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    Abstract     This white paper is a synthesis of several recent workshops, reports and 
published literature on monthly to decadal climate prediction. The intent is to docu-
ment: (i) the scientifi c basis for prediction from weeks to decades; (ii) current capa-
bilities; and (iii) outstanding challenges. In terms of the scientifi c basis we described 
the various sources of predictability, e.g., the Madden Jullian Ocillation (MJO); 
Sudden Stratospheric Warmings; Annular Modes; El Niño and the Southern 
Oscillation (ENSO); Indian Ocean Dipole (IOD); Atlantic “Niño;” Atlantic gradient 
pattern; snow cover anomalies, soil moisture anomalies; sea-ice anomalies; Pacifi c 
Decadal Variability (PDV); Atlantic Multi-Decadal Variability (AMV); trend 
among others. Some of the outstanding challenges include how to evaluate and 
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validate prediction systems, how to improve models and prediction systems (e.g., 
observations, data assimilation systems, ensemble strategies), the  development of 
seamless prediction systems.  

  Keywords     Seamless weather and climate prediction   •   MJO   •   ENSO   •   Annular 
modes   •   Pacifi c Decadal Variability   •   Atlantic Multi-Decadal Variability   •   Indian 
Ocean Dipole  

1         Introduction 

 Numerical weather forecasts have seen profound improvements over the last 
30-years with the potential now to provide useful forecasts beyond 10 days ahead, 
especially those based on ensemble, probabilistic systems. Despite this continued 
progress, it is well accepted that even with a perfect model and nearly perfect initial 
conditions, 1  the fact that the atmosphere is chaotic causes forecasts to lose predic-
tive information from initial conditions after a fi nite time (Lorenz  1965 ), in the 
absence of forcing from other parts of the Earth’s system such as ocean surface 
temperatures and land surface soil moisture. As a result, for many aspects of weather 
the “limit of predictability” is about 2 weeks. 

 So, why is climate prediction 2  (i.e., forecast beyond the limit of weather predict-
ability) possible? While there is a clear limit to our ability to forecast day-to-day 
weather, there exists a fi rm scientifi c basis for the prediction of time averaged cli-
mate anomalies. Climate anomalies result from complex interactions among all the 
components of the Earth system. The atmosphere, which fl uctuates very rapidly on 
a day-to-day basis, interacts with the more slowly evolving components of the Earth 
system, which are capable of exerting a sustained infl uence on climate anomalies 
extending over a season or longer, far beyond the limit of atmospheric predictability 
from initial conditions alone. The atmosphere, for example, is particularly sensitive 
to tropical sea surface temperature anomalies such as those that occur in association 
with El Nino and the Southern Oscillation (ENSO). There is also increasing evi-
dence that external forcings, such as solar variability, greenhouse gas and aerosol 
concentrations, land use and volcanic eruptions, also ‘lend’ predictability to the 
system, which can be exploited on sub-seasonal to decadal timescales. 

 Consequently, numerical models used for climate prediction have progressed 
from atmospheric models with a simple representation of the oceans to fully cou-
pled Earth system models complete with fully coupled dynamical oceans, land 
surface, cryosphere and even chemical and biological processes. In fact, many 

1    Arbitrarily small initial condition errors.  
2    Here we defi ne the prediction of climate anomalies as the prediction of statistics of weather 
(i.e., mean temperature or precipitation, variance, probability of extremes such as droughts, fl oods, 
hurricanes, high winds …).  
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operational centers around the world now produce sub-seasonal to seasonal predictions 
using observed initial conditions that include components of the Earth system 
beyond the atmosphere. 

 The traditional boundaries between weather forecasting and climate prediction 
are fast disappearing since progress made in one area can help to accelerate improve-
ments in the other. For example, improvements in the modeling of soil moisture 
made in climate models can lead to improved weather forecasting of showers over 
land in summer; and data assimilation, which has been restricted to the realm of 
weather prediction, is now becoming a requirement of coupled models used for 
longer term predictions (Brunet et al.  2010 ). 

 As the scope of numerical weather forecasting and climate prediction broadens 
and overlaps, the fact that both involve modeling the same system becomes much 
more relevant, as many of the processes are common to all time scales. There is 
much benefi t to be gained from a more integrated or “seamless” approach. Unifying 
modeling across all timescales should lead to effi ciencies in model development and 
improvement by sharing and implementing lessons learned by the different com-
munities. There are many examples of the benefi ts of this approach (e.g.    Brown 
et al.  2012 ). These include enabling climate models to benefi t from what is learned 
from data assimilation in weather forecasting, enabling weather forecasting models 
to learn from the coupling with the oceans in climate models, and sharing the 
validation and benchmarking of key common processes such as tropical convection. 
The inclusion of atmospheric chemistry and aerosols, essential components of Earth 
system models used for projections of climate change, can now be exploited to 
improve air quality forecasting and the parametrization of cloud microphysics. 
Predictions of fl ood events require better representation of hydrological processes at 
local, regional, continental and global scales, which are important across all time 
scales. Diagnostic of precipitation model errors show often signifi cant similarity 
between climate and weather prediction systems hence pointing out to a common 
solution to the problem. The use of a common core model for various applications 
is also an opportunity to save human time when porting a system to a new compu-
tational platform. 

 Clearly, there is a growing demand for environmental predictions that include a 
broad range of space and time scales and that include a complete representation of 
physical, chemical and biological processes. Meeting this demand could be acceler-
ated through a unifi ed approach that will challenge the traditional boundaries 
between weather and climate science in terms of the interactions of the bio- geophysical 
systems. It is also recognized that interactions across time and space scales are fun-
damental to the climate system itself (Randall et al.  2003 ; Hurrell et al.  2009 ; Shukla 
et al.  2009 ; Brunet et al.  2010 ). The large-scale climate, for instance, determines the 
environment for microscale (order 1 km) and mesoscale (order 10 km) variability 
which then feedback onto the large-scale climate. In the simplest terms, the statis-
tics of microscale and mesoscale variability signifi cantly impact the simulation of 
weather and climate and the feedbacks between all the biogeophysical systems. 
However, these interactions are extremely complex making it diffi cult to understand 
and predict the Earth system variability that we observe. 

Prediction from Weeks to Decades
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 We also note that predictions can be made using purely statistical techniques, or 
dynamical models, or a combination of both. Statistical and dynamical methods are 
complementary: improved understanding gained through successful statistical fore-
casts may lead to better dynamical models, and vice versa. Furthermore, statistical 
methods provide a baseline level of skill that more complex dynamical models must 
aim to exceed. Statistical methods are actively used to correct model errors beyond 
the mean bias so that model output can be used by application models. 

 Increasingly all forecasts are probabilistic, refl ecting the fact that the atmosphere 
and oceans are chaotic systems and that models do not fully capture all the scales of 
motion, i.e. the model itself is uncertain (see Slingo and Palmer  2011  for a full dis-
cussion of uncertainty). That being the case, skill cannot be judged based on a single 
case since a probabilistic prediction is neither right nor wrong. Instead an ensemble 
prediction system produces a range of possible outcomes, only one of which will be 
realized. Its skill can therefore only be assessed over a wide range of cases where it 
can be shown that the forecast probability matches the observed probability (e.g., 
Palmer et al.  2000 ,  2004 ; Goddard et al.  2001 ; Kirtman  2003 ; DeWitt  2005 ; 
Hagedorn et al.  2005 ; Doblas-Reyes et al.  2005 ; Saha et al.  2006 ; Kirtman and Min 
 2009 ; Stockdale et al.  2011 ; Arribas et al.  2011  and others). 

 Given our current modeling capabilities, a multi-model ensemble strategy may 
be the best current approach for adequately resolving forecast uncertainty (Derome 
et al.  2001 ; Palmer et al.  2004 ,  2008 ; Hagedorn et al.  2005 ; Doblas-Reyes et al. 
 2005 ; Wang et al.  2010 ). The use of multi-model ensembles can give a defi nite 
boost to the forecast reliability compared to that obtained by a single model (e.g., 
Hagedorn et al.  2005 ; Guilyardi  2006 ; Jin et al.  2008 ; Kirtman and Min  2009 ; 
   Krishnamurti et al.  2000 ). Although a multi-model ensemble strategy represents the 
“best current approach” for estimating uncertainty, it does not remove the need to 
improve models and our understanding. 

 Another factor in climate prediction is that, unlike weather forecasting, model- 
specifi c biases grow strongly in a fully coupled ocean–atmosphere system, to the 
extent that the distribution of probable outcomes in seasonal to decadal forecasts 
may not refl ect the observed distribution, and thus the forecasts may not be reliable. 
It is essential, therefore, that forecast reliability is assessed using large sets of model 
hindcasts. These enable the forecast probabilities to be calibrated based on past 
performance and the model bias to be corrected. However, these empirical correc-
tion methods are essentially linear and yet we know that the real system is highly 
nonlinear. As Turner et al. ( 2005 ) have demonstrated, there is inherently much more 
predictive skill if improvements in model formulation could be made that reduce 
these biases, rather than correcting them after the fact.  

2     Sub-seasonal Prediction 

 Forecasting the day-to-day weather is primarily an atmospheric initial condition 
problem, although there can be an infl uence from land and sea-ice (Pellerin et al. 
 2004 ; Smith et al.  2012 ) conditions and ocean temperatures. Forecasting at the 
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seasonal-to-interannual range depends strongly on the slowly evolving components 
of the Earth system, such as the ocean surface, but all the components can infl uence 
the evolution of the system. In between these two time-scales is sub-seasonal 
variability. 

2.1     Madden Julian Oscillation 

 Perhaps the best known source of predictability on sub-seasonal timescales is the 
Madden-Jullian Oscillation (MJO, Madden and Julian  1971 ). This has a natural 
timescale in the range 30–70 days. It is associated with regions of enhanced or 
reduced precipitation, and propagates eastwards, with speeds of ~5 m/s, depending 
on its longitude. The MJO clearly infl uences precipitation in the tropics. It infl u-
ences tropical cyclone activity in the western and eastern north Pacifi c, the Gulf 
of Mexico, southern Indian Ocean and Australia (See Vitart  2009  for references). 
It also infl uences the Asian and Australian monsoon onset and breaks and is associ-
ated with northward moving events in the Bay of Bengal (Lawrence and Webster 
 2002 ). Recent estimates of the potential predictability associated with the MJO 
suggest that it may be as much as 40 days (Rashid et al.  2011 ). 

 Interaction with the ocean may play some role in the development and propaga-
tion of the MJO, but does not appear to be crucial to its existence (Woolnough et al. 
 2007 ; Takaya et al.  2010 ). The way convection is represented in numerical models 
does infl uence the characteristics of the MJO quite strongly, however. Until recently 
the MJO was quite poorly represented in most models. There are now some models 
that have something resembling an MJO (Pegion and Kirtman  2008 ; Vitart and 
Molteni  2010 ; Waliser et al.  2009 ; Wang et al.  2010 ; Gottschalck et al.  2010 ; Lin 
et al.  2010a ,  b ; Lin and Brunet  2011 ) but more remains to be done. 

 Not only is the MJO important in the tropics, there is growing evidence that it has 
an important infl uence on northern hemisphere weather in the PNA (Pacifi c North 
American pattern) and even in the Atlantic and European sectors. Cassou ( 2008 ) 
and Lin et al. ( 2009 ) have studied the link from the MJO to modes of the northern 
hemisphere including the North Atlantic Oscillation. In Lin et al. ( 2009 ) time- 
lagged composites and probability analysis of the NAO index for different phases of 
the MJO reveal a statistically signifi cant two-way relationship between the NAO 
and the tropical convection of the MJO (see Table  1 ). A signifi cant increase of the 
NAO amplitude happens about 1–2 weeks after the MJO-related convection anom-
aly reaches the tropical Indian Ocean and western Pacifi c region. The development 
of the NAO is associated with a Rossby wave train in the upstream Pacifi c and North 
American region. In the Atlantic and African sector, there is an extratropical infl u-
ence on the tropical intraseasonal variability. Certain phases of the MJO are pre-
ceded by 2–4 weeks by the occurrence of strong NAOs. A signifi cant change of 
upper zonal wind in the tropical Atlantic is caused by a modulated transient west-
erly momentum fl ux convergence associated with the NAO.

   The MJO has also been found to infl uence the extra-tropical weather in various 
locations. For example, Higgins et al. ( 2000 ) and Mo and Higgins ( 1998 ) investigated 

Prediction from Weeks to Decades



210

the relationships between tropical convection associated with the MJO and U.S. West 
Coast precipitation. Vecchi and Bond ( 2004 ) found that the phase of the MJO has a 
substantial systematic and spatially coherent effect on sub-seasonal variability in win-
tertime surface air temperature in the Arctic region. Wheeler et al. ( 2009 ) documented 
the MJO impact on Australian rainfall and circulation. Lin and Brunet ( 2009 ) and Lin 
et al. ( 2010b ) found signifi cant lag connection between the MJO and the intra-sea-
sonal variability of temperature and precipitation in Canada. It is also observed that 
with a lead time of 2–3 weeks, the MJO forecast skill is signifi cantly infl uenced by the 
NAO initial amplitude (Lin and Brunet  2011 ) (Fig.  1 ).

   The importance of the tropics in extra-tropical weather forecasting has been 
illustrated by several authors. Early results from Ferranti et al. ( 1990 ) indicated that 
better representation of the MJO led to better mid-latitude forecasts in the northern 
hemisphere, and the benefi t of the connection of the MJO and NAO in intra- seasonal 
forecasting has been demonstrated in Lin et al. ( 2010a ). With a lead time up to about 
1 month the NAO forecast skill is signifi cantly infl uenced by the existence of the 
MJO signal in the initial condition. A strong MJO leads to a better NAO forecast 
skill than a weak MJO. These results indicate that it is possible to increase the 
predictability of the NAO and the extra-tropical surface air temperature with an 
improved tropical initialization, a better prediction of the tropical MJO and a better 
representation of the tropical-extra-tropical interaction in dynamical models.  

2.2     Other Sources of Sub-seasonal Predictability 

 An important source of potential predictability comes from the relatively persistent 
variations in the lower stratosphere following sudden stratospheric warmings and 
other stratospheric fl ow changes, which have been shown to precede anomalous 

   Table 1    Lagged probability composites of the NAO index with respect to each MJO phase   

 MJO phase  1  2  3  4  5  6  7  8 

 NAO Lag −5  −35  −40  +49  +49 
 Lag −4  +52  +46 
 Lag −3  −40  +46 
 Lag −2  +50 
 Lag −1 
 Lag 0  +45  −42 
 Lag 1  +47  +45  −46 
 Lag 2  +47  +50  +42  −41  −41  −42 
 Lag 3  +48  −41  −48 
 Lag 4  −39  −48 
 Lag 5  −41 

  From Lin et al. ( 2009 ) 
 Lag n means that the NAO lags the MJO of the specifi c phase by n pentads, while Lag –n indicates 
that the NAO leads the MJO by n pentads. Positive values are for the upper tercile, while negative 
values are for the lower tercile. Values shown are only for those having a 0.05 signifi cance level 
according to a Monte Carlo test  
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circulation conditions in the troposphere (Kuroda and Kodera  1999 ; Baldwin and 
Dunkerton  2001 ). The long radiative timescale and wave-mean fl ow interactions in 
the stratosphere can lead to persistent anomalies in the polar circulation. These can 
then infl uence the troposphere, particularly in the mid-latitudes to produce persis-
tent anomalies in the storm track regions and highly populated areas around the 
Atlantic and Pacifi c basins (Thompson and Wallace  2000 ). Once they occur, strato-
spheric sudden warmings provide further predictability during winter and spring, 
although the extent to which they are themselves predictable is generally limited to 
1–2 weeks (Marshall and Scaife 2010a). 

 Soil moisture memory spans intraseasonal time scales depending on the season. 
Memory in soil moisture is translated to the atmosphere through the impact of soil 
moisture on the surface energy budget, mainly through its impact on evaporation. 
Soil moisture initialization in forecast systems is known to affect the evolution of 
forecast precipitation and air temperature in certain areas during certain times of the 
year on intraseasonal time scales (e.g., Koster et al.  2010 ). Model studies (Fischer 
et al.  2007 ) suggest that the European heat wave of summer 2003 was exacerbated 
by dry soil moisture anomalies in the previous spring. 

 Hudson et al. ( 2011a ,  b ) and Hamilton et al. ( 2012 ) have shown that modes of 
climate variability, such as ENSO, the Indian Ocean Dipole (IOD) and the Southern 
Annular Mode (SAM), are sources of intra-seasonal predictability; if ENSO/IOD/
SAM are in extreme phases, intra-seasonal prediction is extended. These studies 
argue that it is not predicting intra-seasonal variations in the tropics per se that 

  Fig. 1    Evolution of ECMWF forecast skill for varying lead times (3 days in  blue ; 5 days in  red ; 
7 days in  green ; 10 days in  yellow ) as measured by 500-hPa height anomaly correlation.  Top line  
corresponds to the Northern Hemisphere;  bottom line  corresponds to the Southern hemisphere. 
Large improvements have been made, including a reduction in the gap in accuracy between the 
hemispheres (Source: Courtesy of ECMWF. Adapted from Simmons and Holligsworth ( 2002 ))       

 

Prediction from Weeks to Decades



212

matters, but that these slow variations shift the seasonal probabilities of daily 
weather one way or the other and this shift can be detected as short as 2 weeks into 
the forecast. 

 Although the fi eld is still in its infancy, early results concerning the extent of 
polar predictability also show promise (e.g., Blanchard-Wrigglesworth et al.  2011 ). 
Most of these efforts have taken place in Europe or North America and have there-
fore focused on the Arctic and North Atlantic. Operational seasonal prediction 
systems for the Arctic show the impact of summertime sea-ice and fall Eurasian 
snow-cover anomalies, and September Arctic sea-ice extent appears to be predict-
able given knowledge of the springtime ice thickness or early to mid summer sea 
ice extent.   

3     Seasonal-to-Interannual Prediction 

 In many respects seasonal prediction is the most mature of the three timescales 
under consideration in this paper. Statistical methods have been used for many 
decades, especially for the Indian Summer Monsoon, and the seasonal timescale has 
been the primary focus of the early development of ensemble prediction systems. 
The seasonal timescale is also one in which the low frequency forcing from the 
ocean, especially El Nino/La Nina, really begins to dominate and provide signifi -
cant levels of predictability. 

3.1     El Nino Southern Oscillation (ENSO) 

 The largest source of seasonal-to-interannual prediction is ENSO. ENSO is a coupled 
mode of variability of the tropical Pacifi c that grows through positive feedbacks 
between sea surface temperature (SST) and winds – a weakening of the easterly 
trade winds produces a positive SST anomaly in the eastern tropical Pacifi c which 
in turn alters the atmospheric zonal (Walker) circulation to further reduce the east-
erly winds. The time between El Niño events is typically about 2–7 years, but the 
mechanisms controlling the reversal to the opposite La Niña phase are not under-
stood completely, nor are those that lead to sustained La Nina events extending 
beyond 1 year. 

 ENSO infl uences seasonal climate almost everywhere (see Fig.  2  taken from 
Smith et al.  2012 ), either by directly altering the tropical Walker circulation 
(Walker and Bliss  1932 ), or through Rossby wave trains that propagate to mid and 
high latitudes (Hoskins and Karoly  1981 ), substantially modifying weather pat-
terns over North America. There is also a notable infl uence on the North Atlantic 
Oscillation (NAO), especially in late winter (Brönimann et al.  2007 ). It has also 
been shown that ENSO governs much of the year-to-year variability of global 
mean temperature (Scaife et al.  2008 ). However, the strongest impacts of ENSO 
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occur in Indonesia, North and South America, East and South Africa, India and 
Australia. A notable recent example was the intense rainfall and fl ooding in 
Northeast Australia during 2010/2011 during a pronounced La Nina event – the 
strongest since 1973/1974.

   The ability to predict the seasonal variations of the tropical climate dramatically 
improved from the early 1980s to the late 1990s. This period was bracketed by two 
of the largest El Niño events on record: the 1982–1983 event and the 1997–1998 
event. In the case of the former, there was considerable confusion as to what was 
happening in the tropical Pacifi c (see Anderson et al.  2011 ). As a result the NOAA 
Tropical Atmosphere Ocean (TAO) array of tethered buoys was implemented across 
the equatorial Pacifi c, providing essential observations of the ocean’s sub-surface 
behavior. By contrast the development of the 1997–1998 El Nino was monitored 
very carefully and considerably better forecast. This improvement was due to the 
convergence of many factors. These included: (i) a concerted international program, 
called TOGA (Tropical Oceans Global Atmosphere), with the remit to observe, 
understand and predict tropical climate variability; (ii) the application of theoretical 
understanding of coupled ocean-atmosphere dynamics, and (iii) the development 
and application of models that simulate the observed variability with some fi delity. 
The improvement led to considerable optimism regarding our ability to predict sea-
sonal climate variations in general and El Niño/Southern Oscillation (ENSO) events 
in particular. 

 Despite these successes, basic questions regarding our ability to model the physical 
processes in the tropical Pacifi c remain open challenges in the forecast community. 
For instance, it is unclear how the MJO, Westerly Wind Bursts (WWBs), intra-
seasonal variability or atmospheric weather noise infl uence the predictability of 
ENSO (e.g., Thompson and Battisti  2001 ; Kleeman et al.  2003 ; Flugel et al.  2004 ; 
Kirtman et al.  2005 ) or how to represent these processes in current models. It has 
been suggested that enhanced MJO and WWB activity was related to the rapid onset 
and the large amplitude of the 1997–1998 event (e.g., Slingo et al.  1999 ; Vecchi and 
Harrison  2000 ; Eisenman et al.  2005 ). However, more research is needed to fully 
understand the scale interactions between ENSO and the MJO and the degree that 
MJO/WWB representation is needed in ENSO prediction models to better resolve 
the range of possibilities for the evolution of ENSO (Lengaigne et al.  2004 ; 
Wittenberg et al.  2006 ). 

 After the late 1990s, however, the ability of some models to predict tropical 
climate fl uctuations reached a plateau with only modest subsequent improvement in 
skill; but see for example Stockdale et al. ( 2011 ) who document progress with one 
coupled system over more than a decade of development. Arguably, there were 
substantial qualitative forecasting successes – almost all the models predicted a 
warm event during the boreal winter of 1997/1998, one to two seasons in advance. 
Despite these successes, there have also been some striking quantitative failures. 
For example, according to Barnston et al. ( 1999 ) and Landsea and Knaff ( 2000 ) 
none of the models predicted the early onset or the amplitude of that event, and 
many of the dynamical forecast systems (i.e., coupled ocean–atmosphere models) 
had diffi culty capturing the demise of the warm event and the development of cold 

B. Kirtman et al.



215

anomalies that persisted through 2001. In subsequent forecasts, many models failed 
to predict the three consecutive years (1999–2001) of relatively cold conditions and 
the development of warm anomalies in the central Pacifi c during the boreal summer 
of 2002. Accurate forecasts can still sometimes be a challenge even at relatively 
modest lead-times (Barnston 2007, Personal communication) although the recent 
2009/2010 El Nino and 2010/2011, 2011/2012 La Nina events were well predicted 
at least 6 months in advance by most operational centers. 

 Typically, prediction systems do not adequately capture the differences between 
different ENSO events such as the recently identifi ed different types of ENSO event 
(Ashok et al.  2007 ). In essence, the prediction systems do not have a suffi cient num-
ber of degrees of freedom for ENSO as compared to nature. There are also apparent 
decadal variations in ENSO forecast quality (Balmaseda et al.  1995 ; Ji et al.  1996 ; 
Kirtman and Schopf  1998  ), and the sources of these variations are the subject of 
some debate. It is unclear whether these variations are just sampling issues or are 
due to some lower frequency changes in the background state (see Kirtman et al. 
 2005  for a detailed discussion). 

 Chronic biases in the mean state of climate models and their intrinsic ENSO 
modes remain, and it is suspected that these biases have a deleterious effect on El 
Nino/La Nina forecast quality and the associated teleconnections. Some of these 
errors are extremely well known throughout the coupled modeling community. 
Three classic examples, which are likely interdependent, are (1) the so-called 
double ITCZ problem, (2) the excessively strong equatorial cold tongue typical to 
most models, and (3) the sub-tropical eastern Pacifi c and Atlantic warm biases 
endemic to all models. Such biases may limit our ability to predict seasonal-to-
interannual climate fl uctuations, and could be indicative of errors in the model 
formulations. Resolution may be one cause of some of these errors (e.g. Luo et al. 
 2005 ). Studies with models that employ higher resolution in both the atmosphere 
and ocean have demonstrated signifi cant improvements in the mean state of the 
tropical Pacifi c and the simulation of El Nino and its teleconnections (e.g. Shaffrey 
et al.  2008 ).  

3.2     Tropical Atlantic Variability 

 On seasonal-to-interannual time scales, tropical Atlantic SST variability is typically 
separated into two patterns of variability – the gradient pattern and the equatorial 
pattern (Kushnir et al.  2006 ). The gradient pattern is characterized as a north–south 
dipole centered at the equator with the largest signals in the sub-tropics, and is typi-
cally associated with variability in the southern-most position of the inter-tropical 
convergence zone (ITCZ). The equatorial pattern is sometimes referred to as the 
zonal mode (e.g., Chang et al.  2006 ), or the “Atlantic Nino” because of its structural 
similarities to the ENSO pattern in the Pacifi c, although the phase locking with the 
annual cycle is quite different and the air-sea feedbacks are weaker leading to a 
more clearly damped mode of variability (e.g., Nobre et al.  2003 ). 
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 The gradient pattern is linked to large rainfall variability over South America and 
the northeast region (Nordeste) of Brazil in particular during the boreal spring 
(Moura and Shukla  1981 ; Nobre and Shukla  1996 ). The positive gradient pattern 
(i.e., warm SSTA to the north of the equator) is associated with a failure of the ITCZ 
to shift its southern most location during boreal spring. This leads to large-scale 
drought in much of Brazil and coastal equatorial Africa. The equatorial pattern in 
the positive phase is linked to increased maritime rainfall just south of the climato-
logical position of the boreal summer ITCZ. The associated terrestrial rainfall 
anomalies are typically relatively small. 

 Early predictability studies (Penland and Matrosova  1998 ) suggest that the north 
tropical Atlantic component of the gradient pattern (and variability in the Caribbean) 
can be predicted one to two seasons in advance largely due to the “disruptive” or 
excitation infl uence from the Indo-Pacifi c SSTA, but this does not suggest that local 
coupled processes in the region are unimportant (e.g., Nobre et al.  2003 ). The NAO 
can also be an external excitation mechanism, but again local processes remain 
important for the life cycle of the variability. The predictability of the southern sub- 
tropical Atlantic component of the gradient mode has not been well established, and 
is largely viewed as independent from ENSO (Huang et al.  2002 ). There has been 
little success in predicting the zonal mode.  

3.3     Tropical Indian Ocean Variability 

 There are three dominant patterns of variability in the tropical Indian Ocean that 
affect remote seasonal-to-interannual rainfall variability over land: (i) a basin- wide 
pattern that is remotely forced by ENSO (e.g., Krishnamurthy and Kirtman  2003 ); 
(ii) the so-called Indian Ocean Dipole/Zonal Mode (IOD for simplicity) that can be 
excited by ENSO, but also can also develop independently of ENSO (e.g., Saji et al. 
 1999 ; Webster et al.  1999 ; Huang and Kinter  2002 ); and (iii) a gradient pattern simi-
lar to the Atlantic that is prevalent during boreal spring (Wu et al.  2008 ). The basin 
wide pattern is slave to ENSO and thus its predictability is largely determined by the 
predictability of ENSO. The IOD plays an important role in the Indian Ocean sector 
response to ENSO and contributes to regional rainfall anomalies that are indepen-
dent of ENSO. Idealized predictability studies suggest that the IOD should be pre-
dictable up to about 6-months (Wajsowicz  2007 ; Zhao and Hendon  2009 ), but 
prediction experiments are less optimistic (e.g., Zhao and Hendon  2009 ). Shi et al. 
( 2012 ) compare the skill of several operational seasonal forecast models, and con-
sider whether larger amplitude events are more skillfully predicted. The predictabil-
ity of the Indian Ocean meridional mode has not been investigated to date. 

 Mechanistically, the basin wide mode is captured in thermodynamic slab mixed 
layer models suggesting that ocean dynamics is of secondary importance and that the 
pattern is due to an “atmospheric bridge” associated with ENSO (e.g., Lau and Nath 
 1996 ; Klein et al.  1999 ). The IOD, on the other hand, depends on coupled air- sea inter-
actions and ocean dynamics. For example, Saji et al. ( 1999 ) noted that the IOD was 
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associated with east-west shifts in rainfall and substantial wind anomalies. Huang 
and Kinter ( 2002 ) argued for well defi ned (although not as well defi ned as for ENSO) 
interannual oscillations where thermocline variations due to asymmetric equatorial 
Rossby waves play an integral role in the evolution of the IOD. The importance of 
thermocline variations are a potential source of ocean memory and hence predict-
ability. The development and decay of the meridional mode is largely driven by local 
thermodynamic cloud and wind feedbacks induced by either ENSO or the IOD, 
whereas thermocline variations do not seem to be important (Wu et al.  2008 ).  

3.4     Other Sources of Seasonal to Interannual Predictability 

3.4.1     Upper Ocean Heat Content 

 On seasonal-to-interannual time scales upper ocean heat content is a known source 
of predictability. The ocean can store a tremendous amount of heat. The heat capacity 
of 1 m 3  of seawater is around 3,500 times that of air. Sunlight penetrates the upper 
ocean, and much of the energy associated with sunlight can be absorbed directly by 
the top few meters of the ocean. Mixing processes further distribute heat through the 
surface mixed layer, which can be tens to hundreds of meters thick. With the differ-
ence in heat capacity, the energy required to cool the upper 2.5 m of the ocean by 
1 °C could heat the entire column of air above it by the same 1 °C. The ocean can 
also transport warm water from one location to another, so that warm tropical water 
is carried by the Gulf Stream off New England, where in winter during a cold-air 
outbreak, the ocean can heat the atmosphere at a rate of many hundreds of W/m 2 , 
similar to the heating rate from solar irradiation. 

 Ocean heat can also be sequestered below the surface to re-emerge months later 
and provide a source of predictability (e.g., Alexander and Deser  1994 ). This occurs 
in the North Pacifi c and has been well documented in the North Atlantic where 
Spring atmospheric circulation patterns associated with a strong (weak) Atlantic jet 
drive positive (negative) tripolar anomalies in Atlantic ocean heat content (Hurrell 
et al.  2003 ). A positive tripole here indicates cold anomalies in the Labrador and 
subtropical Atlantic and warm anomalies just south of Newfoundland. The shoaling 
of the thermocline in summer then preserves these heat content anomalies in the 
subsurface until late Autumn or early winter when the more vigorous storm track 
deepens the mixed layer and the original heat content anomalies can “re-emerge” at 
the surface (Timlin et al.  2002 ) to infl uence the atmosphere again. This has been the 
basis of some statistical methods of seasonal forecasting (Folland et al.  2011 ) and it 
appears to have played a role in some recent extreme events (Taws et al.  2011 ). 
However it is still the case that models produce only a weak response to Atlantic 
ocean heat content anomalies, and higher resolution (e.g. Minobe et al.  2008 ; 
Nakamura et al.  2005 ) or other atmosphere–ocean interactions may need to be rep-
resented if the levels of predictability suggested in some studies from this coupling 
are to be fully realized.  
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3.4.2     Snow Cover 

 Snow acts to raise surface albedo and decouple the atmosphere from warmer underlying 
soil. Large snowpack anomalies during winter also imply large surface runoff and soil 
moisture anomalies during and following the snowmelt season, anomalies that are of 
direct relevance to water resources management and that in turn could feed back on 
the atmosphere, potentially providing some predictability at the seasonal time scale. 

 The impact of October Eurasian snow cover on atmospheric dynamics may 
improve the prediction quality of northern hemisphere wintertime temperature fore-
casts (Cohen and Fletcher  2007 ), and winter snow cover can affect predictive skill 
of spring temperatures (Shongwe et al.  2007 ). The autumn Siberian snow cover 
anomalies have also been used for prediction of the East Asian winter monsoon 
strength (Jhun and Lee  2004 ; Wang et al.  2009 ) and spring-time Himalayan snow 
anomalies may affect the Indian monsoon onset (Turner and Slingo  2011 ). Becker 
et al. ( 2001 ) demonstrated that Eurasian spring-time snow anomalies may also 
affect Indian summer monsoon strength through the infl uence of soil moisture 
anomalies on Asian circulation patterns.  

3.4.3     Stratosphere 

 Recent investigations suggest that variations in the stratospheric circulation may 
precede and affect tropospheric anomalies (e.g. Baldwin and Dunkerton  2001 ; 
Ineson and Scaife  2009 ; Cagnazzo and Manzini  2009 ). The long timescales of the 
stratospheric QBO could also have an effect under some circumstances (e.g. Boer 
and Hamilton  2008 ; Marshall and Scaife  2009 ). All of these infl uences act on the 
surface climate via the northern and southern annular modes (or their regional 
equivalents such as the NAO). Currently skill is very limited in these patterns of 
variability and given their key role in extratropical seasonal anomalies this could be 
an important area for future development. A key factor in this is the vertical resolu-
tion of the models used for seasonal prediction, which typically do not include an 
adequately resolved stratosphere, but should.  

3.4.4     Vegetation and Land Use 

 Vegetation structure and health respond slowly to climate anomalies, and anomalous 
vegetation properties may persist for some time (months to perhaps years) after the 
long-term climate anomaly that spawned them subsides. Vegetation properties such 
as species type, fractional cover, and leaf area index help control evaporation, radia-
tion exchange, and momentum exchange at the land surface; thus, long-term memory 
in vegetation anomalies could be translated into the larger Earth system (e.g. Zeng 
et al.  1999 ). Furthermore a signifi cant portion of the Earth’s land surface is cultivated 
and hence the seasonality of vegetation cover may be different from natural vegeta-
tion. Early work with coupled crop-climate models suggests that this may also con-
tribute to seasonal variations that may be predictable (e.g. Osborne et al.  2009 ).  
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3.4.5     Polar Sea Ice 

 Sea ice is an active component of the climate system and is coupled with the atmosphere 
and ocean at time scales ranging from weeks to decadal. When large anomalies are 
established in sea ice, they tend to persist due to inertial memory and feedback in 
the atmosphere–ocean-sea ice system. These characteristics suggest that some aspects 
of sea ice may be predictable on seasonal time scales. In the Southern Hemisphere, 
sea ice concentration anomalies can be predicted statistically by a linear Markov 
model on seasonal time scales (Chen and Yuan  2004 ). The best cross-validated skill 
is at the large climate action centers in the southeast Pacifi c and Weddell Sea, reach-
ing 0.5 correlation with observed estimates even at 12-month lead time, which is 
comparable to or even better than that for ENSO prediction. 

 On the other hand we have less understanding of how well sea ice impacts the 
predictability of the overlying atmosphere although some studies now suggest a 
negative AO response to declining Arctic Sea Ice (e.g. Wu and Zhang  2010 ).    

4     Decadal Prediction 

4.1     Potential Sources of Decadal Predictability 

4.1.1     External Forcing 

 Anthropogenic forcing effects from greenhouse gases and aerosols are a key source 
of skill in decadal predictions, and are incorporated through the initial conditions 
and boundary forcings (e.g. Smith et al.  2007 ). The forcing from greenhouse gases 
and aerosols are included in the initial condition in that they affect the current state 
of the climate system. A fi rst order estimate of the likely effects of anthropogenic 
forcings is provided by the trend since 1900 (Fig.  3  from Smith et al.  2012 ). This is 
over-simplifi ed because not this entire trend is attributable to human activities. The 
response to greenhouse gases is non-linear so that future human-induced changes 
could be different, and other sources of anthropogenic forcing such as aerosols and 
ozone could produce responses very different to the trend. Nevertheless, in many 
regions the trend is comparable to the natural climate variability, suggesting that 
anthropogenic climate change is a potentially important source of decadal predic-
tion skill. 3 

   Solar variations have also been recurring themes historically in discussions of 
decadal prediction. Variations in solar forcing are, however, generally compara-
tively small and tend to operate on long timescales with the most notable being the 

3    In some of the literature a “prediction” corresponds to an initial value problem and the “projection” 
corresponds to a boundary forced problem. Here we recognize that decadal prediction and even 
seasonal prediction is a both an initial value and a boundary value problem. Throughout the text we 
refer to the combined initial value and boundary value problem as prediction problem.  
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11-year solar cycle. Van Loon et al. ( 2007 ) review some aspects of solar forcing, and 
Ineson et al. ( 2011 ) have recently shown that the 11-year solar cycle could be an 
important component of extra-tropical decadal predictability on regional scales, 
especially in the Euro-Atlantic sector, provided models contain an adequate repre-
sentation of the stratosphere. 

 Explosive volcanic eruptions, although relatively rare (typically less than one per 
decade) also have a signifi cant impact on climate (Robock  2000 ) and can ‘lend’ 
predictability on timescales from seasons to several years ahead. Aerosol injected 
into the stratosphere during an eruption cools temperatures globally for a couple of 
years. The hydrological cycle and atmospheric circulation are also affected, globally. 
Precipitation rates generally decline due to the reduced water carrying capacity of a 
cooler atmosphere, but winters in northern Europe and central Asia tend to be milder 
and wetter due to additional changes in the NAO. 

 Volcanic eruptions are not predictable in advance, but once they have occurred 
they are a potential source of forecast skill (e.g. Marshall et al.  2009 ). A similar 
approach has been considered for seasonal forecasting; once the atmospheric load-
ing has been estimated based on the severity and type of explosion, this could be 
used in the forecast model. Furthermore, volcanoes impact ocean heat and circula-
tion for many years, even decades (Stenchikov et al.  2009 ). In particular, the Atlantic 
meridional overturning circulation (AMOC) tends to be strengthened by volcanic 
eruptions. Volcanoes could therefore be a crucial source of decadal prediction skill 
(Otterå et al.  2010 ), although further research is needed to establish robust atmo-
spheric signals on these timescales. Moreover, there is also evidence that volcanism 
can reduce the AMOC and may have been a contributor to the Little Ice Age onset 
(e.g., Miller et al.  2012 ).  

4.1.2     Atlantic Multi-decadal Variability 

 Atlantic multi-decadal variability (AMV) is likely to be a major source of decadal 
predictability (Fig.  4  from Smith et al.  2012 ). Observations and models indicate that 
north Atlantic SSTs fl uctuate with a period of about 30–80 years, linked to varia-
tions of the AMOC (Delworth et al.  2007 ; Knight et al.  2005 ). The AMOC and 
AMV can vary naturally (Vellinga and Wu  2004 ; Jungclaus et al.  2005 ) or through 
external infl uences including volcanoes (Stenchikov et al.  2009 ; Otterå et al.  2010 ), 
anthropogenic aerosols and greenhouse gases (IPCC  2007 ).

   Idealized model experiments suggest that natural fl uctuations of the AMOC 
and AMV are potentially predictable at least a few years ahead (Griffi es and 
Bryan  1997 ; Pohlmann et al.  2004 ; Collins et al.  2006 ; Dunstone and Smith 
 2010 ; Matei et al.  2012 ). If skilful AMV predictions can be achieved in reality, 
observational and modeling studies suggest that important climate impacts, 
including rainfall over the African Sahel, India and Brazil, Atlantic hurricanes 
and summer climate over Europe and America, might also be predictable (Sutton 
and Hodson  2005 ; Zhang and Delworth  2006 ; Knight et al.  2006 ; Dunstone 
et al.  2011 ).  
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4.1.3     Pacifi c Decadal Variability 

 Pacifi c decadal variability (PDV; Fig.  5  from Smith et al.  2012 ) is also associated 
with potentially important climate impacts, including rainfall over America, Asia, 
Africa and Australia (Power et al.  1999 ; Deser et al.  2004 ). The combination of 
PDV, AMV and climate change appears to explain nearly all of the multi-decadal 
US droughts (McCabe et al.  2004 ) including key events like the American dustbowl 
of the 1930s (Schubert et al.  2004 ). However, mechanisms underlying PDV are less 
clearly understood than for AMV. Furthermore, predictability studies show much less 
potential skill for PDV than AMV (Collins  2002 ; Boer  2004 ; Pohlmann et al.  2004 ).

4.1.4        Other Sources of Decadal Predictability 

 As mentioned above, another potential source of interannual predictability is the 
Quasi-Biennial Oscillation (QBO) in the stratosphere. The QBO is a wave-driven 
reversal of tropical stratospheric winds between easterly and westerly with a mean 
period of about 28 months. The QBO infl uences the stratospheric polar vortex and 
hence the winter NAO and Atlantic-European climate. Because the QBO is predict-
able a couple of years ahead, this may provide some additional predictability of 
Atlantic winter climate (Boer and Hamilton  2008 ; Marshall and Scaife  2009 ). 

 The ongoing decline in Arctic sea ice volume (e.g. Schweiger et al.  2011 ) as a 
result of global warming may also provide another element that infl uences decadal 
prediction. As already discussed, there is emerging evidence that reduced Arctic sea 
ice favors negative AO circulation patterns in winter; as yet there is no evidence for 
how an increasingly ice-free summer Arctic may affect the summer circulation but 
much more research needs to be done.   

4.2     Achievements So Far 

 Decadal prediction is much less mature than seasonal prediction and does not ben-
efi t from a dominant mode of variability, ENSO, as is the case for seasonal to inter-
annual prediction. Skilful statistical predictions of temperature have been 
demonstrated, both for externally forced signals (Lean and Rind  2009 ) and for ide-
alized model internal variability (Hawkins et al.  2011 ). Lee et al. ( 2006 ) found evi-
dence for skilful temperature predictions using dynamical models forced only by 
external changes. Furthermore, several studies show improved skill through initial-
ization, although whether this represents skilful predictions of internal variability or 
a correction of errors in the response to external forcing cannot be determined. In 
addition to demonstrating useful predictions of global temperature (Smith et al. 
 2007 ), initialization also improves regional predictions of surface temperature, 
mainly in the north Atlantic and Pacifi c Ocean (Pohlmann et al.  2009 ; Mochizuki 
et al.  2009 ; Smith et al.  2010 ). Evidence for improved predictions over land is less 
convincing. 
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 Skillful retrospective predictions of Atlantic hurricane frequency out to years ahead 
have been achieved (Smith et al.  2010 ). As discussed earlier, some of this skill is attrib-
utable to external forcing from a combination of greenhouse gases, aerosols, volcanoes 
and solar variations, but their relative importance has not yet been established. 
Initialization improves the skill mainly through atmospheric teleconnections from 
improved surface temperature predictions in the north Atlantic and tropical Pacifi c. 

 On longer timescales, studies of potential predictability within a “perfect model” 
framework suggest multi-year predictability of the internal variability over the high- 
latitude oceans in both hemispheres. The fi rst attempts at decadal prediction have 
identifi ed the Atlantic subpolar gyre as a key source of predictability, with a telecon-
nection to tropical Atlantic SSTs (Smith et al.  2010 ). 

 Based on model predictability experiments, improved skill in north Atlantic SST 
is expected to be related to skilful predictions of the Atlantic meridional overturning 
circulation (AMOC), but this cannot be verifi ed directly because of a lack of obser-
vations. However, recent multi-model ocean analyses (Pohlmann et al.  2013 ) 
provide a consistent signal that the AMOC at 45°N increased from the 1960s to the 
mid-1990s, and decreased thereafter. This is in agreement with related observations 
of the NAO, Labrador Sea convection and north Atlantic sub-polar gyre strength. 
Furthermore, the multi-model AMOC is skilfully predicted up to 5 years ahead. 
However, models forced only by external factors showed no skill, highlighting the 
importance of initialization.   

5     Summary 

 The societal requirement for climate information is changing. Across many sectors, 
the need to be better prepared for and more resilient to adverse weather and climate 
events is increasingly evident and that is placing new demands on the climate sci-
ence community. Even without global warming, society is becoming more vulner-
able to natural climate variability through increasing exposure of populations and 
infrastructure, so the need for reliable monthly to interannual predictions is growing, 
especially in the Tropics. Also, it is now generally accepted that the global climate 
is warming and the requirement to adapt to current and unavoidable future climate 
change is becoming more urgent. The emphasis is moving quite rapidly from end-
of-the-century climate scenarios towards more regional and impacts- based predic-
tions, with a focus on monthly to decadal timescales. 

 Various physical mechanisms exist to support long-range predictability beyond 
the infl uence of atmospheric initial conditions. These come from slowly varying 
components of the Earth system, such as the ocean, and boundary conditions such 
as increasing greenhouse gases or solar variability. While there have been impor-
tant developments in representing these processes to provide skill in monthly to 
decadal prediction, there are likely to be other sources of predictability that are 
currently not exploited due to lack of scientifi c understanding and/or the ability to 
capture them in models. 

 Major areas of research include. 
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5.1     Improving the Fidelity of the Climate Models 
at the Heart of Forecast Systems 

 Model biases remain one of the most serious limitations in the delivery of more reliable 
and skillful predictions. The current practice of bias correction is unphysical and 
neglects entirely the non-linear relationship between the climate mean state and 
modes of weather and climate variability. Reducing model bias is arguably the most 
fundamental requirement going forward.  A key activity must be the evaluation of 
model performance with a greater focus on processes and phenomena that are 
fundamental to reducing model bias and for delivering improved confi dence in 
the predictions.  Likewise, the potential predictability in the climate system for 
monthly to decadal timescales is probably underestimated because of model 
shortcomings. 

 Recent research has already shown that higher horizontal and vertical resolution 
has the potential to increase signifi cantly the predictability in parts of the world 
where it is currently low, such as western Europe, and  a coordinated effort to 
assess the value of model resolution to improved predictability is needed.   

5.2     Developing More Sophisticated Measures of Defi ning 
and Verifying Forecast Reliability and Skill 
for the Different Lead Times 

 The development of probabilistic systems for weather forecasting and climate 
prediction means that the concept of skill has to be viewed differently from the 
traditional approaches used in deterministic systems. The skill and reliability of 
probabilistic forecasts have to be assessed against performance across a large num-
ber of past events, the hindcast set, so that the prediction system can be calibrated. 

 The process of forecast calibration using hindcasts presents some serious chal-
lenges, however, when the lead time of the predictions extends beyond days to months, 
seasons and decades. That is because to have a high enough number of cases in the 
hindcast set means testing the system over many realizations, which can extend to 
many decades in the case of decadal prediction. The observational base has improved 
substantially over the last few decades, especially for the oceans, and so the skill of the 
forecasts may also improve just because of better-defi ned initial conditions. The fact 
that the observing system is changing can introduce spurious variability making cali-
bration and validation diffi cult. Additionally, the process of calibration assumes that 
the current climate is stationary, but there is clear evidence that the climate is changing 
(see the Fourth Assessment Report of the Intergovern mental Panel on Climate Change 
(IPCC  2007 )), especially in temperature. The potentially increasing numbers of 
unprecedented extreme events challenges our current approach to calibrating monthly 
to decadal predictions and interpreting their results. 
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 Although both the limited nature of the observational base and a changing climate 
pose some problems for seasonal prediction, for decadal prediction, they are extremely 
challenging. As already discussed, there is decadal predictability in the climate sys-
tem through phenomena such as the Atlantic multi-decadal oscillation and the 
Pacifi c decadal oscillation, but our understanding of these phenomena is still limited 
largely owing to the paucity of ocean observations. 

  A review of the current methods of quantifying forecast skill and reliability 
in a changing climate is needed and an assessment of their fi t for purpose going 
forward.   

5.3     Design of Ensemble Prediction Systems 

 Ensemble prediction systems (EPS) are now established in extended range weather 
and climate prediction, but the techniques to represent forecast uncertainty and to 
sample adequately the phase space of the climate system are quite diverse. One of 
the challenges in the past has been ensuring that the spread of the probabilistic sys-
tem is suffi cient to capture the range of possible outcomes. One of the implications 
of model bias is a restriction in the spread of the ensemble, and a response to this 
was to develop multi-model ensembles.  There is still more research to be done 
on how to best combine multiple forecasting tool as well as how to measure 
progress.  

 The techniques used to sample forecast uncertainty range from initial condition 
uncertainty (including optimal perturbations and ensemble data assimilation), 
through stochastic physics to represent the infl uence of unresolved processes, to the 
use of perturbed parameters in the parametrizations to represent model uncertainty, 
and on longer timescales uncertainties in the boundary forcing (e.g. anthropogenic 
GHG and aerosol emissions).  New activities in coupled data assimilation and in 
defi ning more physically-based approaches to representing stochastic, unre-
solved processes in models are recommended.  

 The methods outlined above essentially address different aspects of forecast and 
model uncertainty, but there is currently little understanding of the relative impor-
tance of each for forecasts on different lead times.  A new research activity is pro-
posed that will bring together the various techniques used in weather forecasting 
and climate prediction to develop a seamless EPS.   

5.4     Utility of Monthly to Decadal Predictions 

 There is a growing appreciation of the importance of hazardous weather in driving 
some of the most profound impacts of climate variability and change, and a clear 
message from users that current products, such as 3-month mean temperatures and 
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precipitation, are not very helpful. Instead,  information on weather and climate 
variables that directly feed into decision-making (such as the onset of the rainy 
season, the likelihood of days exceeding critical temperature thresholds, the 
number of land-falling tropical cyclones) is needed  (see Fig.  6 ).

   Increased computational power has meant that it is now possible to perform 
simulations that represent synoptic weather systems more accurately (~50 km) 
and are closer to the global resolutions used in weather forecasting. This raises 
the questions of how best to exploit the wealth of weather information in 
monthly to decadal prediction systems; how to understand more fully the 
weather and climate regimes in which hazardous weather forms; and how to 
derive products and services that address levels of risk that relate to customer 
needs.  Stronger links must be established between the science and the 
service provision.       
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  Fig. 6    Seamless forecasting services and potential users of monthly to decadal predictions (From 
Met Offi ce Science Strategy:   http://www.metoffi ce.gov.uk/media/pdf/a/t/Science_strategy-1.pdf    )       
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