
Chapter 1
Introduction

Kenneth Diest

Abstract This chapter provides the context for the book in relation to the rest of
the optical metamaterials community. First, a brief historical overview of optical
metamaterial developments up to the start of the twentieth century is given. This is
followed by a discussion of the field in relation to academic publications, nanofab-
rication, and electromagnetic simulations; and how developments in all three areas
have contributed to the field as we know it today. The last section of the chap-
ter presents the general framework for combining numerical optimization methods
with full-field electromagnetic simulations for the design of metamaterials.

1.1 Introduction

The topic of electromagnetic metamaterials is a rich field that spans thousands of
years and frequencies ranging from radio through the ultraviolet. These materials
have a vast range of applications including art and jewelry, church decoration, fre-
quency converters, electromagnetic cloaks, and sub-wavelength super lenses, just to
name a few. Every day the field is expanding in new and different directions, and
the range of new technologies being created seems limited only by the creativity
of those involved. By combining our understanding of materials behavior with our
unprecedented ability to model and fabricate structures at the nanoscale, researchers
are bringing devices into the world that were previously only seen in the movies.

Here we define a metamaterial as “a man-made or otherwise artificially struc-
tured material with inclusions embedded in a host medium or patterned on a host
surface, where the length scale of the inclusions is significantly smaller than the
wavelength of interest.” The macroscopic optical properties of the composite ma-
terial are a result of the sub-wavelength unit structure, rather than the constituent
materials; and by tuning the design of those inclusions, one can tune the overall
electromagnetic properties of the metamaterial.
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1.2 Ancient Metamaterials

While there’s no way of knowing for sure when and where the first optical meta-
materials were produced, a strong candidate for this distinction is glass, specifically
stained glass. The first evidence of glass making was around 3000 B.C.E. in an
area called the Canaanite–Phoenician coast near the Mediterranean (just north of
present-day Haifa). The sand from this region contained the right concentrations of
lime and silica, so that the traders needed only to mix in natron (a mix of soda ash,
baking soda, salt, and sodium sulfate) while the melt was placed into a hot fire [63].
The earliest glasses developed in this manner were opaque rather than transparent
due to scattering from small air bubbles or particles trapped within the glass during
formation. Later, during the first millennium B.C.E., hotter kilns were developed
and artisans began to introduce metal oxides into the glass to control the color. By
forming the glass either with or without charcoal, the glassworkers were able to ei-
ther reduce or oxidize added copper, and as a result, produce glass that was either
red or blue, respectively.

Since it seems that no discussion of plasmonics or metamaterials would be com-
plete without referencing the Lycurgus Cup, we’ll mention here that this artifact
is one of the world’s most famous examples of metal being introduced into glass.
This cup was produced during the fourth century A.D. during the Roman Empire,
Fig. 1.1. The cup depicts the death of King Lycurgus in Thrace at the hands of
Dionysus. As can be seen from Fig. 1.1, the glass appears green (a) when seen with
light reflected off the surface of the cup, and red (b) when seen with light trans-
mitted through the cup. This remarkable behavior results from the introduction of
colloidal gold and silver into the glass during formation. The resulting gold and sil-
ver nanoparticles within the glass reflect the green portion of the visible spectrum
while transmitting the red portion of the visible spectrum [4].

It’s truly remarkable that from this period in history all the way to present day,
people have been studying how to produce new and different optical properties by
simply combining nanoscale metallic inclusions within dielectrics, and that a theory
for this type of scattering from metal spheres would not be formalized until 1908
by Gustav Mie [45], ∼1600 years after the cup was made. From the fourth century
on, people began studying how to produce stained glass by annealing the material
with the addition of metallic salts. One of the first books documenting these studies,
and arguably the first book on metamaterials, was “The Book of the Hidden Pearl,”
written in the eight century A.D. by Jabir ibn Hayyan, discussing the manufacturing
of colored glass as well as techniques for the coloring of gemstones [31].

Around the turn of the twentieth century, the theories required to explain the
behavior of metamaterials began to take shape. The first attempt at developing mod-
ern metamaterials with sub-wavelength structures was by Jagadis Chunder Bose in
1898. Bose used pieces of twisted jute in an effort to develop an artificially struc-
tured chiral material [8]. In 1904, J.C.M. Garnett published his paper on “Colours
in Metal Glasses and in Metallic Films” in the Philosophical Transactions of the
Royal Society [24]. Here he used the Drude model for the optical properties of
free electron metals to describe how colors arose and changed within glasses when
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Fig. 1.1 The Lycurgus cup shown in both reflection (a) and transmission (b). Gold and silver
nanoparticles are responsible for the strong reflection of green light and transmission of red light.
©Trustees of the British Museum

gold or silver films were annealed into nanoparticles that dispersed throughout soda
glass. This work was followed in 1908 by the paper mentioned earlier from Gustav
Mie that discussed the scattering of electromagnetic radiation by a sphere [45]. This
work enabled the calculation of electric and magnetic fields inside and outside of a
sphere which, in turn, can be used to calculate the scattering profile of incident light.

Taken together, these papers represent the first major effort using electromagnetic
theory to analytically explain the behavior of nanoparticles, and more generally,
optical metamaterials. This also represents a fundamental turning point in the history
of metamaterials. Now, for the first time, the range of accessible metamaterials was
not simply limited to those discovered by chance or passed down by word of mouth;
rather, these theories could be applied in new and different ways to target specific
applications and produce novel optical behavior.

1.3 Modern Metamaterials

In the late 1960s, the era of modern metamaterials began. Traditionally, modern
developments in the field are attributed in large part to three seminal papers by
Victor Veselago in 1967 [81], Sir John Pendry in 2000 [57], and David Smith in 2000
[71]. These papers certainly helped to inspire an entire field of researchers in the
field of optical metamaterials and spark an enormous surge in related publications
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(Fig. 1.2(b)); however, these publications and other like it represent one of three
different communities that came together at the start of the twenty first century to
bring about the field of metamaterials as we know it today. Current progress in
the field was brought about by a combination of key papers as well as advances
in, and the commercialization of, both nanofabrication capabilities and full-field
electromagnetic modeling tools. These three areas all represent key components in
the development and understanding of modern metamaterials, and the intersection
of all three has brought the field to where it is today.

1.3.1 Publications

In 1967, Victor Veselago published his seminal paper on “The Electrodymanics of
Substances with Simultaneously Negative Values of ε and μ [81].” In this paper,
Veselago describes such “left-handed materials” that would support electromag-
netic waves where the phase velocity and pointing vector propagate in opposite di-
rections. This work was not realized experimentally until 2000, when David Smith
and colleagues fabricated the first ever negative-index material by structuring an ar-
ray of copper strips and split ring resonators on printed circuit boards [71]. Smith
and Schurig later used these techniques and the recently emerging field of transfor-
mation optics to design an electromagnetic invisibility cloak that operated over a
band of microwave frequencies, Fig. 1.2(a) [39, 64, 65, 82]. Concurrently in 2000,
Sir John Pendry published his paper entitled “Negative Refraction Makes a Perfect
Lens [57].” Here Pendry took the concepts introduced in Veselago’s paper and ex-
plored the possibility of producing a negative-index “super lens.” In principle, this
material could circumvent the normal diffraction limits of light and resolve struc-
tures “only a few nanometers across” at visible frequencies. The combination of
these three efforts by Veselago, Smith, and Pendry helped kick-off an enormous
amount of research within the field of negative index materials and metamaterials
in general, and the field would not be where it is today without their work. Between
the years 2000 and 2011, many areas of research have received tremendous atten-
tion including: optical metamaterials (∼2800 publications), negative index metama-
terials (∼2450 publications) [59, 67, 72, 80], optical cloaking (∼650 publications)
[11, 58, 64, 79], and nonlinear metamaterials (∼450 publications) [36, 37, 60, 87].
Representative references for each topic are listed above, and a compilation of all
publications from the four representative research topics in the field as a function of
year is plotted in Fig. 1.2(b).1 While it should be noted that papers within the four
topics are not mutually exclusive, the general trends clearly show enormous growth
within the field starting around 2000 for optical, nonlinear, and negative index meta-
materials, and 2006 for optical cloaking.

While the contributions of these researchers have certainly shaped the develop-
ment of the field of optical metamaterials over the last half century, they are by

1Citations compiled through Web of Science, March 2012.
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Fig. 1.2 In (a), the metamaterial-based, two-dimensional microwave cloak from Shurig et al. [64].
The structure consists of ten concentric cylinders of split ring resonators mounted on printed circuit
board. The plot in the foreground shows the relevant materials parameters (μr,μθ , εz) as a function
of distance from the center of the cloak. In (b), the number of papers published from 2000 to
2011 on the topics of: optical cloaking, nonlinear metamaterials, negative index metamaterials,
and optical metamaterials

no means the only scientists to do so. From 1968–2009, Ben Munk became a pio-
neer within the field of frequency selective surfaces for their use in radar and other
military applications [48–50]. Here, the military quickly realized the importance of
being able to properly tune the design of antenna arrays for absorption and beam
steering applications, and to this day, portions of his 1968 Ph.D. thesis are still clas-
sified. Research lead independently by Vladimir Shalaev and Xiang Zhang has taken
the microwave cloaking and negative index of refraction concepts demonstrated by
Smith and Shurig, and extended them to visible frequencies [9–11, 60, 67, 79, 80].
And finally, in a similar vein to the work done by Veselago, modeling and de-
sign work lead by Nader Engheta has predicted a wide range of exotic behav-
ior from phase-shifters with novel medium to electromagnetic tunneling through
waveguides of “epsilon-near-zero” materials, to the introduction of circuit nanoele-
ment models in the optical domain using plasmonic and non-plasmonic nanoparti-
cles [17–19, 62, 69].

While this list by no means encompasses the range of researchers who have made
major contributions to the field, it does emphasize some of the major work done that
has leveraged metamaterial theory (including Veselago, Mie, and Drude) to tailor
the design of metamaterials for specific applications. These researchers have done
a superb job of studying not only the fundamental resonances involved in these
nanostructures, but also addressing the question that immediately follows: How to
design these structures for specific applications?
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1.3.2 Fabrication

As the field of metamaterials has moved to ever shorter wavelengths, the frequency
ranges and resonances that we can study are limited by the modeling and fabrication
capabilities at our disposal. During the 1960s, 1970s, and 1980s, the study of radio
frequency (RF) metamaterials required structures with length scales on the order
of centimeters, and these could be easily machined and assembled by hand. In the
1970s and 1980s, techniques for micro- and nano-lithography were developed to
pattern structures with sizes spanning from tens of microns to tens of nanometers.
For structures designed to operate at frequencies up to 1 THz, standard photolithog-
raphy techniques allowed large arrays of these structures to be pattered very quickly
by exposing ultraviolet light through a patterned glass photomask to transfer this
pattern into a photosensitive resist; and subsequently transferring that pattern into
the resonator material, either through etching or lift-off techniques. As the operat-
ing wavelength of the metamaterial grew shorter, standard lithography techniques
ran up against the diffraction limit of the exposure light, and new methods were
employed. While there are a number of techniques that have been developed to fab-
ricate structures at the nanoscale, including X-ray lithography, interference lithogra-
phy, extreme ultraviolet and immersion lithography, direct laser writing, and imprint
lithography, over the past 20 years, there are two techniques that have played key
roles in the fabrication work done in the metamaterials’ community: electron beam
lithography and focused ion beam patterning.

While both techniques are key components within modern, academic nanofabri-
cation facilities, it is interesting to note that the two tools evolved along very dif-
ferent paths. Electron beam lithography was initially developed as far back as the
1960s and 1970s; however, for most of its history, this tool was largely used within
the microelectronics industry and its price was such that it was prohibitively expen-
sive for academic use. Even to this day, electron beam lithography tools in academia
are mainly located within shared user facilities and have distributed ownership. In
contrast, focused ion beams have been more of a research and development tool
with many key developments coming from users of the tool. Only over the past
few decades has the tool become mainstream enough to be commercialized by such
companies as FEI Co. and Micrion Corp.

Scanning Electron Beam Lithography (SEBL) was first introduced as a commer-
cial Gaussian beam system in 1962 by Philips, Eindhoven, and in 1974 as a com-
mercially available shaped electron beam lithography system by Carl Zeiss, Jena.
SEBL uses a set of electromagnetic lenses to focus a column of high energy (usually
at 30, 50, or 100 keV) electrons onto a focal plane with typical spot sizes between
2 and 10 nm, Fig. 1.3(a). The lenses then raster the beam across the sample at pre-
determined positions to expose the resist where it should either remain or dissolve
away during subsequent processing steps. Because the de Broglie wavelength [40]
of these electrons is so much smaller than ultraviolet light used in standard pho-
tolithography, the minimum feature size is orders of magnitude smaller. Another
benefit of electron beam lithography is in the flexibility of the tool when compared
with photolithography. Besides the size limitations, photolithography requires the
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Fig. 1.3 An example of nanofabricated Split Ring Resonators fabricated on silicon substrates
using Scanning Electron Beam Lithography (a). The scale bar corresponds to 5 µm. In (b), fishnet
metamaterials fabricated using Focused Ion Beam milling were studied as negative index materials
[80]. The scale bar corresponds to 1 µm

fabrication of a photomask which, once produced, is difficult to modify. In com-
parison, electron beam lithography is fed an electronic beam map before each run,
which can be easily modified. While there are a number of benefits to using this
technique, the primary limitation is throughput. Because the beam can only expose
one spot at a time, the process is inherently serial, and as a result, patterning on 8′′
or 12′′ wafers would take orders of magnitude longer than with photolithography.

In comparison, the Focused Ion Beam (FIB) is a direct milling process and after
patterning, does not require further etching or lift-off steps to fabricate nanostruc-
tures [38, 80], Fig. 1.3(b). Early developments in FIB milling came about in the
1970s when Levi-Setti [22], and Orloff & Swanson [56] independently introduced
the first field emission Focused Ion Beam systems in 1975, and the first liquid metal
ion source by Seliger in 1979 [66]; however, it wasn’t until 1998 that FEI com-
mercially produced the tool in its current form as a dual-beam Focused Ion Beam /
Scanning Electron Microscope system.

Instead of transferring a pattern into a resist, which then requires further etching
or lift-off steps to produce structures, the focused ion beam is a direct milling pro-
cess. The FIB extracts gallium ions from a liquid metal source and accelerates these
ions onto the sample in a focused beam with a radius of ∼10 nm. This allows the
FIB to produce structures with critical dimensions equivalent to those with electron
beam lithography; however, it has been shown that, for certain material sets and
device designs, this process can be significantly quicker than electron beam lithog-
raphy [20]. As with electron beam lithography, FIB is an inherently serial process,
and as a result, is very time consuming for larger samples. Also, the materials se-
lectivity of the etch process may be significantly reduced when compared with the
variety of etches used in standard lithography. The etching must be timed properly
or else significant erosion into the underlying substrate will occur. At the same time
the sample is being milled, it’s also being implanted with gallium ions. This effect
will typically reduce the quality of the materials being etched, and depending on the
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material and structures being fabricated, can result in significantly modified material
properties [29].

One method that address the issue of throughput with electron beam lithography
is nanoimprint lithography [12, 27]. Using this technique, electron beam lithogra-
phy is used to pattern a “master stamp” with the desired nanostructures. A sample
is coated with a heat or ultraviolet curable resist and the stamp is directly pressed
into the resist. The speed and effectiveness of this technique is then determined
by the rate and extent to which the polymer conforms to the mask. Control of
the adhesion between the stamp and the resist allows removal of the stamp while
retaining the imprinted pattern. Once the stamp is fabricated, an entire 8′′ wafer
can be patterned in a matter of minutes. The resolution of this process is ∼10 nm,
and there are no diffraction effects. The mold can be re-used many times and is
only limited by the rate at which the stamping process erodes the stamp features.
Not only does this process reduce patterning time by many orders of magnitude
compared with electron beam lithography, but by stamping patterns onto the same
substrate multiple times, three-dimensional structures can be fabricated layer by
layer.

The last two benefits of imprint lithography cannot be emphasized enough. All
of the methods discussed so far are inherently planar fabrication techniques, and
fabricating fully three-dimensional metamaterials with these methods has two ma-
jor problems. First, the accuracy with which subsequent layers can be positioned
with respect to those already fabricated can be on the order of the resonator crit-
ical dimensions, which can significantly degrade the performance of the metama-
terial. Second, the time required to fabricate a single, two-dimensional layer of
metamaterials can be prohibitively long, and this essentially rules out repeating
the process tens or hundreds of times to extend structures into the third dimen-
sion.

While there are promising alternative approaches to address these issues such
as self-assembly techniques [25, 68] and direct laser writing [15, 21], these meth-
ods are still under development and are not yet integrated in standard fabrication
facilities. Examples of both methods are shown in Fig. 1.4(a)–(b).

1.3.3 Modeling

Before the 1960s, electromagnetic modeling was mainly limited to closed-form and
infinite series analytical solutions to the problems of interest. During the 1960s, both
the Finite Element Method (FEM) and the Finite-Difference Time-Domain method
(FDTD) were reported for the first time in the field of computational electromag-
netics, and since then have become two of the main methods for analyzing complex
optical metamaterials. The following sections give a brief overview and comparison
of the two methods. For a rigorous treatment of these methods, the reader is referred
to [33, 34, 76].
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Fig. 1.4 In (a), an example of chiral metamaterials fabricated using Direct Laser Writing [78].
The cubic lattice is written in SU-8 negative tone polymer on a glass substrate. In (b), an example
of metamaterial arrays fabricated using self assembly [86]. Nickel is patterned in an inverse-opal
structure. The four rows correspond to different filling fractions of nickel, and the three columns
correspond to observed far-field colors of the structure as a result of differing surface topographies

1.3.3.1 Finite-Difference Time-Domain Method

The Finite-Difference Time-Domain (FDTD) method is a time-stepping approach
that models how electromagnetic waves actually move through a structure. The
FDTD method has a number of different implementations; however, the most well-
structured is the highly accurate algorithm introduced by Kane Yee in 1966 [85], and
was first made commercially available by Panoramic Technology in 1999. Using the
Yee algorithm, the structure to be simulated is first broken up into a rectangular grid,
with the corresponding ε and μ calculated at each spatial position. The method starts
with the time-dependent, differential form of Maxwell’s equations:

∇ · D = 0, (1.1a)

∇ · B = 0, (1.1b)

∂B
∂t

= −∇ × E − M, (1.1c)

∂D
∂t

= ∇ × H − J. (1.1d)

Here, Faraday’s law (Eq. (1.1c)) relates the magnetic flux density B, the electric
field E, and the magnetic current density M; while Ampere’s law (Eq. (1.1d)) relates
the electric flux density D, the magnetic field H, and the electric current density J.
Equations (1.1a)–(1.1d) are then discretized using a central-difference approxima-
tion which is accurate to second-order. The Yee algorithm solves for the electric and
magnetic fields in space and time by utilizing Maxwell’s curl equations. By combin-
ing Eqs. (1.1c) and (1.1d) with the constitutive equations for the electric flux density
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Fig. 1.5 The rectangular Yee cell is shown in (a). This visualization shows the distribution of
electric and magnetic field vector components. Using Finite-Difference Time-Domain simulations,
the three-dimensional volume of structures and spaces to be simulated consists of an array of these
cells. An example of a bow-tie antenna discretized using the triangular, conformal meshing used
in Finite Element Methods is shown in (b). The benefits of a conformal mesh over the rectangular
grid used in FDTD can be seen near the corners of the antenna

(Eq. (1.2)), magnetic flux density (Eq. (1.3)):

D = ε0εE, (1.2)

B = 2μ0μH, (1.3)

along with the fact that the electric and magnetic current densities can serve as
additional sources of electric (Jsource) and magnetic (Msource) energy:

J = Jsource + σEE, (1.4)

M = Msource + σH H, (1.5)

where σE is the electrical conductivity and σH is the magnetic loss, we arrive at
Maxwell’s curl equations for linear, isotropic, non-dispersive materials:

∂H
∂t

= − 1

μ
∇ × E − 1

μ
(Msource + σH H), (1.6)

∂E
∂t

= −1

ε
∇ × H − 1

ε
(Jsource + σEE). (1.7)

This produces a set of six coupled scalar equations for ∂Hx,y,z

∂t
and ∂Ex,y,z

∂t
that rep-

resent a “Yee cell,” Fig. 1.5(a), where every electric-field component is surrounded
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by four circulating magnetic-field components and every magnetic-field component
is surrounded by four circulating electric-field components. The simulation volume
is then spanned by an array of Faraday’s law and Ampere’s law contours. Thus, the
method accurately simulates both the differential and integral forms of Maxwell’s
equations at every point in the simulation volume.

To obtain each E and H component at time t and position (x, y, z), the curl
equations are discretized in time, and the electromagnetic pulse propagates through
the simulation volume by leapfrogging from Ex,y,z(x, y, z, t = 0) to Hx,y,z(x +
1/2, y + 1/2, z + 1/2, t = 1/2�t) to Ex,y,z(x + 1, y + 1, z + 1, t = �t), and so on.
Finally, a Fourier transform of these results yields the field magnitudes and phases
at every point and every frequency.

1.3.3.2 Finite Element Method

Compared with the FDTD method, the Finite Element Method (FEM) is an inher-
ently more complex and universal method. FEM is a numerical procedure to find
stable solutions to boundary-value partial differential equations. This approach was
first reported in 1943 by Richard Courant in his study of elasticity and structural
analysis [14], where the concept of mesh discretization of a simulation was intro-
duced. It was not until 1969 that the method was introduced to the field of electro-
magnetic engineering, when Silvester used this approach in the field of microwave
engineering [70].

The Finite Element Method for electromagnetics is a frequency-domain method,
which is again based on Maxwell’s equations (1.1a)–(1.1d). When reformulated to
include the anisotropic materials permittivity (εij ) and permeability (μij ) of the
structure under consideration, we start with:

∇ · (εij · E) = − 1

iω
∇ · J, (1.8a)

∇ · (μij · H) = − 1

iω
∇ · M, (1.8b)

iωμij · H = −∇ × E − M, (1.8c)

−iωεij · E = −∇ × H − J. (1.8d)

In this context, FEM assumes that the resonant structure under consideration is sur-
rounded by an artificial absorbing boundary condition which approximates the elec-
tric and magnetic fields approaching zero at infinity:

n̂ × ∇ × E + ik0n̂ × n̂ × E ≈ 0, (1.9a)

n̂ × ∇ × H + ik0n̂ × n̂ × H ≈ 0. (1.9b)

Here, n̂ represents the vector normal to the boundary surface and k0 is the inci-
dent free-space wave vector. Following the treatment by Jin and Riley [34], when
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the boundary conditions in Eqs. (1.9a) and (1.9b) are combined with the vector wave
equation for the electric field of Maxwell’s equations:

∇ × (μ0/μij · ∇ × E) − k2
0εij · E = −ik0

√
μ0/ε0J − ∇ × (μ0/μij · M), (1.10)

we arrive at �
V

[
(∇ × T) · μ0/μij · (∇ × E) − k2

0T · εij · E
]
dV

=
�

SB∪Ssurf

n̂ · [T × (μ0/μij · ∇ × E)
]
dS

−
�
V

T · [ik0
√

μ0/ε0J + ∇ × (μ0/μij · M)
]
dV,

where V represents the entire volume of integration, SB is the artificial absorbing
boundary surface, Ssurf is the surface of the structure being simulated, and T is
an appropriate test function used for integration. Combining this with the artificial
absorbing boundary condition in Eqs. (1.9a) and (1.9b) gives�

V

[
(∇ × T) · μ0/μij · (∇ × E) − k2

0T · εij · E
]
dV

=
�
Ssurf

(n̂ × T) · μ0/μij · (∇ × E) dS − ik0

�
SB

(n̂ × T) · (n̂ × E) dS

−
�
V

T · [ik0
√

μ0/ε0J + ∇ × (μ0/μij · M)
]
dV. (1.11)

The volume of integration “V ” is then meshed into subregions using trapezoidal,
tetrahedral, or other types of meshing schemes. One example of this is shown in
Fig. 1.5(b), where the conformal nature of these meshes is especially useful with
curved surfaces such as the corners of a bow-tie antenna.2 To find a solution to
the electromagnetics problem posed in Eq. (1.11), the E-field tangent to each edge
of an individual meshing cell is calculated, and a set of basis vectors are used to
extrapolate the resulting fields throughout the remaining simulation volume. The
E-field within the entire structure is then given by

E =
Rmax∑

k=1

RkEk, (1.12)

where R is the vector field component along a given meshing cell edge, Rmax is the
total number of edges within the simulation with the exception of Ssurf, and Ek is the
tangential electric field component along the same edge. When the basis vectors, R,

2Figure 1.5(b) was produced using the resources of MIT Lincoln Laboratory.
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are the same as those in the test function, T, we can combine Eqs. (1.11) and (1.12)
to obtain the discretized, Galerkin formulation of the electromagnetics problem for
a single frequency:

Rmax∑

h,k=1

MhkEk = −
�
V

Rh · [ik0
√

μ0/ε0J + ∇ × (μ0/μij · M)
]
dV, (1.13)

where Mhk is given by

Mhk =
�
V

[
(∇ × Rh) · μ0/μij · (∇ × Rk) − k2

0Rh · εij · Rk
]
dV

− ik0

�
SB

(n̂ × Rh) · (n̂ × Rk) dS. (1.14)

1.3.3.3 FDTD and FEM

While both FDTD and FEM accurately model the three-dimensional response of
structures to incident electromagnetic radiation, a number of similarities and differ-
ences can be seen. FDTD is based on the relatively straightforward implementation
of the Yee algorithm. The structure is excited using a broad-band pulse and, as a
result, Fourier transforming the fields provides broad-band information with a sin-
gle simulation. As a result, the hardware limitations of FDTD are based more on
the speed and number of processors, rather than the amount of RAM available. The
amount of RAM required is determined by the size of the simulation, density of the
mesh, and amount of data being stored throughout the simulation. The method is
highly efficient, and there is no large matrix to invert, as with FEM. The method
is highly parallelizable, and can easily handle both anisotropic and inhomogeneous
structures, including nonlinear and dispersive media. However, the method is nat-
urally based on a rectangular grid. As a result, accommodating curved or highly
dynamic surfaces is a limitation, even with recent advances in conformal meshing
techniques. Further, a new broadband simulation is required every time the excita-
tion conditions are changed.

In comparison, FEM is a more complicated approach, in terms of formulation,
meshing, and computation. Proper mesh generation and boundary truncation can be
a significant challenge. Also, to arrive at a solution for a given frequency, a system
of linear equations need to be solved. The large matrix inversions required can re-
sult in substantial computational requirements; however, recent advances in sparse
matrix solvers can be incorporated to significantly reduce these issues. As a result,
the hardware limitations of FEM are based more on the amount of RAM needed
to complete the matrix inversion. While techniques exist to mitigate this problem,
the matrices involved scale with the number of degrees of freedom and the mesh-
ing density and can quickly grow to the point where sizable amounts of RAM are
required to obtain any solution. The resulting solution is independent of excitation,
and once the matrix is inverted, it is fairly easy to find other solutions.
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Like FDTD, this technique can be highly parallelizable by simply running simu-
lations at different frequencies on different processors. Also, while it is more com-
plex to generate the triangular or tetrahedral meshing, the resulting mesh is con-
formal. Hence, the method excels with curved or highly dynamic surfaces. From
a design and optimization standpoint, when the simulated structure requires only
one illumination condition over a wide range of frequencies, FDTD is usually the
stronger method. When the frequency range is narrow, or even limited to a single
frequency, but a wide range of illumination angles and conditions are required, FEM
is usually the stronger method.

Finally, it should also be mentioned that while FEM and FDTD are two of the
main methods used for this type of electromagnetic analysis, they are by no means
the only methods. In specific situations, other techniques such as: Rigorous Coupled
Waveguide Analysis, the Method of Moments, the Boundary Element Method, and
others are also utilized to solve design problems; and when studying radio frequency
or radar designs, may actually be more applicable than FDTD or FEM. In the end,
the design optimization methods discussed throughout the rest of this book should
be applicable to any of these design problems and able to be combined with any of
these simulation methods.

1.3.4 The Union of Fields

The key developments within the fields of Simulation (FDTD and FEM), Fabrica-
tion (SEBL and FIB), and Publications that have been discussed throughout Sect. 1.3
of this chapter, are listed in Table 1.1 along with other relevant developments within
these fields. While developments within all three areas date back to the 1960s, it
wasn’t until the turn of the century that the field started growing into what we
know today. This coincides with the first commercial dual beam SEM/FIB, the
first releases of commercial FDTD and method-of-moments-based FEM solvers,
and publications by Pendry and Smith et al. [57, 71]. The union of these fields
allowed a rigorous study of the electromagnetic resonances that occur within a
wide range of today’s metamaterials that operate at infrared and visible frequen-
cies.

Just as the focus of metamaterials/Frequency Selective Surfaces that operate at
microwave and radio frequencies has largely been on device applications, efforts
within the field of metamaterials that operate at terahertz, infrared, and visible fre-
quencies will become increasingly applications driven. To that end, advances in the
field of metamaterial design will come about by manipulating fabrication and sim-
ulation capabilities in new and different ways.
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Table 1.1 Key developments within the areas of simulation, fabrication, and publication as they
relate to the study of optical metamaterials

Year FE
M

FD
T

D

SE
B

L

FI
B

Pu
bs

Development

1943 x Courant introduces FEM for the study of elasticity and
structural mechanics [14]

1960 x Clough coins the term “Finite Element Method”

1960 x Möllenstedt and Speidel report writing “fine lines” with a 20
nm electron beam in collodium film [46]

1962 x Philips, Eindhoven, introduces the first commercial Gaussian
beam system

1964 x Control Data Systems releases the first commercial FEM
software for the study of mechanics

1966 x Yee introduces the FDTD method for solving Maxwell’s curl
equations on a discretized grid [85]

1967 x Victor Veselago publishes his manuscript on substances with
negative values of ε and μ [81]

1969 x Hatzakis introduces PMMA as an electron beam resist [28]

1969 x Silvester publishes the first article using the Finite Element
Method to study electromagnetics [70]

1974 x Carl Zeiss, Jena, launches the first commercial shaped electron
beam lithography system

1975 x Levi-Setti, Orloff, and Swanson introduce the first field
emission Focused Ion Beam systems [22, 56]

1979 x Seliger introduces the first Focused Ion Beam based on the
liquid metal ion source [66]

1980 x Taflove coins the term “FDTD” acronym [75]

1980 x Gaussian systems first introduced for low-resolution pattern
generation in large scale manufacturing [3]

1987 x Greengard and Rokhlin introduce the Fast Multipole Method
[26]

1988 x Sudraud et al. first use dual-beam SEM/FIB for microcircuit
repair [73]

1994 x Berenger and Katz introduce perfectly matched boundary
layers (PMLs) for FDTD [5, 35]

1994 x Reuter introduces modeling of dispersive materials within
FDTD [61]

1995 x x Wu and Itoh introduce the first combination of FDTD and
FEM for objects with curved boundaries [84]

1998 x FEI releases its first commercial dual-beam Scanning Electron
Microscope / Focused Ion Beam

1999 x Panoramic Technology releases the first commercial rigorous
FDTD electromagnetics solver
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Table 1.1 (Continued)

Year FE
M

FD
T

D

SE
B

L

FI
B

Pu
bs

Development

2000 x Pendry publishes “Negative Refraction Makes a Perfect Lens”
[57]

2000 x Smith and colleagues fabricate the first negative index material
[71]

2004 x FEKO releases the first commercial FEM software utilizing
the Method of Moments solver

2006 x Shurig et al. demonstrate the first electromagnetic invisibility
cloak [64]

1.4 Design

As with any design problem, to understand the observable extrinsic properties,
you must first understand the intrinsic properties of the constituent components
of a system. In the case of optical metamaterials, we will combine dielectrics
and metals. For the designs studied in this book, the dielectric acts as the host
medium that supports either structured or unstructured arrays of metallic res-
onators. In the case of bulk metamaterials, where the resonant arrays are dis-
tributed throughout the volume of the structure, the dielectric needs to be trans-
parent to the wavelengths of interest. Any significant amount of absorption would
result in higher metamaterial losses and decreased device performance. In con-
trast, this requirement is relaxed when working with frequency selective surfaces,
where the resonant array is patterned above the dielectric substrate. Here, substrates
such as semiconductors are sometimes utilized to tune the local dielectric environ-
ment in unique ways that would otherwise not be available to bulk metamateri-
als.

As we will see in the following sections, materials behavior at these frequen-
cies is dominated by free electrons. To provide both strong optical contrast be-
tween the metals and dielectrics, and minimize the contribution of the dielec-
tric to the overall metamaterial performance, the electrons within the dielectric
are tightly bound to the atomic lattice. Additionally, we will see that the sur-
face plasmon resonances that play a major factor in the device performance, are
only supported at interfaces between negative (metals) and positive dielectric con-
stants.

1.4.1 Optical Properties of Metals

As the operation range of metamaterials has moved from radio and microwave to
infrared, visible, and ultraviolet frequencies, the materials used to fabricate these
structures have also changed. Structures such as frequency selective surfaces that
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operate at radio and microwave frequencies are oftentimes constructed using printed
copper wires on top of printed circuit board material. At these frequencies, the metal
can be treated as a perfect electrical conductor. The materials can be thought of as
having infinite electrical conductivity and are without losses. The dielectric proper-
ties of the metal are fixed, and the penetration of the electric field below the surface
of the metal is assumed to be negligible.

As we move to infrared and visible frequencies, this assumption breaks down
and things become more complex. Here, the electromagnetic fields penetrate tens
of nanometers into the metallic resonators, and materials’ response is dominated by
the behavior of the free electrons within a material. As a result, gold, silver, copper,
and aluminum become the dominant materials used because their electron density
and configuration are such that bulk plasma oscillations and surface plasmons can
be supported. These materials’ resonances are the result of significant dispersion
throughout the frequency range of interest.

The resulting shift in size of the individual resonant structure is tens to hundreds
of nanometers. At these dimensions, the field penetration depth into the metal res-
onators becomes a significant fraction of the overall thickness. Additionally, when
the geometry of the meta-atoms is tuned to have resonances that coincide with the
natural resonances of the metals, we observe significant electromagnetic field en-
hancement around the resonators, and striking bulk optical properties.

As with any material, we can describe the optical properties with a frequency-
dependent, complex dielectric function. For the plasmonic materials mentioned
above, we express the dielectric function in terms of both free-electron effects (εD)
using the Drude–Sommerfeld model, and interband transitions (εIB). Each of these
effects will be discussed, and we then finish the section by discussing the surface
plasmon effects that arise within these metals.

1.4.1.1 Drude Metals

Under illumination by a time-harmonic external electric field E0e−iωt , the equation
of motion for free electrons in a metal is given by

m∗
D

∂2r(t)
∂t2

+ m∗
D

1

τ

∂r(t)
∂t

= eE0e−iωt , (1.15)

where e and m∗
D are the charge and effective mass of the free electrons, and r is the

displacement of an electron under an external field. τ is the average relaxation time
of the free electrons. τ is proportional to τ = 	

νF
, where νF is the Fermi velocity

and 	 is the electron mean free path. These values for aluminum, copper, silver, and
gold are listed in Table 1.2. Solving for r gives

r = e

m

E0e−iωt

(ω2 + iω/τ)
. (1.16)
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Table 1.2 Drude and Drude–Sommerfeld values for plasmonic metals including the: plasma fre-
quency ωp [10], Fermi velocity νF (cm/s) [2], Drude relaxation time τD [2], frequency of interband
transitions ωIB [13], and the electron configuration

Relevant physical constants for plasmonic metals

ωp (eV) νF (cm/s) τD (10−14 s) ωIB (eV) e− configuration

Aluminum 15.1 2.03 0.80 1.41 [Ne]3s23p1

Copper 8.8 1.57 2.7 2.1 [Ar]3d104s1

Silver 9.2 1.39 4.0 3.9 [Kr]4d105s1

Gold 9.1 1.40 3.0 2.3 [Xe]4f 145d106s1

Fig. 1.6 Real (solid blue)
and imaginary (dashed green)
Drude components of the
dielectric function of silver.
In this plot, the imaginary
permittivity has been scaled
up by a factor of ten

Combining this result with Eq. (1.2), we obtain the complex Drude model for
frequency-dependent permittivity:

εD(ω) = 1 − ω2
p

ω2 + iω/τ
. (1.17)

Here, the term ωp is the bulk plasma frequency given by ωp =
√

(ne2)/(m∗
Dε0).

Finally, we can separate Eq. (1.17) into its real and imaginary components:

εD(ω) = 1 − ω2
p

ω2 + 1/τ 2
+ i

ω2
p

ωτ(ω2 + 1/τ 2)
. (1.18)

A plot of the real and imaginary Drude components of the dielectric function are
shown in Fig. 1.6 for silver.3 In this figure, the real part of the dielectric constant is
shown as the solid blue line and the imaginary part is shown as the dashed green line.

3Figure 1.6 was produced using the resources of MIT Lincoln Laboratory.



1 Introduction 19

Also, to plot both constants on the same y-axis, the imaginary part of the dielectric
constant has been plotted as ten times its actual value. Here we see that the real part
of the dielectric constant is negative across visible and infrared frequencies. This
indicates that under external illumination, the electrons are driven 180◦ out of phase
with the incident light. This results in the high reflectivity that is typically associated
with metals. We also see a significant contribution from the imaginary part of the
dielectric constant. The optical losses associated with these metals are an inherent
limitation for certain types of metamaterial designs.

1.4.1.2 Interband Transitions

While the Drude–Sommerfeld model for metals provides a nice starting point for
their understanding, it is by no means a complete explanation of their optical be-
havior. The fact that gold, silver, and copper refer to colors as well as metals clearly
indicates that there’s more going on than the model in the previous section can ex-
plain. The explanation for such effects lies with interband transitions.

Gold, silver, and copper are all monovalent, Face-Centered Cubic metals. For
these noble metals, the Fermi surface of the metal strongly resembles a free electron
sphere with the exception of the 〈111〉 direction, where the surface intersects the
Brillouin zone face. From Table 1.2 we see that the electron configuration of all
three have 10 electrons occupying the d-bands and 1 electron occupying the s-band.
Additionally, all three metals have the fully occupied d-bands 2–4 eV below the
s-band. As a result, absorption can occur when light above this interband transition
energy is incident upon the surface of the metal. This explains why copper has a
somewhat reddish appearance, gold appears to be yellow, and silver strongly reflects
across the entire visible spectrum.

To model the contribution of interband transitions to the overall dielectric func-
tion, we modify Eq. (1.15) to include damping from bound electrons γ , and the
electron restoring force α:

mB

∂2r(t)
∂t2

+ mBγ
∂r(t)
∂t

+ αr = eE0e−iωt , (1.19)

where mB is the mass of bound electrons. Solving Eq. (1.19) following the same
method as in Sect. 1.4.1.2, we arrive at

εIB(ω) = 1 − ω̃2
p

(ω2
0 − ω2) − iγ ω

. (1.20)

Here, the term ω̃p is the Drude–Sommerfeld plasma frequency given by ω̃p =√
(ñe2)/(mBε0), ñ is the concentration of bound electrons, and, ω0 = √

α/mB . In a
similar manner to Eq. (1.18), we can separate Eq. (1.20) into its real and imaginary
components:

εIB(ω) = 1 − ω̃2
p(ω2

0 − ω2)

(ω2
0 − ω2)2 − γ 2ω2

+ i
ω̃2

pωγ

(ω2
0 − ω2)2 − γ 2ω2

. (1.21)
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Fig. 1.7 Real (solid blue)
and imaginary (dashed green)
interband components of the
dielectric function of gold

Plots of the real and imaginary contributions to the dielectric constant of gold are
shown in Fig. 1.7. In this figure, the real part of the dielectric constant is shown as the
solid blue line and the imaginary part is shown as the dashed green line.4 Here the
interband transitions can clearly be seen as spikes in ε2. Finally, at frequencies far
from where interband transitions occur, these effects continue to have an influence
on the overall dielectric function of the material. This manifests itself as a constant
offset term in the overall dielectric function. Typical values of this offset ε∞ for
gold are between 6.5 and 9 and for silver are between 4.5 and 5.

1.4.1.3 Dispersion and Surface Plasmons

Separate from bulk plasmons within the metals mentioned above are a type of elec-
tron density oscillation at the interface between a metal and a dielectric. These res-
onances are known as surface plasmons, and play a significant role on the overall
behavior of optical metamaterials that operate at infrared, visible, and ultraviolet
frequencies. In addition, when these oscillations propagate along the metal surface
in the form of a guided wave, they are referred to as surface plasmon polaritons
(SPPs).

Even though ε and ñ are referred to as constants, we know that at optical fre-
quencies these properties can vary significantly, depending on the configurations in
which they are used as well as the frequency of the light involved. This property of
materials is known as dispersion. To calculate the dispersion of these structures, we
start with an incident electromagnetic wave of the form [16]:

E(x, y, z) = E0ei(kxx−kz|z|−ωt) (1.22)

whose electric field has a perpendicular component to the waveguide (transverse-
magnetic polarization). Here the components of the electric field within the metal

4Figure 1.7 was produced using the resources of MIT Lincoln Laboratory.
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are given by:

Emetal
x = E0ei(kxx−kz1|z|−ωt), (1.23a)

Emetal
y = 0, (1.23b)

Emetal
z = E0

(−kx

kz1

)
ei(kxx−kz1|z|−ωt), (1.23c)

and the components of the electric field within the dielectric are given by:

Edielectric
x = E0ei(kxx−kz2|z|−ωt), (1.24a)

Edielectric
y = 0, (1.24b)

Edielectric
z = E0

(−ε1kx

ε2kz1

)
ei(kxx−kz2|z|−ωt), (1.24c)

where kz1 and ε1 represent the wave vector and dielectric constant within the metal
layer, and kz2 and ε2 represent the wavevector and dielectric constant within the
dielectric layer, respectively. For both sets of equations, kx represents the compo-
nent of the wave vector in the direction of propagation along the metal-dielectric
interface. Similarly, kz represents the component of the wave vector perpendicular
to the metal-dielectric interface, and from this we obtain the decay length of the
electro-magnetic field into the layers, or the “skin depth”:

ẑ = 1

|kz| . (1.25)

Note that for metamaterial structures with thicknesses on the order of twice the skin
depth, interactions between both surfaces can occur and further modify the behavior
of the individual resonant structure. By requiring continuity of the E and B fields at
the interface between the two layers, we obtain the dispersion relation for a single
metal–dielectric interface [42, 74]:

kx = ω

c
nspp, (1.26a)

k2
z1,2 = ε1,2

(
ω

c

)2

− k2
x, (1.26b)

where the effective surface plasmon index is given by

nspp =
√

ε1ε2

ε1 + ε2
. (1.27)

These relations show an exponential decay into both the metal and dielectric, al-
though the decay is much shorter into the metal. Additionally, these relations are for
ideal metals with no defects. As the size of the individual resonant element within
the metamaterial is decreased, grain boundary and surface roughness scattering will
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play an increasing role in the performance of the device. This effect, along with
the decreased size of the total structure, manifests itself in the form of a modified
scattering time [10].

1.4.2 Current Designs

While advances in fabrication and simulation capabilities have allowed the operat-
ing frequency of optical metamaterials to increase over the past few decades, it is
interesting to note that many of the most prominently studied designs within the
field continue to be variations on structures adopted from radio and microwave fre-
quency antenna design. Such structures include bow tie antennas [38, 44], dipole
antennas [41, 47, 55], fishnet structures [43, 80], and perhaps the best example of
this, the split-ring resonator (SRR).5 These four structures are shown in Fig. 1.8.
With structures such as dipole antenna, the individual resonators are basic enough
that the resonance can be calculated using either full-field electromagnetic simu-
lations, or obtained analytically using a basic LC circuit model; however, we see
from the literature that variations in the constituent materials, geometrical param-
eters, host medium, and three-dimensional array layout quickly increase the com-
plexity of the design to the point where full-field electromagnetic simulations are
required.

As is often the case with these structures and studies, a combination of fabricated
samples and full-field electromagnetic simulations sweep through a few of the criti-
cal design parameters and analyze how the resulting resonator response is affected.
This may then be followed by highlighting the optimized structure to take advan-
tage of the resonance under consideration. When the number of parameters under
consideration is small, and the question is “how does each design variant change
the overall metamaterial response,” this is certainly a valuable and viable approach;
however, as the primary focus shifts to optimizing resonances for a given applica-
tion and the number of parameters increases, it quickly becomes apparent that from
a time standpoint, this exhaustive approach is no longer feasible. At this point in the
design process, we arrive at the central question of this book:

What is the most accurate and efficient way to tailor the broadband opti-
cal properties of a metamaterial to have predetermined responses at predeter-
mined wavelengths?

Throughout the rest of the book, we address one answer to this question. By com-
bining numerical optimization methods with full-field electromagnetic simulations,
we are able to explore high-dimensional design spaces, orders of magnitude faster
than performing traditional parameter sweeps. Using this approach, the researcher
determines the design parameters to be varied, along with the range of interest for

5Figure 1.8 was produced using the resources of MIT Lincoln Laboratory.
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Fig. 1.8 Some of the most common individual metamaterial resonators including a bow tie an-
tenna (a), a dipole antenna (b), a split ring resonator (c), and fishnet metamaterials (d)

each parameter. The optimization routine then steps through a simplex of test points.
For each point, the program executes a function call by sending the metamaterial de-
sign to an electromagnetic solver, and then extracts the relevant figure(s) of merit.
The figure(s) of merit are then combined based on a user defined “cost function”
or “objective function” to rank the metamaterial design with respect to all other
designs.

The range of optimization routines that can be used for this approach span the en-
tire spectrum. Surrogate optimization methods, such as Curiosity Driven Optimiza-
tion, choose test points in an effort to generate a maximally predictive, minimally
complex model of the response of every possible geometrical variation within the
specified design space (see Chap. 3). Gradient-free optimization techniques, such
as Mesh Adaptive Search algorithms, are extremely robust in terms of their ability
to survey non-smooth “parameter space,” and based on specified criteria of conver-
gence, can do a remarkable job of finding global optimum designs (see Chap. 4).
Evolutionary algorithms, such as Particle Swarm Optimization and Covariance Ma-
trix Adaptation Evolutionary Strategy (CMA-ES), rely on evaluating sets of test
points and based on the results, permuting the sets to generate different, and hope-
fully better, sets of geometrical solutions (see Chap. 5). Finally, in much the same
way genetic algorithms mutate their solution set to develop new, better solution sets;
new optimization methods are always being developed. Conjugate gradient methods
are being combined with objective-first designs, which start with the desired electro-
magnetic fields, and work backwards to calculate the required dielectric distribution
(see Chap. 6). Level Set Methods, which are computational techniques tradition-
ally applied to fluid dynamics, have already shown promise for designing photonic
crystals and are now being explored for metamaterial applications (see Chap. 7).
Finally, when all else fails, the Black Box Optimization Benchmarking has estab-
lished a yearly workshop to assess the performance of newly developed optimizers
to understand their strengths and weaknesses, and this organization is a constant
source of new and different ideas [1].

Finally, while the techniques mentioned in the previous paragraph summarize
the extent to which avenues of metamaterial design optimization are covered in this
text; everything here, as well as most work in the literature, has focused on selecting
a specific material for the resonator design and then using geometrical permutations
to obtain optimized or novel device performance. While this is certainly a rich field
of study, one can imagine other avenues by which new metamaterial designs can
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be achieved. One such avenue that is receiving increased attention is described in
Sect. 1.4.3.

1.4.3 Future Designs

Throughout the history of optical metamaterials, gold, silver, and copper have been
the dominant materials used. This is in large part because in these metals, the free
electrons necessary to support plasmon resonances are in high enough concentra-
tions to resonate at near-infrared, visible, and ultraviolet frequencies. Unfortunately,
the same resonances that give these exotic optical properties introduce high losses
and limit the overall performance of devices. This limitation with traditional plas-
monic materials has provided an opportunity for both alternative plasmonic ma-
terials, as well as additional design degrees of freedom, by tuning their resonant
frequencies [7].

In recent years, a variety of material sets have been proposed as alternative plas-
monic materials including doped semiconductors [30, 52, 77], intermetallics [6],
transparent conducting oxides [23, 53, 83], transition metal nitrides [53], and
graphene [32]. One material set in particular, Transparent Conducting Oxides
(TCOs), have shown significant tunability across the near-infrared spectrum by
varying the concentration of oxygen vacancies and interstitial metal dopants intro-
duced into the films during deposition. These materials, including aluminum zinc
oxide, indium zinc oxide, and indium tin oxide have primarily been used as com-
ponents in touch screen displays; however, their low losses (five times smaller than
silver) [51, 54], tunability, and compatibility with standard fabrication processes
have resulted in increasing attention from the plasmonics and metamaterials com-
munities. From a design and optimization standpoint, they offer another interesting
benefit. From Sect. 1.4.1.1 we know that the Drude dielectric constant is given by:

ε = 1 − ω2
p

ω2 + iω/τ
,

ω2
p = ne2

ε∞m∗ .

TCOs, such as indium tin oxide or indium zinc oxide, can typically be doped to
have carrier concentrations between 1019–1021 cm−3. Based on this model, Fig. 1.9
shows that by adjusting the carrier concentration within the material during deposi-
tion, we can tune the plasma frequency (ε = 0) across the near-infrared spectrum.

To date, virtually all optimized metamaterial design has focused on parametri-
cally tuning the topology of the metamaterial unit cell, and a given material with
preset electronic and optical properties is chosen in a binary manor. With the intro-
duction of TCOs as alternative plasmonic materials for metamaterial design, we can
now include the resonant frequencies of the material itself as another design param-
eter to be optimized. This can be taken one step further, by considering metamaterial
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Fig. 1.9 Permittivity dispersion modified by a change in the carrier concentration. As the car-
rier density (per cubic centimeter) increases, the plasma frequency (ε = 0) shifts toward visible
frequencies, and the dispersion becomes substantially different in that regime. Reprinted with per-
mission from E. Feigenbaum et al.,“Unity-Order Index Change in Transparent Conducting Oxides
at Visible Frequencies,” Nano Letters 10, 2111–2116 (2010). Copyright 2010 American Chemical
Society

designs where the doping concentration and resulting plasma frequency are shifted
as a function of resonator thickness. These additional design degrees of freedom
present an interesting opportunity for future metamaterial designs, and are left as an
exercise for the reader.
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