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Preface

The idea of putting together this book is the result of the collective efforts of Daniel
Marthaler, Luke Sweatlock, and myself while researching metamaterials and au-
tonomous design tools within the Aerospace Research Labs at Northrop Grumman.
We began looking into the area of metamaterial design using optimization methods
combined with electromagnetic simulations in 2009 as an extension of our work on
plasmonics and metamaterials. We quickly discovered that while there was decades
worth of work on antenna and frequency selective surface design at microwave and
radio frequencies, there was surprisingly little work done in the area of device de-
sign at infrared and optical frequencies using numerical methods. From a design
standpoint, this also happened to be the frequency regime where materials’ disper-
sion became most interesting. One of a few exceptions to this is the work done by
Doug Werner’s group at Penn State, and collaborations with Doug were an invalu-
able asset during our study of the field.

The design optimization methods discussed in this book are by no means a way to
“hunt blindly” for solutions to design problems, and most instances of this yield ex-
tremely poor results. They are also not a replacement for a thorough understanding
the underlying physics of how metamaterials respond; rather, they are a supplement
to this knowledge and a valuable tool for those working in the field. In fact, the
“objective functions” used to rank different candidate metamaterials’ designs with
respect to each other are a direct representation of the underlying physics involved
in a given device design, and the success or failure of a given design optimization is
critically dependent on this step. A former colleague was fond of saying “We must
demand of ourselves understanding”. To understand metamaterials, we must under-
stand the underlying physics. To understand optimization, we must understand the
underlying mathematics. To optimize the design of metamaterials, we must under-
stand both.

While this text by no means encompasses all the work or methods that have been
used to address the topic of optical metamaterial design, we hope that the topics
covered here provide a fairly comprehensive overview of the main issues that arise
when designing these structures, as well as which numerical methods are better
suited for the task. This book is intended to provide a detailed enough treatment of
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the mathematical methods used, along with sufficient examples and additional ref-
erences that senior level undergraduates or graduate students, who are new to the
fields of plasmonics, metamaterials, or optimization methods, have an understand-
ing of which approaches are best-suited for their work and how to implement these
methods themselves.

The first chapter in the book is a brief overview of the major efforts within the
field of metamaterials in the past and present. We touch on some of the key simula-
tion and fabrication methods used in the field, as well as briefly review the physical
mechanisms that contribute to metamaterial behavior at infrared and visible frequen-
cies. This is done in an effort to frame the context of the book within the field as a
whole.

The second chapter is an overview of the field of mathematical optimization,
and describes where the methods covered in the book fit into the field as a whole.
Chapters 3–5 describe the major optimization methods that are currently utilized in
metamaterial design, and how differences in these methods make them more or less
successful with increasing dimensionality. In Chap. 3, we discuss surrogate models
that attempt to generate a maximally predictive, minimally complex model of the
response of the entire design space. Chapter 4 discusses adaptive mesh optimization
and examples of metamaterials designed using such an approach. Then in Chap. 5,
we discuss fully stochastic methods that are based on techniques used in nature
to efficiently optimize designs in very high dimensions, and numerous designs us-
ing these approaches are presented. The last two chapters of the book do not focus
solely on the optimization method itself. These chapters integrate both optimiza-
tion routines with novel methods for calculating and representing the shapes of the
individual resonant structures within a metamaterial. These approaches are new to
the field of metamaterial design; however, their applicability extends far beyond the
focus of this book. This is clearly illustrated by the range of design examples that
are covered throughout the last two chapters.

Finally, this book would never have been possible without a number of indi-
viduals who provided assistance, guidance, and support. A special thanks goes
to Vladimir Liberman who provided thoughtful feedback regarding the individual
chapters. In addition to all of the chapter authors, I would especially like to thank
Harry Atwater, Erik Antonsson, Ray Bomeli, Ryan Briggs, Guy DeRose, Matthew
Dicken, Bruce Esterline, James Ma, Doug Riley, Imogen Pryce, Mordechai Roth-
schild, Thom Schacher, Merrielle Spain, Robert Stewart, Seth Taylor, Ben Weiss,
Northrop Grumman, MIT Lincoln Laboratory, and the staff at Springer.

Kenneth DiestLexington, MA, USA
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Chapter 1
Introduction

Kenneth Diest

Abstract This chapter provides the context for the book in relation to the rest of
the optical metamaterials community. First, a brief historical overview of optical
metamaterial developments up to the start of the twentieth century is given. This is
followed by a discussion of the field in relation to academic publications, nanofab-
rication, and electromagnetic simulations; and how developments in all three areas
have contributed to the field as we know it today. The last section of the chap-
ter presents the general framework for combining numerical optimization methods
with full-field electromagnetic simulations for the design of metamaterials.

1.1 Introduction

The topic of electromagnetic metamaterials is a rich field that spans thousands of
years and frequencies ranging from radio through the ultraviolet. These materials
have a vast range of applications including art and jewelry, church decoration, fre-
quency converters, electromagnetic cloaks, and sub-wavelength super lenses, just to
name a few. Every day the field is expanding in new and different directions, and
the range of new technologies being created seems limited only by the creativity
of those involved. By combining our understanding of materials behavior with our
unprecedented ability to model and fabricate structures at the nanoscale, researchers
are bringing devices into the world that were previously only seen in the movies.

Here we define a metamaterial as “a man-made or otherwise artificially struc-
tured material with inclusions embedded in a host medium or patterned on a host
surface, where the length scale of the inclusions is significantly smaller than the
wavelength of interest.” The macroscopic optical properties of the composite ma-
terial are a result of the sub-wavelength unit structure, rather than the constituent
materials; and by tuning the design of those inclusions, one can tune the overall
electromagnetic properties of the metamaterial.

K. Diest (B)
Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA
e-mail: diest@mit.edu

K. Diest (ed.), Numerical Methods for Metamaterial Design,
Topics in Applied Physics 127, DOI 10.1007/978-94-007-6664-8_1,
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2 K. Diest

1.2 Ancient Metamaterials

While there’s no way of knowing for sure when and where the first optical meta-
materials were produced, a strong candidate for this distinction is glass, specifically
stained glass. The first evidence of glass making was around 3000 B.C.E. in an
area called the Canaanite–Phoenician coast near the Mediterranean (just north of
present-day Haifa). The sand from this region contained the right concentrations of
lime and silica, so that the traders needed only to mix in natron (a mix of soda ash,
baking soda, salt, and sodium sulfate) while the melt was placed into a hot fire [63].
The earliest glasses developed in this manner were opaque rather than transparent
due to scattering from small air bubbles or particles trapped within the glass during
formation. Later, during the first millennium B.C.E., hotter kilns were developed
and artisans began to introduce metal oxides into the glass to control the color. By
forming the glass either with or without charcoal, the glassworkers were able to ei-
ther reduce or oxidize added copper, and as a result, produce glass that was either
red or blue, respectively.

Since it seems that no discussion of plasmonics or metamaterials would be com-
plete without referencing the Lycurgus Cup, we’ll mention here that this artifact
is one of the world’s most famous examples of metal being introduced into glass.
This cup was produced during the fourth century A.D. during the Roman Empire,
Fig. 1.1. The cup depicts the death of King Lycurgus in Thrace at the hands of
Dionysus. As can be seen from Fig. 1.1, the glass appears green (a) when seen with
light reflected off the surface of the cup, and red (b) when seen with light trans-
mitted through the cup. This remarkable behavior results from the introduction of
colloidal gold and silver into the glass during formation. The resulting gold and sil-
ver nanoparticles within the glass reflect the green portion of the visible spectrum
while transmitting the red portion of the visible spectrum [4].

It’s truly remarkable that from this period in history all the way to present day,
people have been studying how to produce new and different optical properties by
simply combining nanoscale metallic inclusions within dielectrics, and that a theory
for this type of scattering from metal spheres would not be formalized until 1908
by Gustav Mie [45], ∼1600 years after the cup was made. From the fourth century
on, people began studying how to produce stained glass by annealing the material
with the addition of metallic salts. One of the first books documenting these studies,
and arguably the first book on metamaterials, was “The Book of the Hidden Pearl,”
written in the eight century A.D. by Jabir ibn Hayyan, discussing the manufacturing
of colored glass as well as techniques for the coloring of gemstones [31].

Around the turn of the twentieth century, the theories required to explain the
behavior of metamaterials began to take shape. The first attempt at developing mod-
ern metamaterials with sub-wavelength structures was by Jagadis Chunder Bose in
1898. Bose used pieces of twisted jute in an effort to develop an artificially struc-
tured chiral material [8]. In 1904, J.C.M. Garnett published his paper on “Colours
in Metal Glasses and in Metallic Films” in the Philosophical Transactions of the
Royal Society [24]. Here he used the Drude model for the optical properties of
free electron metals to describe how colors arose and changed within glasses when
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Fig. 1.1 The Lycurgus cup shown in both reflection (a) and transmission (b). Gold and silver
nanoparticles are responsible for the strong reflection of green light and transmission of red light.
©Trustees of the British Museum

gold or silver films were annealed into nanoparticles that dispersed throughout soda
glass. This work was followed in 1908 by the paper mentioned earlier from Gustav
Mie that discussed the scattering of electromagnetic radiation by a sphere [45]. This
work enabled the calculation of electric and magnetic fields inside and outside of a
sphere which, in turn, can be used to calculate the scattering profile of incident light.

Taken together, these papers represent the first major effort using electromagnetic
theory to analytically explain the behavior of nanoparticles, and more generally,
optical metamaterials. This also represents a fundamental turning point in the history
of metamaterials. Now, for the first time, the range of accessible metamaterials was
not simply limited to those discovered by chance or passed down by word of mouth;
rather, these theories could be applied in new and different ways to target specific
applications and produce novel optical behavior.

1.3 Modern Metamaterials

In the late 1960s, the era of modern metamaterials began. Traditionally, modern
developments in the field are attributed in large part to three seminal papers by
Victor Veselago in 1967 [81], Sir John Pendry in 2000 [57], and David Smith in 2000
[71]. These papers certainly helped to inspire an entire field of researchers in the
field of optical metamaterials and spark an enormous surge in related publications
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(Fig. 1.2(b)); however, these publications and other like it represent one of three
different communities that came together at the start of the twenty first century to
bring about the field of metamaterials as we know it today. Current progress in
the field was brought about by a combination of key papers as well as advances
in, and the commercialization of, both nanofabrication capabilities and full-field
electromagnetic modeling tools. These three areas all represent key components in
the development and understanding of modern metamaterials, and the intersection
of all three has brought the field to where it is today.

1.3.1 Publications

In 1967, Victor Veselago published his seminal paper on “The Electrodymanics of
Substances with Simultaneously Negative Values of ε and μ [81].” In this paper,
Veselago describes such “left-handed materials” that would support electromag-
netic waves where the phase velocity and pointing vector propagate in opposite di-
rections. This work was not realized experimentally until 2000, when David Smith
and colleagues fabricated the first ever negative-index material by structuring an ar-
ray of copper strips and split ring resonators on printed circuit boards [71]. Smith
and Schurig later used these techniques and the recently emerging field of transfor-
mation optics to design an electromagnetic invisibility cloak that operated over a
band of microwave frequencies, Fig. 1.2(a) [39, 64, 65, 82]. Concurrently in 2000,
Sir John Pendry published his paper entitled “Negative Refraction Makes a Perfect
Lens [57].” Here Pendry took the concepts introduced in Veselago’s paper and ex-
plored the possibility of producing a negative-index “super lens.” In principle, this
material could circumvent the normal diffraction limits of light and resolve struc-
tures “only a few nanometers across” at visible frequencies. The combination of
these three efforts by Veselago, Smith, and Pendry helped kick-off an enormous
amount of research within the field of negative index materials and metamaterials
in general, and the field would not be where it is today without their work. Between
the years 2000 and 2011, many areas of research have received tremendous atten-
tion including: optical metamaterials (∼2800 publications), negative index metama-
terials (∼2450 publications) [59, 67, 72, 80], optical cloaking (∼650 publications)
[11, 58, 64, 79], and nonlinear metamaterials (∼450 publications) [36, 37, 60, 87].
Representative references for each topic are listed above, and a compilation of all
publications from the four representative research topics in the field as a function of
year is plotted in Fig. 1.2(b).1 While it should be noted that papers within the four
topics are not mutually exclusive, the general trends clearly show enormous growth
within the field starting around 2000 for optical, nonlinear, and negative index meta-
materials, and 2006 for optical cloaking.

While the contributions of these researchers have certainly shaped the develop-
ment of the field of optical metamaterials over the last half century, they are by

1Citations compiled through Web of Science, March 2012.
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Fig. 1.2 In (a), the metamaterial-based, two-dimensional microwave cloak from Shurig et al. [64].
The structure consists of ten concentric cylinders of split ring resonators mounted on printed circuit
board. The plot in the foreground shows the relevant materials parameters (μr,μθ , εz) as a function
of distance from the center of the cloak. In (b), the number of papers published from 2000 to
2011 on the topics of: optical cloaking, nonlinear metamaterials, negative index metamaterials,
and optical metamaterials

no means the only scientists to do so. From 1968–2009, Ben Munk became a pio-
neer within the field of frequency selective surfaces for their use in radar and other
military applications [48–50]. Here, the military quickly realized the importance of
being able to properly tune the design of antenna arrays for absorption and beam
steering applications, and to this day, portions of his 1968 Ph.D. thesis are still clas-
sified. Research lead independently by Vladimir Shalaev and Xiang Zhang has taken
the microwave cloaking and negative index of refraction concepts demonstrated by
Smith and Shurig, and extended them to visible frequencies [9–11, 60, 67, 79, 80].
And finally, in a similar vein to the work done by Veselago, modeling and de-
sign work lead by Nader Engheta has predicted a wide range of exotic behav-
ior from phase-shifters with novel medium to electromagnetic tunneling through
waveguides of “epsilon-near-zero” materials, to the introduction of circuit nanoele-
ment models in the optical domain using plasmonic and non-plasmonic nanoparti-
cles [17–19, 62, 69].

While this list by no means encompasses the range of researchers who have made
major contributions to the field, it does emphasize some of the major work done that
has leveraged metamaterial theory (including Veselago, Mie, and Drude) to tailor
the design of metamaterials for specific applications. These researchers have done
a superb job of studying not only the fundamental resonances involved in these
nanostructures, but also addressing the question that immediately follows: How to
design these structures for specific applications?
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1.3.2 Fabrication

As the field of metamaterials has moved to ever shorter wavelengths, the frequency
ranges and resonances that we can study are limited by the modeling and fabrication
capabilities at our disposal. During the 1960s, 1970s, and 1980s, the study of radio
frequency (RF) metamaterials required structures with length scales on the order
of centimeters, and these could be easily machined and assembled by hand. In the
1970s and 1980s, techniques for micro- and nano-lithography were developed to
pattern structures with sizes spanning from tens of microns to tens of nanometers.
For structures designed to operate at frequencies up to 1 THz, standard photolithog-
raphy techniques allowed large arrays of these structures to be pattered very quickly
by exposing ultraviolet light through a patterned glass photomask to transfer this
pattern into a photosensitive resist; and subsequently transferring that pattern into
the resonator material, either through etching or lift-off techniques. As the operat-
ing wavelength of the metamaterial grew shorter, standard lithography techniques
ran up against the diffraction limit of the exposure light, and new methods were
employed. While there are a number of techniques that have been developed to fab-
ricate structures at the nanoscale, including X-ray lithography, interference lithogra-
phy, extreme ultraviolet and immersion lithography, direct laser writing, and imprint
lithography, over the past 20 years, there are two techniques that have played key
roles in the fabrication work done in the metamaterials’ community: electron beam
lithography and focused ion beam patterning.

While both techniques are key components within modern, academic nanofabri-
cation facilities, it is interesting to note that the two tools evolved along very dif-
ferent paths. Electron beam lithography was initially developed as far back as the
1960s and 1970s; however, for most of its history, this tool was largely used within
the microelectronics industry and its price was such that it was prohibitively expen-
sive for academic use. Even to this day, electron beam lithography tools in academia
are mainly located within shared user facilities and have distributed ownership. In
contrast, focused ion beams have been more of a research and development tool
with many key developments coming from users of the tool. Only over the past
few decades has the tool become mainstream enough to be commercialized by such
companies as FEI Co. and Micrion Corp.

Scanning Electron Beam Lithography (SEBL) was first introduced as a commer-
cial Gaussian beam system in 1962 by Philips, Eindhoven, and in 1974 as a com-
mercially available shaped electron beam lithography system by Carl Zeiss, Jena.
SEBL uses a set of electromagnetic lenses to focus a column of high energy (usually
at 30, 50, or 100 keV) electrons onto a focal plane with typical spot sizes between
2 and 10 nm, Fig. 1.3(a). The lenses then raster the beam across the sample at pre-
determined positions to expose the resist where it should either remain or dissolve
away during subsequent processing steps. Because the de Broglie wavelength [40]
of these electrons is so much smaller than ultraviolet light used in standard pho-
tolithography, the minimum feature size is orders of magnitude smaller. Another
benefit of electron beam lithography is in the flexibility of the tool when compared
with photolithography. Besides the size limitations, photolithography requires the
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Fig. 1.3 An example of nanofabricated Split Ring Resonators fabricated on silicon substrates
using Scanning Electron Beam Lithography (a). The scale bar corresponds to 5 µm. In (b), fishnet
metamaterials fabricated using Focused Ion Beam milling were studied as negative index materials
[80]. The scale bar corresponds to 1 µm

fabrication of a photomask which, once produced, is difficult to modify. In com-
parison, electron beam lithography is fed an electronic beam map before each run,
which can be easily modified. While there are a number of benefits to using this
technique, the primary limitation is throughput. Because the beam can only expose
one spot at a time, the process is inherently serial, and as a result, patterning on 8′′
or 12′′ wafers would take orders of magnitude longer than with photolithography.

In comparison, the Focused Ion Beam (FIB) is a direct milling process and after
patterning, does not require further etching or lift-off steps to fabricate nanostruc-
tures [38, 80], Fig. 1.3(b). Early developments in FIB milling came about in the
1970s when Levi-Setti [22], and Orloff & Swanson [56] independently introduced
the first field emission Focused Ion Beam systems in 1975, and the first liquid metal
ion source by Seliger in 1979 [66]; however, it wasn’t until 1998 that FEI com-
mercially produced the tool in its current form as a dual-beam Focused Ion Beam /
Scanning Electron Microscope system.

Instead of transferring a pattern into a resist, which then requires further etching
or lift-off steps to produce structures, the focused ion beam is a direct milling pro-
cess. The FIB extracts gallium ions from a liquid metal source and accelerates these
ions onto the sample in a focused beam with a radius of ∼10 nm. This allows the
FIB to produce structures with critical dimensions equivalent to those with electron
beam lithography; however, it has been shown that, for certain material sets and
device designs, this process can be significantly quicker than electron beam lithog-
raphy [20]. As with electron beam lithography, FIB is an inherently serial process,
and as a result, is very time consuming for larger samples. Also, the materials se-
lectivity of the etch process may be significantly reduced when compared with the
variety of etches used in standard lithography. The etching must be timed properly
or else significant erosion into the underlying substrate will occur. At the same time
the sample is being milled, it’s also being implanted with gallium ions. This effect
will typically reduce the quality of the materials being etched, and depending on the
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material and structures being fabricated, can result in significantly modified material
properties [29].

One method that address the issue of throughput with electron beam lithography
is nanoimprint lithography [12, 27]. Using this technique, electron beam lithogra-
phy is used to pattern a “master stamp” with the desired nanostructures. A sample
is coated with a heat or ultraviolet curable resist and the stamp is directly pressed
into the resist. The speed and effectiveness of this technique is then determined
by the rate and extent to which the polymer conforms to the mask. Control of
the adhesion between the stamp and the resist allows removal of the stamp while
retaining the imprinted pattern. Once the stamp is fabricated, an entire 8′′ wafer
can be patterned in a matter of minutes. The resolution of this process is ∼10 nm,
and there are no diffraction effects. The mold can be re-used many times and is
only limited by the rate at which the stamping process erodes the stamp features.
Not only does this process reduce patterning time by many orders of magnitude
compared with electron beam lithography, but by stamping patterns onto the same
substrate multiple times, three-dimensional structures can be fabricated layer by
layer.

The last two benefits of imprint lithography cannot be emphasized enough. All
of the methods discussed so far are inherently planar fabrication techniques, and
fabricating fully three-dimensional metamaterials with these methods has two ma-
jor problems. First, the accuracy with which subsequent layers can be positioned
with respect to those already fabricated can be on the order of the resonator crit-
ical dimensions, which can significantly degrade the performance of the metama-
terial. Second, the time required to fabricate a single, two-dimensional layer of
metamaterials can be prohibitively long, and this essentially rules out repeating
the process tens or hundreds of times to extend structures into the third dimen-
sion.

While there are promising alternative approaches to address these issues such
as self-assembly techniques [25, 68] and direct laser writing [15, 21], these meth-
ods are still under development and are not yet integrated in standard fabrication
facilities. Examples of both methods are shown in Fig. 1.4(a)–(b).

1.3.3 Modeling

Before the 1960s, electromagnetic modeling was mainly limited to closed-form and
infinite series analytical solutions to the problems of interest. During the 1960s, both
the Finite Element Method (FEM) and the Finite-Difference Time-Domain method
(FDTD) were reported for the first time in the field of computational electromag-
netics, and since then have become two of the main methods for analyzing complex
optical metamaterials. The following sections give a brief overview and comparison
of the two methods. For a rigorous treatment of these methods, the reader is referred
to [33, 34, 76].
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Fig. 1.4 In (a), an example of chiral metamaterials fabricated using Direct Laser Writing [78].
The cubic lattice is written in SU-8 negative tone polymer on a glass substrate. In (b), an example
of metamaterial arrays fabricated using self assembly [86]. Nickel is patterned in an inverse-opal
structure. The four rows correspond to different filling fractions of nickel, and the three columns
correspond to observed far-field colors of the structure as a result of differing surface topographies

1.3.3.1 Finite-Difference Time-Domain Method

The Finite-Difference Time-Domain (FDTD) method is a time-stepping approach
that models how electromagnetic waves actually move through a structure. The
FDTD method has a number of different implementations; however, the most well-
structured is the highly accurate algorithm introduced by Kane Yee in 1966 [85], and
was first made commercially available by Panoramic Technology in 1999. Using the
Yee algorithm, the structure to be simulated is first broken up into a rectangular grid,
with the corresponding ε and μ calculated at each spatial position. The method starts
with the time-dependent, differential form of Maxwell’s equations:

∇ · D = 0, (1.1a)

∇ · B = 0, (1.1b)

∂B
∂t

= −∇ × E − M, (1.1c)

∂D
∂t

= ∇ × H − J. (1.1d)

Here, Faraday’s law (Eq. (1.1c)) relates the magnetic flux density B, the electric
field E, and the magnetic current density M; while Ampere’s law (Eq. (1.1d)) relates
the electric flux density D, the magnetic field H, and the electric current density J.
Equations (1.1a)–(1.1d) are then discretized using a central-difference approxima-
tion which is accurate to second-order. The Yee algorithm solves for the electric and
magnetic fields in space and time by utilizing Maxwell’s curl equations. By combin-
ing Eqs. (1.1c) and (1.1d) with the constitutive equations for the electric flux density
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Fig. 1.5 The rectangular Yee cell is shown in (a). This visualization shows the distribution of
electric and magnetic field vector components. Using Finite-Difference Time-Domain simulations,
the three-dimensional volume of structures and spaces to be simulated consists of an array of these
cells. An example of a bow-tie antenna discretized using the triangular, conformal meshing used
in Finite Element Methods is shown in (b). The benefits of a conformal mesh over the rectangular
grid used in FDTD can be seen near the corners of the antenna

(Eq. (1.2)), magnetic flux density (Eq. (1.3)):

D = ε0εE, (1.2)

B = 2μ0μH, (1.3)

along with the fact that the electric and magnetic current densities can serve as
additional sources of electric (Jsource) and magnetic (Msource) energy:

J = Jsource + σEE, (1.4)

M = Msource + σH H, (1.5)

where σE is the electrical conductivity and σH is the magnetic loss, we arrive at
Maxwell’s curl equations for linear, isotropic, non-dispersive materials:

∂H
∂t

= − 1

μ
∇ × E − 1

μ
(Msource + σH H), (1.6)

∂E
∂t

= −1

ε
∇ × H − 1

ε
(Jsource + σEE). (1.7)

This produces a set of six coupled scalar equations for ∂Hx,y,z

∂t
and ∂Ex,y,z

∂t
that rep-

resent a “Yee cell,” Fig. 1.5(a), where every electric-field component is surrounded
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by four circulating magnetic-field components and every magnetic-field component
is surrounded by four circulating electric-field components. The simulation volume
is then spanned by an array of Faraday’s law and Ampere’s law contours. Thus, the
method accurately simulates both the differential and integral forms of Maxwell’s
equations at every point in the simulation volume.

To obtain each E and H component at time t and position (x, y, z), the curl
equations are discretized in time, and the electromagnetic pulse propagates through
the simulation volume by leapfrogging from Ex,y,z(x, y, z, t = 0) to Hx,y,z(x +
1/2, y + 1/2, z + 1/2, t = 1/2�t) to Ex,y,z(x + 1, y + 1, z + 1, t = �t), and so on.
Finally, a Fourier transform of these results yields the field magnitudes and phases
at every point and every frequency.

1.3.3.2 Finite Element Method

Compared with the FDTD method, the Finite Element Method (FEM) is an inher-
ently more complex and universal method. FEM is a numerical procedure to find
stable solutions to boundary-value partial differential equations. This approach was
first reported in 1943 by Richard Courant in his study of elasticity and structural
analysis [14], where the concept of mesh discretization of a simulation was intro-
duced. It was not until 1969 that the method was introduced to the field of electro-
magnetic engineering, when Silvester used this approach in the field of microwave
engineering [70].

The Finite Element Method for electromagnetics is a frequency-domain method,
which is again based on Maxwell’s equations (1.1a)–(1.1d). When reformulated to
include the anisotropic materials permittivity (εij ) and permeability (μij ) of the
structure under consideration, we start with:

∇ · (εij · E) = − 1

iω
∇ · J, (1.8a)

∇ · (μij · H) = − 1

iω
∇ · M, (1.8b)

iωμij · H = −∇ × E − M, (1.8c)

−iωεij · E = −∇ × H − J. (1.8d)

In this context, FEM assumes that the resonant structure under consideration is sur-
rounded by an artificial absorbing boundary condition which approximates the elec-
tric and magnetic fields approaching zero at infinity:

n̂ × ∇ × E + ik0n̂ × n̂ × E ≈ 0, (1.9a)

n̂ × ∇ × H + ik0n̂ × n̂ × H ≈ 0. (1.9b)

Here, n̂ represents the vector normal to the boundary surface and k0 is the inci-
dent free-space wave vector. Following the treatment by Jin and Riley [34], when
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the boundary conditions in Eqs. (1.9a) and (1.9b) are combined with the vector wave
equation for the electric field of Maxwell’s equations:

∇ × (μ0/μij · ∇ × E) − k2
0εij · E = −ik0

√
μ0/ε0J − ∇ × (μ0/μij · M), (1.10)

we arrive at �
V

[
(∇ × T) · μ0/μij · (∇ × E) − k2

0T · εij · E
]
dV

=
�

SB∪Ssurf

n̂ · [T × (μ0/μij · ∇ × E)
]
dS

−
�
V

T · [ik0
√

μ0/ε0J + ∇ × (μ0/μij · M)
]
dV,

where V represents the entire volume of integration, SB is the artificial absorbing
boundary surface, Ssurf is the surface of the structure being simulated, and T is
an appropriate test function used for integration. Combining this with the artificial
absorbing boundary condition in Eqs. (1.9a) and (1.9b) gives�

V

[
(∇ × T) · μ0/μij · (∇ × E) − k2

0T · εij · E
]
dV

=
�
Ssurf

(n̂ × T) · μ0/μij · (∇ × E) dS − ik0

�
SB

(n̂ × T) · (n̂ × E) dS

−
�
V

T · [ik0
√

μ0/ε0J + ∇ × (μ0/μij · M)
]
dV. (1.11)

The volume of integration “V ” is then meshed into subregions using trapezoidal,
tetrahedral, or other types of meshing schemes. One example of this is shown in
Fig. 1.5(b), where the conformal nature of these meshes is especially useful with
curved surfaces such as the corners of a bow-tie antenna.2 To find a solution to
the electromagnetics problem posed in Eq. (1.11), the E-field tangent to each edge
of an individual meshing cell is calculated, and a set of basis vectors are used to
extrapolate the resulting fields throughout the remaining simulation volume. The
E-field within the entire structure is then given by

E =
Rmax∑

k=1

RkEk, (1.12)

where R is the vector field component along a given meshing cell edge, Rmax is the
total number of edges within the simulation with the exception of Ssurf, and Ek is the
tangential electric field component along the same edge. When the basis vectors, R,

2Figure 1.5(b) was produced using the resources of MIT Lincoln Laboratory.
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are the same as those in the test function, T, we can combine Eqs. (1.11) and (1.12)
to obtain the discretized, Galerkin formulation of the electromagnetics problem for
a single frequency:

Rmax∑

h,k=1

MhkEk = −
�
V

Rh · [ik0
√

μ0/ε0J + ∇ × (μ0/μij · M)
]
dV, (1.13)

where Mhk is given by

Mhk =
�
V

[
(∇ × Rh) · μ0/μij · (∇ × Rk) − k2

0Rh · εij · Rk
]
dV

− ik0

�
SB

(n̂ × Rh) · (n̂ × Rk) dS. (1.14)

1.3.3.3 FDTD and FEM

While both FDTD and FEM accurately model the three-dimensional response of
structures to incident electromagnetic radiation, a number of similarities and differ-
ences can be seen. FDTD is based on the relatively straightforward implementation
of the Yee algorithm. The structure is excited using a broad-band pulse and, as a
result, Fourier transforming the fields provides broad-band information with a sin-
gle simulation. As a result, the hardware limitations of FDTD are based more on
the speed and number of processors, rather than the amount of RAM available. The
amount of RAM required is determined by the size of the simulation, density of the
mesh, and amount of data being stored throughout the simulation. The method is
highly efficient, and there is no large matrix to invert, as with FEM. The method
is highly parallelizable, and can easily handle both anisotropic and inhomogeneous
structures, including nonlinear and dispersive media. However, the method is nat-
urally based on a rectangular grid. As a result, accommodating curved or highly
dynamic surfaces is a limitation, even with recent advances in conformal meshing
techniques. Further, a new broadband simulation is required every time the excita-
tion conditions are changed.

In comparison, FEM is a more complicated approach, in terms of formulation,
meshing, and computation. Proper mesh generation and boundary truncation can be
a significant challenge. Also, to arrive at a solution for a given frequency, a system
of linear equations need to be solved. The large matrix inversions required can re-
sult in substantial computational requirements; however, recent advances in sparse
matrix solvers can be incorporated to significantly reduce these issues. As a result,
the hardware limitations of FEM are based more on the amount of RAM needed
to complete the matrix inversion. While techniques exist to mitigate this problem,
the matrices involved scale with the number of degrees of freedom and the mesh-
ing density and can quickly grow to the point where sizable amounts of RAM are
required to obtain any solution. The resulting solution is independent of excitation,
and once the matrix is inverted, it is fairly easy to find other solutions.
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Like FDTD, this technique can be highly parallelizable by simply running simu-
lations at different frequencies on different processors. Also, while it is more com-
plex to generate the triangular or tetrahedral meshing, the resulting mesh is con-
formal. Hence, the method excels with curved or highly dynamic surfaces. From
a design and optimization standpoint, when the simulated structure requires only
one illumination condition over a wide range of frequencies, FDTD is usually the
stronger method. When the frequency range is narrow, or even limited to a single
frequency, but a wide range of illumination angles and conditions are required, FEM
is usually the stronger method.

Finally, it should also be mentioned that while FEM and FDTD are two of the
main methods used for this type of electromagnetic analysis, they are by no means
the only methods. In specific situations, other techniques such as: Rigorous Coupled
Waveguide Analysis, the Method of Moments, the Boundary Element Method, and
others are also utilized to solve design problems; and when studying radio frequency
or radar designs, may actually be more applicable than FDTD or FEM. In the end,
the design optimization methods discussed throughout the rest of this book should
be applicable to any of these design problems and able to be combined with any of
these simulation methods.

1.3.4 The Union of Fields

The key developments within the fields of Simulation (FDTD and FEM), Fabrica-
tion (SEBL and FIB), and Publications that have been discussed throughout Sect. 1.3
of this chapter, are listed in Table 1.1 along with other relevant developments within
these fields. While developments within all three areas date back to the 1960s, it
wasn’t until the turn of the century that the field started growing into what we
know today. This coincides with the first commercial dual beam SEM/FIB, the
first releases of commercial FDTD and method-of-moments-based FEM solvers,
and publications by Pendry and Smith et al. [57, 71]. The union of these fields
allowed a rigorous study of the electromagnetic resonances that occur within a
wide range of today’s metamaterials that operate at infrared and visible frequen-
cies.

Just as the focus of metamaterials/Frequency Selective Surfaces that operate at
microwave and radio frequencies has largely been on device applications, efforts
within the field of metamaterials that operate at terahertz, infrared, and visible fre-
quencies will become increasingly applications driven. To that end, advances in the
field of metamaterial design will come about by manipulating fabrication and sim-
ulation capabilities in new and different ways.
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Table 1.1 Key developments within the areas of simulation, fabrication, and publication as they
relate to the study of optical metamaterials

Year FE
M

FD
T

D

SE
B

L

FI
B

Pu
bs

Development

1943 x Courant introduces FEM for the study of elasticity and
structural mechanics [14]

1960 x Clough coins the term “Finite Element Method”

1960 x Möllenstedt and Speidel report writing “fine lines” with a 20
nm electron beam in collodium film [46]

1962 x Philips, Eindhoven, introduces the first commercial Gaussian
beam system

1964 x Control Data Systems releases the first commercial FEM
software for the study of mechanics

1966 x Yee introduces the FDTD method for solving Maxwell’s curl
equations on a discretized grid [85]

1967 x Victor Veselago publishes his manuscript on substances with
negative values of ε and μ [81]

1969 x Hatzakis introduces PMMA as an electron beam resist [28]

1969 x Silvester publishes the first article using the Finite Element
Method to study electromagnetics [70]

1974 x Carl Zeiss, Jena, launches the first commercial shaped electron
beam lithography system

1975 x Levi-Setti, Orloff, and Swanson introduce the first field
emission Focused Ion Beam systems [22, 56]

1979 x Seliger introduces the first Focused Ion Beam based on the
liquid metal ion source [66]

1980 x Taflove coins the term “FDTD” acronym [75]

1980 x Gaussian systems first introduced for low-resolution pattern
generation in large scale manufacturing [3]

1987 x Greengard and Rokhlin introduce the Fast Multipole Method
[26]

1988 x Sudraud et al. first use dual-beam SEM/FIB for microcircuit
repair [73]

1994 x Berenger and Katz introduce perfectly matched boundary
layers (PMLs) for FDTD [5, 35]

1994 x Reuter introduces modeling of dispersive materials within
FDTD [61]

1995 x x Wu and Itoh introduce the first combination of FDTD and
FEM for objects with curved boundaries [84]

1998 x FEI releases its first commercial dual-beam Scanning Electron
Microscope / Focused Ion Beam

1999 x Panoramic Technology releases the first commercial rigorous
FDTD electromagnetics solver
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Table 1.1 (Continued)

Year FE
M

FD
T

D

SE
B

L

FI
B

Pu
bs

Development

2000 x Pendry publishes “Negative Refraction Makes a Perfect Lens”
[57]

2000 x Smith and colleagues fabricate the first negative index material
[71]

2004 x FEKO releases the first commercial FEM software utilizing
the Method of Moments solver

2006 x Shurig et al. demonstrate the first electromagnetic invisibility
cloak [64]

1.4 Design

As with any design problem, to understand the observable extrinsic properties,
you must first understand the intrinsic properties of the constituent components
of a system. In the case of optical metamaterials, we will combine dielectrics
and metals. For the designs studied in this book, the dielectric acts as the host
medium that supports either structured or unstructured arrays of metallic res-
onators. In the case of bulk metamaterials, where the resonant arrays are dis-
tributed throughout the volume of the structure, the dielectric needs to be trans-
parent to the wavelengths of interest. Any significant amount of absorption would
result in higher metamaterial losses and decreased device performance. In con-
trast, this requirement is relaxed when working with frequency selective surfaces,
where the resonant array is patterned above the dielectric substrate. Here, substrates
such as semiconductors are sometimes utilized to tune the local dielectric environ-
ment in unique ways that would otherwise not be available to bulk metamateri-
als.

As we will see in the following sections, materials behavior at these frequen-
cies is dominated by free electrons. To provide both strong optical contrast be-
tween the metals and dielectrics, and minimize the contribution of the dielec-
tric to the overall metamaterial performance, the electrons within the dielectric
are tightly bound to the atomic lattice. Additionally, we will see that the sur-
face plasmon resonances that play a major factor in the device performance, are
only supported at interfaces between negative (metals) and positive dielectric con-
stants.

1.4.1 Optical Properties of Metals

As the operation range of metamaterials has moved from radio and microwave to
infrared, visible, and ultraviolet frequencies, the materials used to fabricate these
structures have also changed. Structures such as frequency selective surfaces that
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operate at radio and microwave frequencies are oftentimes constructed using printed
copper wires on top of printed circuit board material. At these frequencies, the metal
can be treated as a perfect electrical conductor. The materials can be thought of as
having infinite electrical conductivity and are without losses. The dielectric proper-
ties of the metal are fixed, and the penetration of the electric field below the surface
of the metal is assumed to be negligible.

As we move to infrared and visible frequencies, this assumption breaks down
and things become more complex. Here, the electromagnetic fields penetrate tens
of nanometers into the metallic resonators, and materials’ response is dominated by
the behavior of the free electrons within a material. As a result, gold, silver, copper,
and aluminum become the dominant materials used because their electron density
and configuration are such that bulk plasma oscillations and surface plasmons can
be supported. These materials’ resonances are the result of significant dispersion
throughout the frequency range of interest.

The resulting shift in size of the individual resonant structure is tens to hundreds
of nanometers. At these dimensions, the field penetration depth into the metal res-
onators becomes a significant fraction of the overall thickness. Additionally, when
the geometry of the meta-atoms is tuned to have resonances that coincide with the
natural resonances of the metals, we observe significant electromagnetic field en-
hancement around the resonators, and striking bulk optical properties.

As with any material, we can describe the optical properties with a frequency-
dependent, complex dielectric function. For the plasmonic materials mentioned
above, we express the dielectric function in terms of both free-electron effects (εD)
using the Drude–Sommerfeld model, and interband transitions (εIB). Each of these
effects will be discussed, and we then finish the section by discussing the surface
plasmon effects that arise within these metals.

1.4.1.1 Drude Metals

Under illumination by a time-harmonic external electric field E0e−iωt , the equation
of motion for free electrons in a metal is given by

m∗
D

∂2r(t)
∂t2

+ m∗
D

1

τ

∂r(t)
∂t

= eE0e−iωt , (1.15)

where e and m∗
D are the charge and effective mass of the free electrons, and r is the

displacement of an electron under an external field. τ is the average relaxation time
of the free electrons. τ is proportional to τ = 


νF
, where νF is the Fermi velocity

and 
 is the electron mean free path. These values for aluminum, copper, silver, and
gold are listed in Table 1.2. Solving for r gives

r = e

m

E0e−iωt

(ω2 + iω/τ)
. (1.16)
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Table 1.2 Drude and Drude–Sommerfeld values for plasmonic metals including the: plasma fre-
quency ωp [10], Fermi velocity νF (cm/s) [2], Drude relaxation time τD [2], frequency of interband
transitions ωIB [13], and the electron configuration

Relevant physical constants for plasmonic metals

ωp (eV) νF (cm/s) τD (10−14 s) ωIB (eV) e− configuration

Aluminum 15.1 2.03 0.80 1.41 [Ne]3s23p1

Copper 8.8 1.57 2.7 2.1 [Ar]3d104s1

Silver 9.2 1.39 4.0 3.9 [Kr]4d105s1

Gold 9.1 1.40 3.0 2.3 [Xe]4f 145d106s1

Fig. 1.6 Real (solid blue)
and imaginary (dashed green)
Drude components of the
dielectric function of silver.
In this plot, the imaginary
permittivity has been scaled
up by a factor of ten

Combining this result with Eq. (1.2), we obtain the complex Drude model for
frequency-dependent permittivity:

εD(ω) = 1 − ω2
p

ω2 + iω/τ
. (1.17)

Here, the term ωp is the bulk plasma frequency given by ωp =
√

(ne2)/(m∗
Dε0).

Finally, we can separate Eq. (1.17) into its real and imaginary components:

εD(ω) = 1 − ω2
p

ω2 + 1/τ 2
+ i

ω2
p

ωτ(ω2 + 1/τ 2)
. (1.18)

A plot of the real and imaginary Drude components of the dielectric function are
shown in Fig. 1.6 for silver.3 In this figure, the real part of the dielectric constant is
shown as the solid blue line and the imaginary part is shown as the dashed green line.

3Figure 1.6 was produced using the resources of MIT Lincoln Laboratory.
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Also, to plot both constants on the same y-axis, the imaginary part of the dielectric
constant has been plotted as ten times its actual value. Here we see that the real part
of the dielectric constant is negative across visible and infrared frequencies. This
indicates that under external illumination, the electrons are driven 180◦ out of phase
with the incident light. This results in the high reflectivity that is typically associated
with metals. We also see a significant contribution from the imaginary part of the
dielectric constant. The optical losses associated with these metals are an inherent
limitation for certain types of metamaterial designs.

1.4.1.2 Interband Transitions

While the Drude–Sommerfeld model for metals provides a nice starting point for
their understanding, it is by no means a complete explanation of their optical be-
havior. The fact that gold, silver, and copper refer to colors as well as metals clearly
indicates that there’s more going on than the model in the previous section can ex-
plain. The explanation for such effects lies with interband transitions.

Gold, silver, and copper are all monovalent, Face-Centered Cubic metals. For
these noble metals, the Fermi surface of the metal strongly resembles a free electron
sphere with the exception of the 〈111〉 direction, where the surface intersects the
Brillouin zone face. From Table 1.2 we see that the electron configuration of all
three have 10 electrons occupying the d-bands and 1 electron occupying the s-band.
Additionally, all three metals have the fully occupied d-bands 2–4 eV below the
s-band. As a result, absorption can occur when light above this interband transition
energy is incident upon the surface of the metal. This explains why copper has a
somewhat reddish appearance, gold appears to be yellow, and silver strongly reflects
across the entire visible spectrum.

To model the contribution of interband transitions to the overall dielectric func-
tion, we modify Eq. (1.15) to include damping from bound electrons γ , and the
electron restoring force α:

mB

∂2r(t)
∂t2

+ mBγ
∂r(t)
∂t

+ αr = eE0e−iωt , (1.19)

where mB is the mass of bound electrons. Solving Eq. (1.19) following the same
method as in Sect. 1.4.1.2, we arrive at

εIB(ω) = 1 − ω̃2
p

(ω2
0 − ω2) − iγ ω

. (1.20)

Here, the term ω̃p is the Drude–Sommerfeld plasma frequency given by ω̃p =√
(ñe2)/(mBε0), ñ is the concentration of bound electrons, and, ω0 = √

α/mB . In a
similar manner to Eq. (1.18), we can separate Eq. (1.20) into its real and imaginary
components:

εIB(ω) = 1 − ω̃2
p(ω2

0 − ω2)

(ω2
0 − ω2)2 − γ 2ω2

+ i
ω̃2

pωγ

(ω2
0 − ω2)2 − γ 2ω2

. (1.21)
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Fig. 1.7 Real (solid blue)
and imaginary (dashed green)
interband components of the
dielectric function of gold

Plots of the real and imaginary contributions to the dielectric constant of gold are
shown in Fig. 1.7. In this figure, the real part of the dielectric constant is shown as the
solid blue line and the imaginary part is shown as the dashed green line.4 Here the
interband transitions can clearly be seen as spikes in ε2. Finally, at frequencies far
from where interband transitions occur, these effects continue to have an influence
on the overall dielectric function of the material. This manifests itself as a constant
offset term in the overall dielectric function. Typical values of this offset ε∞ for
gold are between 6.5 and 9 and for silver are between 4.5 and 5.

1.4.1.3 Dispersion and Surface Plasmons

Separate from bulk plasmons within the metals mentioned above are a type of elec-
tron density oscillation at the interface between a metal and a dielectric. These res-
onances are known as surface plasmons, and play a significant role on the overall
behavior of optical metamaterials that operate at infrared, visible, and ultraviolet
frequencies. In addition, when these oscillations propagate along the metal surface
in the form of a guided wave, they are referred to as surface plasmon polaritons
(SPPs).

Even though ε and ñ are referred to as constants, we know that at optical fre-
quencies these properties can vary significantly, depending on the configurations in
which they are used as well as the frequency of the light involved. This property of
materials is known as dispersion. To calculate the dispersion of these structures, we
start with an incident electromagnetic wave of the form [16]:

E(x, y, z) = E0ei(kxx−kz|z|−ωt) (1.22)

whose electric field has a perpendicular component to the waveguide (transverse-
magnetic polarization). Here the components of the electric field within the metal

4Figure 1.7 was produced using the resources of MIT Lincoln Laboratory.
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are given by:

Emetal
x = E0ei(kxx−kz1|z|−ωt), (1.23a)

Emetal
y = 0, (1.23b)

Emetal
z = E0

(−kx

kz1

)
ei(kxx−kz1|z|−ωt), (1.23c)

and the components of the electric field within the dielectric are given by:

Edielectric
x = E0ei(kxx−kz2|z|−ωt), (1.24a)

Edielectric
y = 0, (1.24b)

Edielectric
z = E0

(−ε1kx

ε2kz1

)
ei(kxx−kz2|z|−ωt), (1.24c)

where kz1 and ε1 represent the wave vector and dielectric constant within the metal
layer, and kz2 and ε2 represent the wavevector and dielectric constant within the
dielectric layer, respectively. For both sets of equations, kx represents the compo-
nent of the wave vector in the direction of propagation along the metal-dielectric
interface. Similarly, kz represents the component of the wave vector perpendicular
to the metal-dielectric interface, and from this we obtain the decay length of the
electro-magnetic field into the layers, or the “skin depth”:

ẑ = 1

|kz| . (1.25)

Note that for metamaterial structures with thicknesses on the order of twice the skin
depth, interactions between both surfaces can occur and further modify the behavior
of the individual resonant structure. By requiring continuity of the E and B fields at
the interface between the two layers, we obtain the dispersion relation for a single
metal–dielectric interface [42, 74]:

kx = ω

c
nspp, (1.26a)

k2
z1,2 = ε1,2

(
ω

c

)2

− k2
x, (1.26b)

where the effective surface plasmon index is given by

nspp =
√

ε1ε2

ε1 + ε2
. (1.27)

These relations show an exponential decay into both the metal and dielectric, al-
though the decay is much shorter into the metal. Additionally, these relations are for
ideal metals with no defects. As the size of the individual resonant element within
the metamaterial is decreased, grain boundary and surface roughness scattering will
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play an increasing role in the performance of the device. This effect, along with
the decreased size of the total structure, manifests itself in the form of a modified
scattering time [10].

1.4.2 Current Designs

While advances in fabrication and simulation capabilities have allowed the operat-
ing frequency of optical metamaterials to increase over the past few decades, it is
interesting to note that many of the most prominently studied designs within the
field continue to be variations on structures adopted from radio and microwave fre-
quency antenna design. Such structures include bow tie antennas [38, 44], dipole
antennas [41, 47, 55], fishnet structures [43, 80], and perhaps the best example of
this, the split-ring resonator (SRR).5 These four structures are shown in Fig. 1.8.
With structures such as dipole antenna, the individual resonators are basic enough
that the resonance can be calculated using either full-field electromagnetic simu-
lations, or obtained analytically using a basic LC circuit model; however, we see
from the literature that variations in the constituent materials, geometrical param-
eters, host medium, and three-dimensional array layout quickly increase the com-
plexity of the design to the point where full-field electromagnetic simulations are
required.

As is often the case with these structures and studies, a combination of fabricated
samples and full-field electromagnetic simulations sweep through a few of the criti-
cal design parameters and analyze how the resulting resonator response is affected.
This may then be followed by highlighting the optimized structure to take advan-
tage of the resonance under consideration. When the number of parameters under
consideration is small, and the question is “how does each design variant change
the overall metamaterial response,” this is certainly a valuable and viable approach;
however, as the primary focus shifts to optimizing resonances for a given applica-
tion and the number of parameters increases, it quickly becomes apparent that from
a time standpoint, this exhaustive approach is no longer feasible. At this point in the
design process, we arrive at the central question of this book:

What is the most accurate and efficient way to tailor the broadband opti-
cal properties of a metamaterial to have predetermined responses at predeter-
mined wavelengths?

Throughout the rest of the book, we address one answer to this question. By com-
bining numerical optimization methods with full-field electromagnetic simulations,
we are able to explore high-dimensional design spaces, orders of magnitude faster
than performing traditional parameter sweeps. Using this approach, the researcher
determines the design parameters to be varied, along with the range of interest for

5Figure 1.8 was produced using the resources of MIT Lincoln Laboratory.
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Fig. 1.8 Some of the most common individual metamaterial resonators including a bow tie an-
tenna (a), a dipole antenna (b), a split ring resonator (c), and fishnet metamaterials (d)

each parameter. The optimization routine then steps through a simplex of test points.
For each point, the program executes a function call by sending the metamaterial de-
sign to an electromagnetic solver, and then extracts the relevant figure(s) of merit.
The figure(s) of merit are then combined based on a user defined “cost function”
or “objective function” to rank the metamaterial design with respect to all other
designs.

The range of optimization routines that can be used for this approach span the en-
tire spectrum. Surrogate optimization methods, such as Curiosity Driven Optimiza-
tion, choose test points in an effort to generate a maximally predictive, minimally
complex model of the response of every possible geometrical variation within the
specified design space (see Chap. 3). Gradient-free optimization techniques, such
as Mesh Adaptive Search algorithms, are extremely robust in terms of their ability
to survey non-smooth “parameter space,” and based on specified criteria of conver-
gence, can do a remarkable job of finding global optimum designs (see Chap. 4).
Evolutionary algorithms, such as Particle Swarm Optimization and Covariance Ma-
trix Adaptation Evolutionary Strategy (CMA-ES), rely on evaluating sets of test
points and based on the results, permuting the sets to generate different, and hope-
fully better, sets of geometrical solutions (see Chap. 5). Finally, in much the same
way genetic algorithms mutate their solution set to develop new, better solution sets;
new optimization methods are always being developed. Conjugate gradient methods
are being combined with objective-first designs, which start with the desired electro-
magnetic fields, and work backwards to calculate the required dielectric distribution
(see Chap. 6). Level Set Methods, which are computational techniques tradition-
ally applied to fluid dynamics, have already shown promise for designing photonic
crystals and are now being explored for metamaterial applications (see Chap. 7).
Finally, when all else fails, the Black Box Optimization Benchmarking has estab-
lished a yearly workshop to assess the performance of newly developed optimizers
to understand their strengths and weaknesses, and this organization is a constant
source of new and different ideas [1].

Finally, while the techniques mentioned in the previous paragraph summarize
the extent to which avenues of metamaterial design optimization are covered in this
text; everything here, as well as most work in the literature, has focused on selecting
a specific material for the resonator design and then using geometrical permutations
to obtain optimized or novel device performance. While this is certainly a rich field
of study, one can imagine other avenues by which new metamaterial designs can
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be achieved. One such avenue that is receiving increased attention is described in
Sect. 1.4.3.

1.4.3 Future Designs

Throughout the history of optical metamaterials, gold, silver, and copper have been
the dominant materials used. This is in large part because in these metals, the free
electrons necessary to support plasmon resonances are in high enough concentra-
tions to resonate at near-infrared, visible, and ultraviolet frequencies. Unfortunately,
the same resonances that give these exotic optical properties introduce high losses
and limit the overall performance of devices. This limitation with traditional plas-
monic materials has provided an opportunity for both alternative plasmonic ma-
terials, as well as additional design degrees of freedom, by tuning their resonant
frequencies [7].

In recent years, a variety of material sets have been proposed as alternative plas-
monic materials including doped semiconductors [30, 52, 77], intermetallics [6],
transparent conducting oxides [23, 53, 83], transition metal nitrides [53], and
graphene [32]. One material set in particular, Transparent Conducting Oxides
(TCOs), have shown significant tunability across the near-infrared spectrum by
varying the concentration of oxygen vacancies and interstitial metal dopants intro-
duced into the films during deposition. These materials, including aluminum zinc
oxide, indium zinc oxide, and indium tin oxide have primarily been used as com-
ponents in touch screen displays; however, their low losses (five times smaller than
silver) [51, 54], tunability, and compatibility with standard fabrication processes
have resulted in increasing attention from the plasmonics and metamaterials com-
munities. From a design and optimization standpoint, they offer another interesting
benefit. From Sect. 1.4.1.1 we know that the Drude dielectric constant is given by:

ε = 1 − ω2
p

ω2 + iω/τ
,

ω2
p = ne2

ε∞m∗ .

TCOs, such as indium tin oxide or indium zinc oxide, can typically be doped to
have carrier concentrations between 1019–1021 cm−3. Based on this model, Fig. 1.9
shows that by adjusting the carrier concentration within the material during deposi-
tion, we can tune the plasma frequency (ε = 0) across the near-infrared spectrum.

To date, virtually all optimized metamaterial design has focused on parametri-
cally tuning the topology of the metamaterial unit cell, and a given material with
preset electronic and optical properties is chosen in a binary manor. With the intro-
duction of TCOs as alternative plasmonic materials for metamaterial design, we can
now include the resonant frequencies of the material itself as another design param-
eter to be optimized. This can be taken one step further, by considering metamaterial
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Fig. 1.9 Permittivity dispersion modified by a change in the carrier concentration. As the car-
rier density (per cubic centimeter) increases, the plasma frequency (ε = 0) shifts toward visible
frequencies, and the dispersion becomes substantially different in that regime. Reprinted with per-
mission from E. Feigenbaum et al.,“Unity-Order Index Change in Transparent Conducting Oxides
at Visible Frequencies,” Nano Letters 10, 2111–2116 (2010). Copyright 2010 American Chemical
Society

designs where the doping concentration and resulting plasma frequency are shifted
as a function of resonator thickness. These additional design degrees of freedom
present an interesting opportunity for future metamaterial designs, and are left as an
exercise for the reader.
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Chapter 2
An Overview of Mathematical Methods
for Numerical Optimization

Daniel E. Marthaler

Abstract This chapter serves as a basic overview of mathematical optimization
problems and reviews how certain classes of these problems are solved. For the
general category of nonlinear problems, both smooth and nonsmooth “Derivative
Free” topics are discussed with and without constraints.

2.1 Introduction

This book is concerned with finding the “best” solution to particular metamaterial
design problems. Best is put in quotations because the idea of what represents a
good design is defined by the user, and very much depends on the application. The
best design for some problems may be the one that reflects the most light transmitted
at a given wavelength. Others might be those that absorb the most light throughout a
range of wavelengths. Whatever the definition used to define what the “best” design
implies, once it is established, we actually want to determine the structure that will
yield this best solution. Mathematical optimization is the process we will use to
select an optimal choice from a set of alternatives for this determination.

In this chapter, we give an overview of mathematical optimization and introduce
the general (nonlinear) problem. The concepts introduced informally here will be
covered in more detail in later chapters as specific applications and instantiations
are discussed. We attempt to give a summary of the major work that has been done
in this field, structuring it around different classes of the general problem. For a
chapter of this type, brevity is a must, as the shear amount of material covered
would (and does) fill entire textbooks.

Furthermore, when discussing mathematical optimization, we implicitly assume
that we have a problem to optimize. For the scope of this book, we focus on meta-
material design problems. In general though, the problem we seek to optimize has
an objective function and in most cases, actually determining the correct form of
this function is one of the most difficult aspects to conduct.
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When modeling mathematical optimization problems, we separate them into dif-
ferent classes according to the type of problem they are attempting to solve. The
problems may have models that are linear or nonlinear and may or may not be
constrained. The objective and constraint functions might be differentiable or non-
differentiable, convex or non-convex. In some cases, the problems may only be
given via a black box, that is, we only know the outputs of the objective func-
tion given certain inputs, but not any actual analytical form. Nice references on
fundamental theory, methods, algorithm analysis and advice on how to obtain
and implement good algorithms for different classes of optimization are provided
in [1, 2, 7, 8, 12, 29, 30, 37, 57] among others. We give only a cursory overview of
various types of solution techniques. Interested readers are encouraged to refer to
the references for more detail.

The rest of the chapter is organized as follows: Sect. 2.2 lays out the general
optimization problem and includes a high level discussion on constructing viable
objective functions. Section 2.3 discuses linear and convex models and solutions, in
particular, the least squares method and different regularizers. Section 2.4 discusses
optimization problems that utilize derivatives of the objective function, with sub-
sections focusing on those with and without constraints. Finally, Sect. 2.5 looks at
algorithms for optimization problems where derivative information is not available,
either because the objective function is not differentiable, the derivative is not avail-
able, or the derivative is just too expensive to compute. We conclude with a short
summary.

2.2 Mathematical Optimization

The present work considers general multi-objective optimization problems that may
be written in the following form:

min
x

F(x) = [f1(x), f2(x), . . . , fk(x)
]T

subject to
gj (x) ≤ 0, j = 1,2, . . . ,mieq,

hi(x) = 0, i = 1,2, . . . ,meq.

(2.1)

Here x = (x1, . . . , xn) is the variable to be minimized, F :Rn → R
k is a multi-valued

objective function, the functions gj : Rn → R, j = 1, . . . ,mieq, are the inequality
constraint functions, and the functions hi :Rn → R, i = 1, . . . ,meq, are the equality
constraint functions.

We define the space of feasible solutions or the feasible set as the set of all points
that satisfy the constraints:

Ω = {y ∈R
n : gi(y) ≤ 0, i = 1, . . . ,mieq and hj (y) = 0, j = 1 . . . ,meq

}
.
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The attainable set is the range of the feasible set under the objective function:

A = {F(x) : x ∈ Ω
}
.

Typically in multi-objective optimization, there is no single global solution. It
is often necessary to instead seek solutions satisfying Pareto optimality. A point
x∗ ∈ Ω is Pareto optimal if and only if there is no other point x ∈ Ω such that
F(x) ≤ F(x∗) and Fi(x) < Fi(x∗) for at least one i. That is, no element of F can be
made better without (at least) one other element being made worse [32].

The concept of Pareto optimality invariably leads practitioners to decide which
elements of F are “more important” than others. Having such a ranking of the el-
ements of the objective function, the theory of preferences [38, 43, 44] allows for
the construction of a utility function. This allows us to convert the general multi-
objective function into a single scalar-valued objective function.

One of the most general utility functions is the weighted exponential sum:

U =
k∑

i=1

wi

[
Fi(x)

]p (2.2)

for some p > 0. Generally, p is proportional to the amount of emphasis placed on
minimizing the function with the largest difference between Fi(x) and the minimizer
of Fi(x) [28]. Without loss of generality, we can assume Fi(x) > 0, for all i, other-
wise we can rescale the objective function to make it so. Here, w = {w1, . . . ,wk} is
a vector of weights, typically set by the practitioner, such that

∑k
i=1 wi = 1, wi > 0.

Generally, the relative ordering of the weights reflects the relative importance of the
objectives.

The most common implementation of Eq. (2.2) is to set p = 1, i.e.,

U =
k∑

i=1

wiFi(x), (2.3)

which is commonly referred to as the weighted sum method. If all of the weights are
positive, then the minimum of Eq. (2.3) is Pareto optimal [56], that is, a minimizer
of Eq. (2.3) is a Pareto solution of Eq. (2.1).

Selecting non-arbitrary weights is a difficult undertaking. Many approaches exist
in selecting weights, surveys of which are provided by [16, 19, 23, 55]. Unfortu-
nately, a satisfactory method to select appropriate weights does not guarantee that
the final solution will be acceptable, that is, aligned with predefined preferences. In
fact, it is known that weights must be functions of the original objectives in order
for a weighted sum to mimic a list of preferences accurately [34]. They cannot be
constants. Nevertheless, we proceed in assuming that our multi-objective function
in Eq. (2.1) will be converted into a scalar objective, leading to our general problem
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for the remainder of the chapter:

min
x

f (x)

subject to

gj (x) ≤ 0, j = 1,2, . . . ,mieq,

hi(x) = 0, i = 1,2, . . . ,meq,

(2.4)

where f :Rn → R, and the other functions are as in Eq. (2.1).

2.3 Finding Solutions

In attempting to solve all but the most trivial of problems in the form of Eq. (2.4),
a numerical algorithm is used to find a solution x∗. Different objective functions
f and constraint functions g,h are more efficiently solved with different types of
algorithms. To deduce which algorithm would best assist in finding optimal solu-
tions, we first determine the class of problem characterized by particular forms of
the objective and constraint functions.

The simplest form of Eq. (2.4) is in fitting a regression line y = mx +b through a
pair of points (xi, yi), i = 1,2. We choose the objective function f (x) = (y − mx −
b)2 and there are no constraints. Here, x = (x1, x2), and y = (y1, y2). The optimal
solution to this problem is given by

m = y2 − y1

x2 − x1
,

b = y1 − y2 − y1

x2 − x1
x1.

When there are more than two points, it is usually impossible to fit a line through all
of the points, so instead, we find the line that minimizes the total squared distance
to the points:

min
N∑

i=1

(axi + b − yi)
2.

In higher dimensions, the analog to this line fitting problem is to find constants
(a1, a2, . . . , an) that solve

min
N∑

i=1

(
aix

(j)
i − y

(j)
i

)2

for each x(j),y(j) pair (we omit b for clarity). In matrix notation, this is equivalent
to finding the minimum of the function

f (a) = |Xa − y|22
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where X is the matrix whose ith row is x(i) and y = (y1, . . . , yN)T . A more common
designation to this problem is writing X as A, a as x and y as b. We then solve the
problem Ax = b. Problems of this type are referred to as Least Squares problems
and formulating them as minimization problems

min
x

|Ax − b|22 (2.5)

leads to a residual least squares (RSS) problem. There are many algorithms that
solve RSS problems. For a list and introduction, see, for example, [17].

It is well known that attempting to minimize an RSS problem via a numerical
method can lead to instabilities. This occurs when the matrix A is not of full rank or
when the matrix AT A is not invertible. In such situations, Eq. (2.5) is stabilized by
including a regularization term:

|Ax − b|22 + |Γ x|22 (2.6)

where Γ is a suitably chosen matrix called a Tikhonov matrix [50]. Usually, Γ is
taken to be the identity Γ = I . An explicit solution to Eq. (2.6) is

x∗ = (AT A + Γ T Γ
)−1

AT b, (2.7)

and with Γ = I the problem is usually formulated with a regularization parame-
ter λ:

|Ax − b|22 + λ|x|22 (2.8)

which is commonly known as Ridge regression since the parameter λ makes a
“ridge” along the diagonal of AT A.

Other regularizations are possible. In particular, we can take a different p-norm
in the regularization term. A common choice is the 1-norm, producing the Least
Absolute Selection and Shrinkage Operator (LASSO) formulation [49]:

min
x

1

2
‖Ax − b‖2

2 + λ‖x‖1. (2.9)

The multitude of methods that can be used to solve problems of type Eq. (2.9) and
its constrained formulation

min
x

1

2
‖Ax − b‖2

2

s.t. |x|1 ≤ t

(2.10)

are discussed within [8], but we mention here that there are many solvers that can
be proved to solve the problem to a specified accuracy with a number of operations
that does not exceed a polynomial of the problem dimensions.
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Although the RSS and LASSO formulations described above were for linear for-
mulations of the objective function, nonlinear formulations exist, one such can be
seen in Chap. 6. In general, these problems belong to a class of problems known as
Convex optimization. We classify a convex optimization problem as one in which
the objective and constraint functions are convex, i.e., they satisfy the inequalities

f (αx + βy) ≤ αf (x) + βf (y) and

gi(αx + βy) ≤ αgi(x) + βgi(y), i = 1, . . . ,mleq, (2.11)

hi(αx + βy) ≤ αhi(x) + βhi(y), i = 1, . . . ,meq

for all x,y ∈R
n and all α,β ∈R with α + β = 1, α ≥ 0, β ≥ 0.

Most, if not all, metamaterial design problems will have nonlinear objective func-
tions, and, when applicable, nonlinear constraints that unfortunately do not satisfy
Eq. (2.11) everywhere in their domains. Fortunately though, many problems will
have the property that Eq. (2.11) will be satisfied locally everywhere. That is, for
any point x in the domain of f , there is a hypersphere about x where Eq. (2.11) is
satisfied (although the α and β will be dependent upon the point x). Such functions
are called locally convex.

Unfortunately, the absence of global convexity limits the capability of most al-
gorithms to guarantee finding the global minimum of Eq. (2.4). The best most algo-
rithms can achieve is to find a local solution to the problem.

Techniques for solving Eq. (2.4) comprise two types: those that utilize gradient
information and those that do not. Recall that a function has Ck smoothness if it is
differentiable and its derivative is Ck−1 smooth. This recursive definition starts with
the class C0, the continuous functions.

2.4 Algorithms Utilizing Gradient Information

We first discuss methods utilizing gradient information that are targeted for opti-
mization problems with no constraints.

2.4.1 Unconstrained Nonlinear Optimization

To find the solution, x∗, to Eq. (2.4) in the case where Ω = R
n (i.e., an unconstrained

problem), we must satisfy the second order optimality conditions [12]:

1. (necessity) If x∗ is a local solution to Eq. (2.4), then ∇f (x∗) = 0 and ∇2f (x∗)
is positive definite.

2. (sufficiency) If ∇f (x∗) = 0 and ∇2f (x∗) is positive definite, then there exists an
α > 0 such that f (x) ≥ +α‖x − x∗‖ for all x near x∗.

Satisfying these conditions only guarantees a local optimum for the general case.
Most algorithms used to find solutions are iterative and take the form of Algo-
rithm 2.1:
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Algorithm 2.1: General iterative algorithm
input: Objective function f , initial point x0

1 repeat
2 Determine a descent direction dk

3 Determine a step length αk

4 Update Candidate xk+1 = xk + αkdk .
5 until ∇f (x) ≈ 0

This is a consistent meme in solving mathematical optimization problems: from
your current solution estimate, choose a better candidate and continue until the op-
timality conditions are satisfied. Algorithms for computing solutions to Eq. (2.4)
differ in how they select descent directions dk and step sizes αk . We now discuss
some possibilities for both.

2.4.1.1 Descent

Two methods for selection of a descent direction are:

1. Steepest Descent
2. Conjugate Gradient

The steepest descent, or gradient descent, algorithms choose descent directions
dk = −∇f (xk) based on the idea that f decreases fastest in the direction of its neg-
ative gradient. Unfortunately, due to the iterative nature of Algorithm 2.1, gradient
descent’s subsequent iterations may undo some minimization progress made on pre-
vious descents. To combat this, the conjugate gradient algorithm selects successive
descent directions in a conjugate direction to previous descent directions. At itera-
tion k, one evaluates the current negative gradient vector −∇f (xk) and adds to it a
linear combination of the previous descent iterates to obtain a new conjugate direc-
tion along which to descend. Initially, the descent is in the direction of the negative
gradient, but each subsequent step moves in a direction that modifies the negative
of the current gradient by a factor of the previous direction. The CG algorithm is
shown in Algorithm 2.2.

Different Conjugate Gradient methods correspond to different choices for the
scalar βk . Three of the best known versions are:

• Fletcher–Reeves: βFR
k = sTk sk

sTk−1sk−1

• Polak–Ribiére: βPR
k = sTk (sk−sk−1)

sTk−1sk−1

• Hestenes–Stiefel: βHS
k = sTk (sk−sk−1)

dT
k−1(sk−sk−1)

for a full list, consult [18].
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Algorithm 2.2: Nonlinear conjugate gradient
input: Objective function f , initial point x0

1 d0 = −∇f (x0)

2 (Line Search) α0 = arg minα f (x0 + αd0)

3 x1 = x0 + αx0 repeat
4 Determine steepest direction sk = −∇f (xk)

5 Determine the scalar βk (see below)
6 Update the conjugate direction dk = sk + βkdk−1
7 Determine a step length (Line search) αk = arg minα f (xk + αdk)

8 Update Candidate xk+1 = xk + αkdk .
9 until ∇f (x) ≈ 0

2.4.1.2 Step Length

Having a descent direction, we must now determine how far along that direction to
move for the next iterate. Ideally, we would move a length α along the line where α

solves

min
α

f (xk + αdk), (2.12)

i.e., the distance that minimizes the objective function in the direction dk . Notice
that this is a one dimensional optimization problem in α. Finding an optimal solu-
tion to this problem would imply a method of solving the original nonlinear opti-
mization problem! Therefore, instead of solving (2.12), we seek an efficient way of
computing an acceptable α that guarantees that Algorithm 2.1 will converge to a x∗.

To do this, we must find an α satisfying the following two conditions:

f (xk + αdk) ≤ f (xk) + c1αdT
k ∇f (xk),

dT
k ∇f (xk + αdk) ≥ c2dT

k ∇f (xk)
(2.13)

with 0 < c1 < c2 < 1. The first condition is known as the Armijo rule. It ensures
that the step length decreases f sufficiently for this iteration. The second condition
is known as the curvature condition. It ensures that the slope of f has been reduced
sufficiently for this iteration. Unfortunately, these two conditions may result in an α

that is not close to an actual minimum of (2.12). Therefore, we modify the curvature
condition to include

∣∣dT
k ∇f (xk + αdk)

∣∣≤ c2
∣∣dT

k ∇f (xk)
∣∣, (2.14)

and this ensures that α will lie close to a minimum critical point of Eq. (2.12).
These three conditions taken together form the Strong Wolfe conditions [12] and are
a prerequisite to any step length determination algorithm. Many methods exist for
solving the general unconstrained problem, but they all utilize an algorithm similar
to Algorithm 2.1 in their strategy.
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2.4.1.3 Quasi-Newton Methods

In general, methods that utilize gradient information seek to find a stationary point
of f by finding a zero of the gradient ∇f . A general class of methods, quasi-Newton
methods, seek to do this by using Newton’s method to find a root of ∇f . The un-
derlying assumption in these methods is that the function f can locally be approxi-
mated by a quadratic.

Regular Newton’s method updates candidate solutions at each iteration via

xk+1 = xk − [∇2f (xk)
]−1∇f (xk)

where ∇2f (x) denotes the Hessian, or the second derivative of f . Updates can be
very expensive since we must find the inverse of an n × n matrix at every iteration.
To ease computational cost, approximations to the Hessian and its inverse are used.
There are multiple ways the Hessian can be approximated, one method that is ex-
tensively employed is from the Broyden family which uses a convex combination
of Daviodon–Fletcher–Powell [14] and BFGS [45] updates. An extensive survey of
Quasi-Newton methods may be found in [40].

2.4.2 Constrained Nonlinear Optimization

When dealing with the general form of Eq. (2.4), i.e., when the constraints exist, the
first question to answer is how to ascertain if a candidate x∗ is indeed a solution.

First, we define a constraint gi to be active (resp., inactive) at a point x if
gi(x) = 0 (resp., gi(x) < 0). (Note, equality constraints are always active.) We de-
fine the active set at x, A(x), as the indices of those constraints gi(x) that are active
at the given point. For a given candidate solution, xk , if no constraints are active,
then the necessary and sufficient conditions are the same as for the unconstrained
case. In the case where the candidate lies on the boundary of the feasible set (i.e., at
least one constraint is active), the second order optimality conditions for the uncon-
strained case do not apply because the direction of the negative gradient (or even a
descent direction in a conjugate direction) will push the next iterate into the infeasi-
ble set.

We will specify the optimality conditions for a solution x∗ to solve Eq. (2.4)
through the use of a Lagrangian function:

L(x,λ,μ) = f (x) +
mleq∑

i=1

λigi(x) +
meq∑

i=1

λihi(x)

where λ = (λ1, . . . , λmleq) and μ = (μ1, . . . ,μmeq) are vectors called KKT multipli-
ers. Now, if x∗ is an optimal solution to Eq. (2.4), then there exist KKT multipliers
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λ∗ and μ∗ such that

∇f
(
x∗)+

mleq∑

i=1

λ∗
i ∇gi

(
x∗)+

meq∑

i=1

μ∗
i ∇hi

(
x∗)= 0,

gi

(
x∗)≤ 0 for i = 1, . . . ,mleq,

hi

(
x∗)= 0 for i = 1, . . . ,meq,

λ∗
i ≥ 0 for i = 1, . . . ,mleq,

μ∗
i ≥ 0 for i = 1, . . . ,meq,

λ∗
i gi

(
x∗)= 0 for i = 1, . . . ,mleq.

(2.15)

The above conditions are known as the Karush–Kuhn–Tucker conditions (KKT
conditions) [8]. Points that satisfy them are critical points of the original problem.
To determine if these critical points are indeed solutions of Eq. (2.4), we impose
second order conditions on the points (for they could be a maximizer or a saddle
point).

Before stating the second order sufficient and necessary conditions, we first de-
fine the tangent space for feasible points x̄

T = {v : ∇gj (x̄)v = 0 ∀j ∈A(x̄), ∇h(x̄)v = 0
}

where A(x̄) denotes the active set.
For a KKT point, we also define the relaxed tangent space

T ′ = {v : ∇gj (x̄)v = 0 ∀j ∈ {j : λj > 0}, ∇h(x̄)v = 0
}
.

Having these definitions, we now state the second order necessary and sufficient
conditions for a feasible candidate x∗ with KKT multipliers λ∗ and μ∗ satisfying
Eq. (2.15) to be a solution to Eq. (2.4):

wT ∇xL
2(x∗,λ∗,μ∗)w > 0 ∀w ∈ T ′, w �= 0. (2.16)

Methods for finding a suitable optimum satisfying Eqs. (2.15) and (2.16) for
constrained optimization problems are ubiquitous. We focus on two categories:

1. Primal methods
2. Penalty and Barrier Methods

We will briefly describe each type below.

2.4.2.1 Primal Methods

Primal methods are those that solve Eq. (2.4) by starting with a candidate in the
feasible set Ω and searching only the feasible set for an optimal solution. The main
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characteristics of these algorithms is that they find new candidates that simulta-
neously decrease the objective function at each step, while remaining feasible. To
update a given candidate xk , a vector dk is chosen such that it is both descending
and feasible. The following must hold for dk to be a feasible direction:

∇f (x)T dk < 0, (2.17)

∇gi(x)T dk < 0, (2.18)

∇hi(x)T dk = 0. (2.19)

Equation (2.17) implies that we are descending, and Eqs. (2.18) and (2.19) imply
that we are increasing feasibility (by moving in the direction tangential to the active
set for the inequality constraints and parallel for the equality constraints).

Feasible direction methods suffer from requiring a feasible initial candidate, from
situations where no feasible descent direction exists, and may be subject to jamming,
or oscillations that prevent convergence of the algorithm [12].

Gradient projection methods are motivated from steepest descent algorithms in
unconstrained optimization. Their basic idea is to take the negative of the gradient of
the objective function and project it onto the working surface in order to determine
a feasible descent direction. The working surface is the subset of the constraints that
are currently active, i.e., the current active set.

Thus, at the current feasible point, one determines the active constraints and
projects the negative gradient of the objective function onto the subspace tangent
to the surface determined by these constraints. However, this may not be a feasi-
ble direction since the working surface may be curved. To deal with curvature, one
searches for a feasible descent direction along an embedded curve within the con-
straint surface.

2.4.2.2 Penalty and Barrier Methods

Penalty and Barrier methods attempt to approximate constrained optimization prob-
lems with those that are unconstrained, and then apply standard unconstrained
search techniques to obtain solutions. Penalty methods do this by adding a term
to the objective function that penalizes violation of the constraints with a large fac-
tor. In the case of barrier methods, a term is added that favors points in the interior
of the feasible region and penalizes those closer to the boundary.

The idea for penalty methods is to replace Eq. (2.4) with an unconstrained prob-
lem of the form

min
x

f (x) + βσ(x) (2.20)

where β > 0 and σ :Rn → R is a function satisfying
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1. σ(x) is continuous;
2. σ(x) ≥ 0 for all x ∈R

n;
3. σ(x) = 0 ⇔ gi(x) ≤ 0, hj (x) = 0 ∀i = 1, . . . ,mleq, j = 1, . . . ,meq, i.e., x is

feasible.

That is, we set up an unconstrained optimization problem where we generate a
new objective function that greatly increases in value as x moves out of the feasible
region. A standard choice for σ(x) is the quadratic loss function [26]:

σ(x) = −r

mleq∑

i=1

max
(
0, gi(x)

)+ 1

r

meq∑

i=1

(
hi(x)

)2
. (2.21)

For x values inside the feasible region, gi(x) ≤ 0 and hi(x) = 0, giving a value
of σ = 0. When x is outside of the feasible region, some of the gi > 0 or hi �= 0,
we begin to be penalized. To implement a penalty method, one needs to select a
value for β . Standard techniques start with a relatively small value (and an infeasi-
ble point for x0) and monotonically increase β , solving subsequent unconstrained
optimization problems (one for each β) and utilizing these intermediate solutions
as the initial guess for the next problem. This graduated optimization method pro-
duces a sequence of solutions that converge to an optimal solution of the original
constrained problem. Graduated optimization is a technique commonly used with
hierarchical pyramid methods for matching objects within images [9].

Barrier methods are implemented when one does not wish to compute f (x) out-
side of the feasible region. Thus, we would not be able to utilize a penalty func-
tion like Eq. (2.21). Instead, a selection would need to be made that was defined
to converge for feasible points. A possible selection for problems with no equality
constraints might be

σ(x) = r

m∑

i=1

−1

gi(x)
(2.22)

where r > 0 is the barrier parameter. As candidates get closer to the boundary of
the feasible region, the value of the objective function becomes larger. The idea is
to start with a feasible point and a relatively large value of the barrier parameter,
preventing the candidates from nearing the boundary of the feasible set. Techniques
then decrease the value of the barrier parameter monotonically until an optimum
value for the original problem is achieved. Note that barrier methods require a fea-
sible point from which to start. This can sometimes be difficult to find. Also, barrier
methods do not work with equality constraints without cumbersome modifications
to this basic approach, and by not allowing the method to ever leave the feasible
region, much more computational effort is (usually) required.

Penalty methods are sometimes referred to as external methods since their aug-
mented objective functions tend to utilize solutions in the exterior of the feasible
region. Analogously, barrier methods are sometimes called interior point methods,
for the opposite reason. There is a vast and vigorous field of research surrounding
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these methods, and we suggest utilizing the references to find current implementa-
tions. A great start would be [26].

These two types of methods are among the most powerful for attacking the gen-
eral scalar problem in Eq. (2.4). Of the two, exterior methods are preferable (when
applicable) as they can deal with equality constraints, they do not require a feasi-
ble starting point, and their computational effort is substantially lower than for the
interior methods.

2.5 Gradient-Free Algorithms

Looking at the form of Eq. (2.4), we denote f as a function, and this is typically seen
as an analytical expression. Most industrial applications of the general problem may
involve formulations that do not encode f analytically, but have some type of black
box that computes values of f (x). That is, given a value x, there is some process
(numerical simulation, physical experiment, etc.) that computes the output f (x).
Furthermore, the constraint functions may also be black-box functions. Typically,
these black-box functions will not have any derivative information associated with
them (although in rare occasions, there may be derivative information available via
another black-box function). In these cases, f is expensive to calculate in terms of
time, and methods that require many evaluations of f rapidly become infeasible
to use in many applications. In particular, to produce viable step lengths satisfying
the Strong Wolfe conditions in Eq. (2.14), hundreds of function evaluations may be
required per iterate.

Moreover, when evaluating the objective function via a numerical simulation or
physical experiment, inaccuracies may arise in the value that f takes at a given
point. This generates many difficulties approximating derivatives via finite differ-
ences. This line of thinking dismisses the use of many of the techniques from
Sect. 2.4. Even in cases where derivative information is available, function inac-
curacies adversely effect most of these methods [15].

2.5.1 Direct Methods

Direct methods are those that attempt to solve the general problem directly by uti-
lizing objective function values. Here, we introduce a number of methods starting
with a variant of gradient descent for the derivative-free case.

2.5.1.1 Coordinate Descent

Perhaps the simplest method to solve an unconstrained version of Eq. (2.4) without
using gradients is to do successive line searches in each coordinate direction for each
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iteration. That is, one does a line search in a coordinate direction for each iteration,
changing coordinates for each, and looping cyclically as the number of dimensions
are reached. This process is called Coordinate Descent (CD). Iterations of a cy-
cle of line search in all coordinate directions is equivalent to one gradient descent
direction, but the number of function evaluations may prove to be prohibitive.

More efficient algorithms have been constructed in an attempt to limit the number
of function evaluations made to reach convergence. In particular, choosing a random
direction to do line search for each iteration, the so-called Random Coordinate De-
scent, was shown to converge, on average, in fewer iterations than CD [36, 42].
In general, one seeks an appropriate coordinate system where CD would operate
optimally. The Adaptive coordinate descent algorithm [24] gradually builds a trans-
formation of the coordinate system such that the new coordinates are as decorrelated
as possible with respect to the objective function.

Instead of finding a pointwise trajectory to the minimum, other techniques at-
tempt to locate a set wherein the optimal solution resides. The oldest and most fa-
mous of these is the simplex algorithm.

2.5.1.2 Nelder–Mead Simplex Algorithm

The Nelder–Mead (NM) algorithm [35] solves the general problem by containing
the solution within a simplex. A simplex is the generalization of a polygon to n di-
mensions. The NM algorithm starts with a set of points in R

n forming a simplex and
at each iteration, the objective function is evaluated at the vertices of the simplex.

The algorithm replaces the worst point on the simplex with a point reflected
through the centroid of the remaining n points. If this point is better than the best
current point, then the simplex is stretched exponentially out along this line. If not,
then the simplex stretches across a valley, so the simplex is shrunk towards a (hope-
fully) better point. A few of the other means of replacing the chosen point include:
reflection, expansion, inside and outside contractions.

The Nelder–Mead algorithm remains popular, mostly through its simplicity, but
McKinnon [33] established analytically that convergence can occur to points with
∇f (x) �= 0, even when the function is convex and twice continuously differentiable.
Tseng [54] proposed a globally convergent simplex-based search method that con-
siders an expanded set of candidate replacement points (besides those listed above).
Other modifications are presented in [13].

2.5.1.3 Mesh Adaptive Direct Search (MADS)

The Mesh Adaptive Direct Search (MADS) [3] is a generalization of several existing
direct search methods [25, 51–53]. MADS was introduced to extend direct search
methods to deal with the constrained problem in Eq. (2.4), while improving both
the practical and theoretical convergence results seen in previous methods.
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MADS handles constraints x ∈ Ω by the so-called extreme barrier method, which
simply consists in rejecting any trial point which does not belong to Ω . The term
extreme barrier method comes from the fact that this approach can be implemented
by solving the unconstrained minimization of

fΩ(x) =
{

f (x) if x ∈ Ω,

∞ otherwise

in place of Eq. (2.4). Note that this may impose severe discontinuities on the prob-
lem. A more subtle way of handling quantifiable constraints is presented in [4], and
is summarized in Chap. 4.

Each MADS iteration proceeds as follows: Given a candidate solution xk , the
SEARCH step produces a list of tentative trial points. Any mechanism can be used
to create the list, as long as it contains a finite number of points located on a con-
ceptual mesh. The conceptual mesh is defined by a mesh parameter ΔM

k > 0. This
parameter, along with a finite set of positive spanning directions D, forms the mesh
at iteration k:

Mk = {x + ΔM
k d : x ∈ Vk,d ∈ D

}
(2.23)

where Vk is a set containing all previous points where the objective function has
been evaluated. A positive spanning set of Rn is a set D = {d1, . . . ,dm} of vectors
in R

n such that every vector in R
n is a linear combination of the di with nonnegative

coefficients. Many methods exist for computing a set of points on the conceptual
mesh: speculative search [21], Latin hypercube sampling [47], variable neighbor-
hood searches [11], surrogates, and many others [48].

Having an initial set of points, the objective function is evaluated at each of the
points until either a better candidate than xk is found, or all of the points are evalu-
ated. In the latter case, a POLL step is implemented that conducts a local exploration
near the candidate point. Following an unsuccessful SEARCH step, the POLL step
generates a list of mesh points near the incumbent xk . The term near is tied to the
so-called poll size parameter Δ

p
k > 0. Similar to the SEARCH step, the POLL step

may be interrupted as soon as an improvement point over the candidate is found.
Parameters are updated at the end of each iteration. There are two possibilities:

If either the SEARCH or the POLL step generated a mesh point p ∈ Mk which is
better than xk , then the candidate point xk+1 is set to p and both the mesh size
and poll size parameters are increased or kept to the same value. For example,
ΔM

k+1 ← min{1,4ΔM
k } and Δ

p

k+1 ← 2Δ
p
k . Otherwise, xk+1 is set to xk and the poll

size is decreased and the mesh size parameter decreased or kept the same. For ex-
ample, Δm

k+1 ← min{1, 1
4Δm

k } and Δ
p

k+1 ← 1
2Δ

p
k . At any iteration of the MADS

algorithm, the poll size parameter Δ
p
k must be greater than or equal to the mesh size

parameter ΔM
k . Termination conditions arise when either the poll parameter matches

the mesh size parameter or a predefined number of iterations have been reached.
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2.5.2 Surrogate Methods

As mentioned above, surrogates may be used to determine a set of points for use
in the SEARCH step for direct search. These methods build a model interpolating
between the known points stored in Vk . This section looks at methods that do not
restrict themselves to interpolation with a local search; rather, they utilize a global
surrogate function to assist in the optimization.

There are many ways of employing surrogates. In particular, there is a standard
engineering process [5] for using them:

1. Choose a surrogate s for the objective function f that is either

(a) A simplified model of f (as is used in Chap. 6) or
(b) A response surface of f generated from a set of points x1, . . . ,xq where f

takes a finite value;

2. Minimize over the surrogate s, obtaining a candidate point xs ;
3. Evaluate the objective function at xs and repeat the process.

In cases where we do not have a simplified model for f and wish to generate a
response surface (or metamodel) f̂ , the question arises as to which method to use.
Barton [6] enumerates a list, including splines, radial basis functions, kernel smooth-
ing, spatial correlation models, and frequency domain approaches. Regardless of the
method employed, its quality depends crucially upon choosing an appropriate sam-
pling technique [39]. The remainder of this subsection describes a state of the art
response surface methodology known as Gaussian Process Regression. We will see
its implementation in Chap. 3.

2.5.2.1 Gaussian Process Regression

Gaussian Process Regression (GPR) [41] is also known as Kriging prediction,
Kolmogorov–Wiener prediction, or best linear unbiased prediction. It is a technique
for estimating the objective function value at a new point x∗ utilizing noisy observa-
tions f (x) at points x1, . . . ,xm. The surrogate is a process that generates data such
that any finite subset follows a multivariate Gaussian distribution.

A typical assumption for the surrogate is that the mean of the data is zero ev-
erywhere (if not, we can subtract the mean and work with the transformed dataset).
Then, pairs of points in GPR are related to each other by the covariance function.
A popular choice is the squared exponential:

k(xp,xq) = σ 2
f exp

[−‖xp − xq‖2
2

2L2

]
(2.24)

where the maximum allowable covariance is σ 2
f .

Note, that the covariance between the outputs is written as a function of the in-
puts. For this particular covariance function, we see that the covariance is almost
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maximal between variables whose corresponding inputs are very close, and de-
creases as their distance in the input space increases. The covariance function has
a characteristic length scale L, which informally can be thought of as roughly the
distance you have to move in input space before the function value can change sig-
nificantly. Alternatively, this relates how much influence distant points will have on
each other.

We create the covariance matrix between all pairs of points

K(X,X) =

⎡

⎢⎢⎢
⎣

k(x1,x1) k(x1,x2) . . . k(x1,xm)

k(x2,x1) k(x2,x2) . . . k(x2,xm)
...

...
. . .

...

k(xm,x1) k(xm,x2) . . . k(xm,xm)

⎤

⎥⎥⎥
⎦

. (2.25)

Observations from the data are often noisy, for a various number of reasons. As
is typical in most regression schemes, we model the observations as

y = f (x) +N
(
0, σ 2

ν

)
,

and the covariance between two points becomes

cov(yp, yq) = k(xp,xq) + σ 2
ν δpq or cov(y) = K(X,X) + σ 2

ν I, (2.26)

where δpq is the Kronecker delta function which is 1 when p = q and 0 otherwise.
Here, I is the m × m identity matrix.

The purpose of generating the surrogate is to predict values of the observables
at previously unseen points. The assumptions underpinning GPR state that the joint
distribution of the observed data and unknown data point x∗ is given by:

[
y
y∗

]
∼ N

(
0,

[
K(X,X) + σ 2

ν I K(X,x∗)
K(x∗,X) K(x∗,x∗)

])
. (2.27)

where y∗ denotes the value of the surrogate at the unseen point x∗. We seek the
conditional probability p(y∗|y), or “how likely is a certain prediction for y∗ given
the data?” As derived in [41], this probability follows the distribution

p(y∗|y) ∼ N
(
K∗K−1y,K∗∗ − K∗K−1KT∗

)
(2.28)

where T denotes transposition and we use the short hand notation of K being the
covariance matrix, K∗ = [k(x∗,x1) k(x∗,x2) . . . k(x∗,xm)] and K∗∗ = k(x∗,x∗).

Thus, the best estimate for y∗ is the mean of this distribution

y∗ = K∗
(
K + σ 2

ν

)−1y, (2.29)

and the uncertainty is captured in the variance

var(y∗) = K∗∗ − K∗
(
K + σ 2

ν

)−1
KT∗ . (2.30)
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We note here for completeness that if our original data set did not have zero
mean, but instead had mean m(X), then Eq. (2.29) would become

y∗ = m(x∗) + K∗
(
K + σ 2

ν

)−1(y − m(X)
)

(2.31)

where m(x∗) denotes the mean of the new data. The variance remains unchanged
from Eq. (2.30).

For actual implementations of the above equations, we need to determine values
for the parameters σf ,L,σν . This collection of parameters are referred to as hyper-
parameters. Most methods for determining the hyperparameters from data attempt
to optimize the marginal likelihood of p(y∗|y) with respect to the hyperparameters,
given the data. This is itself a rich and interesting optimization problem having a
long history in spatial statistics [31].

2.5.3 Stochastic Search Algorithms

In the above formulations, some assumption about the smoothness of the function,
or continuity of the function is made. This is manifested either in the direct usage
of gradients or in methods like the polling step of direct search, where shrinking the
polling step parameter is assumed to lead to a better solution.

Sometimes, functions are not continuous for large swaths of the space over which
we seek to optimize. This section presents approaches that rely on non-deterministic
algorithmic steps. This is a more delicate way of saying that the algorithms “guess”
which direction to search for a better candidate solution. Most algorithms of this
type have a heuristic for choosing how to “guess.” Some approaches occasionally
allow new candidates that are “worse” (in terms of the objective function) than the
current solution; the idea being that accepting a worse candidate at this iteration will
lead to a better overall solution as the algorithm iterates. This idea allows the algo-
rithm to theoretically find global solutions. The literature on stochastic algorithms
is very extensive, especially on the applications side, since their implementation
is rather straightforward compared to deterministic algorithms. See, for example,
[22, 46, 58] for a general overview.

2.5.3.1 Random Search

The simplest algorithm of this type is random search. Random algorithms compare
the current iterate x with a randomly generated candidate (no heuristic). The current
iterate is updated only if the candidate is a better point (in terms of the objective
function). The determination of new candidates is based on two random compo-
nents: A direction d is generated using a uniform distribution over the unit sphere in
R

n, and a step α is generated from a uniform distribution over the set of steps S in a
way that x + αd is feasible. Bélisle et al. [10] generalized these types of algorithms
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by allowing arbitrary distributions to generate both the direction d and step α, and
proved convergence to a global optimum under mild conditions for continuous opti-
mization problems. Unfortunately, the number of function evaluations for this type
of method become prohibitive.

2.5.3.2 Genetic Algorithms

In an effort to chose points with less randomness than simply guessing, Genetic
Algorithms (GA) were originally introduced by Holland [20] wherein a method was
designed that mimics the process of natural evolution.

The GA operates on a population of individuals that are each represented by a
chromosome x. Initially, a random population is chosen and the objective function
is evaluated on each member. The better performing members are chosen to mate
and form a new generation, mimicking the process of natural selection. A mating
pool is first formed by either sorting the population according to objective func-
tion value and then keeping the top performing members, or by using a threshold
such as the mean or the median cost to eliminate any population members with a
worse performance than the threshold value. Members in the mating pool are eligi-
ble for breeding. For each new solution to be produced, a pair of “parent” solutions
is selected from the mating pool. These parents produce a “child” solution using
crossover, creating a new solution which typically shares many of the characteris-
tics of its “parents”. New parents are selected for each new child, and the process
continues until a new population of solutions of appropriate size is generated.

After selection and crossover have been performed to fill out the population for
the next generation, a small percentage of elements in the new population are mu-
tated in order to continue exploring new parts of the parameter space. If an individual
is randomly selected for mutation, then its value is given a new random value within
its allowed range. Typical mutation probabilities are on the order of a few percent,
and different distributions are employed for new variates.

The final step in populating the new generation is to optionally enforce elitism.
Elitism ensures that the best global fitness is maintained between generations by
copying the chromosome with the best fitness from the previous generation into the
new population. At this point, the new population is ready to be evaluated by the
fitness function.

Different crossover methods and Nature-Inspired Optimization routines, includ-
ing Genetic Algorithms, will be discussed in detail in Chap. 5.

2.5.3.3 Non-dominated Sorting Genetic Algorithm

We now introduce a method that attempts to produce the Pareto front for a general
multi-objective optimization problem. We will see that Chap. 3 generates such a
problem, and here we discuss the method used to solve it. This method, Elitist Non-
dominated Sorting Genetic Algorithm (NSGA-II) [27] assumes our multi-objective
function has k dimensions.
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Again, we adopt the general idea of a genetic algorithm, but with some changes.
The algorithm starts with a random parent population P of size N . Binary tour-
nament selection, recombination, and mutation operators are used to create a child
population of P of size N . We combine the parent and children populations then
sort them via the principle of non-domination. An element p ∈ P dominates an-
other element q ∈ P if there is an i with pi < qi and pj ≤ qj for all other j . Here,
the ith element of p, denoted pi represents the ith objective value for this population
element.

Each solution is assigned a fitness equal to its non-domination level. Those ele-
ments with no dominating elements are given fitness 1. Those elements only dom-
inated by elements with fitness = 1 are given fitness 2, etc. For each fitness level,
we sort the elements in that level via crowding comparison. To do so, we first find
the local crowding distance for each element. This distance is calculated by finding
the average distance of the two nearest neighbors to this point along each of the
objective axes.

We sort within each fitness level, giving preference to those solutions that are
“more spread out,” i.e., have a larger crowding distance. The new population is
then generated by taking the first N elements of the sorted fitness levels. The pro-
cess repeats itself (children are generated, combined with parents, sorted via non-
domination, etc.) until either all elements of the population have fitness level 1 or a
predetermined number of iterations are reached.

2.6 Summary

We have described a range of mathematical optimization problems and their re-
spective solution techniques. Methods that utilize derivative information, both for
constrained and unconstrained problems, were briefly introduced. These methods,
combined with parametrized models of metamaterial structures to be simulated, are
too often trapped in numerous local minima. As a result, their usefulness for meta-
material design is minimal, and they will not be covered further in the text.

Many methods for solving problems that do not take advantage of derivative in-
formation, either because it does not exist or is not available, were also discussed.
These techniques, which will be covered over the next three chapters, are well-
established methods of optimization. They are all robust against non-smooth opti-
mization surfaces, and coincidentally are all direct search methods. Additionally,
both Mesh Adaptive Direct Search in Chap. 4, and Nature Inspired Optimization in
Chap. 5 work efficiently in high dimensions.

The last two chapters of the book do not focus solely on the optimization method
itself. These chapters integrate both optimization routines with novel methods for
calculating and representing the shapes of the individual resonant structures within
a metamaterial. These approaches are both gradient-based, but they are able to
circumvent the normal pitfalls of gradient-based optimization by transforming the
space over which the optimization occurs. Both techniques are new to the field of
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metamaterial design; however, their applicability extends far beyond the focus of
this book. This is clearly illustrated by the range of design examples that are cov-
ered throughout the last two chapters.
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Chapter 3
Optimization with Surrogate Models

Tom Schaul

Abstract In this chapter, we show how artificial curiosity can be used to focus
on the most pertinent search points in black-box optimization. We present a novel
response surface method, which employs a memory-based model to estimate the
interestingness of each candidate point using Gaussian process regression. For each
candidate point this model estimates expected improvement and yields a closed-
form expression of expected information gain. The algorithm continually pushes the
boundary of a Pareto-front of candidates not dominated by any other known point
according to both an information and a cost criterion. This makes the exploration–
exploitation trade-off explicit, and permits maximally informed search point selec-
tion. We illustrate the robustness of our approach in a number of experimental sce-
narios.

3.1 Introduction

Within the field of design optimization, a wide variety of methods exist to move
from an initial “guess” at a solution, to the final “best” solution. The most rigor-
ous method for approaching such a multi-dimensional problem would be to search
every possible permutation of all the design variables, and select the optimal solu-
tion after the fact. This method does have the advantage of determining the optimal
design solution with no uncertainty; however, for any scenario where the time to
evaluate/simulate a single design variant is non-trivial, the overall optimization time
using this approach is prohibitively expensive.

At the other end of the spectrum is a completely random search, with no method-
ology behind the selection of individual test points, and the total number of function
calls is completely up to the researcher. This technique has obvious limitations in
that, while the total optimization can be relatively short, there is little to no certainty
that the optimal solution corresponds to the best possible solution.

The optimization method described in this chapter moves a step away from the
most rigorous method and attempts to generate a model of the design performance
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Fig. 3.1 Example of
candidate test points in
information gain/expected
improvement space. The
Pareto front is shown as the
solid red curve

at every point in the optimization space using select test points throughout. The
overall performance of this type of optimization is based on a delicate balance be-
tween the number of test points required to generate an accurate model at all points
and the drive towards minimizing the total number of iterations required to find the
optimal solution. In this sense, we attempt to generate a “maximally-predictive, yet
minimally complex” model of the design space. This method of artificial curiosity
represents one technique for directing exploration towards the most informative or
most interesting data, and in this chapter, we show how it can be used to focus on the
most pertinent search points required to generate an accurate model for black-box
optimization problems.

We present a novel response surface method, which employs memory of all prior
test points to estimate the “interestingness” of each candidate point using Gaus-
sian process regression. For each candidate point, this model estimates expected
improvement in the surrogate model from the new test point, and yields a closed-
form expression of this expected information gain. This information gain represents
the “interestingness” of every possible test point. The set of all candidate test points
are plotted in the two-dimensional space described by the expected information gain
and the expected improvement in design performance from the current optimal de-
sign. The candidate points that are Pareto optimal represent the subset of all points
where it is not possible to improve either expected information gain or expected
improvement without deteriorating the other. We refer to these candidate points as
being non-dominated with respect to expected improvement and expected informa-
tion gain. These points represent the Pareto front of candidates not dominated by any
other known point. An example of such a plot, along with the Pareto front, is shown
in Fig. 3.1. The algorithm continually pushes the boundary of the Pareto front of
candidates not dominated by any other known point according to both an informa-
tion and a cost criterion. This balance between information gain (exploration) and
improvement in optimal design (exploitation) permits a maximally informed search
point selection. We first describe quantitatively how the relevant parameters for this
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search are derived and defined, and then illustrate the ability of our approach in a
number of experimental scenarios.

3.2 Background

For costly optimization, even a small reduction in the required number of function
evaluations justifies a significant investment of computational resources. It is there-
fore common to store all previous evaluations in memory, and use them to prune the
search space, estimate variability and if possible, predict which regions are likely to
obtain the best values of the objective (cost) function.

A surrogate model is an auxiliary function that is built from those known points,
and interpolates between them. It is called ‘surrogate’ because it can be evaluated
cheaply, and many such evaluations can then be used to determine the next point at
which to evaluate the costly objective function. That new evaluation is then incor-
porated into a refined surrogate model, and so on.

The main class of global optimization algorithms that use surrogate models are
response surface methods (RSM; [3, 19]). They store all available evaluations (some
possibly given in advance) and use them to model the cost function, which is useful
for dimensionality reduction, visualization, assessing uncertainty in the surrogate
model, and ultimately determining good points to explore [1, 15]. A multitude of
regression techniques have been used for modeling the response surface, from the
original polynomials [3] to more recent Gaussian processes that will be described
here [14, 22].

3.3 Artificial Curiosity

The ability to focus on novel, yet learnable patterns in observations is an essential
aspect of intelligence that has led mankind to explore its surroundings, all the way to
our current understanding of the universe. When designing artificial agents, we have
exactly this vision in mind; however, if an artificial agent is to exhibit some level of
intelligence, or at least the ability to learn and adapt quickly in its environment, then
it is essential to guide this agent to experience such patterns, a drive known as ar-
tificial curiosity [23, 24, 26]. This approach requires a principled way to judge and
rank data, in order to drive itself towards observations exhibiting novel, yet learn-
able patterns. This property is compactly captured by the subjective notion of inter-
estingness. Artificial learning agents are dependent on the interestingness of their
observations. A number of formalizations of interestingness exist, although some of
these have shortcomings. Our aim here is to find a formal measure of interestingness
that can be used to guide exploration in the case of black-box optimization.

Curiosity is the drive to actively explore the interesting regions in search space
that most improve the model’s predictions or explanations of what is going on in
the world. Originally introduced for reinforcement learning [23, 29], the curiosity
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framework has been used for active learning [9, 20], to explain certain patterns of
human visual attention better than previous approaches [13], and to explain concepts
such as beauty, attention and creativity [25, 26]. In this context, the amount that cur-
rently observable data can be compressed corresponds to its perceived beauty. The
simpler the method for encoding a given set of data, the more beautiful it is, and
obviously, the most simple method of encoding corresponds to the most beautiful or
aesthetically pleasing. Additionally, “creative” behaviors are considered those that
produce new types of interesting constructs. When actively selecting new observ-
ables to study, the most interesting data is that which most improves data compres-
sion, and correspondingly, things that are random or too difficult to understand are
considered boring.

In this chapter, we use curiosity algorithms to explore the parameter space for
a given design optimization problem, and determine the effectiveness of such an
approach. The interestingness of a new observation is the difference between the
performance of an adaptive model on the observation history before and after in-
cluding the new point. In essence, this concept represents how much new informa-
tion or knowledge is gained about the system being optimized from evaluating the
objective function at a given point. The goal of the active data point selection mech-
anism is to maximize expected cumulative future interestingness. Various proposed
distance measures to quantify the amount of information gain include:

• The difference in data compressibility before and after letting the learning algo-
rithm take the new data into account [25, 26],

• The difference in mean squared prediction error on the observation history before
and after re-training with the new point [23, 24],

• The Kullback–Leibler (KL) divergence which represents the change in informa-
tion that is lost when our surrogate model is used to approximate the actual cost
function space before and after the new test point has been evaluated [29].

Note that interestingness is observer-dependent and dynamic: a point that was inter-
esting early on can become boring over time.

3.3.1 Artificial Curiosity as a Guide for Optimization

Motivated by costly optimization (as described in Sect. 3.2), we here aim to define
an appropriate variant of artificial curiosity that can guide the exploratory drive of
an optimization algorithm to pick the most interesting next search point, and thus
minimize the number of evaluations required.

The optimization framework is a restricted case of the KL scenario for which
artificial curiosity has been put forth, in that objective evaluations are atemporal
(the order in which a set of points is evaluated does not affect the value). This al-
lows for a simplified measure of interestingness that only captures the instantaneous
informativeness of a search point.
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Further, to permit the incorporation of a Bayesian prior, we will focus on proba-
bilistic models and use a particular variant of the KL-based approach [29] to maxi-
mize information gain [4, 5, 10, 12, 18, 21]. The KL-divergence or relative entropy
between prior and posterior (before and after seeing the new point) is invariant under
any transformation of the parameter space.

3.3.2 Formal Framework

Formally, let Yenv be the environment of interest, and ypre be our current knowl-
edge.1 The information gain (interestingness) ψ(y|ypre) brought about by the ob-
servation y is defined as

ψ(y|ypre) = D
(
π(Yenv|ypre;y)‖π(Yenv|ypre)

)

=
∫

π(yenv|ypre;y) log
π(yenv|ypre;y)

π(yenv|ypre)
dyenv,

where π(·|·) denotes a conditional probability and D(·‖·) denotes the KL-divergence.
For a set of observations ypre, it is also useful to define the leave-one-out (LOO) in-
formation gain for each observation yo w.r.t. the remaining ypre\o as

ψLOO(yo) = ψ(yo|ypre\o).

This method of cross-validation is used to quantify how accurately our predictive
model is in terms of determining how much information can be gained from the
untested candidate points. Here we remove one of the previously tested points from
the set of measured data that generates our model. The surrogate is then computed
based on the remaining points and used to estimate the value of the point that had
been removed. Finally, this result is compared with the actual value of the removed,
validation point.

The information gain ψ(y|ypre) is defined a posteriori, meaning that it is only
defined after we see the value y. However, in most cases, we want to assess the
information gain of an observation a priori, i.e., before seeing the value. This leads
to the expected information gain of random variable Y , defined by

Ψ (Y |ypre) = E
[
ψ(Y |ypre)

]

=
∫

π(y|ypre)

∫
π(yenv|ypre;y) log

π(yenv|ypre;y)

π(yenv|ypre)
dyenv dy

= I (Y ;Yenv|ypre),

which turns out to be the conditional mutual information between the observation
and the environment.

1We use upper case letters for random variables, and the corresponding lower case letters for spe-
cific configurations.
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3.4 Exploration–Exploitation Trade-Off

In this section, we propose a way of handling the fundamental exploration–
exploitation trade-off. To make informed data selection decisions, they are post-
poned until the entire Pareto-optimal front—with respect to both an exploration and
an exploitation objective—is known.

3.4.1 Exploration Objective: Information Gain

The previous section introduced maximal expected information gain as a possible
objective for exploration, as an instantiation of the curiosity principle. It determines
the points that will provide the most additional information about the surrogate
model of the objective function. However, if this metric were the only basis for
selecting optimization test points, the optimization routine would in no way be di-
rected towards finding an optimal solution. As a result, we need a second objective.

3.4.2 Exploitation Objective: Expected Cost Improvement

The idea behind objective function “exploitation” is the more traditional concept of
finding the ideal solution to an optimization problem. We note that in optimization,
there is an asymmetry in utility: solutions that are better than the best currently
found fmin largely outweigh those that are almost as good. Thus exploitation really
aims at minimizing the expected improvement in cost with respect to fmin. It can be
shown [14] that the expected improvement takes the following form:

Δ(x) = σ(Y |yo)
(
sΦ(s) + φ(s)

)
, (3.1)

where

s = fmax −E[Y |yo]
σ(Y |yo)

,

while Φ(·) and φ(·) are the cumulative distribution and density functions of Gaus-
sian distributions, respectively.

3.4.3 Combining the Objectives

Optimizing conflicting objectives necessarily involves some form of trade-off, many
of which were discussed in Chap. 2. One of the most common ways to handle this
problem is by using a weighted sum of both objectives, where the weights are set
manually, or tuned to the problem. Combining two objectives of different scale into
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a single utility measure is common practice [4], but problematic [30], as one of the
objectives can completely dominate in some regions of the cost landscape, while be-
ing dominated in others. As a result, which ever term is larger in magnitude within
a given region of the objective function surrogate will tend to dominate the perfor-
mance of the optimization, and yield sub-optimal results.

Therefore, we propose turning the problem around and only deciding on the
trade-off after first having evaluated both objectives for a large set of candi-
date points. This means finding the Pareto front of candidates that are non-
dominated w.r.t. expected improvement and expected information gain, which can
be performed by any multi-objective optimization method, for example, the Non-
dominated Sorting Genetic Algorithm version II (NSGA-II; [8]) which is used in
the experiments in Sect. 3.6.4. This algorithm is a significant improvement over
previously used sorting algorithms that suffer from poor scaling of the computa-
tional complexity, inability to select the best points (elitism) which directly affects
the speed of the algorithm, and a dependence on user-defined inputs. The original
NSGA algorithm [28] still suffered from its reliance on a user-defined sharing func-
tion approach, which maintained the spread of solutions in the search space and kept
the population diverse. As a result, the performance of the algorithm was highly de-
pendent on the chosen value of the sharing parameter. Additionally, scaling becomes
an issue with this approach since each solution must be compared with every other
solution. This results in an approach that scales as O(n2) where n is the population
size.

NSGA-II utilizes a crowded-comparison approach to solve the problems listed
above. In this approach, the density of solutions around a given point is deter-
mined by looking at the average distance to two of the neighboring points around
a given test point in the exploration-exploitation space. These distances form a
rectangle around the given point and the average of these two distances is called
the crowding distance. These values are then sorted by magnitude [8]. The Pareto
front is generated by first ordering points based on the extent to which they are
non-dominated, and then by the crowding distance. A new test point is then se-
lected from the Pareto front and the process is repeated to determine the new Pareto
front.

All non-dominated candidates are considered “good” solutions, and therefore
each should be assigned a non-zero probability of being chosen. Ideally, this prob-
ability should favor candidates that stand out on the Pareto front, in terms of com-
bining both objectives, but it should also be insensitive to quirks of the algorithm
that builds the front (i.e., varying candidate densities), and to any smooth order-
preserving transformation of the cost function. In addition, it can allow us to shift
the focus from one objective to the other, e.g., focusing more on finding the optimal
solution over time. In the absence of an optimal way of handling this decision, we
opt for an unbiased solution, which consists in choosing the next point uniformly at
random from the Pareto front.
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3.5 Curiosity-driven Optimization
Algorithm 3.1 combines the components described in the previous section into a
general framework for curiosity-driven optimization. In each iteration, it first fits a
probabilistic model Mf to all known points X, and then uses Mf to determine the
LOO-information gain at each point. This interestingness function is then approxi-
mated using a second model, Mψ . The Pareto front of the candidate points is then
computed using a multi-objective optimization algorithm, each model providing an
estimate for one of the two objectives. Finally, a new point x∗ is chosen, as described
in Sect. 3.4.

Algorithm 3.1: Curiosity-Driven Optimization
input: cost function f , models Mf and Mψ , initial points X

1 repeat
2 Fit Mf to X

3 for s in X do
4 ψLOO(s) = D(Mf (X)‖Mf (X−s))

5 end
6 Fit Mψ to ψLOO
7 Find a set C of non-dominated candidate points
8 maximizing information gain (estimated by Mψ ) and
9 minimizing cost (estimated by Mf )

10 Choose x∗ from C

11 X ← X ∪ {(x∗, f (x∗)}
12 until stopping criterion is met

3.5.1 Models of Expected Cost and Information Gain

The class of probabilistic models used for Mf and Mψ should be general and flexi-
ble enough to fit multi-modal and highly nonlinear cost functions. Ideally, for every
unknown point, such a model should be able to (efficiently) predict the expected
value, the expected uncertainty associated with that prediction, and provide an ana-
lytical expression for computing information gain.

One option would be to use a mixture of Gaussians on the joint parameter–cost
function space (as in [6]). However, this approach has the drawback of being sensi-
tive to the number of Gaussians used, as well as giving poor interpolation in regions
with few sampled points. Neural networks are another viable option, but come with
a propensity of overfitting the scarce data.

3.5.2 A Good Model Choice: Gaussian Processes

In this section, we present an implementation of curiosity-driven optimization which
satisfies all the above criteria by using Gaussian processes to model the cost func-
tion.
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Gaussian processes (GP, [22]) can be seen as a probability distribution over func-
tions, as evaluated on an arbitrary but finite number of points. Given a number of
observations, a Gaussian process associates a Gaussian probability distribution to
the function value for each point in the input space. Gaussian processes are ca-
pable of modeling highly complex cost landscapes through the use of appropriate
covariance (kernel) functions, and are commonly used for regression and function
modeling [22].

Formally, we consider the Gaussian process with zero mean and the kernel func-
tion

k
(
x, x′)+ σ 2

n δ
(
x, x′),

where δ(·, ·) is the Kronecker delta function. Thus, for any values y, y′ at x, x′,
E[yy′] = k(x, x′) + σ 2

n . We make the assumption that the function k is smooth and
local in the sense that k(x, x′) → 0 when |x − x′| goes to infinity.

3.5.3 Derivation of Gaussian Process Information Gain

The concept of information gain can easily be mapped onto Gaussian processes,
but previous work has failed to provide a closed form expression for efficiently
computing it for each candidate point [16]. Let us consider a collection of fixed
reference points xr , and view their value Yr as the environment of interest. Our
prior knowledge ypre consists of all previously evaluated points xo with value yo.
The expected information gain of the value Y at point x is thus defined by

Ψr(x|yo) = I (Yr ;Y |yo) = H(Y |yo) − H(Y |Yr , yo),

where H(a|b) is the conditional entropy, i.e., the amount of information needed
to describe a given b. A major disadvantage of this definition is that the expected
information gain depends on the reference points xr . However, we may consider
the situation where the number of reference points goes to infinity. By definition,
π(Y |Yr, yo) is a Gaussian distribution, and

H(Y |Yr , yo) = 1

2
log 2πeσ 2(Y |Yr , yo).

Here σ 2(Y |Yr, yo) is the predictive variance at x given by

σ 2(Y |Yr, yo) = σ 2
n + k(x, x) − k(x, xro)

(
k(xro, xro) + σ 2

n I
)−1

k(xro, x)

= σ 2
n + σ 2

e

with xro = [xr , xo]. We take advantage of the fact that in GP, the predictive variance
depends only on the location of observations. In particular, σ 2

e is the variance of the
predicted mean ȳ = E[Y ], and

0 ≤ σ 2
e = σ 2(ȳ|Yr, yo) ≤ σ 2(ȳ|Yr) = σ 2

s
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because conditioning always reduces the variance for Gaussian distributions. Ac-
cording to Rasmussen and Williams [22], σ 2

s converges to 0 when the number of
reference points xr around x goes to infinity. This indicates that σ 2

e converges to 0
uniformly w.r.t. yo, thus σ 2(Y |Yr, yo) converges to σ 2

n uniformly w.r.t. yo.
When the number of observation points is sufficiently large around any given

point x, we have

Ψr(x|yo) = H(Y |yo) − H(Y |Yr , yo)

→ 1

2
log 2πeσ 2(Y |yo) − 1

2
log 2πeσ 2

n

= 1

2
logσ 2(Y |yo) − 1

2
logσ 2

n .

The limit no longer depends on the reference points, thus it can be used as an
‘objective’ measure for the expected information gain at point x:

Ψ (x|yo) = 1

2
logσ 2(Y |yo) − 1

2
logσ 2

n . (3.2)

The second term is constant; therefore, there is a direct connection between the
expected information gain and the predictive variance given the observation, which
can be computed efficiently. Note that [27] found the predictive variance to be a
useful criterion for exploration, without realizing that it is equivalent to information
gain.

3.5.4 Curiosity-Driven Optimization with Gaussian Processes

Choosing a Gaussian process to model the cost function significantly simplifies the
general algorithm introduced in Sect. 3.5. First, it allows us to compute the expected
information gain Ψ instead of the less robust LOO-information gain. Second, the
model Mψ is no longer necessary, as Ψ can be computed for unknown points as
well. The resulting algorithm (CO-GP) is shown in Algorithm 3.2. The remainder
of this section discusses some practical considerations.

Algorithm 3.2: Curiosity-driven Optimization with Gaussian processes (CO-
GP)

input: cost function f , kernel function, initial points X

1 repeat
2 Fit a Gaussian process G to X

3 Find a set C of non-dominated candidate points x simultaneously
maximizing ΨG(x) (Eq. (3.2)) and ΔG(x) (Eq. (3.1))

4 Choose x∗ from C

5 X ← X ∪ {(x∗, f (x∗))}
6 Optionally optimize the kernel hyperparameters w.r.t. the marginal

likelihood
7 until stopping criterion is met
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Computational Complexity The computational complexity of each iteration of
CO-GP is dominated by one matrix inversion of O(n3), where n is the total num-
ber of evaluations. Building the Pareto front consumes most of the computation
time early on, but scales with O(n2). The computational complexity of Gaussian
processes can be reduced, e.g., by implementing them online and using a reduced
base vector set, containing only the most informative points [7]. We have not imple-
mented these yet, as computation time was not a major concern in our experiments
since it is relatively small compared to the time required for device simulations.

Choosing Kernel Parameters: Model Selection Gaussian process regression
only gives reasonable results when the kernel hyperparameters are set properly. De-
pending on how much computation time is available, the hyperparameters could be
optimized periodically with respect to the marginal likelihood. We use the exponen-
tial natural evolution strategies algorithm (xNES) for this purpose [11]. Potentially,
we could also employ diagnostic methods [15] to determine whether the model is
appropriate.

Informed Multi-objective Search At each iteration (line 2), an inner multi-
objective optimization algorithm is used (in our case, NSGA-II from Sect. 3.4.3).
We can make use of our available information to make this step more efficient. For
example, we initialize the search with the Pareto front found in the previous itera-
tion. Furthermore, as we want the search to roughly cover the range of known points,
we adjust the scale (for step-sizes) accordingly.

3.6 Minimal Asymptotic Requirements

To demonstrate the practical viability of CO-GP, we first investigate how it handles
a number of common but problematic scenarios and then illustrate it on a standard
benchmark function. Following [22], all experiments use the common Gaussian ker-
nel (also known as a radial basis function) with noise, which is a very robust choice
in practice.

3.6.1 Reaching Optima at Arbitrary Distance

Many cost function landscapes contain large linear regions. Specifically, if the scale
of the region covered by the initial points is too small, almost any landscape will ap-
pear linear. An ideal algorithm should be able to exploit the linearity of such regions.
In particular, it is highly desirable to have the searched region grow exponentially
with the number of points. Note that many well-known algorithms, such as estima-
tion of distribution algorithms, do not have this property and instead rely either on
correct initialization or heuristics [2]. In contrast, CO-GP does have this property,
as our results on the linear function show (see Fig. 3.2).
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Fig. 3.2 Left: Escaping linear regions. The plot shows the performance of CO-GP on a linear sur-
face, in terms of the distance from the best point found so far to the initial point (averaged over
20 independent runs). The green (solid) and blue (dashed) curves correspond to CO-GP with hy-
perparameter adaptation enabled and disabled, respectively. We observe that the distance from the
initial point (and thus the decrease in cost) grows exponentially if the hyperparameters are adapted,
but only linearly otherwise. Right: Precisely locating optima. The plot shows the performance of
CO-GP on a unimodal, quadratic surface, in terms of the distance from the optimum to the best
point found so far (averaged over 20 independent runs). This distance decreases exponentially with
the number of points

3.6.2 Locating Optima with Arbitrary Precision

While designed primarily for multi-modal cost landscapes, we investigated how our
approach handles simple cost landscapes with a single optimum. The success crite-
rion for this case is to have the distance to the optimum decrease exponentially with
the number of points. While we cannot prove that this is the case in general, Fig. 3.2
shows that it holds for the multi-dimensional sphere function. This indicates that
CO-GP can locate optima up to a high precision, at least whenever, locally, the cost
function is approximately quadratic.

3.6.3 Guaranteed to Find Global Optimum

Every global optimization algorithm should provide a guarantee that in the limit
its chosen points will cover the search space densely, which is the only way to en-
sure that it will eventually find the global optimum. Optimization based on expected
improvement has been shown to have this property [17]. It turns out that if we re-
move the information gain objective from CO-GP, the algorithms are equivalent.
Therefore, as one extreme of the Pareto front will always correspond to the point
maximizing expected improvement exclusively, and that point has a non-zero prob-
ability of being chosen, CO-GP inherits the property that it always finds the global
optimum in the limit.
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3.6.4 Proof-of-Concept

The Branin function [14, 15] is a commonly used benchmark for global optimization
of the form:

fBranin(x1, x2) = a
(
x2 − bx2

1 + cx1 − d
)2 + e(1 − f ) cos(x1) + e,

where the standard parameter settings are a = 1, b = 5
4π2 , c = 5

π
, d = 6, e = 10,

f = 1
8π

. The function has three global optima, at (−π,12.275), (π,2.275) and
(9.42478,2.475), with the value fBranin(x�) = 0.397887, a bounded domain and
a non-trivial structure. Figure 3.3 illustrates the behavior of CO-GP on the Branin
function over the course of a single run, starting with four points on the boundary
corners. The Gaussian process model produces a good fit of the true function after
about 30 iterations. Locating one optimum (up to a precision of 0.1) requires only
28 ± 8 evaluations, locating all three requires 119 ± 31. The qualitative behavior
of the algorithm is very intuitive, placing part of its search points spaced broadly
within the domain, while the other part forms clusters of points ever closer around
the optima. Although this experiment is intended as a proof of concept, not an em-
pirical comparison to other global optimization algorithms, the quantitative results
indicate that CO-GP is on par with the best results reported in the literature [14].

3.7 Discussion

The results in Sect. 3.6 demonstrate that CO-GP properly handles a number of typ-
ical optimization challenges, and the results bode well for applying the general
template (Algorithm 3.2) to related domains such as constrained or discrete opti-
mization, or even mixed-integer programming. Although based on the general and
theoretically powerful principle of artificial curiosity, our current implementation
exhibits certain weaknesses: Despite the derived closed-form expressions for the
objectives, the method’s computational cost is still high, limiting the application
domain to (relatively) costly optimization problems.

Another drawback of the approach is that it is greedier than the original curiosity
framework: it does not necessarily maximize cumulative future expected informa-
tion gain, but greedily selects the next data point that is expected to be the imme-
diately most interesting. More sophisticated reinforcement learning algorithms will
be necessary to maximize the expected sum of future intrinsic rewards (each reward
being proportional to the information gain of the corresponding observed data).

Further, as the dimensionality of the problem increases, the number of seed points
required to build an accurate surrogate model increases exponentially. The current
focus on exploration over exploitation is problematic not only because of the com-
putational cost involved in the matrix inversions necessary to determine future test
points, but also because of the total time required to evaluate all test points. Because
we do not know the exact behavior of a response surface a priori, it is not possible to
determine the exact number of test points that are required. The ability to confidently
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Fig. 3.3 Optimization on the Branin function. The plot in the top right corner shows a contour plot
of the Branin function with the three global optima marked with triangles. The left column shows
the estimated cost function model (top), and the two competing objectives, expected information
gain (middle) and expected improvement (bottom), in an early phase after 10 points (blue squares)
have been observed. The red circles are the points on the Pareto front being considered for the next
choice. The middle column shows the same information after 30 iterations. Note that in this later
stage the model is very close to the true function (top). The plot in the middle of the right column
shows the shape of the Pareto front corresponding to the situation in the left column (10 points),
and the plot on the bottom right shows the values of the cost function at all the chosen points (the
initial 4 corner points are not shown). In the early phase, the Pareto front contains a continuum
of points in the center that trade off improvement and information gain, plus a few isolated points
with high information gain, but very low expected improvement. After 30 iterations, two of the
global optima have been located precisely. The expected improvement is zero everywhere, so the
Pareto front is collapsed to the single point with highest information gain. CO-GP now performs a
purely exploratory step, and will continue to do so until it leads to non-zero expected improvement
(e.g. around the third optimum). On average, CO-GP requires about 120 points to locate all three
optima with high accuracy
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determine that a predicted global optimum is the actual global optimum, is directly
related to the maximum predictive variance throughout the surrogate, which again
cannot be determined a priori. Using Gaussian Processes, the number of test points
required increases in a strongly nonlinear manner based on each of the key regions
of maximum, minimum, discontinuities, and stability within the response surface.
As the number of optimization dimensions increases, surrogate models, including
CDO, spend hundreds or thousands of function calls in the exploration phase of the
optimization. This is simply the result of the fact that in the initial stages of the op-
timization, it is unlikely that the optimum points in the surrogate model accurately
represent the true, global optimum.

As a result, ongoing efforts are focused on model simplification and dimension-
ality reduction techniques. A detailed review of such techniques, along with their
scaling behavior in higher dimensions is given in [22]. As the dimensionality of the
problem increases; there is an increasing shift towards finer-grained methods which
trend towards selecting sample points one at a time. To that end, methods discussed
in Chaps. 4 and 5 currently prove to be much more efficient at rapid convergence
in higher dimensions. The trade-off essentially being that the speed of convergence
to an optimum (within the convergence criteria) is improved by sacrificing both
knowledge of the entire response surface and knowledge that the solution obtained
is indeed the global optimum.
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Chapter 4
Metamaterial Design by Mesh Adaptive Direct
Search

Charles Audet, Kenneth Diest, Sébastien Le Digabel, Luke A. Sweatlock,
and Daniel E. Marthaler

Abstract In the design of optical metamaterials, some optimization problems re-
quire launching a numerical simulation. The Mesh Adaptive Direct Search algo-
rithm is designed for such problems. The MADS algorithm does not require any
derivative information about the problem being optimized, and no continuity or dif-
ferentiability assumptions are made by MADS on the functions defining the simu-
lation. A detailed discussion of the method is provided in the second section of the
chapter, followed by a discussion of the NOMAD implementation of the method
and its features. The final section of the chapter lists three instances of combin-
ing NOMAD with Finite-Difference Time-Domain electromagnetic simulations to
tailor the broadband spectral response and near-field interactions of Split Ring Res-
onator metamaterials.

4.1 Introduction

This chapter describes methods for solving constrained optimization problems us-
ing the Mesh Adaptive Direct Search (MADS) algorithm, which belongs to the more
broad class of Derivative-Free Optimization methods. Because small changes in the
geometry of a metamaterial can results in large changes in the overall behavior of the
structure, these techniques are well-suited for the design of optical metamaterials,
and can handle the large discontinuities in the “cost function space” that often arise.
The MADS algorithm does not require any derivative information about the prob-
lem being optimized, and no continuity or differentiability assumptions are made
on the functions defining the simulation. Out of the many applicable techniques
that can be used for metamaterial design, the NOMAD implementation of the MADS

algorithm discussed in this chapter has many advantages, including built in capabil-
ities to handle nonlinear constraints, bi-objective function optimization, sensitivity
analysis, and up to 50 variables. For even larger problems, the PSD-MADS paral-
lel version of the method is able to solve problems with 50–500 variables. Lastly,
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the NOMAD implementation has the added benefit that it is constantly being up-
dated and improved within a number of programming languages including C++ and
Matlab (http://www.gerad.ca/nomad).

4.1.1 Structuring the Optimization Problem

This chapter considers optimization problems that may be written in the following
general form

min
x∈Ω

f (x), (4.1)

where f is a single-valued objective function, and Ω is the set of feasible solu-
tions. The direct search methods described here can be applied without making any
assumptions on the function f or on the set Ω . However, when analyzing the the-
oretical behavior of these methods, we will study them under various assumptions.
Without any loss of generality, suppose that the set of feasible solutions is written
as

Ω = {x ∈ X : cj (x) ≤ 0, j ∈ J
}⊂ R

n,

where X is a subset of R
n and cj : X → R ∪ {∞} for all j ∈ J = {1,2, . . . ,m}

are quantifiable constraints. This means that for any x in X, the real value cj (x)

provides a measure by which a constraint is violated or satisfied. This notation does
not make the problem restrictive, as problems where J = ∅ are allowed.

The sets X and Ω define the feasible region and each one of them corresponds
to a specific type of constraint for which different treatments are described in
Sect. 4.2.2. The quantifiable constraints cj (x) ≤ 0, j ∈ J , defining Ω provide a
distance to feasibility and/or to infeasibility. Violating these constraints is also per-
mitted as long as these violations occur only at the intermediate candidates consid-
ered by an optimization method. The set X may contain any constraint for which a
measure of the violation is not available, and/or constraints that cannot be relaxed.
Typically, X contains bound constraints necessary to run the simulation, but can
also include hidden constraints [20], which occur when the simulation fails to eval-
uate. In [5], the objective function failed to return a value on approximately 43 %
of the simulations, and in [18], the failure rate climbed to 60 %. Such problems
pose a challenge to optimization methods that use function evaluations to estimate
derivatives.

Different approaches exist to tackle Problem (4.1), and this chapter discusses
Derivative-Free Optimization (DFO) methods. This choice is justified by the fact
that these methods are backed by rigorous convergence analyses based on different
levels of assumptions on the nature of the functions defining the problem. This type
of analysis marks the difference between DFO methods and heuristics. While this
chapter focuses on the MADS algorithm to address these types of problems, a review
of DFO methods may be consulted in the recent book [23], which does not focus on

http://www.gerad.ca/nomad
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the constrained case. The present chapter aims at describing a practical and recent
method and software for constrained blackbox optimization.

The chapter is divided as follows. Section 4.2 summarizes the general organi-
zation of the MADS algorithm, describes strategies to handle various types of con-
straints, discusses the use of surrogates and models to guide the optimization, and
details the type of nonsmooth convergence analyses on which these methods rely.
Section 4.3 describes our C++ implementation NOMAD of MADS and highlights
some features that make the code versatile. Finally, Sect. 4.4 describes a metama-
terial design optimization problem, shows how to formulate it as a blackbox op-
timization problem, and numerical experiments are conducted using the NOMAD
software.

4.2 The Mesh Adaptive Direct Search Class of Algorithms

The Mesh Adaptive Direct Search (MADS) is presented in [9] as a generalization of
several existing direct search methods.

The name of these methods comes from the fact that they are designed to work
directly with the objective function values generated by the blackbox, and that they
do not use or approximate derivatives or require their existence. MADS was intro-
duced to extend the target class of problems to the constrained problem (4.1) while
improving the practical and theoretical convergence results. That paper proposed a
first instantiation of MADS called LTMADS, which was improved in ulterior work.
The non-deterministic nature of LTMADS was corrected in the ORTHOMADS [3]
instantiation. These algorithms were initially designed to handle the constraints of
Ω by the so-called extreme barrier, which simply consists of rejecting any trial
point which does not belong to Ω . The term extreme barrier comes from the fact
that this approach can be implemented by solving the unconstrained minimization
of

fΩ(x) =
{

f (x) if x ∈ Ω,

∞ otherwise

instead of the equivalent Problem (4.1). A more subtle way of handling quantifiable
constraints is presented in [10], and is summarized in Sect. 4.2.2 below.

4.2.1 General Organization of the MADS Algorithm

In order to use a MADS algorithm, the user must provide an initial point denoted
x0 ∈ R

n. It does not need to be feasible with respect to the quantifiable constraints
cj (x) ≤ 0, j ∈ J , but must belong to the set X. MADS algorithms are iterative and
the iteration counter is denoted by the index k. At each iteration, the algorithm
deploys some effort to improve the incumbent solution xk , i.e., the current best
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solution. For now, we will remain vague about the word best as it takes different
meanings if it refers to a feasible or an infeasible solution. This clarification is made
in Sect. 4.2.2

At each iteration, the algorithm tries to improve the incumbent solution by
launching the simulation at a finite number of carefully selected trial points. This
is done in two steps called the SEARCH and the POLL. The SEARCH is very flexi-
ble and allows the user to take advantage of his knowledge of the problem to pro-
pose some candidates where the simulation will be launched. Some SEARCH strate-
gies are tailored to specific problems, while others are generic (e.g., speculative
search [9], Latin hypercube sampling [36], variable neighborhood searches [6], sur-
rogates). The POLL needs to satisfy more rigorous restrictions. It consists of a local
exploration near the current incumbent solution, and its definition varies from one
instantiation of MADS to another. In practice, the SEARCH can greatly improve the
quality of the final solution, while the POLL structure allows a rigorous convergence
analysis.

A fundamental requirement of both the SEARCH and POLL steps is that they must
generate trial points belonging to a conceptual mesh Mk on the space of variables
R

n. The mesh is defined by a mesh size parameter Δm
k > 0, by the set Vk of all trial

points at which the simulation was launched before the start of iteration k, and by
a finite set of positive spanning directions D ⊂ R

n. Of these three elements, only
D is fixed throughout the algorithm, while the two others vary from one iteration to
another. In practice, the set D is often chosen to be the columns of the n × n iden-
tity matrix, together with their negatives: in matrix form, D = [In − In] ∈ R

n×2n.
Formally, the mesh at iteration k is the following enumerable subset of Rn:

Mk = {x + Δm
k Dz : x ∈ Vk, z ∈ N

nD
}⊂ R

n. (4.2)

The set Vk is also called the cache as it contains the history of all evaluated trial
points. For functions that are expensive to evaluate, the cache allows a reduction
in computational time as the simulation at a previously evaluated trial point is not
performed.

Figure 4.1 illustrates the mesh Mk on a problem with only two variables where
the set of directions used to construct the mesh are the positive and negative coordi-
nate directions: in matrix form,

D =
[

1 0 −1 0
0 1 0 −1

]
.

The mesh points are represented by the intersections of the horizontal and vertical
lines. The mesh Mk is conceptual as it is never generated, but the method must
make sure that the trial points belong to Mk . The remaining elements of the figure
are described below.

Each MADS iteration goes as follows. Given an incumbent solution xk ∈ X, the
SEARCH step produces a list of tentative trial mesh points. Any mechanism can be
used to created the list, as long as it contains a finite number of points located on
the mesh. The list may even be empty. Then, the simulation is launched at the trial
points until all trial points are tested, or until one trial point is found to be better than
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Fig. 4.1 Example MADS trial points in R
2 consistent with the ones defined in [3]. The intersec-

tions of the thin lines represent the mesh of size Δm
k , and thick lines the points at distance Δ

p
k from

xk in the infinity norm. Examples of SEARCH {t1, t2, t3} and POLL trial points {t4, t5, t6, t7} are
illustrated

the incumbent xk . In the latter case, the POLL step can be skipped, and the algorithm
may continue directly to the updates.

Following an unsuccessful SEARCH step, the POLL step generates a list of mesh
points near the incumbent xk . The term near is tied to the so-called poll size param-
eter Δ

p
k > 0. Again, the POLL step may be interrupted as soon as an improvement

over the incumbent is found. During an iteration, the simulations can be launched
sequentially or in parallel. Synchronous and asynchronous strategies are described
in Sect. 4.3.3 when multiple processors are available.

Parameters are updated at the end of each iteration. There are two possibilities. If
either the SEARCH or the POLL step generated a mesh point t ∈ Mk which is better
than xk , then the next incumbent xk+1 is set to t and both the mesh size and poll
size parameters are increased or kept to the same value. For example, Δ

p

k+1 ← 2Δ
p
k

and Δm
k+1 ← min{1,

√
Δ

p
k }. Otherwise, xk+1 is set to xk and the poll size parameter

is decreased and the mesh size parameter decreased or kept the same. For example,

Δ
p

k+1 ← 1
2Δ

p
k and Δm

k+1 ← min{1,

√
Δ

p
k }.

At any iteration of a MADS algorithm, the poll size parameter Δ
p
k must be greater

than or equal to the mesh size parameter Δm
k . In Fig. 4.1, Δ

p
k = 1

2 and Δm
k = 1

4 , and
the search points are {t1, t2, t3}. In ORTHOMADS, the POLL points are obtained by
generating a pseudo-random orthogonal basis Hk and by completing it to a maximal
positive basis Dk = [Hk −Hk]. The poll points are then obtained from the incum-
bent xk in the directions of the columns of Dk while remaining in the frame (the
shaded region in the figure) defined by the poll size parameter Δ

p
k .

The iteration concludes by increasing the counter k by one. A new iteration is
then initiated. Figure 4.2 summarizes the main steps of a MADS algorithm.
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Initialization
starting point: x0 ∈ X

initial mesh and poll size parameters: Δm
0 , Δ

p
0 > 0

iteration counter: k ← 0

SEARCH and POLL steps
Let Mk be the mesh of Eq. (4.2)
SEARCH(optional)

launch the simulation on a finite number of mesh points
POLL(optional if SEARCH was successful)

launch the simulation on a finite number of mesh points
within a radius of Δ

p
k

of xk

Updates
determine success or failure of iteration k

update the cache Vk+1
update the incumbent xk+1
update the mesh and poll size parameters Δm

k+1 and Δ
p
k+1

increase the iteration counter k ← k + 1
goto SEARCH and POLL steps if no stopping condition is met

Fig. 4.2 A general MADS algorithm. See Fig. 4.1 for some examples of search and poll points

4.2.2 Handling of Constraints

MADS possesses different techniques to handle constraints. The constraints x ∈ X

are handled by the extreme barrier discussed in the introduction of Sect. 4.2. The
constraints cj (x) ≤ 0 are relaxable and quantifiable and this supplementary structure
allows a potentially more efficient treatment. The progressive barrier [10] exploits
this structure and allows the algorithm to explore the solution space around infeasi-
ble trial points. This treatment of constraints uses the constraint violation function
originally devised for filter methods [25] for nonlinear programming:

h(x) =
{∑

j∈J (max(cj (x),0))2 if x ∈ X,

∞ otherwise.

The constraint violation function h is nonnegative, and h(x) = 0 if and only if
x ∈ Ω . It returns some kind of weighted measure of infeasibility.

The extreme barrier is essentially a mechanism that allows infeasible trial points
whose constraint violation function value is below a threshold hmax

k > 0. But as the
algorithm is deployed and the iteration number increases, the threshold is progres-
sively reduced. This is accomplished with the MADS algorithm by having two in-
cumbent solutions around which polling is conducted. One poll center is the feasible
incumbent solution xF

k , i.e., the feasible solution found so far with the least objec-
tive function value. The second poll center is the infeasible incumbent solution xI

k ,
i.e., the infeasible solution found so far with a constraint violation value under the
threshold hmax

k having the least objective function value. Under this strategy, the in-
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Fig. 4.3 The feasible region Ω and the domain X of an optimization problem, and their image
under the mappings h and f

feasible trial points approach the feasible region by prioritizing the infeasible points
with a low objective function value. This strategy differs from the ones in [2, 8, 24]
where priority was given to feasibility at the expense of the objective function value.

Figure 4.3 represents an optimization problem as a tradeoff between the objective
function f and the constraint violation function h. The left part of the figure depicts
the domain X of a two-variable problem, as well as its feasible region Ω . The right
part of the figure shows the image of both X and Ω under the mappings h and f .
The mapping of X is delimited by the nonlinear curve, and the mapping of Ω is
represented by the greyed region located on the f -axis. The optimal solution of the
optimization problem corresponds to the feasible point (h = 0) with the least value
of f , as indicated by the arrows. The figure also shows the feasible and infeasible
incumbents, as well as their image.

With the progressive barrier, the iterations are categorized into more than two
types. Dominating iterations are those that either generate a feasible trial point with
a lower objective function value than that the feasible incumbent, or those that gen-
erate an infeasible trial point with better objective and constraint violation function
values than the infeasible incumbent. Improving iterations are those that are not
dominating, but generate an infeasible trial point with a better constraint violation
value. Otherwise, the iteration is said to be unsuccessful.

At the end of an unsuccessful iteration the incumbents remain unchanged, and
the poll size parameter is reduced as this suggests that we are near a locally optimal
solution. At the end of a dominating solution, a new incumbent solution is identified,
and the poll size parameter is increased to allow far-reaching explorations in the
space of variables. Finally, after an improving iteration, the poll size parameter is
kept unchanged, but the constraint violation threshold is reduce in such a way that
the next iteration will not have the same infeasible incumbent as the one from the
previous iteration.
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Fig. 4.4 Polling around the feasible incumbent xF generates a new infeasible incumbent xI
k+1

Figure 4.4 represents the poll step around the feasible incumbent xF
k . The four

poll points are represented by the light circles in the left part of the figure. The
leftmost one is rejected by the extreme barrier, as it does not belong to the domain X.
Only one of the poll points is feasible, but as illustrated in the right part of the
figure, it is dominated by the feasible incumbent xF

k . The two other poll points
are infeasible. One of them is rejected by the progressive barrier, as its constraint
violation function value exceeds the threshold hmax

k . Any trial point that gets mapped
in the shaded region gets rejected. The remaining poll point has a lower constraint
violation value than the infeasible incumbent, but a worse objective function value.
Therefore, the iteration is neither a dominating one nor an unsuccessful one, it is an
improving iteration. At the end of the iteration, the mechanism of the progressive
barrier updates the infeasible incumbent xI

k+1 to be the poll point located to the right
of xF

k , and the threshold hmax
k+1 would be reduced to the constraint violation function

value evaluated at the new infeasible incumbent solution.
Another strategy to handle relaxable quantifiable constraints is the progressive to

extreme barrier [12]. As its name suggests, this strategy consists in first handling
the constraint by the progressive barrier. But as soon as a trial point which satisfies
the constraint is generated, then the treatment of the constraint is switched to the
extreme barrier. This last strategy allows infeasible initial trial points, but forces the
satisfaction of individual constraints as soon as they are satisfied for the first time.

4.2.3 Surrogates and Models

Surrogates are functions that can be considered as substitutes for the true functions
defining the optimization problem, f and cj , j ∈ J . A surrogate function shares
some similarities with the original one, but has the advantage of being significantly
less expensive to evaluate. Surrogate functions can be classified into static surro-
gates and dynamic surrogates.
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4.2.3.1 Static Surrogates

Static surrogates are approximations that are provided by the user with some knowl-
edge of the problem. A surrogate consists of a model of the true function, and is
fixed during the optimization process. For example, static surrogates may be ob-
tained by simplified physics models, or by allowing more relaxed stopping criteria
within the blackbox simulation, or by replacing complicated subproblems by sim-
pler ones. Straightforward uses of static surrogates within an optimization method
are described in [15]. A first possibility is to order a list of tentative trial points by
their surrogate values, and then to launch the expensive simulation defining the truth
on the most promising trial points first. The process terminates as soon as a better
point is found. This is called the opportunist strategy and can save a considerable
amount of time.

A second strategy using static surrogates consists in defining a SEARCH step that
optimizes the surrogates in order to determine one or two candidates for the true
evaluations. In some situations, static surrogates may be parametrized with control-
lable precision. The use of such surrogates within a GPS framework is described
in [39].

4.2.3.2 Dynamic Surrogates

In contrast to static surrogates, dynamic surrogates are not provided by the user.
They correspond to models dynamically built within the optimization method, based
on past evaluations from the cache. Any interpolation method can be used for this
task, as, for example, quadratic models, neural networks, radial basis functions, or
statistical methods. The Surrogate Management Framework [18] proposes ways to
exploit such surrogates within direct search methods, and GPS in particular, for
the unconstrained case. Successful applications of this framework include unsteady
fluid mechanics problems [34, 35], helicopter rotor blade design [17] and multi-
objective liquid-rocket injector design [40].

Recent developments propose the use of these surrogates for the constrained
case within MADS. The first of these developments considers quadratic models and
is summarized in the next section. The second approach is ongoing research and
currently considers statistical methods [27], namely tree Gaussian processes [26].
Quadratic model and statistical surrogates share some similarities. They can be used
to sort a list of trial points before launching the expensive true blackbox simulation,
as proposed above for the static surrogates. Dynamic surrogates may also define a
SEARCH step named the model search, enabled as soon as a sufficient number of
true evaluations is available (typically n + 1). These points are denoted the data
points and are used to build one model for f and m models for the quantifiable con-
straints cj , j ∈ J . The model of the objective function is then optimized subject to
the models of the constraints. This provides one or two mesh candidates, one feasi-
ble and possibly one infeasible, at which the true functions are evaluated. These are
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called oracle points. In addition to the nature of the surrogates, some subtleties re-
main: The quadratic models are kept local, while statistical surrogates consider the
whole space and attempt to escape local solutions. They can also provide additional
candidates based on statistics such as the Expected Improvement (EI) [29].

4.2.3.3 Quadratic Models in MADS

This section discusses the quadratic models described in [22] and currently used in
NOMAD. The framework is inspired from the work of Conn et al. summarized in the
DFO book [23] where more focus is put on model-based methods.

Quadratic models are employed at two different levels: First, the model search
exploits the flexibility of the SEARCH by allowing the generation of trial points any-
where on the mesh. Candidates of the model search are the result of an optimization
process considering the model of the objective constrained to the models of the con-
straints.

The other way of using models is to sort a list of candidates prior to their evalua-
tions (model ordering), so that the most promising—from the model point of view—
points will be evaluated first. The impact of this strategy is important because of the
opportunistic strategy.

To construct a model, a set Y = {y0, . . . , yp} of p + 1 data points is collected
from the cache. The objective function f (y) and the constraint functions cj (y),
j ∈ J are known and finite at each data point y ∈ Y . Since quadratic models are
more suited for local interpolation, data points are collected in the neighborhood of
the current iterate: yi ∈ B∞(xk;ρΔ

p
k ) with B∞(x; r) = {y ∈ R

n : ‖y − x‖∞ ≤ r},
where the poll size parameter Δ

p
k bounds the distance between xk and the POLL trial

points, and ρ is a parameter called the radius factor, typically set to two.
Then, m + 1 models are constructed: one for the objective f and one for each

constraint cj ≤ 0, j ∈ J . These models are denoted mf and mcj
, j ∈ J , and are such

that

mf (x) � f (x) and mcj
(x) � cj (x), j ∈ J, for all x ∈ B∞

(
xk;ρΔ

p
k

)
.

For one function (f or one of the constraints cj ), the model mf is defined by
q+1 parameters, α ∈ R

q+1, evaluated at x with mf (x) = α�φ(x) with φ the natural
basis of the space of polynomials of degree less than or equal to two, which has
q + 1 = (n + 1)(n + 2)/2 elements:

φ(x) = (φ0(x), . . . , φq(x)
)�

=
(

1, x1, . . . , xn,
x2

1

2
, . . . ,

x2
n

2
, x1x2, x1x3, . . . , xn−1xn

)�
.

The parameter α is selected in such a way that
∑

y∈Y (f (y)−mf (y))2 is as small
as possible, by solving the system

M(φ,Y )α = f (Y ) (4.3)
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with f (Y ) = (f (y0), f (y1), . . . , f (yp))� and

M(φ,Y ) =

⎡

⎢⎢⎢
⎣

φ0(y
0) φ1(y

0) . . . φq(y0)

φ0(y
1) φ1(y

1) . . . φq(y1)
...

...
. . .

...

φ0(y
p) φ1(y

p) . . . φq(yp)

⎤

⎥⎥⎥
⎦

∈R
(p+1)×(q+1).

System (4.3) may possess one, several, or no solutions. If p ≥ q , i.e., there are
more interpolation points than necessary, it is overdetermined and regression is used
in order to find a solution in the least squares sense. When p < q , i.e., there are
not enough interpolation points, the system is underdetermined and there is an in-
finite number of solutions. Minimum Frobenius norm (MFN) interpolation is used
in that case, which consists in choosing a solution that minimizes the Frobenius
norm of the curvature subject to the interpolation conditions. This is captured in

the quadratic terms of α. Thus writing α = [ αL

αQ

]
with αL ∈ R

n+1, αQ ∈ R
nQ , and

nQ = n(n + 1)/2, our model at x is given by mf (x) = α�
L φL(x) + α�

QφQ(x) with

φL = (1, x1, . . . , xn)
� and φQ = (

x2
1
2 , . . . ,

x2
n

2 , x1x2, x1x3, . . . , xn−1xn)
�. The corre-

sponding MFN α vector is then found by solving

min
αQ∈RnQ

1

2
‖αQ‖2 subject to M(φL,Y )αL + M(φQ,Y )αQ = f (Y ).

Once the m + 1 models are available, the model search and the model ordering
strategies differ slightly. The model ordering consists in evaluating the models at the
candidates, and then sorting the candidates accordingly. The model search is more
elaborated because the following optimization problem has to be solved:

min
x∈B∞(xk;ρΔ

p
k ).

mf (x) subject to mcj
(x) ≤ 0, j ∈ J . (4.4)

After Problem (4.4) is solved (in practice, heuristically), its feasible and infeasi-
ble incumbent solutions define new candidates at which evaluate the true functions
f and cj , j ∈ J . In order to satisfy the MADS convergence analysis described in
Sect. 4.2.4, these candidates are projected on the mesh before they are evaluated.

4.2.4 Convergence Analysis

Even if MADS is designed to be applied to the general optimization problem (4.1)
without exploiting any of its structure, MADS is supported by a rigorous hierarchical
convergence analysis. The analysis reveals that depending on the properties of the
objective function f and the domain Ω , MADS will produce a limit point x̂ at which
some necessary optimality conditions are satisfied. Of course, we do not expect our
target problems to satisfy any smoothness properties, but the convergence analysis
can be seen as a validation of the behavior of the algorithm on smoother problems.
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The entire convergence analysis relies on the following assumptions. Suppose
that MADS was launched on a test problem, without any stopping criteria, and
suppose that the union of all trial points generated by the algorithm belongs to a
bounded subset of Rn. The assumption that MADS is launched indefinitely is not
realistic, as in practice it necessarily terminates after a finite amount of time. But
for the analysis, we are interested in seeing where the iterates would lead, it the
algorithm were not stopped. The second assumption on the bounded subset can be
satisfied in multiple ways. For example, it is true when the variables are bounded,
or when level sets of f are bounded. In practice, it is not frequent that real problems
have unbounded solutions.

The convergence analysis then focuses on limits of incumbent solutions. Torc-
zon [43] showed for pattern searches that the hypotheses on bounded trial points
implies that there are infinitely many unsuccessful iterations and that the limit infe-
rior of the mesh size parameters Δm

k converges to zero. These results were adapted
in [9] in the context of the MADS algorithm. Let U denote the indices of the unsuc-
cessful iterations and let x̂ be an accumulation point {xk}k∈U . Such an accumulation
point exists because of the assumption that the iterates belong to a bounded set.

An unsuccessful iteration occurs when the POLL step was conducted around the
incumbent xk , and no better solution was found. The mesh size parameter is reduced
only after an unsuccessful iteration. We say that the incumbent solution xk is a mesh
local optimizer. At the low end of the convergence analysis [7], we have the zeroth
order result: x̂ is the limit of mesh local optimizers on meshes that get infinitely
fine. At the other end of the analysis, we have that if f is strictly differentiable near
x̂ then ∇f (x̂) = 0 in the unconstrained case, and in the constrained case, the result
ensures that the directional derivatives f ′(x̂, ;d) are nonnegative for every direction
d ∈ R

n that points in the contingent cone to the feasible region Ω , provided that Ω

is regular [9]. The contingent cone generalizes the notion of tangent cone.
There are several intermediate results in the convergence analysis that involve

different assumptions on f such as lower-semi continuity and regularity, and on the
constraints such as properties of the hypertangent, Clarke tangent, and Bouligand
cones. The fundamental theoretical result in the analysis was shown in [7, 9] and
relies on Clarke’s [21] generalization of the directional derivative f ◦ for nonsmooth
functions. The result states that f ◦(x̂;d) ≥ 0 for every direction d in the hypertan-
gent cone to Ω at x̂. A generalization of this result for discontinuous functions was
recently shown in [45]. In the case where the progressive barrier [10] fails to gen-
erate feasible solutions, the analysis ensures that the constraint violation function
satisfies h◦(x̂;d) ≥ 0 for every direction d in the hypertangent cone to X at x̂.

4.3 NOMAD: A C++ Implementation of the MADS Algorithm

This section describes the NOMAD software [32] which implements the MADS al-
gorithm. We list several of its features, but do not expect to cover all of them in
this chapter. NOMAD is a C++ code freely distributed under the LGPL license. The
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Fig. 4.5 Example of a basic
parameters file. The blackbox
executable bb.exe takes five
variables as input, and returns
three outputs: one objective
function value and two
constraints. The initial point
is the origin and NOMAD
terminates after 100
evaluations

# problem parameters:
DIMENSION 5
BB_EXE bb.exe
BB_OUTPUT_TYPE OBJ CSTR CSTR

# algorithmic parameters:
X0 * 0.0
MAX_BB_EVAL 100

package is found at http://www.gerad.ca/nomad. It includes a complete documenta-
tion, a doxygen [44] interactive manual, and many examples and tools. As for other
derivative-free codes, we expect as a rule of thumb that NOMAD will be efficient for
problems with up to 50 variables.

4.3.1 Batch and Library Modes

NOMAD can be used in two different modes having various advantages. The user
must choose with care the appropriate mode depending on its problem.

First, the batch mode, which launches the NOMAD executable in the command
line with the name of a parameter file given as an argument. This text file con-
tains the parameters that are divided into two categories: problem and algorithmic.
Problem parameters are required while all the algorithmic parameters have default
values. A simple parameter file is shown in Fig. 4.5, and the most important pa-
rameters are described in Sect. 4.3.2. The batch mode is simpler for beginners and
non-programmers. The user must write a parameters file and design a wrapper for
its application so that it is compatible with the NOMAD blackbox format. This for-
mat requires that the blackbox is callable from the command line with an input file
containing the values of the variables, given as an argument.1 The resulting outputs
must be displayed to the standard output with a sufficient precision. The blackbox is
disjoint from the NOMAD code, and consequently the application may be coded in
any programming language, as long as a command-line version is available. A de-
tailed description for one implementation of this command-line interface is covered
in the Appendix. Finally, the batch mode is by definition resilient to the blackbox
crashes that may occur when a hidden constraint is violated: NOMAD will simply
reject the trial point that made the blackbox crash.

The second way to use the NOMAD algorithm is through the library mode. The
user must write a C++ code which will be linked to the NOMAD static library in-
cluded in the package. This way, interactions with NOMAD are directly performed

1Here, we note that for the purposes of metamaterial design and this book, the blackbox terminol-
ogy refers to any electromagnetics solver used to simulate a given metamaterial design.

http://www.gerad.ca/nomad
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via C++ function calls and objects manipulations. The optimization problem is de-
scribed as a class and is written in C++ or in a compatible language such as C,
FORTRAN, R, etc. The problem and algorithmic parameters are given as objects,
and no parameters file is necessary. The library mode must be considered only by
users with basic C++ knowledge. The problem must also be C++-compatible in or-
der to be expressed as a class, and hidden constraints need to be explicitly treated. If
these points are addressed, the advantages of the library modes are numerous. First,
when the blackbox is not costly, the execution will be much faster than the batch
mode since no temporary files and no system calls are used. Second, numerical pre-
cision is not an issue because the communications between the algorithm and the
problem occur at memory level. Third, more flexibility is possible with the use of
callback functions that are user-defined and automatically called by NOMAD at key
events, such as after a new success, or at the end of a MADS iteration. Last, the
library mode is convenient when NOMAD is repeatedly called as a subroutine. Note
finally that a hybrid use of the batch and library modes is possible. For example, one
can define its problem as a C++ class and use a parameters file.

4.3.2 Important Algorithmic Parameters

The objective of this section is not to describe all the parameters, but to discuss the
ones that may have a significative influence on the executions efficiency. The names
of the parameters are not reported here but can be easily found in the user guide or
by using the NOMAD command-line help (option -h).

Starting point(s): As for every optimization method, the starting point choice is
crucial. The user has to provide his/her best guess so far for the method to be
as efficient as possible. Within NOMAD, it is possible to define multiple starting
points. This might be useful, for example, if in addition to a feasible initial solution,
an infeasible one corresponding to a different and promising design is known.

Initial mesh size and scaling: In our opinion, the second most important algorith-
mic choice concerns the initial mesh size. Some defaults related to the scale of the
starting point are used, but the user is encouraged to determine a good problem-
related value. Some automatic scaling is performed, but there again, users should
sometimes consider changing the scale of their variables and study the impact.

Poll directions: The default type of poll directions is ORTHOMADS [3] but some-
times other direction types, such as LTMADS [9], may perform well.

Surrogates: Static and dynamic surrogates can be used with NOMAD. Static surro-
gates are indicated by the user with the same format as the true blackbox. Concern-
ing dynamic surrogates, the current NOMAD version 3.5 includes only quadratic
models, but statistical surrogates will be available in a future release. Dynamic
surrogates may be employed at two different levels: as a SEARCH, and as a way to
sort a list of candidates before they are evaluated. The current NOMAD default is
to use quadratic models at both places.



4 Metamaterial Design by Mesh Adaptive Direct Search 85

Projection to bounds: When generating candidates outside of the hyper-rectangle
defined by the bounds on the variables, NOMAD projects these points to the bound-
ary, by default. For some problems, this strategy might not be the appropriate one.

Seeds: If the context allows multiple executions, changing the random seed for LT-
MADS, or the Halton seed for ORTHOMADS [3], will lead to different executions.

Termination criteria: We finish this expose by indicating that many termination
criteria are available, in addition to the obvious choice of a budget of evaluations.

4.3.3 Extensions of MADS

This section describes some algorithmic extensions that are not covered in Sect. 4.2
on the basic description of MADS. These features may be useful in practice, to
approach an optimization problem through different angles.

Parallel and variable decomposition methods: Three different parallel versions
are available, using MPI. These methods are called P-MADS, COOP-MADS, and
PSD-MADS. P-MADSsimply performs the evaluations in parallel, and two vari-
ants are available. First, the synchronous version waits for all ongoing parallel
evaluations before iterating. This is opposed to the asynchronous variant inspired
from [28] which iterates as soon as a new success is made, even if some evaluations
are still not finished. In case one of these evaluations results in an improvement,
the current iterate and the current mesh size are adjusted accordingly during a spe-
cial update step. The two other parallel methods, COOP-MADS and PSD-MADS,
are provided as tools in the package. The first executes several MADS instances
in parallel with different seeds. Some cooperative actions are performed in order
to guide the search. PSD-MADS performs the same collaborative process, but in
addition, subgroups of variables are considered for each process. This technique is
described in [11] and aims at solving larger problems (50 to 500 variables).

Groups of variables: The user with some knowledge of the problem can create
groups of variables. Directions are then relative to these groups and variables from
separate groups are not going to vary at the same time. This proved useful for
localization problems and in particular the one presented in [4].

Different types of variables: It is possible to define integer and binary variables,
which are treated by special meshes with a minimal size of one. Categorical vari-
ables may also be used. They are handled with the extended poll defined in [1, 31].
For such problems, the user must define a neighborhood structure, which may con-
tain a different number of variables. NOMAD defines the concept of signature that
allows such heterogeneous points. Other types of variables include fixed variables
and periodic variables (angles, for example). The strategy used for the periodic
variables is described in [14].

Bi-objective optimization: In some situations, the user is interested in considering
the tradeoffs between two conflicting objective functions. The method from [16]
executes a series of single-objective optimizations on reformulated versions of the
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original problem. These reformulations are not linear combinations of the objec-
tive, and ensure that non-convex Pareto fronts can be identified.

Variable Neighborhood Search (VNS): For problems with many local optima, it
is possible to enable the generic VNS SEARCH. This strategy has been described
in [6] and uses a variable neighborhood search metaheuristic in order to escape
local optima.

Sensitivity analysis: The last feature described here is a tool that uses bi-objective
optimization in order to conduct sensitivity analyses on the constraints, including
bounds as well as non-relaxable constraints. This is described in [13] with plots
illustrating the impact on the objective of changing the right-hand side of a given
constraint.

4.4 Metamaterial Design Using NOMAD

This section describes the implementation of the NOMAD optimization routine [32]
in combination with full-field electromagnetic simulations to tailor the broadband
spectral response of gold and silver split ring resonator metamaterials. By allowing
NOMAD to “drive” finite-difference time-domain simulations, the spectral position
of resonant reflection peaks and near-field interactions within the metamaterial were
tuned over a wide range of the near-infrared spectrum. While this section discusses
the design problems studied and the optimized results, a detailed discussion of the
implementation used to communicate between the different software packages is
provided in the Appendix.

4.4.1 Split Ring Resonator Optimization

The first example of NOMAD driving the design of metamaterial device geometries
involves the structure shown in Fig. 4.6. Here, the broad-band reflection spectrum
from a single split-ring resonator/cross-bar structure (SRR) surrounded by air was
studied as a function of the device dimensions. All of the electromagnetic simula-
tions studied in this chapter were performed using the finite-difference time-domain
method and the Lumerical software package.

In this section, the SRRs were illuminated with a broad-band plane wave source
from 1–4 µm, and the structure was parameterized based on the height, width, ring
thickness (t1), bar thickness (t2), and gap width. For all simulations, the thickness
of the metal was 100 nm, the E-field was perpendicular to the arms of the SRR,
and the width of the bar was kept the same as the width of the SRR. Also, linear
constraints were imposed to ensure that the parameters made physical sense (e.g.,
2t1 ≥ width), and a gap was always present between the two arms of the SRRs.

Because of the general, double peaked reflection spectrum that comes from the
SRR/bar structure, a double Lorentzian was chosen as a plausible initial target for



4 Metamaterial Design by Mesh Adaptive Direct Search 87

Fig. 4.6 Panel (a) shows a schematic of the SRR structure that was optimized in Sect. 4.4.1.
The electric field intensity at 1500 nm, which corresponds to the resonance of the bar, is plotted
in (b) and the electric field intensity at 2500 nm, which corresponds to the resonance of the SRR,
is plotted in (c). The specific geometry in (b) and (c) corresponds to the optimized spectrum in
Fig. 4.7(c) and Table 4.1

the optimization. Peaks were set at 1500 nm with a reflection intensity of 50 % and
at 2500 nm with a reflection intensity of 35 %. Although the particular target wave-
lengths have been chosen arbitrarily, this double Lorentzian spectrum was chosen to
correspond to the resonant modes of the bar and SRR shown in Fig. 4.6(b)–(c). This
could be considered typical of an application in which the designer wishes to design
a nanoantenna which simultaneously matches the center frequencies and line widths
of both the absorption and the emission processes in a quasi-three level optical sys-
tem, such as coupling to a photoluminescent quantum dot. The target spectrum is
shown as the dashed green curve in Fig. 4.7(a)–(d). Simulations were done with
multiple starting points, listed in Table 4.1, for both gold and silver SRRs. The up-
per and lower bounds for each of the five fit parameters are also listed in Table 4.1,
and the bounds for t1 are starred to indicated the imposed linear constraints. For
these simulations, the objective function used to drive the optimization is listed in
Eq. (4.5), with the first three terms scaled by 1

150 to keep the magnitudes of all six
terms comparable. Through experience, we have seen that objective functions that
focus on a few key points in the broad band spectrum, almost always gives better
results than metrics such as the mean squared error at every point in the reflection
spectrum. If every point in the broad band spectrum is weighted equally, the key
objectives in the cost function are essentially “swamped out” by the remaining hun-
dreds or thousands of other, less important data points. As a result, the general type
of objective function listed in Eq. (4.5) is used throughout the rest of this chapter:

O.F. = |λP 1 − 1500|
150

+ |λP 2 − 2500|
150

+ |λV − 2025|
150

+ |IP 1 − 0.5|
+ |IP 2 − 0.35| + |IV − 0.07|. (4.5)

Here “λP 1” is the shorter wavelength peak position, “λP 2” is the longer wave-
length peak position, “λV ” is the position of the reflection minima between λP 1 and
λP 2, “IP 1” is the intensity of the shorter wavelength peak, “IP 2” is the intensity
of the longer wavelength peak, and “IV ” is the intensity of the reflection minima
between λP 1 and λP 2.
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Fig. 4.7 SRR spectrum optimization using NOMAD with FDTD. Simulations using gold are shown
on the left and simulations using silver are shown on the right. The top row corresponds to sim-
ulations using the first starting point in Table 4.1, and the bottom row corresponds to simulations
using the second starting point

Table 4.1 Starting and optimized dimensions (in nm) for the SRR structures tested in Sect. 4.4.1.
The variables correspond to those listed in Fig. 4.6. Boundary conditions for t1 were linearly con-
strained so that [width − 2t1] > 0 for all optimizations

SRR initial and optimized values

Initial value Gold optimized value Silver optimized value Minimum Maximum

Width 400 450 474 200 600

Height 400 394 412 200 600

t1 100 125 152 50∗ 200∗

t2 100 114 193 50 200

Gap 100 192 184 50 200

Width 500 455 438 200 600

Height 500 476 480 200 600

t1 125 190 182 50∗ 200∗

t2 125 94 105 50 200

Gap 125 190 173 50 200
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Figure 4.7 shows the optimization results for a matrix of initial conditions. The
left panels (a & b) are simulations of gold SRRs, while the right panels (c & d) are
silver SRRs. Table 4.1 details two sets of initial values for each of the resonators’ ge-
ometrical parameters. The top row of Fig. 4.7, panels (a & c), correspond to the first
set of initial conditions. The bottom row, panels (b & d), correspond to the second
starting point. For all four panels, the dashed curve represents the double Lorentzian
target spectrum, the dotted curve represents the reflection spectrum from the starting
point, and the solid curve represents the reflection spectrum from the optimized re-
sult. A close look at the results in Table 4.1 shows that for a each metal, there is some
variability in the optimized results based on the starting point. This is not necessarily
surprising considering the degeneracy in potential solutions for this five-parameter
optimization, and a relatively relaxed convergence tolerance specified during the
optimizations. For all four cases, the results are especially encouraging based on
the fact that the ideal double Lorentzian to which the curves were fit was arbitrarily
chosen, and a perfect fit cannot necessarily be obtained with the given geometrical
constraints and materials.

4.4.2 Split Ring Resonator Filters

The second example involves an array of individual SRRs with the same unit cell
design shown in Fig. 4.6(a). In this case, the array was on top of a sapphire substrate
and was used as a “notch filter”. A seven-parameter NOMAD optimization was per-
formed on this array which included the five parameters from Fig. 4.6(a), as well as
the spacing between scattering elements along the x-axis, parallel to the E-field, and
y-axis, perpendicular to the E-field. Here the objective was to minimize the reflec-
tivity and pass band at a pre-specified wavelength, while maximizing the reflectivity
on either side of the pass band. The objective function used to drive the optimization
is listed in Eq. (4.6):

O.F. = 100 ∗ [(1 − IP 1) + (1 − IP 2) + (IV )
]+ |λP 1 − λP 2| + |λV − λT | (4.6)

where “λT ” is the pass band target wavelength, and the remaining terms are identi-
cal to those used in Eq. (4.5). Target wavelengths of λ = 1310,1550, and 1800 nm
were chosen and the optimization was run with the same starting conditions every
time. The resulting spectra from the three optimizations are shown in Fig. 4.8. All
three optimized spectra show an ∼45 % change in reflectivity at the pass band and
corresponding linewidths of ∼90 meV. The starting and optimized dimensions for
each solution are given in Table 4.2. Figure 4.8 clearly shows successfully opti-
mized designs for all three target wavelengths and the wide range of tunability this
technique can offer in terms of metamaterials design.

As a final check of the solutions’ robustness in the previous sections, a systematic
variation of each parameter of the 400 nm Au SRR in Sect. 4.4.1 and the 1500 nm
SRR filter in Sect. 4.4.2 was performed near the optimized value. Variations from
1–3 % produced a corresponding change in the objective function of <0.3 % for the
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Fig. 4.8 Optimized
reflection spectra for arrays of
SRRs on sapphire substrates.
The array was designed to act
as a notch filter at three target
wavelengths of
λ = 1310,1550, and 1800 nm,
respectively. The dimensions
that produced each spectrum
are given in Table 4.2

Table 4.2 Starting and optimized dimensions (in nm) for the SRR structures in Sect. 4.4.2 de-
signed to act as a notch filter at λ = 1310,1550, and 1800 nm

SRR filter initial and optimized values

Initial value 1310 nm 1550 nm 1800 nm Minimum Maximum

Width 500 348 424 508 200 600

Height 500 356 420 492 200 600

t1 200 100 164 208 50∗ 200∗

t2 100 124 140 104 50 200

Gap 100 51 60 96 50 200

xspacing 200 128 120 192 50 1000

yspacing 200 330 392 436 50 1000

400 nm Au SRR and <4 % for the 1500 nm notch filter. We conclude from this that
the method is robust to local perturbations (which is an attribute of the relationship
between the SRR geometry and the objective function, not the optimization method
used).

4.4.3 Coupling Quantum Dots to Split-Ring Resonators

In the third and final example of this chapter, we examine the design requirements
involved in coupling the previously analyzed resonances of SRRs to the electronic
transition states of quantum dots. The nonlinear nature of metals at optical fre-
quencies makes them strong candidates for nonlinear mixing experiments. As an
example, at these frequencies gold exhibits a strong, third-order nonlinear suscep-
tibility where (χ(3) ∼ 1 nm2 V −2) [41]. Further, one of the biggest strengths of
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Fig. 4.9 The SRR design that was optimized to couple incident light at λ = 3600 nm and
λ = 1800 nm to quantum dots lithographically patterned within the high-field regions of the reso-
nant structure, (a). The plot in (b) shows an idealized resonant spectrum with the 2ω of the gold
matched to a typical absorption spectrum of quantum dots. The optimized dimensions for this
structure are listed in Table 4.4

these nanoscale resonant structures is there ability to manipulate and couple light
in the near-field to nanostructures such as quantum dots. Combining lithography
techniques with surface chemistry modification of the quantum dots presents an in-
teresting opportunity to pattern these dots within the high-field regions of an array
of resonators, Fig. 4.9(a).2 This portion of the process has previously been reported
in the literature [33, 38, 42, 46], and nonlinear mixing within gold nanostructures
has already been demonstrated by Kim et al. [30]. By using the techniques described
in this chapter, we can tailor the exact device geometry to have a resonance at the
electronic transition energy of a specific batch of dots [19].

While there exist a wide range of energy transitions for this type of system, for
this example we consider second harmonic generation studies with resonances at
both λ = 3600 nm and λ = 1800 nm, which would enhance both the absorption
of light λ = 3600 nm (ωAu) and the coupling of light between the resonator and
quantum dots at λ = 1800 nm (∼2ωAu), Fig. 4.9(b). For the case of gold resonators
patterned on a sapphire substrate, the resonance wavelengths were chosen to closely
match those of the lead selenide quantum dots.3

The diagram in Fig. 4.9(b) shows typical broadband absorption spectra of lead
selenide quantum dots (dot-dashed line) overlaid on top of a target resonance spec-
trum of a metamaterial tuned to the wavelengths of interest (solid line). While a
wide range of resonator geometries would satisfy the performance requirements
specified above, throughout this chapter, variations on the basic SRR geometry
have been studied, and will again be used in this section. Using λ = 3600 nm and
λ = 1800 nm as the target spectrum, initial simulations showed that the basic SRR

2Figures 4.9 and 4.10 were produced using the resources of MIT Lincoln Laboratory.
3Lead selenide quantum dot spectra courtesy of Dr. Seth Taylor.
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Table 4.3 Objective
functions used for the design
optimization of an array of
Split Ring Resonators with
resonances at λ = 3600 nm
and λ = 1800 nm, coupled to
quantum dots. For the above
functions, I∗

P 1,2 =
500(1 − IntensityP 1,2). The
resulting broadband
resonance spectra are shown
in Fig. 4.10

O.F. # SRR initial and optimized values

Objective function

1 |λP 1 − 1800| + |λP 2 − 3600|/2

2 |λP 1 − 1800| + |λP 2 − 3600|/2 + I∗
P 1

3 |λP 1 − 1800| + |λP 2 − 3600|/2 + I∗
P 2

4 |λP 1 − 1800| + |λP 2 − 3600|/2 + I∗
P 1 + I∗

P 2

5 |λP 1 − 1800| · |λP 2 − 3600|
6 |λP 1 − 1800| · |λP 2 − 3600| · I∗

P 2

7 |λP 1 − 1800| · |λP 2 − 3600| · I∗
P 1

8 |λP 1 − 1800| · |λP 2 − 3600| · I∗
P 1 · I∗

P 2

structure shown in Sects. 4.4.1 and 4.4.2 was unable to span the wavelength re-
gion of interest; however, the SRR variant shown in Fig. 4.9(a) would. In this case,
the array was on a sapphire substrate and a seven-parameter NOMAD optimization
was performed. While the array optimization in this situation was similar to that in
Sect. 4.4.2; here the gap between the two SRRs was a design parameter with the
lower bound set by fabrication constraints (50 nm), and the height of each SRR
was varied independently. This last parameter is not to be confused with resonator
thickness, which was set at 50 nm for all structures studied in this example. Finally,
the total width and arm width for both SRRs was kept equal for all designs. As in
Sects. 4.4.1 and 4.4.2, a nonlinear constraint was imposed within NOMAD to main-
tain a minimum gap between the arms of each SRR to maintain the general shape
of the broadband reflection spectra.

In an effort to study the convergence behavior of NOMAD using different objec-
tive functions, eight separate multi-objective cost functions were used. These vari-
ants are shown in Table 4.3. For all eight functions, the absolute difference between
the peak wavelengths and the two target wavelengths were included. In addition, the
resonant intensity of one or both of the two broadband peaks were added. Lastly, the
first four objective functions take the sum of all the individual terms, while the last
four take the product of all the individual terms. Here again, the variables in Ta-
ble 4.3 match those in Eq. (4.5).

For each optimization, the initial conditions as well as upper and lower bounds
were kept constant. For all the optimizations studied here, Table 4.4 shows the ini-
tial conditions (Column 2), the corresponding dimensions of the optimized designs
for all eight objective functions (Columns 3–5), and the upper and lower boundary
conditions (Columns 6 & 7).

As in Sects. 4.4.1 and 4.4.2, the idea was to maximize the reflection inten-
sity at the two wavelengths of interest while at the same time, set the peak reso-
nance wavelengths as close to the target wavelengths as possible. From Fig. 4.10
we can see strong resonances from the metamaterial array at both λ = 3600 nm
and λ = 1800 nm; however, there are clearly small differences between the results.
These results illustrate a point that was made in Chap. 2. Even when the key features



4 Metamaterial Design by Mesh Adaptive Direct Search 93

Table 4.4 Starting and optimized dimensions (in nm) for an array of SRRs shown in Fig. 4.9(a)
with dimensions optimized to resonate at both λ = 3600 nm and λ = 1800 nm. The columns “O.F.
1–6”, “O.F. 7”, and “O.F. 8”, correspond to the optimized dimensions obtained using Objective
Functions #1–6, #7, and #8 from Table 4.3. The resulting broadband resonance spectrum is shown
in Fig. 4.10

SRR initial and optimized values

Initial value O.F. 1–6 O.F. 7 O.F. 8 Minimum Maximum

Width 500 467 ± 2 579 592 300 600

Length 1 500 494 ± 1 530 573 300 600

t1 100 134 ± 1 198 196 50∗ 200∗

Length 2 500 494 ± 1 494 549 300 600

Gap 100 114 ± 1 183 113 50 200

xspacing 100 306 ± 8 374 296 100 500

yspacing 100 299 ± 1 299 298 100 500

Fig. 4.10 The SRR design
that was optimized to couple
incident light at λ = 3600 nm
and λ = 1800 nm to quantum
dots lithographically
patterned within the
high-field regions of the
resonant structure, (a). The
plot in (b) shows an idealized
resonant spectrum with the
2ω of the gold matched to the
measured absorption
spectrum of the quantum
dots. The optimized
dimensions for these spectra
are listed in Table 4.4

of the broadband spectrum are well known, the way in which these terms are com-
bined can prove to be one of the most challenging parts of the design optimization.
Figure 4.10 clearly illustrates that while the three optimized spectrum that resulted
from the eight objective functions all closely match the intended optimized spec-
trum, objective function #8 is clearly better than the other two.

While these resonances are close, but not a perfect match to the desired reso-
nances, the full-width half-maxima of the resonances for O.F. #8 at λ = 1800 nm
and λ = 3600 nm are ∼240 nm and ∼675 nm respectively, and that of quantum
dots such is ∼150 nm. Hence, while the inherently broad nature of the resonances
from metamaterial arrays is normally considered a drawback; in this situation, it can
compensate for some amount of discrepancy between the optimized peaks and the
ω and 2ω targets.



94 C. Audet et al.

Finally, it should be noted that this example is only a first-order result. Here, the
resonances of the quantum dots and the metamaterial are considered independently
when setting the objective function targets. The addition of quantum dots into the
near-field of the SRRs, will introduce perturbations in the local dielectric environ-
ment and as a result, shift the actual resonances from those predicted in the sim-
ulations. While non-negligible, this change is a second-order effect and combined
with the substantial bandwidth of the individual resonances, should not significantly
affect the results of the example.
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Chapter 5
Nature Inspired Optimization Techniques
for Metamaterial Design

Douglas H. Werner, Jeremy A. Bossard, Zikri Bayraktar, Zhi Hao Jiang,
Micah D. Gregory, and Pingjuan L. Werner

Abstract This chapter considers a class of optimization techniques that were de-
veloped to imitate processes found in nature. Nature is a wonderful source of in-
spiration for global optimization because so many aspects of natural phenomenon
can be mimicked and employed for solving challenging design problems, from the
very process of evolution to the coordinated search behavior of various swarming
organisms. Nature inspired search algorithms have played an important role in elec-
tromagnetic design, as they have proven to be very robust at solving complex prob-
lems with many design parameters. Also, as the field of metamaterials has devel-
oped, optimization has become an important tool in the quest to overcome perfor-
mance limitations such as high loss and narrow bandwidth, which have limited the
widespread use of metamaterials in practical device applications. In the first part of
this chapter, three prominent nature inspired optimization algorithms are described
in detail, including the genetic algorithm (GA), particle swarm optimization (PSO),
and the covariance matrix adaptation evolutionary strategy (CMA-ES). Following
this, several examples of metamaterial surfaces are presented that have each been
optimized by one of the three nature inspired techniques. Finally, two homogeniza-
tion techniques that can be employed to invert scattering parameters for a slab of
metamaterial to obtain isotropic or anisotropic effective medium parameters are ex-
amined and used in conjunction with a GA to overcome previous limitations in terms
of loss and angular stability in metamaterials.

5.1 Introduction

Nature inspired optimizers generally fall under the category of global optimization
techniques as illustrated in Fig. 5.1. Unlike local optimizers, global optimization
techniques are more robust for solving complex engineering design problems in
which there may be multiple minima in the parameter space where a local optimiza-
tion could become stuck. Here, the cost function is treated as a black box, where
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Fig. 5.1 Flowchart showing the family tree of optimization methods

the algorithm probes discrete locations in the parameter space, and higher order
knowledge of the cost surface such as the surface gradient, which may be difficult
or impossible to obtain, does not need to be known.

A primary drawback of nature inspired optimizers is the number of function eval-
uations that are required to converge to a result. However, because many indepen-
dent designs are evaluated at each iteration of the algorithm, these techniques are
good candidates for parallel computing. Hence, efforts have been made to paral-
lelize these algorithms to reduce the total optimization time. Furthermore, newer
algorithms such as CMA-ES are more efficient in terms of speed of convergence,
requiring fewer cost evaluations than their older counterparts.

A variety of nature inspired optimization techniques have been introduced and
applied to solving engineering design problems. Probably the most well known is
the genetic algorithm (GA), which is inspired by the Darwinian notion of natural
selection in evolution [31]. GAs have been widely studied and applied to electro-
magnetic optimization problems [43]. Differential evolution (DE) is another nature-
inspired algorithm that is simple and straightforward to implement and can provide
fast convergence as compared with other evolutionary strategies [88]. The covari-
ance matrix adaptation evolutionary strategy (CMA-ES) is a newer method that op-
erates by moving and reshaping a Gaussian search distribution within the parameter
space [33, 40]. CMA-ES has been gaining in popularity because of its fast con-
vergence and ease of use. The clonal selection algorithm (CLONALG) mimics the
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natural response of the immune system in vertebrates to stimulus from antigens [18].
A parallel version of CLONALG has recently been introduced into the electromag-
netics community as an effective alternative to the GA for multimodal problems [4].
Particle swarm optimization (PSO) is an artificial implementation of the social intel-
ligence of insect swarms, where particles share information as they work together to
search for the problem solution [11]. Wind driven optimization (WDO) is a related
algorithm that is based on the movement of air particles through the atmosphere [8].
Ant colony optimization (ACO) is inspired by the foraging behavior of ants [23]
and has been effectively used for electromagnetics design [44]. Invasive weed op-
timization (IWO) is another new stochastic optimization algorithm inspired from
colonizing weeds that has also been applied to electromagnetic problems including
array synthesis and antenna design [49]. These algorithms indicate the wide range
of optimizers that have been inspired by natural systems. Throughout this chapter,
we will focus on the implementation and application of three of the nature inspired
search algorithms, namely the GA, PSO, and CMA-ES.

In the first part of this chapter, three prominent nature inspired optimization al-
gorithms will be described in detail, including the genetic algorithm (GA), particle
swarm optimization (PSO), and the covariance matrix adaptation evolutionary strat-
egy (CMA-ES). Following this, several examples of metamaterial surfaces will be
presented that have each been optimized by one of the three nature inspired tech-
niques. Finally, the last part of the chapter will examine two homogenization tech-
niques for metamaterials that can be employed to invert scattering parameters for a
slab of metamaterial to obtain isotropic or anisotropic effective medium parameters.
Both of these inversion techniques will be used in conjunction with a GA to over-
come previous limitations in terms of loss and angular stability in metamaterials.

5.2 Nature Inspired Optimization Methods

While there are many nature inspired optimization methods that have been devel-
oped and introduced to the electromagnetics community, the following sections will
focus on explaining the operation of three techniques. The first technique described
in Sect. 5.2.1 is the genetic algorithm (GA) which seeks to evolve designs according
to the principles of natural selection. The GA is an early nature inspired optimization
method that has a proven track record for electromagnetic design. Particle swarm
optimization (PSO), which will be detailed in Sect. 5.2.2, is an artificial implemen-
tation of the social intelligence of insect swarms that has also been extensively used
by the electromagnetics community. The last technique described in Sect. 5.2.3 is a
relative newcomer. The covariance matrix adaptation evolutionary strategy (CMA-
ES) is a self-adaptive search algorithm that can act as a “black box” for the end user.
In contrast to GA and PSO, which both have many knobs that can be tweaked to tune
the optimization, CMA-ES tunes itself during the optimization process and also has
the advantage of requiring relatively fewer function evaluations before convergence.
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5.2.1 Genetic Algorithms

The basis for one of the most popular nature inspired optimization techniques in
computational electromagnetics is the evolutionary process. Evolution combined
with genetics can be seen as an analogy to numerical optimization, where genes are
the parameters defining living organisms, and evolution is the process by which or-
ganisms are optimized for surviving in their environment. A genetic algorithm (GA)
mimics the evolutionary process by casting the parameters of a given design prob-
lem as genes and then evolving the design features over multiple generations while
applying the principle of survival of the fittest until the parameters are optimized to
a most fit design.

The GA was originally introduced in 1975 by Holland [45] and then later ap-
plied to many practical problems by Goldberg [31]. In the field of electromagnetics,
the GA has been employed to solve a wide variety of problems ranging from an-
tenna element design and phased array synthesis to scattering control of frequency
selective surfaces and absorbers [43]. GAs have also been successfully employed to
synthesize a variety of metamaterials as will be discussed in more detail when some
specific examples are considered later in this chapter.

The GA operates on a population of individuals that are each represented by a
chromosome containing all of the genes, or parameters, that describe the design:

population =

⎡

⎢⎢⎢
⎣

chromosome1
chromosome2

...

chromosomeN

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

gene11 gene12 . . . gene1M

gene21 gene22 . . . gene2M
...

...
. . .

...

geneN1 geneN2 . . . geneNM

⎤

⎥⎥⎥
⎦

(5.1)

where the population contains N chromosomes, and M parameters are defined in
the chromosome. In the GA implementation, the genes can be represented by either
binary bits or by real numbers and are each mapped to design parameters. These
parameters can be discrete values, such as an index to a table of materials, or con-
tinuous values, such as the dimension of a feature in the design. The user must
define the parameters in the design as well as how the genes will be mapped to the
design parameters. The user must also define a fitness function f that accepts the
chromosome as input and provides the cost as output:

f

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢
⎣

chromosome1
chromosome2

...

chromosomeN

⎤

⎥⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢⎢⎢
⎣

cost1
cost2

...

costN

⎤

⎥⎥⎥
⎦

. (5.2)

The cost is a measure of the design performance, where low cost indicates a high
fitness. The fitness evaluation of the population can be done sequentially using a
single processing thread, or the chromosomes can be fed to multiple processors and
be evaluated in parallel in order to greatly speed up the total execution time of the
GA.
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Fig. 5.2 Flowchart showing
the operation of the genetic
algorithm

A flowchart showing the operation of the GA is given in Fig. 5.2. After the user
defines the design parameters and the fitness function, the GA starts by initializing
the population with random chromosome values. This initial population spreads ran-
dom “guesses” of the optimal solution across the M dimensional parameter space.
The initial population members are then fed into the user provided fitness function
as shown in (5.2) to determine the cost, or performance, of each design.

Once the population fitness has been evaluated, the better performing members
are chosen to mate and fill out a new generation, mimicking the process of natural
selection. A mating pool is first formed by either sorting the population according
to cost and then keeping the top Nsel members, or by using a threshold such as
the mean or the median cost to eliminate any population members with a worse
performance than the threshold value. Members in the mating pool have survived
natural selection and are eligible for breeding. Two common methods for imple-
menting mate selection are using a roulette wheel and tournament selection. In the
first method, the mating pool must first be sorted in order from lowest to highest
cost. A roulette wheel is generated at the beginning of the optimization, giving each
chromosome in the mating pool the following probability of being selected:

pn = Nsel − n + 1
∑Nsel

i=1 i
(5.3)

where n is the index to the chromosome array sorted from lowest to highest cost.
For instance, a mating pool size of four would generate the following probabilities
P = [0.4,0.3,0.2,0.1]. For each parent, a uniform random number in the range
[0,1] is generated, which would map as follows to a four parent mating pool:

0.0 ≤ r ≤ 0.4 → chromosome1,

0.4 ≤ r ≤ 0.7 → chromosome2,

0.7 ≤ r ≤ 0.9 → chromosome3,

0.9 ≤ r ≤ 1.0 → chromosome4.

(5.4)
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If the random number r = 0.4378 is generated, then chromosome2 will be used as a
parent for mating.

The tournament selection method does not require the mating pool to be sorted.
In this method, a small group (typically two or three) of chromosomes are randomly
selected from the mating pool for each tournament. In each group, the two chromo-
somes with the lowest cost are mated to produce offspring. Tournament selection
can be used with thresholding so that neither the population nor the mating pool
require sorting. According to [42], using either tournament selection or sorting and
a roulette wheel results in similar probabilities of selection for a given chromosome.

Once two parents (parent1 and parent2) are selected for mating, offspring are
generated using a crossover operation. In the case of a binary-valued chromosome,
a binary mask is generated with the same length as the chromosome. Each bit in the
mask indicates from which parent the corresponding bit in the offspring will come.
The binary mask can be generated using several methods, including single point
crossover, double point crossover, or uniform crossover. Uniform crossover is the
most general case, in which each bit in the mask is randomly populated. A single
point crossover mask with 10 bits and the crossover point chosen after the sixth bit
would be:

mask = [ 1 1 1 1 1 1 0 0 0 0 ]. (5.5)

If the parents have the values:

parent1 = [ 1 0 0 0 1 1 1 0 1 1 ],
parent2 = [ 1 1 0 1 0 1 0 1 0 1 ], (5.6)

then the offspring generated using this mask would be:

offspring1 = [ 1 0 0 0 1 1 0 1 0 1 ],
offspring2 = [ 1 1 0 1 0 1 1 0 1 1 ] (5.7)

where the bits coming from parent1 are highlighted in gray. In the case of a real-
valued chromosome, several techniques for performing crossover on continuous val-
ues are described in [43].

After selection and crossover have been performed to fill out the population for
the next generation, a small percentage of bits in the new population are mutated
in order for the algorithm to continue exploring new parts of the parameter space.
If a bit is randomly selected for mutation, then its binary value is flipped from 0
to 1 or from 1 to 0. In the case of a real-valued chromosome, it is common to
mutate a gene by giving it a new random value within its allowed range. Typical
mutation probabilities are on the order of a few percent, but one variation on a GA
called a micro GA uses a mutation probability of zero. A micro GA will converge
to a solution much quicker than a GA, but the lack of mutation does not allow the
micro GA to search the parameter space beyond the range afforded by the initial
population.
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The final step in populating the new generation is to optionally enforce elitism.
Elitism ensures that the global best fitness is maintained between generations by
copying the chromosome with the best fitness from the previous generation into the
new population. At this point, the new population is ready to be evaluated by the
fitness function.

This generational cycle of evaluating fitness and filling out a new population us-
ing natural selection, mating, and mutation continues until the algorithm is stopped
according to a predefined termination criterion or manually by the user. Some com-
mon conditions for terminating the run include reaching a cost value lower than an
acceptable minimum, the cost has not improved after a set number of iterations, or
completing a set number of generations.

5.2.2 Particle Swarm Optimization

The artificial implementation of the social intelligence of insect swarms [11] has
been of interest to many researchers over the last few decades, resulting in various
successful applications from robotics to optimization [26, 92]. To the untrained eye,
swarm behavior may appear very chaotic, yet it can execute highly coordinated and
sophisticated working structures that perform different tasks ranging from searching
for food to defending against predators, each of which are crucial to the survival of
all members in the population.

The particle swarm optimization (PSO) technique was introduced in 1995 by
Kennedy and Eberhart as an artificial implementation of swarm intelligence [25, 50]
to mimic the decentralized but coordinated movements of the members of a swarm
over an N -dimensional search space. In essence, PSO is a heuristic, population-
based, iterative global optimization algorithm. In PSO, the population, i.e., the
swarm, consists of a predetermined number of infinitesimally small members, which
are also called particles. The coordinates of a particle over the search space are
mapped to the optimization parameters, which correspond to a unique solution can-
didate for the optimization problem at hand. As particles traverse the search space,
they try to improve their location by remembering their personal best locations and
sharing this information among the rest of the population. This information sharing
approach sets PSO apart from the GA, where the GA relies on competition among
its population members.

As shown in the flowchart in Fig. 5.3, PSO starts with the initialization of its
parameters, including specifying the constraints on the search boundaries for each
dimension [xd

min, x
d
max] and on the maximum allowed velocity (vmax). The swarm of

infinitesimally small particles are each assigned a position vector (x) and randomly
distributed within the boundaries of the N -dimensional search space. The movement
of the swarm over the search space can be analogous to a flock of birds flying over
a hilly terrain in search of the best position to land. The hills and valleys of the
terrain are analogues to the maxima and minima cost locations within the search
domain, where each particle evaluates its current location based on the user-defined
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Fig. 5.3 Flowchart showing
the operation of the particle
swarm optimization

cost function. The location vector that provides the lowest cost among all particles
is assigned to be the global best location (xgbest). If the global best location provides
a desired minimum cost defined by the user, the optimization would terminate. If the
targeted cost has not been achieved, the iterative procedure continues by updating
the velocity (v) and the position of each particle. The velocity update formula is
given by:

ν(t + δt) = (ω · ν(t)
)+ c1 · (xpbest − x(t)

)+ c2 · (xgbest − x(t)
)

(5.8)

where ν(t + δt) is the updated velocity vector for each particle, ω is the nostalgia
term, c1 and c2 are randomly-generated constants, x(t) is the position vector of the
particle at the current iteration, and xpbest and xgbest are personal best location of the
particle and the global best location of the whole swarm, respectively. The position
of each particle is then updated according to:

x(t + δt) = x(t) + [δt · ν(t + δt)
]

(5.9)

where for each particle, i, the position vector of the current iteration, x(t), is updated
to the position vector of the next iteration, x(t + δt). The time step, δt , is usually
chosen to be δt = 1 for simplicity.

Since the dimensions of the search space are limited by upper and lower bound-
aries, constraints must be placed on the particle velocities and positions, so that the
PSO can efficiently search for good solutions. Fast particles can take large steps at
each iteration and easily overshoot good regions of the search space, which, in turn,
hinders the performance of the optimization algorithm. Taking large steps would
also result in the particles traveling quickly and accumulating at the boundaries
without completely exploring the search space. Hence, exceedingly fast particles
must be velocity limited according to:

if
(∣∣ν(t + δt)

∣∣> νmax
)

then ν(t + δt) = νmax · ν(t + δt)

|ν(t + δt)| (5.10)
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Table 5.1 Description of the particle swarm optimization terminology

Term Description

Particle Representation of a candidate solution to the N-dimensional
optimization problem

Population (i.e., Swarm) A predetermined number of particles, which iteratively alter their
dimensions in search of the best parameter values for the
optimization problem

Generation Successive iterations, where velocity and position of particles are
updated

Position; x(t) The coordinates of a particle, which corresponds to the parameter
values for the N-dimensional optimization problem

Velocity; ν(t) The main operator that determines the position change every
iteration

Cost Function A scalar value assigned to each particle, i.e., candidate solution,
based on their proximity to the desired design goals

xgbest Best location found among all particles up until the current iteration

xpbest Personal best location found by each particle up until the current
iteration

νmax The maximum allowable velocity in one dimension

to prevent particles from skipping over large areas of the search space. Furthermore,
if a particle passes the boundary of a given dimension, the position is reset along
that dimension according to:

if
(
xd > xd

max

)
then xd = xd

max or if
(
xd < xd

min

)
then xd = xd

min (5.11)

to prevent the particle from flying out of the boundaries.
This iterative procedure of evaluating the swarm cost and then updating particle

velocities and positions continues as the PSO is searching for the optimum coordi-
nates. Finally, the PSO can be terminated according to some preset criteria, such as
reaching a global best cost value lower than an acceptable minimum or completing
a certain number of time steps. A summary of the PSO terminology along with a
description is given in Table 5.1. The PSO algorithm is an effective tool for optimiz-
ing metamaterials as will be demonstrated through the synthesis of a double-sided
artificial magnetic conducting (DSAMC) ground plane presented in Sect. 5.3.2.

5.2.3 Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) Optimization

The most commonly used techniques for global function minimization in the elec-
tromagnetics community have been the previously described genetic algorithm
(GA) [43, 45] and particle swarm optimization (PSO) methods [10, 25, 26, 30, 50,
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77]. These techniques have worked well for most problems facing engineers in the
field thus far, yielding designs with suitable performance in reasonable amounts of
time. However, electromagnetics simulation software and computing platforms have
substantially advanced in the past few decades, nearly to the point where if a design
can be conceptualized, it can likely be simulated, giving the designer a great deal
of flexibility and potentially leading to optimization problems with dozens of pa-
rameters, or even more. Even with modern high-performance computing platforms,
full-wave simulation of such designs can require substantial amounts of time, and
optimizations using these analysis methods often require many function calls (i.e.,
simulations) to reach a desired performance goal. For this reason, it is always of
interest to those using evolutionary design to select an algorithm which offers the
fastest optimization times (in the form of the fewest cost function calls) with a rea-
sonable certainty that an acceptable solution will be found.

The covariance matrix adaptation evolutionary strategy (CMA-ES) is an increas-
ingly popular method for global optimization of real-valued electromagnetics design
problems [33]. The current algorithm has been developed incrementally in the evo-
lutionary computation (EC) community [39–41], where it has proven itself to be a
very competent and competitive strategy [37, 38]. Self-adaptive strategies such as
CMA-ES are a popular and powerful technique for global function minimization. In
addition, to the designer it is relatively easy to use as a “black-box optimizer” re-
quiring only the selection of the population size before beginning an optimization.
In this section, the inner workings of the CMA evolutionary strategy are explained.
Illustrations with a simple test function are used to demonstrate how the algorithm
performs.

CMA-ES operates by moving and reshaping a Gaussian distribution about the
search space in an attempt to find the global function minimum. The distribution
is completely defined by the mean, m, and the shape, σ 2C. Several internal strat-
egy parameters, such as evolution paths, are utilized to give the algorithm its self-
adaptive properties. In addition, the algorithm makes use of cumulation to dampen
the adaptation of the covariance matrix to effectively work with small population
sizes. Evolutionary strategy parameters such as mutation and crossover rates with
the GA, or nostalgia and social constants with PSO are commonly chosen before-
hand and remain fixed during the course of optimization. However, not only does
this leave the decision up to a “best guess” for the user (although there are usu-
ally suggested values for each algorithm), but the ideal set of strategy parameters is
likely problem dependent and may also change throughout the course of the opti-
mization. Modern self-adaptive strategies such as CMA-ES internally adjust search
characteristics according to progress, accounting for changing function landscapes
and attempting to make the most progress in the fewest number of algorithm itera-
tions.

CMA-ES uses several strategy parameters and internal operating scalars, vectors,
and matrices for its operation. The strategy parameters along with their symbols and
descriptions are provided in Table 5.2. Although there seems to be many to choose,
all but the population size λ are determined by the properties of the problem. Once
the population size has been selected, many of the other parameters are then deter-
mined by the choice of λ. The internal operating parameters are given in Table 5.3.
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Table 5.2 Symbols, values, and descriptions of the strategy parameters of CMA-ES

Symbol Value Description

n Determined by problem Number of optimizable parameters

λ λ ≥ 4 + �3 ln n� Population size or number of children

μ μ = �λ/2� Number of parents, typically λ/2

wi wi = ln(μ′+0.5)−lni∑μ
j=1 ln(μ′+0.5)−lnj

where μ′ = λ/2 Selection/recombination weights

μeff μeff = (
∑μ

i=1 w2
i )

−1 Variance effective selection mass

cσ cσ = μeff+2
n+μeff+5 Learning rate for cumulation of the step

size control

dσ dσ = 1 + cσ + 2max(0,

√
μeff−1
n+1 − 1) Damping parameter for the step-size

update

cc cc = 4+μeff/n
n+4+2μeff/n

Learning rate for cumulation of the
rank-one update of the covariance matrix

c1 c1 = 2
(n+1.3)2+μeff

Learning rate for the rank-one update of
the covariance matrix

cμ cμ = min(1 − c1,
2μeff−4+2/μeff
(n+2)2+μeff

) Learning rate for the rank-μ update of the
covariance matrix

Table 5.3 Symbols and descriptions of the internal operating parameters of CMA-ES

Symbol Description

σ ∈ R
+ Step-size

m ∈ R
n Distribution mean

C ∈ R
n×n Covariance matrix

B ∈ R
n×n Columns are eigenvectors of C

D ∈ R
n×n Diagonal elements are eigenvalues of C

pσ ∈ R
n Conjugate evolution path

pc ∈ R
n Evolution path

zk ∈ R
n A sample from the standard Normal multivariate distribution

yk ∈ R
n A sample from the distribution N (0,C)

xk ∈ R
n An offspring or potential candidate solution

These contain the information about the search distribution, evolution paths to deter-
mine past properties of the distribution, and information about population members.

For illustration purposes, a simple canyon test function shown in Fig. 5.4 will be
used to demonstrate the operation of the algorithm. The test function was specifi-
cally designed to have diagonal trenches to show how CMA-ES effectively traverses
irregular and inseparable search spaces. The algorithm is initialized by setting the
initial distribution position (m) and shape (σ 2C) as well as choosing a population
size. After the problem is formulated, the initial position is typically set randomly
inside the search boundary, although, like most evolutionary strategies, it can be
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Fig. 5.4 The canyon test
function used for illustrating
the operation of CMA-ES.
The minimum function value
and goal is located at
(x, y) = (0.764,0.724)

preset to a specific position if information is known about the problem. The initial
shape is usually set such that for each parameter, the distribution has a standard de-
viation of one-third of its range. This leaves the user to choose only the population
size, for which

λ ≥ 4 + �3 ln n� (5.12)

is recommended [41], with larger populations resulting in increased robustness and
global search capacity at the cost of slower optimization (in the form of more func-
tion calls). Once λ is selected, all of the strategy parameters in Table 5.2 can then
be computed. The evolution paths in Table 5.3 are both set to 0 upon initialization
as well. The initial distribution configured to operate on the test function in Fig. 5.4
is shown in Fig. 5.5 (at iteration 0). A small initial step-size is used in this exam-
ple since the function is simple and it illustrates the ability of CMA-ES to easily
traverse the search spaces. Additionally, a large population size is again used for
illustrative purposes, as it tends to generate a more regular movement of the distri-
bution. Smaller population sizes tend to have more sporadic movement of the mean
about the search space, yet result in fewer total function evaluations.

With the initial distribution and evolution paths configured, the algorithm is
ready to begin the first round of sampling. In order to sample from the distribu-
tion N (m, σ 2C), the covariance matrix must first be broken up into its eigenvectors
B and eigenvalues D. This is commonly done through principle component analy-
sis (PCA), also called eigendecomposition. For optimizations where cost function
calls are very fast, PCA can consume a significant percentage of the total CPU time.
However, for electromagnetics design problems, cost function calls are usually the
primary time consumer due to the need for computation-intensive simulations. Once
B and D are obtained, N (m, σ 2C) can be sampled by first drawing from a standard
Normal distribution (a simple procedure for computers)

z
g
k ∼ N (0, I ) (5.13)

and then transforming to the desired distribution through

y
g
k = BDzk (5.14)
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Fig. 5.5 Operation of CMA-ES on the two-dimensional cavern test function shown in Fig. 5.4.
A population size of λ = 30 is used with the algorithm initialized to m = (0.2,0.7), σ = 0.1, and
C = I. The dashed ellipse represents a contour of equal likelihood of selection. The μ selected
children from each iteration are represented by green circles; the (λ−μ) discarded children with a
red ×. The arrow represents the movement of the mean at each iteration. A smaller than nominal
initial step-size is used to highlight the ability of the algorithm to traverse valleys of low cost in
inseparable search spaces

and

x
g
k = m + σy

g
k , (5.15)

giving our first set of candidate solutions (or population members) at iteration g = 0.
Now the population is evaluated according to the user-defined cost function to return
a single cost value for each member. It is not uncommon here for a large cluster of
computers to each share in the burden of computing the cost of one or more of the
population members, thus saving the user a significant amount of total optimization
time. After the entire population is evaluated, the members y

g
k and x

g
k are sorted
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(where the sorted members are identified by y
g
i:λ and x

g
i:λ) according to cost value

and are used to form the new mean given by

〈y〉w =
μ∑

i=1

wiy
g
i:λ (5.16)

and

mg+1 = mg + σg〈y〉w, (5.17)

which is also equivalent to simply adding a weighted average of the μ best members
in

mg+1 =
μ∑

i=1

wix
g
i:λ. (5.18)

After the new mean is computed, the conjugate evolution path and evolution path
are updated using

pg+1
σ = (1 − cσ )pg

σ +√cσ (2 − cσ )μeff
(
Cg
)− 1

2 〈y〉w (5.19)

and

p
g+1
c = (1 − cc)p

g
c +√cc(2 − cc)μeff〈y〉w, (5.20)

respectively. These contain normalized (5.19) and non-normalized (5.20) distribu-
tion movement history that is used for updating the step size and covariance matrix,
respectively. Note that C−1/2 can be found through the identity

C−1/2 = BD−1BT, (5.21)

for which D−1 can be computed easily as it contains only diagonal terms. Next, the
step size is updated using

σg+1 = σge
cσ
dσ

(
‖pσ ‖

E‖N (0,I )‖ −1) (5.22)

where E‖N (0, I )‖ is the expected value of the n-dimensional standard normal dis-
tribution. Lastly, the covariance matrix is updated using

Cg+1 = (1 − c1 − cμ)Cg + c1pcp
T
c + cμ

μ∑

i=1

wiyi:λyT
1:λ (5.23)

where the first term is the historical contribution (cumulation), the second term is
the rank-one update (elongation of distribution along the direction of search), and
the third term is the rank-μ update (formation of distribution from successful search
steps). Note that the update signals hσ and δ(hσ ) are omitted for simplicity from
(5.20) and (5.23) in the aforementioned implementation of CMA-ES [35]. With
the updated mean, step-size, and covariance matrix, the next round of sampling
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can begin and the process repeats until the desired function value is reached, the
algorithm converges, or time is expired.

The remaining blocks in Fig. 5.5 show the algorithm progressing along the search
space, eventually finding the desired function goal of 0.001 over 15 iterations. It
is easy to observe how the algorithm effectively operates by extending the search
distribution along the path of movement, thus ensuring that future steps will yield
solutions with lower cost. Conversely, when the movement beings to slow, the step-
size shrinks, and the algorithm starts to search locally.

While implementing CMA-ES is much more complex as compared with a sim-
ple genetic algorithm or particle swarm technique, the implementation challenges
are balanced by the considerable advantage that CMA-ES offers in terms of perfor-
mance improvement over the simpler strategies [33, 37, 38]. For common electro-
magnetics problems, where cost function calls can take minutes or longer per eval-
uation, the optimization time can be reduced to a fraction of what was previously
required, sometimes subtracting hours or days from the optimization process. For
example, in [33] the time to design a simple stacked-patch antenna with CMA-ES
was reduced to 38 % of what was required with PSO (18 hours versus 47 hours).

In addition to being a fast algorithm, CMA-ES also tends to be robust even with
the smallest recommended population size given by Eq. (5.12). The stacked-patch
antenna optimization reported in [33] was carried out reliably with a population
size of 10 compared to the population of 40 particles needed by PSO to be reliable.
Also in [33], several different ultra-wideband (UWB) non-uniformly spaced antenna
array layouts were optimized, demonstrating the ability of the algorithm to quickly
generate a large number of high performance designs with as many as 100 elements.

The effectiveness of CMA-ES for optimization of metamaterials will be demon-
strated later in Sect. 5.3.3 of this chapter, where it is utilized for synthesizing a
matched magneto-dielectric absorber. Readers interested in implementing CMA-ES
are highly encouraged to visit Hansen’s webpage to obtain source code and to read
the provided tutorial [35, 36]. More details on the application of CMA-ES to specif-
ically solving electromagnetics problems can be found in [33].

5.3 Metamaterial Surface Optimization Examples

There are many types of artificial surfaces with novel electromagnetic properties
that have been proposed and demonstrated. Three examples of metamaterial sur-
faces will be considered in the following sections that have been synthesized by
each of the nature inspired optimizers described in this chapter. In Sect. 5.3.1, a
dual-band metamaterial absorber (MMA) with wide angular stability is synthesized
using a GA. Then, in Sect. 5.3.2, PSO is utilized to design a double-sided artifi-
cial magnetic conducting (DSAMC) ground plane. Finally, in Sect. 5.3.3, another
type of absorber based on a matched-impedance magneto-dielectric metamaterial
(MIMDM) is synthesized using CMA-ES.
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5.3.1 Metallo-Dielectric Metamaterial Absorbers for the Infrared

Most metamaterial development work has focused on engineering the real part of
the effective permittivity and/or permeability [56]. However, a recently proposed
perfect metamaterial absorber (MMA) has drawn attention to the oft-overlooked
imaginary part of the optical constant, which can be manipulated to create high ab-
sorption [63]. The availability of such MMAs could provide significant performance
improvements for diverse applications including microwave-to-infrared signature
control [16, 51, 63, 95], bio-chemical spectroscopy [9, 17, 66, 89–91, 97, 99], and
thermal imaging [19, 62, 67]. Compared with classical absorber designs such as
Salisbury screens, metamaterial absorbers can possess much thinner structures, ren-
dering them more suitable for radar and tracking applications. Nevertheless, most
up-to-date metamaterial absorber designs, covering the RF [16, 51, 63, 95] and THz
[9, 62, 89–91, 97] up to IR [62, 66, 67, 99] wavelengths, function only at either
near-normal incidence or for a single polarization. In this section, the electromag-
netic design and nanofabrication of a conformal MMA is effectively optimized by
a genetic algorithm (GA) to have two nearly perfect, narrow absorption bands cen-
tered at mid-infrared (mid-IR) wavelengths of 3.3 and 3.9 μm with polarization-
independent absorptivity greater than 90 % over a ±50◦ angular range [48].

This dual-band mid-IR MMA employs a three-layer metallodielectric stack com-
posed of two gold (Au) layers—a doubly periodic array of electrically isolated
nanoresonators at the top and a solid ground plane at the bottom—separated by
a thin dielectric layer. Kapton was chosen for the dielectric layer because it is a
highly durable and flexible polymer that can easily conform to the topography of
most practical curved surfaces. The array of Au nanostructures on the top screen
create a resonant electric response, while the Au ground plane functions together
with the top screen to produce strong coupling to the magnetic component of the
incident light radiation. The continuous Au ground plane, which is thicker than the
penetration depth of light in the mid-IR wavelength regime, prevents transmission
of incident radiation through the structure. Therefore, strong absorption is achieved
by minimizing the in-band reflection. Importantly, the Au ground plane also decou-
ples the electromagnetic properties of the MMA coating from the surface it protects,
allowing integration onto curved surfaces of arbitrary materials.

A robust GA coupled with a full-wave electromagnetic solver was employed
to optimize the geometry and dimensions of the structure to best satisfy the user-
defined requirements. During the GA evolution, the wavelength-dependent scatter-
ing parameters of each candidate design were calculated using the Ansoft High Fre-
quency Structure Simulator (HFSS) full-wave finite-element solver with appropriate
boundary conditions assigned to approximate a TEM wave incident on the structure
at different angles. The absorptivity was calculated by A = 1 − TTE,TM − RTE,TM,
where TTE,TM = |S21|2 and RTE,TM = |S11|2 represent the TE and TM reflectiv-
ity and transmittance, respectively. The absorptivity was evaluated against an ideal
dual-band absorber response to determine its cost, given by

Cost =
∑

λ

∑

θi

[
(1 − Aθi,TE) + (1 − Aθi,TM)

]
(5.24)
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Fig. 5.6 Pixellized unit cell
geometry with 8-fold
symmetry and a 14 × 14
array of pixels. One triangular
fold is encoded into the
chromosome with “0”
representing no metal and “1”
representing metal

where λ is the wavelength of the arbitrarily selected target bands (3.3 μm, 3.9 μm)
and θi is the desired angle of incidence range (θi = 0◦,10◦,20◦,30◦,40◦,50◦). The
GA evolved the top Au screen nanoresonator geometry, unit cell size, and Kapton
thickness until it converged to a sufficiently low cost solution (i.e., the optimization
goal was achieved).

The unit cell geometry was pixellized into a 14 × 14 grid with 8-fold symmetry
as shown in Fig. 5.6, so that the normal incidence response would be polarization
insensitive. One triangular fold of the unit cell was encoded into the chromosome,
where each row was represented by a single parameter. Two additional 8-bit param-
eters were used to encode the unit cell size and the Kapton thickness, while the Au
screen thicknesses were fixed to be 50 nm. The GA operated on a population of 64
members over 50 generations, using tournament selection, uniform crossover, and a
mutation probability of 0.1.

The final GA-optimized dual-band MMA design is displayed in Fig. 5.7(a) (right
top). A detailed single unit cell illustration is also shown in Fig. 5.7(a), including its
geometry and dimensions. The calculated angular dispersion of the absorption for
both polarizations is shown in Fig. 5.8(a). The two vertical red strips demonstrate
that the two absorption peaks remain centered at 3.3 and 3.9 μm over a broad range
of incidence angles for both polarizations. The absorptivity in both bands remains
>91 % over a wide field-of-view of ±50◦ due to the efficient excitation of both
electric and magnetic resonances. Further investigation shows that this MMA still
achieves absorptivity >60 % for TE polarization and >85 % for TM polarization in
both bands over an incidence angle range of 160◦.

The GA-optimized MMA coating was fabricated by evaporating the Au ground
plane layer and spin coating the thin Kapton dielectric layer on a handle substrate.
The periodic array of H-shaped nanoresonators was patterned on top of the Kapton
layer using electron beam lithography followed by a Au lift off procedure as shown
in the field emission scanning electron microscope (FESEM) image in Fig. 5.7(a).
The three-layer metallodielectric structure was then removed from the handle sub-
strate to demonstrate its mechanical flexibility and durability (see Fig. 5.7(b)). The
absorptivity of the fabricated MMA, calculated from the reflectivity measured using
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Fig. 5.7 (a) Top: Doubly periodic array of H-shaped nanoresonators with magnified view of one
unit cell with dimensions a = 1475 nm, h = 315 nm, w = 210 nm, g = 840 nm, c = 105 nm,
and d = 200 nm (top and bottom Au: 50 nm, Kapton: 100 nm). Bottom, right: FESEM image of a
portion of the fabricated MAA. Scale = 1 μm. Bottom, left: The orientation of the incident fields
with respect to the MMA. (b) Low magnification FESEM image of the freestanding fabricated
conformal MMA coating showing its mechanical flexibility. Scale = 2 μm

a Fourier Transform IR (FTIR) spectrometer, is shown in Fig. 5.8(b) as a function
of both the wavelength and the angle of incidence. The two absorption peaks of the
MMA remain above 90 % for incidence angles up to 50◦ for both polarizations, with
the −10 dB bandwidth of both bands exhibiting a maximum broadening of 0.06 μm
over the entire angular range compared to the simulated results.

5.3.2 Double-Sided AMC Ground Planes for RF

Another type of practical metamaterial that has been extensively explored for RF ap-
plications are artificial magnetic conducting (AMC) surfaces, which are engineered
to mimic Perfect Magnetic Conducting (PMC) ground planes. Here, the effective-
ness of particle swarm optimization (PSO) for synthesizing AMC metamaterials
will be explored. Unlike Perfect Electric Conducting (PEC) surfaces (e.g., simple
metallic sheets at RF), which have an out of phase reflection (R = −1), PMCs do
not occur naturally. Rather, composite metallo-dielectric structures must be synthe-
sized to behave as PMCs, at least within a certain frequency range. These are usually
constructed as high-impedance resonance surfaces, and since their introduction by
Sievenpiper et al. over a decade ago [84], there have been various proposed config-
urations discussed in the literature [53, 54, 68]. PMCs are frequently utilized in low
profile antenna applications, where a horizontal antenna element is placed in close
proximity to the AMC ground plane (h � λ0/4) and can still operate efficiently.
Such interaction can be explained through image theory, which states that a hor-
izontal electric source near a PMC will see an in-phase image (virtual source) at
an equivalent distance below the PMC. Hence, the horizontal antenna element will
couple constructively with its image below the PMC to allow the system to radiate
efficiently [2].
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Fig. 5.8 (a) Contour plot of simulated absorptivity as a function of wavelength and angle of inci-
dence under TE (left) and TM (right) incident radiation. The two vertical red strips clearly show
two strong absorption bands nearly independent of the incident angle. (b) Contour plot of measured
absorptivity as a function of wavelength and angle of incidence under TE (left) and TM (right) inci-
dent radiation. The two vertical red strips exhibit the two angularly-independent absorption bands
in strong agreement with the theoretical prediction. Near-unity absorptivities were achieved in both
bands experimentally, confirming a successful realization of the designed structure

AMC metasurfaces are composite metallo-dielectric structures consisting of a
periodic metallic top layer printed on a thin dielectric substrate, which is backed
by a PEC ground plane. The low profile antenna is placed in close proximity to
the top of the AMC metasurface, which is synthesized to exhibit a high-impedance,
where the tangential magnetic field at the surface is small resulting in an artificial
magnetic behavior. Depending on the configuration, some designs may also have
vertical metallic vias that connect the top metallic patches on the surface with the
PEC ground plane backing. Erentok et al. introduced the first volumetric AMC con-
figuration for antenna applications in [29] with a design that eliminated the need
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Fig. 5.9 (a) Cross-sectional diagram of the proposed AMC structure. (b) The top and (c) bot-
tom FSS screen geometries were optimized by the PSO design procedure. Material properties and
thickness of the thin dielectric substrate are predefined, so that only the FSS screen geometries are
optimized. The black pixels represent metallic patches and dielectric exposed areas are represented
by the white pixels

for a complete PEC ground plane while still supporting AMC behavior at the up-
per surface. This volumetric AMC design consisted of vertically oriented metallic
capacitively loaded loops (CLL) printed and stacked on dielectric layers. While one
face of the surface provided AMC behavior at the design frequency, the opposite
surface provided a PEC response. However, the stacked layers could potentially
make the fabrication difficult and the electrical thickness of the metamaterial was
approximately λr/3, where λr is the wavelength within the dielectric. To simplify
the fabrication process and reduce the overall thickness, a novel, thin double-sided
AMC (DSAMC) design was introduced in [3]. The proposed DSAMC structure
consists of two different metallic frequency selective surface (FSS) screens printed
on either side of a thin dielectric as depicted in Fig. 5.9. It was shown in [5, 7] that
by independently optimizing the geometries of the top and bottom FSS screens, it
is possible to design a DSAMC separator that achieves an AMC response from top
surface at design frequency f1 and an AMC response from bottom surface at another
frequency f2. Such design flexibility allows two antennas operating at different fre-
quencies to be placed very close together when utilizing a DSAMC separator in
between.

To illustrate the versatility of the design technique, a DSAMC separator is opti-
mized via the PSO algorithm. The targeted operation frequencies are chosen to be at
Wi-Fi bands, where f1 = 2.4 GHz and f2 = 5.2 GHz. The FSS geometries and the
dielectric are discretized and evaluated numerically by a full-wave finite-element
boundary integral (FEBI) numerical solver [27] at the two target frequencies. The
square unit cell dimensions are set to be 1.345 cm, with a dielectric thickness of
0.254 cm. For the substrate, commercially available Rogers RT/Duroid® 6010 [1]
with a relative permittivity of εr = 10.2 − j0.0253 is used. To simplify the unit cell
geometry parametrization, four-fold symmetry is applied, so that each of the two
16 × 16 unit cells are defined by 8 parameters, where each parameter represents
a row with eight binary digits. The two geometries are mirrored across the hori-
zontal and vertical axes as illustrated in Fig. 5.9. The design is optimized for a TE
polarized, normally incident wave, and the cost function is given by

Cost = ∣∣1 − R2.4 GHz
Top

∣∣+ ∣∣1 − R5.2 GHz
Bottom

∣∣ (5.25)
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Fig. 5.10 (a) TE reflection phase from the top surface, (b) reflection and transmission magnitudes

Fig. 5.11 (a) TE reflection phase from the bottom surface, (b) reflection and transmission magni-
tudes

where R2.4 GHz
Top and R5.2 GHz

Bottom are the reflection coefficients from the top and bot-
tom surfaces, respectively, at the desired AMC frequencies. A population of 30
particles was evolved over a maximum of 400 iterations to arrive at the op-
timized FSS geometries illustrated in Fig. 5.9. A fine frequency sweep of the
doubly-periodic DSAMC structure yields the reflection phase and magnitudes for
the top and bottom surfaces shown in Figs. 5.10 and 5.11, respectively. These
curves demonstrate that the reflection coefficient approaches unity at 2.4 GHz for
the top surface and at 5.2 GHz for the bottom surface, illustrating that the PSO
was able to effectively design the metasurface to achieve the desired performance
goals.
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Fig. 5.12 (Left) Cross-sectional view of an engineered PEC backed composite metamaterial struc-
ture and (Right) its equivalent PEC backed ideal homogeneous matched (μr = εr > 1) magneto-di-
electric material

5.3.3 Matched Magneto-Dielectric RF Absorbers

In this section, the theory will be developed for synthesizing matched-impedance
magneto-dielectric metamaterials (MIMDM), which can be utilized effectively as
thin electromagnetic absorbing surfaces [6]. Using this theory, the effectiveness of
CMA-ES is demonstrated for designing thin RF absorbers with a polarization inde-
pendent response and a wide field of view.

High permittivity dielectric loading of electromagnetic devices has been shown
to have many advantages, including device miniaturization [2]. Similar effects can
also be achieved by utilizing magnetic loading [52] or using low-loss magneto-
dielectric materials with both magnetic (μr > 1) and dielectric (εr > 1) properties.
Such low-loss materials would pave the way to realizing miniaturized and more ad-
vanced RF and microwave devices. Unfortunately, at RF and higher frequencies,
naturally occurring homogeneous magnetic materials exhibit high losses. Hence, at
these frequencies magnetic and magneto-dielectric materials need to be engineered
using composite structures to mimic homogeneous materials with low-loss effective
constitutive parameters over a desired bandwidth.

At RF and microwave frequencies, we can synthesize composite metasurface
structures that emulate a PEC backed slab of homogeneous magneto-dielectric ma-
terial with matched impedance as illustrated in Fig. 5.12. A propagating plane wave,
normally incident upon this composite metamaterial structure, encounters a surface
impedance, ZComposite, represented by

ZComposite = RComposite + jXComposite (5.26)

where RComposite and XComposite are the respective resistive and reactive parts of
the impedance. In the case of a thin slab of PEC backed homogeneous magneto-
dielectric material with thickness t , permeability μr = μ′

r − jμ′′
r and permittivity

εr = ε′
r − jε′′

r , the surface impedance, Zin, can be written [94] as

Zin = Zs tanh(jω
√

μ0ε0nst) (5.27)

where

Zs = Z0
√

μr/εr (5.28)
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is the impedance of the PEC backed slab. If the homogeneous magneto-dielectric
material is matched to free space (i.e., μr = εr ) such that Zs = Z0, then (5.27)
simplifies to

ZMatched = Z0 tanh(jβ0nst). (5.29)

The index of refraction, ns , for a matched magneto-dielectric material can also be
written as

ns = √
μrεr =

√(
μ′

r − jμ′′
r

)(
ε′
r − jε′′

r

)= εr = μr. (5.30)

Equating ZComposite and ZMatched using (5.27) and (5.29) leads to

tanh(jβ0nst) = ZComposite/Z0, (5.31)

and solving for the index of refraction, ns , yields

ns = εr = μr = 1

jβ0t
tanh−1

(
RComposite + jXComposite

Z0

)
. (5.32)

This suggests that the real and imaginary parts of the complex permeability (or
permittivity) can be expressed in terms of ZComposite as

ε′
r = μ′

r = Re

{
1

jβ0t
tanh−1

(
RComposite + jXComposite

Z0

)}
(5.33a)

and

ε′′
r = μ′′

r = Im

{
1

jβ0t
tanh−1

(
RComposite + jXComposite

Z0

)}
. (5.33b)

These equations relate the surface impedance of the composite metamaterial to the
permeability (and permittivity) of the homogeneous magneto-dielectric material.
By utilizing (5.26), it is also possible to derive independent equations for RComposite
and XComposite in terms of the desired homogeneous magneto-dielectric material
permittivity and permeability, which are given by

RComposite = Z0

2

sinh(2β0tμ
′′
r )

cosh2(β0tμ′′
r ) − sin2(β0tμ′

r )
(5.34a)

and

XComposite = Z0

2

sin(2β0tμ
′
r )

cosh2(β0tμ′′
r ) − sin2(β0tμ′

r )
(5.34b)

where μ′
r = ε′

r and μ′′
r = ε′′

r .
Equations (5.26)–(5.34a), (5.34b) can be utilized to synthesize low-loss matched

impedance magneto-dielectric metamaterials (MIMDM). However, these thin com-
posite structures can also be employed in electromagnetic absorber applications,
if they are designed to have high loss. In the case of high loss MIMDM, the
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Fig. 5.13 (a) Metallic unit cell geometry for the optimized magneto-dielectric metamaterial ab-
sorber. The black and gray shaded regions represent PEC pixels with two tones used to distin-
guish the interwoven unit cell geometry, which spans multiple unit cells. Dashed lines represent
the boundaries of a single unit cell. (b) Simulated reflection magnitude comparing the composite
metamaterial structure with a slab of homogeneous effective material

above equations need to be modified as follows. To achieve zero reflection at the
free space–absorber interface, the surface impedance of the composite structure is
matched to free space (ZComposite = RComposite + jXComposite = Z0). Using (5.33a),
(5.33b), the surface impedance of the composite structure can be matched to the
impedance of free space by

ZComposite = RComposite + jXComposite

= Z0 → RComposite = Z0 and XComposite = 0. (5.35)

Based on this requirement, the desired values for μ′
r and μ′′

r and ε′
r and ε′′

r can be
derived from (5.33a), (5.33b) such that

XComposite = 0 → μ′
r = nλ0/4d where n = 1,2,3, . . . , (5.36)

and

RComposite = Z0 → μ′′
r = mλ0/2d where m = 1,2,3, . . . . (5.37)

The CMA-ES is employed here to optimize composite metamaterial structures
utilizing the above equations to synthesize thin absorbers with an excellent field
of view at a target frequency of 1.8 GHz. These equations ensure a matched
impedance metamaterial with zero reflection at the interface of the absorber with
free space as well as high electric and magnetic losses. The geometry of the metal-
lic screen in the composite structure can be seen in Fig. 5.13(a), where CMA-
ES optimizes only one quarter of the entire unit cell, and then rotational symme-
try is applied to complete the structure. CMA-ES adjusts the lengths of eleven
rows of pixel strips, which constitute the first 11 dimensions of the optimiza-
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Table 5.4 Optimized design
parameters for the
magneto-dielectric
metamaterial absorber
targeting 1.8 GHz

Unit cell dimensions (cm × cm) 0.50 × 0.50

Superstrate permittivity, ε1 1.22 − j1.0304

Substrate permittivity, ε2 6.99 − j0.0029

Superstrate thickness, h1 0.425 cm

Substrate thickness, h2 0.494 cm

tion problem. CMA-ES also optimizes the unit cell dimension, the thicknesses
of the bottom and top dielectric layers as well as the real and imaginary part of
the dielectric materials, resulting in a total of N = 18 dimensions for optimiza-
tion.

CMA-ES is linked with a full-wave Periodic Method of Moments (PMM) code
for fast numerical analysis of each candidate composite structure. Since PMM is a
periodic solver, the simulation must only be carried out on a single unit cell, which
makes it extremely efficient. The PMM code employs layered media Green’s func-
tions, periodic boundary conditions based on Floquet’s theorem, and rooftop basis
functions [98]. Once each candidate unit cell geometry is generated by CMA-ES, it
is evaluated by the PMM, and the corresponding scattering coefficients are returned
for the cost function computations. The following cost function is utilized to achieve
the desired metamaterial properties:

Cost = (RComposite − RMatched)
2 + (XComposite − XMatched)

2 (5.38)

where RComposite and XComposite represent the surface resistance and surface re-
actance values of the composite structure and RMatched = Z0 and XMatched = 0
represent the real and imaginary parts of the surface impedance associated with
the desired homogeneous MIMDM. Once an optimized design was reached using
PMM, full-field simulations of the structure were done using HFSS to confirm the
results.

CMA-ES was allowed to run for a maximum of 200 iterations utilizing a popu-
lation size of 20 members. The optimized geometry of the final design is shown
in Fig. 5.13(a). The optimized design parameters for the MIMDM absorber are
also provided in Table 5.4. A plot of the reflection magnitude at normal inci-
dence versus frequency is shown in Fig. 5.13(b), where attenuation of more than
50 dB at the design frequency of 1.8 GHz is attained. The angular dependency
of the reflection for this design is also computed and illustrated in Fig. 5.14.
The ultra-small subwavelength unit cell (0.03λ0) of the metamaterial absorber
provides an extraordinarily stable angular response, with strong absorption for
incident angles up to 50◦ from normal. Figure 5.15 illustrates that the surface
impedance ZComposite approaches a matched value at the designed absorption fre-
quency.
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Fig. 5.14 Angular dependency of the (a) TE and (b) TM reflection magnitude, where a good
absorber response is observed up to θ = 50◦ from normal

Fig. 5.15 Real (a) and imaginary (b) parts of the surface impedance (ZComposite) of the composite
metamaterial absorber design, computed using PMM and HFSS, along with the surface impedance
of a homogeneous slab with the dispersive constitutive parameter values assigned to it. The dashed
lines represent the surface resistance of an ideal non-dispersive magneto-dielectric material with
the same thickness

5.4 Homogenized Metamaterial Optimization Examples

In addition to their use as artificial surfaces, metamaterials can be homogenized us-
ing an inversion algorithm to obtain the effective parameters (refractive index n and
impedance Z or permittivity ε and permeability μ) of an equivalent homogeneous
slab of material. In the following sections, two homogenization techniques will be
described. In Sect. 5.4.1, the standard inversion technique for an isotropic planar
slab is described, and in Sect. 5.4.2, a technique for inverting anisotropic effective
parameters using more than one incidence angle is described. These two techniques
are then coupled with a GA in order to synthesize a low-loss multilayer negative
index metamaterial (NIM) in Sect. 5.4.3 and a zero index metamaterial (ZIM) with
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a wide field of view (FOV) in Sect. 5.4.4. Finally, a dispersion engineering approach
is combined with a GA in order to synthesize broadband metamaterials for practical
applications. Using dispersion engineering a broadband filter with suppressed group
delay in the pass band is introduced in Sect. 5.4.5.

5.4.1 Homogenization Technique for an Isotropic Planar Slab

Homogenization techniques for metamaterials are used to calculate the effective
parameters (i.e., permittivity and permeability) based on the simulated or mea-
sured scattering parameters (S-parameters). The standard inversion procedure that
is widely used throughout the metamaterials community [87] is based on an algo-
rithm originally proposed by Nicolson, Ross, and Weir (NRW) [73, 96]. This algo-
rithm assumes that a wave is normally incident upon a slab of an isotropic medium.
The NRW procedure begins by calculating the S-parameters (S11 and S21) from the
metamaterial, which are then manipulated as follows:

V1 = S21 + S11, (5.39)

V2 = S21 − S11. (5.40)

V1 and V2 are used to calculate

X = 1 − V1V2

V1 − V2
, (5.41)

Y = 1 + V1V2

V1 + V2
(5.42)

which are then used to determine the parameters Γ and P from

Γ = X ±
√

X2 − 1, (5.43)

P = Y ±
√

Y 2 − 1. (5.44)

The signs in (5.43) and (5.44) are chosen such that |Γ | ≤ 1 and |P | ≤ 1. Finally, the
normalized impedance and refractive index for the equivalent slab can be obtained
from

Z = 1 + Γ

1 − Γ
, (5.45)

n =
(

jc

ωd

)[
ln(P ) + j2πm

]
, m = ±0,1,2, . . . , (5.46)

where ω is the angular frequency, c is the speed of light, and m indicates the root
for n. The solution for n is multi-valued and must be determined using additional
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information. The constitutive parameters can be calculated from n and Z according
to

ε = n

ZZ0
, (5.47)

μ = nZZ0 (5.48)

where Z0 is the intrinsic impedance of free space.
The root for n is determined by enforcing n′ to be continuous across frequency

and by tracing n′ from a known point. For the negative index metamaterial (NIM)
example described in Sect. 5.4.3, the root for n is determined in the low frequency
limit, where the metamaterial is not magnetic and the permeability is expected to
approach unity:

lim
f →0

μ = 1 − 0j. (5.49)

Thus, the S-parameters are collected from low frequencies up to the frequency range
of interest, choosing m such that n′ remains continuous.

5.4.2 Anisotropic Inversion Technique

As discussed in the previous section, most of the scattering parameter retrieval meth-
ods that have been applied in the literature assume the metamaterial has isotropic
effective parameters (e.g., permittivity and permeability values the same in every
direction) [14, 69, 81, 87]. However, it has been shown that many metamaterials
have anisotropic properties that are dependent on the orientation and arrangement
of their unit cell structures, such as split-ring resonators (SRRs) and wire dipoles.
In view of this, inversion algorithms that are able to characterize the anisotropy of
metamaterials are highly beneficial in designing more practical devices. When ap-
plied to retrieve the anisotropic effective material parameter tensors, conventional
homogenization techniques require that the scattering parameters in three orthog-
onal directions be collected, which is difficult to achieve in experiment, especially
for measurements performed in the infrared or optical wavelength regimes. More-
over, the angular dependent response of anisotropic metamaterials to obliquely inci-
dent waves, an important characteristic of metamaterials, has only been considered
in a few references [24, 72]. In [72], the effective wave parameters for metamate-
rials were retrieved as functions of incidence angle. However, because a conven-
tional isotropic material model (i.e., isotropic permittivity and permeability) was
used, the inversion procedure could not capture the full anisotropic tensor quanti-
ties. Retrieval techniques have also been introduced to obtain bi-isotropic [61] and
bi-anisotropic [15, 64] effective medium parameters. In [15], the authors invert the
scattering parameters from all orthogonal directions to retrieve anisotropic permit-
tivity and permeability tensors as well as bi-anisotropy in one plane, whereas in [64]
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Fig. 5.16 Schematics of a
homogeneous anisotropic
slab placed in free space and
illuminated by (a) TE
polarized and (b) TM
polarized normally and
obliquely incident plane
waves

the scattering parameters from only a single direction are used to retrieve a subset
of the bi-anisotropic terms.

In this section, a methodology is presented for retrieving the anisotropic effec-
tive permittivity and permeability of a metamaterial slab using a combination of
transmission and reflection coefficients calculated or measured at several angles of
incidence with respect to only one face of the metamaterial slab. The analytical re-
trieval expressions used to determine the constitutive parameters of a homogeneous
anisotropic slab are first described. This method is then applied to analyze a com-
posite SRR-wire array, and the physical relevance of the retrieved parameters will
be discussed.

A periodic metamaterial can be approximated as a homogeneous medium under
the long wavelength condition. Let us first consider the forward problem of cal-
culating the scattering parameters based on a simplified model of a homogeneous
anisotropic material slab, which has diagonal constitutive permittivity and perme-
ability tensors given by

¯̄ε = ε0 ¯̄εr = ε0 diag[εxx, εyy, εzz], (5.50a)

¯̄μ = μ0 ¯̄μr = μ0 diag[μxx,μyy,μzz] (5.50b)

where ε0 and μ0 are the permittivity and permeability of free space, respec-
tively [55]. In this model, the harmonic time dependence is assumed to be e−jωt .
Figure 5.16 shows schematics of a homogeneous anisotropic slab with thickness d

illuminated by a plane wave at an angle θi with respect to the free-space slab in-
terface normal ẑ. Without loss of generality in the case of a homogeneous slab, it
is assumed that the incident plane wave vectors are in the y–z plane for both trans-
verse electric (TE) and transverse magnetic (TM) polarized waves. The TE waves
satisfy the conditions k · E = 0 and Ez = 0, whereas the TM waves satisfy k · H = 0
and Hz = 0. Notice that the six tensor parameters can be divided into two groups:
εxx , μyy , and μzz, which are active when the slab is illuminated by TE waves, and
εyy , μxx , and εzz, which are active when the slab is illuminated by TM waves. Only
the expressions for TE polarization will be shown here, since the TM polarization
is a straightforward dual case of the TE solution. The dispersion relation inside the
material for TE polarization is

β2
y

μzz

+ β2
zTE

μyy

= k2
0εxx (5.51)
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where the y-component of the wave number satisfies βy = ky = k0 sin θi , and k0

is the free space wave number [46]. By assigning boundary conditions on both in-
terfaces of the slab, the scattering parameters of the slab can be calculated for an
illuminating plane wave with an arbitrary incident angle. The expressions for the
scattering parameters corresponding to TE waves can be written as

S11 = ΓTE(1 − ej2βzTEd)

1 − Γ 2
TEej2βzTEd

, (5.52a)

S21 = (1 − Γ 2
TE)ej2βzTEd

1 − Γ 2
TEej2βzTEd

(5.52b)

where

ΓTE = ZTE − 1

ZTE + 1
(5.53)

is the reflection coefficient from the top interface. The normalized wave impedance
for TE waves is given by

ZTE = kzμyy

βzTE
(5.54)

where kz = k0 cos θi is the z-component of the free space wave number. Because
the structures considered in this chapter possess vertical symmetry, the scattering
parameters will be reciprocal, so that S11 = S22 and S21 = S12.

Now, the inverse problem will be solved. First, let us consider the scattering
parameters for two TE incident waves with different angles of incidence, θi1 and
θi2, which provide four equations (STE11−1, STE21−1, STE11−2, STE21−2) given
by (5.52a) and (5.52b). These four equations can be used to determine the three un-
knowns (εxx , μyy , and μzz). During the solution process, the z-components of the
refractive indices of the slab (nzTE−1, nzTE−2) and the wave impedances (ZTE−1,
ZTE−2) for both incidence angles are inverted, leading to the following two equa-
tions:

cos(nzTE−lk0d) = 1 − S2
TE11−l + S2

TE21−l

2STE21−l

, (5.55)

ZTE−l = ±
√√√√ (1 + S2

TE11−l ) + S2
TE21−l

(1 − S2
TE11−l ) + S2

TE21−l

, l = 1,2. (5.56)

Proper care should be exercised to select the correct branch for the real part of
the z-components of the refractive indices. Similar to approaches that have been
employed for isotropic inversion procedures, the imaginary parts of both nzTE−1

and nzTE−2 must obey the conditions n′′
zTE−1 ≤ 0, n′′

zTE−2 ≤ 0. Likewise, for passive
materials, the real parts of ZTE−1 and ZTE−2 must satisfy Z′

TE−1 ≥ 0 and Z′
TE−2 ≥

0. Then, making use of the four inverted parameters and the dispersion relation
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Fig. 5.17 (a) Unit cells (a = 2.6 mm, d = 1.82 mm) of a composite SRR-wire array. Left: 3D
isometric view of the three layer unit cell. Right: top views of the wire and SRR structures with
dimensions given by g = 0.39 mm, l = 2.08 mm, slot = 0.13 mm, t = 0.13 mm, and w = 0.13 mm.
The dielectric slabs (FR4: εr = 4.4, δtan = 0.02) have thickness ds = 0.13 mm. (b) Retrieved
effective εxx . (c) Retrieved effective μyy . (d) Retrieved effective μzz

(5.51) as well as the wave impedance (5.54), the three tensor parameters active for
the TE case can be retrieved by:

μyy = nzTE−lZTE−l/ cos θil, l = 1,2, (5.57)

εxx =
nzTE−1

cos θi1
ZTE−1

sin2 θi2 − nzTE−2
cos θi2
ZTE−2

sin2 θi1

sin2 θi2 − sin2 θi1
, (5.58)

μzz = sin2 θi2 − sin2 θi1

nzTE−1
cos θi1
ZTE−1

− nzTE−2
cos θi2
ZTE−2

. (5.59)

The validity of the anisotropic retrieval method will be demonstrated using an
interesting type of metamaterial, a composite SRR-wire array. The unit cell geom-
etry for the metamaterial under consideration is illustrated in Fig. 5.17(a). Periodic
boundary conditions are assigned to the lateral walls in both the x- and y-directions.
A plane wave (contained in the y–z plane) is assumed to be incident from the upper
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half-space at an angle θi (0◦ ≤ θi ≤ 90◦) with respect to the free-space metama-
terial interface normal ẑ. Three layers of unit cells are used in the z-direction in
order to take into account the coupling between adjacent unit cells, thus enabling
the acquisition of more accurate effective medium parameters. For each layer, the
infinite wires are sandwiched by two dielectric slabs of thickness ds . A pair of broad-
side coupled SRRs are printed on each side of the dielectric substrate as shown in
Fig. 5.17(a) to eliminate the bi-anisotropy associated with conventional arrange-
ments of SRRs [70, 71]. The geometrical parameters of the SRRs and wires are
defined in Fig. 5.17(a). Since the unit cells are much smaller than the wavelength of
interest, these two metamaterials can be approximated as homogeneous anisotropic
materials under the effective medium theory with diagonal permittivity and perme-
ability tensors as described by (5.50b), provided the geometrical axes of the meta-
materials coincide with the principal axes of the effective parameter tensors [34].

Figure 5.17(b)–(d) shows the retrieved effective electromagnetic parameters of
the composite SRR-wire array under TE polarization. It can be observed that the
retrieved results using scattering parameters calculated at different incidence angles
(with and without using normal incidence) agree well with each other, and as a
result, the curves essentially lie on top of each other. Figure 5.17(b) shows a Drude-
type response in εxx due to the infinite-wire array. The retrieved μyy has no strong
resonances except for a small anti-resonance in μyy within the same frequency re-
gion as the magnetic resonance observed in μzz. This anti-resonance phenomenon
has been widely discussed in the literature and is attributed to the intrinsic period-
icity of the metamaterial [57, 58]. The longitudinal magnetic resonance excited by
the component of the incident H-field, which is perpendicular to the plane of the
SRRs, occurs at around 7.4 GHz. This resonance can be easily characterized by the
inversion method described here with the utilization of obliquely incident waves.
The region where both εxx and μzz are negative forms a negative refractive index
band, which can be experienced with in-plane propagating waves. The good agree-
ment of the retrieved effective electromagnetic tensor parameters for the composite
SRR-wire array confirms the validity of the retrieval method as well as the partic-
ular homogeneous anisotropic model assumed for the metamaterials (i.e., diagonal
effective permittivity and permeability tensors). This method thus provides a useful
tool for retrieving the effective anisotropic tensor parameters of metamaterials with
the angular response taken into account and can be linked with global optimizers to
synthesize metamaterials with improved angular stability [47]. In Sect. 5.4.4, this
method is used in conjunction with a GA to synthesize a zero index metamaterial
with a wide field of view.

5.4.3 Low-Loss, Multilayer Negative Index Metamaterials
for the Infrared and RF

There has been a substantial research effort into demonstrating metamaterials with
a negative refractive index since 2000, when Pendry first proposed that a negative
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index metamaterial (NIM) slab with n = −1 could form a “perfect” flat focusing
lens that overcomes the diffraction limit of conventional optics [75]. Since Pendry’s
observation, NIMs have been demonstrated from the RF [32, 83, 86] through op-
tical wavelengths [20, 22, 82], and experiments have shown the “super-resolution”
that Pendry predicted. However, many of these demonstrations also exhibited high
losses due to absorption within the metamaterial and to reflection arising from an
impedance mismatch between the metamaterial and the surrounding medium. Fur-
thermore, most optical NIMs are very thin with respect to the wavelength, which is
impractical in terms of realizing a flat, near-field focusing lens. Recent experimental
efforts have been made to increase the thickness of optical metamaterials [93]. In
this section, a genetic algorithm is employed to first synthesize a multilayer NIM for
the mid-infrared (mid-IR) regime with minimum intrinsic and impedance mismatch
losses [13] and then to synthesize multilayer low-loss NIMs for RF operation at 10
GHz using a look up table of potential constituent materials.

The primary metamaterial losses for a NIM can be quantified using the following
two figures of merit (FOM):

FOMn =
∣∣∣∣
n′

n′′

∣∣∣∣, (5.60)

FOMZ =
∣∣∣∣

1

Z − 1

∣∣∣∣ (5.61)

where n is the effective index and Z is the effective impedance normalized to the
free space impedance Z0. FOMn is the magnitude of the ratio of the real and imag-
inary parts of the index. Because the intrinsic loss of the metamaterial is captured
in n′′, FOMn is a measure of the loss due to absorption. FOMZ , on the other hand,
measures the difference between the effective impedance and the impedance of free
space, which gives rise to reflection losses. As FOMn and FOMZ become large, the
losses are reduced, leading to a highly transmissive NIM.

The first metamaterial structure considered here is composed of a stack of metal-
lic screens separated by dielectric insulators. This freestanding stack is perforated
by periodic air holes that are defined by a single unit cell geometry. The constituent
materials selected for the metamaterial are Ag and polyimide because of their low-
loss properties in the mid-IR wavelength range from 2 to 5 μm. This metamaterial
configuration can give rise to negative refraction by way of electric and magnetic
resonances in the structure. The negative permittivity comes from the natural Drude
dispersion in the Ag metal [76], which is diluted such that the plasma frequency
occurs in the mid-IR. On the other hand, the impinging magnetic field can excite
loop currents between neighboring metallic layers, giving rise to a Lorentz-shaped
resonance in the permeability.

The metamaterial geometry is defined in the GA by pixellizing the unit cell into
a grid of 13 × 13 pixels. Eight-fold symmetry is enforced on the geometry, such
that one triangular fold is encoded into the chromosome. Each of the seven rows in
the triangle is represented by one parameter in the chromosome. Fabrication rules
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Fig. 5.18 Geometry for an optimized NIM stack with five metal layers. (a) Top and cross-section
views of the structure. (b) 3D isometric view of the metamaterial

were imposed on the pixellized unit cell during optimization such that diagonal pix-
els were eliminated. Also, because the metamaterial is intended to be free-standing,
any islands of patches that were not fully connected were removed from the screen.
The unit cell dimension and the inter-layer spacing were also encoded into the chro-
mosome as 8-bit numbers and allowed to vary from 0.8 to 2.0 μm and from 130 to
500 nm, respectively. Finally, the Ag screen thickness was fixed to be 75 nm, and
the number of screens was chosen to be five.

During the cost evaluation of each population member, the scattering parameters
for the geometry are predicted using an efficient full-wave finite-element boundary
integral (FEBI) numerical solver [27]. The S-parameters are then fed into the NRW
inversion procedure described in Sect. 5.4.1 to retrieve n and Z. Each structure is
evaluated at 63 frequency points starting from the low frequency of 10 THz and
extending to 95 THz, so that the correct root of n can be selected at 10 THz and
then traced up to the mid-IR range. Then, a fine sweep of 62 frequencies from 95
to 105 THz is performed to select the optimal frequency point according to the
following cost function:

Cost = min
freqs

[|n − ntarget|2 + |Z − Ztarget|2
]

(5.62)

where ntarget = −1 + 0j is the target refractive index, Ztarget = 1 + 0j is the target
normalized impedance, and freqs are frequency sweep sample points around 3 μm
wavelength in the mid-IR.

The GA operated on a population of 32 members and employed tournament se-
lection with a crossover probability of 0.5 and a mutation rate of 0.02. Elitism was
enforced so that the population fitness would always be maintained or increased.
Evolving the population over 220 generations resulted in the NIM geometry shown
in Fig. 5.18. The inverted index and impedance curves in Fig. 5.19 show optimum
values of n = −0.99 − 0.13j and Z = 1.01 + 0.08j at 105 THz, which indicate
low absorption loss (FOMn = 7.6) and a good match to free space (FOMZ = 12.4).
The effective parameters shown in Fig. 5.20 reveal the expected Drude dispersion
for the permittivity and a Lorentz resonance in the permeability, both of which
give rise to the negative index band. At the optimum frequency, the S-parameters
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Fig. 5.19 Inverted effective medium parameters for the NIM in Fig. 5.18. (a) Refractive index n

and (b) normalized impedance Z

Fig. 5.20 Inverted effective medium parameters for the NIM in Fig. 5.18. (a) Effective permittivity
ε and (b) effective permeability μ

plotted in Fig. 5.21 indicate a high transmission |T | = −1.3 dB, with low reflec-
tion |R| = −23.6 dB and an absorption |A| = −5.9 dB. This low-loss performance
demonstrates that GA optimization can be used to synthesize practical, multilayer
NIMs at optical wavelengths.

At microwave frequencies, multilayer fishnet structures can also be employed to
construct NIMs. The planar multilayer NIM structure considered here for RF op-
eration consists of seven cascaded metal fishnet screens sandwiching six dielectric
slabs with perforated air holes (see Fig. 5.22). Under TE polarized, normally inci-
dent waves, the metal strips along the direction of the electric field (x-axis) produce
a Drude-type behavior with a negative permittivity below the effective plasma fre-
quency. Likewise, a negative effective permeability is produced by the metal strips
along the magnetic field (y-axis), which form a series of parallel plate magnetic
resonators. Two design configurations were optimized utilizing this structure. The
first design is restricted to uniformly thick dielectric layers with Rogers Ultralam
2000 chosen as the dielectric material. The second design was optimized with a
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Fig. 5.21 Scattering parameters for the optimized NIM in Fig. 5.18. (a) Transmission T , reflec-
tion R, and absorption A magnitudes for a normally incident wave and (b) transmission and re-
flection phases

Fig. 5.22 (left) Unit cell geometry of NIM structure. (right) Top view of the metal screen

constituent material parameter lookup table containing the permittivity, loss tan-
gent and available thicknesses (or the sum of available thickness values) of several
Rogers dielectric materials [1], as listed in Table 5.5. Each dielectric layer was lim-
ited to have a permittivity and thickness corresponding to those available in the
material table as a fabrication constraint. The metal layers in both designs consist
of 0.035 mm thick copper. The metamaterial design parameters, including unit cell
size, widths of the metal strips in both x- and y-directions, thicknesses of the dielec-
tric slabs, and dielectric material types for the second design were encoded into the
binary chromosome and simultaneously optimized using a GA. The cost function
given by (5.62) was used to evaluate the design performance during the GA opti-
mization with ntarget = −1 + 0j , Ztarget = 1 + 0j , and a design frequency chosen to
be in the X-band at 10 GHz.

The GA evolved a population of 32 over 500 generations to obtain the optimized
design result for both cases. The design dimensions for the two optimized struc-
tures are listed in Table 5.6, and the dielectric properties for both designs are listed
in Table 5.7. The impedances and the inverted effective refractive indexes for both
designs are shown in Figs. 5.23 and 5.24. As can be seen in Fig. 5.23, the pre-
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Table 5.5 Material look-up table with various rogers materials and thickness values

Name εr δtan t1 (mm) t2 (mm) t3 (mm) t4 (mm) t5 (mm) t6 (mm)

RO3003 3 0.0013 0.127 0.254 0.508 0.762 1.524 –

RO3035 3.5 0.0017 0.127 0.254 0.508 0.762 1.524 –

RO3203 3.02 0.0016 0.254 0.508 0.762 1.524 – –

RO4003C 3.55 0.0021 0.203 0.305 0.406 0.508 0.813 1.524

RO4350B 3.66 0.0031 0.168 0.254 0.338 0.422 0.508 0.762

RT5870 2.33 0.0012 0.127 0.254 0.381 0.508 0.787 1.575

RT5880 2.2 0.0009 0.127 0.254 0.381 0.508 0.787 1.575

RT6002 2.94 0.0012 0.127 0.254 0.508 0.787 1.575 –

Ultralam 2000 2.5 0.0019 0.101 0.256 0.373 0.482 0.762 1.524

Table 5.6 Structure dimensions optimized by GA for both RF designs (dimensions in mm)

px py we wm T t1 t2 t3

Design 1 18.55 17.6 8.12 13.2 8.58 1.43 1.43 1.43

Design 2 18.1 15.7 6.79 12.76 10.26 1.702 1.726 1.702

Table 5.7 Dielectric properties for both RF designs

εr1 εr2 εr3

Design 1 2.5 − 0.00475j 2.5 − 0.00475j 2.5 − 0.00475j

Design 2 2.33 − 0.002796j 2.5 − 0.00475j 2.33 − 0.002796j

dicted effective metamaterial parameters for the first design at the target frequency
of 10 GHz were n = −0.999 − 0.01j and Z = 1.009 + 0.017j , showing a nega-
tive index with a low transmission loss (|T | = −0.156 dB) and a good impedance
match to free space. The inverted parameters at 10 GHz for the second design, seen
in Fig. 5.24, were n = −1.007 − 0.009j and Z = 1.014 + 0.015j with a transmis-
sion loss of only −0.107 dB. The total thickness of the second design is greater
than λ/3 at the target frequency. Both of the NIM designs possess very high figures
of merit as defined previously in (5.60) and (5.61). The FOMs for the first design
are FOMn = 99.9 and FOMZ = 52.0, while the FOMs for the second design are
FOMn = 111.9 and FOMZ = 48.7, indicating that both designs have extremely low
intrinsic loss and a very good impedance match to free space at the target frequency.
Both of these NIM designs are able to achieve much better FOMs than the infrared
design in Fig. 5.18 due to the lower material losses in the microwave. Compared
with other conventional volumetric NIMs for the RF described in the literature, the
FOMs for n achieved here using GA optimization are significantly higher, and the
FOMs for Z are comparable or better [78, 79].
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Fig. 5.23 Inverted effective medium parameters for the first RF NIM design. (a) Refractive index
n and (b) normalized impedance Z

Fig. 5.24 Inverted effective medium parameters for the second RF NIM design. (a) Refractive
index n and (b) normalized impedance Z

5.4.4 Wide-Angle Zero Index Metamaterials for the IR

Compared with negative index metamaterials (NIM), zero index metamaterials
(ZIMs) have received less attention in recent years, but hold promise for a wide
variety of possible practical applications [12, 28, 100]. A zero index of refraction
condition can be achieved under three different cases of permittivity and permeabil-
ity: permittivity approaching zero, permeability approaching zero, and permittivity
and permeability simultaneously approaching zero. In the first case, the permittiv-
ity approaching zero results in a large value for the normalized impedance and a
corresponding reflection coefficient approaching positive unity, meaning that the re-
flected wave is in-phase with the incident wave. Such an epsilon-near-zero (ENZ)
material can be used as either an artificial magnetic conducting (AMC) surface [53]
or for subwavelength electromagnetic energy tunnels [85]. In the second case, when
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the permeability approaches zero, the material acts like a perfect electric conductor
(PEC), with the reflection coefficient approaching negative unity. Hence, in both of
these first two cases the ZIM acts as either a perfect magnetic mirror (in-phase re-
flection) or a perfect electric mirror (out-of-phase reflection). The final and perhaps
most interesting case is when the permittivity and permeability simultaneously ap-
proach zero at the same rate, resulting in a ZIM that is impedance matched to free
space. This type of “matched” ZIM is an essential component in many transforma-
tion optics devices including the well-known electromagnetic cloak [80]. Another
important property of ZIMs is their ability to act as effective collimators that convert
cylindrical or spherical waves emanating from a source embedded in the metamate-
rial to plane waves at the interface between the metamaterial and free space. ZIMs
can thus be utilized as flat lenses to achieve highly directive far-field radiation from
embedded antennas, as extremely convergent nanolenses and in other imaging ap-
plications [100]. ZIMs have been experimentally demonstrated at both microwave
frequencies and optical wavelengths [59, 60]. While the structures chosen for these
ZIM experiments are inherently anisotropic, most reported work only considers the
metamaterial response to normally incident plane waves. Here, the angular response
of ZIMs is considered in order to gain an improved picture of the metamaterial elec-
tromagnetic properties.

In this section, the generalized anisotropic retrieval method previously described
in Sect. 5.4.2 is coupled with a robust genetic algorithm (GA) optimizer in order
to synthesize an infrared (IR) ZIM with a wide field-of-view (FOV). In many ap-
plications (e.g., flat lenses), metamaterials must be capable of properly responding
to illumination from obliquely incident waves in addition to those that are normally
incident. Hence, in such cases, the ability to customize the metamaterial proper-
ties via optimization is of significant practical importance. Furthermore, in order to
demonstrate the superiority of the anisotropic retrieval method, the ZIM optimized
by a GA coupled with the anisotropic retrieval technique is compared with a second
GA optimized design based on using the conventional isotropic retrieval method.

The planar metamaterial structure targeting infrared wavelengths to be optimized
by the GA consists of two stacked metallic screens sandwiching a dielectric layer.
To reduce absorption loss, the stack is perforated with air holes in both the metal
and dielectric layers in a periodic pattern. Silver (Ag) and polyimide were chosen as
the screen and dielectric materials, respectively, because they have low losses in the
mid-IR range from 2 to 5 μm. The structure is defined by a pixilated unit cell geom-
etry and is constrained to possess an eight-fold symmetry, so that the metamaterial
response is polarization insensitive to normally incident waves. The eight-fold sym-
metry also minimizes φ dependence at oblique incidence, where φ represents the
azimuth angle between the x-axis and the projection of the wave vector of obliquely
incident waves onto the x–y plane. The geometrical parameters of the metamaterial
structure described by the chromosome include the unit cell dimension, the thick-
ness of the polyimide layer and the binary pixilated pattern where “1” represents
metal/dielectric and “0” represents an air hole. When generating each structure, fab-
rication constraints are also applied to the pixilated geometry, eliminating diagonal
connections that are difficult to fabricate. Measured permittivities of both Ag and
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Fig. 5.25 16 × 16 pixel geometry for a metamaterial stack with two Ag screens. (a) Optimized
geometry for the first design, with a unit cell size a1 = 1.42 μm, total thickness d1 = 476 nm,
and a Ag screen thickness of 75 nm. (b) 3D isometric view of the first ZIM design. (c) Optimized
geometry for the second design, with a unit cell size a2 = 1.58 μm, total thickness d2 = 735 nm,
and a Ag screen thickness of 75 nm. (d) 3D isometric view of the second ZIM design

polyimide are incorporated in the simulation. The calculated scattering parameters
are then inverted to produce effective medium parameters using either the conven-
tional isotropic retrieval method described in Sect. 5.4.1 or the anisotropic retrieval
method described in Sect. 5.4.2. The cost function employed in the GA is given
by [64], where nzTE_θi = 0 (but restricted to have a positive real part) is the de-
sired ẑ-component of the normalized refractive index and Ztar = 1 is the desired
normalized wave impedance for the metamaterial:

Cost =
∑

θi

[|nzTE_θi − nz_tar| + |ZTE_θi − Ztar|
]
. (5.63)

The target frequency for both designs was chosen to be 100 THz (3 μm). For
the first design, four sample angles of incidence (θi = 0◦,10◦,20◦,30◦) were con-
sidered, whereas for the second design, only the response of the metamaterial to
normally incident waves, i.e., θi = 0◦, was taken into account. This was done to
demonstrate the improved wide-angle metamaterial performance achieved when in-
cluding these simulations in the optimization.

The geometries and dimensions of the two optimized structures are shown in
Fig. 5.25. For each design, the GA optimized a population of 64 members over 50
generations. While the anisotropic inversion was used during only the first optimiza-
tion, both optimized designs were analyzed using the anisotropic inversion in order
to study their angular responses. The retrieved ẑ-component of the effective refrac-
tive index and wave impedance at 100 THz as a function of the incident angle are
shown in Figs. 5.26(a) and (b), respectively. It can be observed from Figs. 5.26(a)–
(b) that, for the first design, a positive near-zero ẑ-component of the effective refrac-
tive index with low loss and a wave impedance matched to free space are achieved
throughout the range of incidence angles from 0◦ to 30◦, thus ensuring good trans-
mission. The imaginary part of the wave impedance has a very small value from 0◦
to 23◦ and then increases slowly. Compared to the first design, the second design
has a smaller effective refractive index and a better matched effective impedance
for normal incidence, but its angular response is inferior. The imaginary part of the
ẑ-component of the effective refractive index increases significantly at large oblique
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Fig. 5.26 (a) Retrieved ẑ-component of the effective refractive index and (b) wave impedance at
100 THz versus angle of incidence

angles, resulting in large absorption loss. Also, due to the drastic changes in both the
real and imaginary parts of its wave impedance, the match to free space deteriorates
at larger angles.

In order to verify the consistency of the anisotropic inversion for these examples,
the three retrieved effective anisotropic constitutive parameters for the first design
that are active under TE polarized illumination are shown in Fig. 5.27. All three
parameters retrieved using the scattering parameters calculated at different angles of
incidence show very good agreement, indicating that the homogenization procedure
is accurate.

5.4.5 Dispersion Engineering Broadband Negative–Zero–Positive
Index Metamaterials

As described in the previous sections, metamaterials can be optimized for low-loss,
custom negative and zero/low indices of refraction. Fundamentally, these effective
medium properties arise from sub-wavelength inclusions in a periodic lattice and are
frequency dependent. The dispersive behavior in the effective medium properties
and the group delay results in signal distortion and can lead to narrow operational
bandwidths, which represent major roadblocks to metamaterials being incorporated
into practical devices. One approach to overcome the limitations of dispersion is
to employ dispersion engineering in order to exploit the frequency-dependent prop-
erties of the metamaterial by tailoring them to specific device needs. Dispersion
engineering has been applied in the RF for enhancing horn antennas [65]. Here,
dispersion engineering is utilized to tailor the dispersive properties of an optical
metamaterial to realize a broadband filter for the infrared.

The target device is a high performance optical band pass filter for the mid-
infrared with properties as described in Fig. 5.28. Dispersion engineering can first
be applied to a theoretical material to realize this optical band pass filter by con-
trolling the effective medium properties, μ and ε, which give rise to the refractive
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Fig. 5.27 Retrieved effective parameters of the first ZIM design shown in Fig. 5.25(a): (a) εxx ,
(b) μyy , and (c) μzz using normal and oblique incidence angles; (d) μzz using two oblique inci-
dence angles

Fig. 5.28 Ideal response of a
pass band filter with a flat
transmission window and a
flat group delay within the
pass band

index, impedance, and group delay. Figure 5.29 shows the real parts of the desired
material parameters that will produce the band pass filter response. In this plot
the permittivity possesses a Drude type dispersion, and the permeability exhibits
two Lorentzian resonances, one on either side of the plasma wavelength λe in the
permeability. Given an ejωt time dependence, these two models can be expressed
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Fig. 5.29 Theoretical metamaterial pass band filter. (a) Real parts of the dispersive permittivity,
permeability, and refractive index profiles for the theoretical material. (b) Scattering magnitudes
and group delay for the slab of theoretical material showing a transmission passband with constant
group delay

as
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where c0 is the speed of light, F1 and F2 are the filling factors, γe, γm1, and
γm2 are the damping factors, and λm1 and λm2 are the wavelengths associ-
ated with the two magnetic resonances [74]. With properly tuned damping fac-
tors and resonance wavelengths, the theoretical material exhibits a gradually
changing refractive index from negative unity at λn to positive unity at λp . Be-
tween these wavelengths, ε and μ are balanced such that the impedance matches
that of free space and the transmission is high. Outside of this pass band, the
impedance is no longer matched, and the metamaterial effectively blocks the
transmission of waves. In addition, the slope of the refractive index, which
is determined by the slopes of ε and μ can be controlled in the pass band
to minimize group delay fluctuations. The group delay is calculated according
to

τg = L

νg

= L(Re(n) + ω
d(Re(n))

dω
)

c0
(5.66)

where νg is the group velocity and L is the total thickness of the material slab. The
transmission and reflection magnitudes and group delay for a theoretical metamate-
rial slab of ∼0.15λ thickness are shown in Fig. 5.29, illustrating that the metama-
terial possesses the targeted scattering properties as well as a near constant group
delay in the pass band.

In order to realize a photonic metamaterial with the desired dispersion in the per-
mittivity and permeability, we employ a modified fishnet structure consisting of a
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Fig. 5.30 (a) Modified fishnet structure employed to realize metamaterial filter. (b) Top-view SEM
image of a portion of the metamaterial structure with magnified view inset. Scale = 3 μm

metal-dielectric-metal stack with square air holes that are loaded with nanonotches
as shown in Fig. 5.30. As discussed earlier in Sect. 5.4.3, the fishnet structure gives
rise to a Drude permittivity profile and a Lorentzian magnetic resonance. The added
notch loads provide additional control for tuning the permittivity as well as the pri-
mary and secondary magnetic resonances. A genetic algorithm was employed to
optimize the metamaterial structure, including the unit cell size, air hole notch size,
and layer thicknesses for the desired permittivity and permeability profiles. In the
GA fitness evaluation, the complex scattering parameters are calculated using An-
soft High Frequency Structure Simulator (HFSS) finite-element solver with periodic
boundary conditions assigned to the walls of a single unit cell geometry. The effec-
tive permeability and permittivity were then retrieved using the inversion technique
described in Sect. 5.4.1 and compared with the target effective medium profile re-
quirements in the following Cost function:

⎧
⎨

⎩

Cost1 =∑fpass
[|ε − εtar,i | + |μ − μtar,i |] +∑fstop

[| 1
log10(μ/ε)

|],
Cost2 =∑fpass

[|τg − τg,mean|],
(5.67)

Cost = Cost1 + Cost2 (5.68)

where εtar,i = {−1,0,1} and μtar,i = {−1,0,1} are the targeted permittivity and
permeability values, respectively, and τg,mean is the average group delay of the sam-
ple frequency points within the pass band. In this Cost function, Cost1 minimizes
the difference between the target and predicted effective parameters in the pass band
and maximizes the impedance mismatch in the stop band, while Cost2 flattens the
group delay across the pass band.

The GA optimized a population of 32 over 40 generations resulting in the opti-
mum dimensions given by p = 2113 nm, w = 1123 nm, g = 1.98 nm, t = 30 nm,
and d = 450 nm. The predicted scattering parameters shown in Fig. 5.31 show that
the optimized structure possesses a strong pass band over the 3.0 to 3.5 μm band
with a maximum insertion loss of 1.1 dB over the band as well as stop bands with
an average transmission attenuation of 10.2 dB. A steep roll off is also seen in the
transition from the pass band to the stop bands, with ∼93 dB/μm on the shorter
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Fig. 5.31 (a) Simulated and measured scattering magnitudes and simulated group delay for the
optimized metamaterial filter shown in Fig. 5.30. (b) Real and imaginary parts of the inverted re-
fractive index, permittivity, and permeability showing a balanced permittivity over the transmission
band as well as low intrinsic absorption loss

wavelength side and ∼101 dB/μm on the longer wavelength side. The predicted
effective medium parameters for the optimized structure shown in Fig. 5.31 match
the theoretical example, with a Drude permittivity profile and two Lorentzian res-
onances in the permeability. The imaginary part of the refractive index also has
a magnitude less than 0.15 across the entire pass band, indicating a low intrinsic
absorption loss in the metamaterial. The permittivity and permeability transition
simultaneously through zero, preventing a spike in intrinsic absorption at the zero-
index wavelength. The predicted group delay shows only a small variation from 15
to 27 fs within the pass band from 3.0 to 3.5 μm. This fluctuation amounts to about 1
period within a 20 % bandwidth and is much lower than the fluctuations of 3 periods
within 5 % bandwidth reported for other photonic metamaterials [21, 22].

The GA-optimized metamaterial filter was fabricated by patterning the notch-
loaded square air hole array in a deposited tri-layer Au–polyimide–Au stack. The
pattern was defined using electron-beam lithography and then transferred into the
stack with high-aspect-ratio dry-etching. The metamaterial structure was released
from the handle substrate prior to characterization in order to avoid substrate-
induced reflection loss. A field emission scanning electron microscope (FESEM)
image of the final, freestanding filter in Fig. 5.30 shows that the fabricated struc-
ture accurately replicates the design geometry. The freestanding filter was character-
ized using a Fourier transform infrared spectrometer that could obtain transmission
and reflection at normal incidence. The measured scattering parameter amplitudes
shown in Fig. 5.31 agree well with the simulation results, showing high, flat trans-
mission in the pass band and strong out-of-band rejection, with only slight discrep-
ancies in the filter bandwidth and roll-off rates. In summary, the dispersion engi-
neering approach enabled the optimization of a broadband optical filter by tailoring
the metamaterial effective parameters to those required by the target device.
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Chapter 6
Objective-First Nanophotonic Design

Jesse Lu and Jelena Vuckovic

Abstract We introduce an “objective-first” strategy for designing nanophotonic de-
vices, and we demonstrate the design of nanophotonic coupler, cloak, and mimic de-
vices. Simply put, our objective-first method works by prioritizing the performance
of the device even above satisfying Maxwell’s equations. We show how this is ac-
complished starting from Maxwell’s equations, applying numerical discretization,
and then solving not only for the field variables but the structure variables as well.
We then demonstrate the ability to quickly produce designs for both traditional de-
vices such as waveguide couplers, as well as more exotic devices such as optical
cloaks and mimics. Finally, we point the reader to future improvements and exten-
sions of our method.

6.1 Introduction

Our initial foray into design methods for nanophotonic devices began with a very
simple and naive question: Could we make an inverse solver which, when given the
electromagnetic fields we desire, returns the nanophotonic structure that will pro-
duce them [1]? In other words, since we already know how to solve for E and H in
Maxwell’s equations, why can’t we solve for ε or even μ instead? Not surprisingly,
it did not take us long to find that such a simple strategy would inevitably run into
many problems.

Over the subsequent years, we were able to come up with a better solution, which
we call an “objective-first” strategy for nanophotonic design, and which we present
in this chapter. Although it is more advanced than our original idea, objective-first
design still carries the same fundamental concept, which is to specify the electro-
magnetic fields, and then to solve for a structure to produce them.

One of the strengths of this approach is that it recasts the optimization problem
into separably convex problems whose global optima can be reliably determined.
Additionally, we show that our formulation is general enough to encompass the de-
sign of all linear nanophotonic structures and is not limited to the design of optical
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metamaterials. While this approach typically produces designs with very high effi-
ciencies (typically 99 %) our solutions do feature continuously varying values of the
dielectric constant. Future approaches for dealing with this constraint are discussed
in Sect. 6.7.3.

In this chapter, we present the simple theoretical underpinnings of objective-first
design in Sects. 6.2 and 6.3—namely the numerical discretization of the electro-
magnetic wave equation, and the formulation of the objective-first design problem.
Then, in Sects. 6.4–6.6, we show examples of the method in action in designing
nanophotonic devices in three broad categories: waveguide couplers, optical cloaks,
and optical mimics; the source code for which is available online [2]. In Sect. 6.7,
we conclude by commenting on possible extensions of our method.

Lastly, we note that in contrast to many of the other chapters in this book, the
designs proposed in this chapter are all permittivity and permeability profiles in
one and two-dimensions. The additional task of choosing specific material sets to
fabricate actual devices is left as an additional step.

6.2 The Electromagnetic Wave Equation

In this section, we outline the wave equation that is central to the application of our
method, with the end-result being to show that it is separably linear (bi-linear) in
the field and structure variables. We do this by first formulating this wave equation
in the language of physics, and then discretizing it in order to achieve numerical
solutions. We then show how one can not only obtain the solution for the fields, but
also obtain the solution for the structure using simple, standard numerical tools.

6.2.1 Physics Formulation

First, let’s derive our wave equation, starting with the differential form of Maxwell’s
equations,

∇ × E = −μ0
∂H

∂t
, (6.1)

∇ × H = J + ε
∂E

∂t
, (6.2)

where E, H , and J are the electric, magnetic and electric current vector fields,
respectively, ε is the permittivity and μ0 is the permeability, which we assume to be
that of vacuum everywhere.

Assuming the time dependence exp(−iωt), where ω is the angular frequency,
these become

∇ × E = −iμ0ωH, (6.3)

∇ × H = J + iεωE, (6.4)
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which we can combine to form our (time-harmonic) wave equation,

∇ × ε−1∇ × H − μ0ω
2H = ∇ × ε−1J. (6.5)

In this chapter, we are only going to consider the two-dimensional form of this
equation, and specifically the two-dimensional transverse electric (TE) mode [3]. In
this case (6.5) is simplified because only the z-component of H is nonzero. Never-
theless, a single equation (6.5), represents all the physics which we take into account
in this chapter.

6.2.2 Numerical Formulation

On top of the analytical formulation of the wave equation (6.5), we will now add
a numerical, or discretized, formulation. This will be needed in order to solve for
arbitrary structures for which there are not analytical solutions.

The salient step in order to do so is to use the Yee grid [4], which allows us
to easily define the curl (∇×) operators in (6.5). Since both the individual curl
operators and the equation as a whole is linear in H , we can reformulate (6.5) with
a change of variables, as

A(p)x = b(p), (6.6)

where H → x, ε−1 → p; and where

A(p) = ∇ × ε−1∇ × −μ0ω
2 (6.7)

and

b(p) = ∇ × ε−1J. (6.8)

Note that our use of A(p) and b(p) instead of A and b simply serves to clarify the
dependence of both A and b on p.

Apart from using the Yee grid, which at some length scale requires that our de-
signs conform to a rectangular grid, the only other salient implementation detail is
the use of stretched-coordinate perfectly matched layers [5] where necessary, in or-
der to prevent unwanted reflections at the boundaries of the simulation domain. The
effect of such layers is to modify the curl operators, although their linear property is
still maintained.

6.2.3 Solving for H

With our numerical formulation, we can now solve for the H -field (the E-field can
be computed from the H -field using (6.4)) by applying general linear algebra solvers
to (6.6). Recall that since we have chosen a time-harmonic formulation, solving for
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x in (6.6) is actually performing what is simply known as a time-harmonic or a
finite-difference frequency-domain (FDFD) simulation [6]. Furthermore, since we
have limited ourselves to the two-dimensional case, (6.6) is easily solved using the
standard sparse solver included in Matlab on a single desktop computer.

We call the routine that solves for x in (6.6) given p a field-solver, or a simulator.

6.2.4 Solving for ε−1

After having built a field-solver or simulator (which finds x given p) for our wave
equation, the next step is to build a structure-solver for it. In other words, we need
to be able to solve for p given x.

To do so, we return to (6.5) and remark that ε−1(∇ × H) = (∇ × H)ε−1 and
ε−1J = Jε−1 since scalar multiplication is commutative. This allows us to rear-
range (6.5) as

∇ × (∇ × H)ε−1 − ∇ × Jε−1 = μ0ω
2H (6.9)

which we now write as

B(x)p = d(x), (6.10)

where

B(x) = ∇ × (∇ × H) − ∇ × J (6.11)

and

d(x) = μ0ω
2H. (6.12)

With this extremely simple trick, we have shown that we can seemingly solve for
p given x with approximately the same ease as solving for x given p! We see this
because the dimensions and complexity of B(x) are basically equivalent to that of
A(p), and this implies that the same simple tools used in our field-solver should be
applicable to solving (6.10). This is indeed what we find, although the later addition
of constraints on p will require the use of more powerful (but just as dependable)
numerical tools.

6.2.5 Bi-linearity of the Wave Equation

Although additional mathematical machinery must still be added to obtain a useful
design tool, we have shown so far that the wave equation is separately linear in x

and p (i.e., bilinear). Namely,

A(p)x − b(p) = B(x)p − d(x). (6.13)
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In other words, fixing p makes solving the wave equation for x a linear problem,
and vice versa. Note that the joint problem, where both x and p are allowed to vary,
is not linear.

The bi-linearity of the wave equation is absolutely fundamental in our objective-
first strategy because it relies on the fact that, although simultaneously solving for
x and p is very difficult, we already know how to solve linear systems (x and p

separately) well. In fact, it is this very property that forms the natural division of
labor which our objective-first method exploits.

6.3 The Objective-First Design Problem

We now describe the remaining machinery used in the objective-first method, in
addition to the field-solver and the structure-solver, as previously outlined. Specif-
ically, we introduce the idea of a design objective and a physics residual, and we
reference the mathematical notion of convexity in order to motivate the need to di-
vide the objective-first problem into two separately convex sub-problems.

6.3.1 Design Objectives

Our design objective or objective function, f (x), is simply defined as a function
we wish to be minimal for the design to be produced. For instance, in the design
of a device which must transmit efficiently into a particular mode, we could choose
f (x) to be the negative power flow into that mode. Or, if the device was to be a
low-loss resonator, we could choose f (x) to be the amount of power leaking out
of the device. In general, there are multiple choices of f (x) which can be used to
describe the same objective. For example, f (x) for a transmissive device may not
only be the negative power transmitted into the desired output mode, but it could
also be the amount of power lost to other modes, or even the error in the field values
at the output port relative to the field values needed for perfect transmission. These
design objectives are equivalent in the sense that, if minimized, all would produce
structures with good performance. At the same time, we must consider that the
computational cost and complexity of using one f (x) over another may indeed vary
greatly.

6.3.2 Convexity

Before formulating the design problem, we would like to add a note regarding the
complexity of various optimization problems. Specifically, we want to introduce the
notion of convexity [7] and to note the difference between problems that are convex
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and those which are not. The difference is simply this: Convex problems have a sin-
gle optimum point (only one local optimum, which is therefore the global optimum)
which we can reliably find using existing numerical software, whereas non-convex
problems typically have multiple optima and are thus much more difficult to reliably
solve.

That a convex problem can be reliably solved, in this case, means that regard-
less of the starting guess, convex optimization software will always arrive at the
globally optimal solution and will be able to numerically prove global optimality as
well. Thus, the advantage in formulating a design problem in terms of convex opti-
mization problems is to eliminate both the need to circumvent local optima and any
notion of randomness. On a practical level, there exist mature convex optimization
software packages among which is CVX, a convex optimization package written for
Matlab [8], which we use for the examples in this chapter.

6.3.3 Typical Design Formulation

We now examine the typical, and most straightforward formulation of the design
problem, in order to relate and contrast it to the objective-first formulation. The
design problem for a physical structure is typically formulated as

minimize
x,p

f (x)

subject to A(p)x − b(p) = 0,
(6.14)

which states that we would like to vary x and p simultaneously in order to decrease
f (x) while always satisfying physics (e.g., the electromagnetic wave equation).

Since solving (6.14) is quite difficult in the general sense (simultaneously vary-
ing x and p makes the problem non-convex), traditional optimization approaches,
such as those described in previous chapters, have relied on either a brute-force pa-
rameter search, or a gradient-descent method utilizing first-order derivatives. In the
gradient-descent case, solving (6.14) results in the well-known adjoint optimization
method [9].

6.3.4 Objective-First Design Formulation

In contrast with the typical formulation, the objective-first formulation simply
switches the roles of the wave equation and the design objective with one another:

minimize
x,p

∥∥A(p)x − b(p)
∥∥2 (6.15)

subject to f (x) = fideal. (6.16)
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Although such a switch may seem trivial, and even silly at first, we show that it
fundamentally changes the nature of the design problem and actually gives us ad-
vantages in our efforts at finding a solution.

This first fundamental change, as seen from (6.15), is that we allow for a nonzero
residual in the electromagnetic wave equation. This literally means that we al-
low for non-physical x and p, since A(p)x − b(p) �= 0 is permissible. And since
A(p)x − b(p) can now be a nonzero entity, we choose to call it the physics resid-
ual. The second fundamental change is that we always force the device to ex-
hibit ideal performance, as seen from (6.16). This, of course, ties in very closely
with (6.15) since ideal performance is usually not obtainable unless one allows
for some measure of error in the underlying physics (nonzero physics residual).
As such, our strategy will be to iteratively vary x and then p in order to de-
crease the physics residual (6.15) to zero, while always maintaining ideal perfor-
mance.

The primary advantage of the objective-first formulation is that, although the full
problem is still non-convex, it allows us to form two convex sub-problems, as out-
lined below. In contrast to an adjoint method, here we can still access information
regarding second-order derivatives, which decreases the time it takes to obtain a
solution. An additional advantage of this approach is that our insistence that ideal
performance be always attained provides a mechanism which can potentially “over-
ride” local optima in the optimization process.

To this end, we have found that such a strategy results in surprisingly non-
intuitive devices which exhibit highly efficient performance, even when the start-
ing point of the design problem is completely non-functional. Furthermore, we
have found this to be true even when the physics residual fails to be completely
removed.

In practice, we add an additional constraint to the original formulation, [10]
which is to set hard-limits on the allowable values of p, namely p0 ≤ p ≤ p1. This
is actually a relaxation of the ideal constraint, which would be to allow p to only
have discrete values, p ∈ [p0,p1], but such a constraint would essentially force us
to only perform brute force trial-and-error.

Our objective-first formulation is thus:

minimize
x,p

∥∥A(p)x − b(p)
∥∥2

subject to f (x) = fideal

p0 ≤ p ≤ p1,

(6.17)

which is still non-convex, but can be broken down into two convex sub-problems,
the motivation being that each of these will be able to be easily and reliably
solved.
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6.3.5 Field Sub-problem

The first of these is the field sub-problem, which simply involves fixing p and inde-
pendently optimizing x,

minimize
x

∥∥A(p)x − b(p)
∥∥2

subject to f (x) = fideal.
(6.18)

This problem is convex, and actually quadratic, which means that it can even be
solved using standard numerical tools, in the same way as a simple least-squares
problem.

The field sub-problem can be thought of as an update to x (H-field) where we try
to “fit” the electromagnetic fields to the structure (p). Of course, if it were not for
the hard-constraint on the design objective, the field sub-problem would be able to
perfectly fit x to p.

6.3.6 Structure Sub-problem

The second sub-problem is formulated by fixing x and independently optimizing p.
At the same time, we use the bi-linearity property of the physics residual from (6.13)
to rewrite the problem in a way that makes its convexity explicit:

minimize
∥∥B(x)p − d(x)

∥∥2

subject to p0 ≤ p ≤ p1.
(6.19)

The structure sub-problem is also convex, but not quadratic because of the inequality
constraints on p. However, use of the CVX package still allows us to obtain results
quickly and reliably.

Note that in an analogous fashion to the field sub-problem, the structure sub-
problem attempts to fit p to x, and is prevented from perfectly doing so by its
own constraint. Because neither sub-problem is capable of completely reducing the
physics residual to zero, they must be used in an iterative manner in order to gradu-
ally decrease the physics residual. To this end, we employ the alternating directions
optimization method.

6.3.7 Alternating Directions

We use a simple alternating directions scheme to piece together (6.18) and (6.19),
which is to say that we simply continually alternate between solving each equation
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until we reach some stopping point, normally measured by how much the physics
residual has decreased.

Loop:

minimize
x

∥∥A(p)x − b(p)
∥∥2

subject to f (x) = fideal;
minimize

p

∥∥B(x)p − d(x)
∥∥2

subject to p0 ≤ p ≤ p1.

(6.20)

The alternating directions scheme is extremely simple and does not require addi-
tional processing of x or p outside of the two sub-problems, nor does it require the
use of auxiliary variables.

The advantage of the alternating directions method is that the physics residual
is guaranteed to monotonically decrease with every iteration, which is useful in
that no safeguards are needed to protect against “rogue” steps in the optimization
procedure. Note that this robustness stems from the fact that, among other things,
each sub-problem does not rely on previous values of the variable which is being
optimized, but only on the variable which is held constant.

The disadvantage of such a simple scheme is that the convergence is quite slow,
although we have found it to be sufficient in our cases. Related methods, such as the
Alternating Directions Method of Multipliers [11], exhibit far better convergence.

6.4 Waveguide Coupler Design

We first apply the objective-first formulation with the alternating directions algo-
rithm to the design of nanophotonic waveguide couplers in two dimensions, where
our goal is to couple light from a single input waveguide mode to a single output
waveguide mode with as close to unity efficiency as possible. We would also like
to allow the user to choose arbitrary input and output waveguides, as well as to
select arbitrary modes within those waveguides (as opposed to allowing only the
fundamental mode, for example).

This problem is very general and, in essence, encompasses the design of all linear
nanophotonic components because the function or performance of all such compo-
nents is simply to convert a defined set of input modes into a defined set of output
modes. Such a broad, general problem is ideally suited for an objective-first strat-
egy since no approximations or simplifications of the electromagnetic fields are re-
quired; we only make the simplification of working in two dimensions (transverse
magnetic mode) and dealing only with a single input and output mode.

Since the electromagnetic wave equation is scale-invariant (e.g., double the
length scale and half the frequency and you obtain the same equation), we state
all dimensions terms of the vacuum wavelength itself. Therefore, our solutions are
applicable to regions of the electromagnetic spectrum where the dielectric constants
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Fig. 6.1 Formulation of the
design objective

used are achievable. In most cases, values between 1 and 12.25 are chosen because
these are realizable for semiconductor devices operating at telecommunication fre-
quencies. Finally, note that dispersive effects are ignored for all results in this chap-
ter since we always consider device performance at a single, fixed frequency.

6.4.1 Choice of Design Objective

As mentioned in Sect. 6.3.1, multiple equivalent choices of design objective exist
which should allow one to achieve the same device performance; however, we will
choose, for generality, the following design objective:

f (x) =
{

x − xperfect at boundary,

0 elsewhere.
(6.21)

That is, f (x) simply selects the outermost values of the field in the design space and
compares them to values of a perfect device.

Furthermore, we choose fideal = 0 so that when placed into the objective-first
problem (6.17), this will result in fixing the boundary values of the field at the edge
of the design space to those of an ideal device, as shown in Fig. 6.1. In this case, we
choose such an ideal device to have perfect (unity) coupling efficiency, and these
ideal fields are simply obtained by using the input and output mode profiles at the
corresponding ports and using values of zero at the remaining ports.

Such a design objective is general in the sense that the boundary values of the de-
vice contain all the information necessary to determine how the device will interact
with its environment, when excited with the input mode in question. In other words,
we only need to know the boundary field values, and not the interior field values
to determine the performance of the device; and thus, it would be conceivable that
such a scheme might be generally applied to linear nanophotonic devices beyond
just waveguide mode couplers.

In our case, we only need to know the value of Hz and its derivative along the
normal direction, ∂Hz/∂n, along the design boundary in order to completely char-
acterize its performance. Alternatively, one can, of course, use the outermost two
layers of the Hz instead of calculating a spatial derivative.
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6.4.2 Application of the Objective-First Strategy

Having chosen our design objective we apply the alternating directions algorithm to
(6.17) which results in solving the following two sub-problems iteratively:

minimize
x

∥∥A(p)x − b(p)
∥∥2

subject to x = xperfect, at boundary;
(6.22)

minimize
p

∥∥B(x)p − d(x)
∥∥2

subject to p0 ≤ p ≤ p1.
(6.23)

For the results throughout this chapter, we uniformly choose p0 = 1/12.25 and
p0 = 1, corresponding to ε−1 of silicon and air, respectively. Additionally, since a
starting value for p is initially required, we always choose to use a uniform value of
p = 1/9 across the entire design space. There is nothing really unique about such
a choice, although we have noticed that an initial value of p near 1 often results in
poor designs. Note that unlike p we do not require an initial guess for x. The only
other significant value that needs to be set initially is the frequency, or wavelength
of light. We use free space wavelengths in the range of 25 to 63 grid points for the
results in this chapter.

Lastly, for all the examples presented in the chapter, we run the alternating di-
rections algorithm for 400 iterations. In terms of convergence, the physics residual
never fully vanishes, and seems to asymptotically approach a nonzero value. Even
so, we seem to obtain good performance from the produced designs. Note that al-
though we do not present the convergence results here, such information can be
obtained by inspecting the source code [2].

6.4.3 Coupling to a Wide, Low-Index Waveguide

As a first example, we design a coupler from the fundamental mode of a narrow,
high-index waveguide to the fundamental mode of a wide, low-index waveguide.
Such a coupler would be useful for coupling from an on-chip nanophotonic waveg-
uide to an off-chip fiber, for example.

The input and output mode profiles used as the ideal fields are shown in the
upper-left corner of Fig. 6.2. The final structure is shown in the upper right plot, and
the simulated Hz fields, under excitation of the input mode in this final structure, are
shown in the bottom plots.

Figure 6.2 then shows that the design structure has nearly unity efficiency
(99.8 %) and converts between the input and output modes within a very small
footprint (roughly 1.5 square vacuum wavelengths).
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Fig. 6.2 Coupler to a wide low-index waveguide. Efficiency: 99.8 %, device footprint: 36 × 76
grid points, wavelength: 42 grid points

Fig. 6.3 Mode converter. Efficiency: 98.0 %, device footprint: 36 × 76 grid points, wavelength:
42 grid points

6.4.4 Mode Converter

In addition to coupling to a low-index waveguide, we show that we can successfully
apply the objective-first method to convert between modes of a waveguide. We do
this by simply selecting the output mode in the design objective to be the second-
order waveguide mode, as seen in Fig. 6.3. Note that the design of this coupler
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Fig. 6.4 Coupler to a wide low-index waveguide. Efficiency: 98.9 %, device footprint: 36 × 76
grid points, wavelength: 25 grid points

is made challenging because of the opposite symmetries of the input and output
modes. Moreover, because our initial structure is symmetric, we initially have 0 %
efficiency to begin with. Fortunately, the objective-first method can still design an
efficient (98.0 %) coupler in this case as well in a footprint of less than two square
vacuum wavelengths.

6.4.5 Coupling to an Air-Core Waveguide Mode

We can then continue to elucidate the generality of our method by coupling between
waveguides which confine light in completely different ways. Figure 6.4 shows a
high-efficiency coupling device between an index-guided input waveguide and a
“air-core” output waveguide, in which the waveguiding effect is achieved using dis-
tributed Bragg reflection (instead of total internal reflection as in the input waveg-
uide).

In this case, the device footprint is increased to 4.3 square vacuum wavelengths
and the final efficiency is 98.9 %.

6.4.6 Coupling to a Metal–Insulator–Metal and Metal Wire
Plasmonic Waveguides

Additionally, our design method can also generate couplers between different ma-
terial systems such as between dielectric and metallic (plasmonic) waveguides, as
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Fig. 6.5 Coupler to a plasmonic metal–insulator–metal waveguide. Efficiency: 97.5 %, device
footprint: 36 × 76 grid points, wavelength: 25 grid points

Fig. 6.6 Coupler to a plasmonic wire waveguide. Efficiency: 99.1 %, device footprint: 36 × 76
grid points, wavelength: 25 grid points

shown in Fig. 6.5 (97.5 % efficiency). In this case, the permittivity of the metal
(ε = −2) is chosen to be near the plasmonic resonance (ε = −1).

Extending this method to include plasmonic wire waveguides, Fig. 6.6 shows that
efficiently coupling to this type of structure is achievable as well (99.1 % efficiency).
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6.5 Optical Cloak Design

In the previous section, we showed that couplers between virtually any two waveg-
uide modes could be constructed using the objective-first design method, and based
on the generality of the method one can guess that it may also be able to gener-
ate designs for any linear nanophotonic device. Now, we extend the applicability of
our method to the design of metamaterial devices which operate in free-space. In
particular, we adapt the waveguide coupler algorithm to the to the design of optical
cloaks.

6.5.1 Application of the Objective-First Strategy

Adapting the method used in Sect. 6.4 to the design of optical cloaks really only
requires one to change the simulation environment to allow for free-space modes.
This is accomplished by modifying the upper and lower boundaries of the simulation
domain from absorbing boundary conditions to periodic boundary conditions, which
allows for plane-wave modes to propagate without loss until reaching the left or right
boundaries, where absorbing boundary conditions are still maintained.

In terms of the design objective, we allow the device to span the entire height of
the simulation domain, and thus consider only the leftmost and rightmost planes as
boundary values. Specifically, for this section the input and output modes are plane
waves with normal incidence, as can be expected for good cloaking devices. The
achieved results all yield high efficiency, although we note that the cloaking effect
is only measured for a specific input mode. That is to say, just as the waveguide
couplers previously designed were single-mode devices, so the cloaks designed in
this section are also “single-mode” cloaks. An additional modification, as compared
to Sect. 6.4, is that we now prevent the structure from being modified in certain
areas which contain the object to be cloaked. With these simple changes we continue
to solve (6.17) with the alternating directions algorithm in order to design optical
cloaks instead of waveguide couplers. Once again, as in Sect. 6.4, each design is run
for 400 iterations with a uniform initial value of p = 1/9 for the structure (where
the structure is allowed to vary), and the range of p is limited to 1/12.25 ≤ p ≤ 1,
implying a dielectric cloak.

6.5.2 Anti-reflection Coating

As a first example, we attempt to design the simplest and most elementary “cloak-
ing” device available, which, we argue, is a simple anti-reflection coating; in which
case the object to be cloaked is nothing more than the interface between two dielec-
tric materials. In this case, we use the interface between air and silicon, as shown in
Fig. 6.7.
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Fig. 6.7 Anti-reflection coating. Efficiency: 99.99 %, device footprint: 60×100 grid points, wave-
length: 63 grid points

Unsurprisingly for such a simple case, we achieve a very high efficiency device.
Note also that the efficiency of the device can be deduced by eye, based on the
absence of reflections or standing waves in bottom two plots of Fig. 6.7.

6.5.3 Wrap-Around Cloak

Next, we design a cloak for a plasmonic cylinder, which is quite effective at scatter-
ing light as can be seen from Fig. 6.8, where we show that the uncloaked cylinder,
although sub-wavelength in size, scatters the majority of light away from the desire
output (plane-wave) mode.

In designing the wrap-around cloak, we allow the structure to vary at all points
within the design area except in the immediate vicinity of the plasmonic cylinder.
Application of the objective-first strategy results in an efficient (greater than 99 %)
device as seen in Fig. 6.9. Note that our cloak employs only isotropic, non-magnetic
materials, and at the same time it is specific to a particular input and to a partic-
ular object. That is to say, it is a single-frequency, single-mode, and single-object
cloaking device.

6.5.4 Open-Channel Cloak

With a simple modification, from the previous example, we can design a cloak which
features an open channel to the exterior electromagnetic environment (Fig. 6.10).
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Fig. 6.8 Plasmonic cylinder to be cloaked. 68.5 % of light is diverted away from the desired output
mode

Fig. 6.9 Wrap-around cloak. Efficiency: 99.99 %, device footprint: 60 × 100 grid points, wave-
length: 42 grid points

This simple modification creates an air gap that connects the cylinder to the outside
world both from the front and back and may be useful in the case where one would
like to remove or replace the cloaked object.
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Fig. 6.10 Open-channel cloak. Efficiency: 99. 8 %, device footprint: 60 × 100 grid points, wave-
length: 42 grid points

Such a design is still very efficient (greater than 99 % efficiency) and demon-
strates the usefulness of the objective-first strategy in cases where other methods,
such as transformation optics, may require use of the entire space around the object
to be cloaked.

6.5.5 Channeling Cloak

Our last cloaking example replaces the plasmonic cylinder with a thin metallic wall
in which a sub-wavelength channel is etched. Such a metallic wall is very effective
at blocking incoming light (as can be seen from Fig. 6.11 where more than 99 % of
the incoming light is blocked) because of its large negative permittivity (ε = −20),
meaning that any cloaking device would be forced to channel all the input light into
a very small aperture and then to flatten that light out into a plane wave again.

Once again, our method is able to produce a design with efficiency greater than
99 %, as shown in Fig. 6.12.

6.6 Optical Mimic Design

We now apply our objective-first strategy to the design of optical mimics. We define
an optical mimic to be a linear nanophotonic device which mimics the output field
of another device. In this sense optical mimics are anti-cloaks; where cloaks strive
to make an object’s electromagnetic presence vanish, mimics strive to implement an
object’s presence without that object actually being there.
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Fig. 6.11 Metallic wall with sub-wavelength channel to be cloaked. 99.9 % of the light is blocked
from the desired output plane-wave

Fig. 6.12 Channeling cloak. Efficiency: 99.9 %, device footprint: 60 × 100 grid points, wave-
length: 42 grid points

As such, the design of optical mimics provides a tantalyzing approach to the
realization of practical metamaterial devices. That is to say, if one can reliably pro-
duce practical optical mimics, then producing metamaterials can be accomplished
by simply producing an optical mimic of that material. In a more general sense,
designing optical mimics is really just a recasting of the thrust of the objective-first
design strategy in its purest form, namely the design of a nanophotonic device based
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Fig. 6.13 Plasmonic cylinder mimic (see Fig. 6.8 for the original object). Error: 8.1 %, device
footprint: 40 × 120 grid points, wavelength: 42 grid points

purely on the electromagnetic fields one wishes to produce. As such, devices which
perform well-known optical functions (e.g., focusing, lithography) can also be de-
signed.

6.6.1 Application of the Objective-First Strategy

The objective-first design of optical mimics proceeds in virtually an identical way
to the design of optical cloaks, the only difference being that the output modes are
specifically chosen to be those that produce the desired function. For most of the
examples provided, the input illumination is still an incident plane wave. Lastly,
instead of measuring efficiency, we measure the relative error of the simulated field
against that of a perfect target field at a relevant plane some distance away from
the device. The location of this plane is identified as a dotted line in the subsequent
figures.

6.6.2 Plasmonic Cylinder Mimic

Our first design is simply to mimic the plasmonic cylinder which we cloaked in the
previous section. Figure 6.13 shows the result of the design.
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Fig. 6.14 Full-width-half-max at focus: 1.5 λ, focus depth: 100 grid points. Error: 12.0 %, device
footprint: 40 × 120 grid points (1.6 λ thick), wavelength: 25 grid points

The final structure is shown in the upper right plot, while the ideal field and the
simulated field are shown in the middle and bottom plots. Note that the ideal field
is cut off to emphasize the fields to the right of the device (the output fields). Also,
the magnitude of the fields are compared at the dotted black line at which point the
relative error is also calculated. For this simple, initial mimic, the simulated field
quite closely imitates that produced by a single plasmonic cylinder (8.1 % error)

6.6.3 Diffraction-Limited Lens Mimic

We now design a mimic for a typical diffraction-limited lens. In this case, the object
which we wish to mimic does not require simulation since the fields of a lens can be
readily computed. For the three figures below, the computed ideal fields are shown
as the target fields.

Figure 6.14 shows the mimic of a lens with relatively moderate focusing. In such
a lens, the focusing action is gradual and easily discernible by eye. The computed
error in this case is 12.0 %.

In contrast, Figs. 6.15 and 6.16 are both mimics of a lens with a smaller half-
wavelength spot size. Such a lens is much harder to design because of the high-
frequency spatial components involved; and yet, we show that an objective-first
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Fig. 6.15 Full-width-half-max at focus: 0.5 λ, focus depth: 50 grid points. Error: 5.6 %, device
footprint: 40 × 120 grid points (1.6 λ thick), wavelength: 25 grid points

Fig. 6.16 Full-width-half-max at focus: 0.5 λ, focus depth: 150 grid points. Error: 1.4 %, device
footprint: 40 × 120 grid points (1.6 λ thick), wavelength: 25 grid points
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Fig. 6.17 Sub-diffraction lens mimic. The target field has a full-width half-maximum of 0.14 λ.
Error: 28.6 %, device footprint: 60 × 120 grid points (1.43 λ thick), wavelength: 42 grid points

strategy can produce successful designs (5.6 % and 1.4 % error) and that this is
achievable at both shorter and longer focal depths.

6.6.4 Sub-diffraction Lens Mimic

Our method is now employed to mimic the effect of a sub-diffraction lens. Since
such a lens can be created using a negative-index material [12], this mimic can be
viewed as an imitation of a negative-index material, in that the following device
recreates the sub-diffraction target-field at the output plane (dotted line) when il-
luminated by the same target field at the input of the device. In other words, this
device is an image-specific sub-diffraction imager, which is another way of saying
that it is a single-mode imager.

As Fig. 6.17 shows, we are able to recreate the target field at the output, albeit
with higher error (28.6 %). Although the error in this example is larger, the field
produced by the device has a full-width half-maximum nearly equal to that of the
target field.

Note that the target field is created simply by placing the imaging field at the
output plane. Also note that, as expected, the output field decays very quickly since,
for such a deeply sub-wavelength field, it is composed primarily of evanescently
decaying modes.
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Fig. 6.18 Sub-diffraction optical mask. The three central peaks in the target field are each sepa-
rated by 0.28 λ. Error: 19.8 %, device footprint: 40 × 120 grid points, wavelength: 25 grid points

6.6.5 Sub-diffraction Optical Mask

Lastly, we extend the idea of a sub-diffraction lens mimic one step further and de-
sign a sub-diffraction optical mask. Such a device takes a plane wave as its input and
produces a sub-diffraction image at its output plane. Of course, akin to its lens coun-
terpart, this output plane must lie within the near-field of the device (specifically, two
computational cells away) because of its sub-wavelength nature. Figure 6.18 shows
the design of a simple mask which successfully produces three peaks at its output
with an error of 19.8 %.

6.7 Extending the Method

The objective-first method, as applied in the examples in this chapter, represents
only a small foray into the area of nanophotonic design. Several key extensions to
what is presented here are needed to fully address real-world nanophotonic design
challenges.
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6.7.1 Three-Dimensional Design

The first of these is the need to design fully three-dimensional structures. Doing
so provides no inherent difficulties aside from the matrices in (6.6) becoming very
large. This is not insurmountable as electromagnetic simulation software for three-
dimensional nanophotonic structures already exists.

In fact, for certain choices of the design objective (i.e., those of low-rank) (6.18)
can be efficiently solved by a small number of calls to unmodified simulation soft-
ware. Of course, for general design objectives, such software will need to be modi-
fied in order to solve (6.18).

On the other hand, specialized software to solve (6.10) in any number of di-
mensions does not exist, although this was not a problem in two dimensions since
generic linear algebra solvers are more than accurate. In three dimensions, the large
size of matrix B(x) can be greatly compressed by considering only fabrication pro-
cesses which modify a structure in-plane. In this way, the degrees of freedom in
p can be greatly reduced and the original methods used in this chapter can still
be applied. This work-around is especially appealing since in-plane structures are
significantly less challenging to fabricate.

6.7.2 Multi-mode

A second necessary extension is to be able to consider the multiple fields that a
structure produces in response to input fields of differing frequency and spatial dis-
tribution. Such an extension is straightforward in the objective-first formulation and
results in the following modified problem statement,

minimize
xi ,p

∑

i

∥∥A(p)xi − b(p)
∥∥2

subject to f (xi) = fi,ideal, i = 1, . . . , n,

p0 ≤ p ≤ p1,

(6.24)

which can be separated into field and structure sub-problems as in the single-mode
formulation. In the multi-mode case, this results in one structure sub-problem and n

field sub-problems. Interestingly, the n field sub-problems lend themselves naturally
to parallelization since they can be solved independently, leading to the possibility
that a multi-mode design completing in roughly the same time as a single-mode
design.

6.7.3 Binary Structure

Another necessary extension of our method is to force the values of p to be dis-
crete. This is not trivial since a naive restatement of (6.17) which includes such a
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constraint,

minimize
x,p

∥∥A(p)x − b(p)
∥∥2

subject to f (x) = fideal,

p ∈ {p0,p1},
(6.25)

results in a very difficult combinatorial problem.
Tractable approaches include penalizing intermediate values of p [13] or even

transferring to a level-set method [9] where the distinction between materials is
explicit.

6.7.4 Robustness

Lastly, the design of structures which are robust to both fabrication imperfections
and fluctuations in environmental parameters is also a necessity for practical real-
world devices.

It seems likely in this case that a heuristic approach may be most successful in
this case, rather than tackling the problem head-on. For instance, to account for
fluctuating material parameters induced by temperature changes one may design a
device that operates over a larger bandwidth than is actually required.

6.8 Conclusions

We have introduced an objective-first approach to the design of nanophotonic com-
ponents, and applied it to the design of waveguide couplers, optical cloaks, and
optical mimics. In doing so, we hope to have exhibited both the simplicity and the
breadth of our method to the design of a broad class of linear, single-mode de-
vices. In addition to posting the source code for all the examples online [2], we
have outlined the necessary extensions of our method in order to design practical,
three-dimensional devices.
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Chapter 7
Gradient Based Optimization Methods
for Metamaterial Design

Weitao Chen, Kenneth Diest, Chiu-Yen Kao, Daniel E. Marthaler,
Luke A. Sweatlock, and Stanley Osher

Abstract The gradient descent/ascent method is a classical approach to find the
minimum/maximum of an objective function or functional based on a first-order
approximation. The method works in spaces of any number of dimensions, even in
infinite-dimensional spaces. This method can converge more efficiently than meth-
ods which do not require derivative information; however, in certain circumstances
the “cost function space” may become discontinuous and as a result, the derivatives
may be difficult or impossible to determine. Here, we discuss both level set meth-
ods and eigenfunction optimization for representing the topography of a dielectric
environment and efficient techniques for using gradient methods to solve different
material design problems. Numerous results are shown to demonstrate the robust-
ness of the gradient-based approach.

7.1 Introduction

In this chapter, we introduce methods for representing the topography of a dielec-
tric environment and efficient techniques for using gradient methods to solve dif-
ferent material design problems. We first discuss the level set method introduced
by Osher and Sethian [19]. This method is well known for its flexibility in captur-
ing the interface between two phases and its ability to handle topology changes,
such as breaking one component into several, merging several components into one,
and forming sharp corners. An example of this is shown in Fig. 7.1. In panel (a),
we see the level set function represented by the multi-colored surface, along with
the yellow, horizontal plane that could be set at any height. In panel (b), we see
the corresponding boundary regions which represent the zero level set of the func-
tion.

The level set method has been used on numerous occasions to study shape op-
timization problems. This approach is fundamentally different than those discussed
in Chaps. 4 and 5, which utilize discrete parameterization of the geometries un-
der consideration. Such methods inherently exhibit extreme discontinuities in “cost
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Fig. 7.1 Example of a level set function (a) and a corresponding zero level set cross-section (b)

function space” when such topology changes occur. Examples include antenna el-
ements within an array merging together or the gap in a split ring resonator com-
pletely closing. Instead of using a physically driven velocity, the level set method
typically moves surfaces by the gradient flow of an objective energy functional. For
this approach to be successful, this method inherently requires the determination
of such a gradient flow. For certain types of physical systems, such as fluid flow,
these types of gradients can be calculated analytically; however, within the field of
electromagnetics, determining such gradients is still an ongoing field of research.

Previously this gradient flow was computed based on shape derivatives [4, 11,
14, 18, 21]; however, as pointed out in [1, 2], the level set approach based on shape
sensitivity may converge to a domain with fewer holes than the optimal geometry
in some structure design applications. To address this issue, modified level set ap-
proaches based on topological derivatives are proposed in [3, 5]. By incorporating
topological derivatives into the level set method, one provides an alternative way to
create holes efficiently and thereby avoids converging to a domain with fewer holes
than optimal.

The approach based on shape and/or topological derivatives has been ap-
plied to the study of extremum problems of eigenvalues of inhomogeneous struc-
tures, including identification of composite membranes with extremum eigenval-
ues [10, 18, 27], design of composite materials with a desired spectral gap or max-
imal spectrum gap [14], finding optical devices that have a high quality factor
(low loss of energy) [15], and principle eigenvalue optimization in population bi-
ology [13]. For simplicity, we will only discuss the approach based on shape deriva-
tive here. As an example of how the method can be employed, we will discuss the
optimization of band gaps in photonic crystals.

The second design method discussed in this chapter is based on the localization of
energy with Dirichlet boundary conditions, as proposed by Dobson and Santosa [9].
The optimized two-dimensional configurations shown in their paper possess “bang-
bang” structure which suggests that the optimal structure has two phases. In order to
demonstrate the approach and illustrate the optimal configuration more precisely, we
first study the same problem in one dimension and show that the optimal structure
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can not only have a point (oddly symmetric) defect, but also an evenly symmetric
defect structure. The defect type depends on whether the eigenvalue is an odd or
even mode. In two dimensions, these two different defect structures are also ob-
served when the weighting function is chosen as the square of the distance function
from the localization location.

This approach is extended to electromagnetic designs where the eigenfunction is
localized at several points, or on a specified curve, by adjusting the weight function
to be the square of the distance function from the points or the specified curves.
We also consider more complicated cases; structures that can simultaneously sup-
port multiple resonances at multiple wavelengths. The multiple eigenmodes are con-
fined at different locations and/or the corresponding eigenvalues are resonant near
predetermined wavelengths by incorporating penalty methods. We further extend
the problem to include Dirichlet–Bi-Laplacian problems. Many numerical results
are shown to demonstrate the robustness of the gradient approach. These results
directly translate into the design of two-dimensional frequency selective devices.
Also, the methods are applicable for engineering nanoscale resonant antennas where
the ability to confine and focus light at specific locations and wavelengths is critical
to the overall device performance. The optimal configurations possess “bang-bang”
structure which suggests that the optimal structures have two phases. As a result, we
limit our analysis of design solutions to those that satisfy this criteria.

7.2 Level Sets and Dynamic Implicit Surfaces

The level set method is well known for its flexibility in capturing shape and
topology changes. Since the dielectric distribution is of bang-bang control, i.e.,
ε(x) = ε1χD\Ω + ε2χΩ (χ denotes the indicator function of a set), the level set
method can be easily adapted to represent the two-phase dielectric distribution. The
zero level set is used to represent the material boundary ∂Ω . With an initial configu-
ration, we compute the corresponding eigenvalues and eigenfunctions. Based on this
input, we can use the shape derivative to move the level set function in the direction
of the gradient of the objective function F(Ω), where Ω is a simply connected,
bounded domain in R

N . After the level set is updated, the same process is repeated
iteratively until the level set reaches the optimal shape. In the following section, we
provide a detailed discussion of the approach with an example of the optimization
of bandgaps in photonics crystals.

7.2.1 Finding the Maximal Bandgap in Photonic Crystals

Photonic crystals are periodic dielectric structures which manipulate photons and
control optical properties, such as completely preventing the propagation of light,
allowing it only in certain directions at certain frequencies, or localizing light in
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specified areas. Photonic crystals with bandgaps have many applications including:
reflection coatings on lenses and mirrors, color changing paints and inks, waveg-
uides, and light confinement devices. They were first studied by Rayleigh in 1887
for one-dimensional layered structures. Later, Yablonovitch [25] and John [12] in
1987 introduced the concepts of photonic bandgaps in two and three dimensions.
Yablonovitch [25] investigated the influence of spontaneous emission in the solid
state devices, while John [12] studied the localization of light.

In this section, we summarize the methodology used in solving the maximal
spectrum gap problem for photonic crystal design. We assume that there are no
electric currents or charge and the electromagnetic waves are monochromatic, i.e.,
E(x, t) = E(x)e−iωt and H(x, t) = H(x)e−iωt . In this context, Maxwell’s equa-
tions are reduced to the following decoupled system:

1

ε(x)
∇ × (∇ × E(x)

) = ω2

c2
E(x), (7.1)

∇ × 1

ε(x)

(∇ × H(x)
) = ω2

c2
H(x), (7.2)

where ε is the dielectric function, ε(x) = ε1χD\Ω + ε2χΩ , and c is the speed of

light. We denote the wavelength of operation as λ = w2

c2 . The maximum spectral
gap problem for photonic crystal design is to find the structures having the maximal
spectrum gap between bands k and k + 1:

max
Ω

(λk+1 − λk)

while the desired spectral gap problem is

min area(Ω) s.t. |λk+1 − λk| = const.

These two problems are very challenging and require three-dimensional simula-
tions. The physical meaning of a bandgap is that for such a range of frequencies,
light from any incident angle is totally reflected. Under the assumption that the
medium is isotropic, the magnetic permeability is constant, and dielectric func-
tion ε(x) is periodic (i.e., ε(x + Ri) = ε(x) for some primitive lattice vectors Ri ),
Bloch’s theorem can be applied, and then the governing equations for both TM
(transverse magnetic field) and TE (transverse electric field) light can be written as

− 1

ε(x)
(∇ + iα) · ((∇ + iα)Eα

) = ω2
TM

c2
Eα, (7.3)

−(∇ + iα) ·
(

1

ε(x)
(∇ + iα)Hα

)
= ω2

TE

c2
Hα, (7.4)

where α is a wave vector in the irreducible Brillouin zone. The optimization prob-
lems for the bandgap G are:
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(i) Maximize the bandgap in TM

sup
Ω

GTM = sup
Ω

(
inf
α

ωk+1
TM − sup

α
ωk

TM

)
;

(ii) Maximize the bandgap in TE

sup
Ω

GTE = sup
Ω

(
inf
α

ωk+1
TE − sup

α
ωk

TE

)
.

7.2.2 Definition of the Level Set Function

Following the work in [19], we use a level set function φ(x) to represent the un-
known set Ω :

Ω := {x : φ(x) < 0
}

and then

ε(x) =
{

ε2 if φ(x) < 0,

ε1 if φ(x) > 0.

In this way, we can optimize the objective with respect to the level set function. If
the normal velocity of the boundary Ω is Vn, the level set function satisfies

φt + Vn|∇φ| = 0. (7.5)

In order to start from an initial guess for the shape and morph it to the optimal shape
via the level set method, we need to determine what kind of shape and topological
changes can lead to the optimal shape and how to derive the normal velocity. This
leads to the study of shape derivatives and topological derivatives. For simplicity,
we only discuss the shape derivative which measures the sensitivity of boundary
perturbation.

7.2.3 Shape Derivatives

The shape derivative [17, 23] is defined as the following: Let Ω ⊂ D ⊂ RN be a
reference domain. Consider the perturbation under the map θ ∈ W 1,∞(RN,RN) s.t.
‖θ‖W 1,∞ < 1

Ωθ = (I + θ)Ω,

where I is the identity map. The set Ωθ is defined as

Ωθ = {x + θ(x) | x ∈ Ω
}
.
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The shape derivative of an objective shape functional, F : RN → R, at Ω is defined
as the Frechet differential of θ →F(Ωθ ) at 0. Here θ can be viewed as a vector field
affecting the reference domain Ω . The shape derivative dSF(Ω)(θ) depends only
on θ · n on the boundary ∂Ω because the shape of Ω does not change at all if θ is
lying on the tangential direction of the domain Ω . For example, when an objective
functional that is the integral on the volume of Ω , i.e.,

F(Ω) =
∫

Ω

f (x)dx, (7.6)

the shape derivative is

dSF(Ω)(θ) =
∫

∂Ω

θ · nf (x)dx. (7.7)

In order to maximize the volume integral (7.6), one can choose the gradient flow as

Vn = θ = nf (x)

where Vn is the normal velocity to evolve the level set function in (7.5) which results
in dSF(Ω)(θ) > 0 if f (x) �= 0 before reaching the extremum.

The second example that we give here is the maximization of the first eigenvalue
of the elliptic eigenvalue problem

{−�u(x) = λε(x)u(x) for x ∈ D,

u(x) = 0 for x ∈ ∂D,

where ε(x) = ε1χD\Ω + ε2χΩ . The first eigenvalue can be represented by the
Rayleigh Quotient formula

λ1 = min
u

∫
D

|∇u1|2∫
D

εu2
1

= min
u

∫
D

|∇u1|2
(
∫
D\Ω ε1u

2
1 + ∫

Ω
ε2u

2
1)

,

where u1 is the first eigenfunction. The shape derivative becomes

dSλ1(Ω)(θ) = −λ1(ε2 − ε1)∫
D

εu2
1

∫

∂Ω

θ · nu2
1 dx. (7.8)

Thus the gradient direction to increase the first eigenvalue is

Vn = θ = −λ1(ε2 − ε1)u
2
1n.

In general, the shape derivative depends only on the boundary ∂Ω . After the shape
derivative is computed, the gradient flow can be chosen to optimize the objective
functional. Suppose the shape derivative of an objective function is

dSF(Ω)(θ) =
∫

∂Ω

θ · nW(Ω)(x)dx, (7.9)
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then to maximize the objective functional F(Ω), we choose the gradient flow as
θ = W(Ω)(x)n(x). This means that the normal velocity of the shape is W(Ω)(x).
When we use the zero level set of function φ to represent the boundary of Ω , the
motion under the normal velocity W(Ω)(x) is simply

φt + W(Ω)(x)|∇φ| = 0. (7.10)

Notice that the shape derivative is only defined on the boundary ∂Ω ; however, under
the level set framework, it has to be defined on the whole domain D. We naturally
extend it to D by using the W(Ω)(x).

7.2.4 Normal Velocity Formulas in Photonic Crystals

To solve the optimization problems (i) and (ii) in Sect. 7.2.1, there are several ob-
stacles in deriving the classical gradient due to nondifferentiability of the bandgap
functions. In these circumstances, the generalized gradients are used. Denote the
convex hull by co. The generalized gradients [6–8] with respect to Ω can be written
as follows

∂Ωωk
TM ⊂ co

{
−1

2
(ε2 − ε1)ω

k
TM|u|2 : u ∈ Υ k

TM(ε,α)

}
, (7.11)

∂Ωωk
TE ⊂ co

{
1

2ωk
TE

(
1

ε2
− 1

ε1

)∣∣(∇ + iα)v
∣∣2 : v ∈ Υ k

TE(ε,α)

}
, (7.12)

where Υ k
TM (and Υ k

TE) are the span of all eigenfunctions u (and v) associated with the
eigenvalues λk

TM (and λk
TE, respectively) and satisfying the normalization

∫
D

ε|u|2 =
1 and

∫
D

|v|2 = 1. The corresponding velocities which give the ascent direction for
the optimization are

VTM = co

{
−1

2
(ε2 − ε1)ω

n+1
TM |u|2 : u ∈ Υ n+1

TM (ε,α)

}

− co

{
−1

2
(ε2 − ε1)ω

n
TM|u|2 : u ∈ Υ n

TM(ε,α)

}
, (7.13)

VTE = co

{
1

2ωm+1
TE

(
1

ε2
− 1

ε1

)∣∣(∇ + iα)v
∣∣2 : v ∈ Υ m+1

TE (ε,α)

}

− co

{
1

2ωm
TE

(
1

ε2
− 1

ε1

)∣∣(∇ + iα)v
∣∣2 : v ∈ Υ m

TE(ε,α)

}
. (7.14)

7.2.5 The Level Set Optimization Algorithm

We summarize the level set method for optimization in Algorithm 7.1. To imple-
ment the algorithm above, we choose the relative permittivity ε = ε2/ε1 = 11.4
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Algorithm 7.1: Level set optimization algorithm
input: Initial guess for the level set function φ(x) s.t. Ω := {x : φ(x) < 0}

1 repeat
2 Solve the elliptic eigenvalue problem (7.3) or (7.4)
3 Compute the gradient direction by using shape derivative (7.13) or (7.14)
4 Update φ(x) by using (7.5)
5 until stopping criterion is met

Fig. 7.2 Left: A two-dimensional square lattice of dielectric columns with relative permittivity
ε2/ε1 = 11.4. Right: The corresponding bandgap structure. The solid lines represent TM modes
and the dashed lines represent TE modes. The horizontal axis is wave vector α and the vertical axis
is ω/2πc. The bottom inset shows the Brillouin zone, with the irreducible zone as the triangular
wedge. The three special points Γ , X, and M correspond to α = (0,0), α = (π,0) and α = (π,π),
respectively

which corresponds to gallium arsenide in the air. We consider a photonic crystal
which is made using a square lattice and has rotation, mirror-reflection, and inver-
sion symmetry. In all numerical simulations, the computational domain is a unit
square Ω = [−0.5,0.5] × [−0.5,0.5] and the mesh sizes are a 1

64 (64 × 64 grid).
A 3 × 3 array of the unit lattice is shown for clarity. The white color indicates the
low dielectric constant ε = 1 while the gray color indicates the high dielectric con-
stant ε = 11.4.

Figure 7.2 shows a two-dimensional square lattice of dielectric columns with a
relative permittivity ε2/ε1 = 11.4. Since the lattice is square, the irreducible Bril-
louin zone is the triangular wedge in the upper-right corner of the first Brillouin
zone K = [−π,π]2, which is the inset in the bottom. The frequency for the TM and
TE modes with respect to different α is plotted as solid and dashed lines, respec-
tively. We can see that there is a bandgap in the TM mode between ω1

TM and ω2
TM.

By changing the dielectric distribution, a bandgap in the TE mode can also be gen-
erated. The extensive numerical results listed in [14] show that a lattice of isolated
high ε regions is preferred for the TM mode while a lattice of connected high ε

regions is preferred for TE mode. It is also possible to design a photonic crystal that
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Fig. 7.3 The evolution of the dielectric distribution and its corresponding band structure for max-
imizing the bandgap between ω7

TM and ω8
TM
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Fig. 7.4 The evolution of the dielectric distribution and its corresponding band structure for max-
imizing the bandgap between ω5

TE and ω6
TE
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has bandgaps for both TM and TE modes. By adjusting the geometry of the lattice,
one can even arrange for the bandgaps to overlap, resulting in a complete bandgap
for all polarizations. This optimization problem can be formulated as:

Maximize the complete bandgap

sup
Ω

Gcomplete = sup
Ω

{
inf
(

inf
α

ωk+1
TE , inf

α
ωk+1

TM

)
− sup

(
sup
α

ωk
TE, sup

α
ωk

TM

)}
. (7.15)

In Fig. 7.3, we demonstrate the process of optimizing the bandgap for the seventh
and eighth eigenvalues of the TM mode. As the number of iterations increases, the
bandgap gradually increases from 0.0055 until it reaches a stable value of 0.44. The
high ε region separates and evolves into smaller regions. The topological change in
the dielectric distribution is well captured via the level set method.

In Fig. 7.4, we demonstrate the process of optimizing the bandgap for the fifth
and sixth eigenvalues of the TE mode. As the number of iterations increases, the
bandgap gradually increases from 0.059 until it reaches a stable value of 0.19. Com-
paring with the previous example, we observe that a lattice of isolated high ε regions
is preferred for the TM mode while a lattice of connected high ε regions is preferred
for the TE mode.

7.3 Eigenfunction Optimization

7.3.1 Finding the Optimal Localization of Eigenfunctions

In prior work by Dobson and Santosa [9], the localization of the eigenfunction in
the TM mode for an electromagnetic wave in two dimensions is considered for the
wave vector α = (0,0) (the Γ point) in Eq. (7.3). Dobson and Santosa derived a
numerical approach to localize a single eigenmode of the Laplacian problem using
the gradient descent method, and their numerical results showed that the optimal
configuration has a point defect structure. Here we generalize the approach to study
eigenfunction localization at multiple specified points and on curved boundaries.

The governing equation is
{−�u(x) = λε(x)u(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

Here we limit our discussion to N = 1 or N = 2 dimensions, even though the
method works in higher dimensions. The goal is to localize the eigenfunctions
uk1, uk2 , . . . , ukn that correspond to the electromagnetic field distributions, with spe-
cific eigenvalues μ1,μ2, . . . ,μn that correspond to the resonant frequencies of these
eigenfunctions at given locations x1, x2, . . . , xn.

We formulate our problem as

minJ (ε,u) = 1

2

n∑

i=1

[∫

Ω

wiεu
2
ki

]
+ 1

2

n∑

i=1

νi(λki
− μi)

2, (7.16)
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where wi are the weight functions which penalize nonlocalization of the fields, e.g.,
wi = |x − xi |2 subject to the constraints that

{−�uki
= λki

εuki
for x ∈ Ω,

u = 0 on x ∈ ∂Ω,

and 1
2

∑n
i=1 νi(λki

− μi)
2 is the penalty for the difference between the correspond-

ing eigenvalues and the given constants μi, i = 1, . . . , n. In our simulations, we
simply take νi = 1 for all i. In some cases, it may be necessary to determine νi

numerically, e.g., by the Lagrange-multiplier method, to achieve better results. At
the discrete level, we have −�uki

= λki
εuki

approximated by ALU = EUΛ where
AL, E, U , Λ are discrete approximations of the Laplacian operator, ε(x), eigen-
functions uki

, and eigenvalues λki
, respectively. The quality εu2

ki
is proportional

to energy density in the medium. By normalizing the eigenfunctions to have unit
energy in Ω , each eigenfunction will satisfy

∫

Ω

εu2
ki

dx = 1,

for the discrete case, this is equivalent to

UT EU = 1.

For the localization of eigenfunctions on curved boundaries, we replace the weight
function w by the square of the distance function to curves, which will be discussed
in detail in Sect. 7.3.4.

For Bi-Laplacian problems, we consider the equation

{
�2u(x) = λε(x)u(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

with a hinged boundary condition ∂u
∂n

= 0 or a clamped boundary condition �u = 0
for x ∈ ∂Ω , where n is the vector normal to the boundary. Notice the differences
between the Laplacian problem and the Bi-Laplacian problem are in the differential
operators and boundary conditions. In the discrete sense, we can extend all formu-
las for Laplacian problems by simply using the approximated Laplacian matrix AL

instead of the matrices Ah
BL and Ac

BL which approximate the Bi-Laplacian operator
with hinged and clamped boundary conditions in the discrete case. Due to this exten-
sion, we drop the subscript and superscript of A when we discuss the optimization
approach in the following sections.
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7.3.2 Localization of Single Eigenmodes with Eigenvalue
Constraints

In this section, we follow the same method as Dobson and Satosa [9] to deduce the
gradient descent approach of energy minimization for Eq. (7.16). We first use the
finite difference method to discretize the equation and enforce boundary conditions.
The eigenfunction u in two dimensions is reorganized into a column vector, as is

the dielectric constant ε. Let b = ε− 1
2 and B be the diagonal matrix with vector b

on the main diagonal. Set v = B−1u, and the discretized problem becomes

BABv = λv,

〈v, v〉 = 1,

〈v,BABv〉 = λ.

Given any vector b, an eigenmode, say v(b), is chosen to be localized at some
specified point. Without loss of generality, the point is chosen as (0,0), with the
associated eigenvalue staying close to prescribed constant μ1. Our objective func-
tion (7.16) becomes

J (b) = 1

2

〈
v(b),Wv(b)

〉+ 1

2
ν
(
λ(b) − μ1

)2
,

where W is a diagonal matrix with the vector w = x2 + y2 on its main diagonal.
To avoid complication, we assume that the eigenvalue is simple. Let δb be a small
perturbation in b. From the calculus of variations, we have:

δJ = 〈δv,wv〉 + ν(λ − μ1)δλ. (7.17)

Now define an adjoint vector q as the solution to the equation

BABq − 〈v,BABv〉q − 2〈q, v〉BABv = Wv,

then after simplification

〈δv,Wv〉 = 〈δb,−diag(q)ABv − diag(v)ABq + 2〈q, v〉diag(v)ABv
〉
. (7.18)

Furthermore, the linearized response δλ can be derived as

δλ = 2
〈
δb,diag(v)ABv

〉
.

Combining (7.17) and (7.18) gives

δJ = 〈δb, g〉, (7.19)

where

g = −diag(q)ABv−diag(v)ABq+2〈q, v〉diag(v)ABv+2ν(λ−λ1)diag(v)ABv.



188 W. Chen et al.

Thus the normalized descent direction is

δb = −g/‖g‖, (7.20)

for a single mode to minimize the objective function.

7.3.3 Localization of Multiple Eigenmodes

The result above works for the localization of a single eigenmode; however, since
the objective function for the localization of multiple eigenmodes is accumulated
from many single-mode cases, it is natural to extended this to eigenmode localiza-
tion at different points for multiple eigenfunctions by summing up the effects from
each mode. Let vki

= B−1uki
, then we have the eigenproblems

BABvki
= λki

vki
,

〈vki
, vki

〉 = 1,

〈vki
,BABvki

〉 = λki
,

for i = 1, . . . , n. The objective function is

J (b) =
n∑

i=1

[
1

2

〈
vki

(b),Wivki
(b)
〉+ 1

2
ν
(
λki

(b) − λi

)2
]
,

where Wi are diagonal matrices associated with the square of the distance function
to different points on the main diagonal. We then calculate the variation mode by
mode and denote the gradient for each mode by gi , i.e.,

gi = −diag(qi)ABvki
− diag(vki

)ABqi

+ 2〈qi, vki
〉diag(vki

)ABvki
+ 2ν(λki

− λi)diag(vki
)ABvki

, (7.21)

then g =∑n
i=1 gi will be the gradient of J with respect to δb. Let g be a normalized

unit vector. Then the descent gradient direction to minimize the objective function
is −g.

7.3.4 Weight Functions

It is of interest to develop the localization of an eigenmode not only at one point, but
also at several points, or even on an arbitrary curved boundary. To realize more com-
plicated confinement of eigenfunctions, we only need to change the weight function
accordingly. As mentioned before, for the single point localization, the square of the
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distance function to that point is used as the weight function. If we want to local-
ize a single mode at several points, we can use the square of the minimal distance
function at all points as the weight function, i.e., let w = mini (x − xi)

2.
For complex curves, the distance function to the curve satisfies the eikonal equa-

tion with the prescribed Dirichlet boundary condition on the curve. Fast march-
ing [20, 22] or fast sweeping methods [16, 24, 26] can be applied to compute the
distance function very efficiently. It is not necessary to choose the square of dis-
tance function as the weight function to confine the eigenfunction. The weight func-
tion can be adjusted slightly, e.g., applying different powers, to obtain much sharper
localization.

7.3.5 Numerical Tests

In this section, we apply the gradient descent method formulated in Eqs. (7.20)
and (7.21) to obtain shape designs that yield localized eigenfunctions. During the
implementation, it is possible that adjacent eigenvalues cross each other and, at cer-
tain frequencies, can possibly result in a faulty choice of eigenfunction. To avoid
this situation, we choose the eigenmode which is closest to the result in the previous
iteration as shown in Algorithm 7.2.

Algorithm 7.2: Eigenmode algorithm
input: Initial design b0 and a distinct eigenfunction v0 with corresponding

eigenvalue λ. Give a reasonable constant λ0 that the eigenvalue will be
fixed at. Set the iteration number n = 0. Choose a step size parameter
τ > 0.

1 Compute the normalized descent gradient g of J (bn).
2 repeat
3 Let v = max{|v · vn| : v is an eigenvector of BnABn,with 〈v, v〉 = 1},

where Bn = diag(bn − τg). Let λv be the associated eigenvalue.
4 If J (v) < J(vn), then

vn+1 = v

bn+1 = T (bn − τg)

λn+1 = λv,

else let τ = τ/2.
5 until stopping criterion is met and τ is too small

All the numerical simulations in the following sections start with a homogeneous
initial density, ε(x) = 1, and stop when the step size in the gradient descent direction
is less than 10−15. In all one-dimensional problems, the domain [−0.5,0.5] is dis-
cretized into 800 cells; the meshes for all two-dimensional problems are 112 × 112.
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Fig. 7.5 Initial profile for Example 7.1: localization of the fifth Laplacian eigenmode of the one-di-
mensional problem

We show the final density profiles of ε with information about eigenvalue in the
title, where the subscript of λ denotes the eigenmode and the superscript is the it-
eration number. Scaled images of energy density for confined eigenvectors are also
provided. Here energy density is computed as v2, which is equal to εu2. Note that
our gradient descent method assumes the eigenmode that we localize is distinct,
so the 11th and 20th eigenmodes are picked to test our algorithm in 2-dim prob-
lems. Finally, as was the case in Chap. 6, since the electromagnetic wave equa-
tion is scale-invariant, we state all dimensions terms of the vacuum wavelength it-
self.

7.3.6 One-Dimensional Problems Without Eigenvalue Constraints

We start with one-dimensional Laplacian examples without eigenvalue constraints,
i.e., ν = 0. In one dimension, we see two different types of symmetry results which
depend on odd or even modes.

Example 7.1 The initial density and corresponding fifth eigenfunction are shown in
Fig. 7.5. We aim to confine the fifth eigenmode at the origin. After the optimization,
the results are shown in Fig. 7.6. We see that fifth eigenmode stays oddly symmet-
ric and there is a point defect of material distribution at the origin in the optimal
result.

Example 7.2 The setup is the same as the previous example. The sixth eigenmode
is chosen to be localized. The initial and final profiles are shown in Figs. 7.7
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Fig. 7.6 Final profile for Example 7.1: localization of the fifth Laplacian eigenmode of the one-di-
mensional problem

Fig. 7.7 Initial profile for Example 7.2: localization of the sixth Laplacian eigenmode of the
one-dimensional problem

and 7.8. We compare the sixth eigenmode with the fifth eigenmode in the first ex-
ample. Since originally the sixth eigenmode is evenly symmetric about 0, the opti-
mal result stays evenly symmetric. The material distribution generates two close
peaks around the point where we want to localize, and it seems impossible to
switch the symmetry of the optimized solution, as was the case for the fifth eigen-
mode.
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Fig. 7.8 Final profile for Example 7.2: localization of the sixth Laplacian eigenmode of the one-di-
mensional problem

Fig. 7.9 Optimal profile of ε for Example 7.3: localization at 0 of the fifth Bi-Laplacian eigenmode

Example 7.3 In this example, we compare the material profiles of localizations for
the Bi-Laplacian problem with different boundary conditions. The discretized mesh
is set up to be the same as for one-dimensional Laplacian eigenproblems. The results
of localizing the fifth eigenmode are shown in Fig. 7.9. The shapes are very similar,
only the distance between the material with high dielectric constant is different for
hinged and clamped boundary conditions.

Example 7.4 In this example, we compare the material profiles of localization at
two points for the Bi-Laplacian problem with different boundary conditions. The
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Fig. 7.10 Final profile for Example 7.4: localization at two points x = ±0.2 of the sixth Bi-Lapla-
cian eigenmode with a hinged boundary condition

Fig. 7.11 Final profile for Example 7.4: localization at two points x = ±0.2 of sixth Bi-Laplacian
eigenmode with clamped boundary condition

results of localizing the sixth eigenmode with hinged and clamped boundary con-
ditions are shown in Figs. 7.10 and 7.11 separately. The confinement location is
chosen to be ±0.2. Due to the different boundary conditions imposed, we can ob-
serve different shapes for the dielectric coefficient distributions.
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Fig. 7.12 Final profile for Example 7.5: localization at (0,0) of the 11th Laplacian eigenmode in
two dimensions

7.3.7 Two-Dimensional Laplacian Problems Without Eigenvalue
Constraints

Example 7.5 In this example, we try to localize the 11th eigenmode of the Lapla-
cian equation at the origin, i.e., (0,0), with no constraint ν = 0 on the corresponding
eigenvalue as in [9]. The results are shown in Fig. 7.12. After about 400 iterations,
the shape becomes stable and the objective energy saturates around 0.01. A sym-
metric design is generated and a single peak concentrates at (0,0) for ε(x) which is
similar to the odd symmetry observed in one dimension.

Example 7.6 In this example, we localize the 20th eigenmode of Laplacian problem
at the origin, i.e., (0,0). The results are shown in Fig. 7.13. The 20th eigenfunction
is evenly symmetric about the origin which is similar to the result for the sixth
mode in one dimension. The final energy density has four peaks around (0,0). The
objective function drops below 0.01 after 880 iterations.

Example 7.7 In this example, we try to localize the 11th eigenmode of the Laplacian
problem at two distinct points, (0.25,0.25) and (−0.25,−0.25). The results are
shown in Fig. 7.14. We can see clearly two concentrated energy peaks at the given
points after 630 iterations. During the optimization, the objective function decreased
from 0.06 from 0.01.

Example 7.8 In this example, we try to localize the 11th eigenmode of the Lapla-
cian problem along a circle centered at (0,0) with radius r = 0.25. The results are
shown in Fig. 7.15. The weight function is set to be ‖√x2 + y2 − 0.25‖. After 264
iterations, the design consisting of two materials is obtained with objective energy
saturating around 0.02.
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Fig. 7.13 Final profile for Example 7.6: localization at (0,0) of the 20th Laplacian eigenmode in
two dimensions

Fig. 7.14 Final profile for Example 7.7: localization at two points of 11th Laplacian eigenmode
in two dimensions

Example 7.9 In this example, we try to localize the 11th eigenmode of the Laplacian
problem along a curve described in polar coordinate as r = 0.5 sin(2θ). The results
are shown in Fig. 7.16. We can see that after 95 iterations, the eigenfunction is
mainly localized on the specified curve.
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Fig. 7.15 Final profile for Example 7.8: circular energy localization of 11th Laplacian eigenmode
in two dimensions

Fig. 7.16 Final profile for Example 7.9: localization along a curve described in polar coordinates
of the 11th Laplacian eigenmode in two dimensions

Example 7.10 In this example, we try to distinguish between two different eigen-
modes by localizing them at different points. The 11th and 20th eigenmodes are
chosen to be localized at (−0.25,−0.25) and (0.25,0.25) separately. Both of them
are single modes. The results are shown in Fig. 7.17. We deal with two eigenmodes,
so we follow the formula in Sect. 7.3.3. It can be seen that the numerical approach
works quite well. Two eigenmodes are completely localized at the specified points.
A clear two-material shape is obtained after 231 iterations.
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Fig. 7.17 Final profile for Example 7.10: localization at distinct points of two Laplacian eigen-
modes (11th and 20th) in two dimensions

7.3.8 Two-Dimensional Laplacian Problems with Eigenvalue
Constraints

Example 7.11 In this example, we try to localize the 11th eigenmode of the Lapla-
cian problem at the origin, i.e., (0,0), and require the corresponding eigenvalue to
be as close to a specific constant λ0 = 100 as possible. The results are shown in
Fig. 7.18. We obtain a design that is similar to the solution without an eigenvalue
constraint; however, this solution has a smaller total area of the high-dielectric ma-
terial. The eigenmode is well localized after a small number of iterations, and the
associated eigenvalue oscillates around its optimum with an error of 0.1.

Example 7.12 In this example, we try to localize the 20th eigenmode of the Lapla-
cian problem at the origin, i.e., (0,0), and also require the corresponding eigenvalue
to be as close as possible to a constant: λ0 = 200. The results are shown in Fig. 7.19.
From the results we can see four peaks around the target location, due to the even
symmetry of the original eigenmode, and the eigenvalue is well localized.
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Fig. 7.18 Final profile for Example 7.11: localization at (0,0) of the 11th Laplacian eigenmode
in two dimensions with λ = 100

Fig. 7.19 Final profile for Example 7.12: localization at (0,0) of the 20th Laplacian eigenmode
in two dimensions with λ = 200

Example 7.13 In this example, we try to localize the 20th eigenmode of the Lapla-
cian problem along a circle centered at (0,0) with radius r = 0.25, and also require
the corresponding eigenvalue to be as close as possible to a constant: λ0 = 200. The
results are shown in Fig. 7.20. The localization is obtained with an eigenvalue fixed
at 200 after about 4000 iterations.
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Fig. 7.20 Final profile for Example 7.13: localization along a circle of 20th Laplacian eigenmode
in two dimensions with λ = 200

Fig. 7.21 Final profile for Example 7.14: localization at (0,0) of the 11th eigenmode of the two
dimensional Bi-Laplacian problem with hinged boundary conditions

7.3.9 Two-Dimensional Bi-Laplacian Problems Without
Eigenvalue constraints

Example 7.14 In this example, we try to localize the 11th eigenmode of the Bi-
Laplacian problem at the origin, using hinged boundary conditions. The results are
shown in Fig. 7.21. A clear two-material design is obtained after 96 iterations.
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Fig. 7.22 Final profile for Example 7.15: localization at two points of the 11th eigenmode of the
two dimensional Bi-Laplacian operator with hinged boundary conditions

Example 7.15 In this example, the 11th eigenmode of the Bi-Laplacian prob-
lem, with hinged boundary conditions, is designed to be confined at two points,
(−0.25,−0.25) and (0.25,0.25). The results are shown in Fig. 7.22. The two points
are localized after 56 iterations with the objective function decreasing below 0.01.

Example 7.16 In this example, we try to distinguish between two different eigen-
modes by localizing them at different points. The 11th and 20th eigenmodes are
chosen to be localized at (−0.25,−0.25) and (0.25,0.25) separately. Both of them
are single modes. The results are shown in Fig. 7.23. After 45 iterations, both eigen-
modes are confined at the specified points and a symmetric design is achieved.

Example 7.17 In this example, we try to localize the 11th eigenmode of the Bi-
Laplacian problem with a clamped boundary condition at the origin (0,0). The re-
sults are shown in Fig. 7.24. The results are similar to what we get with a hinged
boundary condition.

Example 7.18 In this example, the 11th eigenmode of Bi-Laplacian problem with a
clamped boundary condition is chosen to be confined at two points, (−0.25,−0.25)

and (0.25,0.25). The results are shown in Fig. 7.25. The design is totally different
from the one with a hinged boundary condition.

Example 7.19 In this example, we try to distinguish between two different eigen-
modes of the Bi-Laplacian problem, with a clamped boundary condition, by local-
izing them at different points. The 11th and 20th eigenmodes are chosen to be local-
ized at (−0.25,−0.25) and (0.25,0.25) separately. Both of them are single modes.
The results are shown in Fig. 7.26.



7 Gradient Based Optimization Methods for Metamaterial Design 201

Fig. 7.23 Final profile for Example 7.16: localization at distinct points for two eigenmodes (11th
and 20th) of the two dimensional Bi-Laplacian operator with hinged boundary conditions

Fig. 7.24 Final profile for Example 7.17: localization at (0,0) of the 11th eigenmode of the two
dimensional Bi-Laplacian operator with a clamped boundary
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Fig. 7.25 Final profile for Example 7.18: localization at two points of the 11th eigenmode of the
two dimensional Bi-Laplacian operator with a clamped boundary

Fig. 7.26 Final profile for Example 7.19: localization at distinct points of two eigenmodes (11th
and 20th) of the two dimensional Bi-Laplacian operator with a clamped boundary
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Appendix
The Interface Between Optimization
and Simulation

One of the most frequently asked questions from people new to the field of meta-
material design optimization is how to make optimization code control the elec-
tromagnetics’ simulation software. For basic optimizations, simulation tools such
as Lumerical and Comsol have recently incorporated gradient-based or particle
swarm optimization routines into their graphical user interfaces. For users inter-
ested in full control of the optimization routine being used, or integrating more
complex optimization routines; the technique is a bit more nuanced. While there are
a wide variety of approaches to interface programming languages with simulation
packages; the following Appendix describes an example where optimization code
written in Matlab controls the structures and simulations within Lumerical. This ex-
ample demonstrates the key steps in setting up an interface; however, it is assumed
that the reader has prior knowledge of scripting within the Lumerical simulation
environment.

The interfacing method described here is done by combining a carefully con-
structed Lumerical script file (LSF), with a command prompt call from within Mat-
lab to open Lumerical and run the script. The example here will manipulate the
length and width of a rectangular, dipole antenna on a substrate, and a reflection
monitor will be used to evaluate the device performance. A generalized process
flow for the interface described here is shown in Fig. A.1.

Prior to running an optimization, a generalized simulation environment within
Lumerical must be created that has the appropriate generalized structure to be op-
timized, boundary conditions, source settings, monitor settings, and so on, that will
be used in every simulation during the optimization run. This includes proper nam-
ing conventions so that every element within the simulation can be referenced and
modified independently. This file will be opened and modified at the start of ev-
ery simulation. The simulation and power transmission monitors are given specific
names, “Simulation.fsp” and “ReflectionMonitor”, respectively, which will be kept
constant throughout every iteration of the optimization run.

The first key step in the process involves using a Matlab m-file to write an LSF
that executes five important features:

K. Diest (ed.), Numerical Methods for Metamaterial Design,
Topics in Applied Physics 127, DOI 10.1007/978-94-007-6664-8,
© Springer Science+Business Media Dordrecht 2013

205

http://dx.doi.org/10.1007/978-94-007-6664-8


206 The Interface Between Optimization and Simulation

Fig. A.1 A general process flow for the creation and implementation of the Optimiza-
tion/Simulation interface

1. Open the simulation file “Simulation.fsp” which has been created prior to the
optimization run.

2. Modify the structure and simulation environment within “Simulation.fsp” based
on the specific geometry to be simulated.

3. Run the simulation.
4. Extract the relevant monitor data.
5. Convert the relevant monitor data to a Matlab data file with a pre-specified name

“SimulationData.mat.”

For every line that appears in the LSF, there is a corresponding “fprint” command
in the m-file. This includes every relevant dimension and setting for each: structure,
simulation region, meshing region, monitor, and source within the simulation. An
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example of one command, where the dipole antenna named “antenna” is selected
and the x-dimension is set to 200 nm would be written as:

fprintf(outfid, ’%s \n’, ’select("antenna");’);
fprintf(outfid, ’%s \n’, [’set("x span",(’ num2str(200) ’)*10^-9);’]);

Here the “10−9” depends on whether or not the default dimension is in meters or
nanometers. After this portion of the file, separate “fprint” commands are listed
to execute Steps 3–5 from above. Two important details in this process are giving
the LSF and the Matlab data files specific names, “AntennaScript.lsf” and “Simula-
tionData.mat,” that will be referenced later. Finally, the “exit(2)” command within
Lumerical closes the simulation, which allows Matlab to execute further commands.

The second key step in the process involves a command prompt call from within
Matlab to both open Lumerical and run the previously created script file. An exam-
ple using the DOS prompt is written as:

dos(’"C:\Program Files\Lumerical\FDTD\bin\fdtd-solutions.exe"
-run AntennaScript.lsf’);

At the time this book was published, documentation for using this approach in Win-
dows is located at:

http://docs.lumerical.com/en/fdtd/user_guide_run_win_scripts_from_command
_line.html
while the corresponding code for Mac and Linux is located at:

http://docs.lumerical.com/en/fdtd/user_guide_run_linux_cad_gui_from_
command_line.html
Finally, the resulting simulation data can be accessed and then analyzed from within
Matlab by simply executing the command:

load(’SimulationData.mat’, ’variable1’, ’variable2’);

where “variable1” and “variable2” refer to data saved within the Matlab data file.
An example m-file is shown in Fig. A.2. Here the vector “x” is sent to the m-

file and stored as variables “width” and “height.” After creating the LSF “Anten-
naScript.lsf”, the first line of the script file tells Lumerical to open the simulation
file “Simulation.fsp” which contains the geometry to be modified. The middle por-
tion of the script prints commands to the LSF on changing the dimensions of the an-
tenna, substrate, simulation volume, source, and power monitor. Here the simulation
volume is set to twice the length and width of the antenna, and the substrate, source,
and monitor are set to extend beyond the simulation volume. After adjusting the
relevant geometries, the simulation is executed using the “runparallel” command;
the broadband reflection spectrum is extracted and converted to a readable Mat-
lab data file; and the simulation closes itself. The subsequent DOS command opens
Lumerical, and runs the script “AntennaScript.lsf”. Finally, the broadband reflection
data from “SimulationData.mat” is loaded and the maximum reflected wavelength
is compared against a target wavelength of 1500 nm to calculate an objective func-
tion value. This data is returned to the optimization routine which then determines a
new geometry to test, or to terminate based on predetermined convergence criteria.

http://docs.lumerical.com/en/fdtd/user_guide_run_win_scripts_from_command_line.html
http://docs.lumerical.com/en/fdtd/user_guide_run_win_scripts_from_command_line.html
http://docs.lumerical.com/en/fdtd/user_guide_run_linux_cad_gui_from_command_line.html
http://docs.lumerical.com/en/fdtd/user_guide_run_linux_cad_gui_from_command_line.html
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function Objective_Function = optimization_interface(x)

width = x(1);
height = x(2);

filename=’AntennaScript.lsf’;
outfid = fopen(filename, ’w+’);

fprintf(outfid, ’%s \n’, ’clear;’);
fprintf(outfid, ’%s \n’, ’mypath = pwd;’);
fprintf(outfid, ’%s \n’, ’load(mypath+’’\’’+’’Simulation.fsp’’);’);
fprintf(outfid, ’%s \n’, ’switchtolayout;’);

fprintf(outfid, ’%s \n’, ’select("antenna");’);
fprintf(outfid, ’%s \n’, [’set("x span",(’ num2str(width) ’)*10^-9);’]);
fprintf(outfid, ’%s \n’, [’set("y span",(’ num2str(height) ’)*10^-9);’]);

fprintf(outfid, ’%s \n’, ’select("substrate");’);
fprintf(outfid, ’%s \n’, [’set("x span",(’ num2str(3*width) ’)*10^-9);’]);
fprintf(outfid, ’%s \n’, [’set("y span",(’ num2str(3*height) ’)*10^-9);’]);

fprintf(outfid, ’%s \n’, ’select("FDTD");’);
fprintf(outfid, ’%s \n’, [’set("x span",(’ num2str(2*width) ’)*10^-9);’]);
fprintf(outfid, ’%s \n’, [’set("y span",(’ num2str(2*height) ’)*10^-9);’]);

fprintf(outfid, ’%s \n’, ’select("source");’);
fprintf(outfid, ’%s \n’, [’set("x span",(’ num2str(3*width) ’)*10^-9);’]);
fprintf(outfid, ’%s \n’, [’set("y span",(’ num2str(3*height) ’)*10^-9);’]);

fprintf(outfid, ’%s \n’, ’select("ReflectionMonitor");’);
fprintf(outfid, ’%s \n’, [’set("x span",(’ num2str(3*width) ’)*10^-9);’]);
fprintf(outfid, ’%s \n’, [’set("y span",(’ num2str(3*height) ’)*10^-9);’]);

fprintf(outfid, ’%s \n’, ’runparallel;’);
fprintf(outfid, ’%s \n’, ’f=getdata("ReflectionMonitor","f");’);
fprintf(outfid, ’%s \n’, ’lambda=c/f;’);
fprintf(outfid, ’%s \n’, ’reflection=-transmission("ReflectionMonitor");’);
fprintf(outfid, ’%s \n’, ’matlabsave("SimulationData",reflection,lambda);’);
fprintf(outfid, ’%s \n’, ’exit(2);’);
fclose(outfid);

dos(’"C:\Program Files\Lumerical\FDTD\bin\fdtd-solutions.exe"
-run AntennaScript.lsf’);

load(’SimulationData.mat’, ’reflection’, ’lambda’);
max_wavelength=(lambda(reflection==max(reflection)))*10^9;
target_wavelength=1500;

Objective_Function=abs(target_wavelength-max_wavelength);

end

Fig. A.2 An example interface between Matlab and Lumerical for a the modification, simulation,
and analysis of broadband reflection data from a dipole antenna

Lastly, to modify the interface listed below to run on Linux rather than Win-
dows, the DOS command on line 45 must be replaced with the appropriate Linux
command listed in the Lumerical help menu, and the backslash on line 11 in
“load(mypath+”\”+”Simulation.fsp”);” must be changed to a forward slash.
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