in

dengue-endemic countries. Emerg Infect Dis 15(1):8–11

World Health Organisation (WHO) (2009) Dengue: Guidelines for diagnosis, treatment, prevention

and control – New edn. WHO Press, Geneva

World Health Organisation (WHO) (2012) Dengue and severe dengue (fact sheet). http://www.

who.int/mediacentre/factsheets/fs117/en/. Accessed 13 June 2012

Wu P-C (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever

transmission in subtropical Taiwan. Sci Total Environ 407(7):2224–2233

384 S. Ali et al.

https://www.e-education.psu.edu/geog586/l9_p11.html
http://www.esri.com/library/reprints/pdfs/arcuser_dengue-outbreak.pdf
http://www.who.int/mediacentre/factsheets/fs117/en/
http://www.who.int/mediacentre/factsheets/fs117/en/

	Chapter 20: Spatiotemporal Analysis of Dengue Infection Between 2005 and 2010
	20.1 Introduction
	20.2 Data and Methods
	20.2.1 Data
	20.2.2 Analytical Techniques

	20.3 Results
	20.3.1 Visual Inspection
	20.3.2 Epidemiology of Dengue
	20.3.3 Spatial Analysis

	20.4 Discussion
	20.5 Conclusions
	References


