
Chapter 2
An Overview of Mathematical Methods
for Numerical Optimization

Daniel E. Marthaler

Abstract This chapter serves as a basic overview of mathematical optimization
problems and reviews how certain classes of these problems are solved. For the
general category of nonlinear problems, both smooth and nonsmooth “Derivative
Free” topics are discussed with and without constraints.

2.1 Introduction

This book is concerned with finding the “best” solution to particular metamaterial
design problems. Best is put in quotations because the idea of what represents a
good design is defined by the user, and very much depends on the application. The
best design for some problems may be the one that reflects the most light transmitted
at a given wavelength. Others might be those that absorb the most light throughout a
range of wavelengths. Whatever the definition used to define what the “best” design
implies, once it is established, we actually want to determine the structure that will
yield this best solution. Mathematical optimization is the process we will use to
select an optimal choice from a set of alternatives for this determination.

In this chapter, we give an overview of mathematical optimization and introduce
the general (nonlinear) problem. The concepts introduced informally here will be
covered in more detail in later chapters as specific applications and instantiations
are discussed. We attempt to give a summary of the major work that has been done
in this field, structuring it around different classes of the general problem. For a
chapter of this type, brevity is a must, as the shear amount of material covered
would (and does) fill entire textbooks.

Furthermore, when discussing mathematical optimization, we implicitly assume
that we have a problem to optimize. For the scope of this book, we focus on meta-
material design problems. In general though, the problem we seek to optimize has
an objective function and in most cases, actually determining the correct form of
this function is one of the most difficult aspects to conduct.
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When modeling mathematical optimization problems, we separate them into dif-
ferent classes according to the type of problem they are attempting to solve. The
problems may have models that are linear or nonlinear and may or may not be
constrained. The objective and constraint functions might be differentiable or non-
differentiable, convex or non-convex. In some cases, the problems may only be
given via a black box, that is, we only know the outputs of the objective func-
tion given certain inputs, but not any actual analytical form. Nice references on
fundamental theory, methods, algorithm analysis and advice on how to obtain
and implement good algorithms for different classes of optimization are provided
in [1, 2, 7, 8, 12, 29, 30, 37, 57] among others. We give only a cursory overview of
various types of solution techniques. Interested readers are encouraged to refer to
the references for more detail.

The rest of the chapter is organized as follows: Sect. 2.2 lays out the general
optimization problem and includes a high level discussion on constructing viable
objective functions. Section 2.3 discuses linear and convex models and solutions, in
particular, the least squares method and different regularizers. Section 2.4 discusses
optimization problems that utilize derivatives of the objective function, with sub-
sections focusing on those with and without constraints. Finally, Sect. 2.5 looks at
algorithms for optimization problems where derivative information is not available,
either because the objective function is not differentiable, the derivative is not avail-
able, or the derivative is just too expensive to compute. We conclude with a short
summary.

2.2 Mathematical Optimization

The present work considers general multi-objective optimization problems that may
be written in the following form:

min
x

F(x) = [
f1(x), f2(x), . . . , fk(x)

]T

subject to
gj (x) ≤ 0, j = 1,2, . . . ,mieq,

hi(x) = 0, i = 1,2, . . . ,meq.

(2.1)

Here x = (x1, . . . , xn) is the variable to be minimized, F :Rn → R
k is a multi-valued

objective function, the functions gj : Rn → R, j = 1, . . . ,mieq, are the inequality
constraint functions, and the functions hi :Rn → R, i = 1, . . . ,meq, are the equality
constraint functions.

We define the space of feasible solutions or the feasible set as the set of all points
that satisfy the constraints:

Ω = {
y ∈R

n : gi(y) ≤ 0, i = 1, . . . ,mieq and hj (y) = 0, j = 1 . . . ,meq
}
.
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The attainable set is the range of the feasible set under the objective function:

A = {
F(x) : x ∈ Ω

}
.

Typically in multi-objective optimization, there is no single global solution. It
is often necessary to instead seek solutions satisfying Pareto optimality. A point
x∗ ∈ Ω is Pareto optimal if and only if there is no other point x ∈ Ω such that
F(x) ≤ F(x∗) and Fi(x) < Fi(x∗) for at least one i. That is, no element of F can be
made better without (at least) one other element being made worse [32].

The concept of Pareto optimality invariably leads practitioners to decide which
elements of F are “more important” than others. Having such a ranking of the el-
ements of the objective function, the theory of preferences [38, 43, 44] allows for
the construction of a utility function. This allows us to convert the general multi-
objective function into a single scalar-valued objective function.

One of the most general utility functions is the weighted exponential sum:

U =
k∑

i=1

wi

[
Fi(x)

]p (2.2)

for some p > 0. Generally, p is proportional to the amount of emphasis placed on
minimizing the function with the largest difference between Fi(x) and the minimizer
of Fi(x) [28]. Without loss of generality, we can assume Fi(x) > 0, for all i, other-
wise we can rescale the objective function to make it so. Here, w = {w1, . . . ,wk} is
a vector of weights, typically set by the practitioner, such that

∑k
i=1 wi = 1, wi > 0.

Generally, the relative ordering of the weights reflects the relative importance of the
objectives.

The most common implementation of Eq. (2.2) is to set p = 1, i.e.,

U =
k∑

i=1

wiFi(x), (2.3)

which is commonly referred to as the weighted sum method. If all of the weights are
positive, then the minimum of Eq. (2.3) is Pareto optimal [56], that is, a minimizer
of Eq. (2.3) is a Pareto solution of Eq. (2.1).

Selecting non-arbitrary weights is a difficult undertaking. Many approaches exist
in selecting weights, surveys of which are provided by [16, 19, 23, 55]. Unfortu-
nately, a satisfactory method to select appropriate weights does not guarantee that
the final solution will be acceptable, that is, aligned with predefined preferences. In
fact, it is known that weights must be functions of the original objectives in order
for a weighted sum to mimic a list of preferences accurately [34]. They cannot be
constants. Nevertheless, we proceed in assuming that our multi-objective function
in Eq. (2.1) will be converted into a scalar objective, leading to our general problem
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for the remainder of the chapter:

min
x

f (x)

subject to

gj (x) ≤ 0, j = 1,2, . . . ,mieq,

hi(x) = 0, i = 1,2, . . . ,meq,

(2.4)

where f :Rn → R, and the other functions are as in Eq. (2.1).

2.3 Finding Solutions

In attempting to solve all but the most trivial of problems in the form of Eq. (2.4),
a numerical algorithm is used to find a solution x∗. Different objective functions
f and constraint functions g,h are more efficiently solved with different types of
algorithms. To deduce which algorithm would best assist in finding optimal solu-
tions, we first determine the class of problem characterized by particular forms of
the objective and constraint functions.

The simplest form of Eq. (2.4) is in fitting a regression line y = mx +b through a
pair of points (xi, yi), i = 1,2. We choose the objective function f (x) = (y − mx −
b)2 and there are no constraints. Here, x = (x1, x2), and y = (y1, y2). The optimal
solution to this problem is given by

m = y2 − y1

x2 − x1
,

b = y1 − y2 − y1

x2 − x1
x1.

When there are more than two points, it is usually impossible to fit a line through all
of the points, so instead, we find the line that minimizes the total squared distance
to the points:

min
N∑

i=1

(axi + b − yi)
2.

In higher dimensions, the analog to this line fitting problem is to find constants
(a1, a2, . . . , an) that solve

min
N∑

i=1

(
aix

(j)
i − y

(j)
i

)2

for each x(j),y(j) pair (we omit b for clarity). In matrix notation, this is equivalent
to finding the minimum of the function

f (a) = |Xa − y|22
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where X is the matrix whose ith row is x(i) and y = (y1, . . . , yN)T . A more common
designation to this problem is writing X as A, a as x and y as b. We then solve the
problem Ax = b. Problems of this type are referred to as Least Squares problems
and formulating them as minimization problems

min
x

|Ax − b|22 (2.5)

leads to a residual least squares (RSS) problem. There are many algorithms that
solve RSS problems. For a list and introduction, see, for example, [17].

It is well known that attempting to minimize an RSS problem via a numerical
method can lead to instabilities. This occurs when the matrix A is not of full rank or
when the matrix AT A is not invertible. In such situations, Eq. (2.5) is stabilized by
including a regularization term:

|Ax − b|22 + |Γ x|22 (2.6)

where Γ is a suitably chosen matrix called a Tikhonov matrix [50]. Usually, Γ is
taken to be the identity Γ = I . An explicit solution to Eq. (2.6) is

x∗ = (
AT A + Γ T Γ

)−1
AT b, (2.7)

and with Γ = I the problem is usually formulated with a regularization parame-
ter λ:

|Ax − b|22 + λ|x|22 (2.8)

which is commonly known as Ridge regression since the parameter λ makes a
“ridge” along the diagonal of AT A.

Other regularizations are possible. In particular, we can take a different p-norm
in the regularization term. A common choice is the 1-norm, producing the Least
Absolute Selection and Shrinkage Operator (LASSO) formulation [49]:

min
x

1

2
‖Ax − b‖2

2 + λ‖x‖1. (2.9)

The multitude of methods that can be used to solve problems of type Eq. (2.9) and
its constrained formulation

min
x

1

2
‖Ax − b‖2

2

s.t. |x|1 ≤ t

(2.10)

are discussed within [8], but we mention here that there are many solvers that can
be proved to solve the problem to a specified accuracy with a number of operations
that does not exceed a polynomial of the problem dimensions.
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Although the RSS and LASSO formulations described above were for linear for-
mulations of the objective function, nonlinear formulations exist, one such can be
seen in Chap. 6. In general, these problems belong to a class of problems known as
Convex optimization. We classify a convex optimization problem as one in which
the objective and constraint functions are convex, i.e., they satisfy the inequalities

f (αx + βy) ≤ αf (x) + βf (y) and

gi(αx + βy) ≤ αgi(x) + βgi(y), i = 1, . . . ,mleq, (2.11)

hi(αx + βy) ≤ αhi(x) + βhi(y), i = 1, . . . ,meq

for all x,y ∈R
n and all α,β ∈R with α + β = 1, α ≥ 0, β ≥ 0.

Most, if not all, metamaterial design problems will have nonlinear objective func-
tions, and, when applicable, nonlinear constraints that unfortunately do not satisfy
Eq. (2.11) everywhere in their domains. Fortunately though, many problems will
have the property that Eq. (2.11) will be satisfied locally everywhere. That is, for
any point x in the domain of f , there is a hypersphere about x where Eq. (2.11) is
satisfied (although the α and β will be dependent upon the point x). Such functions
are called locally convex.

Unfortunately, the absence of global convexity limits the capability of most al-
gorithms to guarantee finding the global minimum of Eq. (2.4). The best most algo-
rithms can achieve is to find a local solution to the problem.

Techniques for solving Eq. (2.4) comprise two types: those that utilize gradient
information and those that do not. Recall that a function has Ck smoothness if it is
differentiable and its derivative is Ck−1 smooth. This recursive definition starts with
the class C0, the continuous functions.

2.4 Algorithms Utilizing Gradient Information

We first discuss methods utilizing gradient information that are targeted for opti-
mization problems with no constraints.

2.4.1 Unconstrained Nonlinear Optimization

To find the solution, x∗, to Eq. (2.4) in the case where Ω =R
n (i.e., an unconstrained

problem), we must satisfy the second order optimality conditions [12]:

1. (necessity) If x∗ is a local solution to Eq. (2.4), then ∇f (x∗) = 0 and ∇2f (x∗)
is positive definite.

2. (sufficiency) If ∇f (x∗) = 0 and ∇2f (x∗) is positive definite, then there exists an
α > 0 such that f (x) ≥ +α‖x − x∗‖ for all x near x∗.

Satisfying these conditions only guarantees a local optimum for the general case.
Most algorithms used to find solutions are iterative and take the form of Algo-
rithm 2.1:
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Algorithm 2.1: General iterative algorithm
input: Objective function f , initial point x0

1 repeat
2 Determine a descent direction dk

3 Determine a step length αk

4 Update Candidate xk+1 = xk + αkdk .
5 until ∇f (x) ≈ 0

This is a consistent meme in solving mathematical optimization problems: from
your current solution estimate, choose a better candidate and continue until the op-
timality conditions are satisfied. Algorithms for computing solutions to Eq. (2.4)
differ in how they select descent directions dk and step sizes αk . We now discuss
some possibilities for both.

2.4.1.1 Descent

Two methods for selection of a descent direction are:

1. Steepest Descent
2. Conjugate Gradient

The steepest descent, or gradient descent, algorithms choose descent directions
dk = −∇f (xk) based on the idea that f decreases fastest in the direction of its neg-
ative gradient. Unfortunately, due to the iterative nature of Algorithm 2.1, gradient
descent’s subsequent iterations may undo some minimization progress made on pre-
vious descents. To combat this, the conjugate gradient algorithm selects successive
descent directions in a conjugate direction to previous descent directions. At itera-
tion k, one evaluates the current negative gradient vector −∇f (xk) and adds to it a
linear combination of the previous descent iterates to obtain a new conjugate direc-
tion along which to descend. Initially, the descent is in the direction of the negative
gradient, but each subsequent step moves in a direction that modifies the negative
of the current gradient by a factor of the previous direction. The CG algorithm is
shown in Algorithm 2.2.

Different Conjugate Gradient methods correspond to different choices for the
scalar βk . Three of the best known versions are:

• Fletcher–Reeves: βFR
k = sTk sk

sTk−1sk−1

• Polak–Ribiére: βPR
k = sTk (sk−sk−1)

sTk−1sk−1

• Hestenes–Stiefel: βHS
k = sTk (sk−sk−1)

dT
k−1(sk−sk−1)

for a full list, consult [18].
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Algorithm 2.2: Nonlinear conjugate gradient
input: Objective function f , initial point x0

1 d0 = −∇f (x0)

2 (Line Search) α0 = arg minα f (x0 + αd0)

3 x1 = x0 + αx0 repeat
4 Determine steepest direction sk = −∇f (xk)

5 Determine the scalar βk (see below)
6 Update the conjugate direction dk = sk + βkdk−1
7 Determine a step length (Line search) αk = arg minα f (xk + αdk)

8 Update Candidate xk+1 = xk + αkdk .
9 until ∇f (x) ≈ 0

2.4.1.2 Step Length

Having a descent direction, we must now determine how far along that direction to
move for the next iterate. Ideally, we would move a length α along the line where α

solves

min
α

f (xk + αdk), (2.12)

i.e., the distance that minimizes the objective function in the direction dk . Notice
that this is a one dimensional optimization problem in α. Finding an optimal solu-
tion to this problem would imply a method of solving the original nonlinear opti-
mization problem! Therefore, instead of solving (2.12), we seek an efficient way of
computing an acceptable α that guarantees that Algorithm 2.1 will converge to a x∗.

To do this, we must find an α satisfying the following two conditions:

f (xk + αdk) ≤ f (xk) + c1αdT
k ∇f (xk),

dT
k ∇f (xk + αdk) ≥ c2dT

k ∇f (xk)
(2.13)

with 0 < c1 < c2 < 1. The first condition is known as the Armijo rule. It ensures
that the step length decreases f sufficiently for this iteration. The second condition
is known as the curvature condition. It ensures that the slope of f has been reduced
sufficiently for this iteration. Unfortunately, these two conditions may result in an α

that is not close to an actual minimum of (2.12). Therefore, we modify the curvature
condition to include

∣∣dT
k ∇f (xk + αdk)

∣∣ ≤ c2
∣∣dT

k ∇f (xk)
∣∣, (2.14)

and this ensures that α will lie close to a minimum critical point of Eq. (2.12).
These three conditions taken together form the Strong Wolfe conditions [12] and are
a prerequisite to any step length determination algorithm. Many methods exist for
solving the general unconstrained problem, but they all utilize an algorithm similar
to Algorithm 2.1 in their strategy.
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2.4.1.3 Quasi-Newton Methods

In general, methods that utilize gradient information seek to find a stationary point
of f by finding a zero of the gradient ∇f . A general class of methods, quasi-Newton
methods, seek to do this by using Newton’s method to find a root of ∇f . The un-
derlying assumption in these methods is that the function f can locally be approxi-
mated by a quadratic.

Regular Newton’s method updates candidate solutions at each iteration via

xk+1 = xk − [∇2f (xk)
]−1∇f (xk)

where ∇2f (x) denotes the Hessian, or the second derivative of f . Updates can be
very expensive since we must find the inverse of an n × n matrix at every iteration.
To ease computational cost, approximations to the Hessian and its inverse are used.
There are multiple ways the Hessian can be approximated, one method that is ex-
tensively employed is from the Broyden family which uses a convex combination
of Daviodon–Fletcher–Powell [14] and BFGS [45] updates. An extensive survey of
Quasi-Newton methods may be found in [40].

2.4.2 Constrained Nonlinear Optimization

When dealing with the general form of Eq. (2.4), i.e., when the constraints exist, the
first question to answer is how to ascertain if a candidate x∗ is indeed a solution.

First, we define a constraint gi to be active (resp., inactive) at a point x if
gi(x) = 0 (resp., gi(x) < 0). (Note, equality constraints are always active.) We de-
fine the active set at x, A(x), as the indices of those constraints gi(x) that are active
at the given point. For a given candidate solution, xk , if no constraints are active,
then the necessary and sufficient conditions are the same as for the unconstrained
case. In the case where the candidate lies on the boundary of the feasible set (i.e., at
least one constraint is active), the second order optimality conditions for the uncon-
strained case do not apply because the direction of the negative gradient (or even a
descent direction in a conjugate direction) will push the next iterate into the infeasi-
ble set.

We will specify the optimality conditions for a solution x∗ to solve Eq. (2.4)
through the use of a Lagrangian function:

L(x,λ,μ) = f (x) +
mleq∑

i=1

λigi(x) +
meq∑

i=1

λihi(x)

where λ = (λ1, . . . , λmleq) and μ = (μ1, . . . ,μmeq) are vectors called KKT multipli-
ers. Now, if x∗ is an optimal solution to Eq. (2.4), then there exist KKT multipliers
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λ∗ and μ∗ such that

∇f
(
x∗) +

mleq∑

i=1

λ∗
i ∇gi

(
x∗) +

meq∑

i=1

μ∗
i ∇hi

(
x∗) = 0,

gi

(
x∗) ≤ 0 for i = 1, . . . ,mleq,

hi

(
x∗) = 0 for i = 1, . . . ,meq,

λ∗
i ≥ 0 for i = 1, . . . ,mleq,

μ∗
i ≥ 0 for i = 1, . . . ,meq,

λ∗
i gi

(
x∗) = 0 for i = 1, . . . ,mleq.

(2.15)

The above conditions are known as the Karush–Kuhn–Tucker conditions (KKT
conditions) [8]. Points that satisfy them are critical points of the original problem.
To determine if these critical points are indeed solutions of Eq. (2.4), we impose
second order conditions on the points (for they could be a maximizer or a saddle
point).

Before stating the second order sufficient and necessary conditions, we first de-
fine the tangent space for feasible points x̄

T = {
v : ∇gj (x̄)v = 0 ∀j ∈A(x̄), ∇h(x̄)v = 0

}

where A(x̄) denotes the active set.
For a KKT point, we also define the relaxed tangent space

T ′ = {
v : ∇gj (x̄)v = 0 ∀j ∈ {j : λj > 0}, ∇h(x̄)v = 0

}
.

Having these definitions, we now state the second order necessary and sufficient
conditions for a feasible candidate x∗ with KKT multipliers λ∗ and μ∗ satisfying
Eq. (2.15) to be a solution to Eq. (2.4):

wT ∇xL
2(x∗,λ∗,μ∗)w > 0 ∀w ∈ T ′, w �= 0. (2.16)

Methods for finding a suitable optimum satisfying Eqs. (2.15) and (2.16) for
constrained optimization problems are ubiquitous. We focus on two categories:

1. Primal methods
2. Penalty and Barrier Methods

We will briefly describe each type below.

2.4.2.1 Primal Methods

Primal methods are those that solve Eq. (2.4) by starting with a candidate in the
feasible set Ω and searching only the feasible set for an optimal solution. The main
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characteristics of these algorithms is that they find new candidates that simulta-
neously decrease the objective function at each step, while remaining feasible. To
update a given candidate xk , a vector dk is chosen such that it is both descending
and feasible. The following must hold for dk to be a feasible direction:

∇f (x)T dk < 0, (2.17)

∇gi(x)T dk < 0, (2.18)

∇hi(x)T dk = 0. (2.19)

Equation (2.17) implies that we are descending, and Eqs. (2.18) and (2.19) imply
that we are increasing feasibility (by moving in the direction tangential to the active
set for the inequality constraints and parallel for the equality constraints).

Feasible direction methods suffer from requiring a feasible initial candidate, from
situations where no feasible descent direction exists, and may be subject to jamming,
or oscillations that prevent convergence of the algorithm [12].

Gradient projection methods are motivated from steepest descent algorithms in
unconstrained optimization. Their basic idea is to take the negative of the gradient of
the objective function and project it onto the working surface in order to determine
a feasible descent direction. The working surface is the subset of the constraints that
are currently active, i.e., the current active set.

Thus, at the current feasible point, one determines the active constraints and
projects the negative gradient of the objective function onto the subspace tangent
to the surface determined by these constraints. However, this may not be a feasi-
ble direction since the working surface may be curved. To deal with curvature, one
searches for a feasible descent direction along an embedded curve within the con-
straint surface.

2.4.2.2 Penalty and Barrier Methods

Penalty and Barrier methods attempt to approximate constrained optimization prob-
lems with those that are unconstrained, and then apply standard unconstrained
search techniques to obtain solutions. Penalty methods do this by adding a term
to the objective function that penalizes violation of the constraints with a large fac-
tor. In the case of barrier methods, a term is added that favors points in the interior
of the feasible region and penalizes those closer to the boundary.

The idea for penalty methods is to replace Eq. (2.4) with an unconstrained prob-
lem of the form

min
x

f (x) + βσ(x) (2.20)

where β > 0 and σ :Rn → R is a function satisfying
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1. σ(x) is continuous;
2. σ(x) ≥ 0 for all x ∈R

n;
3. σ(x) = 0 ⇔ gi(x) ≤ 0, hj (x) = 0 ∀i = 1, . . . ,mleq, j = 1, . . . ,meq, i.e., x is

feasible.

That is, we set up an unconstrained optimization problem where we generate a
new objective function that greatly increases in value as x moves out of the feasible
region. A standard choice for σ(x) is the quadratic loss function [26]:

σ(x) = −r

mleq∑

i=1

max
(
0, gi(x)

) + 1

r

meq∑

i=1

(
hi(x)

)2
. (2.21)

For x values inside the feasible region, gi(x) ≤ 0 and hi(x) = 0, giving a value
of σ = 0. When x is outside of the feasible region, some of the gi > 0 or hi �= 0,
we begin to be penalized. To implement a penalty method, one needs to select a
value for β . Standard techniques start with a relatively small value (and an infeasi-
ble point for x0) and monotonically increase β , solving subsequent unconstrained
optimization problems (one for each β) and utilizing these intermediate solutions
as the initial guess for the next problem. This graduated optimization method pro-
duces a sequence of solutions that converge to an optimal solution of the original
constrained problem. Graduated optimization is a technique commonly used with
hierarchical pyramid methods for matching objects within images [9].

Barrier methods are implemented when one does not wish to compute f (x) out-
side of the feasible region. Thus, we would not be able to utilize a penalty func-
tion like Eq. (2.21). Instead, a selection would need to be made that was defined
to converge for feasible points. A possible selection for problems with no equality
constraints might be

σ(x) = r

m∑

i=1

−1

gi(x)
(2.22)

where r > 0 is the barrier parameter. As candidates get closer to the boundary of
the feasible region, the value of the objective function becomes larger. The idea is
to start with a feasible point and a relatively large value of the barrier parameter,
preventing the candidates from nearing the boundary of the feasible set. Techniques
then decrease the value of the barrier parameter monotonically until an optimum
value for the original problem is achieved. Note that barrier methods require a fea-
sible point from which to start. This can sometimes be difficult to find. Also, barrier
methods do not work with equality constraints without cumbersome modifications
to this basic approach, and by not allowing the method to ever leave the feasible
region, much more computational effort is (usually) required.

Penalty methods are sometimes referred to as external methods since their aug-
mented objective functions tend to utilize solutions in the exterior of the feasible
region. Analogously, barrier methods are sometimes called interior point methods,
for the opposite reason. There is a vast and vigorous field of research surrounding
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these methods, and we suggest utilizing the references to find current implementa-
tions. A great start would be [26].

These two types of methods are among the most powerful for attacking the gen-
eral scalar problem in Eq. (2.4). Of the two, exterior methods are preferable (when
applicable) as they can deal with equality constraints, they do not require a feasi-
ble starting point, and their computational effort is substantially lower than for the
interior methods.

2.5 Gradient-Free Algorithms

Looking at the form of Eq. (2.4), we denote f as a function, and this is typically seen
as an analytical expression. Most industrial applications of the general problem may
involve formulations that do not encode f analytically, but have some type of black
box that computes values of f (x). That is, given a value x, there is some process
(numerical simulation, physical experiment, etc.) that computes the output f (x).
Furthermore, the constraint functions may also be black-box functions. Typically,
these black-box functions will not have any derivative information associated with
them (although in rare occasions, there may be derivative information available via
another black-box function). In these cases, f is expensive to calculate in terms of
time, and methods that require many evaluations of f rapidly become infeasible
to use in many applications. In particular, to produce viable step lengths satisfying
the Strong Wolfe conditions in Eq. (2.14), hundreds of function evaluations may be
required per iterate.

Moreover, when evaluating the objective function via a numerical simulation or
physical experiment, inaccuracies may arise in the value that f takes at a given
point. This generates many difficulties approximating derivatives via finite differ-
ences. This line of thinking dismisses the use of many of the techniques from
Sect. 2.4. Even in cases where derivative information is available, function inac-
curacies adversely effect most of these methods [15].

2.5.1 Direct Methods

Direct methods are those that attempt to solve the general problem directly by uti-
lizing objective function values. Here, we introduce a number of methods starting
with a variant of gradient descent for the derivative-free case.

2.5.1.1 Coordinate Descent

Perhaps the simplest method to solve an unconstrained version of Eq. (2.4) without
using gradients is to do successive line searches in each coordinate direction for each
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iteration. That is, one does a line search in a coordinate direction for each iteration,
changing coordinates for each, and looping cyclically as the number of dimensions
are reached. This process is called Coordinate Descent (CD). Iterations of a cy-
cle of line search in all coordinate directions is equivalent to one gradient descent
direction, but the number of function evaluations may prove to be prohibitive.

More efficient algorithms have been constructed in an attempt to limit the number
of function evaluations made to reach convergence. In particular, choosing a random
direction to do line search for each iteration, the so-called Random Coordinate De-
scent, was shown to converge, on average, in fewer iterations than CD [36, 42].
In general, one seeks an appropriate coordinate system where CD would operate
optimally. The Adaptive coordinate descent algorithm [24] gradually builds a trans-
formation of the coordinate system such that the new coordinates are as decorrelated
as possible with respect to the objective function.

Instead of finding a pointwise trajectory to the minimum, other techniques at-
tempt to locate a set wherein the optimal solution resides. The oldest and most fa-
mous of these is the simplex algorithm.

2.5.1.2 Nelder–Mead Simplex Algorithm

The Nelder–Mead (NM) algorithm [35] solves the general problem by containing
the solution within a simplex. A simplex is the generalization of a polygon to n di-
mensions. The NM algorithm starts with a set of points in R

n forming a simplex and
at each iteration, the objective function is evaluated at the vertices of the simplex.

The algorithm replaces the worst point on the simplex with a point reflected
through the centroid of the remaining n points. If this point is better than the best
current point, then the simplex is stretched exponentially out along this line. If not,
then the simplex stretches across a valley, so the simplex is shrunk towards a (hope-
fully) better point. A few of the other means of replacing the chosen point include:
reflection, expansion, inside and outside contractions.

The Nelder–Mead algorithm remains popular, mostly through its simplicity, but
McKinnon [33] established analytically that convergence can occur to points with
∇f (x) �= 0, even when the function is convex and twice continuously differentiable.
Tseng [54] proposed a globally convergent simplex-based search method that con-
siders an expanded set of candidate replacement points (besides those listed above).
Other modifications are presented in [13].

2.5.1.3 Mesh Adaptive Direct Search (MADS)

The Mesh Adaptive Direct Search (MADS) [3] is a generalization of several existing
direct search methods [25, 51–53]. MADS was introduced to extend direct search
methods to deal with the constrained problem in Eq. (2.4), while improving both
the practical and theoretical convergence results seen in previous methods.
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MADS handles constraints x ∈ Ω by the so-called extreme barrier method, which
simply consists in rejecting any trial point which does not belong to Ω . The term
extreme barrier method comes from the fact that this approach can be implemented
by solving the unconstrained minimization of

fΩ(x) =
{

f (x) if x ∈ Ω,

∞ otherwise

in place of Eq. (2.4). Note that this may impose severe discontinuities on the prob-
lem. A more subtle way of handling quantifiable constraints is presented in [4], and
is summarized in Chap. 4.

Each MADS iteration proceeds as follows: Given a candidate solution xk , the
SEARCH step produces a list of tentative trial points. Any mechanism can be used
to create the list, as long as it contains a finite number of points located on a con-
ceptual mesh. The conceptual mesh is defined by a mesh parameter ΔM

k > 0. This
parameter, along with a finite set of positive spanning directions D, forms the mesh
at iteration k:

Mk = {
x + ΔM

k d : x ∈ Vk,d ∈ D
}

(2.23)

where Vk is a set containing all previous points where the objective function has
been evaluated. A positive spanning set of Rn is a set D = {d1, . . . ,dm} of vectors
in R

n such that every vector in R
n is a linear combination of the di with nonnegative

coefficients. Many methods exist for computing a set of points on the conceptual
mesh: speculative search [21], Latin hypercube sampling [47], variable neighbor-
hood searches [11], surrogates, and many others [48].

Having an initial set of points, the objective function is evaluated at each of the
points until either a better candidate than xk is found, or all of the points are evalu-
ated. In the latter case, a POLL step is implemented that conducts a local exploration
near the candidate point. Following an unsuccessful SEARCH step, the POLL step
generates a list of mesh points near the incumbent xk . The term near is tied to the
so-called poll size parameter Δ

p
k > 0. Similar to the SEARCH step, the POLL step

may be interrupted as soon as an improvement point over the candidate is found.
Parameters are updated at the end of each iteration. There are two possibilities:

If either the SEARCH or the POLL step generated a mesh point p ∈ Mk which is
better than xk , then the candidate point xk+1 is set to p and both the mesh size
and poll size parameters are increased or kept to the same value. For example,
ΔM

k+1 ← min{1,4ΔM
k } and Δ

p

k+1 ← 2Δ
p
k . Otherwise, xk+1 is set to xk and the poll

size is decreased and the mesh size parameter decreased or kept the same. For ex-
ample, Δm

k+1 ← min{1, 1
4Δm

k } and Δ
p

k+1 ← 1
2Δ

p
k . At any iteration of the MADS

algorithm, the poll size parameter Δ
p
k must be greater than or equal to the mesh size

parameter ΔM
k . Termination conditions arise when either the poll parameter matches

the mesh size parameter or a predefined number of iterations have been reached.
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2.5.2 Surrogate Methods

As mentioned above, surrogates may be used to determine a set of points for use
in the SEARCH step for direct search. These methods build a model interpolating
between the known points stored in Vk . This section looks at methods that do not
restrict themselves to interpolation with a local search; rather, they utilize a global
surrogate function to assist in the optimization.

There are many ways of employing surrogates. In particular, there is a standard
engineering process [5] for using them:

1. Choose a surrogate s for the objective function f that is either

(a) A simplified model of f (as is used in Chap. 6) or
(b) A response surface of f generated from a set of points x1, . . . ,xq where f

takes a finite value;

2. Minimize over the surrogate s, obtaining a candidate point xs ;
3. Evaluate the objective function at xs and repeat the process.

In cases where we do not have a simplified model for f and wish to generate a
response surface (or metamodel) f̂ , the question arises as to which method to use.
Barton [6] enumerates a list, including splines, radial basis functions, kernel smooth-
ing, spatial correlation models, and frequency domain approaches. Regardless of the
method employed, its quality depends crucially upon choosing an appropriate sam-
pling technique [39]. The remainder of this subsection describes a state of the art
response surface methodology known as Gaussian Process Regression. We will see
its implementation in Chap. 3.

2.5.2.1 Gaussian Process Regression

Gaussian Process Regression (GPR) [41] is also known as Kriging prediction,
Kolmogorov–Wiener prediction, or best linear unbiased prediction. It is a technique
for estimating the objective function value at a new point x∗ utilizing noisy observa-
tions f (x) at points x1, . . . ,xm. The surrogate is a process that generates data such
that any finite subset follows a multivariate Gaussian distribution.

A typical assumption for the surrogate is that the mean of the data is zero ev-
erywhere (if not, we can subtract the mean and work with the transformed dataset).
Then, pairs of points in GPR are related to each other by the covariance function.
A popular choice is the squared exponential:

k(xp,xq) = σ 2
f exp

[−‖xp − xq‖2
2

2L2

]
(2.24)

where the maximum allowable covariance is σ 2
f .

Note, that the covariance between the outputs is written as a function of the in-
puts. For this particular covariance function, we see that the covariance is almost
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maximal between variables whose corresponding inputs are very close, and de-
creases as their distance in the input space increases. The covariance function has
a characteristic length scale L, which informally can be thought of as roughly the
distance you have to move in input space before the function value can change sig-
nificantly. Alternatively, this relates how much influence distant points will have on
each other.

We create the covariance matrix between all pairs of points

K(X,X) =

⎡

⎢⎢⎢
⎣

k(x1,x1) k(x1,x2) . . . k(x1,xm)

k(x2,x1) k(x2,x2) . . . k(x2,xm)
...

...
. . .

...

k(xm,x1) k(xm,x2) . . . k(xm,xm)

⎤

⎥⎥⎥
⎦

. (2.25)

Observations from the data are often noisy, for a various number of reasons. As
is typical in most regression schemes, we model the observations as

y = f (x) +N
(
0, σ 2

ν

)
,

and the covariance between two points becomes

cov(yp, yq) = k(xp,xq) + σ 2
ν δpq or cov(y) = K(X,X) + σ 2

ν I, (2.26)

where δpq is the Kronecker delta function which is 1 when p = q and 0 otherwise.
Here, I is the m × m identity matrix.

The purpose of generating the surrogate is to predict values of the observables
at previously unseen points. The assumptions underpinning GPR state that the joint
distribution of the observed data and unknown data point x∗ is given by:

[
y
y∗

]
∼ N

(
0,

[
K(X,X) + σ 2

ν I K(X,x∗)
K(x∗,X) K(x∗,x∗)

])
. (2.27)

where y∗ denotes the value of the surrogate at the unseen point x∗. We seek the
conditional probability p(y∗|y), or “how likely is a certain prediction for y∗ given
the data?” As derived in [41], this probability follows the distribution

p(y∗|y) ∼ N
(
K∗K−1y,K∗∗ − K∗K−1KT∗

)
(2.28)

where T denotes transposition and we use the short hand notation of K being the
covariance matrix, K∗ = [k(x∗,x1) k(x∗,x2) . . . k(x∗,xm)] and K∗∗ = k(x∗,x∗).

Thus, the best estimate for y∗ is the mean of this distribution

y∗ = K∗
(
K + σ 2

ν

)−1y, (2.29)

and the uncertainty is captured in the variance

var(y∗) = K∗∗ − K∗
(
K + σ 2

ν

)−1
KT∗ . (2.30)
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We note here for completeness that if our original data set did not have zero
mean, but instead had mean m(X), then Eq. (2.29) would become

y∗ = m(x∗) + K∗
(
K + σ 2

ν

)−1(y − m(X)
)

(2.31)

where m(x∗) denotes the mean of the new data. The variance remains unchanged
from Eq. (2.30).

For actual implementations of the above equations, we need to determine values
for the parameters σf ,L,σν . This collection of parameters are referred to as hyper-
parameters. Most methods for determining the hyperparameters from data attempt
to optimize the marginal likelihood of p(y∗|y) with respect to the hyperparameters,
given the data. This is itself a rich and interesting optimization problem having a
long history in spatial statistics [31].

2.5.3 Stochastic Search Algorithms

In the above formulations, some assumption about the smoothness of the function,
or continuity of the function is made. This is manifested either in the direct usage
of gradients or in methods like the polling step of direct search, where shrinking the
polling step parameter is assumed to lead to a better solution.

Sometimes, functions are not continuous for large swaths of the space over which
we seek to optimize. This section presents approaches that rely on non-deterministic
algorithmic steps. This is a more delicate way of saying that the algorithms “guess”
which direction to search for a better candidate solution. Most algorithms of this
type have a heuristic for choosing how to “guess.” Some approaches occasionally
allow new candidates that are “worse” (in terms of the objective function) than the
current solution; the idea being that accepting a worse candidate at this iteration will
lead to a better overall solution as the algorithm iterates. This idea allows the algo-
rithm to theoretically find global solutions. The literature on stochastic algorithms
is very extensive, especially on the applications side, since their implementation
is rather straightforward compared to deterministic algorithms. See, for example,
[22, 46, 58] for a general overview.

2.5.3.1 Random Search

The simplest algorithm of this type is random search. Random algorithms compare
the current iterate x with a randomly generated candidate (no heuristic). The current
iterate is updated only if the candidate is a better point (in terms of the objective
function). The determination of new candidates is based on two random compo-
nents: A direction d is generated using a uniform distribution over the unit sphere in
R

n, and a step α is generated from a uniform distribution over the set of steps S in a
way that x + αd is feasible. Bélisle et al. [10] generalized these types of algorithms
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by allowing arbitrary distributions to generate both the direction d and step α, and
proved convergence to a global optimum under mild conditions for continuous opti-
mization problems. Unfortunately, the number of function evaluations for this type
of method become prohibitive.

2.5.3.2 Genetic Algorithms

In an effort to chose points with less randomness than simply guessing, Genetic
Algorithms (GA) were originally introduced by Holland [20] wherein a method was
designed that mimics the process of natural evolution.

The GA operates on a population of individuals that are each represented by a
chromosome x. Initially, a random population is chosen and the objective function
is evaluated on each member. The better performing members are chosen to mate
and form a new generation, mimicking the process of natural selection. A mating
pool is first formed by either sorting the population according to objective func-
tion value and then keeping the top performing members, or by using a threshold
such as the mean or the median cost to eliminate any population members with a
worse performance than the threshold value. Members in the mating pool are eligi-
ble for breeding. For each new solution to be produced, a pair of “parent” solutions
is selected from the mating pool. These parents produce a “child” solution using
crossover, creating a new solution which typically shares many of the characteris-
tics of its “parents”. New parents are selected for each new child, and the process
continues until a new population of solutions of appropriate size is generated.

After selection and crossover have been performed to fill out the population for
the next generation, a small percentage of elements in the new population are mu-
tated in order to continue exploring new parts of the parameter space. If an individual
is randomly selected for mutation, then its value is given a new random value within
its allowed range. Typical mutation probabilities are on the order of a few percent,
and different distributions are employed for new variates.

The final step in populating the new generation is to optionally enforce elitism.
Elitism ensures that the best global fitness is maintained between generations by
copying the chromosome with the best fitness from the previous generation into the
new population. At this point, the new population is ready to be evaluated by the
fitness function.

Different crossover methods and Nature-Inspired Optimization routines, includ-
ing Genetic Algorithms, will be discussed in detail in Chap. 5.

2.5.3.3 Non-dominated Sorting Genetic Algorithm

We now introduce a method that attempts to produce the Pareto front for a general
multi-objective optimization problem. We will see that Chap. 3 generates such a
problem, and here we discuss the method used to solve it. This method, Elitist Non-
dominated Sorting Genetic Algorithm (NSGA-II) [27] assumes our multi-objective
function has k dimensions.
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Again, we adopt the general idea of a genetic algorithm, but with some changes.
The algorithm starts with a random parent population P of size N . Binary tour-
nament selection, recombination, and mutation operators are used to create a child
population of P of size N . We combine the parent and children populations then
sort them via the principle of non-domination. An element p ∈ P dominates an-
other element q ∈ P if there is an i with pi < qi and pj ≤ qj for all other j . Here,
the ith element of p, denoted pi represents the ith objective value for this population
element.

Each solution is assigned a fitness equal to its non-domination level. Those ele-
ments with no dominating elements are given fitness 1. Those elements only dom-
inated by elements with fitness = 1 are given fitness 2, etc. For each fitness level,
we sort the elements in that level via crowding comparison. To do so, we first find
the local crowding distance for each element. This distance is calculated by finding
the average distance of the two nearest neighbors to this point along each of the
objective axes.

We sort within each fitness level, giving preference to those solutions that are
“more spread out,” i.e., have a larger crowding distance. The new population is
then generated by taking the first N elements of the sorted fitness levels. The pro-
cess repeats itself (children are generated, combined with parents, sorted via non-
domination, etc.) until either all elements of the population have fitness level 1 or a
predetermined number of iterations are reached.

2.6 Summary

We have described a range of mathematical optimization problems and their re-
spective solution techniques. Methods that utilize derivative information, both for
constrained and unconstrained problems, were briefly introduced. These methods,
combined with parametrized models of metamaterial structures to be simulated, are
too often trapped in numerous local minima. As a result, their usefulness for meta-
material design is minimal, and they will not be covered further in the text.

Many methods for solving problems that do not take advantage of derivative in-
formation, either because it does not exist or is not available, were also discussed.
These techniques, which will be covered over the next three chapters, are well-
established methods of optimization. They are all robust against non-smooth opti-
mization surfaces, and coincidentally are all direct search methods. Additionally,
both Mesh Adaptive Direct Search in Chap. 4, and Nature Inspired Optimization in
Chap. 5 work efficiently in high dimensions.

The last two chapters of the book do not focus solely on the optimization method
itself. These chapters integrate both optimization routines with novel methods for
calculating and representing the shapes of the individual resonant structures within
a metamaterial. These approaches are both gradient-based, but they are able to
circumvent the normal pitfalls of gradient-based optimization by transforming the
space over which the optimization occurs. Both techniques are new to the field of
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metamaterial design; however, their applicability extends far beyond the focus of
this book. This is clearly illustrated by the range of design examples that are cov-
ered throughout the last two chapters.
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