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Foreword

Temperature is one of the most important physical envi-

ronmental variables monitored by Earth observing

remote sensing systems. Be it land surface temperature,

sea surface temperature, or air temperature, temperature

ranges define the boundaries of habitats on our planet.

Already thousands of years ago, temperature defined

where we humans can settle and survive. Which plant

resources are available? What wildlife is present?

Which crops can be grown? Which diseases are preva-

lent? Which water surfaces will freeze, which will

remain ice-free? Where do frequent wildfires occur?

Temperature boundaries contribute largely to the

answers to all these questions.

Nowadays, in an era of technological progress but also concern about climate

change, the above questions still remain important. But new ones have arisen as well.

On the local scale, we are interested in a variety of phenomena, such as urban

microclimate dynamics, urban heat island effects, industry-related thermal water

pollution, and burning oil and gas wells, to give only some examples. On the regional

scale, we need reliable information on where forest fires flare up, where geothermal

fields hold the potential for energy generation, or where coal is wastefully consumed

by underground coal fires. On the global scale, our interest lies in global dynamics

and the consequences of global warming and climate change.We need to understand

ocean current temperature changes, need to know if the freeze-and-thaw behaviour

of coastal waters, rivers, and lakes is changing, and how altered evaporation patterns

impact our water resources.

Temperature information with good spatial and temporal coverage is a key to

addressing most of these challenges. Consequently, thermal infrared Earth obser-

vation data and derived products are a crucial source of valuable information.

Sensors for thermal infrared observations can be ground-based, airborne, or

space-borne. Ground-based remote observation performed with novel handheld

thermal camera systems enables the detection of energy leaks in buildings,
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performance monitoring of machines in industry, and a survey of local geothermal

phenomena. Airborne thermal infrared surveys support city planning, precision

agriculture, and mineral mapping. With space-borne Earth observation technology

we can monitor phenomena at all scales. For this task a variety of thermal infrared

sensors are flown on an international fleet of Earth observing satellites.

The famous NOAA-AVHRR sensor family has been enabling thermal mapping at

1 km spatial resolution since 1979. At the same resolution, the MODIS sensor has

also mapped the temperature state of Earth in 16 thermal bands since the year 2000.

At the higher resolution of 120–60 m, all the well-known Landsat sensors (MSS-3

onwards, TM, ETM+) monitored our planet in the thermal domain – allowing a view

into our past from their launch up until 1978. The new Landsat Data Continuity

Mission, LCDM, launched in 2013, also includes a thermal band.

TheGermanAerospace Center, DLR, designed and operated theBIRD (2001–2004)

and TET-1 missions (launched in 2012), which contributed and still contributes to

thermal observations of the Earth’s surface. This is only an incomplete snapshot of

available resources, and numerous future sensor missions are planned.

The thermal infrared community is growing day by day.Many international scientists

active in thermal infrared remote sensing have contributed to this book, providing

an introduction to this important domain and describing selected sensors, analysis

methods, and applications. I am convinced that it will be a milestone on the pathway

of thermal infrared remote sensing and will trigger scientific discussion about advances

and remaining gaps and also spark the excitement of scientists new to this field.

I hope that I have awakened your interest in thermal infrared remote sensing as

one important tool to assess the state of our environment.

May you enjoy your reading!

Prof. Dr.-Ing. Johann-Dietrich Wörner

Chairman of the Executive Board

German Aerospace Center DLR

Cologne, Germany
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Germany

xv



Caixia Gao College of Resources and Environment, Graduate University of Chi-

nese Academy of Sciences, Beijing, China

Image Sciences, Computer Sciences and Remote Sensing Laboratory (LSIIT), UdS,

CNRS, Illkirch, France

Ursula Gessner German Remote Sensing Data Center (DFD), Earth Observation

Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Guo Huadong Center for Earth Observation and Digital Earth (CEODE), Beijing,

China

Christian Haselwimmer Geophysical Institute, University of Alaska Fairbanks,

Fairbanks, AK, USA

Christoph A. Hecker Faculty of Geo-Information Science and Earth Observation

(ITC), University of Twente, Enschede, The Netherlands

Uta Heiden German Remote Sensing Data Center (DFD), Earth Observation

Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Wieke Heldens German Remote Sensing Data Center (DFD), Earth Observation

Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Simon J. Hook Jet Propulsion Laboratory, California Institute of Technology,

National Aeronautics and Space Administration (NASA), Pasadena, CA, USA

Andrew T. Hudak US Forest Service Rocky Mountain Research Station, Moscow

Forestry Sciences Laboratory, Moscow, ID, USA

Glynn Hulley Jet Propulsion Laboratory, California Institute of Technology,

National Aeronautics and Space Administration (NASA), Pasadena, CA, USA

Murzy Jhabvala Goddard Space Flight Center (GSFC), National Aeronautics and

Space Administration (NASA), Greenbelt, MD, USA

Xiaoguang Jiang College of Resources and Environment, Graduate University of

Chinese Academy of Sciences, Beijing, China
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Chapter 1

Theoretical Background of Thermal Infrared

Remote Sensing

Claudia Kuenzer and Stefan Dech

Abstract Thermal infrared (TIR) data is acquired by a multitude of ground-based,

airborne, and spaceborne remote sensing instruments. A broad variety of fields apply

thermal infrared remote sensing, for example to assess general land- or sea-surface

temperature dynamics, detect forest, coal and peat fires, map urban heat islands

or thermal water pollution, differentiate geologic surfaces, analyze soil moisture, or

even to test materials, to name only a few applications. As thermal infrared data has to

be analyzed slightly differently than reflective data, this chapter contains the relevant

theoretical background. The thermal domain of the electromagnetic spectrum, the laws

of Planck, Stefan-Boltzmann, Wien, and Kirchhoff, as well as important parameters

such as kinetic and radiance temperature, emissivity, and thermal inertia are briefly

explained. The chapter thus provides readers with a common understanding before

proceeding to subsequent chapters.

1.1 Introduction

All objects with a temperature above absolute zero (0 K, which equals �273 �C)
emit electromagnetic radiation. Our earth has an average temperature of about

300 K and its peak of electromagnetic emittance is located in the thermal infrared,

TIR, domain at about 9.7 μm (Tipler 2000; Sabins 1996). The earth absorbs a large

part of the incoming solar radiation and a corresponding amount is emitted at longer

wavelengths.

Remote sensing sensors responsive in the thermal domain have the ability to

record this TIR radiation. Radiation – as opposed to conduction or convection,

where heat is transferred through matter – is an energy transfer process, which also

works in/through a vacuum (Sabins 1996). TIR sensors thus enable the derivation of

C. Kuenzer (*) • S. Dech
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thermal radiance images of objects on the earth’s surface. Such imagery can display

the kinetic temperature of objects at the resolution of the respective sensor. The

necessary correction steps for certain object-inherent as well as geometric and

atmospheric effects will be addressed later in this chapter.

The most commonly known products derived from TIR imagery are land surface

temperature, LST, (see Fig. 1.1) and sea surface temperature, SST (Dech et al.

1998). However, thermal data have a much larger potential than just the derivation

of these standard products. These data enable the assessment of thermal anomalies

(forest fires, coal fires, thermal pollution, energy leaks in buildings, inflamed areas

in thermal medical imagery), the analysis of moisture conditions, or even the

monitoring of machine performance in industrial applications, and – depending

on sensor and resolution – the assessment of thermal dynamics at different scales

(see Figs. 1.2 and 1.3).

Fig. 1.1 Thermal daytime land surface temperature image of Munich, 1982, based on data

acquired with an airborne Bendix Scanner. Areas marked include the Munich central train station

(a), the location – a large meadow – of the annual Oktoberfest (b) and the southern part of the

English Garden, Munich’s largest inner-city park (c) (Imagery courtesy of DLR)
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Fig. 1.2 Thermal dynamics. Hot water runs into a sink filled with colder water of 22 �C. The hot
water has a temperature between 62.2 and 69.2 �C (during the course of 1 min the hot water

coming from the tap increases in temperature). The mixing of the hotter into the colder water is

clearly evident in the image sequence. Emissivity is set to 0.97 as water in Munich, Germany, is

extremely hard at over >2.5 mmol/l CaCO3 (Photographs: C. Kuenzer)
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A broad overview of the fleet of currently available TIR sensors and the large

spectrum of TIR remote sensing applications can be found in the following

chapters of this book. This chapter presents the theoretical background of thermal

infrared remote sensing, which must be understood to correctly analyze and

interpret TIR data.

1.2 Theoretical Background

1.2.1 The Thermal Infrared Domain and Atmospheric
Windows

There is no strict or physical definition of the thermal infrared domain. According

to Sabins (1996) the thermal infrared wavelength domain extends from about 3 to

14 μm. In this range thermal mapping of the earth’s surface is possible due

Fig. 1.3 Thermal camera images.Upper left: person wearing glasses. The background as well as the
glasses are colder than the human skin, which has a temperature between 36 and 37 �C.Upper right:
a male foot (left) and a female foot (right). Since blood circulation towards the toes in the female foot

is less accentuated than in the male foot, the female foot appears overall colder. Lower left: optical
image of hot water poured from an electric water kettle into a tea mug. Lower right: The hottest parts
of this image are at the spout and in the stream of water flowing into the mug. Note the temperature

increase of the mug (green) caused by heat conduction (Photographs: C. Kuenzer)
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to atmospheric windows in the 3–5 μm range, as well as in the 8–14 μm range (see

also Fig. 1.4 below). Within the 8–14 μm range only a narrow absorption band of

ozone, O3, exists, which is omitted by most sensors. Within the 3–5 μm range

reflected sunlight can still slightly contaminate the (emitted) thermal signal, which

has to be taken into account when analyzing daytime 3–5 μm TIR imagery.

However, different authors define the TIR domain slightly differently.

According to Löffler (1994) as well as Lillesand and Kiefer (1994) the TIR domain

ranges from 3 to 1,000 μm. The main characteristic common to all definitions is the

fact that TIR remote sensing records emitted radiation, whereas multispectral

remote sensing in the visible, VIS, and near infrared, NIR, domain records reflected

radiation. Only within the shorter wavelength part of the TIR spectrum (<5 μm) can

the thermal signal still be slightly disturbed by reflected radiation.

1.2.2 Planck’s Law

Planck’s blackbody radiation law, Planck’s law for short, describes the electromag-

netic radiation emitted by a blackbody at a given wavelength Mλ as a function of the

blackbody’s absolute temperature (Planck 1900). A blackbody is defined as an

(hypothetical, nonexisting) ideal radiator that totally absorbs and re-emits all

energy incident upon it. Simply by specifying a certain wavelength in Eq. 1.1

below, Mλ can be calculated from the body’s temperature (see also Fig. 1.5).

Mλ ¼ 2πhc2

λ5 ehc λkT= � 1ð Þ (1.1)

Fig. 1.4 The thermal infrared wavelength domain, typical absorption bands induced by gasses

and water, and atmospheric transmittance (atmospheric windows) (Figure courtesy of Rudolf

Richter)
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with:

Mλ ¼ spectral radiant exitance [W m�2 μm�1]

h ¼ Planck’s constant [6.626 � 10�34 J s]

c ¼ speed of light [2.9979246 � 108 m s�1]

k ¼ Boltzmann constant [1.3806 � 10�23 J K�1]

T ¼ absolute temperature [K]

λ ¼ wavelength [μm]

The total energy a blackbody radiates and the wavelength of maximum emit-

tance depend on the temperature of the blackbody and can be described by Stefan-

Boltzmann’s law and Wien’s law (Walker 2008; Tipler 2000).

1.2.3 Stefan-Boltzmann Law

The Stefan-Boltzmann law (Eq. 1.2) describes the total electromagnetic radiation

emitted by a blackbody as a function of the absolute temperature of that blackbody

(Walker 2008; Tipler 2000; Sabins 1996). The emitted radiation corresponds to the

area under the radiation curve (integral) as depicted in Fig. 1.5.

Fig. 1.5 Blackbody radiation curves at different selected temperatures, as derived from Eq. 1.1.

The laws of Planck, Stefan-Boltzmann (marked area under the 300 K curve) and Wien (green
dotted line) are depicted in this figure. The blue bar indicates the VIS region
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TRadBB ¼ σTkin
4 (1.2)

TRadBB ¼ radiant flux of a blackbody [W/m2],

T ¼ absolute kinetic temperature [K]

σ ¼ Stefan-Boltzmann constant [5.6697 � 10�8 W m�2 K�4]

This equation shows that the higher the temperature of the radiating object the

greater the total amount of radiation (energy) it emits. The relation is not linear;

irradiance is proportional to the fourth power of the black body’s temperature.

1.2.4 Wien’s Displacement Law

Wien’s law (Heal 2003; Walker 2008; Tipler 2000) describes the wavelength at

which maximum spectral radiant exitance occurs:

λmax ¼ A

T
(1.3)

λmax ¼ wavelength of maximum spectral radiant exitance [μm]

A ¼ Wien’s constant [2897.8 μm K]

T ¼ absolute kinetic temperature [K]

With increasing temperature of an object, its maximum exitance λmax shifts to

shorter wavelengths. This can be seen in Fig. 1.5. With an average temperature of

5,778 K (5,505 �C), the sun has its peak emission in the VIS domain of the spectrum

(roughly at green: 0.55 um), while a much colder object such as the earth has its

peak of emission in the TIR.

Wien’s dependency of temperature and peak emission can also be observed in

multispectral remote sensing data, such as depicted in Fig. 1.6 below. In the optical

true color image (upper left) it can be seen that lava from Kilauea volcano is flowing

to the ocean. The lava appears black, as surface crusts have already built on the lava

streams, hiding the orange glowing lava under the crust. However, some parts of the

lava are still incredibly hot, as can be seen in the thermal band 6 (10.4–12.5 μm)

Landsat data shown in the lower right image. The white areas here represent hot

areas which are much warmer than the background. Clouds clearly visible as white

structures in the upper left and upper right figure appear dark in band 6 due to their

low temperature. On the grey scale image of band 7 (2.09–2.35 μm) clouds appear

white as reflection still plays a large role in this wavelength domain. At the same

time the hottest areas of the lava appear as white structures in the central lower part

of the image. These white areas are much smaller in extent than the very bright

areas in band 6 and therefore depict only the very hottest regions within the lava

stream, which must have temperatures well above 90 �C to stand out here (see also

Table 1.2 later in this chapter).
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1.2.5 Kirchhoff’s Law and the Relevance of Emissivity

Planck’s law defines the radiation released by a blackbody. Very few terrestrial

surfaces act as perfect black bodies following Planck’s law. Most objects emit less

than predicted from their kinetic temperature. This fact is taken into account by the

emissivity coefficient (ε(λ)). ε is the radiant flux of an object at a given temperature

over the radiant flux of a blackbody at the same temperature. For a blackbody, all

absorbed radiation is emitted again (‘good absorbers are good emitters’) and

Fig. 1.6 Landsat 7 ETM+ data of Kilauea Volcano, Hawaii, USA, February 14th, 2000, Upper
left: true color composite with the red, green and blue bands displayed in RGB; upper right: false
color composite with the two SWIR (shortwave infrared) bands 7 and 5 and NIR band 4 displayed

in RGB; lower left: grey scale image of shortwave infrared band 7 (2.09–2.35 μm); lower right:
grey scale image of the thermal infrared, TIR, band 6 (10.40–12.50 μm)
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Kirchhoff’s law (1860) applies, stating that the emittance at a given wavelength is

equal to its absorbance at the same wavelength:

εðλÞ ¼ αðλÞ (1.4)

Taking into account energy conservation, where the sum of absorption (α),
reflection (ρ), and transmission (τ) equals 1, and Eq. 1.4:

εðλÞ þ ρðλÞ þ τðλÞ ¼ 1 (1.5)

As most objects are opaque and do not transmit radiation, Eq. 1.5 can be

re-formulated as:

εðλÞ þ ρðλÞ ¼ 1 (1.6)

Hence, the spectral emittance of an object can be calculated from its reflectance

(for a blackbody), and vice versa. While materials with a high ε absorb large

amounts of incident energy and radiate large quantities of energy, materials with

low ε absorb and radiate lower amounts of energy (Kirchhoff 1860; Sabins 1996).

Emissivity varies depending on surface type and wavelength but is not tempera-

ture dependent (Flynn et al. 2001). Table 1.1 presents emissivities of common

surfaces averaged for the wavelength range of 8–14 μm.

Based on Eq. 1.2 and the definition of emissivity, the conversion of radiance

temperature to kinetic temperature is according to:

TðradÞ ¼ ε 1=4ð Þ� TðkinÞ (1.7)

Due to emissivities below 1 for real materials, the radiance temperature, T(rad),

measured by a sensor is always lower than the real kinetic (surface) temperature,

T(kin), of an object.

This is a crucial fact for thermal data analysis, as it means that objects with

exactly the same kinetic temperature can differ significantly in their radiant tem-

perature. Depending on the variability of land cover surfaces (varying geologic

surfaces, moisture conditions, amounts of vegetation cover, etc.) an image has to be

corrected for the emissivity effect when aiming to retrieve kinetic pixel (object)

temperatures. Emissivity related radiometric divergences are especially

accentuated in urban areas. As emissivities of metals (e.g., aluminium, tin or copper

roofs) are extremely low, the sensed temperatures will appear much lower than the

sensed temperatures of surrounding objects of the same kinetic temperature (see

Figs. 1.7 and 1.8). On the other hand, water surfaces and vegetation with

emissivities close to one permit a quite exact assessment of their kinetic tempera-

ture (Table 1.1).
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Table 1.1 Emissivity of

different surfaces in the

8–14 μm wavelength range as

compiled from different

sources

Surface Emissivity at 8–14 μm
Carbon powder 0.98–0.99

Water 0.98

Ice 0.97–0.98

Plant leaves, healthy 0.96–0.99

Plant leaves, dry 0.88–0.94

Asphalt 0.96

Sand 0.93

Basalt 0.92

White paper 0.90

Wood 0.87

Granite 0.83–0.87

Polished metals, averaged 0.02–0.21

Aluminium foil 0.036

Own measurements, Lillesand et al. (2008), Sabins (1996)

Fig. 1.7 Impact of emissivity on radiance temperature recorded at the sensor. A block of

aluminium with constant kinetic temperature and very low emissivity is partially covered with a

carbon-rich dark paint. Note the different temperature readings due to varying emissivities.

Although the object is 15 �C, it appears as �136.8 �C on the uncovered side, and as 13.5 �C on

the painted side (calculation based on Eqs. 1.2 and 1.7) (Modified after Sabins 1996)
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1.3 Thermal Remote Sensing Data Acquisition

For thermal imaging the TIR energy radiated from an object is transferred via a scan

mirror onto a detector. These detectors are usually cooled with liquid nitrogen to

minimize detector-inherent noise. At the same time thermal scanners often contain

controlled radiant temperature sources for calibration purposes. Details on TIR

detectors can be found in Norwood and Lansing (1983). TIR detectors can be

ground-based or flown on aircraft or satellites.

1.3.1 Sensitivity of Thermal Infrared Sensors

Thermal infrared sensors will be discussed in much more detail in the following

chapters of this book. Here, only one example is given, based on the very commonly

used spaceborne Landsat-7 Enhanced Thematic Mapper (short ETM+) sensor. All

Landsat bands are acquired in either a low- or a high-gain mode spanning slightly

different dynamic ranges. Gain selection is defined in the gain strategy of the Long

Term Acquisition Plan (LTAP), depending on acquisition time and the dominating

surface types in a scene (percentages of land, desert, ice/snow, water, sea ice, etc.).

Fig. 1.8 Impact of emissivity differences on radiance temperature recorded at the sensor of a

hand-held thermal camera. The picture was taken on September 10th, 2012. It shows a polished

metal handrail bordering a concrete stair. Ambient air temperature at picture acquisition was

around 22 �C. The human hand shows temperature values up to 37 �C. Note that even the veins

within the hand can be seen as white (hottest) lines. The handrail appears at a radiance temperature

of�8 �C (cross at image center). Of course the rail is not minus 8 �C cold. However, as this picture

was taken with a standard emissivity value of 1 (without emissivity correction) the handrail

appears to be very cold. The same applies to the gold ring on the person’s finger
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These are known a priori as Landsat cover fixed frames, defined by path and row.

Except for very specific requests the user has no influence on the gain setting in the

reflective modes. Nevertheless, ETM+ band 6 will always be recorded and delivered

in the low- and high-gain modes, extending the dynamic range of the data.

Detector saturation can occur if a surface has extremely high temperatures.

Similarly, a surface will not be detected thermally if its temperature decreases

below a certain threshold. Table 1.2 lists the minimum and maximum temperatures

in the low-gain and high-gain (in brackets) setting, indicating the lowest or highest

pixel-integrated temperature which can be detected in a certain wavelength region.

It should be noted that band 6 ranges from 10.4 to 12.5 μm only, to avoid the effects

of ozone adsorption. Its broad band width of 2 μm combined with only 60 m ground

resolution enables a sufficient thermal energy yield. It can be seen that mid-infrared

band 5 can be used to detect thermal anomalies of very high temperatures leading to

saturation in band 6 (see also Fig. 1.6). Even near-infrared channel 4 offers options

for the detection of extremely high temperatures. Compared to former Landsat TM

(Thematic Mapper), the low- and high-gain options of ETM+ offer a higher

dynamic range. Nevertheless, the thermal bands of ETM+ have proven less suitable

for high temperature studies. They saturate at 51 and 77 �C respectively, while TM

band 6 saturated at around 90 �C. It is also often stated that ETM+ still suffers from

an antiquated 8-bit dynamic range, limiting radiance steps to 256 instead of, e.g.,

4096 if a 12-bit system was used (Flynn et al. 2001).

1.3.2 Daytime and Nighttime Data Acquisition

One very big advantage of TIR remote sensing is the fact that data can be acquired

independent of the sun as an illumination source. So thermal data can also be acquired

during the night, when remote sensing in the VIS and NIR is not possible. Several

sensors can be specifically tasked to collect thermal data during the night (e.g., Aster

(Advanced Spaceborne Thermal Emission and Reflection Radiometer), Landsat TM,

ETM+), and some are constantly mapping the earth in the TIR range, such as MODIS

(Moderate Resolution Imaging Spectroradiometer) (see Fig. 1.9), NOAA-AVHRR

Table 1.2 Temperature of saturation in the low- and high-gain bands of Landsat-7 ETM+

Spectral band μm regions Minimum temperature [�C] Maximum temperature [�C]
1 (blue) 0.45–0.51 1,051 (1,075) 1,483 (1,526)

2 (green) 0.52–0.60 900 (922) 1,301 (1,340)

3 (red) 0.63–0.69 755 (775) 1,119 (1,156)

4 (NIR) 0.75–0.90 595 (613) 926 (961)

5 (MIR) 1.55–1.75 206 (217) 417 (440)

6 (TIR) 10.40–12.50 �33 (�134) 51 (77)

7 (MIR) 2.09–2.35 92 (101) 258 (276)

8 (pan) 0.52–0.90 702 (721) 1,056 (1,092)

Source: Flynn et al. (2001), modified, as in Kuenzer (2005)
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Fig. 1.9 Optical Landsat imagery (a), and daytime (morning, b) and nighttime (pre-dawn, c)

thermal data acquired byMODIS in 2005 over a coal mining area in northeast India. Forested areas

appear cool (bright) during the day, and warm at night; the same applies to lakes. One outstanding

feature is the Jharia coal field in the upper right part of the image (crescent-shaped structure),

which appears hot during daytime due to the low albedo and low thermal inertia of coal, and which

also appears hot in pre-dawn data due to underground coal fires. The area presented covers about

230 km � 90 km. UL 24�02051N, 84�59024E, LR 23�06058N, 86�34030E
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(National Oceanic and Atmospheric Administration – Advanced Very High

Resolution Radiometer) or MSG SEVIRI (Meteosat Second Generation – Spinning

Enhanced Visible and Infrared Imager), to name only a few.

Nighttime data is especially suitable for detecting thermal anomalies, such as hot

anomalies induced by forest fires, and especially weak thermal anomalies induced

by subsurface coal fires (Zhang and Kuenzer 2007; Zhang et al. 2007), peat fires,

industry-related thermal water pollution, or geothermal phenomena.

Other communities, such as scientists or practitioners working in the field of

model assimilation and validation, need not only one or two nighttime data sets per

day, but rather nighttime as well as daytime data at dense temporal intervals

covering a complete day.

During daytime uneven solar heating of the background (due to varying

sun-sensor-object geometry, topography, thermal inertia) often hampers the extrac-

tion of thermally anomalous pixels, while in nighttime data – especially pre-dawn

data – the solar component is much less accentuated and thermal emission of natural

surfaces such as rocks, vegetation, etc. is at a minimum. Therefore, it is easier to

extract anomalous pixels whose temperature is elevated independent of solar radia-

tion. As the MODIS sensor – for example – is flown on two platforms, TERRA and

AQUA, it is possible to acquire up to four thermal images of the same area within

1 day (see Fig. 1.9). Usually, data is available for the morning, afternoon, early night,

and pre-dawn. This holds a large potential for multi-diurnal thermal mapping, such as

presented in Kuenzer et al. (2008).

1.4 Pre-processing of Thermal Remote Sensing Data

Thermal infrared remote sensing data has to be corrected for systematic and nonsys-

tematic geometric distortions, just like data from bands of reflective wavelengths.

Usually the data is corrected simultaneously together with the reflective bands when

an image stack of data is adjusted based on a data set with higher geometric accuracy,

e.g., via ground control points. Details on geometric correction of image data can be

found in Richards (1986).

To radiometrically correct thermal bands the physical principles of thermal absorp-

tion and emission apply. Not the reflectance in per cent has to be calculated for each

pixel, but the temperature of a surface in �C or K. In a first step, sensor calibration

functions are used to calculate the energy retrieved at the sensor (inW/m2/sr/μm) from

the recorded digital number, DN. The calibration functions are linear equations

defined via two calibration coefficients, c0 (offset) and c1 (gain). The coefficients

are usually frequently updated by the data providers and distributed with the raw data.

Following this first step, the emitted radiance at ground level is derived. The necessary

atmospheric correction takes advantage of the fact that in the thermal spectral region

of 8–14 μm water vapor is the dominating disturbing parameter, while aerosols play
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only a negligible role. The radiance equation in the thermal region can be expressed

as:

LSat ¼ Lp þ τv � ε� LSurfðTÞ þ τvð1� εÞ � Fth π= (1.8)

With (all wavelength dependent):

LSat: at-sensor radiance

Lp: thermal path radiance

τv: ground to sensor atmospheric transmittance

ε: surface emissivity

T: surface temperature

LSurf: blackbody radiance at the ground surface

Fth: thermal downwelling flux on the ground

The first term in Eq. 1.8 gives the thermal path radiance. This is thermal

radiation from the atmosphere reaching the sensor having never interacted with

the surface. The last term in Eq. 1.8 is the downwelling thermal radiation reflected

(by the surface) back to space. The central term, finally, gives the radiation emitted

by the surface of temperature (T) and transmitted to the sensor.

The equation can be resolved for T from the measured LSat. Lp, τv and Fth can be
derived from atmospheric measurements or pre-calculated databases (e.g., often

pre-calculated based on MODTRAN (Moderate resolution atmospheric Transmis-

sion) radiative transfer code).

Emissivity effects can be corrected approximately by classifying the optical

channels of an image into different surface types and assigning an emissivity value

to each land cover class. This approach is integrated in several atmospheric correction

codes, such as ATCOR-3 (Atmospheric and Topographic Correction for Satellite

Imagery), pre-classifying the image into three classes (water, vegetation, bare

ground). Using this approach, the emissivity problem is at least approximated.

Richter (2003) and Vidal (1991) state that as a rule of thumb a 0.01 emissivity

error leads to a temperature error of 0.5–1 K. Actually, the emissivity-induced error

depends on the object temperature and the emissivity of the object, as demonstrated

by calculations presented in Table 1.3 below. With lower emissivities temperature

errors of over 10 K can be reached. For typical land cover types a 0.01 change leads

to a temperature error of 0.7–1 �C. However, absolute temperature errors can be up

to 25 �C, and for metal surfaces even above 100 �C (see also Figs. 1.7 and 1.8).

Therefore, detailed emissivity correction is recommended when aiming to

retrieve exact surface temperatures (Becker 1987). Even if a priory classification

knowledge exists, this is difficult though, since the emissivity of a pixel depends on

the composition of surfaces. In case of a mixed pixel, mixed emissivities would

have to be calculated. Approaches to derive the emissivity of surfaces were,

amongst others, developed and applied by Becker (1987), Nerry et al. (1990),

Hook et al. (1992) and Kealy and Hook (1993).
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1.5 Analysis of Thermal Infrared Data

There are numerous methods and approaches which are especially suitable for the

analysis of TIR data; many of them being presented in the later chapters of this

book. Many authors focus exclusively on the derivation of LST and SST (Baroncini

et al. 2008; Eastwood et al. 2011; Freitas et al. 2010; Gleason et al. 2002; Hulley

et al. 2011; Iwasaki et al. 2008; Li et al. 2004; Sobrino et al. 1994), others on sensor

performance comparisons (e.g., Frey et al. 2012; Batra et al. 2006), or thermal

pattern development over time (e.g., Kant et al. 2009), as well as thermal anomaly

extraction (Panda et al. 2007; Kuenzer et al. 2007). A large community uses TIR

data for model validation and assimilation (weather and climate models) (Jang et al.

2010; McNider et al. 1994; Pipunic et al. 2008). Furthermore, many authors utilize

TIR data as additional information in multispectral data classification. Huth et al.

(2012), Klein et al. (2012) and Kuenzer (2005) all have demonstrated the value of

TIR data as a discriminator for certain surfaces which might not differ substantially

in the VIS and NIR domain. Kuenzer (2005) for example showed that very dark

coal surfaces in mining regions cannot be distinguished from fully shadowed areas

in the VIS and NIR domain as both have nearly zero reflectance in all bands.

However, the two can be differentiated in the TIR, as shadow areas are usually

much cooler than coal surfaces, which heat up very fast during the day. However,

some less known methods apart from the above exist as well, and will be introduced

in the following.

Table 1.3 Emissivity-induced temperature errors for an object of 288 K (15 �C)

Emissivity Trad (K) Trad (�C) Error (from Tkin in K)

Error (for emissivity change

of 0.01 in K)

0.03 119.86 �153.14 �168.14 8.94

0.04 128.80 �144.20 �159.20 7.39

0.05 136.19 �136.81 �151.81 6.35

0.06 142.54 �130.46 �145.46 5.60

0.07 148.14 �124.86 �139.86 5.03

0.08 153.17 �119.83 �134.83 4.58

0.09 157.74 �115.26 �130.26 4.21

. . . . . . . . . . . . . . .

0.3 213.14 �59.86 �74.86 1.75

0.31 214.90 �58.10 �73.10 1.71

. . . . . . . . . . . . . . .

0.7 263.43 �9.57 �24.57 0.94

0.71 264.37 �8.63 �23.63 0.93

0.72 265.29 �7.71 �22.71 0.92

. . . . . . . . . . . . . . .

0.97 285.82 12.82 �2.18 0.73

0.98 286.55 13.55 �1.45 0.73
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1.5.1 Considering Diurnal Temperature Dynamics: Thermal
Inertia and Apparent Thermal Inertia

Objects of the land surface and even water of the oceans all have diurnal thermal

characteristics and distinct diurnal temperature curves. An object’s diurnal temper-

ature curve represents its temperature behavior over the course of a 24 h cycle. It

illustrates how much and how fast an object heats up and cools down during the

day. The diurnal temperature curve depends on the object’s material properties (in

particular its thermal inertia), season (sun-object geometry defining strength of

illumination), atmospheric disturbances, and – complicating the matter for land

surfaces – its exposure (aspect, slope).

Figure 1.10 illustrates the contrasting diurnal temperature variation of water and

dry soil/rock. Differences mainly result from different material properties (Tipler

2000), amongst other physical parameters expressed by the thermal inertia. The

thermal inertia, I (J/m2/K/s.5), is defined as the resistance of a material to heating.

The thermal inertia is the product of three factors: the energy needed to raise the

temperature of a material by 1 �C (heat capacity c) per mass unit of the substance,

the density of a material, p, and the thermal conductivity, k, of the object (see also

Table 1.4).

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� p� k
p

(1.9)

Variations in I result in changes to ΔT (Kahle et al. 1976). ΔT is the difference

between the maximum and minimum temperature occurring during a diurnal solar

cycle. Low thermal inertias indicate low resistance to temperature change, resulting

in a high ΔT (e.g., rocks). The opposite applies to surfaces with high thermal inertia

(e.g., water).

While remote sensing does not allow for the direct derivation of thermal inertia

(c, p and k can only be measured in situ), the concept still allows the impact of

object characteristics (e.g., moisture of soils or vegetation) on T and ΔT to be

exploited. Maximum and minimum radiant temperatures can be measured from

thermal daytime and nighttime remote sensing images.

ΔT is calculated by subtracting the nighttime from the daytime temperature for

corresponding ground resolution cells. Already Idso et al. (1975) investigated the

potential of ΔT for soil moisture retrieval and found the data helpful for deriving

soil moisture in the 0–4 cm horizon.

Later, the relationship of low ΔT for materials with a high I, and vice versa, was
extended to calculate the so-called Apparent Thermal Inertia, ATI. The ATI is

defined as:

ATI ¼ ð1� AÞ=ΔT (1.10)

where A is the albedo of the pixel in the visible band. The albedo is included to

compensate for the effect that dark materials absorb more sunlight than do light
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materials. Hence, by including the term 1-A the effect that a dark material typically

has a higher ΔT than an otherwise identical light material is somewhat compensated.

An example of ATI image utilization is shown in this book in the chapter by

Notarnicola et al. (2013), who employed ATI data to qualitatively differentiate

different stages of soil moisture conditions. Unlike thermal inertia, which is a fixed

object-inherent value, ATI must be interpreted carefully as neither the albedo in the

VIS (Bidirectional reflectance distribution function, BRDF, effects, etc.), nor ΔT
are fixed. ATI, for example, cannot compensate for relief induced variations in ΔT.
In an area of uniform material shadowed areas have a lower radiant temperature

during the day and hence a lower ΔT than the exact same material exposed on a

Fig. 1.10 Diurnal temperature variation of water and dry soil/rock. Each object shows a distinct

diurnal temperature cycle determined by the thermal inertia of the object and the history of the

incoming solar radiation (Modified from Lillesand et al. 2008)

Table 1.4 Thermal properties of geologic materials

Material

Thermal conductivity,

k [W/m/K]

Thermal capacity,

c [J/kg/K]

Thermal inertia,

I [J/m2/K/s.5]

Clay soil 0.0030 0.35 0.042

Sandstone 0.0120 0.19 0.074

Limestone 0.0048 0.17 0.045

Shale 0.0042 0.17 0.041

Sandy soil 0.0014 0.24 0.024

Source: Sabins (1996)
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sunlit slope. Here, topographic data and solar elevation and azimuth information

have to be employed to overcome the relief-induced variation of ΔT.
Figure 1.11 depicts this increase of complexity of a diurnal temperature curve

if one and the same material occurs at different aspects (thermal anisotropy).

The temperatures of a small sand dune (2 m high) in the Gobi desert, China, were

measured in situ at numerous points on four slopes with north, east, south and west

exposition. Temperaturemeasurements for each aspectwere averaged.Measurements

were recorded with a handheld radiometer at 10 min intervals and started at six AM

and ended at eight PM. Figure 1.11 demonstrates the following:

• Quartz-rich desert sand reaches temperature differences of above 40 �C during a

time span from 6:00 in the morning until the temperature peak is reached slightly

after solar noon (SN).

• East-exposed surfaces heat faster in the morning than the other aspect directions

(they are illuminated earlier)

• South- and west-exposed slopes heat up the most and stay warmer longer in the

late afternoon/evening

• While peak temperature reaches only about 35 �C on east- and north-exposed

slopes, temperatures of over 45 �C are reached on south and west slopes

• At e.g., a Landsat local overpass time of 10:30, temperatures of the same object/

surface can differ by up to 10 �C.

To account for such effects in thermal data over land TIR imagery has to be

corrected for differing solar illumination times due to varying sun-sensor-object

geometries, varying sensor overpass times, and topographic (aspect, slope) effects –

especially when aiming at thermal change detection or time series analysis. These

corrections have to be applied in addition to several other pre-processing and

correction steps: (1) sensor calibration with constantly updated calibration

Fig. 1.11 Diurnal temperature variation of desert sand depending on different aspects (exposure

to the east, south, west and north) (Source: Zhang and Kuenzer 2007)
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coefficients, (2) atmospheric corrections to retrieve object radiance, (3) emissivity

corrections to receive kinetic temperature (all explained in previous sections).

1.5.2 Considering Intra-Annual Temperature Development:
Implications for TIR Change Detection and Time
Series Analysis

The temperature behavior of objects is not only characterized by their diurnal

temperature variation within a 24 h cycle, but also by an annual temperature

curve. ΔT of the 24 h cycle varies with season, and just like an average ΔT for a

diurnal cycle exists, an average ΔT over the course of one year (for a specified solar

time) also exists. This annual ΔT is not a ΔT derived from daytime and nighttime

data, but the temperature difference of an object between an acquisition, e.g., in

winter and in summer during an identical acquisition time (see Fig. 1.12).

This annual variability of temperature has to be taken into account, when time

series of daytime TIR data are analyzed. Many studies investigate, e.g., so-called

urban heat island effects (Schwarz et al. 2011; Streutker 2003; Tiangco et al. 2008)

and some of these studies focus on the comparison of only two or a few scenes.

If one wants to derive clear indications whether a city is ‘getting hotter’ over

time (usually due to increased surface sealing) one has to ensure that the data

Fig. 1.12 Thermal mapping of Dahl, near Paderborn, Germany in winter (left), spring (middle),
and summer (right), based on airborne data acquired with the DAEDALUS scanner at 300 m flight

altitude. Pixel spacing is 80 cm by 80 cm (Imagery courtesy of DLR)
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utilized is representative (same day of year, same acquisition time, same sensor,

same correction methods), also with respect to temporal coverage. The comparison

of just two data sets is therefore not suitable. Instead, a time series of many scenes

acquired during the same date and time should be analyzed to derive a real trend. In

climate- or SST-related TIR analyses, long term time series of TIR data (e.g., 30+

years based on AVHRR data) are employed to ensure the exclusion of outlier

effects and to derive solid quantitative statements.

The analysis of annual temperature variability is important for many applications

such as the assessment of conditions for crop growth, the assessment of soil tempera-

ture for construction, the analysis of temperature variability impacts on building

materials, or – when looking at ocean temperature – the consequences of temperature

variability for nutrient loads, biodiversity, navigability, or tourism.

As a general comment, it should be noted here that thermal data – when

corrected to radiance temperature in �C, and further on to kinetic temperature in
�C – negative temperature (values) can occur, which is not possible for reflectance

data from the VIS or NIR domain. While reflectance data is usually stored as

‘unsigned’ data (unsigned 8-bit, unsigned 12-bit etc.) thermal data should always

be written as ‘signed’ (signed 8-bit, signed 12-bit, etc.) data, to allow for below

0 (negative) values.

1.5.3 Mapping Approaches Based on Varying TIR Emissivity

As already mentioned, emissivity is a wavelength-dependent term. Materials have

different emissivity within the TIR domain. This means that objects have very

distinct spectral signatures (spectral ‘fingerprints’) also in the TIR. The TIR spectra

look similar to the continuous spectra in the VIS, NIR or MIR, and enable the

distinction of materials. Sensors with multiple bands in the TIR, such as ASTER or

MODIS, allow for the discriminative mapping of materials based on emissivity

spectra due to differing emissivity at different wavelength in the TIR. ASTER, for

example, records five thermal bands between 8.125 and 11.65 μm at 90 m spatial

resolution each. Therefore, the user receives five measurements of an object’s

radiant exitance in the TIR domain, and can plot a discrete emissivity spectral

signature. MODIS has 36 spectral bands, of which bands 20–36 are located within

the TIR domain between 3.66 and 14.385 μm. However, due to absorption bands in

some of these areas, especially bands 20–23 (3.66–3.98) and bands 31 and

32 (10.78–12.27 μm) are suitable for LST and SST retrieval. Mapping approaches

based on varying TIR emissivity have often been presented for geologic surface

discrimination employing ASTER thermal bands (Coll et al. 2007; Haselwimmer

et al. 2011).
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1.5.4 Artefacts in Thermal Images

Artefacts in thermal imagery are clouds (usually very cold objects in thermal data)

and cloud shadows (leading to a decrease of LST in the areas influenced by these

shadows), wind smear and wind streak effects, as well as smears of high tempera-

ture events, as presented in Fig. 1.13 below.

1.5.5 Ground Truth and Validation

The accuracy of the temperatures retrieved after sensor calibration and atmospheric

correction can be assessed based on ground truth temperatures (radiance and kinetic

temperatures, depending on the desired final products) measured during the over-

flight of the airborne or spaceborne thermal sensor (Coll et al. 2005). It is then

possible to measure in situ kinetic temperature directly via a contact thermometer,

or without contact with the object, if its emissivity is known.

Most suitable are surfaces with a high thermal inertia (e.g., water) to prevent

temperature changes during even slight temporal offsets between exact overflight

time and in-situ measurement time. With water surfaces also the terrain-related

(aspect, slope) uneven solar heating is omitted and its emissivity is very close to

Fig. 1.13 Smear effect due to oscillating mirror motion and extreme high temperature events

(burning oil and gas flares in the gulf region) can be traced all the way into the red band of Landsat
TM imagery (Wien’s displacement)
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one. At the same time, the assumedly hottest and coldest objects within the area of

image acquisition should also be measured, to have ground truth for both ends of

the temperature range of the data set. The measurements must all be undertaken at

exact overflight time. If the objects are too far apart for one person to reach within a

few minutes, several persons with several instruments need to perform the valida-

tion measurements. If, e.g., three persons measure with three radiometers and three

contact thermometers, it must be ensured beforehand that these instruments are

intercalibrated. Furthermore, the ground objects (e.g., water body and the hot and

cold object) must be large enough to be easily recognizable in the imagery; they

should each cover several image pixels (Fig. 1.14). This condition is especially

difficult to meet for medium-resolution TIR data, such as from AVHRR, MODIS

or MSG SEVIRI. Only few regions show homogeneous surface behavior (similar

topography and roughness, same material, same reflectance, same emittance, etc.)

over an area of, e.g., 5 km2. If such areas are found, then one single in-situ temperature

measurement will not be representative, and several measurements have to be

averaged to validate one pixel (Hulley et al. 2009; Tang et al. 2010; Wan 2008).

If one aims at the validation of more than one scene (e.g., validation of time series

of thermal data), then permanently installed measurement devices with temperature

data loggers (e.g., in situ on the ground, in the air, etc.) usually coupled with a climate

station also measuring wind speed, humidity, etc. are employed.

Fig. 1.14 Schematic sketch of a thermal ground truthing campaign during sensor overflight
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1.6 Conclusions

The chapter gave a short overview of the main physical principles of thermal

infrared remote sensing. It also illustrated some principles behind typical

applications which will be further detailed in the application chapters of this

book. The interested reader is also referred to textbooks dealing with the thermal

infrared domain, such as Monteith and Unsworth (2007), Sabins (1996), Jones and

Vaughan (2010), Tipler (2000), and Walker (2008).
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Chapter 2

Geometric Calibration of Thermographic

Cameras

Thomas Luhmann, Johannes Piechel, and Thorsten Roelfs

Abstract This chapter presents an overview of thermal imaging sensors for

photogrammetric close-range applications. In particular, it presents results of the

geometric calibration of thermographic cameras as they are used for building inspec-

tion and material testing. Geometric calibration becomes evident for all precise

geometric image operations, e.g. mosaicking of two or more images or photogram-

metric 3D modelling with thermal imagery. Two different test fields have been

designed providing point targets that are visible in the thermal spectral band of the

cameras.

Five different cameras have been investigated. Four of them have solid state

sensors with pixel sizes between 25 and 40 μm (i.e. size of single sensor element on

the chip). One camera is working in scanning mode. The lenses for thermographic

cameras are made of Germanium, which is, in contrast to glass, transparent to

thermal radiation. Conventional imaging configurations (typically 20 images) have

been used for camera calibration. Standard parameters for principal distance,

principal point, radial distortion, decentring distortion, affinity and shear have

been introduced into the self-calibrating bundle adjustment. All measured points

are introduced as weighted control points. Image coordinates have been measured

either in the professional software package AICON 3D Studio (ellipse operators),

or in the software system Stereomess (least-squares template matching), developed

by the Institute for Applied Photogrammetry and Geoinformatics of the Jade

University of Applied Sciences Oldenburg.

The calibration results differ significantly from camera to camera. All lenses

show relatively large decentring distortion and deviations from orthogonality of the

image coordinate axes. Using a plane test field with heated lamps, the average

image precision is 0.3 pixel while a 3D test field with circular reflecting targets

results in imaging errors of 0.05 pixel.
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2.1 Camera Technology

Thermographic cameras are widely used in the fields of material testing, quality

control and building monitoring. In all of these cases the radiometric information

about temperature distribution is of major interest. Geometric applications are still

rare, hence camera developers and suppliers still show little interest in photogram-

metric techniques. Accordingly, the geometric calibration of these systems is

neglected – except for a few contributions dealing with this topic (Buyuksalih

and Petrie 1999; Luhmann et al. 2010). However, with increasing resolution of

thermographic cameras the geometric processing of the image data will become

more important.

For accurate geometric modeling of an image sensor, it is essential to understand

the imaging process not only in geometrical terms but also with respect to radio-

metric properties. Below the basic physical principles are explained briefly. More

details can be found, for example, in (Wolfe and Zissis 1985).

2.1.1 Physical Background

The specific spectral emission Mλ of an object is defined by Planck’s emission law

as a function of absolute temperature and wavelength (Planck 1900) formula

notation according to (Schuster and Kolobrodov 2004):

Mλ
W

10�10 � m
� �

¼ c1

λ5
1

exp c2
λ�T
� �� 1

(2.1)

where

c1: 1. emission constant ¼ 3,7418�10�16 W�m2

c2: 2. emission constant ¼ 1,4388�10�2 K�m
T: absolute temperature [K]

λ: wavelength [μm]

Figure 2.1 shows the well known diagram of specific spectral emission for

different absolute temperatures according to Eq. (2.1). It depicts that only objects

with a temperature of more than about 1,000 K are emitting electro-magnetic

radiation visible for the human eye or conventional cameras. The maximum of

the specific emission is described by Wien’s displacement law:

λmax ¼ 2897:8 K � μm½ �
T

(2.2)
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In Eq. (2.2) the value 2897.8 is denoted as the Wien displacement constant. The

formula states that the wavelength of maximum emission of an object is a reciprocal

function of the temperature (red line in Fig. 2.1), hence higher temperatures yield

lower wavelengths of peak emission (Dereniak and Boreman 1996). As an example,

the sun has an average temperature of about 5,800 K, the resulting peak emission

wavelength is 0.5 μm, thus in the yellow band of the visible light spectrum (blue

interval in Fig. 2.1). As a second example, an object of 20 �C (¼293 K), the

resulting wavelength is about 10 μm.

Thermographic cameras consist of imaging sensors that are sensitive towavelengths

usually between 2.5 and 15 μm (temperature: 880 . . .�80 �C). Depending on detector
technology and camera model (see section below) temperatures between �30 and

+400 �C can be detected (wavelength: 12 . . . 4 μm).

The geometric resolution of imaging devices is limited by diffraction. The

diameter of the Airy disk d (best focused spot of light that a perfect lens with a

circular aperture can image) depends on the aperture k and the wavelength λ:

d ¼ 2:44 � λ � k (2.3)

As an example, geometric resolution at a wavelength of λ ¼ 10 μm and aperture

k ¼ 2 is limited to about 48 μm. Equation (2.3) reveals that the pixel sizes of

thermal sensors must be much larger than for standard RGB cameras. In fact most

thermal imaging sensors provide pixel sizes between 30 and 50 μm.
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2.1.2 Detectors

Sensors for thermal cameras are either quantum detectors or thermal detectors

(Nolting 2007). Quantum detectors are based on the inner photo-electric effect

where electrons are set free between two layers of a semi-conductor device.

Quantum detectors are very sensitive (�0.01 K) and fast, but need an external

cooling system (Peltier or Sterling elements) (Fouad and Richter 2008).

Thermal detectors use the effect that a temperature change of the detector element

leads to a change of the electrical properties of the detector, e.g. resistance or charges

(Hierl 2008). These changes can be measured and transformed into intensity values.

Different designs are available such as pyro-electric detectors or bolometers. Thermal

detectors are less sensitive (�0.1 K) and slower than quantum detectors, but do not

need any cooling elements. Hence they are less expensive und usually applied for

applications like building monitoring.

Typical state-of-the-art thermal array sensors are available with 320 � 240

pixels up to 640 � 320 pixels. Sensor sizes then yield about up to 20–30 mm in

each direction. Newest camera developments show pixel numbers of up to

1,280 � 960, achieved by microscanning technique (Le Noc et al. 2010).

In principle thermographic cameras built on solid state sensors can be handled as

standard photogrammetric cameras. In order to be transparent in the range of longer

wavelengths (8–14 μm) the lenses of thermographic cameras are made of Germa-

nium or other crystalline materials which makes themmore expensive. These lenses

are optimized for radiometric resolution, thus geometric precision or minimal

distortion are of less interest in most applications.

2.2 Test Fields for Calibration

2.2.1 Plane Test Field with Lamps

A plane reference field provided by the University of Dessau consists of 57 small

lamps that warm up when switched on. The dimension of the wooden plate is about

1,000 mm � 1,000 mm (Fig. 2.2). The positions of the lamps have been measured

by a theodolite system with an accuracy of about 0.2 mm.

The quality of the active targets is quite poor (Fig. 2.3). It is obvious that these

targets are not circles (ellipses), and central points of maximum temperature are

difficult to discern and cannot be measured with a precision as usually provided by

photogrammetric targets. In addition, camera calibration with plane test fields is

less accurate and less significant, i.e. statistically uncertain, compared to 3D

reference fields and shows higher correlations between the parameters of the

interior and exterior orientation (Fraser 1997; Luhmann 2010).
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2.2.2 Spatial Test Field with Coded Targets

Since the plane reference field is not ideal for camera calibration a new design was

investigated. The basic idea was to create spatially distributed targets that generate

sufficient image contrast in the thermal spectrum. In addition, the new test field

should be mobile, easy to calibrate, and cost effective without any need for artificial

heating of targets. Several experiments have been carried out in order to find a

Fig. 2.2 Plane test field with active lamps (size: 1 m � 1 m)

Fig. 2.3 Imaging quality of the target points (section of the test field)
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suitable combination of target material and lighting. Finally, the effect of reflecting

cold sky radiation (Luhmann et al. 2010) has been used to create a test field design

that fulfils the above mentioned specifications. The spatial distribution of targets is

mainly required for the accurate determination of the focal length.

Figure 2.4 shows the reflectance principle. Assuming diffuse reflectance of the

metal test field plate the cold temperature of space reflects on the metal surface. The

targets are made of self-adhesive foil and emit radiation dependent only on their

own temperature. With this principle the acquired image displays a strong contrast

because targets appear bright while the surrounding areas appear dark (Fig. 2.5).

Based on the new design of target points, a mobile test field has been developed.

It consists of 17 coded targets and 35 uncoded targets, and additional height points.

Furthermore temperature-stable scale bars, made of carbon-fiber-reinforced poly-

mer with the same type of targets (dark grey rods), can be mounted onto the test

target
aluminum plate

thermography
camera

cold radiation

Fig. 2.4 Target absorption of cold sky radiation

Fig. 2.5 Left: new test field (color image, size: 1 m � 0.7 m, yellow: scale bars); right: thermal

image of targets (section of the test field, size: 0.4 m � 0.3 m); parts of circles: binary code of

target points
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field. Due to the target design a conventional photogrammetric calibration of the

test field is possible which yields control points coordinates.

Because of the movable assembly and the thermal expansion of the metal the test

field must be calibrated directly before and/or after each use by conventional

photogrammetry. Using high precision calibrated scales (yellow), a high resolution

camera and bundle adjustment, precise coordinates of the control points are

derived. The size of the test field is about 1,000 mm � 700 mm � 200 mm. The

accuracy of control points after measurement with a high-resolution digital camera

and bundle adjustment is estimated to 8 μm in object space.

The new reference field can be used with almost no restrictions – at all

temperatures, under cloudy skies, as well as in sunshine –, because the upper layers

of the atmosphere (and the clouds) are always colder than objects on the ground. No

power supply is required, just a clear view upward, so that no houses, trees, etc. are

reflected on the metal plate. However, indoor use of the test field is not feasible.

2.3 Calibration Results

2.3.1 Cameras

Table 2.1 summarizes the technical data of four thermographic cameras that are

included in the test. A fifth camera works with a rotation mirror device for image

scanning. Due to the instable mechanical rotation and the non-perspective imaging

model this camera has been eliminated from further tests for the time being.

The investigated cameras (Fig. 2.6) show more or less similar technical data.

However, due to the different detector elements their perfomance differs as well as

their market prices.

2.3.2 Results

Each camera was calibrated according to standard imaging configurations (Godding

1993; Luhmann et al. 2006) with about 20 multi-convergent images. Both reference

fields as explained before have been used. The plane test field with burning lamps

can be measured inside a lab while the reflective 3D test field has to be used

open air.

Image measurement and bundle adjustment were performed with AICON 3D

Studio. The calibration results, derived from the spatial test field, are listed in

Tables 2.2 and 2.3. The plane test field leads to similar results. However, the

precision of the estimated parameters is reduced and therefore they are not listed

here.
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The cameras FLIR InfraCAM, FLIR B200, and Testo 880-3 show relatively

weak results in terms of image measurement precision (2.6–3.8 μm) compared to

the InfraTec VarioCAM (0.6 μm), degrading also the standard deviations of

principal point and principal distance. In contrast to the given focal length as

taken from data sheets, the principal distance differs significantly. In the case of

the FLIR B200 the principal point shift amounts to more than 1.4 mm in x and

1.8 mm in y, which corresponds to more than 35 respectively 45 pixels.

All cameras show relatively large radial distortion values as depicted in Fig. 2.7.

The value of the radial-symmetric parameter A1 is comparatively high and is

determined significantly, while the remaining parameters are more or less weakly

determined (standard deviations in the same order of magnitude as the parameters

themselves). In practice the final adjustment should be limited to the relevant

Table 2.1 Investigated thermographic cameras

FLIR InfraCAM FLIR B200 Testo 880-3 InfraTec VarioCAM

Pixels 240 � 240 320 � 240 320 � 240 384 � 288

Pixel size 0.025 mm 0.04 mm 0.035 mm 0.035 mm

Focal length 10 mm 30 mm 10 mm 11 mm

Thermal resolution �0.2 �C �0.08 �C <0.3 �C 0.08–0.05 �C
Price [€] ca. 4,000 ca. 9,000 ca. 6,500 ca. 19,000

Fig. 2.6 Investigated thermographic cameras (forward looking infrared, FLIR)

Table 2.2 Calibrated camera parameters (FLIR InfraCAM, FLIR B200)

Parameter FLIR InfraCAM FLIR B200

c [mm] �13.8971 � 0.0104 �36.9443 � 0.0223

x00 [mm] �0.2940 � 0.0188 1.4445 � 0.0574

y00 [mm] �0.3430 � 0.0197 �1.8332 � 0.0420

A1 �2.80�10�3 � 1.33�10�4 �2.69�10�4 � 1.94�10�5

A2 6.86�10�7 � 2.03�10�5 �7.47�10�7 � 6.94�10�7

A3 7.76�10�7 � 9.52�10�7 2.79�10�9 � 7.40�10�9

B1 1.91�10�5 � 2.10�10�5 �2.78�10�4 � 5.21�10�6

B2 �2.69�10�5 � 2.25�10�5 �1.72�10�5 � 6.18�10�6

C1 6.84�10�4 � 1.99�10�4 �6.11�10�4 � 2.60�10�4

C2 �2.22�10�4 � 2.21�10�4 �8.66�10�4 � 2.61�10�4
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parameters, while this work aimed to examine the geometric properties of the

cameras as comprehensively as possible.

The camera InfraTec VarioCAM yields the best results in terms of precision of

the estimated parameters. The precision of image point measurement lies in the

order of 1 μm or 1/30th of a pixel. For this camera the principal point shows

moderate shift with respect to the centre of the image, and the principal distance

is close to the given focal length.

The resulting precision in object space is estimated by root mean square values

(RMS) of adjusted object coordinates. External reference values, for instance

calibrated lengths, are not available in this test. Table 2.4 summarizes the results

Table 2.3 Calibrated camera parameters (Testo 880-3, InfraTec VarioCAM)

Parameter Testo 880-3 InfraTec VarioCAM

c [mm] �19.9373 � 0.0297 �11.8188 � 0.0014

x00 [mm] �0.1571 � 0.0524 0.0201 � 0.0013

y00 [mm] 0.2110 � 0.0376 0.1400 � 0.0012

A1 �7.25�10�4 � 1.20�10�4 �2.41�10�3 � 4.93�10�6

A2 �9.59�10�6 � 7.19�10�6 8.76�10�6 � 1.83�10�7

A3 1.86�10�7 � 1.28�10�7 �2.67�10�8 � 2.05�10�9

B1 5.12�10�5 � 1.22�10�5 5.23�10�5 � 1.11�10�6

B2 �3.51�10�5 � 1.72�10�5 �1.29�10�5 � 1.14�10�6

C1 7.50�10�4 � 3.16�10�4 �7.79�10�5 � 2.47�10�5

C2 8.18�10�4 � 2.96�10�4 1.85�10�4 � 1.91�10�5

The parameters are as follows (Luhmann et al. 2006):

c principal distance (� focal length)

x00, y00 principal point shift, with respect to image center

A1, A2, A3 radial-symmetric distortion, expressed in polynomial series

B1, B2 radial-asymmetric (tangential) distortion

C1, C2 affinity and shear

Fig. 2.7 Distortion curves (radialsymmetric aberrations as a function of the image radius)
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in object space. As expected from the calibration quality discussed above, the first

three cameras yield RMS values (1 sigma) of about 0.11–0.24 mm, which

corresponds to about 1:6,000 of the largest object diameter. The InfraTec VarioCam

results in RMS values of 0.03–0.06 mm, corresponding to about 1:20,000.

2.4 Applications

2.4.1 2D Processing

If thermographic cameras are calibrated in terms of the geometric imaging model

they can be used for a variety of practical applications (Kaplan 2007). For

two-dimensional purposes thermal images can be resampled to distortion-free

images. As an example Fig. 2.8 shows the original thermal image of a facade

(approx. 19 m � 11 m) taken with the InfraTec VarioCam. Radial distortion is

clearly visible. Figure 2.9 shows the same image after correction of distortion.

Geometrically corrected thermographic imagery can be used as thermal

orthophotos, maps or mosaics, or as precise texture images for 3D city or building

models.

It has to be pointed out that modified thermographic images often can not be

processed by those software packages that are provided with a specific camera

system. As an example, the FLIR software package solely allows post-processing of

original FLIR imagery, e.g. changing temperature scales or colour tables.

2.4.2 3D Processing

Three-dimensional applications are also possible since thermographic images can

be used in the same way as conventional photogrammetric images. For example it is

possible to derive 3D building models from thermal imaging, if no other image or

measurement data are available.

However, in many cases it is required to match corresponding points serving as

tie or control points. It should be noted that most objects do not behave as diffuse

Lambert reflectors. Therefore identical areas are displayed in different colors

(temperatures).

Table 2.4 RMS 1-sigma

values of object coordinates
Camera X (mm) Y (mm) Z (mm)

FLIR InfraCAM 0.110 0.118 0.143

Testo 880-3 0.137 0.160 0.236

FLIR B200 0.148 0.185 0.145

InfraTec VarioCam 0.038 0.029 0.062
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Figure 2.10 shows three overlapping thermal images of a building and the

derived mosaic. The next example presents a 3D building model (Fig. 2.11) with

roof textures generated from aerial thermal images. Future investigations will

concentrate on 3D modelling under consideration of radiometric object models.

2.4.3 Pan-Sharpening

If a high resolution panchromatic or RGB image is available in addition to a (low

resolution) thermal image it is possible to apply pan-sharpening. Both image sources

have to be registered (rectified) to the same geometric reference system.

Fig. 2.8 Original thermal image

Fig. 2.9 Distortion-free thermal image
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Figure 2.12 shows the principle image data flow for thermal pan-sharpening as it

has been applied to the images shown below. In the drawing two different cases are

displayed: If a colour photo (RGB) is available, the intensities of the three channels

are computed and averaged. On the other hand, one-channel panchromatic images

do not need any pre-processing.

To illustrate the benefits Fig. 2.13 shows original thermal images of a roof

surface and a building façade. Figure 2.14 displays the results of pan-sharpening

using a high-resolution digital image taken with a Trimble AIC Pro and a Nikon

D2x, respectively. In contrast to standard methods in remote sensing (e.g. Toet et al.

1989; Ehlers et al. 2010), applying pan-sharpening to non-planar objects in close-

range photogrammetry either requires identical perspectives for each image source,

or given 3D object models and full orientation parameters of each image.

It should be noted that the colours will change by this processing and an

attribution of temperature levels in a following step might lead to erroneous values

in small structures. However, the method of pan-sharpening, meanwhile a standard

technique in image processing, is quite suitable for presentation purposes of

thermographic inspections in order to illustrate details of the object.

Fig. 2.10 Multi-image thermography (size of the facade: 20 m � 8.5 m)
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Fig. 2.12 Image data flow for thermal pan-sharpening

Fig. 2.11 3D building model, based on thermal images (section of 120 m � 160 m)
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2.5 Summary

We have investigated the performance of thermographic cameras with respect to

their geometric image model and accuracy performance. Standard procedures for

camera calibration can be applied to close-range thermal imagery if the cameras

consist of array imaging sensors. In addition, the observed object must provide

target points that are visible in the thermal spectrum. For this purpose a new test

field has been designed that uses the cold temperature from sky in order to create

sufficient image contrast.

The results of camera calibration show that standard thermographic cameras

yield high distortion values, and large shifts of principal point. Only one camera

(Infratec VarioCam) provides an accuracy level that is comparable to RGB

cameras.

Some example applications are discussed ranging from 2D image modification

purposes (rectification, image mosaics) and pan-sharpening approaches up to 3D

Fig. 2.13 Original thermal images
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modeling tasks that uses thermographic imagery in the same way as multi-image

photogrammetry. However, the radiometric models of thermal object emission

have to be investigated in more detail for a better understanding of the imaging

process in convergent cases.
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Chapter 3

Thermal Infrared Spectroscopy

in the Laboratory and Field in Support

of Land Surface Remote Sensing

Christoph A. Hecker, Thomas E.L. Smith, Beatriz Ribeiro da Luz,

and Martin J. Wooster

Abstract Thermal infrared (TIR) spectra of Earth surface materials are used in a

wide variety of applications. These applications can fall into either of two groups:

(a) where the TIR emissivity spectra themselves are the primary interest, and are used

to determine the chemical/physical parameters of minerals and rocks, soil, vegetation

and man-made materials, or (b) where the primary interest is in the temperature of

the objects under study, and where emissivity spectra are required inorder to best

determine kinetic from radiant temperature. Unlike visible-near infrared (VNIR) and

shortwave infrared (SWIR) instruments, TIR spectroscopy instrumentation often

requires customization in order to acquire reliable and reproducible data, making

thermal spectroscopy a potentially complex process. Within this chapter we intend to

provide a simple starting point for the new user of thermal infrared spectroscopy, and

a synoptic overview of the technique for the more experienced practitioner. We

discuss the theoretical background, give examples of instrument setups and provide

typical measurement scenarios for a number of land applications.

3.1 Introduction

Contrary to spectrometers that operate in the visible-near infrared (VNIR) and

shortwave infrared (SWIR) spectral regions, thermal infrared (TIR) instruments

often require customization before they are fully capable of supporting land surface
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remote sensing applications. These applications can fall into either of two groups:

(a) where the TIR spectra themselves are the primary interest, and are used to

determine the chemical/physical parameters of minerals and rocks, soil, vegetation

and man-made materials, or (b) where the primary interest is in the temperature of

the objects under study, and where emissivity spectra are required in order to best

determine kinetic from radiant temperature. The group of organizations involved in

TIR spectroscopy has historically been rather small. However, recent developments

in airborne and spaceborne TIR sensors (e.g., HyTES (Hyperspectral Thermal

Emission Spectrometer), HyspIRI (Hyperspectral Infrared Imager), TASI (Thermal

Airborne Spectrographic Imager), AISA OWL, MAKO, MAGI (Aerospace’s Min-

eral and Gas Identifier), ASTER (Advanced Spaceborne Reflection and Emission

Radiometer), MASTER (MODIS-ASTER Airborne Simulator)) have triggered

increasing interest in TIR field and laboratory spectroscopy for calibration/valida-

tion of airborne and spaceborne data as well as for algorithm testing in ground-

based pilot studies. In the past 10 years numerous organizations (for examples see

later sections) have begun to utilize TIR spectroscopy methods in the field and

laboratory, and have either purchased or designed custom instrumentation for the

acquisition of TIR spectra. Although acquiring reliable and reproducible TIR

spectral data is not as straightforward as in the VNIR and SWIR spectral regions,

measurement techniques have been greatly improved throughout the past decade,

and the use of TIR spectroscopy for remote sensing applications is becoming more

widespread (e.g., Hecker et al. 2011; Ribeiro da Luz and Crowley 2010; Vaughan

et al. 2005). For the remainder of the chapter, we focus on (1) measurement

techniques that are quantitatively comparable to multi- and hyper-spectral TIR

Earth observation data and (2) applications related to analysis of Earth’s surface

materials (soils, rocks, vegetation and man-made materials). Whilst thermal infra-

red spectroscopy has also been used for the characterization of water (e.g., Minnett

et al. 2005), we do not deal with that application here and concentrate only on the

solid land surface. Furthermore, TIR spectroscopy is a widely used technique in

relation to analysis of gaseous atmospheric compounds, but the techniques and

applications are very different (e.g., see reviews by Bacsik et al. 2004, 2005) and so

these will not be treated here.

3.1.1 Application Examples

Field or laboratory thermal infrared spectra of Earth surface materials obtained in

the mid-wave infrared (MWIR; 3–5 μm) and/or long-wave infrared (LWIR;

8–14 μm) atmospheric windows are used in a wide variety of applications, some-

times alone but often as part of a larger study making use of airborne or spaceborne

datasets collected within the same wavelength range. These include applications

focused on identification of surface composition, such as geologic mapping on

Earth and other planets, where the spectral features corresponding to vibrational

motions occurring within a crystal lattice at specific wavelengths are directly
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related to the crystal structure and elemental composition (i.e., the mineralogy; e.g.,

Christensen et al. 2000; Salisbury et al. 1991; Lyon 1965). Use of thermal infrared

data can be extremely useful in these types of studies, since many common minerals

(e.g. silicates and carbonates) show distinctive spectral features in the TIR but

can be relatively indistinct and difficult to unambiguously identify in the VNIR

spectral region (Vaughan et al. 2003). The thermal IR spectra of plants and soils

also contain potentially useful information, related to (plant) species, their chemical

constituents, structure and moisture content (Ullah et al. 2012; Ribeiro da Luz and

Crowley 2007; Salisbury 1986; Hulley et al. 2010). The mapping of surface

temperature and the estimation of surface energy budgets using data from airborne

or spaceborne imaging radiometers also requires knowledge of the surface emissiv-

ity, since this has a direct control on the amount of thermal radiation emitted (Jacob

et al. 2004; Dash et al. 2002; Xu et al. 2008). Surface temperature retrieval methods

based on a prescribed emissivity derived via TIR laboratory or field spectral

measurements and a land cover classification are often used in such approaches

(Voogt and Oke 2003). For some multi-band imaging radiometers operating at

thermal wavelengths (e.g. TIMS (Thermal Infrared Multispectral Scanner), MAS-

TER, ASTER), temperature-emissivity separation algorithms exist that retrieve a

surface emissivity estimate as part of the calculation, but these methods are also

generally based around algorithms derived and validated using laboratory or field

emissivity spectra (Sabol et al. 2009; Gillespie et al. 1998; Coll et al. 2003). Indeed,

in some circumstances it may still be beneficial to prescribe emissivity when

analyzing these type of multispectral TIR data (e.g., in highly heterogeneous

locations such as urban areas; Mitraka et al. 2011; Ramsey 2003). The mapping

of atmospheric properties like temperature, humidity and trace gas concentration

also often relies on TIR measurements made from space or aircraft, both when

studying the ambient atmosphere and ‘plumes’ such as those emanating from

industrial sources, fires or active volcanoes (Burrows et al. 2011). Knowledge of

the underlying surface emissivity is often important here, since it imparts features

within the measured spectra of downward viewing instruments that impact the

atmospheric retrievals (Thomas et al. 2009; Hulley et al. 2009).

TIR emissivity spectra for use in these and other applications, such as studies of

environmental pollution effects (Lammoglia and de Souza Filho 2011) can be

measured by the user in the field or laboratory setting using the methods outlined

in this chapter, and which are discussed in more detail in the referenced papers. If

users do not have the capability to measure such spectra themselves, then example

spectra of a very wide variety of surface materials can be obtained from (online)

spectral databases, the most widely used of which are the Johns Hopkins Spectral

Library (Salisbury et al. 1991), the Arizona State University library (Christensen

et al. 2000), the spectral library of the United States Geologic Survey (USGS)(Clark

et al. 2007) as well as the Jet Propulsion Laboratory’s (JPL) ASTER spectral library

(Baldridge et al. 2009; Fig. 3.1).
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3.2 Theoretical Background

TIR spectrometers can operate across the MIR and LWIR spectral range, covering

both the 3–5 and 8–14 μm Earth’s atmospheric windows. However, not all of the

field or laboratory spectral measurement geometries shown in Fig. 3.2 are suitable

for quantitative comparison with airborne or spaceborne remote sensing data. All

currently operating air- and spaceborne TIR remote sensors detect the energy

emitted by the object itself. Spectrometers that measure in emission mode mimic

this type of remote sensing data most closely, but several studies have shown that

directional–hemispherical reflectance (DHR) measurements are equivalent to emis-

sion measurements in most terrestrial situations (Korb et al. 1999; Salisbury et al.

1994). For the remainder of this chapter, therefore, we focus on TIR spectroscopic

measurements in emission and DHR mode.

3.2.1 Directional-Hemispherical Reflectance (DHR)

Spectrometric measurements using the DHR geometry are relative reflectance

measurements involving a high temperature emitter and a reference material of

Fig. 3.1 Examples of DHR reflectance spectra for a series of different land surface materials, in the

MWIR and LWIR spectral regions (Reproduced from the ASTER Spectral Library through the

courtesy of the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

Copyright © 1999, California Institute of Technology. The ASTER Spectral Library is available at

http://speclib.jpl.nasa.gov/ and is described in Baldridge et al. (2009))
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known reflectance. In practice, a ceramic globar source is heated to 1,500 K and

radiates energy onto the sample material. The directional-hemispherical reflectance

(see Fig. 3.2) of the sample is measured and the reflectance and emissivity spectra

are calculated. The calculations involved in DHR measurements are straight for-

ward and essentially identical to those used in the VNIR and SWIR wavelength

ranges. Reflectance of the sample (RSample) is defined as

RsampleðλÞ ¼ Lr;sampleðλÞ
LiðλÞ (3.1)

where Li is the incoming radiance and Lr,sample is the radiance reflected off the

sample. The measured energy at the detector (Vsample) depends on the radiance

leaving the sample (Lr,sample), and the instrument’s spectral response function (F).

VsampleðλÞ ¼ Lr;sampleðλÞ � F (3.2)

Since the energy impinging on the sample and the spectrometer’s response

function are not known, one also measures a well-characterized diffuse reference

material, such as Labsphere Infragold® where

RreferenceðλÞ ¼ Lr;referenceðλÞ
LiðλÞ (3.3)

and

VreferenceðλÞ ¼ Lr;referenceðλÞ � F (3.4)

where Rreference is the calibrated reflectance spectrum of the reference material,

Lr,reference is the radiance reflected off the reference and Vreference is the energy

spectrum measured during the reference measurement. Combining (3.1), (3.2),

(3.3) and (3.4), the instrument response function and incoming radiation terms

are eliminated and

RsampleðλÞ ¼ VsampleðλÞ � RreferenceðλÞ
VreferenceðλÞ (3.5)

Fig. 3.2 Sketches illustrating examples of different measurement geometries for TIR spectros-

copy: transmission, attenuated total reflectance, bi-conical reflectance, directional–hemispherical

reflectance, emission (from left to right) (Modified from Hecker et al. (2010))
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which is a simple ratio of the sample and reference spectral measurements, with a

correction factor (Rreference) for the imperfect reflectance behavior of the gold

standard.

Equation (3.5) is based on the assumption that (a) there is no additive energy

component, and (b) Li and F do not vary between reference and sample

measurements. If tests indicate assumption (a) to be invalid, a background radiation

removal can be performed (see Hecker et al. 2011). Assumption (b) is usually true if

reference and sample measurements are done in close succession. How frequently

the reference measurement needs repeating has to be determined for a given

spectrometer setup, as it depends on the stability of the globar source and of the

atmospheric composition under which the measurement is made (mainly H2O and

CO2; the latter of which can rapidly change indoors for example). The sampling

area is often enclosed in an enclosing box and the spectrometer and box purged with

N2 gas (or H2O and CO2-scrubbed air) to reduce the effect of these atmospheric

gases on the measured spectra.

Depending on the application, the reflectance spectra obtained from (3.5) may

not be the desired format for further use, and so emissivity spectra (εsample) can be

calculated from reflectance spectrum (Rsample) of the sample using Kirchhoff’s Law

(Nicodemus 1965), which in its simplest form can be written as

εsampleðλÞ ¼ 1� RsampleðλÞ (3.6)

3.2.2 Emissive Systems

Unlike the DHR approach, retrieving emissivity spectra using emissive systems does

not require a separate source of infrared radiation; instead, the radiation emitted by

the surface is compared with the amount of radiation emitted by a blackbody at the

same kinetic temperature (Fig. 3.3). Early emissive systems (e.g., Lyon 1965)

performed a direct comparison between measured samples and blackbodies. Recent

approaches, however, calibrate sample radiance and, assuming a known sample

temperature, compare this calibrated radiance with that of a modeled blackbody

(e.g., Hoover and Kahle 1987). As this method does not rely upon keeping samples

and blackbodies at a fixed temperature, the method is appropriate for field use.

The emissivity (ε) of the sample is the ratio of radiated energy by the sample (LS)
to the radiated energy of a blackbody (LBB) at the same kinetic temperature (T):

εðλÞ ¼ LSðλ;TÞ
LBBðλ; TÞ (3.7)
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The spectral radiance of a blackbody (Wm�2 μm�1 sr�1) (LBB) can be calculated
using Planck’s law of blackbody radiation, in relation to wavelength (λ):

LBBðλ; TÞ ¼ 2hc2

λ5
1

e
hc
kTλ � 1

(3.8)

where h is Planck’s constant (6.626068 � 10�34 J s�1), c is the speed of light

(299,792,458 m s�1) and k is Boltzmann’s constant (1.38066 � 10�23 J K�1).

Fig. 3.3 (a) Raw spectra for a sample of quartz sand, the two blackbody calibration sources, and

the down-welling radiance (DWR) measured using the InfraGold plate; (b) calibrated radiance for

both the sample and the DWR. Also shown is the blackbody curve used to calculate sample

emissivity; (c) apparent emissivity (without subtracting the DWR), and emissivity after DWR

correction (For a discussion of DWR and its importance, see section later in the text)
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3.2.2.1 Spectrometer Calibration

For any spectrometer calibration process, a mathematical model must describe the

raw spectrum provided by the spectrometer as a function of the radiation that enters

the spectrometer. As radiation leaves the target surface (i.e., the sample or the

calibration surface), it interacts with the atmosphere before entering the spectrom-

eter, upon which it interacts with mirrors, beam splitters and lenses before imping-

ing on the detector. Furthermore, self-emission by each of these components, and

noise introduced by electronic constituents of the system, such as filters and

amplifiers, all influence the final measured spectrum. A model of each of these

components cannot be theoretically achieved. Therefore, a calibration procedure is

required to determine the collective effect of these influences. To this end, calibra-

tion usually involves measuring the spectra of known radiation sources, such as

blackbodies.

The basic mathematical model for describing the target radiance as a function of

the spectrum measured by the spectrometer is given below:

LðλÞ ¼ GðλÞVðλÞ þ OðλÞ (3.9)

where L is the spectral radiance emitted by the target surface (i.e., the sample or the

calibration surface), G is the spectral response (gain) of the spectrometer, V is the

uncalibrated energy spectrum measured by the spectrometer, and O is the spectral

radiance emitted by the spectrometer’s inner parts (offset). By measuring the

spectra of two blackbodies at different known temperatures (usually just below

ambient and just above sample temperature), there is enough information to solve

the above equation for G and O (see Hook and Kahle 1996).

Although the aforementioned two-temperature method has been widely used,

Lindermeir et al. (1992) address a fundamental problem with the approach: that it

requires an accurate knowledge of the blackbody temperatures that are used in the

calibration. By measuring a third blackbody, there is enough information to treat

the three blackbody temperatures as unknown variables. A nonlinear least squares

fitting algorithm is used to determine the three temperatures and instrument

parameters G and O.

3.2.2.2 Retrieving Emissivity: Downwelling Radiance Correction

The first problem encountered when retrieving surface emissivity from measured

TIR spectra is the fact that the measured upwelling sample radiance is in fact

composed of both sample thermal emission and reflected downwelling radiance

(DWR). The latter originates from the atmosphere above (and the objects around)

the sample. It is necessary to make measurements of DWR using a diffuse reflective

surface (ε < 0.1), usually Infragold®, or crinkled aluminium. Since these reference

materials have a non-zero emissivity, some authors adjust the measured DWR for

the reference materials imperfect reflectance, as well as the (small) contribution of
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the reference panel self-emission. The DWR (LDWR) is subsequently subtracted

from the measured upwelling sample radiance to isolate the sample thermal emis-

sion (Fig. 3.3c):

εSðλÞ ¼ LSðλÞ � LDWRðλÞ
LBBðTS; λÞ � LDWRðλÞ (3.10)

where εS is the sample emissivity spectrum of interest, Ls the radiance spectrum

from the sample measurement, LDWR the downwelling radiance from the reference

plate measurement and LBB(Ts, λ) the blackbody radiance from the Planck function

at the kinetic temperature of the sample.

Importantly, the DWR signal must be significantly less intense than the upwell-

ing sample radiance for the method to work effectively. Therefore, measurements

in a laboratory situation (where DWR will be the result of the ceiling and walls at

ambient temperature) should be of a relatively hot sample surface, which generally

necessitates heating of the sample (Salisbury 1998). Similarly, when measuring

surfaces in the field, it is important to ensure that there is a clear (‘cold’ at IR

wavelengths) sky, since the presence of many low clouds can result in sky

temperatures similar to the ambient sample temperature. Of course, appropriate

application of Eq. (3.10) requires knowledge of the sample kinetic temperature (Ts),
which is not always easy to measure at the necessary precision.

3.2.2.3 Retrieving Emissivity: Sample Temperature

Many materials and surface types are not amenable to high quality kinetic temper-

ature measurements for use in Eq. (3.10). Separating temperature and emissivity

effects is therefore the second problem encountered in the emissivity retrieval

process. This temperature-emissivity separation problem has been tackled using a

wide variety of methodologies, the most common of which are summarised below.

Reference Channel

The simplest approach to the temperature-emissivity separation problem is to

assume that sample emissivity is equal to that of a blackbody (i.e., to unity) at
one or more wavelengths within the measured TIR spectrum (Murcray et al. 1970).

The wavelength itself can be prescribed during the analysis or can be determined as

that which gives the highest temperature when the measured spectral radiance is

used within the inverse of Eq. (3.8). Given that the sample radiance and its

emissivity are then known at this specific wavelength, it is possible to calculate

the surface kinetic temperature and thus use the spectral measurements at the other

wavelengths to calculate the emissivity spectrum. This reference channel method

can also be modified so that maximum assumed emissivity can be less than unity

(e.g., Kahle et al. 1980).
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Blackbody Fit

A slightly less restrictive approach assumes a known emissivity maxima at a specified

waveband, rather than at a specific wavelength (e.g., Kahle and Alley 1992). An

iterative process fits a Planck blackbody radiance curve to the measured sample

spectrum within the specified waveband. The temperature of the Planck curve with

the best fit to the specified maximum emissivity waveband is then used to calculate

emissivity for the remainder of the spectrum.

A limitation of both methods is that the maximum emissivity of a sample must

be known. Whilst laboratory measurements exist for many materials (Salisbury and

D’Aria 1992, 1994), only samples with identical surface characteristics to those in

the reference spectra will have the same spectral-thermal properties; therefore, the

required a priori knowledge of emissivity maxima is usually lacking.

Spectral Smoothness

The spectral smoothness method proposed by Horton et al. (1998) does not require

any assumptions about the magnitude (or spectral position) of the sampled emissivity

maxima. The method relies upon detecting any residual atmospheric emission line

artifacts (e.g., water vapour emission lines apparent in Fig. 3.3b at 7.5–9.5 μm) in

emissivity spectra retrieved using Eq. (3.10), and adjusting the assumed sample

temperature until these are removed. Horton et al. determined that when sample

temperature is underestimated, the effect of atmospheric emission lines is to intro-

duce positive ‘spikes’ into the emissivity spectra; and when overestimated to intro-

duce negative ‘spikes’. Identifying a region of the TIR spectrum where atmospheric

emission lines are strongest (e.g., at 7.5–9.5 μm), and using a curve-fitting algorithm

to determine the temperature at which such ‘spikes’ were minimized, allows for the

production of the emissivity spectrum (and determination of the sample temperature).

The spectral smoothness method has been adopted by a number of subsequent

studies of the emissivity of a range of surfaces, from asphalt (Bower et al. 2001) to

leaves (Ribeiro da Luz and Crowley 2007) and is considered to be the most accurate

field method available (Salvaggio and Miller 2001). However, the approach does

not work in the indoor laboratory environment, since the measured spectra do not

contain the necessary atmospheric line features. Therefore, another method for

measuring or estimating sample temperature needs to be used in this particular case.

3.3 Instrumentation

In this section we treat a few examples of existing spectrometer setups as they are

operated by various organizations. It is not our purpose to provide a complete

listing, but rather a summary of some of the existing base systems, modification

approaches and their respective advantages.
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3.3.1 Laboratory Environment

In the indoor laboratory environment, the typical TIR spectrometer is based

on an off-the-shelf desktop Fourier-transform infrared (FTIR) spectrometer with

external, customized sampling equipment. Several manufacturers of laboratory

FTIR systems exist, and the differences between them are mostly relatively

minor. A prerequisite is a model with high energy throughput, and possibilities to

attach customized external sampling equipment.

If the FTIR is operated in the active DHR mode, the customizations include an

external integrating sphere, one or several detectors that sit on the outside of the

sphere, as well as a system of mirrors to bring the energy from the globar source via

the interferometer and inside of the sphere onto the sample itself. The sample port is

usually situated at the bottom of the sphere (Fig. 3.4). Similar systems exist at

several other organizations (e.g., Jet Propulsion Laboratory, German Research

Centre for Geosciences, Johns Hopkins University (JHU)) but all are ultimately

based on Jack Salisbury’s initial integrating sphere instrument as used since the

Fig. 3.4 Sketch of the UT-ITC laboratory spectrometer as an example of a DHR instrument setup

with an external integrating sphere. This instrument has a mid infrared (MCT) as well as a near

infrared (InGaAs) detector on the sphere (Modified from Hecker et al. (2011))
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1980s at the US Geologic Survey (USGS). Advantages of these setups are high

repeatability, and no need to control the sample temperature or calibrate the system

with blackbodies. On the downside, measurements with good signal-to-noise ratio

(SNR) can take very long (10–60 min depending on exact setup), and the sample

has to have a reasonably flat measurement surface that can be in close contact with

the sampling port.

If the FTIR is operated in the passive emission mode, the spectrometer box does

not require a source. The energy comes from the sample itself, which sits outside of

the spectrometer, often in a thermally controlled environment. The necessary

customizations for this measurement approach include a thermally controlled

sample holder, a mirror system that focuses the sample-emitted radiation via the

interferometer onto the detector, and heatable blackbody emitters to calibrate the

spectrometer’s response to energy. Figure 3.5 shows the schematics of the Arizona

State University setup as an example of such an emissive system. Small and

particulate samples are pre-heated in the oven and placed in the heated sample

holder during measurements (larger rock samples often do not require heating

during measurements due to higher thermal inertia). As long as samples can be

heated to a temperature considerably above that of the room (sample temperatures

of 60–80 �C are often used) emissive systems have a much higher energy through-

put than DHR systems, and measurement times are therefore generally shorter,

usually totaling 0.5–10 min per sample.

Fig. 3.5 Sketch of the ASU laboratory spectrometer as an example of an emissive instrument

setup with an external sample environment chamber (Modified from Ruff et al. (1997))
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3.3.2 Field Equipment

Early versions of TIR field spectrometers were very heavy, and needed several

people to haul them into the field or a cart construction to carry them. As an

example, JPL’s early Portable Field Emission Spectrometer (Hoover and Kahle

1987) weight a total of 37 Kg (including a bottle of compressed Argon gas for

cooling) and required 2–3 operators to carry backpacks and operate the system.

Other organizations used laboratory FTIR spectrometers and customized them for

field use (e.g., Salisbury 1998). Due to their heritage, these systems needed a

generator for power supply and were mounted on a cart construction to move

them around. In 1992 the US company Design and Prototypes built a dedicated

thermal infrared field spectrometer based on a set of requirements from

spectroscopists at JPL and JHU (Korb et al. 1996; Hook and Kahle 1996). After

several iterations, the latest production model is the μFTIR 102F (Fig. 3.6) which

has been adopted by many organizations worldwide as their field instrument. It is

the first off-the-shelf TIR field emission spectrometer with a rather transportable

Fig. 3.6 DnP 102F μFTIR
field spectrometer measuring

vegetation detached from the

canopy. The black barrel at

the end of the gray power

cord is the single calibration

blackbody
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weight of <7 kg (not including accessories). The spectral resolution of 4 cm�1 is

just sufficient for determining the sample temperature via the spectral smoothness

method (see Sect. 3.2). However, we consider the major drawback of the μFTIR
102 F to be the use of a single blackbody radiator for instrument calibration,

requiring heating/cooling to two different temperatures for each calibration cycle.

As field measurements are very sensitive to changes in atmospheric conditions, as

well as to changes in the temperature of the spectrometer itself, most operators of

field FTIRs prefer to calibrate their spectrometer frequently (if not for each sample

measurement). With a single blackbody, the waiting involved to stabilize the

calibration source at the lower and upper calibration temperatures results in a

measurement cycle (cold blackbody, sample, down-welling radiance, hot black-

body) that can easily take up to 10 min. In anything but perfect conditions the

atmosphere may have changed enough in 10 min to put numerous residual atmo-

spheric features in the emissivity spectra.

Other organizations (e.g., King’s College London, University of Twente-ITC,

NERC-FSF) have chosen a different path and have modified a MIDAC Illuminator

FTIR spectrometer for TIR spectral emissivity measurements (Fig. 3.7). The

standard instrument housing is hermetically sealed cast aluminium (instrument

Fig. 3.7 MIDAC Illuminator at a vertical outcrop with blackbody control unit, laptop and battery

(Photo courtesy Chris MacLellan, NERC-FSF)
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weight is 16 kg), which can be essential in overly dusty or chemically aggressive

(e.g., volcanic) environments. For most other applications, a sheet metal option is

available, which reduces the instrument weight by 50 %. Since this spectrometer

was initially intended for open path atmospheric measurements, it typically has to

be customized with down-looking foreoptics to support Earth surface observations.

One of the latest iterations in the design of such downward viewing foreoptics

(subsequently built by Advanced Photonics International) is shown in Fig. 3.8. This

contains a folding mirror that directs the spectrometer’s field-of-view either onto

the sample or onto three calibration blackbodies at different temperatures that are

integrated into the foreoptics. With several blackbodies in place, there is no need to

wait for temperature changes and stabilization, thus allowing a fast measurement

sequence. A complete calibration and measurement cycle can be achieved in under

a minute with this system. The MIDAC instrument also offers up to a 0.5 cm�1

resolution, allowing any atmospheric lines to be well-resolved during the spectral

smoothness approach.

3.3.3 Other Developments

Recent developments in thermal spectrometers show a trend towards imaging

systems as well as active reflectance systems. Below we mention a few of these

Fig. 3.8 Detailed view of NERC-FSF foreoptics with a folding mirror and three blackbodies (hot,

ambient and cold). The position of the individual blackbodies can be swapped if the application

demands it. The folding mirror is rotated manually with the help of the dial (dark gray handle on
the left) in order to view the different blackbodies or the sample (Drawing courtesy Chris

MacLellan, NERC-FSF)
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emerging systems for reference, even though some are strictly speaking not quantita-

tively comparable to TIR remote sensing data due to their measurement geometry.

Drill core loggers are not based on a FTIR spectrometer, but rather on

pushbroom-style, focal plane array TIR cameras. They allow hyperspectral imaging

of the samples resulting in a spectral datacube with high spectral resolution. The

Hylogger3 (Huntington et al. 2010) and the sisuRock (URL1) are examples of this

group. Both systems were developed for the measurement of drill cores, and the

capabilities of the systems have recently been extended into the thermal infrared

spectral range. To guarantee a short measurement time and a high sample through-

put, these systems are forced to use a bi-conical reflectance setup with high

intensity lamps to illuminating the sample that are moving relative to the camera

by a translation mechanism. Since the systems’ primary application is on drill core

data, comparison to remote sensing data is often not required and quantitative

compositional as well as textural information can be extracted from the core

logging imagery when compared to other bi-conical reference datasets.

The Hyper-Cam (URL2; Fig. 3.9) is a field imaging spectrometer that is based on

an entire focal plane array of individual FTIR elements. Contrary to the core

loggers, each pixel of the Hyper-Cam records an entire interferogram which results

in an array of 320 by 256 pixels emission spectra. The thermal infrared version

Fig. 3.9 Optical head of the

Hyper-Cam imaging field

FTIR. The front shows two

calibration blackbodies that

can be swung into the optical

path (Photo courtesy Telops)
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records images in the 7.7–11.5 μm spectral range and has two integrated

blackbodies (see Fig. 3.9) for radiometric calibration.

The Hyper-Cam’s optical head (without accessories) weights 29 or 32 kg for the

normal and the weatherproof versions, respectively. The main advantage over a

traditional field spectrometer is the possibility of seeing the measurements in their

spatial context. If, as an example, the Hyper-Cam is deployed in an active mining

environment and pointed towards the mine face, one receives an entire array of

spectral measurements, rather than a single, averaged spectrum. The resulting

image shows spatial patterns of quantitative mineralogic composition differences,

which are crucial information for planning the future mine operations. Apart from

field use, the Hyper-Cam can also be mounted on a special mounting module for

airborne acquisitions.

The ExoScan 4100 (URL3; producer formerly known as “A2 Technologies”) is a

lightweight handheld FTIR (Fig. 3.10) that measures diffuse reflectance spectra of

materials in the field. The entire instrument is about 3 kg in weight and has the look

and feel of a portable XRF system (Fig. 3.10).

The system produces diffuse reflectance spectra, which are not quantitatively

comparable to remote sensing derived emissivity spectra, thus making the ExoScan

unsuitable for ground truthing and calibration of airborne and spaceborne data. If

comparison to earth observation data is not required, the instrument can be used for

Fig. 3.10 ExoScan 4100 during field use in a soil sampling pit (Photo courtesy Agilent

Technologies)
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material identification and quantification with the help of a spectral library of

known diffuse reflectance spectra. This makes the ExoScan 4100 (for some

applications) a truly portable alternative to the bulky emission systems.

3.4 Measurement Examples

The specific procedures used in TIR field and laboratory spectroscopy depend on

the application field concerned. In the following sections we will describe a number

of particular applications and discuss typical measurement approaches as well as

sample preparation methods.

3.4.1 Solid Rocks

TIR spectroscopy of rocks results in spectra with high spectral contrast as most

rocks contain a sizeable quantity of silicate minerals or glassy fragments with

strong and distinctive spectral features in the thermal infrared spectral region.

Furthermore, the minerals are bound in a rock fabric, thus keeping porosity between

mineral grains very low. This prevents moisture and the cavity effect (e.g., Ramsey

and Fink 1999; Kirkland et al. 2002) from reducing the spectral contrast. However,

interesting rocks outcrops tend to be located in remote and rugged terrains. With the

currently available emission spectrometer technology it is almost always more

sensible to haul a large amount of samples to the laboratory than transport a large

amount of equipment to the field. This is especially true for instruments that

depend on liquid nitrogen cooling, making them difficult to move in between

measurement locations.

The laboratory measurements with DHR systems are rather uncomplicated. The

most crucial step is to find a flat, representative sample spot for a given specimen. In

very coarse grained samples (e.g. granite with phenocrysts) a single measurement

of 2–3 cm diameter spot may not be sufficient to represent the average composition,

and the measurement may need to be repeated at different spots. If a sample is not

flat enough, a blow with a chisel and hammer should be sufficient to create a fresh,

flat sampling area.

Rocks are also highly suitable for laboratory measurements in emission mode,

even with field emission spectrometers that have no facility to heat the rocks during

the measurements. If the samples are heated to ca. 70 �C in a forced-air oven

overnight, the high heat capacity of the solid rock sample generally prevents errors

due to cooling during the spectral measurements.

A novel type of geological TIR measurement is conducted at the University of

Pittsburgh (Lee 2011). An emission spectrometer is combined with a miniature

furnace to collect in-situ emission spectra of actively melting and cooling silicate

lava. One to two grams of sample are melted at a time, and emission spectra are
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collected at various set point temperatures. The furnace is only opened for about

10 s per measurement in order to protect surrounding equipment from the high

furnace temperatures (up to 1,600 �C).

3.4.2 Soils

Measurements of soils and other particulate materials are more complex than those

of solid rocks. The loose particles trap moisture, cause cavity effects, as well as

volume scattering (e.g., Vincent and Hunt 1968; Kirkland et al. 2002; Salisbury and

Wald 1992), all of which reduce the spectral contrast and change the spectral shape

of the retrieved TIR spectra. Very fine-grained samples show mainly features of clay

minerals, which have small spectral contrast themselves. TIR spectroscopy of undis-

turbed soils by necessity often means measurements must be conducted in the field.

Whilst coherent soils can be sampledwith sample rings (similar to a cookie cutter with

plastic caps at both ends), sandy soils and fine surface crusts will always suffer from

the sampling process and the soil moisture content may change even with the ends

capped. Airborne/spaceborne calibration measurements, as well as measurements

of soil and vegetation combinations, or textures of soil with coarser pebbles, are all

more practically done directly in the field rather than bringing the sample to the

laboratory. In order to not disturb the surface to be measured, care has to be taken

when approaching the spot and setting up the spectrometer. Furthermore, the sample

should bemeasured before the down-welling radiance measurement, as the placing of

the reference plate on the sample area may disturb the surface.

Laboratory measurements of incoherent, disturbed soil samples require a sample

preparation that guarantees an appropriate sample at the surface. Before and during

the pouring into the sample container, the sample needs to be homogenized to

prevent grain-size fractionation. Sample surfaces are often flattened with a spatula

and a small amount of sample material sprinkled on top to prevent preferential

orientation of the mineral grains. If an emissive system without the ability to keep

the sample warm is used, measurement times should be kept as short as possible,

since too much cooling of the hot sample during the measurements can create a tilt

in the final emissivity spectrum.

3.4.3 Vegetation

Plant leaves are strongly coupled to TIR radiation, emitting and absorbing as near-

blackbodies, having ε close to 0.95. However, complex chemical and structural

aspects of leaves produce subtle features superimposed on their broadly emissive

TIR spectra. These features can be characterized using appropriate laboratory and

field methods, and be utilized for species identification and remote spectral mapping

(Salisbury 1986; Ribeiro da Luz 2006; Ribeiro da Luz and Crowley 2007, 2010).
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Leaves can be collected by using a pruner, slingshot or shotgun, put inside

plastic bags, and stored in a cooler with ice until measurements can be completed.

If the plant is from a humid environment, a wet cotton ball or a sprinkle of water

should be placed inside the bag before closing it. Laboratory samples should be kept

in a refrigerator until they are measured to avoid fungus growth on the leaf surfaces,

and to limit leaf desiccation. Samples showing excess surface moisture should be

air dried prior to measurement.

In the laboratory, leaves can be placed directly under the sphere sample port

when they are large enough. Smaller leaves, such as pine needles, must be detached

from their branches and arranged side by side, either alone or over an adhesive tape

(with care not to include the tape in the field of view). To reduce noise, three or

more measurements of 500–1,000 scans apiece can be averaged. These measure-

ments can be made of three different leaves of the same individual, or, if the leaves

are very small, three different small branches from the same individual can be used.

The entire sample port should be filled in any case. Ideally, one would collect at

least 2 or 3 individuals of the same species for comparison, and if appropriate,

perform spectral averaging.

TIR field spectral data can be taken directly over the plant, or, by using leaves

that have been detached from the canopy and placed flat underneath the field

spectrometer (Fig. 3.6), assuring that the leaves cover the entire field of view.

Usually, leaf temperature is approximately equal to the air temperature, but on very

warm days, when stomata are closed, leaf temperatures can be several degrees

above ambient temperature (Gates 1980).

Remote sensing of vegetation in the TIR has been utilized to identify plant

species but does present a variety of challenges. These challenges include the

attenuation of signal by voids within canopies (which respond like blackbodies),

and the difficulty of accurate atmospheric compensation (Ribeiro da Luz and

Crowley 2010). Remote identification is most successful for species that have

broad leaves, good spectral contrast, and relatively closed, planophile canopies.

Identification of species with erectophile or drooping canopies tends to be much

more difficult due to canopy blackbody effects.

3.4.4 Man-Made Materials

In contrast to rocks, soils and vegetation, investigation of the thermal infrared

spectral properties of man-made materials has been quite limited. Man-made

materials for buildings, roofs and artificial open spaces consist of a great variety

of material types (Anderson et al. 1976), including mineral materials (e.g. concrete,

cement, glass, asbestos, bitumen), hydrocarbon materials (e.g., PVC, Plexiglas,

painted materials), materials of biological origin (e.g., wood chippings, thatch)

and some materials (e.g., metals) that have particularly low emissivities (e.g.

copper, lead, tin, aluminium).
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TIR spectroscopy of man-made materials in pristine condition is often simple, as

most such surfaces are flat and impervious. As was the case for most solid rocks,

this prevents the effects of moisture and surface cavities appearing in the measured

spectra. However, most man-made materials are not in pristine condition, and will

often show signs of chemical or physical weathering, sedimentary deposition and/or

growth of biomass (e.g. lichen or mosses). It is therefore very difficult to make

reproducible measurements of most urban surfaces given the relative effects of

these influences on their TIR spectra. Unlike the case of rock outcrops discussed

earlier, man-made surfaces are usually readily accessible and generally flat and

navigable. During a recent acquisition of airborne TIR imagery over London,

ground truth spectral measurements were made by wheeling an adapted MIDAC

FTIR spectrometer on a trolley about London’s urban environment. Considerations

must be made concerning the DWR, particularly when measurements are made

within urban canyons having low sky view factors, when a large component of the

DWR may come from the surrounding buildings.

Man-made materials are also suitable for laboratory measurement using both

DHR and emissive systems. Flat samples can be used for DHR measurements,

although it can often be difficult to find a representative sample spot considering the

heterogeneous nature of weathered man-made materials. For weathered materials,

it can often be useful to compare pristine with progressively weathered conditions

to develop a spectral index of weathering (e.g., Bassani et al. 2007; Pascucci et al.

2008). Laboratory measurements in the emissive mode also permit the measure-

ment of the sensitivity of spectral emissivity to viewing angle (Sobrino and Cuenca

1999), which may be an important consideration for the remote sensing of

man-made landscapes (e.g., slanted roofs, vertical walls and corrugated materials).

One difficulty with measuring man-made materials using an emissive system in the

laboratory is that materials with a low heat capacity (e.g. metals and hydrocarbon-

based materials) are particularly difficult to keep at a constant temperature; without

consistent heating of these samples, good quality spectral measurements cannot

be made.

3.5 Outlook

It is clear that the thermal infrared spectral region contains important spectral

features that respond to characteristics of the materials that may have little or no

manifestations in the more commonly measured VNIR wavelengths. Furthermore,

many applications of TIR airborne or spaceborne imaging radiometers, operating

within or even outside of the MWIR (3–5 μm) and/or LWIR (8–14 μm) atmospheric

windows, require information on the surface spectral emissivity if they are to

perform to best effect. This is the case for developing the algorithms and/or

evaluating their performance. In this chapter we have shown how the TIR spectra

of land surface materials such as rock, vegetation, soils and man-made materials

can be obtained, both in the field and in laboratory situations. As the availability of
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thermal datasets collected by airborne and satellite radiometers continues to

increase, and as future instruments such as the Hyperspectral Infrared Imager

(HyspIRI) which work in the TIR region of the electro-magnetic spectrum are

developed, the need for such spectral measurements is only expected to increase.
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Chapter 4

Challenges and Opportunities

for UAV-Borne Thermal Imaging

Margarete Vasterling and Uwe Meyer

Abstract UAV-borne thermal imaging involves the determination of ground surface

temperature from thermal infrared measurements deploying an unmanned airborne

vehicle (UAV). A large variety of UAVs is available and applied for different

military and civil tasks. UAV-borne thermal imaging provides spatially distributed

information of the ground surface temperature. In contrast to satellite or ground based

measurement, the usage of a UAV allows us to obtain spatially distributed and

geometrically highly resolved information on the ground surface temperature without

the need to access the ground. The area can be flat or hilly, and steep walls and

hillsides can be investigated easily. However, some problems, especially tasks related

to mosaicking of the images, are not fully resolved to date. We address the detection

of the anomalies in ground surface temperature induced by underground burning coal

seams as example and describe the challenges and opportunities of UAV-borne

thermal imaging, based on our experiences in this field.

4.1 Introduction

UAV-borne thermal imaging is the determination of ground surface temperature

from thermal infrared measurements deploying a UAV. UAV stands for unmanned

airborne vehicle (alternatively: UAS, unmanned airborne systems), which is a

flying platform capable to carry different measurement devices (van Blyenburgh

1999). It is either controlled by a pilot on the ground or flies autonomously. There is
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a variety of UAVs available which are employed for various military missions

(Yeh 2011) as well as for civil applications, for example, industrial or agricultural

inspections (Sullivan et al. 2007; Laliberte et al. 2011), and research (Hartmann

2011; Sheng et al. 2010; Cress et al. 2011). A common application is fire fighting,

which employs UAVs for surveillance of wildfire areas that are not safely accessi-

ble to obtain information for the design of extinguishing works (van Persie et al.

2011; Hinkley and Zajkowski 2011; Pastor et al. 2011). Another application of

UAV-borne thermal imaging is the detection of roe deer fawn in the meadows to

protect these animals at harvest time (Israel 2011). UAV sizes vary from as small as

a hummingbird to as large as an airplane, while different types of UAVs are also

available (Eisenbeiß 2009): blimp (e.g. zeppelin), parachute, kite, fixed-wing or

helicopter-like with a different number of propellers (e.g. four or eight propellers,

called quadrocopter and octocopter, respectively) each having different advantages

(Table 4.1). In principle, every method can be applied that does not need direct

contact to the ground.

UAV applications have several advantages:

• The desired area can be investigated – also repeatedly – in a relatively short

amount of time.

• It is possible to obtain data from areas with no safe access options.

• UAVs are not very expensive.

All experiences and results described here have been obtained during a field

campaign within the framework of the Sino-German research initiative “Innovative

Table 4.1 Overview on different types of UAVs available

Blimp Helicopter-like Fixed-wing

Stability against

wind

� Susceptible to wind + Stable against wind + Stable against wind

Maximum payload + High � Varying + High

e.g. 900 g (Blimp 2C)

(SurveyCopter

2012)

e.g. 650 g (Falcon 8)

(AscTech 2012)

e.g. 5.4 kg (Wolverine

III) (VikingAero

2012)e.g. 1,500 g

Start/landing + Vertical takeoff

(zeppelin)

+ Vertical takeoff �Might need a runway

or a catapult for

launching+ Gas needed

(zeppelin)

Positioning � Difficult + Exact (GPS) + Exact (GPS)

Survey speed ○ Slow + Defined by pilot � Extremely fast

Example of

manufacturer

Survey Copter (France) Ascending Technologies

(Germany)

BAE Systems (USA)

SKIVE Aviation AG

(Switzerland)

Microdrones (Germany) Viking Aerospace

(USA)

Aero Drum Ltd.

(Serbia)

ESKY Beijing (China)

70 M. Vasterling and U. Meyer



technologies for exploration, extinction and monitoring of coal fires in Northern

China” funded by the German Federal Ministry of Education and Research, BMBF.

The task was to obtain a spatial image of the ground surface temperature patterns

at a survey site with many hill slopes. In addition it was not possible to access the

site safely at all points of interest. We used the UAV “Falcon 8” (Ascending

Technologies) equipped with a small thermal infrared (TIR) camera (mobileIR

M4, InfraTec). In what follows, we describe the challenges and summarize our

experiences during this UAV-borne thermal imaging campaign.

4.2 Unmanned Aerial Vehicle

4.2.1 Advantages and Disadvantages of UAVs
as Sensor Platform

Ground surface temperature can be determined by ground-based as well as by air-

or satelliteborne measurements. Each system has different advantages and

disadvantages. Methodologies and routines have been developed to detect and

quantify thermal anomalies at the topographic surface by using TIR satellite data

(Kuenzer et al. 2007; Tetzlaff 2004). From Table 4.2 it is obvious, that thermal

imaging with an UAV has several advantages compared to satellite as well as

ground-based measurements. It is the only method appropriate for steep walls

(Fig. 4.1) and can be used even on areas that are not accessible at ground level,

e.g. in areas with coal fires were hot gas emission, increased surface temperature

and roughness, as well as unstable ground (Kuenzer and Stracher 2011) occur. At

the same time UAVs generate spatial data with good geometric resolution without

the need to interpolate the data which might cause additional (interpolation)

errors. For satellite data, either advanced sub-pixel methods or very costly high

resolution data have to be used in order to obtain a high geometric accuracy. The

necessary atmospheric corrections, however, provide the opportunity to compare

data collected at different times and locations and thus aim at monitoring and

comparing different targets. Each measurement taken remotely must be validated

by ground measurements which can be obtained only from sites with safe access

routes, however.

A disadvantage of many UAV concepts is the very limited payload, thus only

simple light-weight sensor systems can be used.

4.2.2 Selection Criteria

As an example, we compare the data recorded by UAV, satellite (ASTER, Advanced

Spaceborne Thermal Emission and Reflection Radiometer), and by a handheld
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Fig. 4.1 Application of satellite, UAV-borne and ground based thermal imaging

Table 4.2 Comparison of satellite, UAV- and ground based measurements

Satellite UAV Ground based

Survey area characteristics ○ Flat, hilly + Flat, hilly, walls

○ Flat, hilly,

walls

Survey area/

Coverage

++ Very large area ○ Medium (depends

on flight height)

� Small

Ground

accessibility

+ Not necessary + Not necessary � Necessary

Geometric

resolution

(thermal)

� Coarse + Fine ○ Point distance

Data type + Spatial + Spatial � Point

+ Spatial (handheld

camera)

Measuring

progress

+ Very high ○ Medium/slow � Very slow

Data processing ○ Georeferencing

(transformation,

orthorectification)

○ Emissivity correction ○ Emissivity

correction

○ Atmospheric correction ○ Georeference

(transformation,

orthorectification)

� Interpolation

○ Emissivity correction
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infrared device at the coal fire site of Shuixigou (Xinjiang Province, P.R. China).

Figure 4.2 shows the mosaicked UAV images and the interpolated ground based data.

The gaps in the UAV imagery are caused by technical problems of the TIR camera, or

occur when the UAV does not fly parallel to the topography of the survey area (see

Sect. 4.6.3). A prominent feature in both images is the area of increased temperature

(pink ellipse) which indicates the subsurface burning coal seam. For the left part only

UAV-images exist as this part was not accessible (on ground) due to fractures

emitting hot gasses. If we compare the ground surface temperatures we see that in

both methods the main temperature anomalies are detected but located at slightly

different positions. The offset, however, is within the precision of GPS which is used

by both methods for positioning. It is obvious that the ground surface temperature

patterns are portrayed in much more detail by the mosaicked UAV images compared

to the interpolated ground based measurements.

A comparison of satellite and UAV-borne results illustrates clearly that these

two methods work on different scales with respect to the geometric resolution

(Fig. 4.3). Even though the satellite image is not transferred into exact values of

the ground surface’s temperature (light colors correlate to higher temperature,

darker colors to lower temperature) the Shuixigou fire zone seems to be resolved.

This is indicated by the increased temperatures in the section of the UAV survey

Fig. 4.2 Left: mosaic of thermal images taken by UAV; right: spatial interpolated surface

temperature from ground based measurements. The thermal anomaly marked with the pink ellipse
indicates the burning coal seam. Both measurements cover an area of about 50 � 100 m and were

taken during the same survey in October 2009
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area marked by a yellow frame (zoom into scene). Since the pixel size of the sensor

is relatively large neither the single fire itself is detected and details of the fire

cannot be identified.

4.2.3 Selected System – Falcon 8

Within the Sino-German coal fire research initiative the octocopter “Falcon 8”

manufactured by Ascending Technologies GmbH (Germany) was used. The Falcon

basically consists of two rails, each equipped with four propellers, and the central

unit (Fig. 4.4). Four out of eight propellers are turning left or right, respectively,

which enables a stable flight together with a precise flight control. The distance

between the rails decreases from the front to the back and results in a v-shaped

design. As the camera is mounted in front of the central unit, this design results in a

field of vision for the camera which is completely free of undesirable objects. The

camera can be panned by 180� from as far as “looking up” to “looking down”.

Consequently it is possible to survey plane areas as well as sloping sites such as

gentle hills or even steep walls where the camera position is perpendicular to the

target surface (Fig. 4.1). Altitude, speed and direction are internally controlled by

regulation of each propeller’s speed. For positioning, the Falcon 8 is equipped with

GPS, IMU (Inertial Measuring Unit), three orthogonal magnetic field sensors and a

barometric height sensor. The position parameters pitch, yaw, and roll are

Fig. 4.3 Thermal ASTER scene (90 m pixel resolution) with overlay of mosaicked thermal

images (UAV) (20th Feb. 2007). Light grey corresponds to higher temperatures, darker grey to

lower temperatures
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determined. All flight parameters (e.g. longitude, latitude, time, GPS altitude,

position etc.) are stored in a log-file together with UAV status parameters (e.g.

battery status, flight modus and GPS signal quality). Additionally, the camera

parameters (position, timestamp, image number, GPS altitude, pressure altitude

relative to launching area etc.) are also stored in the log-file and thus are available

for mosaicking the individual images.

The UAV is powered by an 800 mA Lithium ion rechargeable battery pack

allowing for a maximum flight time of as much as 45 min without payload. The

maximum payload (in addition to the battery) of the Falcon 8 is 300 g, resulting in a

flight time of about 15 min. The flight time depends on payload but is also strongly

influenced by wind conditions. The Falcon 8 allows for stable flight under

conditions with a wind speed up to 10 m/s (AscTech 2012; Friedli 2010).

Besides flying the Falcon manually it is possible to plan missions ahead.

Therefore, position, altitude, heading, position accuracy, camera angle time at

waypoint, and action (trigger camera or not) at waypoints, profiles or grids can be

defined using waypoint software. For flying planned missions the remote control is

connected via USB cable1 to the mobile computer where the waypoint software is

installed. The remote control for manual flights is connected with the Falcon via

Fig. 4.4 Falcon 8 equipped with thermal camera mobilIR M4 and CO2 sensor

1 Ascending Technologies is recently (11/2011) working on changing the connection via cable to a

wireless connection, e.g. via Bluetooth.
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2.4 GHz Link. This theoretically allows for a range of a few kilometres. However,

for safety reasons it is regulated by law to operate the UAV only within sight

distance. For a successful field campaign it is mandatory to work with a well trained

and experienced pilot.

In terms of the UAV itself the challenge of UAV-borne thermal imaging is the

selection of the most suitable UAV to perform the given task under the given

circumstances.

4.3 TIR Camera

All bodies with a temperature greater than 0 K radiate electromagnetic waves of

different wavelengths (Gaussorgues 1994). The Stefan Boltzmann law describes the

radiation power Pbb (W) of a black body depending on temperature T (K) and the

area of radiation A (m2)

Pbb ¼ σAT4 (4.1)

where σ is the Stefan Boltzmann constant. The wavelength of the maximal radiation

power depends on the temperature of the body as stated by Wien’s law. A more

realistic object, a so called gray body, emits only a certain portion P ¼ ε·Pbb of the
radiation power, which is described by the scaling factor, the emissivity ε. The
emissivity describes the ability of a material to emit electromagnetic radiation. It

depends on the wavelength and on the composition of a material and its surface

structure and varies between 0 and 1 (mainly between 0.85 and 0.95 for geological

materials). For ε ¼ 1, which is the case for a black body only, the brightness

temperature has the same value as the kinetic temperature. For real media the

emissivity is smaller than 1 and thus, the temperature emitted by the body and

registered by the sensor is smaller than the kinetic temperature. The radiance

recorded at the TIR camera’s sensor is also influenced by climatic parameters (e.g.

transmittance of the atmosphere, path radiances between surface and sensor system,

thermal downwelling flux) and surface emissivity. To calculate kinetic temperatures

based on Planck’s law, the emissivity must always be taken into account. Special care

is required to ensure calibration and stability of the thermal sensor (Salisbury 1992;

Sugiura et al. 2007; Kiwamoto et al. 1997).

4.3.1 TIR Camera Types for Application on UAVs

Cameras for the (8–14) μm bandwidth generally do not have a cooled sensor

resulting in a low signal to noise ratio. However, these camera systems are

relatively light weight which is an essential advantage for the usage together with

a UAV. Table 4.3 lists two examples for small infrared cameras and their

parameters.
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4.3.2 Selection Criteria

For application on an UAV the camera has to be sufficiently light weight as the

camera’s weight is a limiting criterion due to the limited payload of the UAV. It

also has to be robust in terms of being operated from an UAV (e.g. insensitivity

towards vibrations and dust). Different targets might require a different dynamic

range and/or temperature resolution. A careful evaluation of all requirements

regarding the desired target is essential for the choice of the camera.

Video output to a remote control and/or laptop is recommended for visual flight

control. The recording of the infrared video stream via downlink to a remote control

or a connected computer, respectively, allows extracting single frames in the post

processing which helps to optimize the spatial coverage. In addition, a visual

picture or video should be recorded at the same time as the thermal image. This

allows mapping thermal anomalies and geological features (Fig. 4.5).

Table 4.3 Overview on camera parameters

mobilIR M4 Quark 336

Spectral band (8–14) μm (7.5–13.5) μm
Extent of the picture frame 160 � 120 pixel 336 � 256 pixel

Operating temperature range (0 . . . 50)�C (�40 . . . +80)�C
Sensitivity <0.12 K <0.05 K

Weight 265 g 28.5 g (19 mm lens)

Reference InfraTec (2012) FLIR (2012)

Fig. 4.5 Correlation of thermal anomaly with a geological feature. Left: thermal image, middle:
image taken simultaneously with the thermal image, right: photo showing the gas vent releasing

hot gasses from the underground burning coal fire
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Note that for certain countries the import and export of some cameras is

restricted.

4.3.3 Selected System – mobileIR M4

In the example presented (Sect. 4.6) the “mobileIR M4” (InfraTec, Dresden) was

chosen due to its light weight, sufficient resolution, and wide dynamic range of�20

to 250 �C. A visual image is recorded at the same time as the thermal image. In our

application of coal fire temperature imaging we calculate the brightness tempera-

ture for comparison with ground based data.

4.4 Field Application

4.4.1 Planning the Field Campaign

For a successful and safe field campaign good preparation is as important as skilful

handling of the equipment in the field. Having chosen the most suitable UAV and

camera, the next step is to plan the flight. Before the actual flight it is necessary to

check with the authorities whether flight permission is required for the desired area.

According to German regulations light weighted UAVs (less than 5 kg) for non

commercial use are allowed to fly without special permission (Luftverkehrsordnung

}16, as at June 2012). However, for commercial use authorization has to be granted

by the responsible office (for Germany this is the Luftfahrtbundesamt). Operation

of the UAV (in Germany) is allowed only within sight for safety reasons. An

experienced pilot is mandatory for a safe and successful flight campaign.

A simplified workflow for UAV mission planning, survey and processing is given

in Fig. 4.6.

The aim is to get a georeferenced, spatially covering, undistorted set of thermal

images of the target showing the true (kinetic) ground surface temperature without

any distortions. The georeference in terms of location within a coordinate system

can be derived from the GPS system of the UAV. However it is necessary to make

corrections like shift, rotation, scaling and orthorectification (correction of terrain-

induced distortion). A very useful and advantageous feature of UAVs is the fact that

these can be used in areas which are not safely accessible or even inaccessible, for

example, steep walls. As a consequence, however, it is in general impossible to set

or measure ground control points for photogrammetric analyses. Thus, alternative

ways for transforming and correcting the individual images must be considered and

developed (see next section).

Before planning the flight details it should be checked which height is actually

recorded logged by the UAV. The Falcon 8 measures the height above ground

calibrated at launching area. Thus, the recorded “height above ground” is the height
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above launching area only (position (a) in Fig. 4.7). If the survey area is not a flat

plane or wall but has some topographic features, this “height above ground” might

significantly differ from the actual UAV flight altitude (position b in Fig. 4.7).

Therefore it is necessary to have a proper digital elevation model (DEM) with a

resolution which is at least in the same range as the camera’s footprint. If such an

elevation model is not available it must be calculated using differential GPS, a laser

scanner, or equivalent measurements. A good alternative would be the application

of a sensor (e.g. laser altimeter) to measure the distance towards ground (respec-

tively image target in general). To obtain a thermal image for the whole area in a

survey area with topographic features either the profile distance and point spacing

or the flight altitude (relative barometric height and/or absolute GPS height) have to

be adapted (Table 4.4).

Most light weight infrared cameras do not have an autofocus. Thus, before

mounting the camera onto the UVA the focus hast to be adjusted manually by

focusing at an object at the same distance as the planned flight altitude.

The camera’s footprint then depends on the distance towards the target.

A scheme for the calculation of the area depicted by a single image is given in

Fig. 4.6 Scheme of

workflow for UAV mission

planning, survey and

processing
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Fig. 4.8. Thus, the flight altitude has to be chosen by making a compromise between

resolution and efficiency. If the data are not recorded continuously (video), then for

satisfactory mosaicking the overlap of individual neighbouring pictures should be

at least 50 %. Thus, only the central part of the images is used which improves the

quality of the composite image.

Should the target area allow for setting ground control points for photogram-

metric processing, these points should preferably be visible in thermal and visual

bandwidth. Therefore a material with an emissivity as well as visual contrast to the

survey area has to be chosen (e.g. aluminum foil).

We strongly suggest to carry additional batteries for UAV, camera, and laptop

(and/or the opportunity to recharge them in the field) along as flight time and

camera operation are limited by the available power supply (number of batteries).

It is also recommended to have a good amount of spare parts available in the field as

crashes might happen (a first aid kid might be good to have in this case, too). It is a

very good idea to wear sunglasses since watching the UAV means looking into the

bright sky.

Fig. 4.7 Relation between flight altitude, topography and photo height

Table 4.4 Image size, point distance and line spacing for different photo heights for 50 % overlap

Flight (photo)

height (m)

Image size

(m � m)

Point

distance (m)

Line

spacing (m)

Images to cover a

(100 � 50) m area

Pixel resolution

(cm � cm)

30 10 � 13 7.5 5 15 � 09 8.3 � 8.1

15 05 � 07 3.5 2.5 28 � 17 4.2 � 4.4

The geometric resolution is given for an image of 120 � 160 pixels
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4.4.2 Conduction of the Field Campaign

In the field several points must be considered to guarantee a safe and successful

survey. As any UAV is more or less susceptible to wind the current weather

conditions cannot be ignored. It is not recommended to fly the UAV in strong

winds. Also, it is recommended to stay away from systems like e.g. power lines or

other model aircrafts as they might cause problems with communication between

remote control and UAV. It is advised to cover sandy or dusty launching and landing

areas to protect the motors from rising sand and dust. Over extremely hot areas an

increased flight altitude might be necessary depending on operating temperature of

UAV and camera. Atmospheric effects on the thermal sensor are considered negligi-

ble for the low flight altitude compared to measurements conducted by plane or

satellite. However, barometric height will decrease when the UAV flies through a

vapor plume (as occurs e.g. when the water from extinguishing work at a coal fire site

evaporates and is emitted at distinct spots). Here some experience in manual flight

control is essential in order to adjust the UAV flight altitude.

After each flight the data should be transferred from the camera to the computer

and the data quality should be checked if the data are not sent to a computer via

downlink during flight. If the data quality is poor, the flight should be repeated. In

addition to the thermal images taken from the UAV the ambient temperature should

also be measured to allow for corrections of temperature changes between different

days of the survey. For measurement of emissivity in the field see e.g. Hook and

Gabell (1992) and Tian et al. (2008).

For stereographic analyses the automatic autofocus of the camera must be

deactivated.

If an additional sensor is installed on the UAV it should be checked if the

boundary conditions for these measurements are also satisfying. E.g. the time at

Fig. 4.8 Scheme for

calculating pictured scene

size (camera footprint) from

aperture angles (α, β) and
distance towards target (h)
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waypoint has to be at least as long as t90-time2 in order to obtain reliable CO2

measurements.

In terms of field application the challenge of UAV-borne thermal imaging is to

set up the flight campaign in a way such that good quality images and all informa-

tion necessary for proper data processing can be obtained by a safe survey flight.

4.5 Data Processing

After the field campaign the individual thermal image files have to be processed to

obtain the ground surface temperature for the whole survey area. Therefore the

single thermal images are transferred from the camera to a computer and exported

as image files for further processing.

To ensure comparability all individual thermal images have to be scaled to a

common temperature range and scale first. Minimum and maximum of the temper-

ature range can be determined from the statistics of each pixel’s temperature.

Different ambient temperatures at different days of survey have to be corrected.

The influence of climatic parameters such as transmittance of the atmosphere, path

radiances between surface and sensor system and thermal downwelling flux are

considered comparatively small for UAV application of thermal infrared imaging

(8–14 μm) and thus might be neglected as the influence of surface emissivity is

dominant when the actual ground surface temperature is measured. For the calcu-

lation of the brightness temperature the emissivity is set to ε ¼ 1. Information on

the emissivity for geological materials is given in literature, e.g. Rivard et al.

(1995).

4.5.1 Georeference

Georeferencing a picture means to provide information on position, transformation

(scaling, rotating, shifting) and orthorectification (possible terrain-induced distortions

that will have to be corrected). Position, rotation, and shifting can be derived from the

UAV flight log. The scaling depends on the distance of the camera from the target

(flight altitude above ground). As described earlier (see the Sect. 4.4), the logged

height above ground and the true flight altitude might differ. To compensate this

effect a digital elevation model of the survey area’s topography is needed. The

geometrical resolution has to be in the range of the point distance for proper scaling

of the images. If there is no such digital elevation model (DEM) available it has to be

derived from corresponding measurements in the survey area. For the Shuixigou coal

fire at several points within the survey area the position (x, y, z) was taken with a

handheld GPS device. A simple DEM was than obtained from interpolation of these

2 The t90 time is defined as the time it takes for the sensor to get 90 % of the final reading.

82 M. Vasterling and U. Meyer



point data. The height above ground is then the difference of height logged by the

UAV and DEM. The resolution per pixel in x- and y-direction can be derived from

the image size and the camera’s footprint (Fig. 4.8), precisely it is the quotient of side

length (m) and number of pixels. For converting an individual TIR-image from e.g. a

tif-file to a georeferenced image a corresponding world-file (.tfw) has to be written,

which contains the resolution per pixel in x- and y-direction and the coordinates x(p)

and y(p) of the upper left pixel (right side of Fig. 4.9).

4.5.2 Mosaicking

To get an image of the surface temperature covering the whole survey area, the

individual images have to be stitched together (mosaicked). Depending on the target

basically two different approaches are feasible (Fig. 4.9, left panel): Patch the images

manually or use automatic algorithms utilizing the images’ georeference. Automatic

mosaicking uses ground control points determined by photogrammetry. Therefore

markers which are visible in the thermal (and also in the visual) image have to be

positioned in the field and its positions have to be determined accurately. The images

than are stretched to fit with the markers to the respective coordinate. This gives not

only information on scaling, rotation and positioning of the images but also distortions

Fig. 4.9 Schematic workflow for data processing (left), coordinates of upper left pixel from UAV

position (middle pixel pm) and image size
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are taken into account. This is only feasible if it was possible to position and measure

control points in the survey area. Also, automatic algorithms like professional software

for processing satellite images (e.g. ENVI) are based on this spatial reference of the

individual images. For steep areas or hillsides the profiles are not horizontal but vertical

(since the UAVflies up and down) to be parallel to the hillside. Thus, the position with

respect to Easting and Northing (respectively longitude and latitude) is about the same

for all images and the mosaicking algorithm would stack the images on top of each

other. Algorithms for automatic splicing without control points are currently being

investigated for UAV-borne images in the visual bandwidth (Li et al. 2011).

Alternatively the images might be patched together manually using common

graphic software. Orientation is provided by obvious features that can be traced

over different images and the positions of the UAV when the images are taken.

A coordinate grid built from these coordinates can be used as overlay for the final

mosaic thus yielding the georeference of the surface temperature distribution. This

method can only give a rough picture of temperature distribution as distortions are not

accounted for.

4.6 Example: Thermal Imaging of Coal Fires

4.6.1 Thermal Anomaly of Coal Fires

Coal fires are a worldwide problem as they deplete the coal reserves and contribute

to global warming and pollution by releasing large amounts of greenhouse gases

(Stacher 2008; UNESCO 2005; van Dijk et al. 2011). The ignition of a coal seam is

mainly caused by spontaneous combustion as a result of exposure to oxygen. This

typically happens in small and/or not properly sealed mines. The knowledge of the

ground surface temperature and the released energy is essential for fire fighting and

monitoring, as well as for calculations regarding CDM (Clean Development Mech-

anism) purposes (Meyer et al. 2009, 2010; Prakash and Vekerdy 2004; van Dijk

et al. 2011; Zhang et al. 2004).

The heat of the burning coal seam moves towards the surface by conductive

transport within the host rock and by convective heat transport by pore fluids and

combustion gases as simulations confirm (Wessling et al. 2008; Zhang et al. 2007).

This process increases the surface temperature locally (Fig. 4.10). Thermal satellite

and airborne sensor systems register the heat radiated from the surface (Prakash

et al. 1995) which can be converted to surface temperatures using statistical

approaches or physical models validated by ground reference measurements

(Zhang and Kuenzer 2007). Within our research we surveyed two fires zones with

UAV-borne thermal imaging (Vasterling et al. 2010).
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For the application to coal fires the Falcon 8 was equipped with a thermal camera

“mobilIR M4” (InfraTec) and a CO2 sensor. However, the implementation of a

different camera as well as (additional) sensors is possible if the maximum payload

is not exceeded.

4.6.2 Coal Fire on a Hillside (QueerGou, Xinjiang
Province P.R. China)

The QueerGou fire zone is situated at both sides of a valley. The hills are covered

with vegetation, however, during the ongoing extinguishing works terraces were

cut into the hillsides. Water from a nearby creek is used to cool the fire as well as the

host rock. The last step is to cover the terraces with loess to stop the oxygen supply

for the fire (Fig. 4.11).

Within two field campaigns (May and October 2009) two different terraces were

surveyed by a UAV. The lower terrace which was first investigated in May was

already covered completely with loess in October. Consequently a different terrace

had to be surveyed and monitoring the changes was not possible as the two mosaics

do not represent the same area. In May an area of approximately 53 m � 31 m was

investigated and an area of 34 m � 8 m in October. The areas of interest were not

flat but feature steep hillsides and neither satellite nor ground based measurements

were available. Several vertical trajectories were followed up and down the hillside

with a few meters distance towards the wall.

As the position with respect to Easting and Northing is about the same for all

images of the same profile, the mosaicking algorithm would lay the images on top

of each other. Thus, the images are patched together manually to obtain the surface

temperature distribution from the mosaic of thermal images. Emissivity was set to

be ε ¼ 1 for all pictures.

In the pictures taken in May (Fig. 4.12) the terrace’s base and the water hoses for

cooling appear as structures of decreased temperature. In large areas the

Fig. 4.10 Development of the surface temperature anomaly tailing the burning coal seam.

Left: Heat transfer, right: surface temperature anomaly
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Xinjiang

ShuixigouQuergou

Coal Field Fires

Coal Mine Fires

1,000 Kilometers

based on Kijk (1995, no 8, p.29)

Fig. 4.11 Xinjiang Province in Northwest China

Fig. 4.12 Thermal image (brightness temperature) of the terrace surveyed in May 2009. The

images were taken till noon while the sun was behind the hill

86 M. Vasterling and U. Meyer



temperature is significantly increased and is as high as 70 �C. In October (Fig. 4.13),
however, the brightness temperatures are lower (maximum about 55 �C) and much

more homogenous in almost all parts of the terrace. It is only near the hilltop where

a band of increased temperature is visible.

4.6.3 Coal Fire on a Hilltop (Shuixigou, Xinjiang Province
P.R. China)

The surveyed area’s topography includes a hill as well as cracks and vents emitting

hot gases. The soil is colored by condensates (Fig. 4.5). As there is no vegetation

growing at the survey area, it is suitable for a comparison of ground based,

UAV-borne and satellite measurements of the ground surface temperature. At the

Shuixigou fire no extinguishing works have been conducted so far.

Using the Falcon 8, 53 images were taken along six parallel profiles. As no high

resolution DEMwas available, in a first attempt an overview flight at constant height

was conducted. This height refers to the starting area as base, which results in not

flying parallel to the topography. Consequently, the flight altitude of 30 m above the

starting area is reduced to a height above ground of approximately 15 m at the

hilltop. Thus, the camera’s footprint is reduced from10m � 13m to only 5m � 7m

Fig. 4.13 Thermal image (brightness temperature) of the terrace surveyed in October 2009. The

images were taken till noon while the sun was behind the hill
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causing the obvious gaps between neighbouring images. The plan was to create a

DEM from GPS measurements taken during the overview flight by a handheld GPS

sensor. Then, a more sophisticated flight plan should be prepared utilizing this DEM

for height reference and also taking the results from the first flight into account.

However, during the first survey flight technical problems with the camera occurred

that could not be fixed. This results in the large gap starting at the centre and

extending to the south that could not be filled by using data collected by an additional

flight.

A digital elevation model was created from the height measured by a handheld

GPS. This is just a rough approximation to the true topography and it has shown

that the resulting photo height is not accurate enough for georeference based

mosaicking. The thermal images are scaled to a common temperature range of

10–180 �C and are patched together manually. A coordinate grid was used as

overlay for the final mosaic to yield the georeference of the calculated surface

temperature distribution.

In Fig. 4.2 the mosaic of the manually patched thermal images taken by the UAV

is shown. It portraits the ground surface temperature in detail. Despite some large

temperature anomalies smaller features like linear structures in the central part are

observed. In the southern part of the survey area the increased surface temperature

(pink ellipse) is caused by the burning coal in the subsurface.

4.7 Summary and Outlook

UAV-borne thermal imaging is the measurement of ground surface temperature by

a small unmanned airborne vehicle equipped with a TIR camera. Compared to

satellite measurements the geometric resolution is much better. In contrast to

ground based measurements, UAV-borne thermal imaging provides spatial data

which provides a very detailed picture of the temperature distribution. At the same

time interpolation is not necessary. The method is suitable for almost any kind of

topography without ground accessibility being necessary. The costs for the required

equipment are moderate. Any method that does not need ground contact and is

operated by applying a light weighted instrument might theoretically be mounted

onto a UAV for a fast survey even on difficult terrain. Thus, UAV-borne surveys

can be used in a large variety situations and applications.

A variety of different types and sizes of UAVs are available. In our example of

coal fire temperature measurements, the helicopter like system Falcon 8 was used

and carried a thermal camera with the desired properties regarding weight, temper-

ature range, resolution (both spatial as well as temperature dynamic range) and

footprint.

For the field application a well trained pilot is mandatory. A good preparation of

the mission is necessary, including the check on possible legal restrictions, provi-

sion of spare parts, and planning the flight mission. Information regarding the local

topography should be used for planning the flight profiles and setting the waypoints.
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Mosaicking of the individual images has to be considered. For photogrammetric

analyses control points are necessary. As the terrain might not allow for positioning

ground control points, alternative approaches for patching the images together

should be considered. The georeference can be deduced from the UAV’s position,

a known or derived DEM, and the flight altitude. However, this approach does not

consider orthorectification. The emissivity has to be taken into account to retrieve

the true ground surface temperature.

Thus, the main challenges of UAV-borne thermal imaging are first to select the

most suitable system of UAV and camera, then plan and perform a successful field

campaign and finally derive a large image mosaic of the ground surface temperature

patterns based on the acquired individual images.

Based on our experience further development might be necessary to optimize the

technique of UAV-borne thermal imaging. To improve georeference based

mosaicking it is necessary to either register the distance of the camera to the target

using a digital elevation model or work with ground control points. A possible

solution of this problem might be the implementation of a light weight altitude

sensor to determine the height above ground level (for flat survey areas) or a sensor

recording the distance of the camera to the target in general. If it is difficult to get a

powerful sufficiently light weighted distance meter, then the TIR flight and altime-

ter flight must be carried out separately. The distance to the ground level can then be

determined by performing a first flight in a constant height with respect to the

launching area. Point and profile distance then have to be adapted to guarantee an

overlapping of the individual images for the whole survey area. This can be done in

advance of the field campaign if a proper elevation model of the targeted area is

available. For automatic mosaicking, the development of an algorithm that takes

not only easting and northing into account but also height and spatial orientation as

derived from camera angle might be an asset. Also, a continuous recording of

thermal images by recording a TIR video is possible. At this moment the position

accuracy is now in the range of GPS accuracy. For working with georeference

based algorithms the position accuracy should be improved (Bláha et al. 2011).

The comparison of UAV- and satellite-borne data shows the different scale both

methods work on which makes a direct upscaling of UAV- to satellite data

impossible. The linking scale could be provided by using a large airborne system.

The implementation of additional methods, for example gas measurement

sensors, is potentially viable. If thermal imaging and gas measurements are

conducted simultaneously during one flight, the gas sensor has to be sufficiently

fast to determine the amount of the gas in the column while the UAV hovers over

the observation point. If the removal and reattachment of the various measurement

devices is sufficiently easy, then separate flights for thermal imaging and other

methods might be considered.

In conclusion, UAV-borne thermal imaging is a promising method to retrieve

highly resolved spatial information on the ground surface temperature within a

short amount of time; however, some challenges are still unresolved and need

further research.
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Hinkley EA, Zajkowski T (2011) USDA forest service – NASA: unmanned aerial systems

demonstrations – pushing the leading edge in fire mapping. Geocarto Int 26(2):103–111

Hook JS, Gabell AR (1992) A comparison of techniques for extracting emissivity information

from thermal infrared data for geologic studies. Remote Sens Environ 42:123–135

InfraTec (2012) InfraTEc mobileIR M4 – Mobile Miniatur-Thermograhiekamera. Production

information, available at www.infratec.de. Accessed 26 Feb 2012

Israel M (2011) A UAV-based Roe Deer Fawn detection system. In: Eisenbeiss H, Kunz M,

Ingensand H (eds) Proceedings of the international conference on unmanned aerial vehicle in

Geomatics (UAV-g), vol XXXVIII. ISPRS, Zurich, 2011, pp 1–5

Kiwamoto Y, Abe H, Tatematsu Y, Saito T, Kurata M, Kajiwara K, Kikuchi Y, Takahashi T,

Tamano T (1997) Thermographic temperature determination of gray materials with an infrared

camera in different environments. Rev Sci Instrum 68(6):2422–2427

Kuenzer C, Stracher GB (2011) Geomorphology of coal seam fires. Geomorphology 138:209–222

Kuenzer C, Zhang J, Li J, Voigt S, Mehl H, Wagner W (2007) Detection of unknown coal fires:

synergy of coal fire risk area delineation and improved thermal anomaly extraction. Int J

Remote Sens 28:4561–4585

Laliberte AS, Winters C, Rango A (2011) UAS remote sensing missions for rangeland

applications. Geocarto Int 26(2):141–156

Li C, Zhang G, Lei T, Gong A (2011) Quick imageprocessing method of UAV without control

points data in earthquake disaster area. Trans Nonferrous Metals Soc China 2:523–528

90 M. Vasterling and U. Meyer

http://www.asctec.de/asctec-falcon-system
http://www.flir.com/
http://www.infratec.de/


Meyer U, Chen-Brauchler D, Schloemer S, Kus J, Lambrecht A, Rueter H, Fischer C, Bing K

(2009) Geophysics and clean development mechanisms (CDM): applications to coal fires.

In: Geophysical research abstracts 11, Proceedings on EGU general assembly, Vienna, 2009,

19–24 April, p 9847

Meyer U, Rueter H, Chen-Brauchler D, Schloemer S, Kus J, Wuttke MW, Fischer C (2010)

Alternative methods for baseline estimations – political and scientific aspects. In: Latest

developments in coal fire research– bridging the science, economics, and politics of a global

disaster/ICCFR2 2010; Proceedings published by Federal Ministry of Education and Research,

Berlin, 19–21 May 2010, pp 371–377

Pastor E, Barrado C, Royo P, Santamaria E, Lopez J, Salami E (2011) Architecture for a

helicopter-based unmanned aerial systems wildfire surveillance system. Geocarto Int 26

(2):113–131

Prakash A, Vekerdy Z (2004) Design and implementation of a dedicated prototype GIS for coal

fire investigations in North China. Int J Coal Geol 59(1–2):107–119

Prakash A, Saraf AK, Gupta RP, Dutta M, Sundaram RM (1995) Surface thermal anomalies

associated with underground fires in Jharia coal mines, India. Int J Remote Sens 16

(12):2105–2109

Rivard B, Thomas PJ, Giroux J (1995) Precise emissivity of rock samples. Remote Sens Environ

54:152–160

Salisbury JW (1992) Emissivity of terrestrial materials in the 8–14/tm atmospheric window.

Remote Sens Environ 42:83–106

Sheng H, Chao H, Coopmans C, Han J, McKee M, Chen Y (2010) Low-cost UAV-based thermal

infrared remote sensing: platform, calibration and applications. In: Proceedings of the interna-

tional conference on mechatronics and embedded systems and applications (MESA), 2010

IEEE/ASME, Conference proceedings, Qingdao, 15–17 July 2010, pp m38–43

Stacher GB (ed) (2008) Geology of coal fires: case studies from around the world. The Geological

Society of America, Boulder, 283 pp

Sugiura R, Noguchi N, Ishii K (2007) Correction of low-altitude thermal images applied to

estimate soil water status. Biosyst Eng 96(3):301–313

Sullivan DG, Fulton JP, Shaw JN, Bland G (2007) Evaluating the sensitivity of an unmanned

thermal infrared aerial system to detect water stress in a cotton canopy. Trans ASABE 50

(6):1955–1962

SurveyCopter (2012) The Blimp 2C. Production information, available at www.seurveycopter.fr.

Accessed 26 Feb 2012

Tetzlaff A (2004) Coal fire quantification using Aster, ETM and Bird instrument data. Disserta-

tion, Geosciences, Maximilians-University, Munich, 155 pp

Tian J, Zhang R, Su H, Sun X, Chen S, Xia S (2008) An automatic instrument to study the spatial

scaling behavior of emissivity. Sensors 2008(8):800–816

UNESCO (Ed) (2005) Spontaneous coal seam fires: mitigating a global disaster. In: International

research for sustainable control and management. ERSEC ecological book series – 4. Tsinghua

University Press and Springer, Beijing

van Blyenburgh P (1999) UAVs: an overview. Air Space Eur 1(5):43–47

van Dijk P, Zhang J, Jun W, Kuenzer C, Wolf KH (2011) Assessment of the contribution of in-situ

combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining

information to previous remote sensing estimates. Int J Coal Geol 86:108–119

van Persie M, Oostdijk A, Fix A, van Sijl MC, Edgardh L (2011) Real-time UAV based geospatial

video integrated into the fire brigades crisis management GIS system. In: International archives

of the photogrammetry, remote sensing and spatial information sciences, vol XXXVIII-1/C22

UAV-g 2011, Proceedings of the conference on unmanned aerial vehicle in geomatics, Zurich,

14–16 September, pp 173–175

Vasterling M, Schloemer S, Ehrler C, Fischer, F (2010) Correlation of surface temperature and

remote thermal infrared measurements using an unmanned aerial vehicle. In: Latest

developments in coal fire research– bridging the science, economics, and politics of a global

4 Challenges and Opportunities for UAV-Borne Thermal Imaging 91

http://www.seurveycopter.fr/


disaster/ICCFR2 2010; Conference Proceedings published by Federal Ministry of Education

and Research, Berlin, 19–21 May 2010, pp 221–228

VikingAero (2012) Wolverine III – helicopter unmanned system. Production information, avail-

able at www.vikingaero.com. Accessed 26 Feb 2012

Wessling S, Kuenzer C, Kessels W, Wuttke M (2008) Numerical modeling to analyze under-

ground coal fire induced thermal surface anomalies. Int J Coal Geol 74:175–184

Yeh SS (2011) A failure of imagination: unmanned aerial vehicles and international security.

Comp Strategy 30(3):229–241

Zhang J, Kuenzer C (2007) Thermal surface characteristics of coal fires 1: results of in-situ

measurements. J Appl Geophys 63:117–134

Zhang X, Zhang J, Kuenzer C, Voig S, Wagner W (2004) Capability evaluation of 3–5 and

8–12.5 μm airborne thermal data for underground coal fire detection. Int J Remote Sens 25

(12):2245–2258

Zhang J, Kuenzer C, Tetzlaff A, Oettl D, Zhukov B, Wagner W (2007) Thermal characteristics of

coal fires 2: result of measurements on simulated coal fires. J Appl Geophys 63:135–148

92 M. Vasterling and U. Meyer

http://www.vikingaero.com/


Chapter 5

NASA’s Hyperspectral Thermal Emission

Spectrometer (HyTES)

Simon J. Hook, William R. Johnson, and Michael J. Abrams

Abstract The Hyperspectral Thermal Emission Spectrometer (HyTES) is being

developed as part of the risk reduction activities associated with the Hyperspectral

Infrared Imager (HyspIRI). HyspIRI is one of the NASA’s Tier 2 Decadal Survey

Missions for earth science. HyTES will provide information on how to place the

spectral filters on the HyspIRI Thermal Infrared Instrument as well as provide

antecedent science data. The HyTES pushbroom design has 512 spatial pixels over

a 50-degree field of view and 256 contiguous spectral bands between 7.5 and 12 μm
in the thermal infrared (TIR) wavelength region. HyTES includes many key

enabling state-of-the-art technologies including a high performance concave dif-

fraction grating, a quantum well infrared photodetector (QWIP) focal plane array,

and a compact Dyson-based optical design. The Dyson optical design allows for a

very compact and optically fast system (F/1.6). It also minimizes cooling

requirements due to the fact it has a single monolithic prism-like grating design

which allows baffling for stray light suppression. The monolithic configuration

eases mechanical tolerancing requirements which are a concern since the complete

optical assembly is operated at cryogenic temperatures. The QWIP allows for

optimum spatial and spectral uniformity and provides adequate responsivity or

D-star to allow 200 mK noise equivalent temperature difference (NEDT) operation

across the TIR passband. The system uses two mechanical cryocoolers to maintain

instrument temperature. The first cooler holds the focal plane array at 40 K and the

second cooler holds the remainder of the cryovacuum system at 100 K. Assembly of

the system is now complete and the system is undergoing alignment and laboratory

testing. Once laboratory testing is complete the system will be used to acquire

airborne data from a Twin Otter aircraft over the southwestern USA in late 2012.
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5.1 Introduction

This chapter describes the Hyperspectral Thermal Emission Spectrometer (HyTES)

which is being developed as part of the risk reduction activities associated with the

thermal infrared (TIR) instrument on the Hyperspectral Infrared Imager (HyspIRI).

HyspIRI is one of the missions recommended by the Earth Science Decadal Survey.

HyTES will be used to provide information on how to place the spectral filters on

the HyspIRI-TIR instrument as well as provide antecedent science data. Initially the

Decadal Survey is described followed by the Heritage and Science Objectives for

HyspIRI-TIR and HyTES. The remainder of the chapter provides a detailed

description of HyTES and QWEST (Quantum Well Earth Science Testbed)

which was the prototype for HyTES. Finally some recent results from laboratory

tests are presented together with a discussion of future activities.

5.1.1 The Decadal Survey

In 2004, the National Aeronautics and Space Administration (NASA) requested the

National Research Council (NRC) conduct a Decadal Survey (DS) for Earth science

and applications from space. The 2007 report is titled Earth Science and
Applications from Space: National Imperatives for the next Decade and Beyond
(NRC 2007). The purpose of DS study was to provide NASA with a blueprint for

the subsequent 10 years, prioritizing science missions, in response to community

inputs and recommendations. The report identified key science measurements and

recommended a small number of missions to acquire those measurements. The

topical areas included earth science applications and societal benefits; land use

change, ecosystem dynamics, and biodiversity; weather; climate variability and

change; water resources and the global hydrologic cycle; human health and secu-

rity; and solid earth hazards, resources and dynamics. The missions were arranged

in three groups or tiers and are referred to as the Tier I, Tier II or Tier III missions. It

was the intention of the DS that the three tiers represent a succession of mission

starting with Tier I. The Hyperspectral and Infrared Imager (HyspIRI) is one of the

missions in the Tier II group.

HyspIRI will provide global observations at local and landscape scales (10s of

meters to 100s of kilometers). The mission includes a hyperspectral visible-near

infrared-shortwave infrared (VSWIR) imaging spectrometer, and a multispectral

thermal infrared (TIR) scanner. Operating from low earth orbit, the instruments will

provide global coverage, frequent repeat revisits, and data at moderate to high spatial

resolution (60 m). The DS laid out a timeline to implement the missions with launch

dates for the Tier II missions recommended between 2013 and 2016. Subsequent to

the community driven DS a study was undertaken by members of the US Climate

Change Research Program and published as “Responding to the Challenge of Climate

and Environmental Change: NASA’s Plan for a Climate-Centric Architecture for
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Earth Observations and Applications from Space” (NASA 2010). This study inserted

additional missions and re-assigned the priority of certain missions adjusting the

sequence in which the Decadal Survey missions were implemented. The Tier II

missions, including HyspIRI will be launched in the 2020+ timeframe according to

the current NASA schedule. NASA assigned the Jet Propulsion Laboratory (JPL) to

lead a concept study with support from the Goddard Space Flight Center (GSFC).

Dr. Robert Green headed up the studies for the VSWIR hyperspectral instrument,

Dr. Simon Hook was responsible for the TIR instrument and Dr. Elizabeth Middleton

was responsible for the onboard processing and distribution of a subset of the data

through a system referred to as the intelligent payload module (IPM). This chapter

describes the Hyperspectral Thermal Emission Spectrometer (HyTES) which is being

developed as part of the risk reduction activities associated with the TIR component of

HyspIRI. HyTES will be used to provide information on how to place the spectral

filters on the HyspIRI Thermal Infrared Instrument as well as provide antecedent

science data.

5.1.2 Heritage

TIR aircraft instruments have been operating since the early 1970s. The first work

was with a two-band instrument (Vincent 1972). By ratioing values from two

thermal bands, emissivity differences could be detected in the resulting image,

and these were related to differences in rock type. In the early 1980s, NASA started

operating the Thermal Infrared Multispectral Scanner (TIMS), a 6-band airborne

instrument with bands in the 8–12 μm wavelength region (Kahle and Rowan 1980).

TIMS was the first operational scanner that acquired multispectral TIR data

allowing separation of temperature and emissivity (T-E). Many researchers devel-

oped techniques to solve the under-determined T-E problem, and accurate retrievals

of both values is now routine. TIMS flew for more than 15 years before being

replaced by the MODIS/ASTER (MASTER) airborne instrument (Hook et al.

2001). MASTER is a 50 band instrument with 25 bands in the VSWIR, 15 bands

in the mid infrared (3–5 μm) and 10 bands in the TIR. In Europe, the 102-band

MIVIS (Multispectral Infrared Visible Imaging Spectrometer) scanner, owned and

operated by Italy’s National Research Council, has acquired data since 1994 for

many researchers. MIVIS has 10 bands in the 8.2–12.7 μm region (Bianchi et al.

1994). The U.S. Aerospace Corporation developed the SEBASS (Spatially

Enhanced Broadband Array Spectrograph System) scanner and first deployed it in

1995 (Hackwell et al. 1996). SEBASS has 128 bands in each of the 3.0–5.5 μm and

7.8–13.5 μm regions. The instrument images 128 pixels cross-track with an instan-

taneous field of view (IFOV) of 1 mrad. All the aforementioned instruments with

the exception of SEBASS have a relatively small number of spectral channels in the

thermal infrared but a fairly wide swath. Such instruments are useful for providing

precursor science data provided that the spectral bands closely match those of the

spaceborne sensor being developed. Conversely, SEBASS has many spectral bands
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but a narrow swath. The many spectral bands allow the creation of broader spectral

bands by aggregating narrow bands to simulate another instrument with fewer

broader bands. The difficulty with SEBASS is any such simulations are limited

by its narrow swath width and small pixel size. Therefore it was decided to develop

a new generation of imaging spectrometers with much higher spectral resolution

and a wide swath. This began with the laboratory implementation of a prototype

instrument termed the Quantum Well Earth Science Testbed (QWEST) which was

used to develop many of the technologies which are now part of the airborne

HyTES instrument. JPL has a long history of developing science-grade imaging

spectrometers for remote sensing applications. Recent examples include the Air-

borne Visible Infrared Imaging Spectrometer (AVIRIS), the Carnegie Airborne

Observatory (CAO), and the imaging spectrometer on board the Moon Mineralogi-

cal Mapper (M3) (http://aviris.jpl.nasa.gov and http://m3.jpl.nasa.gov). HyTES

brings together numerous in-house specialties such as optical design and general

spectrometer alignment optimization, precision slit fabrication, high efficiency and

low scatter concave diffraction grating design and fabrication, precision mechanical

and machining capability and quantum well infrared photo detectors (QWIP) focal

plane arrays.

HyTES will operate between 7.5 and 12 μm and have a dual use in that as well as

being used to determine the band positions for HyspIRI it will also be used to

provide antecedent science data for research purposes. Over the last 40 years, a

large and growing research community has developed to study and expand the

applications of TIR data over a wide range of earth science disciplines. Working

with laboratory measurements, field spectrometers, aircraft data, and data from

spaceborne instruments, researchers have compiled spectral libraries of surface

materials (Christensen et al. 2000; Baldridge et al. 2009); developed techniques

to extract surface compositional information from airborne hyperspectral TIR data

(Kirkland et al. 2002; Hook et al. 1992); detected canopy water stress in coniferous

forests (Pierce et al. 1990); and refined determination of land surface temperature

and emissivity (Hulley and Hook 2011), to name just a few. HyTES will allow the

continued development of the research community by providing the first ever high

spatial, high spectral wide swath freely available thermal infrared data.

5.1.3 Science Objectives

The science objectives of HyTES are the same as those of HyspIRI which are

described in the 2008 HyspIRI Whitepaper and Science Workshop Report and

subsequent workshop reports available online (see URL1). The science objectives

for HyspIRI are summarized as a set of questions which data from the instrument

will address. These questions were originally articulated in the Decadal Survey and

have been further developed by the HyspIRI Science Study Group (SSG). The SSG

was established by NASA to provide community guidance for the HyspIRI mission.

The SSG is intended to be a dynamic group with individuals rotating in and out
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depending on the activities of its members. There are separate science questions

that will be addressed by either the VSWIR, TIR or both instruments. HyTES will

be used to help address the TIR questions which are arranged as five main science

themes:

• Volcanoes

How can we help predict and mitigate earthquake and volcanic hazards through

detection of transient thermal phenomena?

• Wildfires

What is the impact of global biomass burning on the terrestrial biosphere and

atmosphere, and how is this impact changing over time?

• Water Use and Availability

How is consumptive use of global freshwater supplies responding to changes in

climate and demand, and what are the implications for sustainable management

of water resources?

• Urbanization

How does urbanization affect the local, regional and global environment? Can

we characterize this effect to help mitigate its impact on human health and

welfare?

• Land Surface Composition and Change

What is the composition and temperature of the exposed surface of the Earth?

How do these factors change over time and affect land use and habitability?

5.2 Instrument Description

In late 2006, JPL began the development of a breadboard thermal infrared

pushbroom-spectrometer termed the Quantum Well infrared photodetector Earth

Science Testbed (QWEST) as an end to end laboratory demonstration of both the

thermal Dyson spectrometer as well as the quantum well infrared focal plane

technology. The testbed was the precursor to the airborne HyTES. QWEST brought

together numerous in-house specialties such as optical design and general spec-

trometer alignment optimization, precision slit fabrication, high efficiency and low

scatter concave diffraction grating design and fabrication, precision mechanical and

machining capability and QWIP focal plane arrays. The specifications for both

QWEST and HyTES are given in Table 5.1.

5.2.1 Optical Design

Both QWEST and HyTES utilize a concentric optical design which allows a point

to be mapped perfectly to a focal plane array. Past and future planned imaging

spectrometer systems have successfully implemented the Offner design (Offner
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1973; Chrisp 1999). The idea behind the Offner concentric design was to provide a

relay unit magnifier to alleviate distortion and third order system aberrations while

having an accessible object and image plane. The first published supplementary

idea for an all reflecting or 2-mirror concentric imaging spectrometer was cast by

Thevenon and Mertz (Mertz 1977). Subsequent work was also done by Kwo et al.

(1987) and Lobb (1994). A concentric design like the Offner is well-suited to

spectrometers. Smile and keystone distortion are nearly eliminated using proper

alignment and design techniques. Although an excellent performer, for the TIR the

Offner design would be relatively large and would require a bulky temperature

controlled dewar and large power supplies to maintain adequate thermal control. J.

Dyson published a paper in 1959 outlining a Seidel-corrected unit magnifier which

was composed of a single lens and concave mirror. It was used to project groups of

lines for emulsion photography and also phase contrast microscopy. Mertz also

proposed the Dyson principle in the same paper where he discussed the Offner.

Wynne (1987) proposed a Dyson design for microlithography in the visible and

ultraviolet and Mouroulis et al. (2000), considered Dyson designs for visible

spectrometry and for coastal ocean applications. A thorough treatment of these

designs as well as a working infrared system is described in work by Warren et al.

(2008). Kuester et al. (2007) discuss an airborne platform which uses a visible

transmitting Dyson.

Both QWEST and HyTES use the same Dyson principle but extend the Dyson

design to work optimally with the LWIR (long-wave infrared). The savings in

physical size for similar F/# systems is dramatic as shown in Fig. 5.1. Both QWEST

and HyTES were designed to minimize smile and keystone distortion (Mouroulis

et al. 2000) while simultaneously virtually eliminating ghosting. The slit width of

QWEST is 50 μm and the slit width of HyTES is 39 μm, which corresponds to two

detector pixels. QWEST has 25 μm pixels whereas HyTES has 19.5 μm pixels.

Smile and keystone distortions were kept to no more than 1–2 % of this or ~2 μm.

Table 5.1 QWEST and HyTES specifications, QWEST is a laboratory technology demonstration

testbed while HyTES is the IIP funded airborne sensor

Instrument characteristics QWEST HyTES

Number of cross track pixels 320 512

Number of bands 256 256

Spectral range 8–12 μm 7.5–12 μm
Typical dwell time 30 ms 30 ms

Total field of view 40� 50�

Calibration (preflight) Full aperture blackbody Full aperture blackbody

QWIP array size 640 � 512 1,024 � 512

QWIP pixel pitch 25 μm 19.5 μm
QWIP temperature 40 K 40 K

Spectrometer temperature 40 K 100 K

Slit width 50 μm 39 μm
Pixel size at 2,000 m flight altitude 4.5 m 3.64 m

Pixel size at 20,000 m flight altitude 45 m 36.4 m
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JPL can fabricate ultra precision slits using reactive ion etching which can be kept

straight to an order of magnitude better than this. For this reason the slit straightness

is not typically the limiting factor in spectrometer performance. As shown in

Fig. 5.2 (QWEST) and Fig. 5.3 (HyTES), a single monolithic block is used in

double pass where light from the slit enters at a narrow optical passageway and is

transmitted through the rear power surface, diffracts off the grating and re-enters

the block to totally internally reflect off the back surface which guides the spectrally

dispersed radiation to focus at the QWIP detector location, labeled as the Focal

Plane Array (FPA) in Figs. 5.2 and 5.3. The FPA is kept at 40 K in both instruments.

This design minimizes the travel and form factor of the system.

Fig. 5.1 Ray trace of larger Offner spectrometer (left) and smaller Dyson spectrometer (right).
Designs are for comparable F/#’s and slit width and represent the relative difference in size of the

full optical path between the two spectrometer designs

Fig. 5.2 Optical ray trace of the QWEST Dyson spectrometer and objective lens elements.

Thermal radiation passes through the slit and is dispersed by the grating. The dispersion is

reimaged ultimately back at the focal plane array (FPA) which is kept at 40 K to obtain the

optimum performance from the detector
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5.2.2 Telescope

The telescope for QWEST was operated warm whereas the telescope for HyTES is

kept cold (100 K). Keeping the telescope cold on HyTES minimizes any self

emission which would negatively impact the dynamic range, uniformity, and

linearity of the data. HyTES uses a reflective off-axis two mirror anastigmat

telescope which is a two-piece, self-aligning, all aluminum design by B. Van

Gorp, JPL. It consists of two oblate ellipsoids, diamond-turned Al (Fig. 5.4).

There was special attention to internal baffling which was also diamond turned

into the aluminum structure. The aluminum mirror surfaces were over coated with

gold for maximum reflectivity, and all other internal surfaces were painted with

Fig. 5.3 Optical ray trace of Dyson spectrometer and objective lens elements. Thermal radiation

passes through the slit and is dispersed by the grating. The dispersion is reimaged ultimately back

at the focal plane array

Fig. 5.4 Light path through telescope (left) and front view of actual snap-together self aligning

telescope used with HyTES
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high emissivity black, hence, minimizing stray reflections. The outside of the

telescope was brought to a mirror-like look from the diamond tip. This fine surface

treatment also helps in eliminating thermal buildup from local radiation loading

since radiation from the warm outer vacuum housing will be reflected away.

5.2.3 Relay

A key difference between QWEST and HyTES is HyTES has a relay assembly prior

to the spectrometer housing. This minimizes stray light and allows for a fixed

aperture stop position for the telescope. A photo of the relay is shown in Fig. 5.5.

The assembly uses six total lens elements. All surfaces are coated with highly

transmissive interference layers in order to maximize light throughput. The lens

elements are held in a kinematic mount to minimize distortions during flight

Fig. 5.5 Top image shows
how HyTES Germanium and

Zinc Selenide relay elements

were bread boarded at room

temperature using a test

camera in the laboratory to

confirm image quality.

Bottom image shows the final
titanium housing for the six

optical elements. The

enclosure is kinematic

allowing repeatable and

stable alignment while being

thermal cycled. See Fig. 5.2

for a ray trace of the assembly
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operation. As shown in the figure, all internal surfaces are coated with black paint.

This includes the stop aperture which is symmetrically placed between the two

stacks of lenses. This symmetric design allows the focused field rays from the

telescope to be re-imaged at the spectrometer slit with essentially zero chromatic

aberration. The goal is to have the diffraction grating introduce the dispersion, not

the other optical elements.

5.2.4 Slit

Both QWEST and HyTES use a slit to limit the field angle. JPL can fabricate

ultra precision slits. The slits are kept straight to an order of magnitude better than

needed. This is one of the keys to enable high performance imaging spectrometers.

The slit uses Reactive ion etching (RIE) of silicon nitride (Si3N4) films formed

by low pressure chemical vapor deposition (LPCVD). A schematic of the etching

process is shown in Fig. 5.6a with the finished product for HyTES shown in

Fig. 5.6b.

5.2.5 Dyson Spectrometer

Both QWEST and HyTES use a Dyson spectrometer machined from a ZnSe block.

The Dyson spectrometer blocks for QWEST and HyTES are shown in Fig. 5.7.

Broadband area coatings are used on all applicable light transmitting surfaces. The

coatings allow 99.0 % or better LWIR light to transmit per surface. The block is

fabricated from ZnSe, a robust material with a transparent wavelength region from

0.4 to 23 μm and an absorption coefficient between 10�3 and 10�4 cm. The ZnSe

slab is produced by chemical vapor deposition in large chucks and usually cut to

small line slices for lens fabrication. A block large enough to support HyTES is

difficult to find in practice, since it requires large dimensions (>30 mm) in all

3-axes.

Baffling the Dyson spectrometer in practice is challenging. Notice the grooves in

the block used with HyTES which provide additional baffling to avoid stray light

effects.

5.2.6 Grating

Both QWEST and HyTES use a diffraction grating. Grating design and fabri-

cation are key enabling technologies for these spectrometers. JPL has developed

electron-beam lithography techniques that allow fabrication of precisely blazed
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Fig. 5.7 Monolithic ZnSe optical block with broadband anti-reflection (BBAR) coatings used in

double pass for the Dyson spectrometer. QWEST on the left and HyTES on the right

Fig. 5.6 (a) A generalized process for etching away silicon nitride to expose a clear opening. The

etching is done using an ion beam so that precise features and edges can be formed. After etching

away the material, the opening is used as the slit for HyTES. (b) A microscope image of the

completed HyTES slit edge. The 50 μm wide slit is shown near the center of the photo
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gratings on curved substrates having several millimeters of height variation (Wilson

et al. 2003; Perry and Dereniak 1993). To date, JPL is the only facility capable of

producing electron beam fabricated gratings on curved substrates. Gratings

fabricated in this manner provide high efficiency combined with low scatter.

Figure 5.8 illustrates the optical path through the Dyson spectrometer and grating

and return path of the dispersed light back through the Dyson to the focal plane.

Figure 5.9 shows an electron microscope measurement of the actual grating and

picture of the grating. Figure 5.10 shows the assembled grating, relay and spec-

trometer housing.

5.2.7 QWIP Detector

Both QWEST and HyTES use QWIP detectors (Gunapala et al. 2007). QWIP

utilizes the photoexcitation of electrons between the ground state and the first

excited state in the conduction band quantum well (QW). QWIPs have been

successfully integrated into commercial handheld field units for more than a

decade. This is the first integration of the QWIP with a spectrometer system for

earth science studies requiring accurately calibrated data. The detector pixel pitch

of the FPA is 20 μm and the actual pixel area is 19.5 � 19.5 μm. Indium bumps

were evaporated on top of the detectors for hybridization with a silicon readout

integrated circuit (ROIC). These QWIP FPAs were hybridized (via indium bump-

bonding process) to a 1,024 � 1,024 pixel complementary metal-oxide semicon-

ductor (CMOS) ROIC and biased at –1.25 V. At temperatures below 72 K, the

signal-to-noise ratio of the system is limited by array nonuniformity, readout

multiplexer (i.e., ROIC) noise, and photocurrent (photon flux) noise. At

temperatures above 72 K, the temporal noise due to the dark current becomes the

limitation. We are currently running the system at 40 K to have a SNR advantage.

The QWIP is known for its high spatial uniformity (<1 %). This is a clear

advantage over other detector technologies such as Mercury Cadmium Telluride

(HgCdTe) and Indium Antimonide (InSb). QWIP’s are typically known to be

Fig. 5.8 Illustration of the HyTES grating. The grating is a standard saw-tooth blaze. The �1

order makes it back through the Dyson spectrometer and is focused on the focal plane array

104 S.J. Hook et al.



narrow band in nature and a single QWIP stack was used for QWEST which limited

the spectral range to 8–9 μm. HyTES used a 2-stack QWIP which allowed the

spectral range to be extended from 7.5 to 12 μm (Fig. 5.11).

Figure 5.12 shows the packaged HyTES Focal Plane Array and flex cable

attachment. The QWIP focal plane is split into two regions to cover the system

bandwidth requirements. Region one is sensitive to the 7.5–10 μm region while

region 2 is sensitive to the 10–12 μm region. Figure 5.13 shows two pictures taken

using the full QWIP array in an external camera.

Fig. 5.9 (a) Measurement of saw-tooth blaze (b) macroscopic photo of grating. The actual

microscopic blaze is only written on the center part of the part. The edge is clear. A slight

roughness can be seen in the photo towards the center while the edge is shinny. The grating

substrate is 38.1 mm in diameter
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5.2.8 System Integration

Both QWEST and HyTES used a vacuum chamber to keep the focal plane and

system cold. The QWEST chamber used liquid helium whereas the HyTES system

uses two mechanical cryocoolers. In QWEST the telescope was external to the

vacuum chamber and therefore contributed considerable self emission to the mea-

surement whereas in HyTES the telescope is incorporated in the cryovacuum

system thereby minimizing any self emission. In QWEST, the focal plane was

held at 40 K and the surrounding components allowed to self equilibrate with the

vacuum chamber which resulted in strong thermal gradients in the system. The

HyTES vacuum chamber uses two cryocoolers (Fig. 5.14). The chamber has

Fig. 5.10 Assembled grating, relay and spectrometer housing. See Fig. 5.2 for a ray trace of the

assembly

10-12

7.5-10

Fig. 5.11 HyTES pixel design – cross-sectional zoom at the transition point, showing two bands

with ¼ lambda gratings on each. Light enters from the bottom of the diagram and is diffracted by

the grating on top. The grating diffracts the light at a nearly horizontal direction. It is absorbed by

the intervening material (shown as two different colors on the figure), converted to electrical signal

and sent to the readout
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Fig. 5.12 Small form factor HyTES focal plane array analog electronics. Traces on a single layer

ceramic board is used to send all electrical signals from the readout electronics to the analog-to-

digital converters. A flex cable is used to minimize the thermal footprint, since this is the coldest

part of the instrument

Fig. 5.13 Two images taken with the HyTES 1 K � 1 K QWIP array, the first author is on the left.
The images show that most pixels appear to be active. There’s very little “dead” pixels. The image

on the left uses a single point correction and the image on the right uses a two point correction. A

single point correction typically takes out any offset present in the system while the 2-point

correction typically removes bias and gain. There’s an obvious improvement in terms of image

uniformity between the two images
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already been proven to support airborne operation for other VSWIR instruments

while maintaining rigidity of its inner precision optical components.

The focal plane reaches its operating temperature in about 4 h whereas the rest of

the system takes about 26 h to reach operating temperature.

5.2.9 System Testing

QWEST has been tested extensively whereas the HyTES system is complete and

under test prior to the first airborne flights expected in late 2012. The radiometric

performance of QWEST and HyTES was assessed by performing a National

Institute of Standards and Technology (NIST) traceable transfer calibration, using

an electro-optic blackbody to verify performance, between two end bracket

temperatures of 5 and 30 �C. JPL has multiple NIST traceable blackbodies with a

stability at 25 �C of �0.0007 �C and a thermistor standard probe with an accuracy

of 0.0015 �C over 0–60 �C and stability/yr of 0.005 �C. A 2-point non-uniformity

correction was then applied using the blackbody measurements at 5 and 30 �C
(Perry and Dereniak 1993; Mooney et al. 1989). In order to evaluate the instrument

performance the external blackbody was then ramped from 5 to 30 �C in 5 �C and

Fig. 5.14 (a) Schematic of the HyTES system showing two cryocoolers. (b) HyTES system is

shown during field operation. Various mineralogical targets are positioned at the NADIR port.

Emissivity spectrum is recovered as a function of field angle to show system performance
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its radiation measured with the sensor (HyTES or QWEST) after the blackbody is

stable at each of the temperature increments. Frames are taken at each interval to

check for both temporal artifacts and single frame noise equivalent temperature

difference per spectral band as well as determining any spectral non-linearity.

Two tests were performed to characterize the instrument performance. Test one

was for spectral linearity while the other determined the spectral noise equivalent

delta temperature (NEdT). Figure 5.15 shows that QWEST has very good linearity

with many temperature measurements showing absolute errors below 0.1 �C. Fig-
ure 5.16 shows the noise equivalent delta temperature for spectral channels at

blackbody temperatures between 5 and 30 �C. This implies that for a given

temperature between this range QWEST has a mean NEdT of 124.7 mK.

The QWEST system was then operated outdoors under direct sunlight to under-

stand and characterize the science usefulness of the instrument towards remote

sensing earth science applications. Testing involved using the same approach as

Fig. 5.15 Basic QWEST linearity, (Top) Chart plotted with respect to a straight line showing

deviation of the QWEST measurement from the blackbody measurement and (Bottom) actual
readings and absolute error
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outlined in Hook and Kahle (1996). A spectral calibration of the system is

performed by observing a gold plate illuminated with direct sunlight; the reflected

sky radiation shows the atmospheric water lines and these can then be matched with

their known positions. An assessment of a retrieval was then performed by looking

at a laboratory sample of quartz and retrieving the quartz spectrum. The data shown

uses an integration time of 30 ms and the measurements were made around solar

noon. Figure 5.17 shows the radiance calculated for a gold standard; the atmo-

spheric water lines are clearly apparent. The data were proven to be both spectrally

and radiometrically accurate.

These data are then used in part to further reduce data taken with the system in

direct sunlight. Once the atmospheric water lines are removed the spectral features

present in a sample of Quartz are clearly apparent (Fig. 5.18). This spectrum

compares favorably with previously taken data in the laboratory using a reflectance

measurement and provided in the ASTER spectral library (Baldridge et al. 2009).

As noted above HyTES laboratory testing is still underway but initial results are

very promising. Figure 5.19 shows the NEdT performance of HyTES using the

same approach described with QWEST.

Figure 5.19 shows that HyTES has a good NEdT from 7.5 to 11.5 μm and meets

the desired specification of better than 0.2 K. The NEdT plot was generated using an

integration time similar to that required for the lowest altitude flights. Higher

altitude flights would have more integration with further improvement. Figures 5.20

and 5.21 provide examples of measurements made with HyTES in the laboratory by

Fig. 5.16 Frame (Temporal) Mean Histogram. The mean value shown corresponds well with the

expected linearity and the standard deviation is a measure of the noise equivalent temperature

difference
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Fig. 5.17 Radiance of gold standard with superimposed atmospheric bands as measured in direct

sunlight

Fig. 5.18 Apparent emissivity of quartz as measured by QWEST in direct sunlight
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first calibrating HyTES and then placing the sample at the entrance. These spectra

clearly indicate that HyTES can be used to measure emissivity spectra but further

work is needed to establish the full instrument performance in the laboratory before

flights later in 2012.

5.3 Future Perspective

The HyTES system represents a major step forward in airborne thermal infrared

(TIR) remote sensing and will provide the first ever high spatial, spectral and wide

swath thermal infrared imagery that will be routinely available to the research

community. This contrasts with similar high spectral, spatial and wide swath

imaging instruments operating in the visible to shortwave infrared (VSWIR) such

as AVIRIS which have been available for over a decade. This discrepancy arose due

to the additional technological challenges that needed to be overcome to make

equivalent measurements in the TIR compared with the VSWIR. QWEST and

HyTES demonstrate that these technological challenges have been largely over-

come but further work is needed, especially in the detector arena, to obtain the

highest possible quality data. QWEST and HyTES represent the culmination of

many years of research. We fully expect that HyTES will provide a wealth of new

scientific data which will open new avenues of research in a similar way that

Fig. 5.19 HyTES spectral noise equivalent temperature difference (NEΔT). The distribution is

shown for all spectral channels. The scene was composed of a 25 �C blackbody target.

Measurements were made for a calibrated blackbody between 5 and 45 �C
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Fig. 5.20 Example emissivity spectra retrieved from samples of quartz with HyTES in the

laboratory. Ottawa sand is mostly composed of quartz. The quartz doublet is clearly visible in

the emissivity spectrum. Different pixel values are shown. Each pixel value represents a different

cross track field angle. The absolute value of the spectra differs due to an artifact in the

measurement process

Fig. 5.21 Example emissivity spectra retrieved from samples of Silicon Carbide with HyTES in

the laboratory. The absolute value of the spectra differs due to an artifact in the measurement

process



AVIRIS opened up new research avenues for Earth and Planetary research. While

HyTES represents the state of the art in terms of airborne measurements, the

multichannel HyspIRI TIR represents the next step in spaceborne measurements

and it seems likely that in the future we will see both VSWIR and TIR hyperspectral

land imagers in space.
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Chapter 6

NASA’s Hyperspectral Infrared

Imager (HyspIRI)

Michael J. Abrams and Simon J. Hook

Abstract NASA’s Hyperspectral and Infrared Imager (HyspIRI) mission is one of

the missions recommended in the National Research Council Earth Science Decadal

Survey. HyspIRI will fly two instruments: a hyperspectral visible to short wave

infrared imaging spectrometer, and a multispectral thermal infrared (TIR) imager.

In this study we discuss the expected performance and use of the TIR instrument. The

TIR instrument will have eight spectral channels, seven of the channels are between

7 and 12 μm, with one additional channel at 4 μm. The TIR instrument will have a

swath width of 600 km, and pixel size of 60 m. HyspIRI TIR will provide two visits

every 5 days (one day and one night) at the equator, and more frequently at higher

latitudes. The TIR instrument will always be on and full resolution (60 m) data will be

downlinked for the entire land surface including the coastal oceans (shallower than

50 m depth). Data over the deeper ocean will also be downlinked but at a reduced

spatial resolution of 1 km. In response to the Decadal Survey, HyspIRI has been

designed to answer important science questions in the areas of coastal, ocean and

inland aquatic environments; wildfires; volcanoes; ecosystem function and diversity;

land surface composition and change; and human health and urbanization. NASA’s

Distributed Active Archive Center will archive and distribute Level 0 to Level

2 products. In addition a direct broadcast capability will allow users to capture and

process a subset of HyspIRI data in near real time.
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6.1 Introduction

6.1.1 The Decadal Survey

In 2004, the U.S. NASA (National Aeronautics and Space Administration)

commissioned the National Research Council (NRC) to conduct a Decadal Survey

(DS) for Earth science and applications from space. The 2007 report is titled Earth
Science and Applications from Space: National Imperatives for the next Decade and
Beyond (NRC 2007). The purpose of this study was to provide NASAwith a blueprint

for the next 10 years, prioritizing science missions, in response to community inputs

and recommendations. The report identified key science measurements and

recommended a small number of missions to acquire those measurements. The topical

areas included earth science applications and societal benefits; land use change,

ecosystem dynamics, and biodiversity; weather; climate variability and change;

water resources and the global hydrologic cycle; human health and security; and

solid earth hazards, resources and dynamics.

Included in the recommended missions was the Hyperspectral and Infrared

Imager (HyspIRI) that would provide global observations at local and landscape

scales (10s of meters to 100s of kilometers). The mission would include a

hyperspectral visible-near infrared-shortwave infrared (VSWIR) imaging spec-

trometer, and a multispectral thermal infrared (TIR) scanner. Operating from low

earth orbit, the instruments would provide global coverage, frequent repeat revisits,

and data at adequate spatial resolution. The DS laid out a timeline to implement the

missions: HyspIRI was included in the second tier, with recommended launch dates

in the 2013–2016 timeframe. NASA assigned preliminary study activities for

HyspIRI to the Jet Propulsion Laboratory (JPL). Dr. Robert Green headed up the

studies for the VSWIR hyperspectral instrument, and Dr. Simon Hook was respon-

sible for the TIR instrument. This chapter describes the TIR component of HyspIRI.

6.1.2 Heritage

HyspIRI’s thermal infrared sensor draws its heritage from several spaceborne

missions, and airborne instruments. Acquisition of moderate spatial resolution

TIR data from satellite instruments (~100 m) with TIR capability are dominated

by two instruments. The long series of Landsat scanners, operated by NASA, have

provided global data since 1972. In 1978, the Landsat Multispectral Scanner added

a 240 m 10–12 μm channel (Ormsby 1982). Since 1982, all the versions of the

Landsat Thematic Mapper scanner have included a single broad band TIR channel,

typically covering the 8–12 μm wavelength region. Pixel sizes have varied from

60 to 120 m. Single channel instruments measure brightness temperature, which

includes the temperature and emissivity of the surface being observed. Single

channel instruments cannot be used to recover the surface temperature unless the
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emissivity is assumed or the emissivity unless the temperature is assumed. For

perfect blackbodies, the brightness and kinetic temperatures are the same. For bare

areas in the real world (i.e., rocks and soils, and excluding water and vegetation),

the difference between brightness and kinetic temperatures can be several degrees

Celsius. Since 1999, NASA and METI (Japan’s Ministry of Economy, Trade

and Industry) have jointly operated the ASTER (Advanced Spaceborne Thermal

Emission and Reflection Radiometer) instrument on NASA’s Terra platform

(Yamaguchi et al. 1998). ASTER includes a multispectral thermal scanner, with

five channels in the 8–12 μm region, 90 m pixel size, and 60 km swath width.

Because of its multispectral data, surface kinetic temperature and emissivity can be

recovered from ASTER data. This information can then be used to map surface

composition, and as accurate inputs to climate models.

Both Landsat and ASTER have operational shortcomings: either they have a

single TIR channel, and are not multispectral (Landsat), or they do not provide

systematic global coverage (ASTER). HyspIRI seeks to improve on both of these

scanners by providing multispectral TIR data, and global coverage with frequent

revisits.

Several other spaceborne instruments have had a relatively short lifetime, and

limited capabilities. The DLR’s (German Aerospace Center) BIRD (Bi-Spectral

Infrared Detection) scanner (Briess et al. 2000) had two MWIR (mid-wave

infrared)/TIR channels (3.4–4.2 μm and 8.5–9.3 μm), designed to detect and

measure elevated temperatures produced by, for example, forest fires and volcanic

eruptions. BIRD was designed with a 290 m pixel size, and 145 km swath width.

BIRD operated nominally from 2002 to 2004, and irregularly for several years after.

The U.S. Department of Energy sponsored the Multispectral Thermal Imager

(MTI), launched in 2000 with highly restricted access to data. The instrument had

a 12 km swath width, 20 m pixel size, 2 bands in the 3.5–5 μm region, and 3 bands

in the 8–10.7 μm region (Szymanski and Weber 2005). Several members of the

HyspIRI study team were investigators with access to MTI data; their experiences

went into the HyspIRI TIR concept.

It is ironic that the most advanced spaceborne multi-band TIR instrument is

currently orbiting Mars. The Thermal Emission Imaging System (THEMIS) is a

scanner on the Mars Odyssey spacecraft. It combines a 5-band visual imaging

system with 20 m pixels; and a 9-band TIR imaging system with 100 m pixels

(Christensen et al. 2003). THEMIS data have helped to unlock Martian mysteries

related to presence of water on the planet, composition of rocks, and the geologic

history of the planet.

TIR aircraft instruments have been operating since the early 1970s. The first

work was with a two-channel instrument (Vincent 1972). By ratioing values from

two thermal bands, emissivity differences could be detected in the resulting image,

and these were related to differences in rock type. In the early 1980s, NASA started

operating the Thermal Infrared Multispectral Scanner (TIMS), a 6-channel airborne

instrument with bands in the 8–12 μm wavelength region (Kahle and Rowan 1980).

TIMS was the first operational scanner that acquired multispectral TIR data

allowing separation of temperature and emissivity (T-E). Many researchers
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developed techniques to solve the under-determined T-E problem, and accurate

retrievals of both values is now routine. TIMS flew for more than 15 years before

being replaced by a 10-channel TIR instrument, the MODIS (Moderate Resolution

Imaging Spectrometer)/ASTER (MASTER) 50 channel instrument (Hook et al.

2001). In addition to 10 bands in the 8–12 μm region, MASTER has channels in the

3–5 μm region. In Europe, the 102-channel MIVIS (Multispectral Infrared Visible

Imaging Spectrometer) scanner, owned and operated by Italy’s National Research

Council, has acquired data since 1994 for many researchers. MIVIS has 10 channels

in the 8.2–12.7 μm region (Bianchi et al. 1994). The U.S. Aerospace Corporation

developed the SEBASS (Spatially Enhanced Broadband Array Spectrograph Sys-

tem) scanner and first deployed it in 1995 (Hackwell et al. 1996). SEBASS has

128 bands in each of the 3.0–5.5 μm and 7.8–13.5 μm regions. The instrument

images 128 pixels cross-track with an instantaneous field of view (IFOV) of 1 mrad.

In the last 40 years, a large and growing research community has developed to

study and expand applications of TIR data over a wide range of earth science

disciplines. Working with laboratory measurements, field spectrometers, aircraft

data, and data from spaceborne instruments, researchers have compiled spectral

libraries of surface materials (Christensen et al. 2000; Baldridge et al. 2009);

developed techniques to extract surface compositional information from airborne

hyperspectral TIR data (Kirkland et al. 2002; Hook et al. 1992); detected canopy

water stress in coniferous forests (Pierce et al. 1990); and refined determination of

land surface temperature and emissivity (Hulley and Hook 2011), to name just a

few. It was the combined voice of this TIR user community that convinced the NRC

of the need for HyspIRI.

6.1.3 Science Objectives

The following description of the HyspIRI mission draws heavily on the 2008

HyspIRI Whitepaper and Science Workshop Report available online (URL1).

HyspIRI is a science-driven mission, developed to address the science questions

called out in the Decadal Survey. These have been further developed by the

HyspIRI Science Study Group under six topic areas. Both the TIR and VSWIR

instruments are required to answer important science questions:

1. Coastal, Ocean and Inland Aquatic Environments: The oceans and inland

aquatic environments are a critical part of global climate, the hydrologic cycle,

and biodiversity. HyspIRI will allow for greatly improved separation of phyto-

plankton pigments, better retrievals of chlorophyll content, more accurate

retrievals of biogeochemical constituents of the water, and more accurate deter-

mination of physical properties, including water temperature derived from TIR

channels (GEO 2007).

2. Wildfires: The 4 μm channel will greatly improve determination of fire

temperatures, since it will not saturate like almost all other sensors with a similar
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wavelength channel. Coupling the multispectral TIR data with the VSWIR data

will improve understanding of the coupling between fires and vegetation and

associated trace gas emissions (Dennison et al. 2006).

3. Volcanoes: HyspIRI’s TIR channels will allow combined measurement of

temperature, surface composition, and SO2 emissions. These three parameters

are critical to understand changes in a volcano’s behavior that may herald an

impending eruption. Fumaroles, lava lakes, and crater lakes often undergo

characteristic increases in temperature associated with upwelling magma; SO2

emissions both increase and decrease before some eruptions. Prediction of lava

flow progress depends entirely on knowledge of effusion rate and temperature

(Wright et al. 2008).

4. Ecosystem Function and Diversity: HyspIRI will provide improved measures of

plant physiological function through simultaneous estimates of surface temper-

ature and plant biochemistry, improved estimates of surface biophysical

properties (e.g. albedo or crown mortality) and energy balance and improved

discrimination of plant species and functional types. No current sensor can

simultaneously retrieve canopy temperature and quantify physiological or com-

positional changes in response to stress.

5. Land Surface Composition and Change: Combining information from the

hyperspectral VSWIR and TIR scanners will greatly improve our ability to

discriminate and identify surface materials: rocks, soils and vegetation. This is

the first step to be able to quantitatively measure change of the land surface,

whether naturally caused or of anthropogenic origin. Change detection, moni-

toring, and mapping forms the basis for formulating numerous policy decisions,

from controlling deforestation to open-pit mining. HyspIRI will provide a

greatly improved tool to make more informed and intelligent decisions.

6. Human Health and Urbanization: It appears that the world’s urban population

will grow by over 60 % by 2030 (UNIS 2004). Because of its enhanced

hyperspectral capabilities in the VSWIR bandwidths and its multiple channels

in the TIR, HyspIRI will provide much better data to improve measurement and

modeling of urban characteristics around the world. One of the issues that has

been problematic in the past is retrieving accurate measurements of temperature,

albedo, and emissivity for specific surfaces across the complex and heteroge-

neous urban landscape. HyspIRI has the spatial resolution, spectral coverage,

and repeat cycle to greatly improve these retrievals.

6.2 Instrument Description

HyspIRI TIR is a science driven instrument. A science study group, representing a

broad range of science disciplines, formulated the important science questions that

a TIR (and combined TIR-VSWIR) instrument could address. The questions were

used to help formulate instrument requirements and mission operation parameters

(HyspIRI Group 2009). Through a series of trade-offs with the engineering experts,
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a TIR instrument was designed that met the great majority of the science

requirements, while satisfying budgetary constraints on mission costs.

Based on these considerations, the TIR instrument was designed as a whisk-push

broom scanner with reflective optics to image a 600 km swath width at 60 m pixel

size (Fig. 6.1). It has an on-board blackbody and an opening to look towards deep

space at every scan; both of these are for calibration. The TIR and VSWIR

instruments are configured together on a single spacecraft bus (Fig. 6.2).

The number and position of the spectral bands were considered based on

experience gained from the heritage instruments (primarily spaceborne ASTER

and MODIS, and airborne TIMS and MASTER), and systematic studies of satura-

tion levels for hot target measurement. Table 6.1 summarizes the spectral and

Fig. 6.1 Conceptual drawing showing cutaway view of HyspIRI TIR instrument

Fig. 6.2 Conceptual drawing of HyspIRI TIR and VSWIR instruments in orbit
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radiometric characteristics of TIR: 8 bands, with 7 in the 7.3–12.1 μm thermal

infrared region, and one band at 4 μm in the mid infrared region (Fig. 6.3). It is

expected that while the number of bands will remain at eight the exact position of

the bands within the 4–12 μm window will shift based on ongoing science studies.

Table 6.1 Instrument characteristics

Spectral

Bands (8) um 3.98, 7.35, 8.28, 8.63, 9.07, 10.53, 11.33, 12.05 μm
Bandwidth 0.084, 0.32, 0.34, 0.35, 0.36, 0.54, 0.54, 0.52 μm
Accuracy <0.01 μm
Radiometric

Range Bands 2–8 ¼ 200–500 K; band 1 ¼ 1,200 K

Resolution <0.05 K, Linear quantization to 14 bits

Accuracy <0.5 K 3-sigma at 250 K

Precision (NEdT) <0.2 K

Linearity >99 % characterized to 0.1 %

Spatial

IFOV 60 m

MTF >0.65 at FNy

Scan type Push-whisk

Scan width 600 km (�25.5� at 623 km altitude)

Cross track samples 10,000

Swath length 15.4 km (�0.7� at 623 km altitude)

Down track samples 256

Band to band co-registration 0.2 pixels (12 m)

Pointing knowledge 1.5 arcsec (0.1 pixels)

Fig. 6.3 Proposed HyspIRI TIR spectral band positions in the 4–12 μm wavelength region
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These studies will capitalize on new data from the Hyperspectral Thermal Emission

Spectrometer (HyTES – see subsequent chapter).

The current placement of 3 of the TIR bands closely matches the first 3 thermal

bands of ASTER (8.28, 8.63, 9.07 μm); the position of 2 of the thermal bands is

patterned after MODIS’s bands 31 and 32 (7.35, 12.05 μm) used for split window

applications. The study of hot targets is a key objective of HyspIRI TIR (volcanoes

and wildfires). An exhaustive study (Realmuto et al. 2011) of all of the historic

measurements made with instruments having a 4 μm channel indicated that satura-

tion was a problem for the hottest targets. Systematic simulations of peak lava flow

and wildfire temperatures led to setting the saturation temperature of the 4 μm band

at 1,200 K, far higher than the ~500 K value used by all previous instruments. The

saturation temperature for the TIR channels was set at 500 K to provide excellent

resolution and sensitivity to a wide range of terrestrial temperatures (Fig. 6.4).

Quantization was set at 14-bits to fully capture information provided by a precision

(NEdT or Noise Equivalent Delta Temperature) of <0.2 K. Radiometric accuracy

will be assured by using an on-board blackbody and view to deep space included as

part of every 256-line scan. In addition, ground-based validation field campaigns

will be performed several times per year; and periodic lunar views will be used to

characterize imaging anomalies (Table 6.2).

Fig. 6.4 Thermal emission peaks in the MWIR (3–5 μm) region for fire temperatures ranging

from ~ 650 K (weak smoldering) to >1,200 K (strong flaming). MIR is far more sensitive to hot

targets than TIR
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The instrument employs a rotating scan mirror to sweep across the scene as the

spacecraft advances. A swath of 256 lines, covering 15 km, is captured at each scan

and imaged onto the 8 � 256 element focal plane (Fig. 6.5).

With its 9,287 cross track pixels, and 60 m pixel size, the TIR instrument will

image a swath of 600 km along its near-polar orbit. This will permit a revisit

interval of 5 days at the equator during the daytime, and similar repeat coverage at

nighttime. Band-to-band co-registration is expected to be 0.2 pixels (12 m). The

time-averaged science data rate is 0.024 Gbps, based on the following assumptions:

14 bits data, 2:1 compression, 40 % of data over land, scan mirror rotation rate of

14.2 RPM, and pixel dwell time of 32 microseconds.

Table 6.2 Instrument characteristics (continued)

Temporal

Orbit crossing 11 a.m. sun synchronous descending

Global land repeat 5 days at equator

On orbit calibration

Lunar views 1 per month (radiometric)

Blackbody views 1 per scan (radiometric)

Deep space views 1 per scan (radiometric)

Surface cal experiments 2 (d/n) every 5 days (radiometric)

Spectral surface cal experiments 1 per year

Data collection

Time coverage Day and night

Land coverage Land surface above sea level

Water coverage Coastal zone �50 m and shallower

Open ocean Averaged to 1 km spatial sampling

Compression 2:1 lossless

Fig. 6.5 Diagram of cross-track scan and data rate for HyspIRI
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6.3 Mission Concept

HyspIRI will fly in a sun-synchronous, near polar (83� inclination), low earth orbit

(625 km); the overpass time will be late morning. At the equator, the TIR scanner

provides a 5 day revisit in the daytime, and another 5 day revisit at night. At higher

latitudes, the combined day-night revisit times are more frequent; for example,

Alaska can be imaged 1–2 times per day (Fig. 6.6).

The acquisition strategy for HyspIRI TIR is controlled by target maps. The

instrument is always on, but there are two modes of data storage: high resolution

mode data are acquired over the land area and coastal waters; low resolution mode

data are acquired over the open oceans. In the low resolution mode the data are

reduced to 1 km spatial resolution. With a dual-mode strategy, mission operations

costs are reduced and the instrument can obtain data in a near-autonomous fashion.

The data rate for both instruments combined is 65 Mbps (continuous and

averaged), resulting in a daily data volume of 5.5 Tb. This is comparable to

currently operating satellites, such as WorldView-1. The HyspIRI satellite will be

equipped with 3 Tb of onboard storage capacity. Downlink will be by Dual X band

or Ka band.

The satellite also includes an Intelligent Payload Module (IPM) with direct

broadcast capability. The IPM taps into the data feed from the instruments and

allows a small subset of the data to be downloaded in real time. The IPM is

independent of the on board data recording and storage system and connects to

the data stream to pull out the desired wavelengths for direct broadcast. Onboard

Fig. 6.6 TIR imaging opportunities: total number of views per day including both day and night

observations
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computing can address issues to downselect and process data to fit within the

reduced downlink bandwidth of 10 Mbps, since the IPM has no storage capacity.

Spatial and spectral subsampling can be tailored for many quasi-operational

applications, such as observing floods, fires, volcanoes, and other natural disasters.

This capability is similar to that provided by NASA’s MODIS project. Users will be

provided software to process the HyspIRI data at their own receiving sites, thus

reducing data latency to a minimum. This scenario has proved enormously effective

and popular with the MODIS community, where 150+ users participate with their

own receiving stations and processing facilities.

6.4 Data Products

HyspIRI is using the same product level definitions as used by NASA’s Earth

Observing System data systems. Briefly, the levels are described below:

Level 0—Reconstructed and unprocessed instrument data at full resolution

Level 1A—Reconstructed unprocessed instrument data at full resolution, time

referenced, and annotated with ancillary information such as radiometric and

geometric calibration coefficients. These are appended to, but not applied to, the

Level 0 data

Level 1B—Level 1A data with calibration coefficients applied; data are in sensor

units (radiance at the sensor)

Level 2—Derived geophysical variables at the same resolution and location as

Level 1

Level 3—Variables mapped on uniform time-space grid scales

Level 4—Model output or results from analyses of lower level data (average time

series, for example)

It is planned that the HyspIRI project will provide the Level 0 through Level

2 data products. Higher level (Level 3 and 4) products will be provided by the

scientific community. The Level 2 data products will include surface radiance,

surface reflectance, surface temperature, and surface emissivity. There will also be

two cloud masks, one for the VSWIR and the other for the TIR. The Level 0 through

Level 2 products will be created for every data granule acquired, and archived for

distribution to users.

Data products will be developed at the HyspIRI Science Data System under the

control and operation of the mission. For each product, an Algorithm Theoretical

Basis Document is prepared, and sent out for peer review. Only when this procedure

is satisfied will NASA approve the data products for distribution to the user

community. Archiving, storage, and distribution of the Level 0–2 products will

be done by one of NASA’s Distributed Active Archive Centers.
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6.5 Future Perspective

As of this writing (November 2011), there are two new NASA-funded aircraft TIR

instruments completed, funded by the Earth Science Technology Office (ESTO) in

support of the HyspIRI-TIR related activities. The Mineral and Gas Identifier

Instrument (MAGI) was developed by the Aerospace Corporation. It has

32 bands covering the 7–12.7 μm region: the higher spectral resolution compared

to existing TIR sensors will improve discrimination of rock types, greatly expand

the gas detection capability, and result in more accurate land-surface temperature

retrieval (Hall et al. 2011). It was funded more specifically to address HyspIRI-type

measurement applications such as rock type identification and volcano monitoring.

First aircraft flights took place in the fall of 2011.

The second instrument funded by NASA is HyTES (Hyperspectral Thermal

Emission Spectrometer), a 256-spectral channel imaging spectrometer. HyTES is

being developed at the Jet Propulsion Laboratory (HyTES 2011). Test flights with

the completed instrument took place in July, 2012. See the chapter on HyTES in this

book for a full description.

Analyses of data from both MAGI and HyTES will be used to refine the

positions of HyspIRI’s spectral bands. The position and spectral width of HyspIRI’s

bands have not yet been fixed; changes can still be made based on analysis of data

with narrower bands (MAGI), or simulating an infinite range of possible bands

(HyTES). It is expected that NASA will fund investigators to use data from these

instruments in science research projects related to HyspIRI’s primary mission

objectives.

What does the immediate future hold for HyspIRI-like spaceborne instruments?

The chart in Table 6.3 summarizes related future instrument launches by space-

capable countries. Included are hyperspectral VSWIR instruments, and instruments

with moderate spatial resolution TIR capability.

Germany (Stuffler et al. 2007), Italy (Prisma 2011), and Japan (Matsunaga et al.

2011) plan to launch VSWIR imaging spectrometers into polar orbits. Their three

instruments are all fairly similar, providing ~250 bands in the 0.4–2.5 μm wave-

length region with pixel sizes of ~30 m, and swath widths of ~30 km. None of these

missions include instruments with any thermal channels. Because of the limited

swath widths, none of these missions can provide global coverage. They can be

used to target small areas on a repeat basis, allowing for very limited spatial

sampling, but fairly frequent temporal coverage. The U.S. launched LDCM

(Landsat Data Continuity Mission, or Landsat-8) in 2013 (Irons and Masek

2006), continuing the long series of Thematic Mapper Scanner instruments. Unlike

its predecessors, LDCM will have multispectral thermal infrared capability, with

two bands at 120 m pixel size. QuantumWell Infrared Photodetectors (QWIP) with

saturation temperature set at 360 K (Jhabvala et al. 2009) will limit the usefulness

for wildfire and volcanic eruption observations due to saturation over these hot

targets.
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HyspIRI is part of NASA’s planned Earth Observation missions, as defined in

the Decadal Survey. Budgetary constraints have slowed down the pace of develop-

ment and launch of satellites compared to the NRC’s recommendations. Neverthe-

less, work continues on refining the TIR instrument design, moving forward with

airborne simulators, funding research projects to improve algorithms, and enlarging

the user community applying TIR data. We hope to see HyspIRI in orbit within the

next 10 years.
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Chapter 7

Spaceborne Thermal Infrared Observation –

An Overview of Most Frequently Used

Sensors for Applied Research

Claudia Kuenzer, Huadong Guo, Marco Ottinger, Jianzhong Zhang,

and Stefan Dech

Abstract This chapter presents an overview of the most commonly used

spaceborne sensors for thermal infrared research applications. There is a large

fleet of international sensors available which allow for the acquisition of data in

the thermal infrared. Depending on spatial coverage, some sensors are more suitable

for mapping large areas, while others support observations at a local scale. Temporal

resolution defines whether temperature patterns or phenomena can be monitored on

a daily, weekly, monthly, or even only an annual basis. A wide variety of thermal

sensors will be introduced in overview tables. However, as certain sensors with

thermal infrared bands have established themselves as ‘work horses’ for certain

types of applications, they will be especially highlighted and presented in depth.

A comprehensive overview of typical thermal infrared application studies and the

sensors particularly favored rounds off this chapter.

7.1 Introduction

Thermal remote sensing over land and ocean has always been a discipline with a

relatively small analyst and user community compared to the fields of multispectral

remote sensing or even radar remote sensing (see Table 7.1). Typical applications

for thermal remote sensing over land are: large scale land surface temperature

(LST) mapping for model input in the fields of vegetation monitoring, agriculture,
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climatology and hydrology; analysis of thermal heat island and heat sink patterns in

urban areas; urban area climatology; volcano monitoring; geothermal analysis;

forest fire, peat fire, and burned area detection; observation of industrial areas,

investigation of coal fire and mining areas worldwide; security applications such as

pipeline monitoring; the retrieval of soil moisture data; and rock type and mineral

discrimination. In the field of ocean or water surface observation, water temperature

patterns, water mixing, and freeze-thaw processes are of special interest to the

community focusing on sea surface temperature (SST). Despite the limited number

of scientists engaged in thermal infrared (TIR) remote sensing and (compared to

optical, multispectral or radar sensors) a relatively narrow choice of really suitable

spaceborne thermal sensors, the applications listed above still indicate a large

potential for quantitative analysis and product generation, which should not

be underestimated. This chapter presents an overview of the currently available

sensors with bands in the thermal infrared which are most commonly used for

thermal earth observation applications.

Table 7.1 presents the number of publications related to thermal infrared research

in four selected remote sensing journals for the years 2009, 2010, and 2011, with

respect to the overall number of publications and sorted according to different fields

of application. We can see that with respect to LST analysis, especially the applica-

tion fields of general LST retrieval over land, forest fire analysis, cloud/snow/ice

detection, and image classification and accuracy mapping are well represented. The

latter fields are especially strong as many scientists publish work demonstrating that

the inclusion of the thermal band can improve the distinction of land cover and land

use classes and can therefore positively influence classification accuracy. Other field

such a geothermal analyses, coal and peat fire investigations, or geo-health – to give

only three examples – are less extensively dealt with. However, one has to keep in

mind that in certain fields, thermal-infrared-related research findings are not

published in typical remote sensing journals, but in those of other disciplines

(energy, geology, environment, etc.) (ESA 2012).

7.2 Thermal Infrared Sensors

Table 7.2 gives a detailed overview of typical sensors and their characteristics

(spatial resolution, revisit time, swath width, platform, agency operating the sensor

and launch year) employed for the analysis of land and sea surface temperatures and

related applications. Currently, most instruments stem from the USA. However,

Europe also had and has several suitable sensors in space, and the upcoming

Sentinel 3 satellite will have on board a thermal sensor named ‘Sea and Land

Surface Temperature Radiometer’, SLSTR, providing 1 km resolution. Also,

China’s fleet of spaceborne sensors, including those with thermal infrared bands,

has expanded rapidly in recent years. All sensors presented are operational (unless

indicated otherwise, marked grey) and deliver data.
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7.2.1 Overview of Selected Sensors with Thermal
Infrared Instruments

The following list presents the full names of sensors listed in Table 7.2.

• ETM+: Enhanced Thematic Mapper (on board the U.S. Landsat 7)

• TM: Thematic Mapper (on board the U.S. Landsat 5)

• TIRS: Thermal InfraRed Sensor (on board the U.S. Landsat DCM)

• ASTER: Advanced Spaceborne Thermal Emission & Reflection Radiometer

(on board the American-Japanese sensor of the same name, on the Terra

platform)

• IRMSS: InfraRed MultiSpectral Sensor (on board the Chinese CBERS 1, 2,

and 2b)

• IRSCAM: Infrared Medium Resolution Camera (on board the Chinese CBERS

3, and future CBERS 4 and 4b)

• InfraredCamera (on board the Chinese HJ-1B satellite)

• MERSI: Medium Resolution Spectral Imager (on board the Chinese FengYun

satellites)

• NIRST: New Infrared Sensor Technology (on board the American Aquarius)

• BIRD: Bi-spectral Infrared Detection (on board the German sensor of the same

name)

• TET: Technologie Entwicklungsträger (on board the German sensor of the same

name)

• VIIRS: Visible/Infrared Imager Radiometer Suite (on board the U.S. Suomi

NPP)

• CrIS: Cross-track Infrared Sounder (on board the U.S. Suomi NPP)

• CERES: Cloud’s and Earth’s Radiant Energy System (on board the U.S. Suomi

NPP)

• IIR: Imaging Infrared Radiometer (on board the French CALIPSO satellite)

• MODIS: Moderate Resolution Imaging Spectroradiometer (on the U.S. platforms

Terra and Aqua)

• AATSR: Advanced Along-Track Scanning Radiometer (on board the European

Envisat)

• AVHRR: Advanced Very High Resolution Radiometer (on board the

U.S. NOAA satellites)

• MSG-SEVIRI: Meteosat Second Generation – Spinning Enhanced Visible and

InfraRed Imager (on board the European METEOSAT Second Generation

satellites)

• MVIRI: Meteosat Visible and InfraRed Imager (on board the geostationary

European METEOSAT satellites)

• MSU-MR: Multispectral scanning imager-radiometer (on board the Russian

orbiting Meteor-M N1 meteorological satellite)

• MSU-GS: Multispectral scanning imager-radiometer (on board the Russian

geostationary Elektro-L N1 meteorological satellite)
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• Imager: Multiband Imager (on board the MTSAT Japanese meteorological

satellites)

• MVISR: Multispectral Visible and Infra-red Scan Radiometer (on board the

Chinese FengYun meteorological satellites)

• IVISSR: ImprovedMultispectral Visible and Infra-red Scan Radiometer (on board

the operating Chinese FengYun meteorological satellites)

• VHRR: Very High Resolution Radiometer (on board the Indian National Satellite

System INSAT)

• IASI: Infrared Atmospheric Sounding Interferometer (on board the European

Metop-A, Metop-B satellites)

• HIRS: High Resolution Infrared Radiation Sounder (in different versions as

HIRS/2/3/4 on board the U.S. NOAA and European Metop series)

• ScaRaB: Scanner for Earth’s Radiation Budget (on board the French satellite

Megha Tropiques)

In Table 7.2 some sensors or satellites are marked in grey. These are no longer

operational, but they are listed here as they were extensively used by the thermal

infrared community, and as we want to indicate the availability of the relevant

data archives for long term monitoring purposes. Concerning spatial resolution,

the pixel resolution in the TIR band(s) (usually located somewhere in the 8–14 μm
domain) is given. Furthermore, we elaborate on some of the thermal instruments

in detail. Here we selected the most commonly employed satellites such as

Landsat-7, ASTER, CBERS, HJ-1B, MODIS, and AVHRR/3. These (amongst

other) have been – or are currently – widely used in the application studies

presented in SCI journals.

7.2.2 Landsat-7 ETM+ Thermal Infrared Data

The Landsat ETM+ characteristics were already briefly introduced in Chap. 1 of this

book. However, as Landsat-7 ETM+ has been – for many years – a work horse for the

thermal infrared community, and as this chapter might be read independently of the

remaining chapters of this book, some facts are repeated here. The new Landsat DCM

(Data Continuity Mission) sensor is covered in a separate chapter of this book. The

ETM+ sensor has one thermal band in the 10.4–12.5 μm domain delivering data at a

spatial resolution of 60 m. For ETM+ all bands are acquired in either a low– or high–

gain mode. Gain selection is defined in the gain strategy of the former Long Term

Acquisition Plan (LTAP), depending on acquisition time and the dominant surface

types in a scene (percentages of land, desert, ice/snow, water, sea ice, etc.). These are

known a priori, based on maps. Except for very specific requests the user has no

influence on the gain setting in the reflective modes. Nevertheless, LS-7 band 6 will

always be recorded and delivered in the low-gain and high-gain mode. These double

gain settings extend the temperature range. However, detector saturation can occur if

a surface has extremely high temperatures, or – vice versa – a surface will not be
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detected thermally if its temperature is below a certain threshold. Table 7.3 lists the

minimum and maximum temperatures in the low-gain and high-gain setting,

indicating the lowest or highest pixel integrated temperature which can be detected

in a certain wavelength region. It also shows that the mid-infrared band 5 can be used

to detect thermal anomalies of very high temperatures leading to saturation in band 6.

Even the near-infrared channel 4 offers options for the detection of extremely high

temperatures.

Although the low-and high-gain options are new compared to the former

Landsat-TM, the thermal bands of ETM+ are less suitable for high temperature

studies. They saturate at 51 and 77 �C, respectively, while TM band 6 saturates at

around 90 �C. It is also often stated that ETM+ still suffers from an antiquated 8 bit

dynamic range, limiting radiance steps to 256 instead of, e.g., 4,096 if a 12 bit

system is used (Flynn et al. 2001). However, the major difference to ETM+ data

is the lower spatial resolution in the thermal band (120 m, no double gain setting)

and the lack of a panchromatic channel for the visible domain. Furthermore,

Landsat TM data have a weaker SNR ratio and radiometric sensitivity. However,

Landsat-5 TM is still acquiring up-to-date images of the earth’s surface and

provides an important data source for many thermal applications.

Figure 7.1 presents a subset of a multispectral combination and a thermal band of

Landsat-7 ETM+ acquired over the Wuda coal mining area in Inner Mongolia,

China. The Yellow River in the center of the subset runs from south to north. It is

frozen in most parts and temperatures range between �2 to 1 �C. Coal surfaces
(which can be recognized as black spots in the ‘ear-shaped’ coal mining syncline

west of the river, as well as in some locations in the south-eastern quarter of

the subset) and sun-exposed geologic surfaces are the warmest areas (15–29 �C),
while the deeply incised valleys on the eastern side of the Yellow River and the

northwest exposed slopes in the northern Helan Mountains in the southwestern

quarter are the coldest regions (�13 to 0 � C). When radiometrically correcting

winter scenes it has to be taken into account that negative temperature values may

occur, and therefore the data has to be handled as “signed” bit instead of “unsigned”

bit data; otherwise all negative temperatures will appear as 0 �C.

Table 7.3 Temperature of saturation in the low- and high-gain bands of Landsat-7 ETM+ with an

8 bit dynamic range

Part of the EMS

Band width/EMR-area

[μm]

Minimum temperature

[�C]
Maximum temperature

[�C]
1 (VIS, blue) 0.45–0.51 1,051 (1,075) 1,483 (1,526)

2 (VIS, green) 0.52–0.60 900 (922) 1,301 (1,340)

3 (VIS, red) 0.63–0.69 755 (775) 1,119 (1,156)

4 (NIR) 0.75–0.90 595 (613) 926 (961)

5 (SWIR) 1.55–1.75 206 (217) 417 (440)

6 (TIR) 10.40–12.50 �33 (�134) 51 (77)

7 (SWIR) 2.09–2.35 92 (101) 258 (276)

8 (PAN) 0.52–0.90 702 (721) 1,056 (1,092)

Source: Flynn et al. (2001), modified
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Upon special request it is possible to plan specific nighttime acquisitions of

Landsat (thermal only). The scheduling of nighttime acquisition is usually only

possible for selected projects and users. Only a limited amount of nighttime data

can be acquired during a satellite’s path around the world, since acquisition on the

nighttime side (descending orbit) requires more energy than a daytime acquisition.

The acquisition of one nighttime scene will lead to the skipping of seven daytime

frames in the ascending daytime orbit. However, nighttime data acquired in the past is

usually available in the worldwide data archives and can be ordered by every user.

ETM+ thermal data has been available since 1999. In May 2003 the ETM+

sensor had a technical failure in a scan mirror. However, according to the Landsat

science team 78 % of the data sets are unaffected and can be ordered. However,

many scientists have stopped using ETM+ instead of analyzing whether the scan

mirror problem even affects their area of interest or the data quality for their

purposes. The new sensor Landsat Data Continuity Mission, LDCM, with its

TIRS instrument acquiring data in the thermal domain, is presented in its own

chapter in this book. Unfortunately, the thermal infrared band comes at a spatial

resolution of 100 m, which is lower than the 60 m resolved thermal band of the

foregoing ETM+ sensor.

7.2.3 ASTER Thermal Infrared Data

The spectral and spatial properties of the ASTER sensor, installed on the Terra

platform and flying 30 min behind Landsat-7, are briefly introduced in Table 7.4.

Since December 1999 ASTER has traveled in a near polar, sun synchronous orbit,

acquiring data since February 24, 2000 with a repetition rate of 16 days. Data is

down-linked in frames covering an area of approximately 60 km � 60 km at

Fig. 7.1 Subset of a multispectral and a thermal daytime scene acquired by Landsat-7 ETM+ on

12.02.2003, 2 months before the scan mirror failure. Left: false color infrared image, right: DNs
converted to temperature in �C. Light: high temperatures, dark: lower temperatures. Temperature

range: �13 to 29 �C. Center location: 650695E, 4373295N, UTM, Z48N
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10:30 a.m. local time. Unlike Landsat-7, which acquires (acquired) data constantly

and therefore provided near-worldwide coverage of frames (except the poles),

ASTER only scans the earth’s surface when specifically requested by a customer.

Thus it does not grant sufficient areal coverage (Earth Remote Sensing Data

Analysis Center. 2000, 2001; Abrams and Hook 1995). Nighttime data with five

thermal bands, acquired at 10:30 p.m. local time, can also be requested by users.

A major advantage of such thermal nighttime data is that at that time only a few

solar effects modify the thermal signal. Influences of uneven heating due to slope

and aspect are minimized (Kuenzer 2005; Zhang and Kuenzer 2007; Zhang et al.

2007). However, the optimal time for thermal data acquisition would be around

5 a.m., shortly before sunrise, when objects on the earth’s surface have the lowest

temperature and the solar effect is least accentuated (Zhang and Kuenzer 2007).

A large advantage and unique feature of the ASTER sensor is the availability of

five bands in the TIR between 8.125 and 11.65 μm at 90 m spatial resolution at a

12 bit dynamic range. Even MODIS has only two bands in the TIR domain and only

at 1 km resolution. ASTER therefore allows discrete emissivity-influenced spectra

of surfaces to be mapped based on five measurements. As elaborated in Chap. 1,

emissivity of a surface varies depending on wavelength. Therefore, an object with a

certain kinetic temperature depicts different amounts of emitted radiation at differ-

ent wavelengths in the thermal domain. If thorough atmospheric correction and

emissivity normalization is performed, it is possible to utilize data of these five

bands for emissivity-based surface mapping and surface discrimination. ASTER

thermal bands are thus very widely used for mineral mapping in arid areas, as

presented by Tangestani et al. (2005), Mars and Rowan (2006), and Pour and

Hashim (2012), amongst many others.

Table 7.4 Spectral and spatial properties of ASTER data

Part of the electromagnetic

spectrum Band width/EMR-area [μm] Spatial resolution [m] Depth [bit]

(1) VNIR 0.52–0.60 15 8

(2) VNIR 0.63–0.69 15 8

(3) VNIR nadir looking 0.76–0.86 15 8

(3) VNIR backward looking 0.76–0.86 15 8

(4) SWIR 1.6–1.7 15 8

(5) SWIR 2.145–2.185 30 8

(6) SWIR 2.185–2.225 30 8

(7) SWIR 2.235–2.285 30 8

(8) SWIR 2.295–2.365 30 8

(9) SWIR 2.360–2.430 30 8

(11) TIR 8.125–8.475 90 12

(12) TIR 8.475–8.825 90 12

(13) TIR 8.925–9.275 90 12

(14) TIR 10.25–10.95 90 12

(15) TIR 10.95–11.65 90 12
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7.2.4 CBERS Thermal Infrared Data

The China-Brazil Earth Resources Satellite CBERS-1 was launched in October 1999,

followed by CBERS-2 in October 2003. CBERS-1 operated from 1999 until 2003,

but CBERS-2 is still delivering data with its three instruments: the Charge Coupled

Device Camera (CCD), the Wide Field Imager (WFI) and the Infrared Multi-Spectral

Scanner (IRMSS). The latter also includes a thermal band at 10.40–12.5 μm at 156 m

resolution. CBERS-2b was launched in 2007 and operated for 3 years. CBERS-3 was

launched ahead of schedule in fall 2012, and it has an improved infrared scanner on

board which delivers thermal data in the 10.40–12.5 μm range covering a swath width

of 120 km at now 80 m resolution. The resolution is thus better than that of the

Landsat DCM thermal band. A panchromatic band at 5 m resolution, and multispec-

tral bands at 10 m resolution are also available and cover a swath of 60 km. CBER–4

and CBERS–4b are currently in the assembly phase and due to be launched in 2014

and 2016, respectively. CBERS is widely used by the Chinese thermal remote sensing

community, amongst others purposes also to fill existing data gaps in thermal Landsat

ETM+ data (Chen et al. 2011) (Table 7.5).

7.2.5 HJ-1B Thermal Infrared Data

HJ stands for HuanJing, which means “environment” in Chinese. The HJ-1B satellite

belongs to a fleet of three (and in the future more) satellites which were launched in

September 2006 (HJ-1A, and HJ-1B) and November 2012 (HJ-1C). The three

satellites were and are mainly used for national disaster and environmental monitor-

ing and can acquire multispectral and radar imagery. HJ-1A, which covered two

bands in the TIR at 1.1 km spatial resolution, is no longer operational. However,

HJ-1B has an infrared camera on board which acquires data in the thermal domain

from 10.5 to 12.5 μm at 300 m spatial resolution, covering a swath of 720 km. One

band in the 3.50–3.90 μm MIR domain collects data at 150 m resolution and allows

for the detection of extremely hot thermal events. JH-1B thermal data is mainly used

for general LST retrieval and the analysis of LST patterns. Due to the novelty of the

HJ series, thermal data from HJ-1B has furthermore extensively been compared with

other spaceborne thermal data, airborne data, and in-situ calibration measurements.

Publications in English SCI journals on HJ-1B thermal data utilization are still rare,

which can be attributed to the novelty of the sensor, as well as the mainly national

data analyses for Chinese territory.

Table 7.5 Infrared Scanner, IRS on board CBERS-3

Part of the EMS Band width/EMR-range [μm] Spatial resolution Technical characteristics

MIR 6: 0.5–0.9 40 m 8 bit

SWIR 7: 1.55–1.75 40 m 120 km swath

8: 2.08–2.35 40 m No side looking option

TIR 9: 10.4–12.5 80 m
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7.2.6 MODIS Thermal Infrared Data

The MODIS sensor acquires data in 36 spectral bands ranging from 0.62 to

14.385 μm. Spatial resolution at nadir is 250 m for bands 1 and 2 (VIS), 500 m

for bands 3–7 (VIS and NIR) and 1,000 m for bands 8–36 (visible (VIS), near

infrared (NIR), middle infrared (MIR), TIR). At the sensor’s maximum scan angle

of 55� near the far end of a swath the pixel sizes can reach almost 2 km * 5 km.

However, large swath widths grant a higher revisiting frequency so that MODIS

data is available daily for most spots on the earth’s surface. Due to the installation

of the sensor on the TERRA platform (launched 1999) and an identical instrument

on the AQUA platform (launched 2002), most areas can be covered 4–5 times daily:

in the morning, afternoon, evening, and pre-dawn. This grants frequent cloud-free

observations and continuous monitoring of a desired area. For thermal research

especially bands 20–23 (ranging from 3.66 to 4.08 μm) as well as bands 31 and

32 (ranging from 10.78 to 12.27 μm) are of interest. These bands were designed for

land surface temperature analysis and are shown in Table 7.6.

Kuenzer et al. (2008) have demonstrated the potential of MODIS multi-diurnal

thermal observation. Four observations per day allow the discrimination of clear

thermal daytime versus nighttime patterns, and can even support the analysis of hot

spot dynamics over the course of a 24 h cycle. The availability of several MIR and

TIR bands furthermore allows for the creation of ratio images and therefore the

delineation of exceptional versus ‘normal’ hot spots.

MODIS thermal bands data have been widely used for land surface temperature

pattern analyses, sea surface temperature studies, as well as forest fire detection (see

the application section).

7.2.7 NOAA-AVHRR/3 Thermal Infrared Data

The Advanced Very High Resolution Radiometer/3 (AVHRR/3), launched for the

first time in 1998, consists of six channels with a spectral range from 0.58 to

Table 7.6 Spectral and spatial characteristics of the MODIS mid-infrared (MIR) and thermal

infrared (TIR) bands suitable for thermal earth-surface analyses

Part of the

EMS

Band width/

EMR-range [μm]

Spatial

resolution [km] Technical characteristics

MIR 20: 3.660–3.840 1 12 bit

21: 3.929–3.989 1 2,330 km swath

22: 3.929–3.989 1 FOV �55�

23: 4.020–4.080 1

TIR 31: 10.780–11.280 1

32: 11.770–12.270 1

It should be noted that MODIS has more channels in the MIR and TIR. However, due to water

absorption they are not employable for land temperature investigations
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12.5 μm. Nadir resolution of all bands is 1.1 km. With a swath of approx. 2,900 km,

it ensures full global coverage twice daily. Thermal data from AVHRR have been

widely used for applications related to land surface and sea surface temperature.

A large advantage of the AVHRR is its daily (actually twice daily) revisit time, and

the availability of data covering the last three decades. It is therefore the only sensor

in space which allows for real trend analyses (Table 7.7 and Fig. 7.2).

7.3 Selected Fields of TIR Applications and Selected

Publications Sorted by Sensor

We provide below a compilation of application studies in typical application fields

for thermal infrared data, sorted by field of application and most common sensors

used. All references are from remote sensing SCI journals. They are not addition-

ally included in the references section of this book chapter for reasons of space.

Table 7.7 Spectral and spatial characteristics of the NOAA-AVHRR/3 sensor

Part of the

EMS

Band width/

EMR-range [μm]

Spatial

resolution [km] Technical characteristics

VIS 1: 0.58–0.68 1.1 10 bit, 1,090 m spatial resolution

at nadir, 2,900 km swath

width
NIR 2: 0.725–1.00 1.1

SWIR 3a: 1.58–1.64 1.1

MIR 3b: 3.55–3.93 1.1

TIR 4: 10.30–11.30 1.1

5: 11.50–12.50 1.1

Fig. 7.2 Land surface temperature monthly composite derived from NOAA-18 AVHRR/3 data

for Europe, June 2009. Left: daytime composite, right: nighttime composite. Daytime temperatures

range between 10 �C in northern Norway and Finland, upto around 70� and more in northern

Africa. Nighttime temperature range between 5 and 30 �C. Grey: no values
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However, interested readers will find the respective source when searching in the

Internet for the application field, sensor, and author name. For each field of

application the studies are presented in a sequence from lower to higher spatial

resolution TIR sensors. Please note that there is no claim of completeness, neither

for the selected application fields nor the sensor lists, and that the emphasis has been

placed on selecting references from the past decade.

Land surface temperature retrieval, LST

MSG SEVIRI (Stisen et al. 2007; Göttsche and Olesen 2009; Lu et al. 2011; Freitas

et al. 2010; Sun and Pinker 2007; Schroedter-Homscheidt et al. 2011), NOAA-

AVHRR (Czajkowski et al. 1998; Gleason et al. 2002; Han et al. 2004; Kerenyi and

Putsay 2000; Price 1983; Sobrino et al. 1994; Bhattacharya et al. 2009; Raynolds

et al. 2008), MODIS (Petitcolin and Vermote 2002; Wan and Li 1997; Wan et al.

2002; Mito et al. 2006; Momeni and Saradjian 2007; Pinheiro et al. 2007; Agam

et al. 2007; Nonaka et al. 2007; Wang et al. 2007; Song and Zhao 2007;

Bhattacharya et al. 2009; Hulley and Hook 2009a; Wang and Liang 2009a;

Coops et al. 2009; Vancutsem et al. 2010; Yang et al. 2011; Westermann et al.

2011; Albright et al. 2011; Hulley and Hook 2011; Wan 2008; Hashimoto et al.

2008; Wang et al. 2008; Huang et al. 2008; Mostovoy et al. 2008; McCabe et al.

2008; Langer et al. 2010), AATSR (Sòria and Sobrino 2007), HJ-1B (Zhou et al.

2010; Zhao et al. 2010; Hua et al. 2010; Xiaoguang et al. 2009), FengYun (Tang

and Li 2012; Tang et al. 2008), CBERS-2 (Zhang et al. 2006, Shi 2009; Yu et al.

2009), Landsat-5 TM (Li et al. 2004, Nichol 1998, Okwen et al. 2011; Jiménez-

Muñoz et al. 2009), Landsat 7 ETM+ (Li et al. 2004, Wloczyk et al. 2011, Okwen

et al. 2011; Yue et al. 2007; Weng and Lu 2008), ASTER (Sobrino et al. 2007b;

Mao et al. 2011; Wang and Liang 2009; Yang et al. 2011; Mira et al. 2009; Wang

et al. 2011; Hulley and Hook 2011; Mao et al. 2008)

Sea surface temperature retrieval, SST

MSG SEVIRI (Clerici 2009; Merchant et al. 2009; Petrenko et al. 2011; Le Borgne

et al. 2011), NOAA-AVHRR (Romo et al. 2007; Sousa et al. 2008; Sun et al. 2008;

Chang et al. 2008; Iwasaki et al. 2008; Wang et al. 2010; Williams et al. 2010;

Miliaresis and Seymour 2011; Breaker et al. 2010; Castro et al. 2010; Hulley et al.

2011; Eastwood et al. 2011), MODIS (Panda et al. 2007; Cai et al. 2007a; Reinart

and Reinhold 2008; Cai et al. 2010; Crosman and Horel 2009; Alcantara et al. 2010;

Hulley et al. 2011), HJ-1B (Hu et al. 2011; Huang et al. 2011; Zhou et al. 2011),

FengYun (Wan Kadir and Rasib 2007; Zhou et al. 2008), CBERS-2 (Wang et al.

2011), Landsat TM/ ETM+ (Isoguchi et al. 2009), ASTER (Sentlinger et al. 2008;

Cai et al. 2010, Hulley et al. 2011; Matsuoka et al. 2011)

Clouds, snow, ice, and glaciers

MSG-SEVIRI (Mackie et al. 2010a; Mackie et al. 2010b; Pérez et al. 2011; Guo

and Wang 2008; Turk et al. 2010), NOAA-AVHRR (Laine 2008; Turk et al. 2010;

Berque et al. 2011; Fontana et al. 2009; Pérez et al. 2011),MODIS (Genkova et al.

2007; Stamnes et al. 2007; Aoki et al. 2007; Hori et al. 2007; Yu et al. 2007; Hall

et al. 2008; Luo et al. 2008; Guo and Wang 2008; Turk et al. 2010; Fraser et al.
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2010; Fraser et al. 2009),CBERS-2 (Ribeiro et al. 2007), Landsat (Hall et al. 2008;

Hilker et al. 2009; Helmer et al. 2010; Hagolle et al. 2010; Huang et al. 2010),

ASTER (Genkova et al. 2007; Hall et al. 2008; Bhambri et al. 2011; Shukla et al.

2010), Ground based TIR cameras (Rees et al. 1993; Rees and James 1992;

Leppäranta and Lewis 2007)

Climatology and evaporation

MSG-SEVIRI (Stisen et al. 2008; De Paepe et al. 2008; Sobrino and Romaguera

2008; Nieto et al. 2011; Chaurasia et al. 2010), GOES (Han et al. 2010; McNider

et al. 1994), FY-2 (Shu et al. 2011), NOAA-AVHRR (Rotach et al. 2005; Owen

et al. 1998; Latifovic and Pouliot 2007; Sobrino et al. 2007a; Choudhury et al. 2007;

Han et al. 2004; Han et al. 2010), MODIS (Cleugh et al. 2007; Rotach et al. 2005;

Sánchez et al. 2007; Mallick et al. 2007; Song and Zhao 2007; Tang et al. 2010;

Jang et al. 2010; Mu et al. 2011; Pouteau et al. 2011; Shu et al. 2011; Vinukollu

et al. 2011; McCabe et al. 2008; Ghoneim 2008), FengYun (Shu et al. 2011; Shu

2010; Yun-Qiao 2011), Landsat TM/ ETM+ (Rotach et al. 2005; Chavez et al.

2009),ASTER (Sarwar and Bill 2007; Nichol andWong 2008; Bawazir et al. 2009;

Galleguillos et al. 2011; Gangopadhyay et al. 2009).

Soil moisture

NOAA-AVHRR (Van den Hurk 2001; Verstraeten et al. 2006),MODIS (Cai et al.

2007b; Merlin et al. 2009; Hulley et al. 2010; Merlin et al. 2010; Van doninck et al.

2011), Landsat TM (Van den Hurk 2001), ASTER (Merlin et al. 2009; Hulley

et al. 2010; Mira et al. 2010)

Urban climatology, heat islands

NOAA-AVHRR (Rigo et al. 2006; Gallo et al. 1993; Streutker 2003; Gallo and

Owen 2002; Stathopoulou and Cartalis 2009), MODIS (Rigo et al. 2006; Imhoff

et al. 2010; Keramitsoglou et al. 2011; Schwarz et al. 2011), HJ-1B (Yang et al.

2010; Luo et al. 2011), CBERS-2 (Ji et al. 2009), Landsat TM/ ETM+ (Rigo et al.

2006; Kim 1992; Yuan and Bauer 2007; Pena 2008; Cai et al. 2011; Amiri et al.

2009; Imhoff et al. 2010; Li et al. 2011; Zhang et al. 2009; Ma et al. 2010; Leak and

Venugopal 1990; Munier and Burger, 2001), ASTER (Kato and Yamaguchi 2007;

Frey et al. 2007; Tiangco et al. 2008; Weng et al. 2009; Cai et al. 2011; Dominguez

et al. 2011; Weng et al. 2011), Airborne TIR camera (Lagouarde et al. 2010),

Ground based TIR cameras (Rigo et al. 2006; Meier et al. 2010)

Agriculture modeling

NOAA-AVHRR (Hurtado et al. 1994; Salazar et al. 2008; Biradar et al. 2009),

MODIS (Jonna et al. 2007; Sims et al. 2008; Merlin et al. 2010; Tang et al. 2010;

Jeganathan et al. 2011), HJ-1B (Klaasse and Jarmain 2011), ASTER (Sepulcre-

Canto et al. 2007; Courault et al. 2009; Merlin et al. 2010; Jeganathan et al. 2011),

Airborne Camera (Suárez et al. 2010)

Forest fire detection and burnt area delineation

MSG-SEVIRI (Roberts et al. 2011; Amraoui et al. 2010; Freeborn 2009; Calle

et al. 2009), NOAA-AVHRR (Galindo et al. 2003; Kucera et al. 2005; Smith et al.
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2007; Leblon et al. 2007; Ressl et al. 2009),MODIS (Kazi et al. 2006; Kiran Chand

et al. 2006; Morisette et al. 2005; Mazzoni et al. 2007; Smith et al. 2007; Koltunov

and Ustin 2007; Kiran Chand et al. 2007; Miettinen and Liew 2008; Bromley 2010;

Quintano et al. 2010; He and Li 2011; Giglio et al. 2009; Ressl et al. 2009; Freeborn

2009; Libonati et al. 2010; Libonati et al. 2011; Veraverbeke et al. 2011; Dennison

and Matheson 2011; Roberts et al. 2011; Freeborn et al. 2011; Siljander 2009),

BIRD (Oertel et al. 2003; Oertel et al. 2004), HJ-1B (Qian et al. 2009; Yonggang

et al. 2008), FengYun (Zhang et al. 2011; Frantzova et al. 2010), CBERS-2 (Zhang

et al. 2011), Landsat TM/ ETM+ (Schroeder et al. 2008), ASTER (Morisette et al.

2005; Schroeder et al. 2008; Giglio et al. 2008; Eckmann et al. 2009; Dennison and

Matheson 2011; Veraverbeke et al. 2011), Airborne Camera (Riccio et al. 2011)

Coal and peat fire detection and analysis

NOAA-AVHRR (Mansor et al. 1994; Zhang et al. 2004), MODIS (Kuenzer et al.

2007; Kuenzer et al. 2008), BIRD (Siegert et al. 2004), Landsat TM/ ETM+

(Kuenzer et al. 2007; Kuenzer 2005; Zhang et al. 2004a; Chen et al. 2007; Martha

et al. 2010), ASTER (Kuenzer et al. 2007; Martha et al. 2010), Ground

measurements (Zhang and Kuenzer 2007; Yunhao et al. 2007; Zhang et al.

2004; Prakash et al. 1999)

Volcano analysis

MSG-SEVIRI (Hirn et al. 2009), NOAA-AVHRR (Van Manen et al. 2011;

Marchese et al. 2011), MODIS (Thomas et al. 2009), Landsat TM/ EM+

(Deroin et al. 1995; Ganas and Lagios 2003), SPOT (Deroin et al. 1995),

ASTER (Ganas et al. 2010; Carter and Ramsey 2009),Ground based TIR camera

(Corradini et al. 2010)

Earthquake (precursor) analysis

NOAA-AVHRR (Saraf et al. 2009), MODIS (Saraf et al. 2009), ASTER (Yang

et al. 2010), Landsat ETM+ (Yang et al. 2010), MTSAT (Yang and Guo 2010)

Land cover discrimination

MSG-SEVIRI (Fensholt et al. 2011), MODIS (French and Inamdar 2010),

Landsat TM/ ETM+ (Xian et al. 2009; Fernández et al. 2010; Xian and Homer

2010; Roy et al. 2010; Wu et al. 2010; Southworth 2004).

Rock type/mineral discrimination

MSG-SEVIRI (Li et al. 2007; Klüser and Schepanski 2009), ASTER (Ninomiya

et al. 1997; Katra and Lancaster 2008; Moore et al. 2008; Öztan and Süzen 2011;

Vicente and Souza Filho 2011), Ground based TIR camera (Wu et al. 2011)

Emissivity and inertia studies

NOAA-AVHRR (Cracknell and Xue 1996a; Cracknell and Xue 1996b; Badenas

1998; Stathopoulou et al. 2007), MODIS (Niclòs et al. 2007; Pipunic et al. 2008;

Renzullo et al. 2008; Tang and Li 2008), HJ-1B (ShanShan et al. 2012), FengYun

(Jiang and Zhou 2011), ASTER (Gangopadhyay et al. 2005; Coll et al. 2007;

Hulley and Hook 2009b; Hulley et al. 2009; Sabol et al. 2009).
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Accuracy assessments/Sensor calibration

MSG-SEVIRI (Niclòs et al. 2011; Baraldi et al. 2010), ASTER (Gillespie et al.

2011; Yang et al. 2010; Mira et al. 2011), NOAA-AVHRR (Devasthale and Grassl

2009; Casciello et al. 2011; Baraldi et al. 2010),MODIS (Hao and Qu 2009; Wang

and Liang 2009b; Chander et al. 2010; Xiaoxiong et al. 2009a; Xiaoxiong et al.

2009b); AATSR (Shi 2011; Baraldi et al. 2010),HJ-1B (Du et al. 2011), FengYun

(Tong et al. 2010; Xiuqing et al. 2001), CBERS-2 (Zhang et al. 2005; Zhang et al.

2002), Landsat (Jing and Cheng 2010; Chander et al. 2009; Chander et al. 2010;

Wulder et al. 2011; Baraldi et al. 2010), Airborne camera (Houborg et al. 2011)

Vegetation/Forest

NOAA-AVHRR (Bhuiyan and Kogan 2010; Julien and Sobrino 2009), MODIS

(Wu et al. 2010; Waring et al. 2011; Xu et al. 2011), Landsat (Potapov et al. 2011),

Airborne camera (Zarco-Tejada et al. 2009; Ribeiro da Luz and Crowley 2010;

Berni et al. 2009b)

Atmospheric correction

MODIS (Jiménez-Muñoz et al. 2010; Ellicot et al. 2009), Landsat ETM+ (Coll

et al. 2010), ASTER (Chrysoulakis et al. 2010).

Drought events

NOAA-AVHRR (Shamsipour et al. 2011), MODIS (Caccamo et al. 2011),

FengYun (Frantzova et al. 2010), Landsat TM/ ETM+ (Gao et al. 2011).

7.4 Conclusion

A large variety of instruments acquiring data in the thermal infrared domain (TIR)

exist. They span a broad range: from sensors acquiring data for the whole earth disk

at a temporal resolution allowing daily or even hourly observations at low spatial

resolutions of several tenths of kilometers to one kilometer up to sensors delivering

thermal data with a spatial resolution of up to 60 m at swath widths well below

200 km and repetition rates enabling only one to two observations per month.

Sensors of high value for long term observation allowing a look into the past for up

to nearly 30 years are Landsat-TM, Landsat-ETM+ continued by the new Landsat

DCM, as well as NOAA-AVHRR data. Under cloud-free conditions the latter

enables daily temperature monitoring of the earth’s surface at a spatial resolution

of 1.1 km reaching back to 1978, while the Landsat fleet enables observations at a

higher resolution of 120 m (TM), 60 m (ETM+), and 100 m (LDCM) – although

only at a 16 day revisit interval. The largest fleet of sensors supporting TIR research

is currently operated by the USA, whereas the availability of European instruments

monitoring the thermal domain has decreased in recent years due to the loss of the

Envisat satellite (including the AATSR instrument). Currently, Europe acquires

thermal data via the Meteosat satellites and is in the midst of preparing the launch of

the Sentinel 3 mission with a thermal instrument on board. However, after the USA,
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it is China which has the most operational thermal instruments in orbit. The Chinese

fleet enabling temperature observations from 5 km down to 80 m spatial resolution

in the TIR (CBERS-3) is foreseen to grow further. Data from these sensors hold a

large potential for the thermal remote sensing community – especially if made more

widely available internationally.

Acknowledgements The authors thank I. Schlegel and N. Lütge for checking the references.

Further thanks go to two anonymous reviewers for valuable suggestions which helped to improve

the manuscript.

References

Abrams M, Hook SJ (1995) Simulated ASTER data for geologic studies. IEEE Trans Geosci

Remote Sens 33(3):692–699

Chen F, Tang L, Wang C, Qiu Q (2011) Recovering of the thermal band of Landsat 7 SLC-off

ETM+ image using CBERS as auxiliary data. Adv Space Res 48(6):1086–1093

European Space Agency, ESA (2012) The earth observation handbook: special edition for Rio

+20. Available at: http://www.eohandbook.com/. Accessed Dec 2012

Flynn LP, Harris AJL, Wright R (2001) Improved identification of volcanic features using Landsat

7 ETM+. Remote Sens Environ 78(2):180–193

Kuenzer C (2005) Demarcating coal fire risk areas based on spectral test sequences and partial

unmixing using multi sensor remote sensing data. Ph.D. thesis, Technical University Vienna,

Vienna, 199pp

Kuenzer C, Hecker C, Zhang J, Wessling S, Wagner W (2008) The potential of multi-diurnal

MODIS thermal bands data for coal fire detection. Int J Remote Sens 29:923–944

Mars JC, Rowan LC (2006) Regional mapping of phyllic- and argillic-altered rocks in Zagros

magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer

(ASTER) data and logical operator algorithms. Geosphere 2(3):161–186

Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper

and epithermal gold deposits. Ore Geol Rev 44:1–9

Tangestani MH, Mazhari N, Agar B (2005) Mapping the porphyry copper alteration zones at the

meiduk area, SE Iran, using the advanced spaceborne thermal emission and reflection radiome-

ter (ASTER) data. In: Ehlers M, Michel U (eds) Remote sensing for environmental monitoring,

GIS applications, and geology, vol 5983. SPIE, Brugge, p 59830

Zhang J, Kuenzer C (2007) Thermal surface characteristics of coal fires 1: results of in-situ

measurements. J Appl Geophys 63:117–134

Zhang J, Kuenzer C, Tetzlaff A, Oettl D, Zhukov B, Wagner W (2007) Thermal characteristics of

coal fires 2: results of measurements on simulated coal fires. J Appl Geophys 63:135–147

148 C. Kuenzer et al.

http://www.eohandbook.com/


Chapter 8

Thermal Remote Sensing with Small

Satellites: BIRD, TET and the Next

Generation BIROS

Eckehard Lorenz

Abstract High sensitive infrared detectors normally require more resources than

comparable instruments in the visible spectral bands. Although the un-cooled detec-

tor arrays achieved in the last years a remarkably quality, their detection principle is

inferior to the cooled quantum detectors. The price for the higher sensitivity of the

cooled quantum detectors are higher efforts in mass, volume, power consumption,

and costs. Therefore it is of interest to examine the compatibility of high sensitive

infrared systems with the limited resources of small satellites which could be utilized

for affordable space missions. The FIRES (Fire Recognition System) study was a first

attempt to examine the accommodation of a challenging infrared mission on a small

satellite. Based on this concept the BIRD (Bi- spectral Infra-Red Detection) satellite

was launched in 2001, this satellite was mainly dedicated to the detection and

monitoring of high temperature events. Following the success of the BIRD satellite

a further constellation of two satellites called FIREBIRD (Fire Recognition with Bi

spectral Infra-Red Detector) is currently in preparation.

8.1 The FIRES Study

In the beginning of the 1990s various discussions about low-cost, small satellite

technologies as an alternative to the cost-intensive, large systems were intensified

(Jahn n.a.; Brieß et al. 1996). Due to the limited resources offered by a small system

one of the main problems is to design adequate useful application concepts. In

parallel to this trend the technological sciences offered more and more miniaturized

solutions which trigged the trend for using small satellites. For example, the use of the

un-cooled infrared bolometer arrays at this time could be referred to Lorenz and

Sandau (2002).
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Following those discussions about small satellite applications a related study

was initiated by the German company OHB in Bremen and the German Aerospace

Center (Deutsche Zentrum für Luft- und Raumfahrt e. V. DLR) (FIRES 1994). One

of the basic theses for the study was the realization, that the most convincing

concept for the usage of small satellites would be the implementation of a powerful

infrared detector system, which would have the advantage to gather huge amounts

of information related to the detected objects, and at the same time test the

technological limits of the small carrier system.

Whereas the mentioned bolometer arrays represent a remarkable technological

breakthrough, they cannot achieve for physical reasons the sensitivity of cooled

quantum detectors (Kingston 1978). The detectivity of a bolometer is limited to

1.8*1010 cm*Hz1/2/W whereas the detectivity of a cooled quantum detector is more

than an order higher. Therefore the main attention in this study was paid to the

miniaturization of cooled quantum detectors.

A second aspect described in the study was the fact, that the systematic investi-

gation on global fire events was not available at that time due to the fact that the

information required was not retrievable from the fire management agencies. It has

to be pointed out that the impacts of global wild fires have a massive contribution to

greenhouse emissions, and to climate conditions (Wooster et al. 2005).

For these reasons it was decided to investigate the implementation of an infrared

fire monitoring system on a small satellite.

8.1.1 Fire Monitoring, Fire Ecology and Climate Change

Normally only large fires in the vicinity of densely populated areas are of public

interest. The fire-fighting management agencies, in these cases, have a difficult and

demanding task because such fire events consist of many different types of fires

with different intensities, and expansion properties. For the fire-fighting manage-

ment agency it is important to know these characteristics to decide where the

limited fire-fighting resources can be deployed most efficiently. Such an overview

can be given only by special airborne or spaceborne systems. A spaceborne system

has a much larger field of view than an airborne system and can deliver this

overview much faster. The image delivered by the infrared system of BIRD in

2003 showing the monstrous fires in Portugal (Fig. 8.1) can be mentioned as a

typical example. This image was delivered to the Global Fire Monitoring Center

GFMC in Freiburg half an hour after being downloaded to the ground station, and

was according to the Portuguese Fire Monitoring Center the main basis for their

decisions on fire fighting strategies.

However the decisions of the fire-fighting management are not only depending

on the location of the fire, but also on its strength, and magnitude, the burning fuel

and other factors. Therefore it is not only necessary to detect the fires, and to find

out their geo- location but also to measure the main fire parameters in detail. This is
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a demanding measurement task which requires a sophisticated space based infrared

instrument.

The fire-fighting management agencies are also very interested in detailed

quantitative fire parameters. Fires have a major impact on the ecological systems.

In some cases fires are a part of the ecologic systems, and in other cases the fires are

of a fully destructive nature causing loss of life and damage to the environment.

And last but not least, the combustion of organic fuels generates CO2 and other

greenhouse gases. Different studies show that more than 30 % of the greenhouse

gas emissions are caused by wild fires (DLR 2005).

Fig. 8.1 Fragment of the BIRD image of 4th August 2003: hotspots with their fire radiative

energy release projected on NIR image (0.84–0.90 μm) published in this form by the GFMC in

Freiburg

8 Thermal Remote Sensing with Small Satellites: BIRD, TET. . . 151



8.1.2 Description of Fire Observation Scenarios

From the human point of view fires are a very impressive light event coupled with

extreme high temperatures. For these reasons the measurement of fires seems to be

a very simple task. But in the praxis using remote sensing very different aspects

have to be considered.

At a first glance a wild fire seems to be huge for an observer on Earth. However

using detailed imagery it can be seen, that an assumed large-area fire consists of a

multitude of small fire fronts, with gaps and intervals of some meters, and a distance

from each other up to 100 m. Furthermore, a huge amount of the thermal energy

will be propagated by convection via the atmosphere (Freeborn et al. 2009).

This should not be a problem for airborne measurements as the instruments have

a ground resolution of for examples 3 m, and the infrared instruments can partly

‘feel’ the convection process.

Spaceborne measurements have a completely different scenario. They have a

very low ‘feeling’ for the convection processes ,and have normally a ground

resolution greater than 100 m, where a single fire front fills only a part of the area

seen by a single detector element as shown in Fig. 8.2. The result is the brightness

temperature measured by the related detector element which is indeed higher than

the values of the surrounding detector elements, but does not reflect the real fire

temperature.

This situation is analytically described by Dozier’s model (1981).

Lj ¼ qFBjðTFÞ þ ð1� qFÞLj;bg (8.1)

Where:

Lj and Lj;bg are hot pixel and background radiances in channel j (j ¼ MW, LW).

(MW – 3–5 μm; LW > 8 μm)

BjðTÞ is the black body radiance in channel j.
qF ¼ ρjðxF � xpÞAF is the effective fire proportion in the pixel (for small fires).

ρjðxF � xpÞ is the point-spread function (PSF) of channel j.

xF and xP are the fire and pixel centre coordinates.

TF is the fire temperature.

Fig. 8.2 Application of bi-spectral technique (Dozier 1981) for the retrieval of effective fire

temperature and area
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In this model the two unknown parameters qF and TF can be calculated if the

radiances Lj are measured in two different spectral bands, so that the same scenario

will be represented by two independent measurements.

In the result it is possible to measure the real temperature and the size of a fire

from space with an instrument which has a ground pixel size of 370 m as in the case

of the BIRD satellite (see Fig. 8.3).

Clarifying that two different spectral bands are necessary for a measurement in

the sub pixel range, it has to be find which spectral band is optimal for the fire

detection.

The general characterization of different remote sensing objects is shown for the

spectral interval between 0.4 and 15 μm in Fig. 8.4.

Depending on the spectral band in which the dedicated instrument is used the

received radiation has different origins. At smaller wavelengths up to 2 μm
the signal consists mainly of reflected sun light having its maximum at ~ 0.5 μm
(the temperature of the sun surface is 5,778 K). High reflecting objects like clouds

or water surfaces can cause very high signal levels (sun glints). For a fire with a

temperature of 1,000 K the maximum is located around ~2.9 μm. For larger

wavelengths more and more fractions come from the thermal emission of the

observed objects having its maximum at ~10 μm for a temperature of 300 K.

The categories vegetative background, and warm soil are typical objects of

interest for remote sensing. The signal caused by a fire in the spectral band

3–5 μm is much higher than the signal of these objects, and can be easily detected.

Sun glints can deliver a signal much higher than a fire event and can be confused

by this.

Fig. 8.3 Measurement of a very small fire with the BIRD satellite. On ground verification of

nighttime BIRD fire detection (18 January 2003, Ammersee area, Germany)
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To fully understand the curves in Fig. 8.4 it is important to consider the

absorption of the atmosphere which is strongly depending on the wavelength.

The result of the radiation is observable in a spectral band up to 2.5 μm. The next

atmospheric windows are located between 3 and 5 μm, and between 8 and 15 μm.

Within the atmospheric windows weaker absorption lines are seen which can

vary with the actual atmospheric conditions. It is recommended to limit the spectral

sensitive bands of the instruments, and thus minimizing the influence of these

absorption lines.

For the detection of fires, even if they are small, it is essential to have an as high

as possible signal level compared to other objects like vegetation. Obviously the

MW band marked in gray in Fig. 8.4 is the best choice. Only the sun glints deliver a

signal comparable to the ones of a fire. For smaller wavelengths the sun glint signal

becomes more and more dominating and the fire signal could not be detected in the

wavelength region <1.5 μm. Therefore an additional instrument which is sensitive

in a spectral band <1.0 μm would detect a sun glint, but not a fire, thus delivering a

unique criteria which distinguished between a fire and a sun glint.

Considering the role of the sun glints it is obvious that for a numerical calcula-

tion of the fire parameters according to Eq. (8.1) the LW band in Fig. 8.4 is the only

usable spectral band where the influence of the sun glint is small enough. In

addition a measurement at a wavelength <1 μm can confirm that the object is a

fire and not a sun glint, because a fire cannot be detected at this wavelength (see

Fig. 8.4).

Fig. 8.4 Simulated top-of-atmosphere spectral radiances of a 1,000 K sub pixel-sized fire in

comparison to that of a vegetation background, sun glints from water surfaces, and homogeneous

warm soil
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Discussing Fig. 8.4 in connection with Eq. (8.1) it must be considered that in the

figure the case is depicted, that each class of objects fills the whole pixel. In

difference to this in Fig. 8.2 is shown the case that the received signal is a mixture

of two different components – the fire and the background signal.

At a given extension lower than the pixel size the fire must have a minimal

temperature to be identified as a possible candidate for further analysis. The signal

difference to the signal of surrounding pixels not affected by fire must exceed the

signal noise as well as the variation of the surrounding background signal. This

situation is shown in Fig. 8.5. To detect fires in small areas the temperature of the

fires must be higher in order to analyze its thermal structure (analysis). This figure is

a basic guideline for the design of sensitive fire detectors.

The second aspect is the measurement of the fire parameters in the sub pixel range

using formula (8.1). For quantitative calculations the measurements in the LW band

have to be used. As seen from Fig. 8.4 the differences between the background signal

(vegetation) and the fire signal are much lower than in theMWband.With respect to

Fig. 8.5 it is clear, that the related curve describing the conditions for a reliable

estimation of the fire parameters must be located considerably higher than the

one describing the detection because of the smaller difference in the LW band.

Detection is possible earlier than a quantitative analysis. It is however important to

mention that numerical limits for the analysis will be defined in difference to the

detection mainly by the signal to noise ratio of the LW instrument, whereas the

detection limit is depending on the variations in the background signal (see ESA/

ESTEC 2007, program flow chart in Chapter 4.6.2).

The equation system (8.1) can be solved only if the difference of the hot pixel

radiance Lj and the background radiance Lj;bg is higher than the signal noise.

According to Fig. 8.4 this difference is quite low in the LW band. Therefore one of

the most important conclusions is that an excellent fire monitoring system has to be

also an excellent instrument for normal environmental temperatures.

Fig. 8.5 Minimum fire

proportion in a hot cluster

required for fire detection

(yellow) and a quantitative

analysis with an accuracy

of better than 30 %
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The final parameter characterizing the fires is not the fire temperature but mostly

the so-called Fire Radiative Power (FRP), as a measure of the intensity of burning.

The FRP can be roughly described by Eq. (8.2).

FRP ¼ σ T4
F � T4

b

� �

AF (8.2)

- where σ is the Stefan-Boltzmann constant,Tb is the background temperature that is

assumed to be equal to the mean at surface LW temperature in the vicinity of the hot

cluster, TF is the fire temperature and AF the extent of the fire.

8.1.3 Spaceborne Fire Observation Systems

Whereas the impact of fires on the earth’s environment is known, a dedicated

satellite Fire Observation Remote Sensing System does not exist at the present

time. Future systems like ESA’s Sentinel 3 with the Sea and Land Surface

Temperature Radiometer (SLSTR) or the German System Enmap with the

SWIR (short wave infrared <2.5 μm) do not have the MW band essential for

the fire detection. Other existing spaceborne systems are capable to detect and to

measure fire events due to their infrared channels. In the previous chapter it was

mentioned that a fire observation system must have all features of a system

measuring thermal environmental scenarios with high accuracy. However one

additional important feature identifies an infrared instrument optimized for fire

detection: In case of very large fires a ‘normal’ system will be saturated especially

in the MW band. Therefore the infrared system should be equipped with special

features to avoid the saturation e.g. electronic real time saturation prevention

within the detector control. In all other aspects the fire detection system has to

fulfill all requirements necessary for an infrared system serving all traditional

applications for such a system.

The first dedicated fire observation system equipped with an anti-saturation mech-

anism was the Hotspot Recognition Sensor (HSRS) instrument on the BIRD satellite.

Other systems have a lower ground resolution compared to BIRD (370 m) and

therefore the probability of saturation is lower, so an anti-saturation mechanism is

of less concern. On the other hand a smaller ground resolution reduces the possibil-

ity to observe small size fires (see Fig. 8.5a).

In Table 8.1 parameters of different systems capable to generate fire products are

shown. Except for the BIRD satellite all have a ground resolution �1,000 m. This

results in different fire observation capabilities as shown in Fig. 8.6.

The fire radiative power FRP shown in the abscissa characterizes the strength of

the fire and is an important basic parameter in developing higher fire-observation

products. The number of hot clusters describes the observation occurrence of fires

characterized by the FRP. The observation of small fires (low FRP) is important in

terms of an early warning system. The BIRD instrument system is the only system
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which can cover the whole range of the different fire scenarios. In the case of

AVHRR for instance the lower resolution does not allow the observation of small

fires, whereas larger fires cannot be measured because of early saturation.

8.1.4 Worldwide Usage of Fire Monitoring Data
in National GIS Systems

The usage of space based fire-observation data is of great interest for many national

and international organizations (Ahern et al. 2001; Altan et al. 2010). The motiva-

tion for the usage may be different according to individual needs. The fire-fighting

management agencies have a key need which requires a strategic area overview.

This overview can be delivered mainly by satellites. Furthermore the same

instruments can provide a lot of information for the early warning systems, and

prevention procedures (see URL1).

Table 8.1 Parameters of different systems capable to generate fire products

Instrument Resolution (m) Swath IR1 (μm) IR2 (μm) IR3

AVHRR 1,100 2,928 km 3.55–3.93 10.3–11.3 11.5–12.5

GOES I-M 4,000 3,000 km 3.80–4.00 10.2–11.2 11.5–12.5 μm
SEVIRI 3,000 Earth disc 3.48–4.36 9.8–11.8 11.0–13.0 μm
MODIS 1,000 2,330 km 3.93–3.99 10.8–11.3 11.77–12.27 μm
HSRS 370 190 km 3.4–4.2 8.5–9.3

Fig. 8.6 Histogram distribution of FRP (Fire Radiative Power) obtained from BIRD HTE

observations and arrows for the FRP (with <�30 % accuracy) ranges which are covered by BIRD,

MODIS, SEVIRI, GOES at day and night and by AVHRR and (A)ATSR – only at night (ESA/

ESTEC 2007)
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The other important aspect is the previously mentioned strong influence of

global wild-fire events, and the impact on the climate change processes. This last

aspect requires the knowledge of well-established statistical data about the world-

wide wild-fire events as well as a better understanding of the mechanisms of the

ongoing processes (Boehm and Siegert 2001).

Examples for related national GIS systems are the Sentinel Portal in Australia

(see URL2) and the South Africa Fire Services (see URL3). These are national

bushfire monitoring systems that provide timely information about hotspots to

emergency service managers.

The Global Fire Monitoring Center (GFMC) in Freiburg (see URL4) coordinates

many international activities on behalf of the United Nations. The GFMC is

responsible for the coordination of the Global Wildland Fire Networks.

8.2 Concept and Characteristics of the IR Instruments

on Board the BIRD Satellite

Under the slogan “Faster Better Cheaper (FBC)” (NASA 1999) in the 1990s the

developments of small satellite technologies were intensified. A small satellite was

defined at this time as a satellite with a mass in the order of 100 kg or less. It is obvious

that the costs for a small satellite are lower than the costs for a big satellite. Last but not

least a small satellite can be launched piggy-back reducing the launch costs drastically

and minimizing the negative outcome of a possible loss of the satellite.

Due to its size small satellites can accommodate only small instruments and

provide only limited resources. Following this logic it is necessary to develop

specific instruments capable to serve the challenging remote sensing tasks.

In Germany the first small satellite called BIRD (Fig. 8.7) was designed and built

by DLR (Briess et al. 2002). The satellite was launched on October 21st 2001, and

was in service to 2004. The BIRD mission was a technology demonstrator with the

following primary mission objectives:

• Test of small satellite technologies, such as an attitude control system using new

star sensors and new actuators, an on-board navigation system based on a new

orbit predictor and others.

• Test of a new generation of infrared array sensors with an adaptive radiometric

dynamic range.

• Detection and scientific investigation of High Temperature Events (HTE) such

as forest fires, volcanic activities, and coal seam fires.

8.2.1 Basic Requirements to the Detector System

According to the criteria given in Sect. 8.1.2 a demanding fire-observation instru-

ment needs at least two different, highly sensitive infrared detectors. One must be
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sensitive in the mid-wave infrared (MW, 3–5 μm) and one in the long-wave infrared

(LW, >8 μm). The required high sensibility of the infrared detectors presupposes

the usage of active cooled quantum detectors.

Additionally at least one detector in the visible spectral region is required to

handle the false alarms.

The detectors should be equipped with optics capable of realizing a ground

resolution notably better than 1,000 m. According to Fig. 8.5 the ground resolution

defines the size of the detectable fires. To avoid saturation in case of larger fires

the IR camera should have an electronic saturation prevention capability (Zhukov

et al. 2006).

The optical design for the infrared detectors has to be adapted to the design of the

detector units in order to protect the detector against thermal radiation from the

surroundings which would decrease the accuracy of the measurements.

All detector arrays were arranged as long linear arrays. The area monitored by

the satellite should be as large as possible. Therefore the number of the detector

elements across the flight path of the satellite should be as large as possible. Large

satellites often uses an across-track scanning mirror to enlarge the number of image

points in this direction, but it is not possible to use this item on a small satellite and

thus long linear arrays are the best choice. A linear array delivers a one-dimensional

image; the second dimension will be realized by the movement of the satellite

scanning in fly direction a certain area on the earth. This method constructing an

image is called push broom imaging.

According to these specifications a special infrared detector design has to be

developed which is compatible to the satellite bus. In Fig. 8.8 is shown the infrared

detector unit including the dedicated optics as designed and built for the BIRD

satellite.

Fig. 8.7 Configuration of the BIRD satellite
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The complete BIRD payload compartment is shown in Fig. 8.9a, and details of

the infrared payload in Fig. 8.9b.

The specific parameters of the instruments are given in Table 8.2.

The NEDT (noise equivalent differential temperature) for the infrared (IR)

instruments is in the order of 0.1 K.

8.2.2 Technical Limitations Caused by the Satellite

In the previous chapters limitations were highlighted especially in the design of the

infrared instruments which were caused by the limited resources of a small satellite.

It should be considered for the BIRD mission, that BIRD was launched 10 years

ago. The technical knowhow was different compared to today, and due to these

limitations there were only a few chances on how to overcome the related problems.

The BIRD mission was a precursor with the purpose to verify new technological

approaches.

The first evident item in this context is the usage of cryogenic coolers cooling

down the two infrared detector units down to�200 �C. Un-cooled infrared detector
technologies like bolometers do not have the necessary sensitivity to fulfill all

requirements (Kingston 1978).

The cooling engines offered 10 years ago where large, heavy and power con-

suming. With respect to the very low temperature which has to be achieved and a

required long lifetime the design was restricted to certain criteria. Additionally

Fig. 8.8 Infrared detector unit for the BIRD satellite (primary aperture (left), focal plane array

(middle part), Cooler (right)) (scale bar in cm)
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Fig. 8.9 (a) The complete BIRD payload compartment. On the left side the WAOSS camera is

located, on the right the two infrared cameras. (b) Details of the BIRD infrared payload
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smaller cooling engines to meet constraints regarding the lifetime were developed,

especially for military applications. Because the planned lifetime of the BIRD

mission was 1 year the detector provider was mandated to investigate the applica-

bility of these small space coolers. The results based on these constraints were

satisfactory (on ground run time tests over 9,000 h) and confirmed by a life time in

orbit of more than 10 years. The relatively low duty cycle (30 min per day) could

question this design philosophy,, nevertheless it had to be decided what is more

dangerous for the life span – a continuously operating mode or a consequent switch

on – switch off only when a measurement is desired.. The main part of the cooling

system of the BIRD detectors is the cylindrical part in the right upper side of the

picture in Fig. 8.8.

The described cooling engines have a rotatory drive which influences the angular

momentum of the satellite and with this the stability. Due to its small size the

disturbing forces are low compared to the inertial momentum of the satellite. Last

but not least the impact of this disturbance is dependent also on the ground

resolution of the instruments. With the resolution shown in Table 8.2 the cooling

engines do not impact the data performance.

For similar reasons the use of mechanical scanning mirrors on small satellites is

not possible because the disturbing angular momentum would be too large. There-

fore the usage of the infrared technology on small satellites is closely connected

with the development of large infrared detector arrays which can collect the desired

image data without moving mechanical devices.

Very similar to a domestic refrigerator the cooling engine generates an adequate

amount of heat on its back side. This must be dissipated away from the detector

unit. A direct coupling to a radiator is not advisable due to the fact that this may

cause a not allowable under cooling of the system. Here a very balanced concept is

necessary which uses heat buffering objects like the mechanical structure of the

satellite bus. Numerical Thermal Models can be used to maintain the necessary

conditions for a balanced thermal control.

Table 8.2 Parameters of the BIRD instruments

WAOSS-B MW LW

Wavelength 600–670 nm 3.4–4.2 μm 8.5–9.3 μm
840–900 nm

Focal length 2.65 mm 46.39 mm 46.39 mm

Field of view 50� 18.8� 18.8�

f number 2.8 2.0 2.0

Detector CCD line CdHgTe arrays CdHgTe arrays

Detector cooling passive, 20 �C Stirling, 90 K Stirling, 80 K

Pixel size 7 � 7 μm 30 � 30 μm 30 � 30 μm
Pixel number 2,880 2 � 512 staggered 2 � 512 staggered

Quantization 11 bit 14 bit 14 bit

Ground pixel size 185 m 370 m 370 m

Swath width 533 km 190 km 190 km
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8.2.3 Calibration Requirements

The calibration procedures have to provide as well the radiometric measurement

process for the geometrical processes of the image formation.

After receiving a certain input radiation power a detector element generates a

related electrical output signal. In digital camera systems this output signal will be

converted to a digital number. It is the task of the calibration procedure to recon-

struct this relationship between the input power and the respective digital number

using a well specified reference source. For infrared systems the ideal reference

source is a black body which generates for a given temperature a heat radiation

according to Planck’s law as shown in Fig. 8.10.

On the BIRD satellite cooled quantum detectors are used which work like a

photon counter with a quantum efficiency QE < 30 % (QE: incident photon to

converted electron ratio). It is expected that the output signal is proportional to the

number of photons falling on the detector. The calibration procedure has to estab-

lish this linear dependency between the calculated number of photons and the

related detector output signal.

In principle it would also be possible to calculate the dependency of the output

signal on the temperature settings of the black body. But this dependency is

nonlinear and the handling of the fitting procedures is quite problematic whereas

the calculation of the number of incident photons is simple knowing the spectral

characteristic of the detector and the temperature setting of the black body. Last but

not least the radiometric calibration procedure should describe the detection process

correctly and this is the linear dependence of the number of photo electrons on the

number of incident photons.

The radiometric on-ground calibration is a standard procedure similar to the ones

used for commercial thermography cameras. But the detector parameters have also

to be controlled continuously on board because of possible degradations caused by

radiation, out gassing deposits and other effects. Considering the linearity of the fit

Fig. 8.10 Numbers of photons emitted by a black body at different temperatures
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procedure for the on-board calibration procedure the black body measurement for at

least two different temperatures is necessary. Tilt mirrors changing alternately the

illumination source for the detectors are often used for this purpose. On-board black

bodies with a stable temperature and the deep space usually serve as calibration

sources (Rataj et al. 2011).

Because the tilt mirror devices are quite voluminous and heavy another method

was developed for BIRD. Figure 8.9a shows that the optics of the infrared instruments

is covered by small flaps. These flaps are little black body devices shown in Fig. 8.9b.

Under the black lacquer coating inside of the flaps there is installed a heating foil, and

temperature sensors. The flaps will be opened before a measurement and closed after

the measurement heating up continuously the black lacquer coating inside to a given

maximal temperature. By using this method the measuring data for the calibration

gather more information than the two-point method.

As well as the radiometric calibration it is important to verify the geometrical

properties of the payload. Here different aspects are to be considered. All components

of the payload are imaging systems. Therefore the first task is the validation of the

imaging properties taking into consideration that the objects of interest will be

observed from an orbit altitude of several hundred kilometers. The optics is designed

for imaging of distant objects; images of objects in distance of some meters are

blurred. Collimator optics between the test objects and the cameras as shown in

Fig. 8.11 creates a scenario equivalent to the imaging of far away objects.

Fig. 8.11 Test assembly for geometrical measurements. On the left side the manipulator to

simulate the satellite movements is located, on the right side the collimator to realize the imaging

of objects in fare distances
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In Sect. 8.1.2 the Push Broom principle of the BIRD instruments is discussed.

The Push Broom principle implies a movement of the camera relatively to

the object in direction across the orientation of the detector line array. For this

reason the payload was mounted on a manipulator with two perpendicular

rotary axes (to the left in Fig. 8.11) simulating the movement of the satellite. In

Fig. 8.12 the images show a cross-hair target located in the focus of the collimator.

The left picture in this figure demonstrates the application of the radiometric

calibration to the target images illustrating this with the overall calibration

complex.

8.3 BIRD Infrared Data Processing Procedures

To conclude and summarize the discussion of all design aspects for the BIRD

instrumentation a validation of the overall concept and design is necessary.

Fig. 8.12 Crosshair target image simultaneously measured by the LW (lower left) and the MW

(lower right) camera (1,024 � 1,024 pixels). The top picture shows the temperature profile

measured by a detector element of the MW camera
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8.3.1 Fire Detection and Monitoring Application

In Fig. 8.3 there is shown an example detecting an extreme small fire.

The surrounding background of the fire has a quite low temperature (�9 �C). The
data take was captured at night time drastically reducing the background variations

caused by reflected sun light. Both aspects promote a good contrast of the fire pixel

to the background. The BIRD instruments have an outstanding performance as is

demonstrated by a comparison with MODIS (Moderate Resolution Imaging

Spectroradiometer) data in Fig. 8.13 (related BIRD results are shown in Table 8.3

(DLR 2005)). The time delay between the BIRD and MODIS image capture was

20 min, which makes the comparison representative by this kind of highly dynamic

phenomena.

Figure 8.14 illustrates the classification and calculation procedures for high

temperature events using the Bi-Spectral Method as described in Sect. 8.1.2. In

the MW image (a) the bright areas and spots are possible candidates for high

temperature events, mainly fires. But it is also possible that some of these spots

are sun glints from water or clouds. The clouds (left lower corner in the images) are

bright objects in the NIR image (c) because the sun light reflected and scattered by

the clouds is dominating in this band. In the LW image (b) the clouds appear as dark

objects because the LW band is mainly sensitive to the low temperatures of the

clouds. Considering these relationships it is possible to disregard the false alarms

caused by the sun glints from the original data (ESA/ESTEC 2007).

Another reason for false alarms may be warm soil areas as shown in Fig. 8.4. In

this case the signal intensity in the LW band is higher than the MW band. For fire

events this situation is inverted, and these events can also be distinguished from the

Fig. 8.13 Zoomed fragments of images showing hot clusters detected in the bush fire images of

Australia, NSW obtained on 5 January 2002 by MODIS (a) and BIRD (b)
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fires with a high probability. This classification procedure is driven by a well

justified threshold parameter as described in ESA/ESTEC (2007).

By eliminating all false alarms the remaining events can be classified with a high

probability as fires. The parameters can be calculated according to Eq. (8.1). In

Figs. 8.13b and 8.14d the color of a fire sector represents its FRP value.

8.3.2 Environmental Temperature Applications
and Their Relationship to Fire Applications

The classical application fields for infrared systems in space are thermal processes

on Earth within a temperature region 250 K < Tb < 350 K. Many of these

Fig. 8.14 Peat fires in Kalimantan taken by BIRD at 24 August 2002. In the MW image (a) the

bright areas and spots are candidates for high temperature events or sun glints. These can be

deselected comparing the MW image with the NIR image (c) and the LW image (b). The verified

fire spots will be processed according Eq. (8.1) using the related pixel of the MW and the LW

images. The result is shown in the image (d)
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applications like sea surface temperature do not need a high resolution because they

have a regional character. Other applications like moisture of dedicated agriculture

areas may require a higher resolution (Melesse et al. 2007).

Figure 8.15 demonstrates the capability of the BIRD instruments to measure fire

scenarios as well as urban heat scenarios.

In principle the bi-spectral method for measurements in the sub pixel region is

not restricted to high temperature events. But for moderate temperatures close to the

background temperature it is quite problematic to estimate a representative back-

ground temperature, and the resulting error is often not acceptable. An exception is

the detection of objects on water because the water temperature is sufficiently

uniform to detect a ship with a temperature slightly different from the water

temperature.

A good example is shown in Fig. 8.15. The picture (a) demonstrates that BIRD is

capable to handle within one data take very high temperature differences (fires near

Denver) as well as quite low high temperature differences. The areal of Albuquerque

is large enough to estimate a representative background temperature for the surroun-

ding areas. All temperatures higher than this background temperature were mapped

using a color table. The blue color indicates lower temperatures, red indicates higher

temperatures. In picture (a) the fires near Denver are displayed and therefore the area

of Albuquerque is depicted in blue. The temperature resolution represented by the

different color shades is relatively coarse. In picture (b) the fires are not included and

therefore the area of Albuquerque is the warmest part and the temperature resolution

represented by the different color shades is excellent. A comparison of the colored

region in picture (b) with the map of Albuquerque in picture (c) demonstrates the

effect of the urban heat. In picture (b) there are also bright lines seen in Albuquerque

Fig. 8.15 A thermal image taken by BIRD on 17 June 2002. In picture (a) in the northern part a

large fire area near Denver (red colored) is shown and in the south the area of Albuquerque (blue
colored). Picture (b) depicts the area of Albuquerque in a larger scale and using a more subtle

coloration. Picture (c) shows a rough map of Albuquerque
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which can be identified with the road network. Taken into account that the ground

resolution of the infrared cameras is 370 m it is obvious that the roads are sub pixel

objects and can be handled by the bi-spectral method. The bi-spectral method is

independent on the temperature of the object to be analyzed. Based on the previous

data it becomes clear that all fire specific terms where used in the classification

process to identify an object as a fire. The final application of Eq. (8.1) doesn’t have

any fire specific terms.

The bi-spectral method is one application based on the merging of two or more

infrared channels. The retrieving of emissivity is another one.

Planck’s law describes the heat radiation of an ideal black body with a given

temperature. A black body is an idealized physical body that absorbs all incident

electromagnetic radiation. The most natural objects are not a black body and the

heat radiation emitted by them is less than that emitted by a black body with the

same temperature. This can be described by a multiplicative factor in Planck’s law

which is less than 1. This factor is called emissivity and can be depend on the

wavelength. With this the emissivity characterizes a material property. A black

body has an emissivity of 1, an ideal mirror has an emissivity of 0 because a mirror

reflects all incident electromagnetic radiation.

Figure 8.16 shows an example for the emissivity mapping. The infrared radiation

coming from any natural objects is normally not identical to a black body radiation.

If the temperature of a natural object will be measured by a contact thermometer,

and parallel with an infrared camera than the measurement with the infrared camera

normally offers a lower temperature. A natural object is emitting only a part of the

heat quantity compared to that of an ideal black body. This will be described by a

multiplicative factor in Planck’s law called emissivity. The emissivity normally

varies also with the wavelength. Assuming that the emissivity is not depending on

Fig. 8.16 Epsilon T separation within the region of the Salar de Atacama
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the wavelength a temperature measurement with an infrared camera will be

described by two parameters- the temperature and the emissivity. Similar to the

bi-spectral method it is possible to measure these two parameters using two infrared

cameras with a different spectral response. The result of related calculations is

shown in Fig. 8.16. It is surprising that the temperature picture (left) is blurred and

the emissivity picture (right) is quite sharp. The temperature picture reflects all

thermal processes like convection and atmospheric flicker in the vicinity of heated

objects. The emissivity is a property of the objects and therefore the emissivity

picture appears sharper. But this is only a side effect which can be used to improve

the image quality. The quantitative measurement of the emissivity is more relevant

for the characterization and classification of observed objects.

8.3.3 BIRD Results and ESA’s ECOFIRE Study

The most detailed analysis of the BIRD data is presented in ECOFIRE Study (DLR

2005) financed by ESA. In Sect. 8.1.3 the specification of the BIRD instruments

was compared with other systems. Two outstanding features are characteristic for

the BIRD instruments: the higher ground resolution and their special technical

design which considers a large variety of measurement scenarios.

The quality of the BIRD data demonstrated new opportunities to study new

aspects of the worldwide fire processes, especially the impact of the wild fires on

the atmospheric and climate processes as described in the executive summary of the

study:

Wildfires and volcanic eruptions have trans-national impacts, most notably via the pyro-

genic formation of gaseous and particle emissions that influence the composition and

functioning of the atmosphere and the global climate system. Fires produce direct land-

atmosphere carbon fluxes estimated to be about 2 Gigatonnes/year (Gt/y), compared to 6.5

Gt/y from fossil fuel consumption and cement production.

Using the BIRD data this statement could be verified. Furthermore, capability

gaps in the current remote sensing programs could be identified.

A second part of this study was finished in 2007 (ESA/ESTEC 2007). A central

statement of this second part was the following sentence:

A direct quantitative observation of the HTE plumes, HTE thermal characteristics and rates

of heat output, which should relate more directly to the carbon, trace gas and aerosol

emissions fluxes, are highly desirable and should allow current methods of emissions

estimation to be significantly improved upon in terms of increasing the temporal frequency,

accuracy and precision.

An experimentally derived relationship between the temporal integral of fire

radiative power (the so-called fire radiative energy) and the fuel biomass combusted

found by M. Wooster et al. (2005) who was involved in this second part could be

investigated in more details using the BIRD data.
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8.4 FIREBIRD as a BIRD Follow-On Small

Satellite Constellation

As previously mentioned the BIRD satellite was an experimental satellite with

limited capabilities. A single small satellite cannot replace a large satellite with the

same applications. But it is worth discussing the advantage of a constellation of

small satellites as far as the costs for the constellation do not exceed the costs of one

large satellite. In this context it is important to consider not only the Hardware costs

but in particular also the satellite operation costs. The main criteria for a compari-

son should be the operational aspects.

FUEGO (Martin-Rico et al. 1997) was a first proposal for a fire observation

constellation with small satellites. Unfortunately the requirements regarding the

operational aspects were unrealistic (15 min revisit time) so that this proposed

concept did not find funding.

8.4.1 Advantages of Small Satellite Constellations

After the success of BIRD different approaches for small satellite constellations

were discussed. To reduce costs it was decided to use the spare models of BIRD for

the IR cameras because a development of new infrared detector devices would be

very expensive and have a major impact on the overall costs.

Currently in discussion is the FIREBIRD constellation consisting of the two

satellites TET-1 (Technologie Entwicklungsträger) and BIROS (Berlin InfraRed

Optical System). TET-1 was launched on June 22nd 2012. BIROS is planned to be

launched in 2014.

For an improved spatial and temporal coverage, the two satellites will circle the

Earth at an altitude of about 520 km in solar-synchronous orbits with varying local

equator crossing times as illustrated in Fig. 8.17. Furthermore the small satellites

have a higher agility turning the line of sight slightly away from the nadir pointing

which makes it possible to widen the swath width. This is an equivalent to the tilt

mirror mechanisms of the large satellites.

Furthermore a satellite constellation has lower financial risks in case of defects in

key components because the loss of one small satellitewould result in a lower financial

loss, however at the same time retaining at least one half of the mission capabilities.

8.4.2 Future Infrared Instrument Concepts
for Small Satellites

Whereas it was mentioned in the beginning of this chapter that the FIREBIRD

constellation uses BIRD spare models for the infrared cameras a comparison of
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Figs. 8.9a and 8.18 demonstrates remarkable changes in the overall design of the

payload caused by the joint BIRD experiences, and the advancement of satellite

technology.

The parameters of the FIREBIRD mission are shown in Table 8.4. Noticeable

are the changes for the visible camera. The choice of the spectral bands and the

improved ground resolution (42 m) allow testing different new methods combining

the visible and the infrared bands, and also improving the classification of the fire

events.

Fig. 8.17 Improvement of spatial and temporal coverage using a constellation of two small

satellites

Fig. 8.18 The optical payload for TET-1 and BIROS the next steps after FIREBIRD is that it will

be necessary to specify and realize the next generation of infrared detector arrays
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The first step should be the application of longer line array thus improving either

the ground resolution or the swath width or both. Figure 8.19 shows the design of a

long linear array with 2,400 elements. The second step could be the construction of

an infrared detector chip containing a MW band as well as the LW band on the same

focal plane array. In this case only one infrared camera would be sufficient. This

would also improve the geometrical co-alignment of the two spectral bands.

Last but not least would be to change over from the multispectral payload to a

hyper spectral payload. Figure 8.20 shows the imaging spectrometer MERTIS

(MErcury Radiometer and Thermal Infra-red Spectrometer) for the Mercury

Mission BepiColombo (launch date 2015). It covers a spectral band from 7 to

Table 8.4 Parameters of the FIREBIRD payload

VIS 2 infrared cameras

Wavelength 0.5, 0.6, 0.8 μm
Green, Red, NIR MW: 3.4–4.2 μm; LW: 8.5–9.3 μm
Focal length 90.9 mm 46.39 mm

FOV 19.6� 19�

Aperture 3.8 2.0

Detector CCD lines CdHgTe arrays

No. of pixel 3 � 5,164 2 � 512 staggered

Quantization 14 bit 14 bit

Ground resolution 42.4 m 356 m

Sampling size 42.4 m 178 m

Swath width 211 km 178 km

In-flight calibration No Black body flap

Accuracy of location 100 m at ground 100 m at ground

Fig. 8.19 Design of a long linear array with 2,400 elements (© AIM Germany) (Left – the focal

plane array, right – the focal plane array in the dewar housing without the entrance window)
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14 μm. In combination with a similar instrument in the MW band it would be

possible to gain more knowledge on global wildfires, and in addition give a better

insight, and much more information about burning biomass and the emitted

Greenhouse gases.
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Chapter 9

Landsat and Thermal Infrared Imaging

Terry Arvidson, Julia Barsi, Murzy Jhabvala, and Dennis Reuter

Abstract The purpose of this chapter is to describe the collection of thermal

images by Landsat sensors already on orbit and to introduce a new Landsat thermal

sensor. The chapter describes the Landsat 4 and 5 thematic mapper (TM) and

Landsat 7 enhanced thematic mapper plus (ETM+) sensors, the calibration of

their thermal bands, and the design and prelaunch calibration of the new thermal

infrared sensor (TIRS). The TIRS will be launched in February 2013 on the Landsat

Data Continuity Mission (LDCM) satellite, which will be renamed to Landsat

8 after it reaches orbit. Continuity of the data record has always been a priority

for the Landsat project. The TIRS will extend the unique Landsat thermal data

archive begun in 1978 that supports, among other applications, water resource

management in the western United States and global agricultural monitoring

studies. The TIRS also introduces improved technology and data quality, both of

which are discussed in the chapter.

9.1 Background

The current Landsat mission is to systematically image the Earth’s landmasses,

building an essentially cloud-free global archive that is refreshed seasonally. How-

ever, the original mission was a demonstration of the value of space technology to

Earth applications. The first satellite, Earth Resources Technology Satellite 1 (later

T. Arvidson (*)

Information Systems and Global Solutions, Lockheed Martin, Greenbelt 20770, MD, USA

e-mail: Terry.arvidson@nasa.gov

J. Barsi

Science Systems and Applications Inc. (SSAI), Lanham 20706, MD, USA

M. Jhabvala • D. Reuter

Goddard Space Flight Center (GSFC), National Aeronautics and Space Administration

(NASA), Greenbelt 20770, MD, USA

C. Kuenzer and S. Dech (eds.), Thermal Infrared Remote Sensing: Sensors,
Methods, Applications, Remote Sensing and Digital Image Processing 17,

DOI 10.1007/978-94-007-6639-6_9, © Springer (outside the USA) 2013

177

mailto:Terry.arvidson@nasa.gov


renamed Landsat 1) was launched in 1972 with instruments covering the solar

reflective band regions. Six years later, the first thermal capability was introduced

on Landsat 3’s multispectral scanner (MSS). The thermal band’s on-orbit perfor-

mance was disappointing and its operation was terminated in March 1979, 1 year

after launch (NASA 1979). No further discussion is provided for the MSS thermal

band due to its poor performance.

Although very little good data were acquired from the MSS thermal band,

applications using thermal data were starting to emerge—including thermal

mapping, plant stress, and urban/non-urban land use differentiation—and there

were firm plans to try again with a thermal band on the TM (Thermal Mapper),

the next generation Landsat instrument. Launched in 1982 on Landsat 4 and 1984

on Landsat 5, the TM thermal band improves upon the MSS and, in general, does

not suffer from the same problems. Landsat 4 operated successfully for over

10 years, with data collection terminated in 1993. The Landsat 5 TM acquired

data for over 27 years until communication system failures essentially ended the

TM data collections in November 2011. Landsat 6 never reached its operational

orbit after launching in 1993. In 1999, Landsat 7 was launched with the ETM+

instrument.

The newest Landsat mission, Landsat Data Continuity Mission (LDCM, or

Landsat 8 after launch), will launch in February 2013 and carry the next generation

Landsat thermal imaging capability.

9.2 TM and ETM+ Design and Operation

The TM and ETM+ instruments are whiskbroom radiometers, with an oscillating

scan mirror in front of the telescope optics that sweeps back and forth across the

field of view, roughly perpendicular to the direction of spacecraft travel (Fig. 9.1).

The scan mirror sweeps the ground, projecting the energy through the telescope and

onto the focal plane, which consists of four detectors in the TM or eight detectors in

the ETM+. A scan-line corrector assembly compensates for the forward motion of

the spacecraft during each sweep, returning adjacent sweeps to a parallel alignment.

The TM and ETM+ on-board calibration systems consist of a single on-board

cavity blackbody and a black, highly emissive shutter (Fig. 9.1) (Markham et al.

1997). The blackbody sits off the optical axis at a constant temperature. The shutter,

which carries the calibration lamps across the optical axis for the reflective band

calibration, has on it a toroidal mirror. As the shutter sweeps across the optical axis,

the mirror reflects the radiation from the blackbody onto the optics and through to

the cold focal plane. The non-mirror part of the shutter is coated with a high-

emissivity paint and sits at the instrument ambient temperature. Outputs from

thermistors located within TM and ETM+ —monitoring temperatures of the indi-

vidual components such as the shutter and the mirrors—are included in the

downlinked data.
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The cold focal plane, which includes the thermal band detector array as well as

those of the shortwave infrared bands, is housed in a dewar to isolate and control the

thermal environment. There is a zinc selenide window in the dewar, with an

antireflective coating, to allow light to reach the detector array with maximum

transmission. In the TM instruments, a contaminant, most probably ice, builds up

on the dewar window over time (Helder et al. 2004). Periodically, outgassing is

performed wherein the cold focal plane is warmed up to remove the contaminant.

The TM and ETM+ thermal bands improve upon the MSS design (Table 9.1).

The TM instruments increase the spatial resolution and correct the features that led

to the poor quality of the MSS thermal data. The TM radiometric resolution has

been well below 0.5 K (Table 9.2). For additional radiometric resolution, the ETM+

outputs two versions of the thermal data, one in high gain to improve radiometric

sensitivity and one in low gain to prevent saturation. The ratio of high gain to low

gain is approximately a factor of two. The actual spectral response of the thermal

bands has varied due to manufacturing processes, but the TM and ETM+ thermal

band requirement has always been a wide bandpass, from approximately 10.5 to

12.5 μm (Fig. 9.2).

Fig. 9.1 The thematic mapper optical layout, from the scan mirror that whisks across the field of

view to the focal planes. The shutter flag is shown in the calibration position, blocking energy from

the ground and reflecting the blackbody radiance onto the cold focal plane. The shutter flag detail

(inset) shows the dark surface used as a cool target and the mirror that reflects energy emitted by

the blackbody onto the focal plane. The lenses pipe the light from the calibration lamps onto the

focal planes for reflective band calibration
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Table 9.1 Landsat thermal band characteristics; Landsats 3–7 were implemented with mercury-

cadmium-telluride detectors. LDCM uses quantum well infrared photodetectors

Satellite and sensor Number of detectors Focal plane temperature (K) Resolution (m)

Landsat 3 MSS 2 90 240

Landsat 4, 5 TM 4 90 120

Landsat 7 ETM+ 8 91 60

LDCM TIRS 1,850 40 100

Table 9.2 Comparison of noise equivalent change in brightness temperature (NEΔT) and radio-

metric ranges of the thematic mapper class instruments. For the TM instruments, the smaller

NEΔT is when the dewar window is clear of contaminant, the larger is when contaminant build-up

is at its peak. ETM+ operates in two gain states simultaneously, so the values for both states are

provided here. The radiance and temperature ranges are the ranges to which the TM and ETM+

data are scaled during processing, not necessarily the native sensitivity of the instruments. The

TIRS numbers are derived from requirements and pre-launch measurements

Satellite

instrument

NEΔT at 285 K

(K)

Radiometric scaling range

(W/m2 sr μm)

Useful temperature range

(K)

Landsat-4 TM 0.22–0.32 1.238–15.300 200–340

Landsat-5 TM 0.17–0.30 1.238–15.300 200–340

Landsat-7 ETM+ 0.26 0.00–17.04 130–350

0.21 3.20–12.65 240–320

LDCM TIRS < 0.1 (to be determined) 240–360

Fig. 9.2 Relative spectral responses of the Landsat thermal bands, including the new TIRS sensor
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9.3 TM and ETM+ Calibration

Calibration relates the radiance received by the sensor to the digital output of that

sensor. Calibration parameters are applied during image processing to create products

where the corrected digital numbers are linearly scaled to at-sensor radiance. In the

thermal bands, apparent brightness temperature can be calculated from radiance.

The calibration parameters are initially determined from pre-launch laboratory

calibration with external National Institute of Standards and Technology (NIST)-

traceable radiance sources. Instrument gains and biases are used to calibrate the data

so that users can convert the data to radiance using fixed calibration coefficients.

These gains and biases are determined using the calibration parameters, along

with the responses to the blackbody and shutter flag in the internal calibration system

of the sensor and the temperatures of the blackbody and shutter flag.

The development of an Image Assessment System (IAS) has been essential

to the knowledge of the calibration of the ETM+ (Storey et al. 1999). Developed

by the United States Geological Survey (USGS) Earth Resources Observation and

Science center, the IAS includes all the functionality of the primary processing

system for ETM+ data, but it also features additional analysis tools and a trending

database to record calibration information. Some data from every scene processed

through the primary processing system is recorded to the IAS database. An addi-

tional four scenes per day are further processed through the IAS’s analysis tools and

statistics on each detector for each scan of both scene content and internal

calibrators are recorded to the database. In this way, the instrument gains and

biases can be monitored on a very short time scale, to reveal abrupt changes or

slow degradations.

Initially developed for Landsat 7, the IAS has proven to be invaluable in

monitoring the stability of the ETM+ and in 2008, the capability to process TM

data was added (Micijevic and Morfitt 2010). Early attempts at long-term TM

trending involved using one scene every 60 days; with the TM IAS, data from at

least one scene per day are available. The populated TM IAS database increased the

knowledge of the instruments’ long-term behavior, in absolute gain and offset for

example, and allowed for the monitoring of short-term trends in relative gain and

outgassing behavior.

Thermal band vicarious calibration provides an independent means of measuring

on-orbit sensor performance using well-instrumented water bodies. There was a

single attempt at vicarious calibration for each of the TM instruments soon after

their launches (Schott 1988) though further validation attempts were not regularly

scheduled again until the launch of Landsat 7. Vicarious calibration was performed

immediately after the ETM+ launch and continues to this day. Since 1999, four

unmanned instrumented buoys on Lake Tahoe record the surface-leaving radiance

every 2 min (Hook et al. 2004). Another unmanned station was established in 2007

on the Salton Sea. Manned campaigns on Lakes Ontario and Erie in support of

ETM+ began just after launch and, soon after, teams were deploying in support

of Landsat 5 TM as well (Barsi et al. 2003).
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More recently, the network of the National Buoy Data Center archive has been

used to increase the extent of the vicarious calibration capabilities, both spatially

and temporally. These buoys record hourly subsurface water temperature as well as

meteorological data. Padula and Schott (2010) developed methods for using this

archive for Landsat 5 TM and Schott et al. (2012) extended the vicarious calibration

method for use with Landsat 4 TM.

The vicarious calibrations track the absolute calibration of the sensor data and

have spawned several updates of the calibration parameters. Adding the relatively

hot Salton Sea site expanded the temperature range of the vicarious data and

uncovered gain errors in the prelaunch calibration parameters that had been previ-

ously undetected.

9.4 TM and ETM+ Performance

Beginning with Landsat 4, the Landsat thermal bands have been generally well-

behaved. The TM and ETM+ thermal systems are designed to rely on the stability of

the internal calibration systems as opposed to the bands themselves, though in most

cases the thermal band focal planes are as stable as the calibration system. For the

TM, it is necessary to rely on scene-by-scene calibration of the thermal bands using

the calibration systems, due to the dewar window contamination. Outgassing restores

the system to its previous sensitivity, indicating that the focal plane itself is stable.

Because of the contamination, the gain of the TM instruments could drop as much as

40 % between outgassings (Barsi et al. 2007). The effect of the decreasing gain is

accounted for in the calibration processing, so the decrease does not inherently result

in a calibration error. It does, however, reduce the sensitivity of the detectors; thus the

NEΔT is presented as a range for Landsats 4 and 5 in Table 9.2.

For ETM+, the contamination is not an issue and the average responsivity of the

cold focal plane has been stable since launch to within 0.2 % for gain and 0.4 % for

offset (Barsi et al. 2009). One thermal band detector did change relative to the

others by about 1 %, perhaps due to a localized contamination.

Only two updates to the calibration parameters have been made as a result of

actual instrument change. The Landsat 5 TM offset was updated to reflect a

0.092 W/m2 sr μm bias error seen in the vicarious calibration results starting in

1999 (Barsi et al. 2007). With the addition of the historical buoy data, this change

was determined to have actually occurred in the early part of 1997 and was revised

to 0.11 W/m2 sr μm (Schott et al. 2012). Records of spacecraft and instrument

behavior from that time period are incomplete, so while it is suspected that an event

occurred within the instrument to cause the offset change, there is no definitive

proof of what it was. The Landsat 4 TM bias was also updated as a result of a

change in the instrument (Schott et al. 2012). The simple calibration model used for

TM does not account for changing instrument temperatures and so a change in the

Landsat 4 TM instrument operating temperature, resulting after a long period of
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non-use, manifested itself as a change in instrument offset. The 0.43 W/m2 sr μm
offset error was corrected in the processing system in 2011.

With the current calibration parameters and processing algorithms, all three

thermal bands are calibrated to within 1 K (Table 9.3).

These tools—anon-board calibrator, vicarious calibration sites, and the IAS—will be

used by LDCM to characterize and calibrate the TIRS instrument and track its stability.

9.5 LDCM (Landsat 8) TIRS Instrument Description

The Landsat Data Continuity Mission (Fig. 9.3) is scheduled to launch in February

2013 with two instruments that will be operated simultaneously: (1) the operational

land imager (OLI) that images in the visible, near-infrared, and short-wave infrared;

and (2) the thermal infrared sensor (TIRS). In keeping with the Landsat continuity

directive, the LDCM specifications are compatible and comparable with most of the

heritage Landsat specifications, including ground resolution, swath width, radio-

metric and geometric accuracy, and bandwidths.

Both instruments introduce a technology new to the Landsat program—

pushbroom sensor operation—in which rows of detectors for each channel are

swept in the along-track direction by spacecraft motion. For each channel, an

image is built-up by concatenating successive single-row measurements. Previous

Landsat instruments used whiskbroom operations, in which a few detectors for each

channel are swept across track by a system of moving mirrors as the spacecraft travels

in the along-track direction. Because, in a pushbroom sensor, each spatial element has

its own detector, integration times can bemuch longer, which leads to improved noise

performance. Furthermore, unlike in whiskbroom sensors, in pushbroom sensors

there is no need for a large, continuously moving scan mirror or for the scan-line

corrector, eliminating sources of jitter and possible failure modes.

TIRS is the first Landsat instrument built in-house at the National Aeronautics

and Space Administration (NASA) Goddard Space Flight Center (GSFC).

Although design and development of the OLI instrument began in 2007, work on

the TIRS did not start until mid-2008, reducing the time from design to delivery for

integration on the spacecraft to about 3 years. To facilitate the shortened schedule,

TIRS was built as a Class C instrument (NASA 2004)—reducing the required

end-of-life reliability somewhat and simplifying the review process—and with a

3.25-year design life. In contrast, the OLI is a Class B instrument with a 5-year

design life. Technology improvements over previous Landsat thermal capabilities

Table 9.3 Current

calibration status of the

Landsat thermal bands

Instrument Residual uncertainty in calibration (K)

Landsat-7 ETM+ 0.48

Landsat-5 TM 0.66

Landsat-4 TM 0.98

9 Landsat and Thermal Infrared Imaging 183



include: pushbroom mode, two spectral channels, a cooled optical path to reduce

background noise, and quantum well infrared photodetector (QWIP) arrays.

Structurally, the TIRS consists of the sensor unit—including the telescope

assembly, focal plane array and electronics, cryocooler, blackbody calibrator,

scene select mechanism, Earth shield, radiators, and heat pipes—and two electron-

ics boxes, the main electronics box (MEB) and the cryocooler electronics (CCE)

(Figs. 9.4 and 9.5). The MEB provides command, telemetry, and image data

interfaces to the spacecraft; provides power to and controls all functions of the

Fig. 9.3 The Landsat Data Continuity Mission will extend the 40-year record of moderate-

resolution reflective and thermal measurements of the Earth’s surface

Fig. 9.4 The TIRS sensor unit is mounted on the LDCM spacecraft instrument deck alongside the

OLI sensor. The TIRS main electronics box (MEB) and cryocooler electronics (CCE) are mounted

on the spacecraft body, below the deck (FPE focal plane electronics)
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instrument; controls the thermal zones on the instrument (except the cryocooler);

and commands the cryocooler electronics. The CCE provides power to the

cryocooler and controls its operations and temperature.

TIRS has 100 m spatial resolution, not as fine as the ETM+ at 60 m, but better

than the TM sensors at 120 m thermal band resolution (Table 9.1). To produce the

185 km swath width of TIRS, 1,850 pixels are required for each row in each

channel. At a ground speed of 7 km/s, it requires approximately 0.014 s to move

100 m and 70 effective rows of pixels are produced in each second for each channel.

TIRS uses a 3.4 ms integration time and the resultant 25 m image motion, when

convolved with the instrument spatial function, does not excessively broaden the

spatial resolution. The 12-bit digitized output data are required to produce precise

temperature measurements over the range of 240–360 K—a temperature range

slightly larger than previous Landsat thermal bands.

There are two spectral channels, centered near 10.9 and 12 μm, effectively

splitting the heritage TM/ETM+ band into two (Fig. 9.2, Table 9.4). The two

channels—a “split-window” approach—allow for compensation of the thermal

effects of the atmospheric column in transforming at-satellite radiances into surface

temperatures (Prabhakara et al. 1974; Kerr et al. 1992). To accomplish this with the

ETM+ single thermal band, an atmospheric propagation model and supplementary

atmospheric data must be used.

Fig. 9.5 Block diagram showing interfaces among major parts of TIRS and the spacecraft,

including light paths and relative temperatures along the heat pipes (SSM scene select mirror,

SCA sensor chip assembly, TMU thermal unit, HSI high speed interface, L lens, CDH command

and data handling)
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The TIRS telescope uses a temperature-stabilized four-element refractive lens

system—three germanium (Ge) elements and one zinc selenide element—to pro-

duce nearly diffraction-limited images at the focal plane (Fig. 9.6). A scene select

mechanism (SSM) allows the field of regard to be pointed in the nadir direction for

surface imaging, to a temperature-controlled on-board blackbody for radiometric

calibration, and to a deep space view for thermal background subtraction.

To reduce the thermal background, the TIRS optics are cooled to 185 K and

temperature-stabilized to ~0.1 K, using a radiative cooler and heaters controlled by

the MEB. In addition, the first stage of the cryocooler is used to cool the focal plane

enclosure to ~100 K. The optics temperature directly affects the focus of the Ge

elements, because the Ge index of refraction is a strong function of temperature

(Reuter et al. 2010, 2011). This coupling provides a means of adjusting the focus.

The blackbody calibrator temperature is controlled by the MEB and can be set from

Fig. 9.6 TIRS optics showing the SSM, lens, focal plane and cryocooler assemblies (FPA focal

plane array)

Table 9.4 TIRS band definitions and maximum radiance error (Reuter et al. 2010, 2011)

Channel Band

50 % response

lower band edge

(μm)

50 % response

upper band edge

(μm)

Center

wavelength

(μm)

Maximum allowed

Radiance error W/

(m2 sr μm)

10 Thermal

1

10.6 11.2 10.9 0.059

11 Thermal

2

11.5 12.5 12 0.049
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270 to 330 K, within an accuracy of 0.1 K. The focal plane array is cooled to about

40 K by the second stage of the two-stage mechanical cryocooler controlled by the

CCE. The focal plane temperature is stable to better than 0.01 K. The radiators

required to cool the optics and to dump the heat generated by the cryocooler are

protected from heating by the Earth by a shield that deploys soon after launch

(Fig. 9.7).

The focal plane consists of three QWIP arrays, arranged in a staggered configu-

ration, that provide a 185 km swath image of the Earth (Fig. 9.8). Each QWIP has

two filters mounted 300 μm above it. These filters provide the spectral shapes

described in Table 9.1. Each of the three QWIP arrays contains 327,680 pixels—

25 by 25 μm each—arranged in a grid of 640 columns by 512 rows (Fig. 9.9). The

QWIP detectors are fabricated by growing many (in excess of 60) alternating layers

of gallium arsenide (GaAs) quantum wells and aluminum gallium arsenide

(AlGaAs) barriers. The thickness of the GaAs and AlGaAs and the concentration

of aluminum in the AlGaAs primarily determine the band structure in the wells and

hence the spectral response of the material structure (Jhabvala et al. 2009). Once

this “superlattice” is grown, the QWIP arrays are fabricated using photolithogra-

phy, reactive ion etching, and vacuum deposition processes similar to those used by

the semiconductor industry.

Photons of the appropriate energy will excite an electron out of the GaAs

quantum well that is then detected by an external circuit. The QWIP arrays are

hybridized, or attached—using indium bump bonding technology—to a commer-

cially available readout integrated circuit (ROIC). The ROIC contains the

integrated electronics that detect the photo-generated electrons and convert the

Fig. 9.7 The TIRS with Earth shield stowed for launch (left) and with Earth shield deployed for

on-orbit operations (right)
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Fig. 9.8 The actual TIRS flight focal plane with the three QWIP arrays exposed (left) and the

focal plane with the filter assembly installed (right) (Photos courtesy of NASA)

Fig. 9.9 A highly magnified image of 9 pixels of one of the QWIP arrays. Each QWIP array

contains 327,680 such pixels (Photo courtesy of NASA)
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electrons to a voltage. This voltage is proportional to the number of detected

photons. The QWIP/ROIC hybrid is then bonded to a custom-developed silicon

substrate that contains metal traces. The QWIP hybrids are wire bonded to the

traces on the silicon substrate and this subassembly is attached to an invar baseplate.

Also mounted on the baseplate are two printed circuit (PC) boards located at either

end of the silicon substrate. Wire bonds connect the silicon substrate traces to these

PC “daughter” boards. Connectors on these daughter boards provide the interface

between the QWIP hybrids and the external focal plane electronics.

Once the filters are positioned over the focal plane, the two infrared bands and

the dark pixel regions are precisely defined in each QWIP hybrid—down to the

individual pixels as shown in Figs. 9.10 and 9.11 (Jhabvala et al. 2010).

In each of the 70 samples produced per second, six rows are read out from each

hybrid: two illuminated rows from the unvignetted region under each filter (four

rows altogether) and two dark rows from an area on the hybrid that is far removed

from the filters. The pixels from the illuminated rows in each channel in each hybrid

are projected onto the Landsat Worldwide Reference System-2 grid during ground

processing. Should a detector fail in a pushbroom instrument like TIRS, a complete

column of data is lost. Capturing two rows from each infrared channel on each

hybrid allows the ground processing software to combine the two rows into a single

“effective” 1,850-pixel row that has no inoperable pixels and covers the entire

Fig. 9.10 The focal plane layout illustrating the infrared band locations and the specific pixel

columns that participate in the image collection and reconstruction. The 1,920 total row pixels

(3 � 640) are reduced to 1,850 pixels by including array overlap and eliminating the first and last

8 columns. The areas of the hybrids not directly under the filters are shielded from illumination

(GSD ground sample distance)
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185-km swath. The dark pixels are read out to provide a measure of the dark current

of the QWIP hybrids. This is done to mitigate the effect of variable dark current on

the image data in the unlikely event that the temperature of the focal plane is not

controlled to sufficient precision by the CCE. Under normal conditions, the dark

pixels are not used in data processing.

The arrays receive clock signals and biases from the focal plane electronics

(FPE). The FPE contain an applications-specific integrated circuit (ASIC) chip to

gather image data from the QWIP arrays. The ASIC controls the read pattern on the

hybrids and performs analog-to-digital conversion of the image data. The FPE adds

header information, formats these data, and sends them to the main electronics box.

The MEB packetizes the digitized image data and forwards the packets to the

spacecraft communications system to downlink.

The MEB controls the scene mirror position and provides mirror position data to

the spacecraft for incorporation into the telemetry. The scene mirror can be

positioned with an accuracy better than 10 μrad (3 σ) in order to meet the geodetic

requirement that pixel location on the ground be known to 18 m (27 μrad).
The FPE, ASIC, and CCE software are loaded from electrically erasable pro-

grammable read-only memory, which can be updated from the ground. The MBE

uses field-programmable gate arrays for its operations.

Once turned on, the TIRS instrument continually gathers image data but these

data are recorded and brought to the ground only on command. Nominally, this will

be whenever the OLI is acquiring data. The two data sets are merged onboard,

Fig. 9.11 Once the filters are positioned over the QWIP hybrids, the arrays are precisely

partitioned, down to the pixel level, as shown in the illustration. The first and last 8 columns are

not used to avoid edge-related defects
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downlinked in a single data stream, and processed into a single product. None of the

calibration modes of the TIRS require maneuvering of the satellite, although TIRS

will collect image data during OLI calibrations that do require maneuvers.

The LDCM will collect and archive the global, synoptic, and repetitive OLI and

TIRS imagery and will electronically distribute data products to the general public

on a no-cost basis. USGS is responsible for the ground system, including the

Ground Network Element, the Mission Operations Element, and the Data

Processing and Archive System (DPAS). The DPAS consists of several subsystems

that produce the Level 0 data and associated metadata, and generate the Level

1 radiometrically calibrated and orthorectified images of the Earth’s surface. It also

includes the IAS developed for OLI and TIRS. The processing algorithms are being

developed by USGS and NASA GSFC calibration and validation teams.

9.6 TIRS Calibration and Pre-launch Performance

The existing suite of thermal data calibration and validation tools will be applied to

the TIRS data set. Vicarious calibrations will continue to play an important role.

The IAS has been updated to process pushbroom data, after proving the concept

with data from the Earth Observer-1 advanced land imager, also a pushbroom

instrument (Micijevic and Morfitt 2010). Additionally, there are new capabilities

on the LDCM for calibration and for validation of TIRS. Table 9.5 lists the types of

calibrations that will be used by TIRS on orbit.

For normal radiometric calibration, the scene mirror uses the scene select

mechanism to change its field of view from a nadir Earth view to the on-board

blackbody calibrator for 60 s and then to deep space for 60 s. This is done twice

each orbit, before the first imaging interval and after the last imaging interval

(the Landsat 4–7 thermal bands perform similar calibrations twice each data line).

The TIRS is capable of imaging up to 35 min between calibration sequences. The

data acquired during these calibration cycles is used during ground processing to

correct offsets and gains that may vary over time. There is a requirement for less than

0.7 % drift between calibrations. As noted by Reuter et al. (2010, 2011), the QWIP

array is in itself temporally stable, thus facilitating radiometric stability between

calibrations.

The normal calibration sequence described above is replaced on a periodic basis

by two other calibration modes: (1) an integration time sweep calibration during the

blackbody portion of the normal calibration, and (2) a series of normal calibrations

during a blackbody temperature sweep. If required, a stability calibration may be

performed in which the normal calibration sequence is repeated, every 5 min, for a

total of ten times across 50 min.

As the TIRS will image coincidentally with the OLI, the TIRS will collect data

during the OLI calibrations. TIRS-driven acquisitions will include ocean and night

collects. The IAS performs long-term trending, characterization, and calibration of

the TIRS data and updates the processing parameters as needed.
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Calibration has been performed at the component, subsystem, and instrument

level throughout the TIRS fabrication process. Comprehensive requirements verifi-

cation, and calibration and measurements, were made in a thermal vacuum envi-

ronment prior to shipment of TIRS for integration on the spacecraft. These

measurements employed NIST-traceable radiometric sources. A detailed descrip-

tion of the results of these tests is beyond the scope of this chapter and will be

published later. In general, all requirements were met with a few minor exceptions.

Modeling studies indicate that these exceptions will not impact the TIRS data

quality. A high level summary of the overall performance is as follows:

Radiometric accuracy: The requirements of 2 % accuracy for temperatures

between 260 and 330 K and 4 % for the rest of the range from 240 to 360 K appear

to be met. The absolute accuracy is obtained using NIST-traceable laboratory

sources in instrument-level thermal vacuum testing. Final verification of the radio-

metric accuracy will take place on orbit through vicarious methods.

Noise: This measure includes noise equivalent radiance, banding, streaking, and the

like. The noise is typically less than the requirements shown in Table 9.4 by a factor

of 5 or more. This corresponds to a NEΔT of <0.1 K at 285 K. The banding,

streaking, stability, and coherent noise performance is similarly good.

Spatial: There are slight deficiencies in some pixels’ edge slope and edge extent,

but these do not significantly degrade the image quality and will not affect the

science results.

Geometric: The various geometric requirements are generally met, although the

measured pointing stability as the instrument temperature is varied over its qualifica-

tion range is somewhat worse than desired. The stability requirements, however, are

near the limits of measurement capability and it is probable that chamber vibrations

and ground support equipment effects are contributing to the instability.

Spectra: The majority of the spectral requirements are met, although there are some

very minor deficiencies in the pixel average response and in-band spectral variation.

Table 9.5 TIRS calibration data types and their application

Detector-to-detector relative

calibration

Long term stability

(Change monitoring)

Absolute calibration

(Geophysical parameter

retrieval)

Dark (Deep

space)

X X X

Blackbody X X X

Vicarious sites X X

Band-to-band registration

(Within and between

sensors) Geodetic accuracy Focus

Geometric super-

sites

X X

Focus check sites X
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These are mitigated by the spectral uniformity of the atmosphere and surface in the

TIRS spectral bands and no science impact is expected.

Scattering, stray light, etc.: These parameters meet requirements. In some cases,

the calibration equipment was not capable of illuminating the extended focal array

area but analytical modeling results indicate that the regions not included will not

contribute to the signal in flight.

Except where indicated above, all the instrument parameters were stable over the

range of thermal conditions and electrical variability expected in flight.

9.7 Conclusions

The TM and ETM+ instruments have proven to be very stable. With the current

calibration data, TM and ETM+ products are accurate with respect to thermal

radiance.

The TIRS provides thermal data continuity with previous Landsat sensors. As of

August 2012, the TIRS is in Arizona at the spacecraft contractor, Orbital Sciences

Corporation (Figs. 9.12 and 9.13). It has been integrated with the spacecraft and is

undergoing final testing before shipment to the launch site. The TIRS promises

improved performance and more challenging calibration.

Fig. 9.12 (Left) The fully assembled TIRS primary structure, with radiators and Earth shield

(Photo courtesy of NASA). (Right) The TIRS, shrouded in gold thermal blanketing, is mounted on

the top left of the LDCM spacecraft (nadir view is to the left). The OLI is on the right of the

payload deck, with white blanketing (Photo credit: Orbital Sciences Corp)
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Chapter 10

Review of High Resolution Thermal

Infrared Applications and Requirements:

The Fuegosat Synthesis Study

José A. Sobrino, Fabio Del Frate, Matthias Drusch, Juan C. Jiménez-

Muñoz, and Paolo Manunta

Abstract High resolution thermal infrared remote sensing can have a wide range of

applications. In this chapter we describe the different applications and requirements

identified after a revision study in the framework of the Fuegosat Synthesis Study

(FSS). This project was funded by the European Space Agency (ESA), and the three

main objectives were: (i) review of applications and analyses for user requirements,

(ii) consolidation of user requirements over a broad range of applications, and

(iii) matching of user requirements and industry concepts to identify and outline a

set of potential mission scenarios and their corresponding requirements. This chap-

ter focuses on issues (i) and (ii). These objectives were achieved by means of

integrated studies within literature and ancillary documentation, and also by consul-

tation of external experts. As a result, more than 30 applications were identified

within three different fields: (i) Land and Solid Earth, (ii) Health and Hazards and

(iii) Security and Surveillance. A complete set of requirements (spatial, temporal,

and radiometric resolution, algorithms used, supporting data, among others) were

also provided.
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10.1 Introduction

The Fuegosat Consolidation Element is part of the Earth Watch Programme

approved by the European Space Agency (ESA) Council at Ministerial Level in

November 2001. The work plan for Fuegosat included two steps; the first step

proposed to implement an Infra-Red (IR) element in the form of passenger payloads

in all Sentinels suited to carry it. The target application was risk management related

to natural hazards with a special focus on fire risk management. However, the

reassessment of the mission requirements confirmed the weakness in the traceability

to Global Monitoring for Environment and Security (GMES) operational services,

and in particular that fire monitoring capabilities were not traceable to services

required under GMES as defined via GMES Service Elements, or via preliminary

documentation produced for Fast-Track or Core Services. Since high applications of

infrared observations have been identified as potentially relevant for GMES, the

programme is currently undergoing a re-orientation.

In this framework, the Fuegosat Synthesis Study (FSS) project contributed to the

identification of applications for high resolution Thermal Infra-Red (TIR) remote

sensing and the analysis of user requirements in three different topics: Land and

Solid Earth, Health and Hazards, and Security and Surveillance. The FSS project

included also the matching of user requirements and industry concepts to identify and

outline a set of potential mission scenarios and their corresponding requirements.

In this chapter we focus on the applications identified during the literature review and

also the requirements for each application.

The methodology employed to identify the different applications and to extract

the user requirements is based mainly on available reports and especially on papers

published in international journals or proceedings presented in international sympo-

siums, i.e., these results were mainly based on a literature review process. This is true

except for “Security and Surveillance” related applications, since these types of

applications are not commonly published and divulged, a literature review did not

provide useful information. In this case, most of the applications and requirements

were extracted from personal communications. In this chapter we provide a brief

description of each topic and also detailed tables of user requirements.

10.2 Land and Solid Earth

Applications included in the “Land and Solid Earth” topic were volcano and fire

monitoring, which are based on the detection of High Temperature Events (HTE),

and evapotranspiration retrieval, and water stress detection, both of them related to

water management issues. Other secondary applications such as the role of TIR data

in Earthquake events, detection of coal mine fires, and growing degree-days were

also considered. Requirements for all these applications are provided in Sect. 10.5

(Table 10.2).
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10.2.1 Volcano Monitoring

Volcanic eruptions pose serious hazards to sensitive ecosystems, transportation and

communication networks, and to populated regions. Knowing the mineralogy of a

rock or alluvial surface is critically important to a geologist trying to interpret the

geologic, climatic, or volcanic history of the surface. Spectroscopy and remote

sensing in the TIR region has lagged behind that of other wavelength regions for

numerous reasons. However, the utility of TIR remote sensing for geology and

mineralogy has become clear in the past decades and numerous air- and space-

based instruments have become available.

10.2.2 Fire Monitoring

Fires are a major security hazard in numerous countries around the world, which

affect vegetated resources, as well as the species that they shelter, not to mention

human housing. In this section, the term “fire” will be dedicated to any wildland fire

in the natural environment, including farmland fires (CEOS 2003). Wildland fire is

any non-structural fire, other than prescribed fire, that occurs in the wildland

(vegetated areas such as whether forests, savannas or Mediterranean vegetation).

In Europe, the Southern countries (Portugal, Spain, France, Italy, and Greece) are

the most affected by fires, with an average of almost 50,000 fires between 1980 and

2008, corresponding to an average burnt area of more than 480,000 ha per year

(JRC 2008). The total cost of fires can be estimated at around 1 % of global Gross

Domestic Product (WFSC 2009), including the costs of direct and indirect fire

losses, the cost of fire fighting organizations, the cost of fire insurance administra-

tion and the cost of fire protection to buildings.

Fires are characterized by their plumes, their temperature, and their luminosity.

Most in-situ daytime fire sightings result from the observation of smoke generated

by fuel combustion, while most nighttime sightings result from high and unusual

luminosity of the burning areas. The high temperature of the burning areas make the

fires detectable from satellite under clear-sky conditions.

10.2.3 Water Management

Detection of water stress and evapotranspiration retrieval are key applications for

water management purposes. Thermal infrared remote sensing has been recognized

for a long time one of the most feasible means to detect and evaluate water stress and

to quantify evapotranspiration over large areas and in a spatially distributed manner.
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Water stress is considered to be a major environmental factor limiting plant

productivity world-wide. Water stress develops in plants as evaporative losses

cannot be sustained by the extraction of water from the soil by the roots.

Evapotranspiration (ET) is a term used to describe the loss of water from the

Earth’s surface to the atmosphere by the combined processes of evaporation from

surface and transpiration from vegetation. Evapotranspiration depends on the

presence of water and is regulated by the availability of energy, needed to convert

liquid water to water vapor, and to transport vapor from the land surface to the

atmosphere. Physiological regulations also occur in plants through mechanisms

controlling water extraction by the roots, water transport in plant tissue, and water

release to the atmosphere via the stomata at the leaf surface (in direct relation with

the mechanisms of CO2 assimilation and photosynthesis).

10.2.4 Other Applications

Other applications using TIR remotely sensed data were identified within the “Land

and Solid Earth” topic, such as earthquakes, coal mine fires, and growing degree-

days. However, during the duration of the project, these applications were consid-

ered as a medium to low priority compared to the other applications. This does not

mean that these applications are not important, but they were not the main driver in

the elaboration of technical requirements of a future high TIR resolution sensor.

10.3 Health and Hazards

The last two decades have witnessed the increasing use of remote sensing for

understanding the geophysical phenomena underlying natural hazards. The scien-

tific knowledge gained along with the ability to disseminate timely geospatial

information that can be integrated with demographic and socioeconomic data are

contributing to comprehensive risk mitigation planning and improved disaster

response. Observations from Earth orbiting satellites are complementary to local

and regional airborne observations, and to traditional in situ field measurements and

ground-based sensor networks. The contributions of satellite remote sensing to Earth

science, ranging from high-resolution topography (using e.g. Interferometric SAR

(Synthetic Aperture Radars), Lidar (Light Detection And Ranging) and digital

photogrammetry) and geodesy to passive multispectral thermal sensor, such as

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) or

MODIS (Moderate Resolution Imaging Spectroradiometer), and active microwave

imaging have transformed the discipline. This transformation is leading to define a

rapidly growing field of applied research that increasingly will provide geospatial

information products addressing the operational requirements of multi-hazard deci-

sion support tools and systems. Policy makers, emergency managers and responders
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from international and federal to state, regional and local jurisdictions use these tools

and systems to generate scenarios, devise mitigation plans and implement effective

response measures.

In this section two major applications are considered: the Urban Heat Island

effect and Epidemiology. Other applications such as industrial risks, coastal

inundations, and asbestos-cement detection are also presented. Requirements for

all these applications are provided in Sect. 10.5 (Table 10.3). Note that fire risk

could be also considered as a “Health and Hazard” application, but it was presented

in the previous section (Land and Solid Earth applications, Sect. 10.2).

10.3.1 Urban Heat Island

Thermal remote sensing has been used over urban areas to assess urban heat island

effects, to perform land cover classifications, and as input for models of urban

surface atmosphere exchange. The main surface parameter to be extracted from

thermal remote sensing is the so-called Land Surface Temperature (LST) or simply

surface temperature, which is of prime importance to the study of urban climatology.

Itmodulates the air temperature of the lowest layers of the urban atmosphere, is central

to the energy balance of the surface, helps to determine the internal climates of

buildings and affects the energy exchanges that affect the comfort of city dwellers.

Surface and atmospheric modifications due to urbanization generally lead to a

modified thermal climate that is warmer than the surrounding non-urbanized areas,

particularly at night. This phenomenon is the Urban Heat Island (UHI). UHIs have

long been studied by ground-based observations taken from fixed thermometer

networks or by traverses with thermometers mounted on vehicles. With the advent

of thermal remote sensing technology, remote observation of UHIs became possible

using satellite and aircraft platforms and has provided new avenues for the observation

of UHIs and the study of their causation through the combination of thermal remote

sensing and urban micrometeorology (Voogt and Oke 2003). Since thermal remote

sensors observe the spatial patterns of thermal radiance at the surface, the termSurface

Urban Heat Island (SUHI) is usually employed to distinguish between UHI (when air

temperature is considered) and SUHI (when LST is considered). In this field, most of

the information was extracted from the UHI project funded by ESA under the DUE

program (URL1).

10.3.2 Epidemiology

There is a growing international consciousness about the importance of the epide-

miology of diseases. It is recognized that improved up to date information of the

environment, in which infectious diseases occur, will help epidemiologists to study,

understand, and predict threats to human health and hazards. Earth observations by
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satellites open up new opportunities to predict and help combat epidemic outbreaks,

as well as joining the search for the origin of pathogens. In fact, several diseases can

be analyzed using determined remotely sensed factors, a detailed list of them was

studied by Beck et al. (2000) and references therein.

Remote sensing data creates an important opportunity to evaluate risk areas or

determine the spatial distribution for some epidemic or vector outbreaks which

affect human health. In fact, during the past three decades, remote sensing

improvements have contributed to health science since 1970. After that, some

free or low cost environmental and meteorological data sets (e.g. low resolution

images) have been used to assess epidemic risks at global, regional, and local levels.

Therefore, remote sensing data presents valuable information to determine risk

factors and mapping risk areas, and their uses can also be integrated into models,

which are based on ecological analyses (Herbreteau et al. 2007).

10.3.3 Other Applications

Other operational contexts in the framework of “Health and Hazards” applications

can benefit from TIR remote sensing. Among them, industrial risks, coastal inun-

dation, and detection of asbestos-cement were considered. These applications were

also considered as a lower priority level.

10.4 Security and Surveillance

Applications and user requirements for security and surveillance related issues

are currently only vaguely defined, probably due to that security and surveillance

are normally related to military and politically sensitive applications. In addition,

these applications require mainly a very high spatial resolution TIR data, paying

less attention to spectral configurations or algorithms to extract geophysical

variables. Since operational TIR systems at very high-resolution data are rarely

accessible to the scientific community, security and surveillance applications have

been poorly developed and access to this knowledge by scientific community is

limited. This fact implies that a review of peer-reviewed literature (as considered in

the case of “Solid Earth” and “Health and Hazards” applications) is not possible in

order to provide a list of applications and user requirements (only vague and poor

information have been found in the different international journals explored).

Most of the information found included applications using hand-held thermal

cameras or Unmanned Aerial Vehicles (UAVs), with spatial resolutions of

centimeters. In particular, handheld thermal infrared cameras play an important

role. It is worth to mention the Multi-spectral Thermal Imager (MTI) sensor,

developed in Los Alamos National Laboratory (Sandia National Laboratory). The

sensor has a spatial resolution of 5 m in the visible bands and 20 m in the thermal

bands. MTI is an American quasi-military reconnaissance sensor mounted in a
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spacecraft and launched in March, 2000. The program was cosponsored by the

Department of Energy, Office of Nonproliferation and National Security (USA).

The 587 kg spacecraft carried visible and infrared sensors in 15 spectral bands to

spot cooling ponds adjacent to nuclear reactors and dust content associated with

uranium ore processing. The collected data also have spin-off benefits to civilian

research involving atmospheric ozone, water vapor, etc.

It is worth to mention the security service included in the GMES initiative

(URL2). The pre-operational security service of GMES is currently provided through

the FP7 project G-MOSAIC (GMES services for Management of Operations, Situa-

tion Awareness and Intelligence for regional Crises) (URL3) and the FP6 project

LIMES (Land and Sea Monitoring for Environment and Security) (URL4). These

two projects, which combine Earth observation technologies with communication

and positioning technologies, address the following domains:

• Maritime surveillance: sea border surveillance in and outside Europe, illegal

immigration and illegal trafficking surveillance, safety sea lane/piracy/sensitive

cargo. . .)
• Infrastructure surveillance: land border surveillance, critical infrastructure

(e.g. pipelines. . .)
• Support to peace-keeping: population monitoring, resources (water). . .
• Support intelligence and early warning

• Support crisis management operations

Despite that these GMES activities were consulted by the Fuegosat Synthesis

Study project to identify applications in the security and surveillance topic, it

should be noted that applications found in the former G-MOSAIC and LIMES

projects use high resolution VNIR (Very Near Infrared) imagery (e.g. IKONOS,

QUICKBIRD) and SAR data, but no application using high resolution TIR data has

been found. This is probably due to the fact that no TIR sensor with high resolution

and revisit time is currently available.

Different applications were suggested by the military organisms consulted by the

Fuegosat project team, who also provided basic requirements. As stated before,

since information was provided through personal communication, a strong justifi-

cation of requirements cannot be provided in some cases. Requirements for all these

applications are provided in Sect. 10.5 (Table 10.4).

10.5 Summary of Requirements

In order to offer a global vision of applications and user requirements identified

during the FSS project, we include in this section a summary of the reviewing

process. Table 10.1 provides a list of all the applications presented in this chapter.

For the “Land and Solid Earth” topic 18 applications were identified, whereas for

the “Health and Hazards” topic 17 applications were considered. The number of

applications is reduced significantly in the case of “Security and Surveillance”, with

only 6 applications.
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The user requirements for all these applications are included in Tables 10.2, 10.3

and 10.4 or the “Solid Earth”, “Health and Hazards” and “Security and Surveil-

lance” topics, respectively. Note that these tables also include the main references

consulted to extract the information presented in this chapter.

Table 10.1 Summary of TIR remote sensing applications

Topic Subtopic Application

Land and Solid Earth Volcanoes Eruption clouds

Tropospheric Plumes

Hot spots and active lava flows

Post eruptive studies on lava flows

Fires Detection of fires

Estimation of fire risk

Estimation of burnt area

Water

management

Detection of water stress in crops

Detection of water stress in forest

Detection of evapotranspiration in crops

Detection of evapotranspiration in River Basin

Detection of evapotranspiration in continents

Earthquakes Detection of earthquakes

Coal mine fires Detection of coal mine fires

Delineation of potential coal fires and coal fire risk

areas

Growing degree-

day

Growing degree day estimations

Growing degree day mapping

Cooling degree day Estimations

Health and Hazards Urban heat island Vegetation maps

Land cover/land use

Building information

Air quality

Epidemiology Mapping malaria potential regions

Arthropod vector ecology and disease distribution

Mapping cholera potential regions

Mapping meningitis outbreak

Industrial risks Air pollution

Differentiate between urban and industrial zone

Oil spill detection

Plume detection

Coastal

inundations

Prediction of floods

Monitoring of floods

Asbestos-cement detection over non-accessible

areas

Security and

Surveillance

Ship/port

monitoring

Detection of minefields and landmines

Border security

Object monitoring and detection

Piracy/drug smuggling/Illegal Immigration

Industrial/power plant monitoring

Trafficability (off-road soil moisture content)
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10.6 Conclusions

The Fuegosat Synthesis Study identified several high-resolution thermal remote

sensing applications and requirements in three different topics: Land and Solid

Earth, Health and Hazards, and Security and Surveillance. Results presented in this

chapter were extracted from the literature, although personal communication in the

case of the Security and Surveillance topic was also helpful. Main applications in

the Land and Solid Earth topic included volcano and fire monitoring, as well as

detection of water stress and retrieval of evapotranspiration for water management

purposes. In the case of the Health and Hazards topic, main applications identified

were urban heat islands and epidemiology. Applications related to the Security and

Surveillance topic were only vague defined, since poor information was found in

the literature.

We conclude observing that a clear perception was registered about the fact

that a high-resolution TIR mission with a nearly daily revisit time might have

significant consensus among the users community, since existing high resolution

TIR sensors (e.g. Landsat/TM-ETM+, Terra/ASTER) do not meet most of the user

requirements. In this sense, it is worth to mention on-going activities such as

MicroSatellite for Thermal InfraRed Ground Surface Imaging (MISTIGRI) and

Thermal Infrared Explorer (TIREX). MISTIGRI is a project of microsatellite in the

TIR conducted by the Centre National D’Études Spatiales (CNES) (France) in

cooperation with Spain, currently in Phase-A. TIREX is a proposal presented in a

recent (2010) ESA’s call for Earth Explorer Opportunity Missions, although it was

finally rejected for Phase-A. The originality of MISTRIGRI and TIREX is to

combine a high spatial resolution (~50 m) with high revisit capabilities of 1 or

2 days over selected sites. Another significant initiative refers to the HyspIRI

(Hyperspectral Infrared Imager) mission operated by NASA/JPL (Jet Propulsion

Laboratory) (a dedicated chapter is included in this book). We also would like to

remind the importance of complementary mission activities such as ground truth

collections and data simulations for algorithm development and testing.

To sum up, a number of high resolution TIR applications were analyzed and

technical requirements for a potential TIR sensor were identified. The results

extracted from this study could be considered in part as a reference for the design

of such a sensor in order to fill-in the currently existing gap in the acquisition of

high spatial and temporal resolution TIR data.
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Sobrino JA, Jiménez-Muñoz JC, Sória G, Gómez M, Barella-Ortiz A, Romaguera M, Zaragoza M,

Julien Y, Cuenca J, Atitar M, Hidalgo V, Franch B, Mattar C, Ruescas A, Morales L, Gillespie

A, Balick L, Su Z, Nerry F, Peres L, Libonati R (2008) Thermal remote sensing in the

framework of the SEN2FLEX project: field measurements, airborne data and applications.

Int J Remote Sens 29(17–18):4961–4991

Stathopoulou M, Cartalis C, Chrysoulakis N (2006) Using midday surface temperature to estimate

cooling degree-days from NOAA-AVHRR thermal infrared data: an application for Athens,

Greece. Sol Energy 80:414–422

Tang D, Kester DR, Wang Z, Lian J, Kawamura H (2003) AVHRR satellite remote sensing and

shipboard measurements of the thermal plume from the Daya Bay, nuclear power station,

China. Remote Sens Environ 84:506–515

Tramutoli V, Cuomo V, Filizzola C, Pergola N, Pietrapertosa C (2005) Assessing the potential of

thermal infrared satellite surveys for monitoring seismically active areas. The case of Kocaeli
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Chapter 11

Cross-Comparison of Daily Land Surface

Temperature Products from NOAA-AVHRR

and MODIS

Corinne Myrtha Frey, Claudia Kuenzer, and Stefan Dech

Abstract Land surface temperature (LST) products retrieved from two different

sensors – AVHRR (Advanced Very High Resolution Radiometer) and MODIS

(Moderate Resolution Imaging Spectroradiometer) – were cross-compared. The

analysis was conducted on a daily basis for 4 different years. Only pixels that

followed a certain homogeneity criteria were chosen. Furthermore a time criterion

defining the maximal time difference between two acquisitions was considered.

The differences of the two products showed diurnal and annual patterns with LST of

AVHRR being higher than MODIS at high surface temperatures and AVHRR being

lower than MODIS at lower temperatures. Additionally some irregular patterns

were identified and attributed to the different algorithm approaches. However,

mean annual absolute differences were relatively low: 2.2 K for the daytime and

1.4 K for the nighttime scenes, indicating a general good agreement between the

two products. The r2 between the LST of AVHRR and MODIS for both day and

night scenes was about 0.99.

11.1 Introduction

Land Surface Temperature (LST) is an important parameter in the climate system,

being the interface between the long- and shortwave radiation fluxes on one side

and the turbulent heat fluxes or the ground heat flux on the other side. Air

temperature is further strongly dependent on LST. This central position in the
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climatological system puts LST in the position of a useful variable for a variety of

studies ranging from in depth analyses of energy balance and evaporation to global

climate change studies. In fact LST, as part of the surface radiation budget or the

fire disturbance, belongs to the essential climate variables defined in WMO-GCOS

(World Meteorological Organization – Global Climate Observing System) World

Meteorological Organization (URL1). However, satellite-derived LST is very

dynamic and the current uncertainty in relating it to other in situ measurements

makes LST unsuitable for global, long-term monitoring (GCOS 2010). Effectively,

the quality assessment of LST products is a challenging task. Uncertainties in the

calibration constants and algorithm adequacy ask for an after-launch validation of

the data. Validation campaigns tailored for the requirements of space-born

measurements are conducted (Kabsch et al. 2008; Coll et al. 2005). However, the

validation of LST products with a spatial resolution of 1 km makes great demands.

The campaigns should offer as homogeneous sites as possible. But in most cases,

still small scale irregularities occur. Multiple measurements inside a plot may help

to overcome this problem. The operation of validation sites is cost and time

intensive, so usually only shorter periods of measurements are available, not

allowing the comparison of longer time series of satellite data. At higher latitudes

the problem aggravates, as many satellite scenes are cloud contaminated, limiting

additionally the number of available comparison times. Therefore, usually only few

dates and times are available for validation. For example Zhong et al. (2010)

compared AVHRR (Advanced Very High Resolution Radiometer) and MODIS

(Moderate Resolution Imaging Spectroradiometer) LST with in situ data of the

Tibetan plateau. They compared LST data retrieved with a split window algorithm

for four validation sites. They compared the data at four cloud-free days in the year

2003. The mean absolute differences between their satellite results and in situ data

were 2.2 K for the AVHRR LST and 1.4 K for the MODIS LST.

If no in situ data is available, there is also the option of a cross-comparison of the

products of two different satellites. This method is not a real validation, but allows

identifying weak points in a product. Comparison of longer time series of satellite

datasets is possible, given that the satellites have equal times of acquisition.

However, also this method entails several constraints. In some cases different

spatial resolutions lead to scaling issues. Different view zenith angles impose

thermal anisotropy effects on the data (Liu et al. 2007, 2009). Batra et al. (2006)

compared MODIS and AVHRR LST. The comparison was part of an evaporation

study, covering only a few days. They did not consider the time of overflight,

though mean differences were in the range of 2–5 K only. Such low mean

differences can occur, when the absolute differences are not considered in the

averaging process, so that the single differences can be positive as well as negative.

Some authors have combined the two approaches. Noyes et al. (2006) for

example validated the AATSR (Advanced Along-Track Scanning Radiometer)

LST product. They compared 1 year series with in situ data as well as with

MODIS and SEVIRI (Spinning Enhanced Visible and Infrared Imager) data and

found a seasonal bias in all comparisons. Also Yang and Yang (2006) validated

10-day composite LST from AVHRR with MODIS LST and 257 in situ datasets
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from weather stations over China. They found AVHRR being 2–3 K larger than the

MODIS LST and explained it by the used emissivity approaches. Also, they found

the RMSE (Root Mean Square Error) of the in situ and the AVHRR LST ranging

from 3.5 to 3.9 K for their three observation periods with AVHRR LST being

higher than the in situ measurements. No information about the suitability of the in

situ stations for such a comparison is given.

Future LST systems ambitiously try to achieve an accuracy of <1 K (GMES

Sentinel-3 MRD 2007), which is set for example by the need to model the fluxes of

the energy balance with an accuracy better than 10 Wm2 (NCDC LST-Workshop

Summary 2008).

This study is an example piece of quality assessment focussing on the method of

cross-comparison. The product to analyse is the AVHRR LST time series of DLR

(German Aerospace Center) (Dech et al. 1998; Tungalagsaikhan et al. 1998), the

correspondent truth data is the MODIS LST product. The MODIS LST product was

chosen due to its ongoing improvements in the algorithm and careful maintenance

(Wan et al. 2002). The comparison was conducted using 4 years of daily daytime

and nighttime data, acquired at similar times and viewing angles. The use of the

final product level for LST ensured that no pre-selection of ‘optimal’ scenes

was done.

11.2 Satellite Data

11.2.1 AVHRR LST

In this study the AVHRR LST product provided by DLR (Dech et al. 1998;

Tungalagsaikhan et al. 1998) was used. It will be further referred to as AHVRR

LST. The product is generated based on the split window algorithm (SWA)

developed by Becker and Li (1990) which includes a general atmospheric correc-

tion. Emissivity is estimated following van de Griend and Owe (1992). The NDVI

(Normalized Difference Vegetation Index) which is used by the emissivity estima-

tion is taken from a 10 days maximum composite from DLR (Holben 1986; Dech

et al. 1998). Clouds are detected by the APOLLO (AVHRR. Processing scheme

Over cLoud Land and Ocean) cloud detection scheme (Saunders and Kriebel 1988;

Gesell 1989) and affected pixels are set to a missing value. The LST product is

delivered with a spatial resolution of 1.1 km.

The AVHRR LST product is a spatial and temporal composite of three con-

secutive scenes over Europe and Northern Africa. This is comprehensible, as the

NOAA (National Oceanic and Atmospheric Administration) satellites are on a

sun-synchronous orbit. However, the time deviation in one scene from the subsat-

ellite track to the image border is 45 min at the equator due to the large swath width

of 2,500 km. At higher latitudes the time differences increase even to more than

an hour.
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The spatial merging of the three scenes creates zones of overlapping. A maxi-

mum NDVI condition for the daytime scenes and a maximum LST criterion for the

nighttime scenes, both based on daily values, are used defining the appropriate input

scene for each pixel (Holben 1986; Dech et al. 1998). The two criteria shall favour

the selection of the pixel that is least distorted by the atmosphere or clouds that were

not recognized by APOLLO. Through this merging process as well as through the

high time difference between subsatellite track and image border, temperature leaps

can occur inside the composite as surface temperature shows high diurnal

amplitudes. Especially in non-vegetated sites (bare ground, sealed surfaces) strong

differences in LST occur within few hours (Frey et al. 2011). The AVHRR LST

product is provided without pixel-based time information and only the day of

acquisition is given in the metadata. In order to compare the AVHRR LST with

the MODIS product, acquisition time information had to be reconstructed. It was

done using the geographical information of the original HRPT (High Resolution

Picture Transmission) files. The geographical extent of each original HRPT scene

was reconstructed and projected in the composite. Through this approach, pixels in

the composite that were only covered by one scene could be identified. Such pixels

are often found at the West and East of Europe and in North Africa. Local time

images were generated for these HRPT scenes using the geographical information

as well as the start time of acquisition. Thereby first the acquisition time of the

ground track line was generated in dependence on the speed of the satellite and

following the local time information was included using the longitude information

of the generated images. Finally the scenes were warped into the geometry of the

composite. To avoid large viewing angles, a border of 500 pixels was cut from

the scenes before the warping process. Considering the simplified geometry of the

approach, we estimate that only pixels with a satellite viewing angle lower than

about ~30� were left.
Four years of data were considered for comparison: Data from 2003 with input

scenes from AVHRR-16, from 2005 with scenes from AVHRR-17, from 2008

with scenes from AVHRR-18 and from 2010 with scenes from AVHRR-19. In case

scenes of other AHVRR models were used than given before, then these dates were

excluded from the comparison.

11.2.2 MODIS LST

MODIS data were obtained from the Land Processes Distributed Active Archive

Center (LP DAAC), located at the U.S. Geological Survey (USGS) Earth Resources

Observation and Science (EROS) Center (lpdaac.usgs.gov) for the same years as

the AVHRR selected data. To have the best temporal matching of the MODIS

measurements to the daily composites of AVHRR, the MOD11A1/MYD11A1

Daily LST products of the collection 5 (v005) have been selected. It will be further

referred to as MODIS LST.
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Like the AVHRR LST, MODIS LST is also generated using a split-window

algorithm. However, the approach is more sophisticated and the coefficients are not

only depending on the atmospheric conditions and the ranges of surface tempera-

ture, but also on the viewing angle (Wan and Dozier 1996; Wan 2008). The

emissivity is estimated on a classification-based look-up table derived from land-

cover types and dynamic and seasonal factors (Snyder and Wan 1998). The spatial

resolution of the product is 0.928 km.

The MODIS LST product is constantly reviewed. A versioning system has been

introduced to account for modifications in the processing chain (Wan 2008). The

MODIS team claims the accuracy of the LST product to be better than 1 K (URL2).

However, at larger viewing angles, as well as in semi-arid and arid regions some

higher errors were detected. Hulley and Hook (2009) compared the emissivity of

the collection 4, 4.1, and 5 and validated them with laboratory measurements of

sand samples from the Namib Desert. They found the collection 5 to overestimate

the emissivity and therefore suggest considering using collection 4 or 4.1 for studies

in arid areas. Nevertheless, collection 5 seemed to be better suited for this compari-

son due to its fewer missing pixels and lesser artefacts in the product.

The most suitable pixels for comparison are found in the West and East of

Europe and in North Africa. Two tiles of the fixed grid of MODIS LST with the

centre coordinates of 35.0� Lat, �6.5319� Lon (western tile) and 35.0� Lat,

31.1236� Lon (eastern tile, see also Fig. 11.1) cover the region of interest. The

tiles were warped into the same projection as the AVHRR LST scenes. Only data

with the MODIS quality flag “good quality” were used in the comparison.

11.3 Choice of Comparison Sites

To minimize the geolocation errors in the comparison, only pixels that exhibit a

certain homogeneity were chosen. The selection criteria for the homogeneity filter

used in the comparison were as follows:

• The LST and NDVI data values should not exceed certain variability in a 5 � 5

pixel box. So, the maximum threshold for the standard deviation of LST is set as

1 K and the maximum threshold for the standard deviation of NDVI is set as 0.1.

• The maximum slope of topography inside a 5 � 5 pixel box should not be larger

than 2�. The slope parameter is calculated using the 250 m SRTM DEM (Shuttle

Radar Topography Mission – Digital elevation model) from the CGIAR-CSI

GeoPortal (Consultative Group on International Agricultural Research – Con-

sortium for Spatial Information) (URL3).

Setting these criteria, most pixels selected were found in Northern Africa.

The selected MODIS tiles cover the Western and Eastern South of Europe and

Northern Africa, so a sufficient number of pixels was available for the comparison

(see Fig. 11.1).
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By applying a less strict homogeneity filter (e.g. 3 � 3 pixels and 3� DEM

slope), the difference between AVHRR and MODIS LST values tend to increase. A

stricter filter in turn (e.g. 7 � 7 pixel and 1� DEM slope) reduces the differences.

However, considering such stricter filter reduces the number of pixels available for

comparison. A 5 � 5 pixel with a 2� slope criterion was found to be a good

compromise between homogeneous pixels and available number of pixels.

11.4 Results

The analysis was done using all pixels left over after applying the homogeneity and

MODIS quality filter and after removing the overlapping areas of AVHRR scenes.

In this way, the number of pixels representing one day might be different from the

number of pixels representing another day. The LST of AVHRR and MODIS agree

Fig. 11.1 AVHRR composite of 3rd May 2003 resampled to the Eastern MODIS tile. Notice that

a part in the East of the cut-out is not available due to AVHRR scene overlapping. Pixels plotted

in blue indicate the selected areas after the homogeneity filter
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well with an r2 equal to 0.99 and the mean absolute difference (MAD) of 1.90 K.

The MAD is given by

MAD ¼ 1

n

Xn

i¼1
LSTAVHRRi

� LSTMODISij j (11.1)

Looking only at the nighttime data, the MAD improves even to 1.4 K, while the

daytime data have a MAD of 2.2 K. Figure 11.2 shows 2D histograms of AVHRR

and MODIS LST separated for nighttime (Fig. 11.2a) and daytime (Fig. 11.2b)

scenes. The daytime scenes feature a much stronger scattering than the nighttime

scenes, which can be statistically expressed by the standard deviation: In the

daytime scenes the standard deviation is 2.0, in the nighttime scenes it is 1.1 K.

Analysing the single years, similar statistical values are found (Tables 11.1 and

11.2). Annual MADs range from 1.2 to 3.4 K. Maximal annual values are found in

the daytime scenes of the year 2008 and 2010 with MADs of 3.00 and 3.41 K. In

these years also the standard deviation is high (>2 K), whereas the other 2 years and

all nighttime scenes have annual mean standard deviations lower than 2 K. r2 are

usually very high, except of the daytime scenes of 2005, where also the number of

observations is very low (35 pixels only). In 2008 also the number of observations is

low (70 pixels) but there the correlation is good though.

The strong diurnal fluctuation of LST requires a strict time limitation for the

comparison of the two products. For the selection of pixels in the comparison

analysis, the maximum allowed acquisition time difference between scenes was

set to 5 min for daytime and 30 min for nighttime scenes. Including all pixels for

comparison, the MADs would increase considerably. For example for the daytime

scenes, the MAD rises from 2.1 to 4.6 K and 3.4 to 4.5 K in the years 2003 and 2010

respectively if the time filter is not used. In the nighttime scenes, the effect of

Fig. 11.2 2D histograms of AVHRR and MODIS LST for all 4 years. Only pixels with viewing

angles lower than 30� were used. The maximal time difference was 30 min for the nighttime scenes

(a) and 5 min for the daytime scenes (b)
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acquisition time difference is not significant. For example, for the nighttime scenes,

the MAD increases from 1.15 to 2.15 K in 2008, but in 2010 the MAD remains at

1.9 K even after the exclusion of time filter. However, the relation between the LST

MAD and the acquisition time difference is not linear due to the highly variable

course of LST during the year. So, correlation coefficients r2 between the MAD and

the time difference must be low (0.21 for all daytime scenes and 0.12 for all

nighttime scenes).

All in all, the nighttime scenes match better than the daytime scenes. Such

pattern is found throughout the year. But especially in summer the daytime scatter-

ing of differences is high. Figures 11.3 and 11.4 show the differences between

AVHRR and MODIS LST grouped into monthly clouds. Single values are plotted

in grey; the monthly means are given in bold black. The monthly means show an

annual course with highest differences in summer and lowest differences in winter.

This trend can be found in the both daytime and nighttime scenes. However, in the

daytime scenes the means are mostly positive, while in the nighttime scenes, the

differences tend to be negative in winter and positive in summer.

The Eastern tile generally shows a better agreement between AVHRR and

MODIS LST than the western tile. In the Eastern tile the daytime/nighttime

MADs of all years are 1.56 and 0.63 K only, while in the Western tile the respective

MADs are 2.55 and 1.71 K. Also the standard deviations are higher in the Western

tile due to the strong scattering occurring in the data of the Western tile. Especially

in the night scenes, the difference is evident. There, the annual course is not existent

in the Eastern tile and scattering is very low. Unfortunately, the data availability of

the nighttime data in the Western tile is too low to deduct a proper annual course.

Therefore, the filter restrictions had to be relaxed to a 3 � 3 pixel environment for

Table 11.1 Statistical attributes of the differences between LST of AVHRR

and MODIS for the daytime scenes

Year Number of analysed pixels MAD SAD r2

2003 14,796 2.12 1.91 0.96

2005 35 2.26 1.51 0.59

2008 70 3.00 2.24 0.92

2010 833 3.41 2.50 0.97

MAD stands for mean absolute difference and SAD for standard deviation of

the absolute differences

Table 11.2 Statistical attributes of the differences between LST of AVHRR

and MODIS for the nighttime scenes

Year Number of analysed pixels MAD SAD r2

2003 0 – – –

2005 4,396 1.32 1.11 0.99

2008 2,532 1.15 0.80 0.99

2010 1,504 1.91 1.30 0.97

MAD stands for mean absolute difference and SAD for standard deviation of

the absolute differences
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these findings. Looking at the slope of a linear regression between the AVHRR and

MODIS LST nighttime data sets (normal filter), then the value of the Western tile is

0.84, the slope of the Eastern tile is 0.98. This speaks for stronger temperature

dependence in the data of the Western tile.

Like other missing metadata, the Viewing Zenith Angle (VZA) is not given in

the AVHRR product. However, through the exclusion of the across track border

areas of the input scenes, wide AVHRR VZA are automatically eliminated from

this comparison. It is estimated that only VZA lower than 30� are taken. Similarly,

the MODIS VZA is restricted to 30� in this study. Allowing higher MODIS VZA,

e.g. up to 50�, then the MAD of all daytime scenes will increase from 2.2 to 3.1 K.

Similarly the r2 will drop from 0.96 to 0.95. However, the relation between the

differences and the MODIS VZA is not linear and the r2 between the two is low,

only 0.14. In case of the nighttime scenes, no correlation can be found at all.

However, the r2 between AVHRR and MODIS LST remains similar high (0.98)

after inclusion of MODIS VZA up to 50�. And the MAD of the night scenes is even

decreasing from 1.4 to 1.2 K.

Fifty-eight percent of all considered daytime pixels in this study show lower

differences than 2 K. Even 72 % show lower differences than 3 K. However, 18 %

of all absolute differences are higher than 4 K, which is out of an accepted accuracy.

And 5 % of all absolute differences are higher than 6 K.

Fig. 11.3 Daytime AVHRR LST minus MODIS LST for all 4 years and both MODIS tiles,

grouped into monthly clouds. Only pixels with viewing angles lower than 30� were used and the

maximal time difference was 5 min. Single values are plotted in grey; monthly means are given in

black
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In the night scenes, these values are better: 92 % of all considered nighttime

pixels show lower differences than 2 K and 96 % show lower differences than 3 K.

Only 2 % of all absolute differences are higher than 4 K.

11.4.1 Detailed Analysis

In the analysis above only low MADs are found, which is due to the high number of

input values into the averaging process. However, a more detailed analysis of the

data revealed that there are occasions, where very strong deviations between

AVHRR and MODIS occur. As stated before, the western tile shows the higher

differences. Figure 11.5 shows the variation of differences between AVHRR and

MODIS, plotted for each day of the year 2003 in the western tile. It gets obvious

that for a single day some pixels have almost no difference, while at other pixels in

the same scene, strong deviations occur. The reason for such discrepancies might be

explained by different land cover leading to variations in surface emissivity or else

by different illumination conditions induced by small-scale inhomogeneities of the

surface in combination with the viewing zenith angle VZA of the sensor –

favouring or disfavouring a comparison. Another reason can be the insufficient

atmospheric correction and masking of clouds.

Fig. 11.4 Nighttime AVHRR LST minus MODIS LST for all 4 years and both MODIS tiles,

grouped into monthly clouds. Only pixels with viewing angles lower than 30� were used and the

maximal time difference was 30 min. Single values are plotted in grey; monthly means are given in

black
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An example of insufficient cloud masking is given on the example of the 24th

June 2003 (DOY 175). Most differences in the western daytime scene are positive –

indicating that AVHRR LST values are higher than MODIS LST. However, there

are some pixels, where the opposite is true: there MODIS LST is clearly higher than

the AVHRR LST, resulting in negative differences. These pixels are located in the

Western part of the Algerian desert, where an area of cumulus clouds extends. Due

to the allowed time difference (maximal 5 min), the location of the clouds is not

exactly the same in the MODIS and the AVHRR scene, hence also the cloud masks

are not identical. Additionally, the selection of only MODIS pixels with the quality

flag “good” resulted in a much larger masked area than the cloud masking in the

AVHRR product (Fig. 11.6). In the AVHRR product the cloud masking reflects the

structure of the cumulus clouds. However, it seems that some of the clouds were not

detected by the APOLLO algorithm, resulting in pixels with low LST. Some of

these pixels are not cloudy in the MODIS product, so that before mentioned

negative differences are produced. In the West of the described cumulus area, a

faint layer of translucent clouds is present (not shown in Fig. 11.6). This area is

neither detected by the AVHRR nor by the MODIS cloud detection scheme,

resulting in both cases in low LST.

Such unreliable masking of clouds was detected at several days. It is therefore

anticipated that the AVHRR product has some pixels with a strong underestimation

of LST due to cloudiness. However, these pixels are often masked out in this study

due to the fact that only MODIS pixels with the quality flag “good” were taken.

Fig. 11.5 Variation of daytime differences occurring in the western tile of the year 2003 per day

11 Cross-Comparison of Daily Land Surface Temperature Products. . . 225



The cloud masking in the AVHRR product is done using the APOLLO software

(Gesell 1989). APOLLO is a robust and well validated tool (Triebel et al. 2003).

However, in the case of the AVHRR LST series, cases of unreliable cloud discrim-

ination were found, which may be related to the general problem of discrimination

of clouds over desert surfaces.

11.5 Discussion

The results retrieved for the whole dataset are good. LST of AVHRR and MODIS

show a high correlation and their averaged long-term differences are in the range of

the accuracy for LST of most thermal scanners (2 K). But in all years, nighttime

differences have a lower scattering than daytime differences. Similarly, the scatting

in the winter month is lower than the scattering in the summer month. Figure 11.3

shows that scattering increased with higher temperatures, both in day and in night

scenes.

There are two obvious explanations for this behaviour:

1. There is always a slight time difference in the acquisition of the two scenes. A

maximum of 5 min for the daytime and 30 min for the nighttime scenes are

allowed. During this time LST change will probably occur due to the strong

diurnal course of LST. Generally, the LST change per time unit is much higher

during the day than during the night.

2. Induced by the roughness of the surface, there is a variation of LST with the

VZA, called thermal anisotropy. Such effects can produce a diurnal variation in

LST. As the view angles of the two acquisitions are not the same and the filtering

DEM has a spatial resolution of 250 m only, it follows that higher differences

must occur during daytime due to different surfaces sensed by the AVHRR and

MODIS sensors (compare: Liu et al. 2009).

It is assumed that a considerable part of the scattering and therewith a certain

part of the diurnal and annual patterns found in the data is due to these two

explanations. So, this part of deviations is not a result of the product generation

Fig. 11.6 Daytime LST of part of the Algerian desert on 24 June 2003. (a) AVHRR LST, (b)

MODIS AQUA LST, (c) RGB image of MODIS AQUA. Pixels printed in black are cloud masked

areas
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of AVHRR and MODIS, but it is a result of the comparison method in this research,

which cannot eliminate completely the factors ‘LST change per time unit’ and

‘thermal anisotropy’.

Another factor leading to scattering is the insufficient masking of clouds. This

factor can lead to high deviations. It is assumed that scattering is increased in

cloudy seasons.

Disregarding the scattering, the differences between AVHRR and MODIS LST

tend to be higher in summer than in winter. This feature was found in all years and

both tiles. In the daytime scenes, differences are mostly positive; with highest

positive differences during the summer months (see Fig. 11.3). In the nighttime

scenes, the differences are negative in winter, but positive in summer (Fig. 11.4).

The interpretation of this finding is complicated by the fact that the choice of pixels

is different for each month and day. But generally, the AVHRR LST tends to be

higher than the MODIS LST during the day, especially during summer, while in

the night, mostly the MODIS LST is higher than the AVHRR LST. However, in the

summer month, the AVHRR LST might also exceed the MODIS LST also in

the nighttime scenes.

Like in the scattering phenomenon, differences seem to follow the LST. At low

LST, MODIS delivers higher values, but at high LST AVHRR estimates the higher

values. Indeed, the r2 between the differences of LST of AVHRR and MODIS and

the LST of MODIS itself is 0.28. The r2 of the night scenes only is even 0.35, as the

scattering at night is much less. So, there is a dependence – even if not linear – of

the differences on the LST itself, manifesting in an annual curve. Above mentioned

two factors (‘LST change per time unit’ and ‘thermal anisotropy’) do not explain

this behaviour, therefore other factors have to be investigated.

1. It is likely that different approaches to calculate the emissivity produce seasonal

differences. For example Pozo Vázques et al. (1997) found that in the

Becker&Li-algorithm there is an emissivity effect: At high temperatures, an

error in emissivity results in a LST difference of 1.2–1.8 K, while at low

temperatures this difference is lower. Supposed that the two approaches from

AVHRR and MODIS do not produce exactly the same emissivities, a seasonal

and diurnal dependence of LST is possible.

2. The AVHRR uses the NDVI to deduce the emissivity using a logarithmic

algorithm from van de Griend and Owe (1992). This algorithm produces very

low emissivities for NDVI values close to zero. This might actually imply that

emissivity is underestimated in most of considered pixels in this study as a huge

part of the selected regions consist of many bare soil, rock and sandy surfaces.

This effect goes along with the MODIS algorithm that seems to underestimate

LST in arid and semi-arid areas due to an overestimation of the emissivity in

such regions (Wan et al. 2002).

3. Another factor which produces differences between AVHRR and MODIS might

be the atmospheric correction using the split window approach (SWA). MODIS

uses a generalized SWA, accounting for different states of the atmosphere.

AVHRR in turn uses a single set of coefficients for the SWA, standing for a
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ing le tandar d atmop here. Due to changing atmoph eric condition in the

annual cour e, it i poi ble that the difference in the SWA approach lead to

annual variation in LST.

4. Calibration finally i uppo ed to influence the quality of the AVHRR product.

AVHRR thermal calibration i done uing two reference target: A cold target

(pa ce) and a warm blackbody onboard (internal calibration target ICT). The

temperature of the ICT i not fixed but varie according to Tri hchenko and Li

(2001) at temperature clearly lower than 300 K. From thi it can be aumed

that urface temperature in the very high range might be le correct than

temperature le than 300 K. However, 86 % of all daytime pixel ued in

thi tud y feature LST higher than 300 K. In the nighttime cene only 1 % of the

pixel are affected though. Such, a diurnal and ea onal effect could evolve. The

calibration i further affected by non-linearity effect.

It wa found that the difference in the Eatern tile were lower than in the

Weter n tile. Alo, the annual coure wa le diti nct in the Wetern tile and

even aben t in the nighttime cene of the Weter n tile. One reaon for thi

behaviour can be found in the urface characteritic of the two tile. Indeed, the

analyi of the co-occurrence meaur e ‘homogeneity’, ‘diimilari ty’, and

‘entropy’ of the lope of the 250 m SRTM DEM howed that the urface of the

Eatern tile i much more homogeneou than the Wetern tile. The applied filter of a

maximum of 2� in the lope probably left over pixel with a high urface roughne

in the ma ller cale. However, maximum difference between the Eat ern and the

Weter n tile were found at night, where thermal ani otropy i minimal. Another

reaon could be that in the Weter n tile more vegetation i available than in the

Eatern tile, fotering an annual cour e in emiivity a wa how n before. It i alo

poibl e that atmop heric condition (e.g. cloudine) in the Wetern tile are

different from the Eatern tile, leading to uch different pattern.

11.6 Conclusions

The AVHRR and the MODIS LST product how a general good agreement. The

two dataet, conit ing of pixel pair elected according to acquii tion time

difference and homogeneity criteria, have a high correlation r2 of 0.99. The mean

abolut e difference (MAD) i 1.89 K only. Separating for daytime and nighttime

data, the r2 are 0.96 and 0.98 and the MAD are 2.2 and 1.4 K. Neverthele, diurnal

and annual pattern were found in the calculated difference of the two product , a

well a temporal and pat ial irregularitie. Firtly, the cattering i trongl y

enhanced in the daytime and umme r time data in contra t to the nighttime and

winter time data. Beide the inu fficient making of cloud, the cat tering i

attributed to the fact that the cene to be compared are hardly taken at exactly

the am e time. Time difference of up to 5 min in the daytime cene and up to

30 min in the nighttime cene were allowed. Conid ering that LST ha a trong
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diurnal course, such time differences will introduce errors in the comparison

especially during the day. Another explanation for the scattering pattern is the

thermal anisotropy of not perfectly flat surfaces, sensed by different viewing angles

of the two sensors. Most real surfaces are not completely flat but are consisting of

small-scale irregularities. Therefore, the thermal anisotropy will lead to increased

scattering in occasions of different viewing angles.

Secondly: Besides the scattering, AVHRR and MODIS LST showed a slightly

different diurnal and annual behaviour, which could be attributed to the LST itself:

The higher the LST, the higher are AVHRR LST compared to MODIS LST.

Explanations for this behaviour can be found in the different steps of the processing

chain: Calibration issues, atmospheric correction, and emissivity correction. These

factors can be used to explain a general offset, short term and spatially varying

irregularities as well as annual patterns.

A general assumption of this study was that the MODIS produces higher quality

LST than AVHRR due to its up to date algorithm. Additionally, the lack of

available metadata layers in the AVHRR LST product (time of acquisition, satellite

view zenith and azimuth angle, quality flags) introduced difficulties in the use and

interpretation of the data. However, ignoring some temporal and spatial variations,

and considering the whole set of available data, the AVHRR LST does compare

well with the MODIS LST with an overall MAD of 1.9 K.
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Chapter 12

Comparison of the Thermal Sensors

of SEVIRI and MODIS for LST Mapping

Caixia Gao, Xiaoguang Jiang, Zhao-Liang Li, and Françoise Nerry

Abstract This study aims to evaluate quantitatively the land surface temperature

(LST) from SEVIRI data (Spinning Enhanced Visible and Infrared Imager, onboard

MSG-2 satellite) with the MODIS (Moderate Resolution Imaging Spectrora-

diometer, onboard Terra)-derived LST extracted from the MOD11B1 V5 product.

Two SEVIRI-derived LST level-2 products are used for this purpose: the LSTs

retrieved using the generalised split-windowmethod with the emissivities estimated

using the day/night TISI (Temperature Independent Spectral Indices)-based method

and the LSTs generated by the Land Surface Analysis of the Satellite Application

Facility. The results show that (1) higher discrepancies are observed during the

daytime, especially for bare areas, with a maximum of 5.7 K; (2) these differences

are time- and land cover-dependent; (3) these differences strongly depend on the

view zenith angle differences; and (4) the two LST retrieval algorithms for SEVIRI

present the higher discrepancy for bare areas, with a maximum difference of 6.1 K.
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12.1 Introduction

Land surface temperature (LST) is one of the key parameters in the physics of land

surface processes, combining the results of surface-atmosphere interactions and the

energy fluxes between them (Mannstein 1987; Sellers et al. 1988). It can be used to

improve the understanding of the quantifications of the surface fluxes and water

availability, to aid resource management and to improve numerical weather

forecasts (Sun 2008). Therefore, acquiring LST over large spatial and temporal

scales is crucial. Remote sensing is a unique way of providing LST measurements

globally at different spatial and temporal resolutions. Compared with microwave-

based LST retrievals, thermal infrared (TIR)-based retrievals are more accurate

because of the lower variation of land surface emissivity (LSE) in the TIR and the

stronger dependence of the radiance on temperature (Sun 2008). In the last two

decades, various methods have been published in the open literature to estimate

LST from TIR data with the goal of reaching an accuracy better than 1 K, such as

the single-channel method (Price 1983; Ottlé and Vidal-Madjar 1992; Qin et al.

2001; Jiménez-Muñoz and Sobrino 2003), the split-window (SW) method (Price

1984; Becker and Li 1990a; Kerr et al. 1992; Prata 1993; Coll et al. 1994; Sobrino

et al. 1994; Wan and Dozier 1996; Jiang and Li 2008, among others) and the multi-

angle method (Sobrino et al. 1996).

The single-channel method was developed to retrieve LST from the radiance

measured in a single atmospheric window channel, and it requires good knowledge

of LSE and accurate atmospheric profiles. Because accurate atmospheric profiles

are not available with sufficient spatial density or at the time of the passage of the

satellite, the split-window method was developed to correct atmospheric effects

based on the different absorptions in the two adjacent channels, without the

knowledge of detailed atmospheric profiles. The split-window method was first

proposed by McMillin (1975) to determine the sea surface temperature and was

extended to LST retrieval from space (Price 1984). Since then, a variety of split-

window algorithms have been developed and improved to retrieve LST with some

success from space instruments, such as MODIS (Moderate Resolution Imaging

Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer) and

SEVIRI (Spinning Enhanced Visible and Infrared Imager). The multi-angle method

is based on a principle similar to the split-window method but uses different

absorptions resulting from different atmospheric path-lengths for different obser-

vation angles. This method, however, assumes that LST is angular independent.

The MODIS onboard Terra and Aqua marks a new era of remote sensing.

It captures data in 36 spectral bands, ranging in wavelength from 0.4 to 14.4 μm, at

varying spatial resolutions. Its daily LST products are generated on a global scale by

NASA’s Terra and Aqua Earth Observation System and have been used in various

studies (Mostovoy et al. 2006; Nagler et al. 2005; Sun et al. 2005; Tran 2006; Wan

et al. 2004;Wang et al. 2006). Because this satellite has a polar orbit, these data do not

provide information about the diurnal cycle. TheMSG (Meteosat Second Generation)

satellite, which represents the new generation of geostationary meteorological
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satellites, was developed by the European Space Agency (ESA) in close co-operation

with the European Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT). Its main payload – SEVIRI – provides image data in four visible

and near infrared (VNIR) channels and eight TIR channels every 15min, thus offering

the possibility to provide more frequent LST to study the diurnal LST cycle and to

improve the forecasting of natural hazards, such as extreme temperatures. Therefore,

many studies have been performed on LST retrieval from SEVIRI data. Sobrino and

Romaguera (2004) and Atitar et al. (2008) retrieved LST using the split-window

method proposed by Sobrino et al. (1996) fromMSG-1/SEVIRI and MSG-2/SEVIRI

data, respectively. Jiang and Li (2008) retrieved LST fromMSG-1/SEVIRI data using

the method proposed by Becker and Li (1990a) and improved by Wan and Doizer

(1996). Peres et al. (2010) also estimated LST from MSG/SEVIRI over Brazil using

emissivity maps derived from MODIS data. Due to the differences in retrieval

algorithms and input data, however, inconsistencies among the LST products from

different sensors – even from the same sensor – could occur, which restricts the

widespread applications of LST products. Therefore, this study aims to evaluate

LST retrieved from MSG-2/SEVIRI (denoted as SEVIRI LST1) and the LSTs

extracted from MOD11B1 V5 product (denoted as MODIS LST). In addition, an

operational MSG/SEVIRI LST product (denoted as SEVIRI LST2) generated by the

Land Surface Analysis of Satellite Application Facility (LSA SAF) is compared with

MODIS derived-LST used as a reference.

This chapter is organised as follows. Section 12.2 describes the study area.

Section 12.3 presents the LST retrieval methods for the three LST products

mentioned above. Section 12.4 describes the evaluation procedure. Section 12.5

provides the results of the inter-comparison of different LST products generated

from different satellite data or from the same satellite data using different

algorithms. The conclusions are given in the last section.

12.2 Study Area

In terms of surface types, a study area, mainly encompassing the Iberian Peninsula

and part of the Maghreb, was selected, with geospatial coverage of latitude

30�N–45�N and longitude 15�W–15�E. The Iberian Peninsula is located in Western

Europe and includes Portugal and Spain, with an area of approximately

580,000 km2. It is divided into two macro-bioclimatic areas: the Temperate zone,

mainly in the north, and the Mediterranean zone, occupying a large area of the

centre and south of the peninsula (Gomes 2007). The Iberian Peninsula is

dominated by traditional and newly developed agriculture (approximately 49 %)

embedded in a matrix of natural and semi-natural vegetation (approximately 47 %)

(Del Barrio et al. 2010). The Maghreb, a region in North Africa that includes

Morocco, Algeria and Tunisia, is divided into a Mediterranean climate region in

the north and the arid Sahara to the south. Its variations in elevation, rainfall,

temperature, and soil type give rise to distinct communities of plants and animals.
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As displayed in the land use/land cover (LULC) map (see Fig. 12.1) generated from

the global land cover 2000 produced by the Institute for Environment and

Sustainability (IES), the study area in Maghreb is mainly dominated by shrub

cover (approximately 9 %), herbaceous cover (approximately 26 %) and bare

areas (approximately 52 %).

According to the MOD11B1 sinusoidal grid (URL 1), the study area is covered

with the tiles h17v04, h17v05, h18v04 and h18v05. The study period comprises five

clear-sky days covering March 2008 to August 2009. Because of the long period of

cloud contamination over the study area, the data during the winter season are not

included in this study.

12.3 Sensor Characteristics and LST Retrieval Methods

12.3.1 Sensor Characteristics

MSG is a series of four geostationary satellites, with the latest satellite, MSG-2,

launched in December 2005. Its main payload, SEVIRI, observes an Earth disk with

a view zenith angle (VZA) ranging from 0 to 80� and a 3-km nadir spatial

resolution. The instrument provides data in 12 spectral bands every 15 min. The

spectral responses for SEVIRI channels 4, 7, 9 and 10 are shown in Fig. 12.2.

Launched in 1999,MODIS onboard Terra scans�55� from the nadir in 36 spectral

bands, with 16 thermal bands from 3 to 15 μm. It is designed to provide long-term

global observation every 1–2 days. The TIR bands have an instantaneous field of view

of approximately 1 km at the nadir. In addition,MODIS has an onboard calibrator, and

the sensor is assumed to be well calibrated with an accuracy of approximately 1 % for

the TIR bands. The calibration for the surface temperature bands ranges up to 0.75 %

Fig. 12.1 Land cover map of the study area generated from the Global Land Cover 2000 (URL 2)
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(band 20) and 0.5 % (bands 31 and 32) (Guenther et al. 1995). Specifically, TIR bands

20, 22, 23, 29, and 31–33 are used to correct for atmospheric effects and retrieve LSE

and LST. Their spectral responses are presented in Fig. 12.3.

12.3.2 LST Retrieval Methods

12.3.2.1 Retrieval Method for SEVIRI LST1

In this study, the generalised split-window (GSW) method with a similar formula-

tion to those proposed by Becker and Li (1990a) and improved by Wan and Dozier

(1996) is used to retrieve LST from the SEVIRI data. According to the GSW

method, the LST for clear skies can be expressed as:

LST ¼ A1 þ A2

1� ε

ε
þ A3

Δε
ε

� �

T9 þ T10
2

þ B1 þ B2

1� ε

ε
þ B3

Δε
ε

� �

T9 � T10
2

þ C ð12:1Þ

where Τ9 and Τ10 are the brightness temperatures at the top of atmosphere (TOA) in

SEVIRI channels 9 (10.8 μm) and 10 (12.0 μm), respectively; ε and Δε are the

averaged emissivity and emissivity difference of these two channels; and A1, A2, A3,

B1, B2, B3, and C are unknown coefficients that need to be pre-determined for a
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given VZA and a given sub-range of atmospheric water vapour content (WVC),

ε and LST.

To determine the coefficients A1, A2, A3, B1, B2, B3, and C, simulations are

performed with the aid of the atmospheric radiative transfer model MODTRAN 4.0

(MODerate resolution atmospheric TRANsmission) and the thermodynamic initial
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guess retrieval (TIGR) dataset (denoted as TIGR2000) built by the laboratoire de

météorologie dynamique (LMD), which represents a worldwide set of atmospheric

situations (2311 radiosoundings) from polar to tropical atmospheres. Combined

with the clear-sky atmospheric profiles extracted from TIGR2000, various surface

conditions (different LSTs and LSEs) are used to drive MODTRAN 4.0 to simulate

TOA radiances or brightness temperatures under various atmospheric conditions

for each VZA (from 0� to 67�). Furthermore, for each VZA, to improve LST

retrieval accuracy, the WVC, ε and LST are divided into several sub-ranges with

a partial overlap at two extremes of each sub-range, i.e., ε: 0.90–0.96 and 0.94–1.0;
WVC: 0–1.5, 1.0–2.5, 2.0–3.5, 3.0–4.5, 4.0–5.5 and 5.0–6.5 g/cm2; LST:

�280.0 K, 275–295 K, 290–310 K, 305–325 K, and �320 K. For each sub-range,

the unknown coefficients Ai, Bi (i ¼ 1, 3) and C are constant and can be determined

by the minimisation procedure with these simulated data. In practice, LST is

estimated in two steps. First, the approximate LST is estimated with the coefficients

for the whole LST range, and then a more accurate LST is determined with the

coefficients for the LST sub-range in which the approximate LST has fallen. The

results show that the root mean square errors (RMSEs) of the retrieved LSTs vary

with the VZA and the atmospheric WVC and that the RMSEs are within 1.0 K for

all sub-ranges in which VZA � 30� and WVC < 4.25 g/cm2.

For LSE determination, the day/night temperature-independent spectral indices

(TISI)-based method proposed by Becker and Li (1990b) is used in consideration of

the multi-spectral characteristics (see Fig. 12.2) and the high temporal resolution

of SEVIRI (15 min). The principle of the TISI-based method is to first extract

the bi-directional reflectivity in the MIR (middle infrared) channel by eliminating

the emitted radiance during the day using a particular inter-comparison between

day and night TISI. As SEVIRI provides image data every 15 min, various

bi-directional reflectivities in MIR with different solar illuminated directions are

estimated. Subsequently, the directional emissivity in the MIR channel can be

estimated as a complement to the hemispheric-directional reflectivity, which is

the integration of bi-directional reflectivities in the MIR channel described by the

RossThick-LiSparse-R model (Lucht and Roujean 2000). Finally, with respect to

the concept of TISI, the directional emissivities for the TIR channels are obtained

from the two-channel TISIs and directional emissivity in the MIR channel. More

details about this method can be found in Li et al. (2000), Jiang et al. (2006), and

Tang et al. (2009).

It is worth noting that the atmospheric corrections need to be performed for the

SEVIRI MIR and TIR channels to construct the TISI. In this study, the atmospheric

profiles at a spatial resolution of 0.25�/0.25� latitude/longitude provided by the

European Centre for Median-Range Weather Forecasts (ECMWF) are employed to

correct for the atmospheric effects of the SEVIRI MIR and TIR images at synoptic

times (00:00; 06:00; 12:00; 18:00) with the aid of MODTRAN 4.0. Because of the

lack of corresponding atmospheric profiles for the other SEVIRI data, time-nearest

atmospheric data are used to correct for the atmospheric effects for the images in

the MIR channel due to its reduced sensitivity to WVC. For the images in TIR

channels, a two-part, physics-based temperature diurnal cycle model with six
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unknown parameters (Göttsche and Olesen 2001) is used to obtain the atmospheri-

cally corrected radiance at the times other than the synoptic times. Spatially,

a bilinear interpolation method is used to estimate the atmospheric quantities for

each SEVIRI pixel (Jiang et al. 2006).

In addition to the LSE determination, atmospheric WVC is required in GSW

method. However, as atmospheric WVC is only used to select the optimal

coefficients A1, A2, A3, B1, B2, B3, and C in the GSW method, accurate WVC is not

required as long as the estimated WVC is within the same range as the actual WVC.

The method proposed by Li et al. (2003) is used to estimate the WVC at the spatial

resolution of several pixels from the SEVIRI measurements of channels 9 and 10.

If this method fails (the square of the correlation coefficient is less than 0.95), the

WVCs provided by the ECMWF data are used to obtain the WVC corresponding to

the relevant pixel by a temporal and spatial linear interpolation.

12.3.2.2 Retrieval Method for SEVIRI LST2

The SEVIRI LST generated by the LSA SAF is based on a GSW method with a

similar formulation as Eq. (12.1) (URL 3). In this method, the brightness

temperatures were simulated with MODTRAN 4.0 to obtain the algorithm

coefficients. The atmospheric database was composed of 77 atmosphere profiles

to cover a broad variety of WVC. Several simulations were performed for each

profile with different surface emissivities, VZAs and LSTs. LST varied from

Τ0 � 15 K to Τ0 + 15 K (Τ0 being the air temperature at the first layer of atmo-

sphere), and emissivity values ε from 0.94 to 1.0 and Δε from �0.0135 to 0.022

were initially used, and then 0.96 < ε10 < 0.995 (LSE in channel 10 of SEVIRI)

and ε10-0.030 < ε9 < ε10 + 0.018 (LSE in channel 9 of SEVIRI) were considered.

WVC is divided into eight sub-ranges (0.0–0.75, 0.75–1.5, 1.5–2.25, 2.25–3.0,

3.0–3.75, 3.75–4.5, 4.5–5.25, and 5.25–6.0 g/cm2) for each VZA (total of

11 VZAs, up to 75�), and the coefficients A1, A2, A3, B1, B2, B3, and C for a given

VZA and a given sub-range of WVC are obtained by regression of the LSTs with

the simulated brightness temperatures (Freitas et al. 2010).

In addition, the WVC which is required to select the most suitable coefficients of

the GSW is obtained from the ECMWF data. The LSEs are estimated with the

vegetation cover method (VCM) published by Caselles and Sobrino in 1989 and

Peres and DaCameara in 2005. This method produces effective LSEs using infor-

mation on the proportion of vegetation and exposed surfaces with the knowledge of

the LSEs for each component, vegetation and bare soil.

12.3.2.3 Retrieval Method for the MODIS LST

Considering the spatial resolution of SEVIRI (3 km at nadir), the daily LSTs at the

spatial resolution of 5 km stored in the MOD11B1 product are used to evaluate the

SEVIRI LST in this study.MOD11B1 product is tile-based, gridded in the sinusoidal
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projected LST product and constructed with the results produced by the day/night

LSTmethod from the pairs of day- and nighttime observations in sevenMODIS TIR

bands (bands 20, 22, 23, 29, and 31–33, whose spectral characteristics are shown in

Fig. 12.3) (Wan and Li 1997). Some refinements were made in the latest V5

MOD11B1 LST product to provide more high-quality LST data. This LST product

has been validated through field campaigns in 47 clear-sky cases, indicating that its

accuracy is better than 1 K in most cases (Wan 2008a). Because the split-window

algorithm provides initial LST values for the LST retrieval in the V5 of day/night

algorithm, large errors in the LSTs retrieved by the split-window algorithm in desert

regions also affect the final LST retrieved by the day/night algorithm (Wan 2008b).

In addition to LST, information on LSE, VZA, view time, and quality control

(QC) is included in this product. They are the key input parameters for the LST

comparison.

12.4 Data Processing and Comparison Method

Because LST strongly varies over space and time, the LST inter-comparison

between different sensors must be conducted on the same sites and within time

period as short as possible. Taking into account the facts that the SEVIRI provides

LSTs every 15 min, and the SEVIRI measurements closest in view time to MODIS

are eligible for this inter-comparison, therefore, in this study, only pixels with view

time differences less than 7.5 min (15/2 min) between two LST products are

considered for the inter-comparison. For the MOD11B1 LST product, the view

time (local solar time) of each pixel is stored, and it can be extracted from the

product file, while the view time in UTC for the SEVIRI data is given in the

file name.

As two LST products have different spatial resolutions, to inter-compare these

two products, they must be aggregated to the same spatial resolution using the area-

weighted pixel aggregation algorithm (Jiang 2007) based on the following

equation:

Ri ¼
X

N

j¼1

wj;iRj=
X

N

j¼1

wj;i with wj;i ¼ Sj;i=Sj (12.2)

where Ri is the aggregated radiance of a target pixel i, N is the total number of pixels

j within the aggregated pixel i, ωj,i is the weight of pixel j in the aggregated pixel i,
Sj,i is the area of the overlapping region between pixels i and j, Sj is the total area of
pixel j, and Rj is the radiance of the pixel j.

Coordinates derived from the product generally represent the pixel centroid

location of each pixel. The coordinates of the four corners of a pixel are easily
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calculated using the centroid coordinates of the neighbouring pixels. In this study,

the SEVIRI LST products are aggregated to the same spatial resolution as the

MODIS B1 V5 LST product.

Other considerations are taken into account in the inter-comparison procedure,

such as the VZA restriction. In our study area, the SEVIRI sun-satellite viewing

geometry leads mostly to sunlit observed scenes, while for MODIS onboard the

polar satellite, its sun-satellite viewing geometry can result in some fraction of

shadow surfaces being observed. To reduce the observed LST difference resulting

from the effect of shadow surfaces, only pixels with MODIS VZAs less than 30� are
considered in the following analysis. In addition, according to the QC criteria, only

the MODIS LST pixels with a value of 0 in the QC bit flags, which indicates good

quality and cloud-free, are used in this study. Respecting these considerations,

spatially aggregated SEVIRI-derived LST products will be compared with time

coincidently MODIS-derived LST products (within a 7.5 min time frame). To

quantify the discrepancies of the LST products derived from the SEVIRI and

MODIS data, mean differences (MDs), mean absolute differences (MADs), along

with standard deviations of the differences (SDs), are calculated as quantitative

measures of these discrepancies:

MDLST ¼ 1

M

X

M

i¼1

LSTi;SEVIRI � LSTi;MODIS

� �

(12.3)

MADLST ¼ 1

M

X

M

i¼1

jLSTi;SEVIRI � LSTi;MODISj (12.4)

SDLST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � 1

X

M

i¼1

ðLSTi;SEVIRI � LSTi;MODISÞ �MDLST

� �2

v

u

u

t (12.5)

where LSTSEVIRI and LSTMODIS are the SEVIR-derived LST and MODIS derived-

LST, respectively, and M is the number of pixels qualified for inter-comparison.

The workflow procedure for the LST inter-comparison is presented in Fig. 12.4.

After data preparation, such as supplying the LST products, coordinates (latitudes

and longitudes), view times, VZAs, QCs and land cover information for each pixel,

the pixels with a view time difference less than 7.5 min are first selected. Consider-

ing the spatial relationship between the SEVIRI pixel and MODIS pixel, the

derived SEVIRI radiance data are then aggregated into the MODIS spatial resolu-

tion in a sinusoidal grid projection with Eq. (12.2). Finally, in terms of the MODIS

VZAs, QCs and land cover information, the inter-comparison between registered

SEVIRI and MODIS LSTs is performed with qualified pixels meeting the

conditions described above.
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12.5 Comparison Results

12.5.1 Inter-comparison Between SEVIRI LST1
and MODIS LST

The inter-comparison is first carried out between SEVIRI LST1 and MODIS LST

over the entire study area. Five pairs of cloud-free SEVIRI and MODIS data from

2008 to 2009 (June 18, 2008, July 3, 2008, August 9, 2008, May 2, 2009, and

August 22, 2009) are collected and pre-processed. The statistics of this inter-

comparison are summarised in Table 12.1, with the pixel number being the number

of qualified pixels in this study. TheMDLST between the SEVIRI LST1 andMODIS

LST (LSTSEVIRI 1 � LSTMODIS) varies from 0.93 to 3.43 K, the MADLST varies

from 1.36 to 3.52 K, and the SDLST varies from 1.22 to 2.48 K. Moreover, the

SDLST during daytime is larger than that during nighttime. This result could

be explained by the relatively homogeneous thermal behaviour of the Earth’s

surface at night, as indicated by the standard deviation of MODIS LST in column

8 of Table 12.1.

Time Matching and
Coordinate Matching

Pixel Aggregation
Method

Inter-comparison

MSG-2/SEVIRI:
LST, View time

Latitude and Longitude

MODIS:
View time

Latitude, Longitude and QC

Registered SEVIRI LST

MODIS:
LST, View angle and QC

Land cover

Fig. 12.4 Procedure for the inter-comparison of LST products derived from SEVIRI and MODIS

data
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To analyse the impact of local land cover on these calculated differences, the

land cover in the study area is divided into bare areas and vegetated areas (http://

bioval.jrc.ec.europa.eu/products/glc2000), and their MDLST and SDLST for these

5 days are shown in Fig. 12.5. The LST differences between two LST products

appear to be correlated with land cover types, and bare soils show the higher LST

discrepancies on average with a maximum of 5.8 K, particularly for daytimes. This

can be explained that LSTs for bare soils during daytimes are higher and have a

large spatial variation (as indicated in columns 7 and 8 of Table 12.1) due to the

contribution of direct solar radiation.

To further investigate the land cover-dependence of LST differences for

vegetated areas, according to the land cover map of the study area generated from

the Global Land Cover 2000, the land surfaces in the study area were classified into

five types, which are tree cover, shrub cover, herbaceous cover, cultivated and

managed areas and bare areas. For these five different surface types, the MDLSTs

and SDLSTs of the 5 days are displayed in Fig. 12.6. Surfaces dominated by a tree

cover produce slightly higher MDLST than other vegetated surfaces during daytime,

while the MDLST for herbaceous surfaces is slightly higher during nighttime. As for

the SDLST, shrub areas show a particularly higher SDLST during daytime, exceeding

2.5 K, but there are almost no differences between different land cover types of

vegetated surfaces during nighttime data acquisition.

The VZA mainly influences the estimated LST in two ways: (1) pixels with

different VZAs contain different land surface components due to the three-

dimensional structure of land surfaces, and (2) the intrinsic error of the LST retrieval

methods is usually proportional to the VZA (Jiang and Li 2008). In order to investi-

gate the impact of VZA differences on the LST differences between SEVIRI LST1

and MODIS, the VZA differences (|VZASEVIRI � VZAMODIS|) were divided into

three sub-ranges, which are 0�–20�, 20�–40� and 40�–60�. The MDLST and SDLST

between these two products are displayed for each VZA sub-range in Fig. 12.7. It is

Table 12.1 Means, absolute means and standard deviations of temperature differences in Kelvin

between the SEVIRI LST1 and MODIS LST over the study area

Date Day/Night Pixel number

LSTSEVIRI 1 � LSTMODIS (K) LSTMODIS (K)

MDLST MADLST SDLST MeanLST StedvLST

June 18, 2008 Day 16,366 1.63 2.30 2.48 313.16 7.65

Night 12,440 1.73 1.86 1.55 291.44 3.67

July 3, 2008 Day 861 1.34 1.66 1.57 321.58 3.70

Night 2,210 1.36 1.49 1.22 298.33 2.46

August 9, 2008 Day 9,011 3.43 3.52 1.61 321.74 3.89

Night 5,803 2.06 2.11 1.17 298.96 4.05

May 2, 2009 Day 1,981 2.17 2.35 2.14 302.66 4.43

Night 3,788 2.45 2.49 1.40 283.49 3.05

August 22, 2009 Day 4,168 2.12 2.56 2.60 314.66 7.01

Night 5,323 0.93 1.36 1.54 294.72 3.62

LSTSEVIRI 1 is the LST retrieved using the GSW algorithm, with LSE estimated using the TISI-

based method and LSTMODIS is the LST extracted from the V5 MOD11B1 product
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worth noting that MDLST depends on the VZA differences and is inversely propor-

tional to the VZA differences. This may be explained by the fact that the MODIS

views the surface with smaller view angles and observes more bare soil surfaces than

the large view angles when the VZA differences between SEVIRI and MODIS

increase as the VZA of SEVIRI for viewing the study areas is about 45�. In addition,
due to the 3-dimensional structure of vegetation, higherMODIS LSTs are observed at

the near nadir viewing than these at oblique viewing for daytime. However, as

showed in Tables 12.1 and 12.2, compared with MODIS derived LSTs, SEVIRI

derived LSTs are overestimated in this study, leading to lower LST differences when

the VZA differences increase.
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12.5.2 Inter-comparison Between SEVIRI LST2
and MODIS LST

A similar inter-comparison is carried out for SEVIRI LST2 (LSTSEVIRI 2) and

MODIS LST (LSTMODIS) over the entire study area, and results are summarised

in Table 12.2. The mean LST differences (MDLSTs) are within 2.61 K, the mean
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absolute differences (MADLST) are within 2.72 K, and the standard deviations

(SDLSTs) range from 0.80 to 2.5 K. In addition, the MDLST and SDLST during

daytime are higher than those during nighttime.

Similar to Fig. 12.5, Fig. 12.8 shows the MDLST and SDLST of the vegetated and

bare surfaces in the study area and presents similar behaviours to those in Fig. 12.5,

i.e., bare areas generally produce higher LST discrepancies than vegetated areas.

As in Fig. 12.6, the MDLST and SDLST for the five surface types are shown in

Fig. 12.9, but the results differ slightly from those shown in Fig. 12.6. The surfaces

dominated by the herbaceous cover present higher MDLST than other vegetated

areas. However, these discrepancies during daytime are also larger than those

during nighttime.

Similar to Fig. 12.7, Fig 12.10 displays the MDLST and SDLST between two

products for each VZA sub-range and also indicates that MDLST decreases as the

VZA differences increase.

12.5.3 Inter-comparison Between the Two LST Algorithms
for SEVIRI LST1 and SEVIRI LST2

As described in Sect. 12.3.2, different algorithms are applied for the LST retrievals

from the SEVIRI data. To examine how the LST difference results from the

different GSW algorithms using the same input data, new LSTs (LSTSEVIRI-Revised)

are retrieved using Eq. (12.1) with the LSE provided by LAF-SAF, instead of those

retrieved with the TISI-based method, and LST
SEVIRI-Revised

are compared with SEVIRI

LST2 (LSTSEVIRI 2). The MDLST and SDLST between LSTSEVIRI-Revised and

LSTSEVIRI 2 (LSTSEVIRI-Revised � LSTSEVIRI 2) for vegetated areas and bare areas

are shown in Table 12.3. Different GSW algorithms result in a large difference of

Table 12.2 Means, absolute means and standard deviations of temperature differences between

the SEVIRI LST2 and MODIS LST over the entire study area

Date Day/Night Pixel number

LSTSEVIRI 2 – LSTMODIS (K)

MDLST MADLST SDLST

June 18, 2008 Day 16,366 1.68 2.36 2.46

Night 12,440 0.04 0.89 1.13

July 3, 2008 Day 861 2.12 2.46 2.01

Night 2,210 0.34 0.75 0.91

August 9 2008 Day 9,011 2.48 2.56 1.33

Night 5,803 0.38 0.63 0.80

May 2, 2009 Day 1,981 0.40 1.35 1.83

Night 3,788 0.04 0.95 1.19

August 22, 2009 Day 4,168 2.61 2.72 1.65

Night 5,323 0.26 0.86 1.14

LSTSEVIRI 2 is the SEVIRI LST provided by LSA-SAF, and LSTMODIS is the LST extracted from

the V5 MOD11B1 product
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LST even though the same LSEs are used. For bare surfaces during daytime, the

MDLST in the case of this study is �6.09 K. These results also demonstrate that the

LST differences shown in Tables 12.1 and 12.2 are due to the combined effects of

the different emissivity and different GSW algorithms used in the different LST

products.

This analysis demonstrates that collected and calculated LST differences are

algorithm-dependent, and mainly result from the accuracies of the applied LSEs

and LST retrieval algorithms.
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12.6 Conclusions

This study aims to evaluate SEVIRI LST quantitatively with MODIS LST. The

study area encompasses the Iberian Peninsula and part of the Maghreb. After time

matching and coordinate matching, on the basis of the VZAs and QC indicators of

MODIS, two SEVIRI LST products (SEVIRI LST1 and SEVIRI LST2) are

evaluated over the study area during five clear-sky days with MODIS LST used
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as a reference. The results show that there are discrepancies between the two SEVIRI

LST1/2 and MODIS LST, with a maximum mean difference of 3.43 K. The two

inter-comparisons applied demonstrate that standard deviation during nighttime tend

to be lower than ones obtained during daytime, which would be caused by the

homogeneous thermal behaviour of the Earth’s surface at night. The mean LST

differences seem to be correlated with the land cover type, with the mean LST

differences for bare surfaces being higher than those for vegetated areas. However,

there are a few exceptions (the LST differences on July 3, 2008), which should be

investigated further. In addition, the LST differences strongly depend on the VZA

differences and are inversely proportional to the VZA differences.

The comparison of SEVIRI LST2 with LST retrieved from SEVIRI data using

Eq. (12.1) with the same LSEs used in the SEVIRI LST2 shows that the mean LST

difference can reach up to 6.09 K for bare surfaces in the daytime. This indicates

that the different GSW algorithms can result in a large difference in the LST

retrievals even though they use the same LSEs as inputs. Moreover, the LST

differences between the different products observed in this study result mainly

from the effects of the different emissivities and different GSW algorithms. To

further investigate LST differences between these different products, more detailed

analyses should be performed in the future to investigate these factors affecting the

LST differences between SEVIRI LST1/2 and MODIS LST.
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Chapter 13

A Water Vapor Scaling (WVS) Method

for Improving Atmospheric Correction

of Thermal Infrared (TIR) Data

Glynn Hulley

Abstract The thermal infrared (TIR) radiance at sensor measured by any

spaceborne or airborne instrument will include atmospheric emission, scattering,

and absorption by the Earth’s atmosphere. These atmospheric effects need to be

removed from the observation in order to isolate the land-leaving surface radiance

contribution and retrieve important surface variables such as land surface tempera-

ture (LST) and emissivity. The accuracy of the atmospheric correction is dependent

upon accurate characterization of the atmospheric state using independent atmo-

spheric profiles of temperature, water vapor, and other gas constituents. The profiles

are typically input to a radiative transfer model for estimating atmospheric trans-

mittance, path, and sky radiances. Residual errors from incomplete atmospheric

correction constitute one of the largest uncertainties in derived LST and emissivity

products from the Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer

(MODIS) sensors on NASA’s Terra satellite. This chapter will describe a technique

for improving the accuracy of the atmospheric parameters on a pixel-by-pixel basis

using the Water Vapor Scaling (WVS) method. We have shown that using WVS

can improve the accuracy of LST retrievals by up to 5 K for MODIS and 3 K for

ASTER data in humid conditions.

13.1 Introduction

Atmospheric correction of data from thermal infrared (TIR) satellite sensors cur-

rently relies on two approaches. The first approach uses differential absorption

characteristics of atmospheric water vapor between two bands in the longwave
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spectral region (11–12 μm). Variations of this method include the split window

(SW) approach (Coll and Caselles 1997; Prata 1994; Price 1984; Wan and Dozier

1996; Yu et al. 2008), the multichannel algorithm (Deschamps and Phulpin 1980),

and the dual-angle algorithm (Barton et al. 1989). Sensors such as the Moderate

Resolution Imaging Spectroradiometer (MODIS), Advanced Along-Track Scan-

ning Radiometer (AATSR), and Advanced Very High Resolution Radiometer

(AVHRR) all use variation of the split-window method to retrieve LST over land

by assuming the emissivity can be estimated from land cover classification maps by

assigning fixed emissivities based on cover type (Snyder et al. 1998).

The second approach uses full radiative transfer calculations to estimate atmo-

spheric effects on a pixel-by-pixel and band-by-band basis. The atmospheric

transmittance, path radiance, and downward sky irradiance are estimated using a

radiative transfer model such as MODTRAN (MODerate resolution atmospheric

TRANsmission) (Kneizys et al. 1996). The Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer (ASTER) uses this method to retrieve the LST and

spectral emissivity simultaneously for TIR bands 10 (8.3 μm), 11 (8.6 μm),

12 (9.1 μm), 13 (10.6 μm), and 14 (11.3 μm) using the Temperature Emissivity

Separation (TES) algorithm (Gillespie et al. 1998). The TES algorithm has been

recently modified to retrieve LST and emissivity for MODIS bands 29 (8.55 μm),

31 (11 μm) and 32 (12 μm) (Hulley and Hook 2011).

Split-window based algorithms are generally tuned to have high LST accuracy

over graybody surfaces where the emissivity is well known (e.g. water, vegetation),

whereas the residual effects from incomplete atmospheric correction degrade the

accuracy of TES LST products over graybody surfaces (Gustafson et al. 2006).

Conversely, the TES retrieval is designed to have higher LST accuracy over

geologic surfaces (e.g. bare rock, sand) (Hulley et al. 2009), whereas with split-

window algorithms, errors in assigned emissivities can translate into large errors in

LST (Galve et al. 2008). These errors can be due to a misclassification in the

original cover type, a lack of fidelity in the cover type map, or a dynamic change in

the cover type map for example from an increase in soil moisture.

The accuracy of the TES algorithm is limited by residual errors from incomplete

atmospheric correction, which results in a larger apparent emissivity spectral

contrast. This intrinsic weakness of the TES algorithm has been systematically

analyzed by several authors (Coll et al. 2007; Gillespie et al. 1998; Gustafson et al.

2006; Hulley and Hook 2009; Li et al. 1999), and its effect is greatest over graybody

surfaces that have a true spectral contrast that approaches zero. In order to minimize

these errors, a Water Vapor Scaling (WVS) method has been introduced to improve

the accuracy of the atmospheric parameters on a band-by-band basis for each

observation using an Extended Multi-Channel/Water Vapor Dependent (EMC/

WVD) algorithm (Tonooka 2005a), which is an extension of the Water Vapor

Dependent (WVD) algorithm (Francois and Ottle 1996). The WVS method has

already been incorporated in producing gridded ASTER emissivity maps, such as

the North American ASTER Land Surface Emissivity Database (NAALSED)

(Hulley and Hook 2009). It is also currently being incorporated with the TES

algorithm to produce a 1 km MODIS LST and emissivity product (bands 29, 31, 32)
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at the MODIS Adaptive Processing System (MODAPS). This chapter will describe

the methodology of the WVS method, and show examples of its application to

improving accuracy of MODIS and ASTER TIR data.

13.2 Thermal Infrared (TIR) Radiative Transfer

Assuming the spectral variation in emissivity is small, and using Kirchhoff’s law to

express the hemispherical-directional reflectance as directional emissivity

ρλ ¼ 1� ελð Þ the clear sky at-sensor radiance can be written as:

LλðθÞ ¼ ελBλ Tsð Þ þ 1� ελð ÞL#λ
h i

τλðθÞ þ L"λðθÞ (13.1)

where:

Lλ(θ) – at-sensor radiance

λ – wavelength

θ – observation angle

ελ – surface emissivity

Bλ(Ts) – Planck function

Ts – surface temperature

L#λ – downwelling sky irradiance

τλ(θ) – atmospheric transmittance

L"λðθÞ – atmospheric path radiance

The at-sensor radiance for a discrete band i is obtained by weighting and

normalizing the at-sensor spectral radiance calculated by Eq. (13.1) with the

sensor’s spectral response function for each band, Srλ as follows:

LiðθÞ ¼
R

SrλðiÞ � LλðθÞ � dλ
SrλðiÞ � dλ (13.2)

Using Eqs. (13.1 and 13.2), the surface radiance for band i can be written as a

combination of two terms: the Earth-emitted radiance, and the reflected downward

irradiance from the sky and surroundings:

Ls;i ¼ εiBi Tsð Þ þ 1� ελð ÞL#λ ¼
LiðθÞ � L"i ðθÞ

τiðθÞ (13.3)
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The atmospheric parameters: L#λ , τiðθÞ , L"i ðθÞ are estimated with a radiative

transfer model such as MODTRAN (Berk et al. 2005; Kneizys et al. 1996) using

input atmospheric fields of air temperature, relative humidity, and geopotential

height.

13.3 Water Vapor Scaling (WVS) Method

The WVS method improves the accuracy of atmospheric parameters output by

MODTRAN in Eq. (13.3) on a pixel-by-pixel basis using the EMC/WVD equation.

The EMC/WVD equation models the at-surface brightness temperature, given the

at-sensor brightness temperature, along with an estimate of the total water vapor

amount as follows:

Tg;i ¼ αi;0 þ
X

N

k¼1

αi;kTk

αi;k ¼ pi;k þ qi;kW þ ri;kW
2 ð13:4Þ

where:

i – band number

n – number of bands

W – estimate of total precipitable water vapor [cm]

p, q, r – regression coefficients for each band

Tk – brightness temperature for band k [K]

Tg, i – brightness surface temperature for band i

The coefficients of the EMC/WVD equation are determined using a global-based

simulation model with profile data typically from numerical weather model data,

such as the NCEP (National Centers for Environmental Prediction) Climate Data

Assimilation System (CDAS) reanalysis project (Kalnay et al. 1990).

The scaling factor, γ, used for improving a water profile, is based on the

assumption that the transmissivity, τi, can be expressed by the Pierluissi double

exponential band model formulation (Kneizys et al. 1996). The scaling factor is

computed for each graybody pixel on a scene using Tg, i computed from Eq. (13.4)

and τi computed using two different γ values that are selected a priori:

γαi ¼
ln

τi θ;γ2ð Þγ1αi
τi θ;γ1ð Þγ2αi �

Bi Tg;ið Þ�L"i θ;γ1ð Þ 1�τi θ;γ1ð Þð Þ=

Li�L"
i
θ;γ1ð Þ 1�τi θ;γ1ð Þð Þ=

� �γ1
αi�γ2

αi !

ln τi θ; γ2ð Þ τi θ; γ1ð Þ=ð Þ (13.5)
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where:

αi – band model parameter,

γ1, γ2 – two appropriately chosen γ values,

τi θ; λ1;2
� �

– transmittance calculated with water vapor profile scaled by γ,

L"i θ; γ1;2
� �

– path radiance calculated with water vapor profile scaled by γ.

Typical values for γ are γ1 ¼ 1, and γ2 ¼ 0.7. Tonooka (2005a) found that the γ
calculated by Eq. (13.5) will not only reduce biases in the water vapor profile, but

will also simultaneously reduce errors in the air temperature profiles and/or eleva-

tion. An example of the water vapor scaling factor, γ, is shown in Fig. 13.1 for an

ASTER scene over the Algodones dunes area on July 15, 2000.

13.3.1 Gray Pixel Computation

It is important to note that γ is only computed for graybody pixels (e.g., vegetation,

water, and some soils) with emissivities close to 0.99, and as a result, an accurate gray-

pixel estimation method is required prior to processing. Vegetation indices such as the

Fig. 13.1 Water Vapor Scaling (WVS) factor, γ, computed using Eq. (13.5) for an ASTER scene

on July 15, 2000 over the Salton Sea, CA. The atmospheric parameters were computed using

MODIS MOD07 atmospheric profiles at 5 km spatial resolution and MODTRAN 5.2 radiative

transfer code. The image has been interpolated and smoothed using methods discussed in

Sect. 13.3.2
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Normalized Difference Vegetation Index (NDVI), land cover databases (e.g., MODIS

MOD12), and thermal log residuals (TLR) (Hook et al. 1992), are three different

approaches that can be used in combination with each other to accomplish this.

Typically, one classifies all green vegetation pixels first by thresholding NDVI

computed from VIS/NIR bands. Water and snow/ice pixels are then classified using a

land-water and snow-cover map. The MODIS product, for example, produces both

a snow cover and water map at 1-km resolution (e.g., MOD10 and MOD44). A TLR

approach can then be used to further refine the gray-pixel map. The TLR approach

spectrally enhances images generated from multi-spectral data and removes depen-

dence on band-independent parameters such as surface temperature. All gray pixels

within aTLR imagewill have similar spectral shapes, and this characteristic is exploited

in order to refine the gray-pixel map from the first guess gray pixels. Figure 13.2

shows an example of a gray-pixel map for an ASTER image on 15 July, 2000.

13.3.2 Interpolation and Smoothing

Once γ is computed for all gray pixels, the values are horizontally interpolated to

adjacent bare pixels on the scene and smoothed before computing the improved

atmospheric parameters. An inverse distance-weighted interpolation method is

typically used to fill in bare pixel gaps. This is an interpolation method frequently

Fig. 13.2 Graybody-pixel map for the Salton Sea (black ¼ gray, white ¼ bare). A first guess

graybody-pixel map was first estimated by thresholding ASTER reflectance indices to identify

vegetated and water/snow pixels (e.g., NDVI), and then refined using the Thermal Log Residual

(TLR) method described in the text
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used in numerical weather forecasting with much success. The specific steps for

interpolation of γ values are outlined in Tonooka (2001) and are as follows:

1. First all bare pixels are set to 1; in addition, all γ values less than 0.2 and greater
than 3 are set to 1 for stability purposes and to eliminate possible cloud

contamination.

2. Next, all cloudy pixels on the scene are set to NaN.

3. All bare pixels are then looped over, and optimum weights are found for all gray

pixels within a given effective radius of the bare pixel. The γ value for the pixel
is then computed using the weighted γ values surrounding the pixel and ignoring
all NaN values as follows:

γðx; yÞ ¼
X

n

i¼1

wiγi (13.6)

Where n is the number of gray pixels, and wi are the weight functions assigned to

each gray pixel γ value:

wi ¼ d�p
i

Pn
j¼1 d

�p
j

(13.7)

Where p is weighting factor called the power parameter, typically set to 2. Higher

values give larger weights to the closest pixels. di is the geometrical distance from

the interpolation pixel to the scattered points of interest within some effective

radius:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy� yiÞ2
q

(13.8)

Where x and y are the coordinates of the interpolation point, and xi and yi are
coordinates of the scattered points.

4. If any bare pixels remain after the first pass, the bare pixels with a valid,

calculated γ value are considered gray pixels, and the process is repeated until

γ values for all bare pixels have been computed.

This interpolation method should not introduce large error, since gray pixels are

usually widely available in any given scene and atmospheric profiles do not change

significantly at the medium-range scale (~50 km). Figure 13.1 shows an example of

a γ image after interpolation and smoothing.

13.3.3 Scaling Atmospheric Parameters

13.3.3.1 Transmittance and Path Radiance

Once the MODTRAN run has completed and the γ image has been interpolated and

smoothed, the atmospheric parameters transmittance τi and path radiance L"i are

modified as follows:
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τiðθ; γÞ ¼ τiðθ; γ1Þ
γ1

αi�γ2
αi

γ1
αi�γ2

αi � τiðθ; γ2Þ
γ1

αi�γαi

γ1
αi�γ2

αi (13.9)

L"i ðθ; γÞ ¼ L"i ðθ; γ1Þ �
1� τiðθ; γÞ
1� τiðθ; γ1Þ

(13.10)

Once the transmittance and path radiance have been adjusted using the scaling

factor, the surface radiance can be re-computed with the updated atmospheric

parameters using Eq. (13.3). Figure 13.3 shows an example of comparisons

between ASTER band 10 (8.3 μm) atmospheric transmittance (top), path radiance

(middle), and computed surface radiance (bottom), before and after applying the

WVS scaling factor, γ, for the ASTER scene on July 15, 2000. In this example, it is

Fig. 13.3 Comparisons between the atmospheric transmittance (top), path radiance (middle), and
computed surface radiance (bottom), before and after applying the WVS scaling factor γ for the

ASTER scene on July 15, 2000. Results are shown for ASTER band 10 (8.3 μm)
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clear that after scaling the transmittances are lower and path radiances higher

(i.e. more opaque), meaning that the original water vapor estimate was too low for

this scene. The result is a higher surface radiance in some regions of the scene due to

the improved correction. Also note the very low transmittances and corresponding

high path radiances in the southeast corner of the image due to the presence of cloud.

13.3.3.2 Downward Sky Irradiance

In theWVS simulation model, the downward sky irradiance can bemodeled using the

path radiance, transmittance, and view angle as parameters (Tonooka 2001). To

simulate the downward sky irradiance in aMODTRAN run, the sensor target is placed

a fewmeters above the surface, with surface emission set to zero, and view angle set at

prescribed angles, e.g., Gaussian angles (θ ¼ 0�, 11.6�, 26.1�, 40.3�, 53.7�, and 65�).
In this way, the only radiance contribution is from the reflected downwelling sky

irradiance at a given view angle. The total sky irradiance contribution is then calcu-

lated by summing up the contribution of all view angles over the entire hemisphere:

L#i ¼
Z

2π

0

Z

π=2

0

L#i ðθÞ � sin θ � cos θ � dθ � dδ (13.11)

Where θ is the view angle and δ is the azimuth angle. However, to minimize

computational time in the MODTRAN runs, the downward sky irradiance can be

modeled as a non-linear function of path radiance at nadir view (Tonooka 2005a):

L#i ðγÞ ¼ ai þ bi � L"i ð0; γÞ þ ci � L"i ð0; γÞ2 (13.12)

Where ai, bi, and ci are regression coefficients, and L"i ð0; γÞ is computed by:

L"i ð0; γÞ ¼ L"i ðθ; γ1Þ �
1� τiðθ; γÞcos θ
1� τiðθ; γÞ (13.13)

Tonooka (2005a) found RMSEs of less than 0.07 W/m2/sr/μm for ASTER bands

10–14 when using Eq. (13.12) as opposed to Eq. (13.11).

13.3.4 Determining EMC/WVD Coefficients

The EMC/WVD coefficients, p, q, r from Eq. (13.4) are determined using a global

simulation model with input atmospheric parameters from either numerical weather

model or radiosonde data. Radiosonde databases such as the TIGR, SeeBor, and
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CLAR contain uniformly distributed global atmospheric soundings acquired both

for day and night in order to capture the full-scale natural atmospheric variability.

Geophysical profiles of air temperature, relative humidity, and geopotential

height are used in combination with surface temperature and emissivity to simulate

at-sensor brightness temperatures for the global set of profiles distributed uniformly

over land. The air temperature profiles are then shifted by �2, 0, and +2 K, while

the humidity profiles are scaled by factors of 0.8, 1.0, and 1.2 to capture more

variability for that specific atmospheric profile shape. These types of perturbations

will help simulate a full range of atmospheric conditions. Furthermore, the surface

temperatures are modified by �5, 0, 5, and 10 K, and the surface emissivity

provided consists of a set of 10 spectra typically from gray materials selected from

the ASTER spectral library; for example, water, vegetation, snow, ice, and some

types of soils. These emissivity spectra typically have values greater than 0.95.

This ensures that the simulation results are not affected by uncertainties in surface

emissivity, such as Lambertian effects. The at-sensor radiance is then computed

using MODTRAN for the full set of profiles and perturbations (3 � 3 � 4 � 10

¼ 360). The surface elevation is taken from a global digital elevation model (DEM)

(e.g. ASTER GDEM, or USGS GTOPO30), and the view angle is assumed to be

nadir. Furthermore, a noise-equivalent differential temperature (NEΔT) appropriate
for the sensor is applied using a normalized random number generator. Using the

simulated at-sensor Tk, at-surface Tg brightness temperatures, and an estimate of the

total precipitable water vapor, the coefficients in Eq. (13.4) can be found by using a

linear least squares method. WVS coefficients computed using MODTRAN4 for

MODIS bands 29, 31 and 32 can be found in (Tonooka 2005b) and for ASTER bands

10–14 in (Tonooka 2005a). Updated coefficients forMODTRAN5.2 can be obtained

by contacting the corresponding author of this chapter.

13.4 Impacts of WVS on Land Surface Temperature

and Emissivity Retrievals

In this section we look at the impact of applying WVS to the accuracy of LST and

emissivity retrievals using the TES algorithm for ASTER and MODIS observations

over the Salton Sea on July 15, 2000. The emissivity of water is high (~0.98) and

spectrally flat, and so this provides a good test for the accuracy of the emissivity

retrieval, and consequently the LST retrieval. Any warping of the spectra is usually

the result of incomplete atmospheric correction. The LST and emissivity was

retrieved in the same manner for both ASTER and MODIS data using the methods

outlined in Hulley and Hook (2011).

The results in Fig. 13.4 show that emissivity spectra from the Standard atmo-

spheric correction (STD) method are too low for both ASTER and MODIS,

especially in the 8–10 μm region when compared to the lab spectra from the

ASTER spectral library. Applying the WVS coefficients results in a dramatic
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improvement in emissivity accuracy in both magnitude (up to 0.06 for ASTER band

11, and 0.09 for MODIS band 29) and spectral shape. Table 13.1 shows LST and

emissivity differences between the WVS and STD approach for 1 MODIS pixel

(1 km) and 10 � 10 ASTER pixels (90 m) over the same area of the Salton Sea.

LST differences between the STD and WVS method are as large as 5 K for MODIS

and just under 3 K for ASTER. For water, the Minimum-Maximum Difference

(MMD) in emissivity should approach near zero, and there is a significant decrease

in MMD when using WVS as opposed to the STD approach. Humidity conditions

on this day were very high, with total precipitable water values exceeding 4 cm

(estimated from MOD07 product) making accurate atmospheric correction a

Fig. 13.4 Emissivity spectra for the Salton Sea on 15 July 2000 for ASTER and MODIS data

using the TES algorithm, and lab spectra of water from the ASTER spectral library. Results show

improvements when using the Water Vapor Scaling (WVS) method as opposed to the standard

(STD) atmospheric correction method. Total precipitable water estimated from the MOD07

atmospheric product on this day was high (4 cm), indicating very humid conditions

Table 13.1 Land Surface Temperature (LST) and emissivity differences between using the Water

Vapor Scaling (WVS) and Standard (STD) atmospheric correction methods for MODIS (1 km

pixel) and ASTER (10 � 10, 90 m pixels) data over the Salton Sea, CA, 15 July 2000

ASTER MODIS

STD WVS STD WVS

Ts [K] 309.65 306.76 310.22 305.06

MMD 0.0522 0.0158 0.0597 0.0083

emin 0.9120 0.9611 0.91 0.97

MMD represents the minimum-maximum difference in emissivity for a water pixel spectrum,

while emin is the minimum emissivity for the water spectrum

13 A Water Vapor Scaling (WVS) Method for Improving Atmospheric Correction. . . 263



challenge. This is evident by the fact that the spectral contrast, or MMD in

emissivity, for the STD correction are warped for both sensors (Fig. 13.4). With

application of the WVS method, the ASTER emissivity spectra fall within 0.015 of

the lab measured spectrum while MODIS emissivity spectra are within 0.005 at all

wavelengths.
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Chapter 14

Time Series Corrections and Analyses

in Thermal Remote Sensing

José A. Sobrino and Yves Julien

Abstract The time span of surface thermal data bases now reaches a few decades.

However, studies using surface thermal time series are seldom, due to the difficulty

of obtaining temporally coherent estimations for this parameter. Applications for

surface thermal multitemporal analysis range from climate change studies and

modeling to anomaly detection for natural or industrial hazard detection. This

chapter presents methods to improve the temporal coherence of temperature time

series, through data reconstruction of atmospheric and cloud contaminated

observations, and through the correction of the orbital drift effect which hinders

the use of the longest data sets. Then, methods for the analysis of time series are

presented, including both image to image comparison and trend detection, the

choice between these methods depending on the spatial resolution of the dataset

and the aims of the considered study.

14.1 Introduction

Although thermal remote sensing data have been available since the 1970s, the use

of time series in remote sensing is recent, since the temporal coherence of thermal

data records have been hindered by several flaws. Nonetheless, the potential of the

applications is high, from climate change studies to environment monitoring.

As concern about the consequences of climate change grows, the need for

reliable information on surface temperature has increased. For example, climate

modelers need surface temperature as input for their models to adequately simulate

past and future climate, in order to be able to quantify vegetation and plankton

response to atmospheric CO2 anthropogenic forcing (see for example Diak and
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Whipple 1993). As stated by Frey et al. (2012), “surface temperature is a key

variable in the climatological system. It represents the interface between the

incoming radiation fluxes and other terms of the energy balance, i.e. the sensible

heat flux or the ground heat flux. Air temperature is directly triggered by Land

Surface Temperature (LST). Because of this central position in the climatological

system, LST can be used as an indicator of the energy balance at the Earth’s

surface and the so-called greenhouse effect in climate change studies. As part of

the surface radiation budget, LST belongs also to the essential climate variables of

WMO-GCOS (World Meteorological Organization-Global Climate Observing Sys-

tem, URL1). In the Strategic Plan for the US Climate Change Science Program

(CCSP 2006), the surface ground temperature is listed as a state variable and the

long-wave surface energy budget (derived also from LST) is listed as one of its key

external forcing or feedback observations” (Frey et al. 2012).

This need for reliable surface thermal estimations is also shared by studies on

climate change’s current consequences. For example, it allows the identification of

desertification (Lambin and Ehrlich 1996; Karnieli et al. 2010), whether under water

stress or human pressure. Surface temperature is also a key parameter for ecosystem

studies, since the suitability of temperature conditions for local flora and fauna

species is endangered by climate change (see for example Bertrand et al. 2011).

Thermal estimations include both temperature and emissivity, which are inti-

mately related (see for example Gillespie et al. 1998, for temperature and emissivity

separation methods). Thermal emissivities have been monitored for their inclusion

in global climate model surface schemes (Menglin and Liang 2006), and their

seasonal variation analyzed (Ogawa et al. 2008). Thermal emissivities can also be

used to monitor vegetation changes through time, as French et al. (2008) have

presented for a semi-arid site in New Mexico (USA).

Another field of application of thermal remote sensing is thermal anomaly

detection and monitoring. These approaches are carried out by comparing pixel

temperatures against their background in uni-temporal satellite data (Kuenzer et al.

2007), or they consist in comparing a near-real time surface temperature estimation

to past reference measurements, in order to identify departures from standard

behaviors (Kuenzer et al. 2008). Some modern fire detection systems have been

developed based on this principle, and are especially useful for detection of fire

events in remote areas (Prins et al. 2004). Such alert systems can also be

implemented for volcano monitoring, or for industrial hazard detection.

However, for such applications to be implemented, one key aspect has to be

taken into account: when two thermal images are compared at two distinct dates,

one has to make sure that both images are coherent. Some of the factors that

decreases the temporal coherence in multitemporal thermal analysis are common

to other remote sensing characterization, while others are more TIR (Thermal Infra

Red) specific. All these factors are summarized in Table 14.1.

Common factors with other remote sensing applications are included in what is

generally referred to as level 2 products, which include calibration, georeferencing,

and atmospheric correction. Calibration is needed to transform sensor counts into

brightness temperature, is sensor dependent, and calibration coefficients may need
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to be updated during the activity period of a given sensor. Georeferencing is crucial

for time series analyses, in order to make sure that the same location is being

monitored through time. Regarding atmospheric correction, some land and sea

surface temperature algorithms (Jiménez-Muñoz and Sobrino 2008; Barton 1995)

consider the absorption due to total atmospheric water content, while others only

transform brightness temperatures to land surface temperature through the assigna-

tion of land surface emissivities (Sobrino et al. 2008a). Additionally, complex

atmospheric correction may be needed, especially considering the impact of atmo-

spheric depth, atmospheric mass, and also terrain on the thermal signal, such as

provided by the ATCOR (atmospheric correction) tool, implemented for thermal

bands of Landsat MSS (Multispectral Scanner), TM (Thematic Mapper) or ETM+

(Enhanced Thematic Mapper Plus), ASTER (Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer ) or BIRD (Bispectral Infra-Red Detection)

instruments, and available in various software packages.

However, time series pre-processing of thermal remote sensing data also present

more specific characteristics. The first one, which is shared with other optical

remote sensing, is the presence of clouds, which mask the land surface and

therefore prevent from the estimation of surface temperature. Additionally, in

high resolution data, projected cloud shadows can also decrease the retrieved

temperatures. Cloud masks are sometimes provided with temperature retrievals,

although undetected clouds may still be present in the data. For example, thin cirrus

clouds decrease the observed surface temperature, although their detection from

remotely sensed data is problematic (Saunders and Kriebel 1988). Moreover, some

regions of the globe are almost permanently covered with clouds during some

seasons, and therefore cloud free observations are scarce, and time series gap filling

has to be implemented.

Another specific aspect of time series analysis in thermal remote sensing is the

orbital drift effect. This orbital drift effects all satellites which do not possess

onboard fuel for orbit correction, such as engineless platforms, or ageing platforms

Table 14.1 Factors influencing time series coherence of thermal parameters

Factors Observations

Optical and

TIR

Gas absorption bands Dependent on sun-sensor-target geometry and

atmospheric massWater vapor disturbance

Aerosols

Clouds

Cloud shadows

Topography related adjacency

effect

BRDF effects

TIR Topography related uneven solar

heating

Variation in data acquisition

times

Such as orbital drift or within scanline variations

Emissivity effect Such as metal roofs in urban areas
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which fuel reserves have been exhausted. Orbital drift is evidenced mainly for polar

satellites, and consists in a slow but steady change in the orbit characteristics of the

considered satellite, which results in an increasing delay or advance in satellite

overpass over a given reference geographic location. An example of such orbital

drift can be observed in the case of the NOAA (National Oceanic and Atmospheric

Administration) satellite series (Price 1991). The effect of the orbital drift combines

both considerations on sun-target-sensor geometry (proportion of shade in a given

pixel) as well as on daily temperature cycle characteristics, to which the resulting

variations in the pathway length through the atmosphere can be added. Therefore, it

is evidenced more easily for land covers with high daily amplitude (deserts, crops)

than for low amplitudes (sea, evergreen forests). A similar effect can be evidenced

for non-drifting platforms for which some pixels are observed for different paths.

However, this effect is not correlated with time, and therefore can be assimilated as

an additional noise in the time series which can be handled by the trend detection

methods presented in Sect. 14.3.2.

Thermal anisotropy is another factor which can influence temperature retrieval,

and therefore thermal time series (Lagouarde et al. 1995), for which a BRDF-type

(Bidirectional Reflectance Distribution Function, see Tanré et al. 1983) correction

could be developed. However, since such correction has not yet been developed in

the case of thermal data, it will not be mentioned further here.

In order to be able to analyze thermal time series (whether emissivities or

temperatures) correctly, all these aspects have to be taken into consideration.

Then, change analysis can be conducted. To that end, this chapter is divided into

two parts, the first part describing how to conduct these corrections, while the

second one is focused specifically on change analysis.

14.2 Removal of Temporal Incoherence in Thermal

Time Series

As stated in the introduction, the coherence of thermal time series can be hindered

by several factors. Since factors such as calibration, geocorrection, and atmospheric

correction are usually taken into account during data processing, they will not be

elaborated on here. Instead, this first part will be devoted to the correction of two

more specific factors, i.e. cloud contamination and orbital drift effects.

14.2.1 Cloud Contamination

The first step in cloud contamination removal is cloud identification. It is usually

carried out through band ratio and/or band thresholding, with each band or band

ratio threshold aiming at the detection of one particular type of cloud (high and low
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thick clouds, thin cirrus) for both Land Surface Temperature and Sea Surface

Temperature (SST). The key point here is the number of bands available for the

considered sensor, which allow for more or less thresholds to be applied. When

restricted to thermal infrared, the application of thresholds is less reliable, espe-

cially when the observed areas may present an ice or snow cover during part of the

time series (mountains, temperate to polar areas). This is due to the fact that cloud

tops have similar temperatures to snow or ice covered surfaces. Recent algorithms

allow for a good assessment of cloud contamination (Ackerman et al. 1998; Derrien

and Le Gléau 2005). Nevertheless, cloud masking may leave out cloud contami-

nated values in the time series, which is the reason why this section will focus on

cloud reconstruction methods.

Cloud reconstruction methods are based on a few assumptions, which allow

identifying cloud contaminated values within the temporal profile of the data, and

then filling the gap corresponding to cloud contaminated values. Usually, the

assumptions made for reconstruction are threefold (Julien and Sobrino 2010):

continuity of the time series, which corresponds to the fact that observed natural

processes show slow changes; clouds have an unidirectional effect on the signal,

which is due to the fact that usually cloud contamination tend to decrease the signal

values; and finally, cloud free dates are sufficient for time series reconstruction.

Most methods for time series reconstruction have been developed for analyses of

vegetation index time series (such as NDVI – Normalized Difference Vegetation

Index, Tucker 1979, or EVI – Enhanced Vegetation Index, Huete et al. 2002).

However, these methods can also be applied to sea or land surface temperature as

well as to emissivity time series. Such methods are reviewed in the following

paragraphs, to focus finally on three methods selected for their wide application

or their novelty.

Numerous methods have been presented to identify and interpolate conta-

minated values in time series data (van Dijk et al. 1987; Viovy et al. 1992; Roerink

et al. 2000; Jönsson and Eklundh 2002, 2004; Chen et al. 2004; Ma and

Veroustraete 2006; Beck et al. 2006; Julien and Sobrino 2010), the latest methods

usually performing better than the previous ones (Hird and McDermid 2009). The

criteria usually followed to assess the best reconstruction method are its fidelity to

the original cloud-free data and its ability to identify cloud contaminated values.

Validation of the reconstructed time series is usually qualitative, since spatially

extensive measurements (usually of the order of one square kilometer) would be

needed for a quantitative validation. Readers have to keep in mind that such

corrections reconstruct a “clear-sky” time series, which can differ substantially

from ground truth, since cloudy LST for example would be lower than the

reconstructed “clear-sky” value. However, estimation of cloudy LST would require

the inclusion of models that would increase considerably the processing costs of

the correction, which is the reason why such methods have not been developed

widely. One example of such method can be found in Jin and Dickinson (2000).

Note that these methods do not distinguish between clouds and other atmospheric

contamination of the data.
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The methods presented by van Dijk et al. (1987) and Viovy et al. (1992) were

designed with their application to daily time series in mind, and therefore are

difficult to apply on composited time series, due to their focus on the highest

frequencies in the signal (up to a few days), which do not appear in composited

time series. Indeed, most of the publicly available databases of remotely sensed

data for Earth observation, such as Pathfinder AVHRR (Advanced Very High

Resolution Radiometer) Land (Smith et al. 1997) or GIMMS (Global Inventory

Modeling and Mapping Studies; Tucker et al. 2005) are composited. This

compositing aims at lowering atmospheric and cloud influence, as shown in Holben

(1986), with different compositing periods ranging usually from 8 to 15 days. Even

though composite data present lower atmospheric contamination than raw time

series, this composition process does not eliminate atmospheric contamination. For

example, cloud cover can persist longer than the compositing period for some time

periods (rainy season) or over some specific areas (tropical rainforests). Therefore,

we present here three approaches for remaining atmospheric influences on

composited time series:

HANTS (Harmonic Analysis of NDVI Time Series): This algorithm (Menenti

et al. 1993; Verhoef et al. 1996; Roerink et al. 2000) was developed with the

application to time series of NDVI images in mind. These images are usually

composited by means of the so-called Maximum Value Compositing (MVC,

Holben 1986) algorithm in order to suppress atmospheric effects. The HANTS

algorithm exploits the negative effect of atmospheric contamination on NDVI

values. In HANTS, a curve fitting is applied iteratively, i.e. first a least squares

curve is computed based on all data points, and next the observations are compared

to the curve. Observations that are clearly below the curve are candidates for

rejection due to atmospheric contamination and the points that have the greatest

negative deviation from the curve therefore are removed first. Next a new curve is

computed based on the remaining points and the process is repeated. Pronounced

negative outliers are removed by assigning a weight of zero to them, and a new

curve is computed. This iteration eventually leads to a smooth curve that

approaches the upper envelope of the data points. In this way, atmospheric

contaminated observations have been removed and the amplitudes and phases

computed are much more reliable than those based on a straightforward FFT

(Fast Fourier Transform). An example of implementation of the HANTS algorithm

for land surface temperature time series analysis can be found in Julien et al. (2006).

Double logistic curve fitting: The double logistic approach has been previously

applied in Julien and Sobrino (2009) to global GIMMS data, as a generalization of

the method presented by Beck et al. (2006) for Siberia.

NDVI yearly evolutions are fitted to the following double logistic function (Beck

et al. 2006):

NDVIðtÞ ¼ mNDVI � wNDVIð Þ � 1

1þ e�mS� t�Sð Þ þ
1

1þ emA� t�Að Þ � 1

� �

þ wNDVI (14.1)
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where NDVI(t) is the remotely sensed NDVI evolution for a given year (t ¼ 0 to

364, in day of year), wNDVI is the winter NDVI value, mNDVI is the maximum

NDVI value, S is the increasing inflection point (spring date), A is the decreasing

inflection point (autumn date), mS is related to the rate of increase at S inflection

point, and mA is related to the rate of decrease at A inflection point. All these

parameters are retrieved iteratively on a pixel-by-pixel basis, by using the

Levenberg-Marquardt technique (More 1977). In order to remove eventual snow-

or cloud-contaminated values, a preliminary fit is conducted in order to estimate the

dormancy period as the period before spring date and after autumn date. During this

period, all eventual negative NDVI values are set to the highest positive value over

the whole dormancy period, labeled winter NDVI. Since surface temperatures

usually present a high seasonality, this approach is also suitable for surface temper-

ature time series. Although NDVI and LST annual curves may differ in shape

(no constant LST during winter or summer), the double logistic approach can

describe adequately the LST annual curves.

IDR (iterative Interpolation for Data Reconstruction): This method (Julien

and Sobrino 2010), also exploits the tendency of cloud and atmospheric influence

to lower NDVI values. Additionally, since NDVI is a proxy for vegetation

greenness, its temporal variation should be smooth and continuous. Therefore,

for each date of a given time series, an alternative NDVI value is computed as the

mean between the immediately preceding and following observations. An alter-

native NDVI time series is therefore obtained, and compared to the original time

series. The date corresponding to the maximum difference between the alternative

and original time series is identified, and the corresponding NDVI value in the

original time series is replaced with the corresponding NDVI value in the alter-

native time series. This replacement is carried out only when the maximum

difference between both time series is higher than noise level (in that case 0.02

NDVI units). Then a new alternative time series is computed from the modified

time series, and the process is iterated until convergence is reached. This process

allows to progressively increase one by one the low and discontinuous NDVI

values (corresponding to atmospherically contaminated values) until the upper

envelope of the NDVI time series is reached. The methodology is somewhat

similar to the one presented in Ma and Veroustraete (2006), with the difference

that the IDR method is carried out from the data itself, and not from a comparison

to an average of different years, which can be problematic for areas with high

interannual variability, for areas suffering a land cover change, or when the

acquired time series length is short.

Figure 14.1 presents an example of atmospheric contamination reconstruction

using the IDR method with Meteosat Second Generation land surface temperature

data, retrieved during one whole day by using the algorithm developed by Sobrino

and Romaguera (2004). Cloud contamination appears as sudden decreases in

retrieved land surface temperature from 10:00 to 13:00 (GMT), while atmospheric

contamination is more easily evidenced at night (from 17:00 to 24:00 GMT for

example).
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14.2.2 Orbital Drift Effect

The orbital drift effect is evidenced only for a few platforms, although these

platforms are the ones that provide one of the longest time series of surface

temperature. Therefore, the following paragraph describes only methods developed

to counterbalance this phenomenon for the NOAA-AVHRR sensor.

The first method, developed by Gutman (1999), relies on the previous

calculations of temperature and SZA (Solar Zenithal Angle) time series anomalies,

which are then averaged over homogeneous vegetation classes. A simple linear

regression is then conducted between these averaged anomalies, and finally, the

fitted SZA anomalies are removed from LST time series by simple difference. This

method was applied and analyzed thoroughly in Gleason et al. (2002), showing that

some hemispherical and local adaptations were needed for desert and crop classes

respectively. These methods rely on a priori knowledge on land cover, which can

(and should) not be considered in change studies through time series analysis.

Another method, developed by Jin and Treadon (2003), relies on modeling land

surface temperature daily cycle, from which the difference of temperature between

the nominal and actual satellite overpass times can be estimated, and then added to

the data for the corresponding date. However, the daily cycles have been computed

for 18 land covers, for all four seasons, and for latitude bands of 5�, which transforms

temporal discontinuities in land surface temperatures at satellite transitions into

spatial discontinuities at vegetation class and latitude band transitions.

Fig. 14.1 One-day (15th July 2010) land surface temperature (in Kelvin) for a pixel in eastern

Turkey as retrieved by Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and

InfraRed Imager) sensor (black), and after IDR atmospheric contamination reconstruction (grey).
See text for details on the IDR method
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Pinheiro et al. (2004) developed a model based on vegetation structural data and

geometric optics, which allows for the estimation of the fraction of sunlit and

shaded endmembers observed by AVHRR for each pixel of each overpass. This

approach has been used to build a daily record of NOAA-14 AVHRR land surface

temperature over Africa (Pinheiro et al. 2006). Due to the needed a priori knowl-

edge of the land cover and to the model complexity this approach is difficult to

implement for large datasets.

Pinzon et al. (2005) used an approach based on the Empirical Mode Decompo-

sition (EMD) to correct NDVI data for the orbital drift. The decomposition uses the

simple assumption that any data consists of different simple intrinsic modes of

oscillations, which can be retrieved iteratively from the data itself. Therefore,

a specific mode could be identified as orbital drift dependent, and removed from

the signal. This approach was chosen for the correction of GIMMS NDVI as well as

for the LTDR (Long Term Data Record) dataset.

Finally, Sobrino et al. (2008b) presented a simple and automated method to

correct NOAA-AVHRR orbital drift, also using SZA anomaly information. The

iterative character of this method results in increased processing times, and is thus

difficult to implement for large databases.

All the methods presented above are unable to correct the orbital drift effect

without introducing spurious trends in the data (Hou and Shi 2011), since the

differentiation between orbital drift and trends included in the time series is not

always obvious. However, Julien and Sobrino (2012) developed a data-driven

method to correct this orbital drift, therefore avoiding the lack of information on

NOAA-AVHRR acquisition times (although indirect approaches such as the ones

presented in Frey et al. 2012, or Ignatov et al. 2004, allow for their estimation).

The Julien and Sobrino (2012) approach is based on a pixel-by-pixel fit of LST

anomalies against both time since launch and solar zenithal angle anomaly, which

allows for the removal of orbital drift influence without removing eventual trends

in the pixel time series. Figure 14.2 presents an example of the orbital drift

influence on a barren pixel time series and its correction by the Julien and Sobrino

(2012) approach.

14.3 Time Series Analyses

In the case of sea surface temperatures, the main application being climate

modeling, basic approaches relying on anomaly estimation and linear regression

have been generally applied (see for example Comiso 2003). Another case of time

series analyses based on anomaly estimation is the coal fire detection method

presented by Kuenzer et al. (2008), which also presents the particularity of using

four observations per day, as a rare example of intra-daily time series application.

Due to the scarcity of temporally coherent land surface temperature time series, few

methods have been developed specifically for their analysis. However, methods

developed for other optical wavelengths can easily be transposed to thermal
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infrared applications. Therefore, the following methods could also perfectly be

applied to LST time series as well. These methods are presented hereafter, divided

in change detection and trend retrieval methods.

14.3.1 Change Detection

Coppin et al. (2004) have reviewed different methods for vegetation monitoring.

This section summarizes the ones that are relevant to thermal time series, completed

with other references. Detection of changes in remotely sensed images presupposes

having access to similar data, whether regarding acquisition (cloud free images,

atmospheric effects, illumination and observation geometry, similar wavelengths

and spatial resolutions), time scale (comparable phenological state of the vegeta-

tion), data processing (similar methods, accurate georeferenciation). Change detec-

tion algorithms are mainly based on bi-temporal analysis, i.e. comparison of two

sets of data, preferably from before and after the change.

• A first technique for change detection is univariate image differencing, which

consists in the simple subtraction of two images previously co-georeferenced

(Banner and Lynham 1981; Lyon et al. 1998; Nelson 1983). Negative

differences can generally be attributed to increase in vegetation cover (which

temperature is lowered by increased evapotranspiration), while positive

differences evidence mainly a decrease in vegetation cover. An example of

this method can be found in Fig. 14.3, where the difference between two land

surface temperature estimates from airborne AHS (Airborne Hyperspectral

Fig. 14.2 LST time series for a barren pixel before (grey) and after (black) the Julien and Sobrino
(2012) orbital drift correction. The orbital drift effect on the uncorrected LST time series is clearly

evidenced by the increasing difference between both curves from satellite launch to retirement

dates
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Scanner) sensor, acquired over an agricultural area in southern France in 2007 at

11:40 UTC, shows the land cover change between two dates. This difference

image allows the identification of the changes suffered between these two dates:

lower river (Garonne) level (top of the image, in white), increase in vegetation

cover (as a decrease of LST in the lower part of the image, in dark grey) and

decrease in vegetation cover (as an increase in LST in the left part of the image,

in white). This method has the advantage of low cost in processing time.

• A second technique consists in image ratioing on a pixel by pixel basis, resulting

in an image where change pixels have a value different to unity. This technique

has been applied by Howarth andWickware (1981), unfortunately without being

able to make a quantitative assessment of the changes.

• A third technique is image regression, which consists in assuming that the

“after” image is linearly related to the “before” image for all bands, implying

that the spectral properties of most pixels have not changed between images.

Changes are then identified by setting thresholds to the residuals. This technique

has not been proven to reach high accuracies (Burns and Joyce 1981; Singh

1989; Ridd and Liu 1998).

• A fourth method is multi-temporal spectral mixture analysis, which supposes

that the images (preferably with high spatial resolution) include pixels with pure

spectral signatures or end-members, present in all pixels with different

proportions. Then, change results in variation in end-member percentiles. This

method was implemented successfully for Landsat images of Brazilian Amazon

by Adams et al. (1995) and Roberts et al. (1998).

• Finally, a fifth technique is multidimensional temporal feature space analysis,

which consists in overlaying selected bands of the “before” and “after” images in a

composite image as red, green and blue bands, in which changes appear in unique

colors. This technique does not provide any insight on the drivers of the changes,

and is usually applied for mask building before change detection. For example,

Alwashe and Bokhari (1993) and Wilson and Sader (2002) have applied this

technique to Landsat bands or derived indices. Finally, combinations of those

different techniques have also been used (Desclée et al. 2006).

Fig. 14.3 Land surface temperature as retrieved by the AHS (Airborne Hyperspectral Scanner)

sensor over an agricultural area in Southern France on 24th April 2007 and 15th September 2007

(upper images) and their difference (lower image)
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Among all these techniques, users should choose which method is more adequate

for their application. For example, methods 1, 2 and 5 are straightforward (these

techniques can be carried out automatically for large amounts of data, with changes

being identified through threshold definition.), while methods 3 and 4 are more

difficult to implement. Therefore, methods 1, 2 and 5 can be used as an exploratory

tool in order to identify where changes are occurring, while methods 3 and 4 can

emphasize links between changes separated geographically. Moreover, method 4 is

useful for determining the nature of the change which has been identified.

14.3.2 Trend Analyses

Most of the methods presented above have been designed for high resolution

images, such as those retrieved by SPOT (Satellite Pour l’Observation de

la Terre) or Landsat sensors, for which temporal resolution is quite low. However,

when temporal resolution is higher and spatial resolution is lower, surface temper-

ature retrieval consists in an averaging of temperature over land covers and

vegetation species, while abrupt events such as harvesting are smoothed due to

their local character. Thus, different techniques have to be applied, which can be

summarized as temporal trajectory analyses. These techniques include statistical

analysis (departure from averages, optima, etc. – Lambin and Strahler 1994),

simple anomalies (instantaneous departure from average corresponding period

over the whole time series – Myneni et al. 1997; Plisnier et al. 2000; Comiso

2003), Fourier analysis (Andres et al. 1994), principal component analysis (PCA)

(Eastman and Fulk 1993; Young and Wang 2001) and change-vector analysis

(CVA) (Lambin and Strahler 1994; Lambin and Ehrlich 1997). As was the case

with change detection methods, the last techniques (Fourier, PCA and CVA) are

heavier to implement, although they allow for a better assessment of geographical

correlation of the changes. Additionally, De Beurs and Henebry (2005a) designed a

statistical framework for land cover change analysis.

Ordinary least squares (OLS) regression is the most common method applied for

trend analysis in long image time series, as is the study of global trends in SST by

Deser et al. (2010). However, four basic assumptions affecting the validity of trends

summarized by OLS regression are often violated: (1) all the Y-values should be

independent of each other; the residuals should be (2) random with (3) zero mean;

and (4) the variance of the residuals should be equal for all values of X (De Beurs

2005). Since time series of biophysical parameters are temporally correlated, OLS

regression retrieved trends are not reliable.

The approach described hereafter relies on the Mann-Kendall framework, which

has been applied in a few previous studies of time series of remotely sensed data

(De Beurs and Henebry 2004a, b, 2005a, b). The basic principle of Mann-Kendall

(MK) tests for trend is to examine the sign of all pairwise differences of observed

values (Libiseller and Grimvall 2002). An univariate form of such tests was first
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published by (Mann 1945), and the theory of multivariate Mann-Kendall tests is due

to Hoeffding (1948), Kendall (1975), Dietz and Killeen (1981). During the past two

decades, applications in the environmental sciences have given rise to several new

MK tests. Hirsch and Slack (1984) published a test for detection of trends in serially

dependent environmental data collected over several seasons.

TheMann-Kendall statistic for monotone trend in a time series {Zk, k ¼ 1, 2,. . ., n}
of data is defined as:

T ¼
X

j<i

sgn Zi � Zj
� �

(14.2)

where

sgnðxÞ ¼
1; if x > 0

0; if x ¼ 0

�1; if x < 0

8

<

:

(14.3)

If no ties are present and the values of Z1, Z2, . . ., Zn are randomly ordered, this

statistic test has expectation zero and variance:

VarðTÞ ¼ nðn� 1Þð2nþ 5Þ
18

(14.4)

Furthermore, T is approximately normal, if n is large (n > 10 – Kendall 1975).

Finally, the null trend hypothesis can be rejected at a confidence level α if T

(in absolute value) is greater than a corresponding threshold, which value is

zα•√Var(T), with zα being retrieved from standard normal distribution tables.

This test determines whether trends are present in the data. However, it does

not provide estimates of the trend magnitude. To that end, Sen’s slope approach

(Sen 1968) can be used. This approach consists in determining trend values for all

pairs of data of the time series, and then in identifying the median value of all these

estimated trends. This approach has been shown to be resistant to outliers (Sen 1968).

Figure 14.4 shows an example of Mann-Kendall significance level for MODIS

(Moderate Resolution Imaging Spectroradiometer) TERRA maximum land surface

temperature trends, as well as trend values estimated by Sen’s slope approach for

the whole globe, and a synthesis image which presents Sen’s slope trend values for

Mann-Kendall values above 90 % confidence level. These maps show a good

spatial homogeneity, which confirms the validity of the applied pixel-based

approach. Obviously, the relatively short time span of MODIS data (10 years)

does not allow for climate studies, although the observed trends can easily be

related to climate change impacts (increased air temperatures in boreal areas for

example – IPCC 2007). In order to be able to analyze climate related trends, a

longer time series is needed, from the AVHRR instrument for example, provided an

adequate correction of the orbital drift effect (Sect. 2.3).
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Fig. 14.4 Global trends for MODIS TERRA land surface temperature between 2001 and 2010, as

retrieved through the Mann-Kendall statistical framework. These maps correspond to significance

level (top), trend values (middle), and trend values with a confidence level above 90 % (bottom)
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Finally, a novel technique has been developed by Verbesselt et al. (2010), which

consists in the detection of breakpoints in a time series (BFAST – Breaks For

Additive Seasonal and Trend). Although this technique has been developed with

the application to vegetation indices in mind, this technique can perfectly be applied

to surface temperature time series, and can provide interesting insight on the timing of

surface changes, which are useful for the attribution of causes of the observed

changes.

14.4 Conclusions

Time series analysis for thermal data is a quite novel field, due to the low

availability of temporally coherent datasets. However, recent advances in time

series pre-processing (such as the ones presented here) and new sensors will result

in an increased interest in this field. This has to be added to the general concern

regarding global warming, based on trends observed from air temperatures,

although surface temperature is a better indicator of ecosystem suitability for

existing vegetation and animal species, whether aquatic or terrestrial. Therefore,

thermal time series could allow for an improved assessment of global warming

impacts (plant phenology, pests control, food security, etc.).
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Chapter 15

Thermal Remote Sensing of Sea Surface

Temperature

Christopher J. Merchant

Abstract Sea surface temperature has been an important application of remote

sensing from space for three decades. This chapter first describes well-established

methods that have delivered valuable routine observations of sea surface temperature

for meteorology and oceanography. Increasingly demanding requirements, often

related to climate science, have highlighted some limitations of these approaches.

Practitioners have had to revisit techniques of estimation, of characterising uncer-

tainty, and of validating observations – and even to reconsider the meaning(s) of “sea

surface temperature”. The current understanding of these issues is reviewed, drawing

attention to ongoing questions. Lastly, the prospect for thermal remote sensing of sea

surface temperature over coming years is discussed.

15.1 How Does Sea Surface Temperature Vary?

Thermal remote sensing is a powerful technique to obtain global, frequent

observations sea surface temperature (SST). Surface temperature across the oceans

varies with time (e.g., Robinson 2004), responding, for example, to the daily cycle

in heating by the Sun (e.g., Fairall et al. 1996), to the passage of the seasons, and to

changes in upwelling or vertical mixing driven by the wind blowing across the sea

surface (e.g., Munk 1950). Surface waters are constantly moving: in ocean currents

and eddies; and, near coasts, with tides and river outflows. Surface water advection

changes SST over time at a given location.

Scales of a kilometre and upwards are globally observed with radiometers from

space (e.g., Donlon et al. 2010). Viewing the thermal structure of the ocean surface at

such scales, one may observe relatively sharp boundaries in SST (Fig. 15.1). These

“fronts” are signatures in SST of the convergence of surface water masses,
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Fig. 15.1 Image at thermal window wavelength of 11 μm of US Eastern seaboard including Cape

Hatteras and Pimlico Sound, obtained by the second Along Track Scanning Radiometer. The width

of the image is about 512 km and the pixel resolution is 1 km. Ocean features are reasonably well

resolved, with smooth contiguous variations in surface temperature reflected in the image bright-

ness temperature, except where there are scattered, cooler clouds that are often not fully resolved.

Land is also more heterogeneous, and, this being a day time image, warmer than the sea in many

areas (Image obtained from URL1 and adapted by the author)
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convergence that can arise from a number of processes of oceanographic interest.

More generally, thermal remote sensing can reveal any phenomenon that measurably

alters the radiometric SST, provided that the surface temperature signature occurs on

a length scale longer than the sensor’s spatial resolution and persists for long enough

relative to the time-sampling properties of the observing system. Note that the

relevant sampling rate is not the rate of acquisition of images, but rather the rate at

which a cloud-free observation at a given location is typically obtained. Examples of

oceanographic phenomena and their SST magnitude and spatiotemporal scales are

given in Table 15.1.

15.2 Basis in Physics of Sea Surface Temperature

Remote Sensing

All remote sensing depends on a remotely observable signal that reflects variations

in the phenomenon of interest. To observe SST from space, the radiance at the top

of atmosphere must change in response to changes in surface temperature (e.g.,

Deschamps and Phulpin 1980). Figure 15.2 shows the spectral sensitivity of the

top-of-atmosphere brightness temperature (BT, y) to SST (x) variations – i.e., it is a
plot of the variation with wavelength, λ, of ∂yλ/∂x. This has been simulated using

the physics of thermal radiative transfer encapsulated in a radiative transfer model.

Here, the radiative transfer (RT) model makes calculations of the emission, scatter-

ing, and absorption of thermal radiation at the surface and through the full vertical

profile of the atmosphere, wavelength-by-wavelength. The spectral BT sensitivity

has been calculated for an example of mid-latitude and of tropical conditions, in

both cases for a cloud-free nadir view of the ocean. A change in temperature of 1 K

of an ideal radiating surface (a black body) would change the spectral BT observed

by a radiometer (under a vacuum) by 1 K – that is, the sensitivity would be ∂yλ/
∂x ¼ 1. A change in sea surface temperature leads to a change in BT observed at

Table 15.1 Selected ocean phenomena and the magnitude and scales of their SST signature

Phenomenon Magnitude/K Length scale/km Time scale

Climatological variation across oceans 35 104

El Nino and interannual variability 0.5–5 500–5,000 Months to

years

Tropical instability waves 0.5–5 200–2,000 Months to

years

Meanders and eddies on major fronts

and boundary currents

1–8 5–2,000 Weeks to

months

Diurnal warming cycle 0.1–5 5–1,000 Hours

Coral bleaching events 0.3–3 20–200 Days

Coastal wind induced phenomena 0.2–2 1–100 Hours

Extracted and adapted from Robinson (2004), which provides a more complete listing
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the top-of-atmosphere that is smaller, because of a number of factors listed and

described in Table 15.2. The key point is that sensitivity is high at wavelengths

where the atmosphere is relatively transparent to the passage of electromagnetic

radiation.

Figure 15.2 presents two parts of the spectrum useful for SST remote sensing:

the atmospheric windows in the near infra-red (around 4 μm), and the mid infra-red

(between 8 and 13 μm, albeit interrupted by an ozone absorption feature around

9.7 μm). Although described as windows, there is variability in sensitivity with

wavelength, which would be even more striking if plotted with finer spectral

resolution. Within the windows, individual molecular absorption features reduce

spectral sensitivity close to zero over narrow intervals of wavelength, while there

are also some intervals a few cm�1 without such lines. An example of the latter is

the micro-window at 2,616 cm�1 (3.823 μm). In such micro-windows, the clear-sky

attenuation of temperature by the atmosphere can be just a few tenths of degree

kelvin (except when the presence of atmospheric aerosols decreases the transmit-

tance). Most sensors from which SSTs are derived, however, have channels of

width of order 100 cm�1. This allows higher spatial resolution with reasonable

noise characteristics, but requires that atmospheric effects must be accounted for

when inferring surface temperature (e.g., McMillin and Crosby 1984).

We can expect more accurate, less noisy estimates of SST when using

observations with higher sensitivity, other factors being equal. This is because the

SST signal is then greater in proportion to instrumental noise and signals associated

with variations in the atmospheric state. Sensitivity to SST is greater in mid-latitude

conditions than tropical conditions largely because there is less absorption related

to water vapour in the atmosphere (Merchant et al. 2009). The near-infrared

window maintains relatively high sensitivity even under tropical conditions,

and is particularly useful for observing equatorial SSTs. However, this window is

usually only used for night-time scenes, because of the complication of significant

solar irradiance at these wavelengths during the day. The sensitivity across the

mid-infrared window is highly responsive to the total amount of water vapour.

Fig. 15.2 Spectral brightness temperature (BT) sensitivity (the response at the top of the atmo-

sphere per unit change in surface temperature, in units of K K�1). Grey lines: for a mid-latitude

case with low total column water vapour (TCWV). Black lines: for an equatorial case, high

TCWV. Left panel: a near-infrared window used for SST remote sensing (usually for night-time

scenes only), presented at a spectral resolution of 10 cm�1. Right panel: the mid-infrared window,

spectral resolution of 3 cm�1
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Thus, when relying on the mid-infrared window for day-time SST, we can expect

larger uncertainties for regions of high total column water vapour (TCWV).

The physics of atmospheric radiative transfer for these wavelengths is quantified

with great precision in the spectroscopic databases exploited by line-by-line RT

models (Rothman 2010). Moreover, the sea surface is relatively simple and homo-

geneous. The thermal emission and reflection of the surface can also be well

simulated. In the absence of significant aerosol, clear-sky RT modelling relevant

to typical SST sensors gives BTs that seem to be physically realistic to of order

0.1 K. This is comparable to the calibration uncertainty and noise for “good” SST

sensors. Therefore, RT-based approaches to SST estimation are feasible and are

currently used in practice, in addition to empirical approaches.

Table 15.2 Factors that affect the top-of-atmosphere clear-sky spectral brightness temperature

and its sensitivity to surface temperature variations

Factor Nature of influence

Sea surface

emissivity

If emissivity is less than 1, emitted radiance is correspondingly less than the

ideal Planck (black body) radiance. Sea water emissivity is generally high

(0.96–0.99) for near-nadir observations at wavelengths relevant to

thermal remote sensing. For flat sea-water, spectral emissivity depends on

temperature, salinity and the angle of view (emissivity reduces markedly

at angles beyond about 55�). Under wind-roughened conditions the water
is not flat, which modifies the effective emissivity as a function of wind

speed

Sea surface

reflectivity

Downward atmospheric and (for near infra-red) solar radiance can be

reflected at the surface. Reflectivity depends on the same factors as

emissivity, and increases as emissivity decreases

Radiatively active

gases

The surface-leaving radiance is absorbed by gases in the atmosphere, to a

greater or lesser degree according to wavelength. In decreasing order of

impact on SST remote sensing, the most relevant gases are: water vapour,

carbon dioxide, dinitrogen oxide, methane, CFC-12, nitrogen, CFC-11

and nitric acid. These gases also emit radiation by virtue of their

temperature. For the most part, this does not wholly offset the absorption,

since the atmosphere is mostly colder than the underlying surface.

Nevertheless, the effect of the atmosphere is to introduce a source that is

not directly dependent on the surface temperature, and therefore to reduce

the BT sensitivity. At wavelengths where absorption is very efficient, the

BT becomes independent of the surface temperature. Of the significant

radiatively active gases, water vapour is by far the most variable

Aerosols Particles in the atmosphere absorb and emit radiance, as with gases, and may

also significantly scatter radiance (in to or out of the view of a satellite).

The radiative properties and concentrations of aerosols are much more

variable and much less understood than for gases. Aerosol impacts of BTs

can range from negligible (in clean air), to highly significant (e.g., dust

storms)

Solar radiance Solar radiance can be reflected by the surface and scattered by the atmosphere

into the view of a satellite. This is usually very significant for day time

observations at near infra-red wavelengths, and can be marginally

significant at longer thermal wavelengths when there is strong specular

(mirror-like) reflection (known as sun glint)

Summarized from Embury et al. (2012a)
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15.3 Sea Surface Temperature Retrieval

15.3.1 Simple Empirical Estimators

The process of estimating SST from a number of clear-sky brightness temperature

observations is usually termed SST retrieval. Most retrieval methods have been

based on defining coefficients for a weighted combination of BTs. This is a simple,

computationally efficient approach. At least two BTs are required (Anding and

Kauth 1970), since it is necessary to infer both the SST (explicitly) and the impact

of the atmosphere on BTs (implicitly). The difference SST minus BT is called

the atmospheric correction, the idea being that this is the temperature that must be

added to the BT to correct the net attenuating effect of the atmosphere. Despite the

term, some of the difference is due to non-ideal emissivity of the sea surface.

The minimum of two BT observations required to retrieve SST must be at

wavelengths that (i) have adequately high sensitivity to SST and (ii) are differen-

tially absorbed by atmospheric water vapour. Of the relevant absorbing gases in the

atmosphere, only water vapour is extremely variable, with total column water

vapour (TCWV) varying from almost zero up to ~60 kg m�2. The atmospheric

correction generally increases with increasing TCWV, and does so more rapidly for

wavelengths that are more effectively absorbed by water vapour. Consequently, the

atmospheric correction for either of the BTs is approximately linearly related to the

difference between the BTs:

x� y1 / y1 � y2 (15.1)

Figure 15.3 illustrates the degree to which proportionality holds. The SST can

thus be estimated by an expression:

x̂ ¼ a0 þ a1y1 þ a2ðy1 � y2Þ (15.2)

where a0, a1 and a2 are retrieval coefficients.
Wavelengths between about 10 and 13 μm have high sensitivity that varies

progressively across that window (Fig. 15.2), reflecting differential water vapour

absorption. This is the principal window used by SST sensors, and is usually split

between two channels centred around 11 and 12 μm respectively. Equation 15.2 in

this case describes a split window retrieval. This equation and variants of it have been

widely used to obtain SST from meteorological sensors (e.g., McClain et al. 1985;

Walton et al. 1998). The coefficients need to be specified for each sensor, since the

spectral responses of the nominal 11 and 12 μm channels are inevitably somewhat

different between sensors. The split window equation is appealing because it is

physically intuitive (Barton 1995): the SST is the 11 μm BT scaled up a little to

compensate for non-ideal emissivity (a1 is usually a little more than 1.0), with an

offset, a0, added (interpreted as compensating for the absorption of non-varying trace
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gases), plus a term that accounts for the highly variable water vapour absorption

(whose impact is proportional to the difference between the BTs).

The values of the coefficients have usually been defined empirically, by regres-

sion between BTs and matched in situ SST observations. This is discussed further in

a later section. Here, we review the ways in which the simple split window equation

has been elaborated.

The first elaboration is with respect to satellite view angle. The total column of

water vapour encountered by radiance passing through the atmosphere on a slant

path exceeds the TCWV by an approximate factor of approximately sec(θ), where
θ is the satellite zenith angle (angle of the slant path to the vertical at the surface).

The degree to which sea surface emissivity is less than 1 increases markedly with

angles beyond about 55�. A common approach has been to fit the combined BT

impact of these effects by having some coefficients depend on S ¼ secðθÞ � 1, such

that a0 ! a0 þ b0S etc. (e.g., Walton et al. 1998).

The second elaboration is adaptation to use additional channels. In addition to

the split window channels of 11 and 12 μm, BTs observed in the near-infrared

window between about 3.6 to 4 μm are useful for SST estimation. BTs in this region

Fig. 15.3 Nadir atmospheric correction for 11 μm brightness temperatures against difference in

brightness temperature between 11 and 12 μm channels, for a typical split-window sensor. Each

point represents an observation made at a particular location and time from a global sample. The

distribution is close to linear for differences between the 11 and 12 μm brightness temperatures

greater than about 1 K. The scatter for a given brightness temperature difference arises from

factors such as variable vertical distribution of water vapour, troposphere-sea temperature differ-

ence, etc. These factors have systematic geographical variations, which tends to create coherent

geographical biases in any SST retrieval based on fitting a function to such a distribution
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have mainly been used for night-time scenes, when solar-reflected radiance is

absent. There is a high degree of sensitivity in this range (Fig. 15.2) to surface

temperature, and in addition the dependence of radiance on temperature is

extremely steep for terrestrial temperatures T ~ 285 K – around T14. This strong
non-linearity reduces the impact of non-unity emissivity, of contaminants in the

field of view such as sub-pixel undetected clouds, and of radiometric noise of a

given magnitude. Therefore, on a well-designed sensor, a channel centred at

3.7–3.9 μm can be particularly “clean” for SST, which is a colloquial way of

expressing that the information content on SST is very high. Compared to the

near-infrared window, the high-sensitivity region around 8.7 μm behaves more

similarly to the usual 11 and 12 μm channels. Nonetheless, it can be useful if

present.

Inclusion of additional BTs has been done using various equations, most of

which can be re-expressed in the form:

x̂ ¼ a0 þ b0Sþ
X

i
ai þ biSð Þyi (15.3)

Some investigators impose additional restrictions on the empirical fit of the

coefficients in Eq. 15.3 by choosing specific forms of equation (e.g., Li et al.

2001). For example, a three-channel algorithm with form:

x̂ ¼ a0 þ b0Sþ a1 þ b1Sð Þy3:7μm þ a2 y11μm � y12μm
� �

(15.4)

is Eq. 15.3 with the additional constraints that a2 ¼ �a3 and b2 ¼ b3 ¼ 0. Some-

times a physical argument is put forward to justify a specific form of equation.

Imposing such additional constraints may seem at odds to adopting an empirical

approach to determine coefficients, but if the empirical dataset relating BTs and

SSTs is small, imposing such additional constraints may avoid over-fitting. Addi-

tional constraints can also modify the sensitivity of the estimator to factors such as

atmospheric aerosols (discussed further below).

As well as observations at additional wavelengths, “channels” can be added by

having sensors view the sea surface at more than one view angle, i.e., near-nadir and

off-nadir (forwards or backwards along the track).

The third elaboration relates to use of non-linear terms. The residuals (retrieved

minus in situ SSTs) of purely linear estimators such as Eq. 15.3 usually display

coherent systematic variations if plotted against latitude, longitude-within-a-lati-

tude-zone, TCWV, BT differences, and so on. These reflect the non-linearity

evident in Fig. 15.3, and sensitivity to geographical variations in the broad vertical

structure of water vapour and temperature in the atmosphere. A wide range of

non-linear estimators have been proposed, for example:

• banding of coefficients by latitude or other regional optimisation (e.g., Minnett

1990)

• banding of coefficients by BT difference (e.g., Kilpatrick et al. 2001)

294 C.J. Merchant



• banding of coefficients by prior TCWV or retrieved TCWV (e.g., Barton 2011)

• inclusion of a term that modifies coefficients via a prior SST (e.g., Pichel et al.

2001)

• quadratic dependence on BTs or prior TCWV (e.g., Emery et al. 1994)

These generally offer modest benefit to retrieval accuracy. Simple functional

forms do not reflect the underlying origins of the systematic residuals, which are the

non-linearity of the physics of RT and geographical variations in atmospheric

structure (Merchant et al. 2006).

The final elaboration is to use alternative regression methods. The usual means

of defining retrieval estimators empirically has been ordinary least squares fitting

(multiple linear regression). Neural nets in principle seem an attractive way to deal

with the non-linear aspects of the retrieval problem, but are yet to demonstrate good

success. ‘Genetic’ algorithm identification seems to converge on a form rather

similar to the split window formulation.

15.3.2 Approaches Involving Radiative Transfer Modelling

Progress has been made in recent years using RT modelling to improve retrieval

accuracy and precision.

The main use of RT has been to define coefficients that look rather like the

simple empirical estimators discussed above. Instead of empirical matches between

in situ SST measurements and satellite observations, RT-based coefficients are

derived by regressing simulated BTs to the SSTs used as input to the simulations.

The simulations are driven using atmospheric profiles obtained from radiosondes or

numerical weather prediction (NWP) systems. The RT-based approach is compared

to the empirical approach in Table 15.3.

One strength of approaching SST retrieval with RT simulations is the enhanced

ability to diagnose and solve problems. An example is how to adapt SST retrieval to

the presence of stratospheric aerosol (Merchant et al. 1999). Occasionally, major

volcanic eruptions penetrate the stratosphere and create a haze of sulphuric acid

droplets that persists at altitudes of order 20 km for a year or two. This stratospheric

aerosol layer has climatic impacts, and also affects remote sensing at visible and

infra-red wavelengths. The aerosol absorbs infra-red radiation, and causes BTs to

be reduced. Let’s assume that the impact per unit aerosol optical depth, τ, on the

BTs of a typical three-channel sensor is @y
@τ ¼ @y3:7μm

@τ
@y11μm
@τ

@y12μm
@τ

� �T
. Here, and

hereafter, y is used for a column vector containing the BTs to be used in a SST

retrieval. For a given observation (at a particular view angle etc.), the retrieval

equation can be conveniently written also using vector notation as:

x̂ ¼ aþ aTy (15.5)
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Table 15.3 Contrasting advantages and disadvantages of deriving SST retrieval coefficients by

empirical means compared with derivation by radiative transfer simulation

Aspect Empirical approach RT-based approach

Instrument

calibration and

characterisation

Reduced need to understand

instrument characteristics and

calibration, since many

calibration issues are empirically

accounted for in the coefficients

Need sensor to be well characterised

(accurate spectral response

functions available) and

calibrated (ideally to ~0.1 K). In

absence of this, significant effort

is required to bias-correct

simulated BTs to match

observations

Spatio-temporal

sampling

(representativity)

Can only match locations where in
situ measurements are already

present. This gives no formal

basis for assessing the accuracy

of retrieved SSTs in areas/

periods with few or no in situ
measurements. In situ coverage

has greatly improved since the

early 2000s, but high latitude

seas remain under-represented

The spatio-temporal sampling is in

the control of the investigator.

Access to an NWP re-analysis

provides a consistent

atmospheric data set that can be

sampled across all epochs and

with no gap regions

Nature of sea

surface

temperature

Satellite SSTs are regressed to the

SST at the depth typical of the in
situ measurements (tens of cm in

the case of drifting buoys).

However, BTs are sensitive to

skin SSTs. Thus, empirical

methods conflate different forms

of SST that do not bear a simple

relation to each other. An

approach which addresses this

issue is to restrict the regression

cases to those where skin-depth

differences are thought to be well

understood (e.g., moderate wind

stress at night)

The simulation can be done using

skin SST. The coefficients are

then unambiguously retrieval

coefficients for skin-SST, the

geophysical variable to which the

BTs are sensitive

Independence from

in situ data sets

No independence (fully tied to in
situ)

Independence possible for best

characterized instruments. For

reasonably well calibrated

instruments, RT-based

coefficients can be tuned by

adjusting only the offset

coefficient

Difficulty of

defining

algorithm

Requires a statistically sound

number of satellite-in situ
matches (for every required

stratum of latitude/TCWV/view

angles/etc.). Implies no retrieval

scheme is available at launch

Requires a RT simulation capability,

sampled NWP profiles, and

commensurate computing power.

Retrieval scheme can be defined

prior to launch

See also Merchant and Le Borgne 2004
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where, compared to Eq. 15.3, a ¼ a0 + b0S; the first element of the coefficient

column vector, a, is equal to a1 + b1S; and so on. The summation in Eq. 15.3 is

achieved in Eq. 15.5 by the matrix multiplication of row vector aT and the column

vector y. Use of matrix algebra may at first seem unnecessary, but is a powerful tool

for expressing and analysing retrieval algorithms. Written in this form, it is clear

that the impact of the stratospheric aerosol on the retrieved SST will be:

δx̂ ¼ τaT
@y

@τ
(15.6)

at least over the range for which the BT depression is linear in the optical depth.

Using radiative transfer, @y=@τ can be calculated from knowledge of the properties

of the sulphuric acid droplets (concentration and size distribution). Knowing this,

the different sensitivities to stratospheric aerosol of different retrieval formulations

can be understood using Eq. 15.6. Moreover, we readily formulate the requirement

for an SST retrieval algorithm to be robust (i.e., insensitive) to stratospheric aerosol.

It is:

aT
@y

@τ
¼ 0 (15.7)

This property can be designed into retrieval coefficients by imposing Eq. 15.7 as

a linear constraint when deriving coefficients by regression. This has been done

successfully for a dual view sensor in relation to the major eruption in 1991 of

Mount Pinatubo in the Philippines (Merchant and Harris 1999). The addition of an

extra constraint like this means that a useful set of robust coefficients can only be

found for three or more channels (at different wavelengths and/or view angles). The

relationships between other perturbations to observed BTs and the resulting SST

bias can be analysed with a similar approach. This illustrates that understanding a

retrieval problem by simulation can lead to useful insights.

More recent RT-based approaches emphasize simulation of BTs for the particu-

lar context of an observation (rather than for a spatio-temporal sample, as when

defining coefficients). To achieve this in near-real time, an operational centre

requires routine access to NWP forecast fields and a fast simulation capability

(Le Borgne et al. 2011). For retrospective processing, NWP re-analysis fields may

be used. Either way, a prior estimate for the BT based on simulation is obtained for

every satellite pixel. These simulated BTs can then be used in a variety of ways to

give improved SST estimates.

If simulated BTs, yb (where subscript b indicates BTs simulated using prior or

‘background’ information), are used with SST retrieval coefficients, a simulated

SST estimate is obtained x̂b ¼ aþ aTyb But the simulation of yb assumes a

background SST as input to the RT model, xb. The difference x̂b � xb is then an

estimate of retrieval bias for the circumstances of the retrieval (i.e., for the

circumstances embodied in the NWP information). If this is a good SST bias
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estimate, then an SST estimate, x̂0 that improves upon the original estimate, x̂0 can be
obtained:

x̂0 ¼ x̂� ðx̂b � xbÞ ¼ xb þ aTðy� ybÞ (15.8)

Practical experience has shown that this is indeed a beneficial extension to

coefficient based retrieval, reducing geographical biases and the standard deviation

of discrepancies in validation (Le Borgne et al. 2011). It requires that simulated and

observed BTs have, if necessary, been tuned to have no relative bias on average.

Equation 15.8 shows that simulation-based bias correction (central expression) is

equivalent to adjusting the background SST in the light of the discrepancy between

observed and simulated BTs (rightmost expression).

In the above approach, the coefficients, a, are defined as retrieval coefficients

that operate on BTs in the usual way. A further alternative is to keep essentially the

same equation (adding only an offset coefficient), and then to redefine coefficients

specifically for an ‘incremental’ retrieval (Petrenko et al. 2011). This involves

regressing differences between background and in situ SSTs against differences

between matched BT observations and simulated BTs. The relative calibration of

sensor and forward model is empirically included within the incremental

coefficients in this approach.

Despite their practical successes, none of the above methods (whether purely

empirical or including RT) is formally optimal when viewed from the standpoint of

inverse theory (Rodgers 2000). Inverse theory gives a coherent framework for

analysing SST retrieval as an inverse problem, in terms of a fundamental understand-

ing of howmuch information is truly present about SST in a given set ofBTs.Different

‘optimal estimates’ of SST can, in principle, be defined, that optimize clearly defined

aspects of the SSTs obtained. Where the information content of the observations is

high for SST, a useful estimator is the maximum likelihood (ML) estimate, which

returns themost likely SST given the observations. In anML retrieval, the background

information is used, effectively, as a linearization point for an incremental retrieval

with context-specific coefficients (derived dynamically using RT). However, for a

traditional split window retrieval using 11 and 12 μm channels, theML estimate is not

always useful, particularly in tropical regions and/or at high satellite zenith anglewhen

the 12 μm channel in particular becomes nearly insensitive to SST in comparison to

observational noise. In these circumstances, the BTs fundamentally contain insuffi-

cient information on SST to obtain a good retrieval without relying on prior informa-

tion. (This prior information may be embedded in empirical retrieval coefficients or

explicitly represented by NWP profiles – either way, its presence is unavoidable.)

Thus, for split window retrieval, an appropriate optimal estimate is the maximum a

posteriori (MAP) estimate. A simplified MAP formulation has been shown to be

useful for split window retrieval (Merchant et al. 2008). A further benefit of optimal

estimation techniques is that they naturally output a goodness-of-fit indicator that

gives useful insight into retrieval quality.
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For a truly optimal MAP retrieval, several relatively onerous conditions need to

be met, including an unbiased RT simulation capability (for both BTs and their

partial derivatives) and a thorough understanding of instrumental noise and back-

ground error characteristics. In some areas of thermal remote sensing – nadir

sounding of trace gases in the atmosphere, perhaps – the inverse problem is

sufficiently delicate that a formal optimal approach is virtually obligatory. In the

case of SST, strong practical success has been obtained for three decades using

more direct, intuitive methods. Nonetheless, renewed interest in driving down SST

retrieval uncertainties and in understanding biases has prompted new activity in

exploiting RT and in optimal estimation.

15.3.3 Evaluating SST Retrievals

The quality of an SST retrieval scheme is typically evaluated in validation by

considering ‘error statistics’, usually the mean and standard deviation of discrep-

ancy between the satellite and matched in situ SSTs (e.g., Donlon et al. 2009). The

mean discrepancy is often interpreted as ‘bias’, but this needs to be done with care.

There are real geophysical differences to be expected between satellite and in situ
measurements (and between different types of in situ measurements). No

measurements are perfect, and the validation data (in situ measurements) can also

contribute errors to the discrepancy between satellite and in situ. Here, ‘bias’ is
avoided in preference to the more descriptive term ‘mean discrepancy’.

Between the mid-1990s and the mid-2000s, drifting buoys that routinely report

SST became progressively more numerous (Meldrum et al. 2010). For recent years,

it is possible to calculate a statistically sound, geographically resolved mean

discrepancy compared to drifting buoys for most of the global oceans (Fig. 15.4).

This is a great benefit to development of SST remote sensing. The uncertainty of

SST calibration across the ensemble of drifting buoys seems to be about 0.2 K

(1 σ value; Castro et al. 2012), so in regions of Fig. 15.4 where only a few different

drifting buoys have contributed, the mean discrepancy could reflect buoy calibra-

tion errors rather than systematic error in satellite SST. In principle, the thermistor

technology used in drifting buoys could be calibrated to better than 0.05 K uncer-

tainty (on deployment). New requirements for estimating SST for climate (see later)

arguably justify the expense associated with this improvement in the drifting buoy

programme. Nonetheless, with the current drifting buoy network, geographical

biases in satellite SST can now be inferred (with due care and interpretation)

from maps of mean discrepancy covering a long enough time period. Figure 15.4

is based on 20 years of observations (1991 to 2011), with most matches being

obtained in the last decade. The satellite SSTs are from a reprocessing for climate of

Along Track Scanning Radiometer observations. The mean discrepancy maps have

credible structure on length scales of 1,000 km for a large part of the ocean. There is

a noticeable variation in bias along the equator seen in Fig. 15.4, particularly with

negative biases in the tropical Atlantic. Similar or larger biases in tropical SSTs are
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Fig. 15.4 Upper panel: Mean discrepancy map for a single-view split-window SST estimator,

adjusted for the SST skin effect and near-surface stratification, relative to drifting buoy SST. This is

an estimate of the geographical variation in bias in the SST estimates. The SSTs are for the “nadir

two-channel” retrieval for all matches found for a series of three Along Track Scanning

Radiometers (ATSRs) between 1991 and 2011. (Note that the ATSRs are dual-view sensors; the

geographical variations seen here in the tropics are greatly reduced when taking advantage of dual-

view capability.) Lower panel: number of ATSR/drifting-buoy matches obtained over two decades.

The marked variation in density of matches arises from the combination of drifting buoy deploy-

ment patterns and prevalence of cloud cover. Matches are particularly few in the highest latitudes

and the tropical warm pool (round Indonesia), where both these factors are unfavourable



a common feature of retrieval of SST by coefficients using the split-window

channels in a single view (e.g., Merchant et al. 2009).

The precision of satellite SSTs refers here to the retrieval-error standard devia-

tion. The information available to assess precision includes maps of standard

deviation of discrepancy. The values in this measure are an upper limit on precision,

since the in situ observations errors contribute to the spread of discrepancy. Assum-

ing enough different drifting buoys contribute to a particular calculation of standard

deviation of discrepancy, the satellite SST precision can be approximately inferred.

In the context of climate applications of SST, an important quality is stability

(e.g., GCOS 2006). Stability is the constancy in time of the SST bias, or, equiva-

lently, the additional uncertainty on any calculated climatic trends arising from

(unknown) drift of the calibration of the observing system. The current in situ
observing system is not well equipped for assessment of stability of satellite SSTs

since the SST calibration of drifting buoy and other in situ deployments has not been

controlled with stability in mind. Long-term deployments of well-calibrated

moorings in tropical seas (initially to monitor the El Niño region, and now world-

wide; McPhaden et al. 2010) are useful for assessing stability, although geographi-

cally limited (Merchant et al. 2012). More recent near-surface (~5 m) measurements

from Argo profiling floats (Freeland et al. 2010) may prove a useful global reference

for stability as a longer time series accumulates. The ideal for the long-term would

be a network of SST reference sites of known, controlled stability, distributed at

locations selected to allow assessment of global stability of SST. Research is needed

to optimize such a network of reference sites to be effective and cost-effective. At

reference site locations, both radiometric and sub-surface measurements of SST

should be considered (Minnett and Corlett 2012).

A further parameter to evaluate satellite SST is SST sensitivity (Merchant et al.

2009). SST sensitivity is the fractional response of the retrieved SST to variation in

true SST, other factors (such as the atmospheric state) being equal. Ideally, the

sensitivity should be 1 K K�1, so that a true change in SST causes an identical

change in retrieved SST. In general, this is not the case (Fig. 15.5).

SST sensitivity is readily calculated for a coefficient-based retrieval as

@x̂

@x
¼ aT

@y

@x
(15.9)

where the partial derivatives of BTs are calculated using RT simulation. (Readers

familiar with atmospheric sounding will recognize that the averaging kernel is an

indispensable tool for interpreting remotely sensed atmospheric profiles. In retriev-

ing SST by optimal estimation, sensitivity is the diagonal term corresponding to

SST in the averaging kernel matrix).

Where sensitivity of an SST estimate is much less than 1 K K�1, it is expected

that the strength of ocean thermal gradients is underestimated (an expectation that

requires further validation at the time of writing). Likewise, diurnal variations in

SST are attenuated by low-sensitivity estimators (Merchant et al. 2013). Moreover,

the SST sensitivity has a deep connection to the information content of the BTs
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(Rodgers 2000). SST sensitivity is low when low BT sensitivity to SST reduces the

signal-to-noise ratio, in which case the retrieval must depend more heavily on prior

SST information. (The prior information may be explicit, as in optimal estimation,

or may be implicitly embedded in SST retrieval coefficients.) Thus, the sensitivity

can also be interpreted as the fraction of the information in a particular SST

estimate that comes from the BTs. Figure 15.5 therefore illustrates the point

made previously that typical split-window retrievals rely significantly on prior

information in the tropics.

15.4 Meanings of ‘Sea Surface Temperature’

It is a general issue in remote sensing that the remotely sensed quantity is not

identical to measurements made in situ of nominally the same quantity.

In the case of SST, a lot is understood about how different ‘sea surface

temperatures’ relate. This understanding is the fruit of research cruises (e.g.,

Minnett et al. 2011) and profilers (e.g., Ward et al. 2004) that have undertaken

intensive multiple observations, and of modelling the near-surface ocean and

atmosphere using fundamental physics.

The thermal emission from the sea surface comes from a layer whose character-

istic depth varies with wavelength (because the complex refractive index of water

varies with wavelength; e.g., Hanafin and Minnett 2005). The radiometric skin

depth is ~10 μm at wavelengths around 12 μm, and ~100 μm at wavelengths around

Fig. 15.5 Change in retrieved SST per unit change in true SST, all other factors being held

constant, for a split window SST estimate (non-linear SST retrieval applied to the Advanced Very

High Resolution Radiometer on Metop-A (Meteorological Operational Satellite)) (Reproduced

from Merchant et al. (2009 with permission)
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4 μm. As well as this radiometric skin, the ocean surface also has a thermal skin.

Heat can be transported through this thermal skin only by molecular heat diffusion,

and not via the turbulent motions that are effective in moving heat within the bulk of

the fluid. Heat flux is usually from ocean to atmosphere. A temperature gradient

must be present within the thermal skin to transport heat via molecular diffusion.

For a typical ocean-atmosphere heat flux, the drop in temperature across this

thermal skin is of order 0.2 K. The radiometric temperature of the sea surface

differs from the thermodynamic temperature of water below the diffusive layer

(the ‘sub-skin SST’) both because the sea surface emissivity is less than 1, and

because the temperature of the water within the radiometric skin depth is actually

different from (usually cooler than) the sub-skin SST.

The sub-skin SST can be very close to the SST measured by drifting buoys (at a

depth of order 20 cm), moored buoys (typically of order 1 m depth) or the top

observation of conventional Argo profiles (around 5 m). Sub-skin SSTs and in situ-
depth SSTs are equal when the near-surface is not thermally stratified, reflecting

efficient mixing of the near-surface water by wind action. Although near-surface

stratification is often small compared to SST uncertainties, it is sometimes consid-

erable (e.g., Clayson and Weitlich 2007). Stratification that causes sub-skin to in
situ-depth SST differences may be caused by heavy rainfall creating a fresh ‘lens’

of water of a different temperature on the sea surface. However, near-surface

stratification has been most clearly observed in satellite SSTs when caused by

diurnal warming (e.g., Gentemann et al. 2008).

During the day, sunlight preferentially heats the upper centimetres to metres of

the ocean, because most wavelengths of sunlight are absorbed by seawater over

such distances. In the absence of wind, this will tend to cause a warm near surface

layer – that is, it thermally stratifies the water (Fairall et al. 1996). Under persis-

tently calm conditions (wind speed less than 1 or 2 m s�1), this effect can warm the

sub-skin SST by 6 or 7 K between sunrise and early afternoon (e.g., Gentemann

et al. 2008). Wind action tends to act against stratification, by mixing the heat down,

and an increase of wind can fairly rapidly erode diurnal stratification. Under wind

speeds of about 6 m s�1 or more, the peak amplitude of the diurnal cycle in sub-skin

SST is no more than a few tenths of kelvin.

In summary:

• The ocean thermal skin effect is generally present, so the skin SST is different

(usually cooler) than the sub-skin SST. Measurements by thermal remote sens-

ing are sensitive to this skin SST.

• The difference between sub-skin SST and SST at depths measured by drifting

and moored buoys can range from negligible (e.g., night-time, windy conditions)

to several degrees (high-insolation, sustained low-wind-speed conditions).

Satellite SSTs obtained using coefficients derived by regression to drifting buoys

are sensitive to skin SSTs, but are tuned to remove the mean skin-depth difference

present in the matched data set. This ignores the true variability of skin � depth

differences, which then becomes part of the error budget for the satellite SST estimate.
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Some investigators have restricted the in situ observations used for deriving

empirical coefficients to situations likely to have negligible stratification. This can

be done by specifying that the wind speed around the time of the satellite�in situ
match must be above a threshold. The satellite SSTs can then be justifiably

described as estimates of sub-skin SST on average, since the mean skin � sub-

skin difference is tuned out.

Satellite SSTs retrieved using RT methods should return a true skin SST. This

has the merit that the estimated quantity is the quantity to which the observations

are sensitive. To compare such satellite SSTs to others then requires explicit

account to be taken of skin � sub-skin and sub-skin � depth differences. This

can be done using physical models (e.g., Kantha and Clayson 1994) driven by

heat flux and wind speed over the diurnal cycle (e.g. from NWP) to obtain an

adjustment between skin (satellite) and depth (in situ) SST (e.g., Embury et al.

2012b). The complication with this approach is that any discrepancy after such an

adjustment could arise from model errors as well as observational errors.

The discussion above focusses on geophysical differences in SST with respect to

depth. Horizontal variability in SST is also important. In situ observations give the

SST at a point in space. Satellite SSTs are estimates over an area of typically

1–30 km2. Thus, there is point-to-pixel sampling variability in any satellite � in
situ comparison. Specialist research cruises and a few automated systems make

radiometer measurements of SST. Radiometer measurements are attractive to

compare with satellite SSTs because both respond to the skin SST, removing

‘vertical’ variability. Point-to-pixel issues remain in such comparisons, however

(e.g., Wimmer et al. 2012). For both radiometer and well-calibrated subsurface

SST, it seems to be difficult to reduce satellite � in situ discrepancies from

geophysical variability to less than about 0.1 K (Castro et al. 2010).

15.5 The Wider Context for Thermal Remote

Sensing of SST

15.5.1 Operational SST Production

To support weather forecasting (numerical weather prediction, NWP) and near-real

time oceanography, SSTs are produced operationally (Donlon et al. 2010). This

means regional-to-global, near-real time, high-availability, continuous generation

and distribution of SST products. The requirements on timeliness and availability

and the volume of data flow involved mean that operations tend to be undertaken by

major agencies that can maintain 24 h/day functions. The ultimate quality of SST

products depends as much on the steps relating to calibration of observations and

cloud-detection as on the SST retrieval itself.

Users of operational SST are varied. Some require visual interpretation of SST

images, perhaps to locate fronts in real time. Such users may prefer ‘level 2’
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imagery, where the SSTs are presented on the geographical locations at which they

were observed (for the clear-sky areas available). Other users, requiring reduced

data volumes and/or more convenient formats, prefer ‘level 3 products’, in which

there is some regridding, and averaging or compositing in space and time. A level

3 product might comprise, for example, the daily average on a regular latitude-

longitude grid of all the observations within each grid cell taken by a particular

sensor.

For many applications, a spatially completed, gridded field is necessary –

referred to as an ‘analysis’ or as a ‘level 4 SST product’. To improve the spatial

sampling above that observed by a single sensor, blending data from multiple

sources is usually performed for level 4 production (e.g., Reynolds et al. 2007;

Donlon et al. 2012). This may include in situ observations and passive microwave

(PMW) SSTs as well as SST from thermal remote sensing. Even so, spatio-

temporal gaps will exist, requiring interpolation (gap-filling) – see Fig. 15.6.

There are many approaches to SST analysis (combining data to cope with the

different types of data, with different resolutions, gaps, uncertainties and biases).

Fig. 15.6 Typical example of the daily coverage of SST from six different SST data products, at

different spatial resolutions, all from the same day (Reproduced from Robinson et al. 2012. With

permission)
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Irrespective of the method, the process of analysis will tend to create an SST field

that, to a greater or lesser degree, has certain limitations. The analysis SST will tend

to have poorer resolution of thermal features than the highest resolution data used in

the analysis (i.e., thermal gradients and contrasts will tend to be reduced by the

analysis process). The results of the analysis are sensitive to the assumptions made

about the relative uncertainties of different data sources, and the treatment of bias

correction. The SST estimates given in the absence of observations (filling data

gaps) are based on assumptions about the correlations of the unobserved SST

anomalies to those observed nearby in time and space. Features in gap-filled

areas may differ systematically from reality. In general, the SST error statistics

across the analysis are far from uniform, although this variation is sometimes

neglected in applications. These caveats have to be traded against the practical

usefulness of having a spatially complete SST estimate.

Weather and ocean forecasting are major routine applications of near-real time

SST products. The atmosphere and ocean interact, exchanging heat, mass (evapo-

ration and rain) and momentum; in maritime climates, air temperature and humidity

are partly determined by upwind SST. Surface winds interact with ocean thermal

fronts, with the influence of SST changes propagating through the troposphere

(Chelton et al. 2001). Meanwhile, cloudiness (via the strength of surface solar

heating) and wind affect processes of mixing and stratification in the upper

ocean. Numerical simulations for weather forecasting up to several days ahead

are, at present, generally performed assuming the most recent level-4 SST analysis

as a fixed boundary condition for the bottom of the atmosphere.

15.5.2 SST Production for Climate Services

Table 15.4 lists some uses of SST products in the realm of climatology and climate

services.

The demands on SST accuracy and stability for climate applications are onerous

(GCOS 2011). Consistent SST data sets for climate applications have often been

provided via reprocessing projects (e.g., Kilpatrick et al. 2001; Merchant et al. 2012).

In such a project, an SST record for a particular time period is generated by

re-deriving SST from the input satellite (and perhaps in situ) data streams in a manner

that is consistent, and, hopefully, an improvement over previous products. However,

some of the climate-related applications in Table 15.4 are developing into climate

services that require an estimate of the thermodynamic state of the ocean that is

constantly updated, while simultaneously being of ‘climate quality’ and consistent

with a climate data record going back in time. An example is ‘seamless’ prediction of

long-range weather, seasonal tendencies and future climate scenarios. This will

require systems capable of delivering ‘climate quality’ SST with a relatively short

delay from the time of acquisition (perhaps a few days).
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Table 15.4 Established uses of SST in climatology

Use Purpose(s) Comments

Quantifying SST/

climate

variability and

trends

Baseline knowledge of behaviour of

atmosphere-ocean system,

including geographical patterns of

SST variability and corresponding

weather anomalies. Assessment of

long-term changes, including

those associated with human

forcing of climate

Of order 100 years of SST required

for variability at multi-annual and

decadal scale, and for climate

trend analyses. In satellite era, this

can be addressed with much

greater spatiotemporal detail than

in pre-satellite era. Satellite SSTs

are helpful in establishing modes

(spatial patterns) of variability that

can be exploited in filling gaps in

historical data (“historical

reconstruction”)

Detection and

attribution of

climate

changes

Assessment of climatic trends that are

‘stand out’ above climatic

variability. Comparison of spatio-

temporal progression of SST with

expected evolution under different

agents forcing change, to attribute

which forcings have caused

observed trends

Usually requiring historical

reconstructions of SST fields over

of order 100 years

Boundary

condition of

atmospheric

reanalyses

Atmospheric reanalysis use a

numerical weather prediction

system retrospectively to infer the

best estimate of past weather

Reanalyses to date generally rely on

prescribed, spatially complete

SST fields. For recent decades

these rely heavily on remotely

sensed SST. Reanalyses are useful

in generating consistent estimates

of air-sea fluxes of heat and

precipitation, amongst numerous

other applications

Boundary

condition of

climate model

runs

Verification that climate models

reproduce historical (e.g.,

twentieth century) climates when

driven with best estimate SSTs

SST field is prescribed, while

atmosphere and land components

evolve in the climate simulation in

response. The ability to reproduce

the land climate of the 20thC

given prescribed SST has been

viewed as a basic test for validity

of a given climate model

Climate

prediction

Forecasts from seasonal to decadal

scales of the statistics of future

weather

Requires a coupled climate model

(one in which ocean is interactive,

not prescribed). Relatively slow

response time of ocean mixed

layer gives some level of

predictability for seasonal

forecasting. Seasonal forecasting

requires that the simulation starts

with as realistic as possible an

estimate of state of the ocean

(accurate ‘initialisation’). On

timescales of decades,

predictability comes from

(continued)
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15.5.3 International Co-operation

There is a well-developed framework of international co-operation in operational

remote sensing of SST involving many agencies worldwide. The Group for High

Resolution SST (GHRSST) co-ordinates sharing of tasks, including routine inter-

comparison of SST products, archiving and product distribution (Donlon et al.

2009). Common standards and data formats have been developed to increase the

ease of use of SST from different sources. GHRSST also gives a forum in which the

science of SST remote sensing is debated and advanced.

At time of writing, GHRSST has a project office supported by the European

Space Agency and is formally linked to the Committee on Earth Observation

Satellites (the international forum for co-ordination of civil remote sensing).

At the GHRSST web site, see URL2, links to operational and archive products

(levels 2, 3 and 4) are available, with routinely updated visualizations of SST

products and analyses (Martin et al. 2012; Dash et al. 2012), etc.

15.5.4 The SST Sensor Constellation and SST Analysis

Table 15.5 illustrates the constellation of SST relevant sensors. Different classes of

sensors/platforms have complementary technical capabilities and roles, with

strengths in providing different aspects of the user requirements for remotely sensed

SST. For example: geostationary sensors are well suited to resolve sub-daily

variability in SST, complementing the higher-resolution less-frequent observations

from lower-altitude polar orbiting instruments; dual-view sensors can give higher

SST accuracy, but have poorer sampling because a dual-view swath width is

unavoidably narrower than that for a traditional single-view imager. (The examples

given in Table 15.5 do not include any SST-capable instruments whose products are

not included within the GHRSST co-operative framework, although several such

instruments are in flight.)

An important complement to the thermal sensing constellation is an SST capa-

bility at microwave frequencies (Wentz et al. 2000). Passive microwave (PMW)

sensors have some limitations relative to thermal remote sensing using infra-red

(IR) wavelengths. First, PMW SSTs have lower spatial resolution. Because the size

of footprint of a PMW sensor with a given antenna is inversely related to frequency,

Table 15.4 (continued)

Use Purpose(s) Comments

dominance of the influence of

forcings over internal variability

Climate-

ecological

interactions

Research into the responses of

plankton, fish and corals to SST

variations

Important in understanding present

and future productivity and

ecological health of the oceans
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it is difficult to define a single resolution for the multi-frequency PMW retrievals; a

reasonable indication is an area of order 2,500 km2, which is obviously a much

greater than the 1–100 km2 typical of IR imagers. Second, PMW SSTs are not

available or have much increased uncertainty within about 50 km of land and

sea-ice, because of sensitivity to the land or ice emission in the side-lobes of the

antenna pattern. Third, PMW SSTs to date have to SST uncertainty (~0.5 K),

comparable to the less capable IR imagers. A significant contribution in PMW

SST uncertainty is the greater sea-state dependence in emissivity. Fourth, problems

Table 15.5 Categories of infra-red SST sensors and examples used within the GHRSST

framework

Orbit Channels View Role(s) in constellation Example(s)

Geostationary Split-window

and near-

IR (broad

channels)

Fixed view

of

visible

Earth

disk

High temporal

sampling: resolves

diurnal cycle;

maximizes spatial

coverage by

tracking gaps in

cloud

Spinning Enhanced

Visible and Infra-

Red Imager

(SEVIRI)

Polar Split-window

and near-

IR (broad

channels)

Single

view,

across

track

Near-global coverage

on daily basis

including high

latitudes (before

cloud screening).

Main operational

meteorological

sensors, usually at

least two in orbit

(morning and

afternoon)

Advanced Very High

Resolution

Radiometer

(AVHRR)

Polar As above plus

additional

SST

relevant

channels

Single

view,

across

track

Extended capability

relative to

AVHRR-like

channel set

Moderate-resolution

Imager

Spectroradiometer

(MODIS), near-IR

bands centred on

3.95 and 4.05 μm
Visible/Infrared

Imager

Radiometer Suite

(VIIRS)

Polar Split-window

and near-

IR (broad

channels)

Dual-view,

across

and

along

track

High-accuracy SST for

climate and/or SST

calibration

reference. Poorer

sampling from

narrower swath.

Greater robustness

to aerosol

contamination with

dual view

Advanced Along-

Track Scanning

Radiometer

(AATSR)

Sea and Land Surface

Temperature

Radiometer

(SLSTR, from c.
2015)
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with radio frequency interference are degrading PMW SSTs across progressively

more of the ocean in European seas and elsewhere.

Nonetheless, PMW SSTs are a very powerful addition to the sensor constellation

for SST, because retrievals are available through non-raining clouds. PMW SSTs

are particularly beneficial, therefore, in areas and periods of total cloud cover; they

may provide the only satellite information about SST near a particular location for

days or even weeks, sometimes with important consequences (Wentz et al. 2000).

The full constellation of sensors is beneficial to our ability to estimate the global

distribution of SST at a given time – i.e., to the process of creating SST analyses.

Synthesis of the different sources of SST information remains a challenge, espe-

cially in the face of increasing demands for high spatial resolution (e.g., 1 km

globally) and sub-daily temporal resolution (e.g., 3 hourly, capturing the diurnal

cycle). Given the sampling limitations of thermal remote sensing (because of

clouds) and the resolution limitations of microwave remote sensing (~50 km, one

or twice a day per sensor in the open ocean), the degree to which such demands can

be met by the present constellation is a topic of ongoing research. (“Meaningfully”

here means that the SST variations in the analyses are determined more by real

information observed by the SST constellation, than by noise arising from observa-

tion uncertainty and the analysis system.) One clear direction for progress is to

develop a more complete understanding of the uncertainties of different types of

data and the degree of correlation of different components of error in time and

space. SST analysis systems properly able to use such improved uncertainty

characterization will (i) preserve as much as possible of the true information on

SST held in the constellation of sensors, (ii) minimize the introduction of spurious

features in the analysed SST, and (iii) deliver realistic estimates of the uncertainty

in the analysed SST.

Thermal remote sensing of SST is an integral part of the observation of the

ocean, and indeed of the global environment. Space and meteorological agencies

are committed to maintaining the capability over the coming decades. This com-

mitment is accompanied by ongoing improvement in our ability to sense the

temperature of the ocean surface, bringing many benefits to society.
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Chapter 16

Soil Moisture from Thermal

Infrared Satellite Data: Synergies

with Microwave Data

Claudia Kuenzer, Ursula Gessner, and Wolfgang Wagner

Abstract Soil moisture is an important geophysical parameter and information on

soil moisture is needed by many scientific disciplines in the context of climate

modeling, hydrologic modeling, flood and drought forecasting, or in the context of

geo-health applications. Changes in soil moisture can be the driver for changes in

vegetation cover and might directly impact land use and agricultural yield.

A lot of approaches to derive soil moisture from remotely sensed spaceborne

earth observation data exist. Most of them are based on the utilization of radar data,

such as scatterometer data derived from instruments onboard the ERS satellite

(ERS-Scat) or the Advanced Scatterometer onboard of the METOP satellite

(METOP-Ascat). Such data comes at resolutions of 50 and 25 km respectively

and has the large advantage that it can be acquired independent of solar illumination

and cloud cover. Furthermore, several scientists have used higher resolution syn-

thetic aperture radar (SAR) data for soil moisture estimation. It is less well-known

that thermal infrared satellite data is also suitable to retrieve soil moisture informa-

tion. As thermal data usually is available at a higher resolution (1 km and better)

it is an attractive alternative to radar data. This chapter presents approaches of

soil moisture retrieval from thermal data, and discusses advantages and shortcom-

ing of soil moisture extraction based on this data type. Benefits on a synergistic

operational soil moisture product based on both thermal and radar data are

discussed.
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16.1 Introduction

Soil moisture has a considerable impact on a number of land surface processes such

as surface energy fluxes, vegetation productivity and runoff (Legates et al. 2011).

Time series data sets of soil moisture are particularly useful for the prediction and

monitoring of droughts, agricultural yields and evaporation. Furthermore, soil

moisture data has the potential to contribute to early warning of floods, as highly

saturated soil moisture conditions in a watershed can lead to increased runoff and

subsequent flooding (Brocca et al. 2009, 2012). There are several methods for

the in-situ measurement of soil moisture (e.g., time-domain-reflectance TDR,

gravimetric methods) which are typically labour intensive and limited to the

assessment of small areas. To make in-situ soil moisture data more readily available

the International Soil Moisture Network (ISMN) has recently been established

(Dorigo et al. 2011). The ISMN is developing quickly, already containing data

from more than three dozen networks worldwide (URL1). Yet, most of the land

surface is still poorly covered, which is why satellite methods for spatially complete

assessment are required. Fortunately, a large variety of methods for the retrieval of

soil moisture from satellite data have been developed in the past decade. In contrast

to in-situ measurements, these approaches show potential for an operational,

spatially and temporally consistent derivation of soil moisture for large areas.

Most of the current satellite-based soil moisture products rely on microwave data

but an increasing number of studies have proven the potential of thermal infrared

remote sensing data for soil moisture retrieval.

After a short overview of the current status of microwave-based soil moisture

products, this paper gives a comprehensive review of the state of the art in soil

moisture retrieval from thermal data. In addition, recent synergistic studies

incorporating both microwave and thermal infrared data are presented.

Summarizing the complementary strengths and weaknesses of thermal and micro-

wave data with respect to thematic content, spatial resolution, temporal sampling,

accuracy and data availability, we conclude that the synergistic use of both remote

sensing data types into combined soil moisture products is highly promising for

operational, large-area applications.

16.2 Soil Moisture Retrieval from Microwave Data

The majority of approaches for the retrieval of soil moisture from satellite data

rely on microwave sensors (Engman and Chauhan 1995; Wagner et al. 2007),

encompassing microwave radiometers and scatterometers for regional to global

applications and Synthetic Aperture Radars (SARs) for local scale applications.

The first satellite dedicated to monitoring soil moisture over land is the Soil
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Moisture and Ocean Salinity (SMOS) mission of the European Space Agency

(ESA), which was launched in November 2009 (Kerr et al. 2010). It is a passive

radiometer operated at a wavelength of about 21 cm (L-band). At this wavelength,

the sensitivity of the brightness temperature measurements acquired by

microwave radiometers is enhanced compared to brightness temperature

measurements carried out at shorter wavelengths in the range from about 3 to

6 cm. Nevertheless, measurements at these wavelengths are readily available

from operational instruments such as the Advanced Microwave Scanning Radi-

ometer – Earth Observing System (AMSR-E) and are accordingly widely used for

soil moisture retrieval (Paloscia et al. 2006; Mladenova et al. 2011; Parinussa

et al. 2011).

Another sensor suited to soil moisture monitoring is the Advanced Scatterometer

(ASCAT), which is an active microwave sensor operating at a wavelength of 5.7 cm

(C-band). ASCAT is being flown on-board a series of three Meteorological Opera-

tional Satellite (METOP) satellites operated by the European Organization for the

Exploitation of Meteorological Satellites (EUMETSAT), with the first satellite

(METOP-A) launched in October 2006 and the second (METOP-B) in September

2012. Both satellites are currently operated in parallel, acquiring global backscatter

measurements at a spatial resolution of 25 km, which is comparable to the resolu-

tion offered by microwave radiometers. Since December 2008 ASCAT soil mois-

ture data are available in near-real-time through EUMETSAT (EUMETSAT 2013;

Wagner et al. 2012), see Fig. 16.1 for an illustration of the daily global coverage

achieved by METOP-A and METOP-B.

A major advantage of microwave instruments such as SMOS, AMSR-E and

ASCAT is their near-global coverage and their ability to sense the land surface

independent of cloud cover and daytime. Thus, they guarantee frequent temporal

coverage. Also, both sensors provide a rather direct measure of soil moisture

content due to the pronounced dependency of microwave emission and backscatter

on soil dielectric properties, and hence on soil moisture. However, their spatial

resolution is only in the order of tens of kilometres (25–50 km), which is a severe

limitation on the usability of these data in many applications. This limitation will be

partly overcome by the Soil Moisture Active Passive (SMAP) mission that will

acquire L-band brightness temperature data at 30 km and L-band backscatter

measurements at about 3 km (Entekhabi et al. 2010), opening up the possibility

to create soil moisture products with a spatial resolution as fine as 3 km. Synthetic

Aperture Radars (SARs) would in principle be able to provide soil moisture data at

even finer scales but algorithmic problems stemming from the complexity of

modelling backscatter measurements at fine spatial scale and the limited temporal

availability of the data still limit their usefulness in application (Kornelsen and

Coulibaly 2012). With the upcoming Sentinel-1 SAR satellites the latter constraint

will be overcome, but much research and development work is still needed to

establish robust retrieval algorithms embedded in operational processing

frameworks (Hornacek et al. 2012).
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16.3 Thermal Parameters as a Key for Soil Moisture

Derivation

An increasing number of studies rely on thermal infrared remote sensing data to

derive soil moisture. However, a widely applicable direct link between temperature

data and soil moisture does not exist (Jackson et al. 1997). Also soil moisture does

not directly enter the energy balance equation of the land surface. However, the

water content of a soil strongly influences the evapotranspiration term of the

equation as well as the specific heat capacity and emissivity in the same. The

thermal expression of a soil is thus altered depending on its moisture content, and

thermal physical parameters can support the indirect retrieval of information on soil

moisture conditions. Many authors have followed this direction of thermal infrared

(TIR) based soil moisture estimation utilising a large variety of data from sensors

Fig. 16.1 Global ASCAT soil moisture images fromMETOP-A (top) and METOP-B (bottom) for
22 October 2012. METOP-B was on that day still in the commissioning phase, yet as the high

agreement of both images demonstrates, both ASCAT instruments work extremely well, providing

much improved spatio-temporal coverage with a single instrument. The ASCAT soil moisture data

were processed by EUMETSAT, whereas the images were produced by TU Wien. It should be

considered here that the METOP-B data displayed is Cal/Val data
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such as HCMM (Heat Capacity Mapping Mission), TIROS-N (Television and

InfraRed Observation Satellite), NOAA-AVHRR (National Oceanic and Atmo-

spheric Administration – Advanced Very High Resolution Radiometer), GOES

(Geostationary Operational Environmental Satellite), Meteosat (Meteorological

Satellite), MODIS (Moderate Resolution Imaging Spectroradiometer), and

Landsat, amongst others (Carlson 1981, 1986; Price 1983, Carlson et al. 1984,

1994; Jones et al. 1998; McNider et al. 1994; Portmann et al. 2003; Gillies and

Carlson 1995; Rosema et al. 2001; Shih and Jordan 1993; van den Hurk 2001;

Verstraeten et al. 2006; Wetzel and Woodward 1987). Approaches range from the

application of simple indices to the assimilation of TIR data in soil-vegetation-

atmosphere transfer (SVAT) models.

16.3.1 The Triangle Approach

Empirical relationships between the thermal infrared emissivity of bare soils and

surface soil moisture could be established in laboratory experiments and locally

restricted studies (e.g., Mira et al. 2010; Sanchez et al. 2011; Hulley et al. 2010).

However, for vegetated land surfaces, plant cover considerably influences this

relationship. Price (1990) has demonstrated a unique relationship between frac-

tional vegetation cover, soil moisture, and soil temperature, which results in a

triangular or trapezoidal shaped scatterplot of surface temperatures and the

remotely sensed NDVI (Normalized Difference Vegetation Index). This empiri-

cally derived relationship was later verified by SVAT models (Gillies et al. 1997).

Following this triangle concept, soil moisture was estimated e.g., by Carlson et al.

(1994), Chauhan et al. (2003) and Wang et al. (2007) using NDVI and Land Surface

Temperature (LST) from remote sensing in combination with field measurements

of soil moisture. Building on the triangle approach, Sandholt et al. (2002) devel-

oped the temperature-vegetation dryness index (TVDI)

TVDI ¼ Ts � Tsmin
aþ b � NDVI � Tsmin

(16.1)

where Tsmin is the minimum surface temperature of an area representing the full

range from wet to dry and bare to densely vegetated conditions. Ts is the actual

surface temperature at a given pixel. NDVI is the observed NDVI. The coefficients

a and b define the dry edge in the triangle, modelled as a linear fit (Tsmax ¼ a þ b *

NDVI), where Tsmax is the maximum observed surface temperature for a given

NDVI. TVDI was used for soil moisture retrieval in semi-arid regions of Senegal

(Sandholt et al. 2002) and in a sub-humid study area in India (Patel et al. 2008).

Comparisons with in-situ and modeled soil moisture support the applicability of the

TVDI approach for large areas, particularly when vegetation cover is sparse.
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16.3.2 Integration of Thermal Data
into Land Surface Models

Other TIR-based approaches for deriving soil moisture integrate thermal infrared

data in land surface or SVATmodels (e.g., Coudert and Ottlé 2007; Crow et al. 2008;

Gillies and Carlson 1995; Portmann et al. 2003). Such models are often highly

complex and need a large number of input variables to yield sufficient results. Some

approaches use variables derived from thermal remote sensing as direct input for the

models. In other studies, boundary conditions or parameters are adjusted to match

observed variables. Hence, the obtained results strongly depend on the choice of the

model, the chosen input parameters, and the accuracy of the latter. However, large

scale or even globally applicable approaches with high temporal resolution offering

operational readiness have only been implemented in rare cases.

McNider et al. (1994) developed a technique to integrate satellite-derived skin

temperature in atmospheric models by matching the modeled rate of temperature

change to the satellite observations. Jones et al. (1997) have extended this technique

by additionally integrating a prognostic soil model to adequately consider the relative

heating rates of bare soil and vegetation components. Another example is the work of

Portmann et al. (2003), who modified the TESSEL (Tiled ECMWF (European Centre

for Medium-Range Weather Forecasts) Scheme for Surface Exchanges over Land

model) and adjusted model soil moisture so that a modeled surface temperature rise

matched observed in-situ temperature increases. The surface energy balance model

ALEXI (Atmosphere-Land Exchange Inversion, Anderson et al. 1997, 2007;

Mecikalski et al. 1999) combines a TIR-based two-source model with an atmospheric

boundary layer model. Remotely sensed radiometric temperatures are partitioned into

soil and vegetation temperatures, and subsequently soil and canopy energy budgets are

balanced separately. Hain and Mecikalski (2009) applied the ALEXI model for

Oklahoma using hourly GOES thermal infrared data and derived the available water

in the soil profile.

16.3.3 Thermal Inertia and Apparent Thermal
Inertia Approaches

Of great potential for TIR based soil moisture retrieval is the concept of thermal

inertia of an object, I (J m�2 s�0.5 K�1), which is defined as the resistance of an

object to its heating for 1 K, depending on three parameters. Firstly, the energy

needed to raise the temperature of a material for 1 K (heat capacity c) per mass unit

of the substance (m), secondly the density of a material, ρ – the main determining

factor – and thirdly the thermal conductivity, K, of an object. Hence,P ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c � K � ρp
.

Variations of I affect the diurnal temperature difference ΔT, defined as the differ-

ence between the maximum and minimum temperature occurring during a diurnal

solar cycle (Kahle et al. 1976). Low thermal inertias indicate low resistance to

320 C. Kuenzer et al.



temperature changes, resulting in a highΔT. The opposite applies for materials with

a high thermal inertia, e.g., water. Hence, ΔT decreases with increasing soil

moisture. As already stated in Chap. 1, remote sensing does not allow for the direct

derivation of I (c, ρ and K can only be measured in-situ), but the concept still allows

exploitation of the impact of soil moisture (θ) on T and ΔT. ΔT is calculated by

subtracting the minimum nighttime temperature from the maximum daytime tem-

perature for corresponding ground resolution cells.

Already in the 1970s, Price (1977), Idso et al. (1975), and Schmugge et al.

(1978) analysed the potential of ΔT for soil moisture retrieval. Building on these

studies, several techniques were developed for modeling the thermal inertia of soils

and deriving soil moisture that include ΔT from remote sensing data (Cai et al.

2007; Matushima et al. 2012; Minacapilli et al. 2009; Sobrino and El Kharraz 1999;

Xue and Cracknell 1995).

As an approximation to the actual thermal inertia, the so called Apparent

Thermal Inertia (ATI) is defined as ATI ¼ ð1� AÞ=ΔT. As stated in Chap. 1, A

is the albedo of the pixel in the visible band (VIS). This helps to compensate for the

fact that dark materials with low albedo absorb more sunlight than light materials

with a high albedo. ATI cannot compensate for relief induced variations in ΔT. In
an area of uniform material, shadowed areas have a lower radiant temperature

during the day and hence a lower ΔT than the same material exposed on a sunlit

slope. Here, topographic data and solar elevation and azimuth information can be

employed to overcome relief induced variation of ΔT. Depending on the resolution
of the data sets and the scale of an envisaged product this might not play a crucial

role though. An advantage of ATI when compared to the actual thermal inertia is

that it can be derived directly from VIS and TIR remote sensing imagery. Numerous

studies followed this approach and found high potential for soil moisture estimation

based on ATI.

Tramutoli et al. (2000) assessed the potential of ATI derived from AVHRR to

describe the spatial and temporal variability of soil moisture. They compared ATI

based soil moisture estimates for a river basin in Italy with precipitation data and

assessed the robustness and sensitivity of the approach by spatial variability

analyses. The authors conclude that AVHRR-based ATI provides useful informa-

tion on soil moisture, e.g., for the calibration of hydrological models.

The concept of ATI was furthermore employed for European forests by

Verstraeten et al. (2006) using Meteosat data. Since ATI represents the temporal

and spatial variability of soil and canopymoisture, the highest and lowest ATI values

in an ATI time series for a specific pixel can represent the residual and saturated soil

moisture. Verstraeten et al. (2006) thus derive a change detection based soil moisture

saturation index (SMSI) according to the quotient SMSIðtÞ ¼ ðATIðtÞ � ATIminÞ=
ðATImax�ATIminÞ , which is modified further to retrieve soil moisture content

(SMC) based on the European soil database (JRC-INRA 1999). Additionally, they

employ a filtering approach developed by Wagner et al. (1999) which estimates the

status of soil profile moisture content based on time series of the surface soil

moisture content. Correlation coefficients between TIR-based SMC results and

EUROFLUX site in-situ data as well as ERS (European Remote-Sensing Satellite)
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scatterometer derived SWI (Soil Water Index) are satisfactory. Verstraeten et al.

(2006) discuss that the errors retrieved from their TIR based approach are in the

same order of magnitude as those reported for microwave derived soil moisture

products. The approach of Verstraeten et al. (2006) was adopted by Veroustraete

et al. (2012) to infer soil moisture fromMODIS data for a semi-arid region in China.

In this study, soil texture parameters were derived from a detailed regional soil map

which allowed for defining spatially explicit residual and saturated soil moisture

values. Comparisons of the ATI-based SMC with in-situ measurements showed

good applicability of the approach in semi-arid regions.

Van Doninck et al. (2011) present an approach to derive ATI from daily Terra

and Aqua MODIS data where ΔT is estimated based on a sinusoidal approximation

of the LST measurements that are available for a specific day. ATI is not

transformed to soil moisture, but the temporal profiles of ATI show good agreement

with AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing

System) derived soil moisture, particularly for arid and semi-arid areas. In more

densely vegetated areas, Van Doninck et al. (2011) noticed a rather poor perfor-

mance of ATI, which is in contrast to Verstraeten et al. (2006), who successfully

delineated soil moisture over forests using their ATI-based approach and Meteosat

data. Van Doninck et al. (2011) assume that reasons for this contradiction could be

the stronger cloud contamination of MODIS data when compared to the more

frequent Meteosat observations.

Another promising study on the potential of ATI for soil moisture derivation was

conducted by Minacapilli et al. (2012). In laboratory experiments the authors could

delineate surface soil moisture based on ATI with an acceptable accuracy and found

good agreement between TI- and ATI-based approaches. Scheidt et al. (2010) found

ATI inferred from ASTER (Advanced Spaceborne Thermal Emission and Reflec-

tion) useful for estimating the soil moisture and aeolian erosion potential of dune

fields. Notarnicola et al. (2012) derived soil moisture for three test sites in Europe

from daily MODIS data using an ATI approach. Comparisons with in-situ

measurements showed generally good agreement, but the authors mention consid-

erable problems in mountainous regions and in situations of high cloud coverage.

The synergistic use of MODIS and Meteosat-SEVIRI data is suggested as a

promising way to reduce cloud-related problems.

16.3.4 Approaches Involving High Resolution TIR Data

Several other approaches based on relatively high resolution data, e.g., Landsat

multispectral and thermal imagery, exist (Shih and Jordan 1993). However, since

we consider these approaches unsuitable because of insufficient spatial or temporal

coverage we do not discuss them further. Nevertheless, it should be kept in mind

that TIR approaches can be pursued with any sensor data offering diurnal coverage.

For locally intended case studies and hydrologists working on specific catchments

such data might be sufficient.

322 C. Kuenzer et al.



16.3.5 Comparative Studies of Microwave
and TIR Based Approaches

The positive results from TIR-based approaches are also supported by the results of

Naeimi et al. (2006). They compared four satellite soil moisture time series data sets

derived with four different approaches from three different sensors. Correlation

coefficients between the TDR probe in-situ data and ERS Scatterometer-derived

soil moisture, two AMSR-E-derived soil moisture products and the Meteosat-

derived TIR based soil moisture index presented by Rosema et al. (2001) range

from 0.64 for the ERS Scatterometer-derived product to 0.83 for an AMSR-E

product developed by Vrije University Amsterdam. The Meteosat product yields

a satisfactory r2 of 0.65, while no correlation was found comparing the in-situ data

with an AMSR-E product derived by NASA-NSIDC (NASA – National Snow and

Ice Data Center). This supports the hypothesis that the soil moisture retrieval

algorithm is as important as the sensor providing the data.

A high potential of TIR-based soil moisture retrieval is also confirmed by the

comparative study of Hain et al. (2011). Here, AMSR-E-derived soil moisture and

soil moisture inferred from the TIR-based ALEXI model were compared with soil

moisture estimates of the Noah Land Surface Model (Noah-LSM) that served as a

reference. The spatial correspondence between ALEXI and Noah-LSM was found

to be better than between AMSR-E and Noah-LSM. With respect to the temporal

variations of soil moisture, the microwave-based data agreed better in sparsely

vegetated areas, while the TIR-based ALEXI model performed better in moderate

to densely vegetated areas.

16.4 Synergy of Microwave and Thermal Data

for Soil Moisture Retrieval

During the last decade, several approaches emerged that synergistically use thermal

and microwave remote sensing data for generating soil moisture products.

Chauhan et al. (2003) combine soil moisture inferred from microwave SSM/I

data with soil moisture information derived from VNIR (Visible and Near-Infrared)

and TIR AVHRR data using the triangle approach. The high resolution (1 km)

information of AVHRR is used to disaggregate the coarser (25 km) microwave-

based soil moisture. Good agreement between high and low resolution soil moisture

was found with RMSE (Root Mean Square Error) around 5 %. A series of studies by

Merlin et al. (2008, 2009, 2010) investigate in detail the potential of disaggregating

coarse resolution microwave-retrieved soil moisture products using higher resolu-

tion VNIR/TIR data. SMOS (Soil Moisture and Ocean Salinity satellite) surface

soil moisture at a spatial resolution of 40 km was simulated from 1 km Polarimetric

L-band Multibeam Radiometer (PLMR) data for a 40 km � 60 km study site. In

their first study (Merlin et al. 2008), the authors derived soil evaporative efficiency
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fromMODIS VNIR/TIR data as a proxy for soil moisture using a triangle approach.

Four downscaling algorithms were tested that consider linear and nonlinear

relationships and different spatial resolutions of soil moisture data sets between

10 m and 40 km. The best RMSE between downscaled and 1 km microwave-

derived soil moisture range between 1.4 and 1.8 % v./v. In a similar setting, Merlin

et al. (2009) used 100 m VNIR/TIR ASTER data in addition to MODIS for

disaggregating the simulated SMOS surface soil moisture information. The optimal

downscaling resolution was found to be four to five times the spatial resolution of

the TIR sensor, i.e., 4 km for MODIS and 500 m for ASTER data. RMSE for the

soil moisture product disaggregated to 500 m was 0.062 vol./vol. with a bias of

�0.045 vol./vol. Again based on MODIS and simulated SMOS data, Merlin et al.

(2010) tested a number of disaggregation methods that differ with regard to the

formulation of fractional vegetation cover, with respect to the model applied to

derive soil evaporative efficiency from MODIS, and with respect to the considered

downscaling relationships. The best results with RMSE of 0.012 vol./vol. could be

derived when including combined Aqua and Terra MODIS data. Li et al. (2010)

tested the value of simultaneously assimilating microwave-based surface soil

moisture and TIR-based root zone soil moisture into a soil water balance model.

Using synthetic data, the analyses approved that thermal-based estimates of root-

zone soil moisture should improve hydrologic modeling studies for applications

that require information on vertically-integrated soil moisture, particularly for clay-

and silt-rich soils. An application of the assimilation approach using tower-based

thermal infrared temperature observations and in-situ surface soil moisture

measurements showed that only slight improvements of root zone soil moisture

estimations could be related to the assimilation of thermal data (increase of r2 by

0.03). The authors assume that a reason could be the sandy soils of the study site,

which allows for the extrapolation of surface soil moisture observations beyond the

root zone with high confidence by vertical coupling without requiring thermal-

based root zone soil moisture information. Li et al. (2010) note that further studies

including a broader range of study sites are necessary to confirm their results.

Notarnicola et al. (2013) combined ATI-based soil moisture inferred from

MODIS data with the NASA AMSR-E soil moisture product. The incorporation

of microwave data seems promising for regional applications; it could reduce noise

and improve the daily cycle sampling of the frequently cloud affected VNIR/TIR

data. In a validation study of the AMSR-E soil moisture product with in-situ

measurements, Choi and Hur (2012) disaggregated the microwave-based soil

moisture using soil moisture derived from 1 km MODIS data using a triangle

approach. This workflow allowed for reducing the spatial mismatch between

microwave-based data and in-situ measurements. The disaggregated soil moisture

showed clearly improved spatial and temporal patterns and better error statistics

when compared to the original AMSR-E data. Choi and Hur (2012) see high

potential of the disaggregation approach for improving the spatial distribution of

the AMSR-E product and similar future soil moisture data sets.
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16.5 Conclusions and Outlook

Soil moisture retrieval approaches based on thermal infrared remote sensing have

been developed and refined in numerous studies during the last decades. However,

there are some general shortcomings of TIR-based soil moisture retrieval. Firstly,

surface information cannot be inferred during cloud cover conditions, an option,

which is unique to microwave frequencies below 10 GHz. Secondly, soil moisture

can only be retrieved indirectly by analyzing its effect on surface temperature and

other surface variables. Furthermore, some authors (Jackson et al. 1997; Mira et al.

2010) discuss that TIR based soil moisture retrieval works for rather dry conditions

only. This is due to the fact that land surface temperature (LST) is controlled by

evaporation as long as the soil is relatively wet. Only as it dries is it controlled by

thermal inertia. In addition, the importance of the inertia effect decreases as

vegetation cover increases because of radiation shielding effects and increased

evapotranspiration from leaves. However, other authors (e.g., Hain and Mecikalski

2009; Hain et al. 2011) emphasize the advantage of TIR-based approaches to

estimate root zone soil moisture over vegetated areas by detecting vegetation stress.

As a last point, the effect of wind on the surface temperature should be men-

tioned. While, in principle, the physical mechanisms are well understood, in

practice it is difficult to account for wind due to the lack of wind observations.

Nevertheless, advantages of thermal data for the retrieval of soil moisture are at

hand. Diurnal thermal data is available on a daily basis fromMeteosat at 5 km, from

Meteosat Second Generation’s (MSG) Spinning Enhanced Visible and Infrared

Imager (SEVIRI) instrument at 3 km, from NOAA-AVHRR at 1.1 km and from

MODIS at 1 km, all nadir resolution. Soil moisture products derived, for example,

via diurnal thermal inertia approaches could thus convince with much higher spatial

detail than for example, the daily available 25 km ASCAT products. The thermal

approach can be especially beneficial in areas of low cloud cover. Weekly products

interpolated for cloud gaps could deliver additional data for mid-latitude regions.

The LST of a pixel is mainly dependent on the object’s albedo, its thermal inertia

and outer conditions such as relief and wind. The roughness component, which

influences microwave derived products, is negligible in the 8–14 μm part of the

spectrum. Provided that the albedo component can be corrected through visible

bands as incorporated in the ATI approach, in even terrain the thermal signal is then

mainly governed by the material’s composition itself. For natural environments the

LST is then mainly a function of material (surface) moisture.

Besides technical and scientific arguments it is also important that users – who

are generally not remote sensing experts – comprehend the information content of a

product. In this respect, a disadvantage of microwave technologies is that a good

physical understanding is in general necessary to understand the benefits and

shortcomings of microwave products. On the other hand, thermal imagery is

more widely accepted, since temperature images can be interpreted more easily.

Therefore, a soil moisture product derived from a thermal data set might be more

readily accepted by the geoscience community. Also, data from NOAA-AVHRR,
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METEOSAT, MSG or MODIS is more widely employed and users might be less

skeptical about products derived therefrom.

From a user perspective, there are strong arguments for working towards an

operational synergistic product that integrates the complementary advantages of

thermal and microwave data (Table 16.1). The most important aspect is the

capability of such a synergistic product to bridge and connect the two scales

existing in soil moisture remote sensing – the local scale dominated by vegetation,

topography and soil influences, and the global scale, where atmospheric forcing

causes large scale soil moisture patterns (Entin et al. 2000). This connection widens

the user group from globally or country-wide operating users to users interested in

the regional scale. Especially in highly complex terrain, TIR data has an advantage

over actively sensed scatterometer data, which are strongly influenced in their

backscattering signal by difficult terrain (Parajka et al. 2006).

Further refinements can be expected for the modeling of the infiltration process

and thus the derivation of profile soil moisture content. Here accuracy is thought to

improve when integrating thermal data, since moisture and temperature diffusion in

the profile are related (Entekhabi et al. 1994). Thus, research is needed to fuse

profile soil moisture estimation approaches as presented from the microwave and

the thermal domain.

In brief, the benefits of a synergistic, operational soil moisture product based on

TIR and microwave data might be as follows:

• Higher spatial and temporal resolution, increase in detail

• Bridging the gap between the local and global scale

• Offering cross validation and comparison options for time series and neighbour

disciplines

• Modelling of θ and Ts over the soil profile can be improved

• Acceptance by (new) user community expected

Hence, we propose to further investigate the possibilities of merging radar-based

and thermal products. Especially ATI based products seem very appealing with

respect to their simplicity.

Table 16.1 Advantages and disadvantages of microwave and thermal infrared remote sensing

data for the retrieval of soil moisture

Microwave

data

Thermal infrared

data

Spatial resolution – +

Temporal resolution + +

Perturbance by clouds No Yes

Perturbance by relief Strong Weaker

Easy to understand ! user acceptance – +

Retrieval for wet conditions + –

Retrieval for dry conditions + +

Retrieval of root zone soil moisture under dense vegetation – +
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Chapter 17

Application of the Apparent Thermal Inertia

Concept for Soil Moisture Estimation

in Agricultural Areas

Claudia Notarnicola, Katarzyna Ewa Lewińska, Marouane Temimi,

and Marc Zebisch

Abstract The objective of this study is to infer information on Soil Moisture

Content (SMC) in agricultural areas using daily gradient of brightness temperature

and albedo from MODIS AQUA, based on the so-called apparent thermal inertia

(ATI) approach. The developed algorithm has been validated over two different test

sites in Italy, Emilia Romagna and South Tyrol regions, and one test site in France,

the Pyrenees region, where ground truth measurements were available. For the

Emilia Romagna and the Pyrenees test sites, the obtained ATI values were well

correlated with SMC values. For the South Tyrol test site, due to large heterogene-

ity in the mountain landscape, the correlation between ATI and SMC was relatively

weak. Cloud coverage which reduces the number of available observations and the

vegetation cover which decreases the sensitivity of ATI to SMC were the main

limitations in all analyzed test sites. This study showed that a combination of data

with a frequent revisit time and polar orbiting sensors can alleviate the impact of cloud

coverage on the retrieval. In fact, a comparison between ATI derived from MSG

(Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared

Imager) and MODIS indicated a good correlation between the two estimates thus

demonstrating the potential of a possible synergy between the two sensors.

17.1 Theoretical Background

Information on the spatial and temporal variability of soil moisture is of great

importance in hydrological applications, such as like flood prediction in case of

extreme rainfall events, watershed management during dry periods, irrigation
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scheduling, precision farming, and earth sciences, like climate change analysis and

meteorology.

Techniques and methods to retrieve soil moisture have been largely based on the

use of passive and active microwave instruments because of their sensitivity to

liquid water in the upper few centimeters of the soil. Active microwave (MW)

sensors, such as SAR (Synthetic Aperture Radar), have demonstrated capability to

detect soil moisture under a variety of topographic and vegetation conditions from

watershed to field scale (Moran et al. 2000). Another main characteristic of the

microwave sensors is the independence from meteorological conditions. SAR as an

active microwave sensor can provide information on a small scale and at remark-

ably high spatial resolution (from 100 m to less than 1 m). The revisiting time of

SAR sensors can reach 10 days (e.g. TerraSAR-X and RADARSAT2 using their

capability to steer the antenna and point to the same area with different viewing

angles). However, for some daily operational applications, this revisiting time

cannot be adequate. On the other hand, active microwave sensors like ASCAT

(Advanced Scatterometer) onboard METOP (Meteorological Operational Satel-

lite), and the ERS (European Remote-Sensing Satellite) Scatterometer or passive

microwave sensors like AMSR-E (Advanced Microwave Scanning Radiometer –

Earth Observing System) can provide daily and reliable information on soil mois-

ture. However, their spatial resolution is still relatively coarse ranging from 10 to

25 km (Wagner et al. 1999; Njoku et al. 2003).

As an alternative, the exploitation of optical and infrared sensors such as

METEOSAT (Meteorological satellite) and AVHRR (Advanced Very High Reso-

lution Radiometer) (Xue and Cracknell 1995) which were mainly designed for

atmospheric operational monitoring to infer land surface parameters has increased

in recent years. Despite their reduced sensitivity to the SMC when compared to

microwave instruments, optical and infrared sensors offer the potential of providing

daily information on the soil moisture status. Their main limitation, however, is

the cloud presence which reduces notably the number of images to be used. One

of the methods proposed for detecting soil moisture with infrared data is based on

the thermal inertia (TI) concept. As it was initially proposed by Price (1977), the

TI-based concept exploits information on thermal conductivity, bulk density and

specific heat capacity of the target. However, the application of this method is not

straightforward as the knowledge of the physical properties of the target is required.

So, the apparent thermal inertia (ATI) was proposed to make the determination of

TI easier using the diurnal gradient of surface thermal responses (physical temper-

ature) and thus can be derived directly from multi-spectral remotely sensed imagery

(Xue and Cracknell 1995). The relationship between SMC and ATI has been

investigated in numerous previous studies for both bare soil and vegetated areas.

Xue and Cracknell (1995) applied the ATI approach to AVHRR data to determine

land surface thermal inertia. Cai et al. (2007) used MODIS (Moderate Resolution

Imaging Spectroradiometer) images over the northern Chinese Plain and obtained

a mean difference between measured and estimated soil moisture values of 4.3 %

over bare and sparsely vegetated fields. To infer reliable SMC estimates derived

from ATI, the temperature difference should be larger than 10�C.
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Verstaeten et al. (2006) applied this method to METEOSAT (Meteorological

Satellite) data to monitor soil moisture in forested areas. Due to the negative effect

of vegetation particularly dense forest on soil moisture retrieval, the evaluation of

the derived SMC against EUROFLUX data led to a RMSE (root mean square error)

ranging from 0.01 to 0.08 m3/m3. The main limitation of geostationary satellites,

such as METEOSAT, lies in their coarse spatial resolution (around 3–4 km at mid

latitudinal areas such as Italy and France). For this reason, focus has been placed

more on the exploitation of polar orbiting sensors such as MODIS and AVHRR

which provide thermal infrared data at 1 km resolution (Minacapilli et al. 2009;

Scheidt et al. 2010; Van doninck et al. 2011). Schiedt et al. (2010) applied the ATI

approach to ASTER (Advanced Spaceborne Thermal Emission and Reflection

Radiometer) and MODIS images in order to determine soil moisture values and

to provide a predictive tool for wind erosion in arid environments. Van Doninck

et al. (2011) studied the use of MODIS day and night acquisitions to determine the

full temperature cycle to be used later in the ATI calculation.

The main limitation of the ATI-based approach is certainly cloud coverage

which can reduce the number of useful acquisitions up to 50 % (Notarnicola et al.

2012). The use of multiple sensors can mitigate this limitation. Possible data fusion

approaches can include different optical sensors like MODIS and SEVIRI which

was adopted for meteorological studies of cloud properties (Deneke et al. 2007) and

land surface temperature comparison (Atitar et al. 2008; Zakšek and Schroedter-

Homscheidt 2009). Merging data from MODIS and SEVIRI for ATI determination

is possible because of their similar spectral bands (for the albedo and brightness

temperature calculation). In addition, the temporal frequency of SEVIRI (images

every 15 min) can be highly useful to solve the problem of cloud coverage.

This chapter has two main objectives:

• Testing the applicability of MODIS derived ATI for SMC retrieval in three

different locations (two flat agricultural areas and one mountain locations

covering diverse ecosystems from wild vegetation to lowlands under mainly

agricultural land use). In all three cases time series of around 1 year of data were

exploited in order to provide the confidence level of accuracy.

• Testing a possible merge of data from optical sunsynchronous and geostationary

sensors to overcome the problem of cloud obstruction. The consistency of ATI

values from MODIS and SEVIRI was analyzed to ensure that both products can

be used in synergistic way.

17.2 Test Site Description

The selection of the test sites and the timeframe of the study were mainly motivated

by the availability of long time series of SMC ground measurements. Another

crucial factor was related to availability of daily MODIS images due to cloud

coverage and their derived products that are used to determine ATI. As a result

three test sites were selected:

• Emilia Romagna region test site located at around 44�390N-11�370E with an

acquisition period of SMC ground measurements from June 2008 to June 2009;
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• South Tyrol region test site located at around 46�370N-11�240E with an acqui-

sition period of SMC ground measurements from January to December 2010;

• Pyrenees region (belonging partly to the Midi-Pyrénées and partly to the

Languedoc-Roussillon regions in France) test site located at around 44�440N-
1�540E with an acquisition period of SMC ground measurements from January to

December 2007.

The Emilia Romagna test site is located within the flatlands of the Italian Po

Valley, which is mostly covered by farmlands. Vegetation is therefore a mixture of

crops, vineyards, orchards, rice fields, and meadows. Five measurement spots, one

pre-existent located in an intensive meteorological base of San Pietro Capofiume,

and four newly created stations equipped with soil moisture ground sensors were

used in the study. Observations are recorded on an hourly basis by a Time-Domain

Reflectometer (TDR) which measures SMC and temperature profiles at eight

unevenly spaced levels below the ground between 10 and 100 cm. In this study,

10 cm depth measurements were considered.

The South Tyrol (Northern Italy) test site is located in a completely different

environment dominated by mountainous landscape. The study area chosen for the

experimental analysis is the Mazia Valley which is a small side valley in the north-

western part of South Tyrol region. It covers an area of around 100 km2 ranging

from 920 m a.s.l. (Sluderno) to 3,738 m a.s.l. (Palla Bianca). Despite the relatively

small dimension, the Mazia Valley is representative of geomorphologic and topo-

graphic conditions in Alpine regions. The area is constantly monitored by 16 mete-

orological stations distributed along the valley in specific locations which were

selected according to elevation, slope, aspect, soil type, and land cover conditions.

These stations measure SMC at 10 and 20 cm and other meteorological variables

such as air temperature and humidity, precipitation, wind speed and direction, and

solar radiation. Excluding forests, the most diffuse land cover/use types are

meadow and pasture which present quite heterogeneous characteristics in term of

vegetation, spatial distribution, and human usage.

The third test site that is part of SMOSMANIA (Soil Moisture Observing System –

Meteorological Automatic Network Integrated Application) (Calvet et al. 2007;

Albergel et al. 2008) activities is dedicated to the validation of Soil Moisture and

Ocean Salinity (SMOS) products. The ground measurement stations are located in

the Pyrenees region (France) in relatively flat areas. The vegetation cover at those

sites consists of natural fallow cut once or twice a year. Four soil moisture

probes, ThetaProbe ML2X of Delta-T Devices, were horizontally installed per

station at depths of 5, 10, 20 and 30 cm (Albergel et al. 2008). In this study 5 cm

depth measurements were considered. These soil moisture data have been

retrieved from the “International Soil Moisture Network” (Dorigo et al. 2010).

In all test sites, in situ observations of SMCwere carried out at 1 h interval. Daily

values are an arithmetic average of the observation collected during the entire day.
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17.3 Satellite Data Sets

As MODIS images, MODIS AQUA level 1B MYD02 at-sensor reflectances and

MODIS AQUA level 2 MYD09 at-surface reflectances and the MYD35 cloud

cover product were obtained from the LAADS (Level 1 Atmosphere Archive and

Distribution System) (URL1) and National Snow and Ice Data Center (URL2) web

sites. MODIS AQUA images were selected instead of MODIS TERRA due to

the acquisition time (early afternoon and soon after midnight) over the three test

sites. The overpass time of MODIS AQUA, around 1:30 AM/PM grants that

temperatures observation is occurring close to the daily minima and maxima.

Acquisitions from AQUA lead therefore to a better estimate of the temperature

diurnal gradient which is considered a key factor for the determination of the

apparent thermal inertia. This aspect is important in order to capture the whole

diurnal cycle of temperature. This issue is addressed in this chapter where daily

maxima and minima temperature are compared to satellite acquisition time.

17.4 Methodology: Theory and Practical Implementation

17.4.1 Theoretical Description of Thermal Inertia

Thermal inertia (TI) is a physical parameter that indicates the capability of a

material to conduct or to store heat and is an indicator of the material resistance

to changes in temperature. In other words, it expresses bodies’ capability to store

heat during the day and re-irradiate it during the night and is defined as:

TI ¼
ffiffiffiffiffiffiffiffi

ρKc
p

Jm�2K�1s�1=2
� �

(17.1)

where ρ is the material density (kg m�3), K is the thermal conductivity

(W m�1 K�1) and c the specific heat capacity (J kg�1 K�1). Water bodies have a

higher TI than dry soils and rocks and then exhibit a lower diurnal temperature

fluctuation. When soil water content increases, TI increases proportionally, thereby

reducing the diurnal temperature fluctuation.

A theoretical expression for the thermal inertia as a function of soil moisture was

proposed by Ma and Xue (1990) and written as:

TI ¼ 2:1ds 1:2�0:02 ds=dð Þw½ �e �0:007 wds=d�20ð Þ2½ �� �

þ ds 0:8þ0:02 ds=dð Þw½ �
n o

�

0:2w=dÞds2=0:001
ffiffiffiffiffiffiffiffi

100
p� �

ð17:2Þ
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where ds is the soil density, d is the water density and w is the percentage of soil

moisture. With the knowledge of these parameters, for example from ground

measurements, an estimate of TI can be derived. Considering this expression, a

unique relationship between soil moisture and TI values is defined. In this work, the

TI values as described in Eq. (17.2) are compared to corresponding ATI values

estimated from remotely sensed data in order to verify the consistency between the

two variables and detect the variability under different vegetation conditions.

17.4.2 Proposed Methodology for ATI

As mentioned in the introduction, ATI is considered as a surrogate (apparent) value

for the actual thermal inertia and is obtained from spectral measurements of the

surface albedo A and the diurnal temperature range ΔT with the following simple

formulation:

ATI ¼ ð1� AÞ
ΔT

(17.3)

The proposed method for ATI calculation which is based on MODIS AQUA

images is adapted from the one proposed by Cai et al. (2007). In order to calculate

the ATI maps, from the MODIS images (MYD02, MYD09, and MYD35 products),

the processing steps are:

• First step: Data re-projection. In this first phase, the images are reprojected to the

same georeference system by using ENVI add-on re-projection module MODIS

toolkit. MODIS AQUA 1B, MYD02, data sets are in swath geometry and then

are re-projected to UTM WGS 84. MODIS AQUA 2B MYD09 images are in

ISIN projection and are also transformed into UTMWGS 84 in order to have all

the images in the same georeference system.

• Second step: Data calibration and calculation of physical variables. The MYD02

images band 31 (11 μm), day and night acquisitions are transformed from DN to

radiance and then to brightness temperature (BT) values by using the inverse

Planck law. Being level-2 data, the MYD09 images are already set in at-surface

reflectances as these products also include atmospheric corrections of reflectance

and thermal data. The albedo (A) is calculated through the expression proposed

by Liang (2000) by using the atmospherically corrected resampled to 1 km

images of bands 1, 2, 3, 4, 5, and 7 available in MYD09 product. In the last

step the BT and albedo bands are stacked together.

• Third step: Cloud screen. A cloud mask is applied to the image to reduce the

influence of cloud cover. The MYD35 products are considered in this phase.

• Fourth step: ATI calculation from BT day and night and Albedo bands by using

Eq. (17.3).
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As auxiliary information, land-use and MODIS derived NDVI maps were used

for the masking of agricultural areas and for the distinction of areas with different

levels of vegetation densities.

17.5 Comparison of ATI and SMC Ground Measurements

Over the Selected Test Sites

17.5.1 Emilia Romagna Test Site

In the Emilia Romagna test site, the ATI values derived from 57 cloud-free MODIS

images acquired from June 2008 to June 2009 were compared with corresponding

SMC measurements. This temporal analysis was performed in order to understand

the ATI behavior under different SMC, vegetation and meteorological conditions

throughout the seasons.

Two further processing steps were considered to reduce the noise observed in the

ATI time series. Based on the experience and values found in the literature

(Tramutoli et al. 2001; Cai et al. 2007), the ATI values outside the range

0–0.15 K�1 were considered as invalid values. These outliers may be caused by

persistent clouds which were not included in the cloud mask. A moving window

averaging filter (MWA) was applied to further reduce the noise present in the data.

In Fig. 17.1, ATI values with and without the MWA filter are compared with

SMC in situ measurements. The ATI values exhibit two clusters: one for low values

of NDVI (below 0.4) and another for higher values of NDVI (higher than 0.4). From

this graph, we can deduce that the presence of vegetation reduces ATI dynamics

mainly due to the different thermal properties of vegetation. ATI variability is the

highest in bare or sparsely vegetated soils (Cai et al. 2007).

Onemain difficulty with this kind of comparisons is that soil moisture observations

are local point measurements while ATI values are estimated on a pixel basis. In this

case, the spatial average is not representative of the point observations because of

the mismatch between observation scales. For this reason the median value has been

assumed to be a reasonable estimator (Tramutoli et al. 2001).

The determination coefficients which were determined to assess the agreement

between SMC values and ATI values, when the MWA filter is not applied to the

data, are indicated in Table 17.1. All the determination coefficients are significant

with 95 % confidence level. In this case, the application of the filter does not seem

to introduce any significant improvement.

ATI values were also compared to TI values determined using Eq. (17.2). In the

formulation of TI, the SMC data derived from ground measurements were consid-

ered as input, the same used in the comparison with ATI values in Fig. 17.2. The

used soil density values which vary between 2.5 and 3 g/cm3 are in agreement with

values recommended in the literature (Cai et al. 2007; Scheidt et al. 2010). The

determination coefficients between ATI (filtered) and TI values were R2 ¼ 0.30
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and 0.77 for vegetated areas and for bare soils, respectively. The vegetation effect

reduces the sensitivity of ATI to soil moisture which is similar to the effect

determined by lower values of soil density. For this reason two exponential trends

of ATI with soil moisture were introduced and compared with the exponential trend

of TI values.

To qualitatively evaluate the spatial distribution of soil moisture values derived

using the ATI-based approach, examples of ATI maps and the corresponding soil

moisture classes illustrated in Fig. 17.3 were compared. Based on ATI values, only

four main classes of soil moisture were identified:

• low SMC values for ATI lower than 0.05 K�1;

• medium SMC values for 0.05 K�1 < ATI < 0.07 K�1

• medium-high SMC values for 0.07 K�1 < ATI < 0.085 K�1

• high SMC values for ATI higher than 0.085 K�1.

The spatial distribution of soil moisture inferred from ATI values seems to be

reasonable and in line with land surface conditions and topographic features.

Fig. 17.1 Comparison of the temporal trend among SMC (cm3/cm3), ATI originally calculated

and ATI filtered (MWA) for the Emilia Romagna test site. H stands for High NDVI values (>0.4)

and L stand for Low NDVI values (<0.4)

Table 17.1 Comparison between ATI and measured soil moisture values

(SMC) over 1 year period (57 observations/days) for Emilia Romagna test site

No filter MWA filter

NDVI < 0.4 0.58 0.59

NDVI > 0.4 0.45 0.45

The values represent the determination coefficients between ATI values and

SMC with and without the filter applications
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Figure 17.3 shows soil moisture classes obtained for the area of North Italy (Emilia

Romagna test site is situated in the central part of the area). Higher soil moisture

values are obtained in the northern and the southern parts (Alps and Apennines) of

the image, close to the mountainous areas while the lowest are found in the Po

valley that in summer season can experience also long dry periods.

Fig. 17.2 Comparison between TI and ATI filtered (MWA) for the Emilia Romagna test site. H
stands for High NDVI values (>0.4) and L stand for Low NDVI values (<0.4)

Fig. 17.3 SMC derived classes for the Emilia Romagna test site on 3rd March 2008. The white
rectangle indicates the locations of ground measurements stations
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17.5.2 Pyrenees Test Site

In the Pyrenees test site, ATI values were derived and compared to SMC in situ

measurements for 87 cloud free days in 2007. In Fig. 17.4, the comparison between

ATI and SMC values for the French test site is shown and in Table 17.2 the

determination coefficients for the filtered and non-filtered data are reported. Also,

in this case, the obtained values were separated into two main classes according to

their NDVI value. The two obtained clusters were similar to those found using

values from the Emilia Romagna test site.

Eliminating the outliers through the application of the MWA has improved the

determination coefficients only in the case of bare or sparsely vegetated soils

(NDVI < 0.4). For NDVI > 0.4 no relevant change is found. All the determination

coefficients are significant with 95 % confidence level. In case of NDVI > 0.4 the

confidence level was 90 %. The comparison of ATI to TI values (Fig. 17.5) as

calculated from expression (17.3) lead to determination coefficients of R2 ¼ 0.42

for vegetated areas and 0.83 for bare soils and show a pattern similar to that s found

in the Emilia Romagna test site.

Fig. 17.4 Comparison of the temporal trend among SMC (cm3/cm3), ATI originally calculated

and ATI filtered (MWA) over the Pyrenees test site. H stands for High NDVI values (>0.4) and L
stand for Low NDVI values (<0.4)

Table 17.2 Temporal comparison between ATI and measured soil moisture

values (SMC) over 1 year period (87 days) for Pyrenees test site

No filter MWA filter

NDVI < 0.4 0.61 0.68

NDVI > 0.4 0.23 0.24

The values represent the determination coefficients between ATI values and

SMC in the different cases considered
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17.5.3 South Tyrol Test Site

For the South Tyrol test site, ATI values derived for 116 days of the year 2010 were

compared with SMC ground measurements. Among the selected test sites, South

Tyrol can be considered as a particular case. Results did not show strong relation-

ship between the two considered variables. SMC variability was not in agreement

with MODIS derived ATI values which show a significant amount of noise. The

noise in ATI values is persistent and can be observed at different NDVI intervals

and vegetation densities. The weak agreement between ATI values and SMC can be

attributed to several factors. First, the coarse resolution of MODIS-based ATI

estimates, 1 km, is not appropriate for an accurate monitoring of soil moisture,

particularly in complex mountainous areas such as South Tyrol. It is difficult to

capture within one pixel homogeneous areas with the same land cover, exposition

and elevation parameters. Since the change in any of these parameters should affect

ATI values, then it is impossible to link ATI values on the pixel basis to point

measurements. Second, dry climate conditions in South Tyrol and the scarcity of

precipitation lead to – especially in agricultural areas – frequent irrigation practices.

Obviously, this additional volume of water, artificially introduced, strongly affected

the ATI values and their agreement with in situ observation of SMC. Moreover, the

amount of ground truth data used for the validation is limited considering the

complexity of the study site. Meteorological stations, used for SMC measurements,

are located mainly in the valleys’ floor, leaving higher placed areas with an

information gap.

Fig. 17.5 Comparison between TI and ATI filtered (MWA) for the Pyrenees test site. H stands for

High NDVI values (>0.4) and L stand for Low NDVI values (<0.4)
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17.6 Analysis of the Temperature Cycle and Its

Relationship with Satellite Acquisition Time

The brightness temperature measurements should be acquired when the air

temperature reaches its local maxima and minima in order to estimate the proper

SMC values. However, the overpass time of MODIS/AQUA i.e. 1:30 AM/PM, may

not coincide with the diurnal extremes of surface temperature.

In order to understand this problem and shedmore light on ATI monitoring, AQUA

overpass time over South Tyrol was compared to time of the minimum and maximum

temperature recorded at the selectedmeteorological station located in theMaziaValley.

The analysis was done using daily ground measurements data recorded in 2010 and

MODIS acquisition time for day and night brightness temperature recorded for all

available 116 days. Results presented in Fig. 17.6 showed a weak agreement between

MODIS/AQUA overpass time and actual time of diurnal extreme temperatures occur-

rence. Satellite overpass takes place usually around 1:30 a.m. (descending overpass) for

night, and 1:30 p.m. (ascending overpass) for day acquisition. Reported temperature

measurements are not in phase with extreme diurnal temperatures. The lowest daily

temperatures were recorded usually during the early morning (from 5 to 7 a.m.), while

the highest temperatures were observed in early afternoon (from 1 until 4 p.m.).

A similar investigation was done for the Emilia Romagna test site. Also, in this

case, obtained results confirmed discrepancies between AQUA overpass time and

the occurrence of the minimum temperature. For the majority of days diurnal

minimum temperature was recorded in the early morning. This pattern is obviously

a result of natural heat radiation processes, connected directly with daily sun cycle.

The proven lack of synchronicity between recorded MODIS brightness temperature

images, and real minimum andmaximum temperature might result in the inaccuracy

of ATI measurements. In order to take into account this inaccuracy, Van Doninck

et al. (2011) suggested modeling extreme diurnal temperatures using sinusoidal

approximation fitted to available MODIS temperature measurements.

Fig. 17.6 Comparison between timing (local time) of day and night MODIS/Aqua overpasses

with actual time of minimum and maximum temperature occurrence during the day (On the bases

on meteorological measurements acquired for all 365 days of the year 2010, and 116 pairs of day

and night brightness temperature satellite images)
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17.7 Synergy with MSG-SEVIRI

Although MODIS Aqua satellite images belong to the most suitable visible (VIS)

and TIR data for the ATI monitoring at the moment, they are very vulnerable to

cloud cover and atmospheric contamination, which obviously limits the number of

potential observations.

One of the considered solutions to overcome this limitation and thus increase the

number of available ATI observations is the synergy between MODIS images (or

any other moderate resolution satellite data suitable for ATI calculation) and data

acquired with higher temporal frequency. Currently, the only possible options are

sensors on board of geostationary, meteorological satellites such as METEOSAT,

NOAA or Kalpana-1. Although the resolution of images from these radiometers is

rather coarse (from one up to few kilometers) data are registered with a sub-hour

frequency. For the area of Europe and Africa SEVIRI (onboard on MSG –

METEOSAT Second Generation) data provide probably the best opportunity for

synergy with MODIS images. SEVIRI acquires data in 12 bands (4 VIS/NIR and

8 IR) at 3 km of resolution. For ATI monitoring the availability of VIS (0.3–0.4 μm)

and IR bands (10.8 and 12.0 μm) are especially crucial. A SEVIRI repetition time of

15 min considerably increases chances for cloud free observations for the area

corresponding to the test site.

The study was carried out for a lowland area of around 4,230 km2 located in

Emilia Romagna (Italy) using pairs of MODIS-SEVIRI data registered during

seven chosen days of 2009. Data were selected in order to limit the time difference

between acquisition of corresponding MODIS and SEVIRI images to not more than

5 min. ATI values were calculated for MODIS images using the approach presented

in the previous section and for SEVIRI images using land surface temperature

(LST) (Freitas et al. 2010) and albedo (LSA SAT 2010). Mutual similarities in

mean and standard deviation of ATI values were reported for all considered pairs of

datasets. Correlation performed between corresponding MODIS and SEVIRI

derived ATI images indicated good accordance between data, especially for images

acquired during clear-sky conditions (Table 17.3).

During the analysis, geometric limitations of SEVIRI scanner for sensing

highlands and mountainous regions were found and confirmed. Moreover, the

importance of cloud detection in both images was highlighted and defined as

essential for accurate data fusion of the two sensors.

Table 17.3 Basic correlation statistics obtained for ATI (K�1) values derived for corresponding

cloud free MODIS-BT and SEVIRI-LST datasets

Date Number of pixels Regression t-value of regression Constant (offset) R2

27 July 364 1.230* 28.157 0.011 0.687*

2 August 423 1.019* 28.193 0.016 0.654*

1 September 423 1.798* 43.907 �0.008 0.821*

13 October 425 1.478* 37.225 �0.013 0.767*

*Sig ¼ 0.000
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Despite considerable differences in data characteristics, general comparison

between MODIS and SEVIRI for ATI monitoring was found very promising thus

deserving further investigation.

17.8 Conclusions

The Apparent Thermal Inertia (ATI) concept has been tested for soil moisture

content (SMC) evaluation in agricultural areas. ATI estimates derived from

MODIS Aqua images were applied to three test sites. In all three cases ATI values

were compared with SMC values derived from in-situ sensors. This analysis

provides a fair assessment of what can be extracted from thermal images in terms

of soil moisture information. While quantitative values of SMC are far from being

achievable due to the high variability of ATI values and the noise arising from the

interference with vegetation, information on the soil status are still clearly extract-

able with an acceptable level of accuracy. By considering all the diverse sources of

errors which affect the ATI estimates, it was still possible to determine 3–4 levels of

soil moisture which in many applications can still suffice for an effective territory

monitoring on a daily basis. The main drawback of the use of MODIS data remains

the strong effect of vegetation and cloud presence. Vegetation determines a lower

sensitivity of ATI values to soil moisture changes in all the analyzed cases. These

behaviors are evident when comparing both with SMC values and TI theoretical

values.

A separate case can be considered at the South Tyrol test site. In this case,

vegetation, geomorphology, landscape and the occurrence of minimum and maxi-

mum temperature not in coincidence with satellite overpasses make the SMC

monitoring through ATI values very difficult.

To reduce the impact of cloud coverage, MODIS capabilities could be

complemented with the use of geostationary satellite data such as SEVIRI, which,

with a temporal resolution of 15 min, can provide good cloud free acquisitions soon

after or just before the MODIS images. In this context, a comparison between

MODIS and SEVIRI ATI products was performed for the Emilia Romagna test site.

The analysis indicates a good agreement and the possibility to identify a clear

calibration relationship between the two sensors.

Some final considerations are needed regarding the ATI products in relationship

to the daily SMC operational products from sensors as ERS-Scatterometer and

METOP (Wagner et al. 1999; Bartalis et al. 2007). These data were already tested

and proved their suitability for many applications. In the last years also ASAR

ENVISAT (Advanced Synthetic Aperture Radar, Environmental Satellite) Global

Monitoring images (Wagner et al. 2008) were used to provide SMC maps at 1 km

resolution. With respect to these SMC products, SMC derived from ATI approach

can be used as a complementary source of information for two main reasons. First,

the resolution of SMC from ERS-Scatterometer and METOP (10–25 km) is not

adequate for local and regional applications. In this case the resolution of 1 km of
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SMC maps from ATI can be exploited to take into account the heterogeneity of the

area. In this case the high resolution active microwave sensors will be the most

suitable to investigate small scale phenomena. However, the time frequency which

can reach up to 10 days with most recent sensors (TERRASAR-X, COSMO-

SkyMed (Constellation of small Satellites for the Mediterranean basin Observa-

tion)) and the upcoming Sentinel 1 cannot be suitable for applications requesting

daily information on SMC. Second, as the ATI is derived from bands available on

most of the optical sensors such as MODIS and AVHRR and on new launched

sensors such as Suomi NPP (Suomi National Polar-orbiting Partnership) the SMC

information can be provide on a more continuous basis filling also the temporal

gaps due to sensor failure as the one which affected ENVISAT in 2012.

Acknowledgements The authors would like to thank Ing. Giacomo Bertoldi from EURAC-

Institute for Alpine Environment for providing SMC data over the South Tyrol region, and

Dr. Francesca Digiuseppe from ARPA-Emilia Romagna for providing SMC data over the Emilia

Romagna region.

References
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Chapter 18

Thermal Remote Sensing of Active

Vegetation Fires and Biomass Burning

Events

Martin J. Wooster, Gareth Roberts, Alistair M.S. Smith, Joshua Johnston,

Patrick Freeborn, Stefania Amici, and Andrew T. Hudak

Abstract Thermal remote sensing is widely used in the detection, study, and

management of biomass burning occurring in open vegetation fires. Such fires

may be planned for land management purposes, may occur as a result of a malicious

or accidental ignition by humans, or may result from lightning or other natural

phenomena. Under suitable conditions, fires may spread rapidly and extensively,

affecting the land cover properties of large areas, and releasing a wide variety of

gases and particulates directly into Earth’s troposphere. On average, around 3.4 %

of the Earth’s terrestrially vegetated area burns annually in this way. Vegetation

fires inevitably involve high temperatures, so thermal remote sensing is well suited

to its identification and study. Here we review the theoretical basis of the key

approaches used to (1) detect actively burning fires; (2) characterize sub-pixel fires;

and (3) estimate fuel consumption and smoke emissions. We describe the types of
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airborne and spaceborne systems that deliver data for use with these active fire

thermal remote sensing methods, and provide some examples of how operational

fire management and fire research have both benefited from the resulting informa-

tion. We commence with a brief review of the significance and magnitude of

biomass burning, both within the ‘whole Earth’ system and in more regional

situations, aiming to highlight why thermal remote sensing has become so impor-

tant to the study and management of open vegetation burning.

18.1 Significance of Global Biomass Burning

Biomass burning is a key process shaping the Earth system, affecting the terrestrial

biosphere and atmosphere through the combustion of vegetation and organic soils,

and transferring the vast bulk of their chemical constituents directly into the

troposphere. Seiler and Crutzen (1980) are often credited with providing amongst

the earliest scientific insights into the large scale significance of biomass burning.

However, in fact in the late nineteenth century von Danckelman (1884) already

drew attention to its magnitude and potential consequence (Brönnimann et al.

2009).

Detailed information on the many ways in which biomass burning impacts

Earth’s land and atmospheric properties are included in reviews such as Jacobson

et al. (2000), Lavorel et al. (2007), Bowman et al.(2009), and Akagi et al. (2011). In

the context of this chapter, it is sufficient that the reader appreciates the huge areas

and very significant mass of vegetation and organic soil globally affected, in order

to comprehend the need for large-scale fire assessment and monitoring via thermal

remote sensing methods.

Amongst the most recent burned area estimates are those of Giglio et al. (2010),

who used datasets derived from (mainly optical) satellite remote sensing to estimate

that between 1997 and 2008 global vegetation fires cumulatively burned 44.5

million km2, equivalent to the combined area of North and South America, or

~40 % of Earth’s total terrestrially vegetated area. Some of this burning is planned

and under human control; other areas are ignited and left to spread largely unhin-

dered by man; still others are ignited accidentally or by natural phenomena (pri-

marily lightning). Much of the 44.5 million km2 burned includes re-burning in the

savannah ecosystems of Africa, South America, and Australia. Here, a combination

of large areas of highly combustible grassy fuels, annually reoccurring ‘fire

seasons’, a ready supply of human ignition sources, and rapid post-fire vegetation

recovery, combine to support mean fire return intervals that can be as short as

1–3 years. Indeed, such burning is in part responsible for maintaining the structure

and function of savannah ecosystems, which in total constitute ~20 % of Earth’s

land surface area (Bond and van Wilgen 1996).

The maps of Giglio et al. (2010) indicate that, on average, ~3.4 % of the Earth’s

terrestrially vegetated area burns annually, with resulting large scale effects on

surface properties and land cover, landscape heterogeneity, and ecology (e.g.

Turner et al. 1994; De Bano et al. 1998; Wallace 2004; Bond and Keeley 2005;
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Pausas and Keeley 2009). Clearly, the importance of a wide-scale disturbance phe-

nomena like biomass burning is highly significant within the Earth system, This

includes impacts from large-scale slash-and-burn practices and severe forest fires,

particularly in disturbed areas, that contribute significantly to tropical deforestation

and forest degradation (Bond et al. 2005; Cochrane 2003; Wooster et al. 2012).

In addition to altering land surface dynamics, vegetation fires greatly affect

Earth’s atmospheric composition. They release an amount of carbon to the atmo-

sphere equivalent to perhaps around one quarter, possibly more, of global annual

industrial emissions (van der Werf et al. 2010); mostly in the form of CO2.

Furthermore, van der Werf et al. (2009) demonstrate that deforestation and tropical

peatland fire emissions (which unlike savannah emissions are not rapidly

re-sequestered) equate to the equivalent of perhaps 15 � 5 % of industrial CO2

emissions. In addition to CO2, biomass burning releases a vast range of other trace

gas and particulate species involved in important atmospheric processes (e.g.

Andreae and Merlet 2001; Crutzen and Andreae 1990; Kaufman et al. 2002).

Studies such as Page et al. (2002), van der Werf et al. (2004) and Wooster et al.

(2012) indicate that land clearance activities, coupled with periods of extreme ‘fire

weather’ such as El Niño related drought, can result in massive increases in the

number and size of regional vegetation fires, which sometimes have globally detect-

able effects on atmospheric composition through the release of these compounds (e.g.

Simmonds et al. 2005). At the local to regional scale, the potential loss of property and

lives during large fire events, and the impacts onnational firemanagement budgets, can

be considerable (Lynch2004), andfiresmay result inmajor smoke andhaze events that

can greatly impact air quality and human health (Kunii et al. 2002; Naeher et al. 2007).

Since vegetation fires occur over wide areas, are sporadic and rapidly changing

in nature, are international in scope, and often occur in isolated regions, remote

sensing has become a key tool in their identification and study. Thermal remote

sensing is used widely to map fire extents, examine fire regimes, characterize fire

impacts, and estimate and characterize the chemical composition of fire emissions

(e.g. McMillan et al. 2003; Coheur et al. 2009; Wooster et al. 2011). The focus of

this chapter is primarily to explore the background and techniques related to the

thermal remote sensing of the actively burning fires themselves. Hence, we review

the theory to both fire detection and fire characterization from airborne and

spaceborne platforms, and their use in support of both research and operational

applications.

18.2 Thermal Remote Sensing of Vegetation Combustion

Vegetation combustion is a complex process that involves simultaneous coupled

heat and mass transfer, with the chemical reactions and fluid flows made more

complex by the nature and non-uniformity of ‘natural’ fuels (Jenkins et al. 1998).

Vegetation combustion involves significant energy releases, including as radiant

energy, and hence is able to be targeted using thermal remote sensing methods.
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Biomass consists mainly of cellulose, hemi-cellulose, and lignin produced

through the process of photosynthesis, along with water, small amounts of nitrogen,

sulphur, and some inorganic compounds that remain as ash after a fire (Jenkins et al.

1998). The polymeric organic compounds that comprise plant material can be

generally described by the chemical formula C6H9O4 (Byram 1959), and the nature

of the chemical reaction involved in the complete air-based combustion of vegeta-

tion fuel of moisture content M% by dry weight can be represented by:

4C6H9O4 þ 25O2 þ 0:322M H2Oþ 94:0N2½ �
! 24CO2 þ 18H2Oþ 0:322M H2Oþ 94:0N2½ � þ 11:6� 109 J

(18.1)

See Byram (1959) andWard (2001) for a complete description of Eq. (18.1), where

the moisture in the fuel and nitrogen in the air are shown as bracketed quantities since

they do not take part in the combustion reaction. The same equation also describes

decomposition, amuch slower formof oxidation; both combustion and decomposition

are essentially the reverse of photosynthesis. By dry weight, vegetation fuels are

approximately 50 % carbon, 44 % oxygen and 5 % hydrogen (Ward 2001), and

when burned completely approximately half the dry mass is converted to CO2 and

half to water in the manner described in Eq. (18.1). The ‘heat of combustion’ released

by this energetic reaction equates to ~20.1 MJ per kilogram of dry fuel burned, and

varies by less than 10 % between the woody and herbaceous fuel types occurring in

most forests and savannahs (Stocks et al. 1997; Trollope 2002). Some of the released

energy is used as the latent heat of vaporisation for the water contained in the fuel and

formed by the reaction, so the actual ‘heat yield’ (or ‘low heat of combustion’) from

vegetation fires burning under natural conditions is somewhat lowered (Byram 1959;

Pyne 1984). Mean values are often ~18 MJ kg�1 of dry fuel burned (e.g. Cheney and

Sullivan 2008), and depend on factors such as the exact fuel moisture content and

combustion completeness (Byram 1959; Alexander 1982; Dietenberger 2002).

Incomplete combustion results in the production of significant amounts of additional

compounds beyond carbon dioxide and water vapor, including carbon monoxide,

hydrocarbons, and black carbon particles (each of which are some of the major

constituents of ‘smoke’). The proportion of a fire’s heat yield released as radiation

varies with fire characteristics and is still a subject of active research (e.g. Freeborn

et al. 2008). Byram (1959) estimated around 10–20 % of a fire’s energy is radiated

away from the combustion zone in the form of electromagnetic radiation of different

wavelengths, which is then available to be measured by remote sensing devices.

Figure 18.1 shows some example data of a forest fire targeted by an airborne imaging

spectrometer acquisition that collected multispectral visible (VIS), near infrared

(NIR) and shortwave infrared (SWIR) imagery and spectra.

In Fig. 18.1, the majority of the visible (VIS) wavelength radiation measured at

point A in the inset is actually emitted radiation from the burning fuel, and its strong

increase with increasing wavelength can be seen in Fig. 18.1c when compared to

point B. At point B, the measurement of the fires emitted VIS wavelength radiation

is strongly hindered by the overlying smoke. Our eyes ‘see’ only this VIS wave-

length radiation emitted by such burning vegetation; but more of the energy is
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actually emitted at longer infrared (IR) wavelengths. The majority of this emitted

energy is ‘blackbody’ type radiation emitted in accordance with Planck’s radiation

law, and flames have very high emissivity’s at flame depths greater than a few

meters and so are strong IR sources (e.g. Àgueda et al. 2010; Pastor et al. 2002). The

spectra of point A included in Fig. 18.1c demonstrates the characteristic shape of a

Planck curve, though the curve is clearly peaking at an IR wavelength somewhat

beyond the maximum wavelength shown in the plot. As Fig. 18.1b shows, the

smoke also becomes increasingly transparent at such longer (IR) wavelengths, and

the sensors SWIR wavebands easily identify both areas of emitted SWIR radiation

from the burning fuel and the change in reflected solar SWIR radiation resulting

from areas of already burned vegetation, even through the smoke.

Fig. 18.1 Forest fire remote sensing data from the HYPER–SIM.GA airborne spectrometer

imagery described in Amici et al. (2011). (a) True colour composite along with a magnification

better highlighting an area of emitted visible wavelength radiation resulting from flaming combus-

tion. (b) False color composite of the same area derived using shortwave infrared wavebands,

illustrating the ability to penetrate the smoke at these wavelengths and highlight both actively

burning and already burned areas. (c) Spectra of location A (flaming fire; relatively smoke-free) and

B (smoke-covered fire) identified in the magnified inset of (a). (d) The ‘Advanced Potassium Band

Difference (AKBD)’ metric of Amici et al. (2011) which uses NIR spectral measurements inside

and outside of the potassium absorption line region noted in (c) to identify flaming areas. The image

is shown at the same scale and covering the same areas as (a). The location of flaming areas, even

those burning underneath smoke, are clearly discernible using this simple multispectral technique
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Superimposed on the Planckian thermal emission shown in Fig. 18.1c is near

infrared (NIR) line emission from thermally excited trace elements within the

burning vegetation, in this case potassium (K) ~0.76–0.77 μm, and sodium (Na)

at 0.59 μm (Amici et al. 2011). This signature can also be used to identify specific

areas of flaming activity through smoke (Fig. 18.1d), since the production of this

line emission requires the high temperatures specific to flaming rather than smol-

dering combustion. Additional band radiation is also superimposed on the

Planckian thermal signatures, due to the H2O, CO2 and other hot gases produced

during combustion. This occurs within particular absorption and emission spectral

regions, sometimes at wavelengths outside of the main ‘atmospheric window’

regions normally used to image the Earth. See Boulet et al. (2011) for a detailed

discussion of such gaseous thermal emission and absorption features. Some active

fire remote sensing applications make use of these types of line emission and

gaseous band emission features, but most rely on the detection of Planckian thermal

emission signatures, most commonly in the middle IR atmospheric window (MIR;

3–5 μm) where fire IR emissions generally peak and where solar radiation signal is

lower than in the SWIR (Fig. 18.2). Observations in the longwave IR atmospheric

window (LWIR; 8–14 μm) are also commonly used to enhance fire detection

Fig. 18.2 Modeled thermal emission from a 1000, 600, and 300 K object, representing a flame, a

smoldering fire, and the ambient background respectively. Calculations were made using Planck’s

Law assuming blackbody behavior. The shift of the peak wavelength of thermal emission as the

emitted temperature increases is described by Wien’s Displacement Law. Note the logarithmic

scale of the y-axis, and so the large increase in thermally emitted spectral radiance at all

wavelengths as temperature increases from ambient to flaming conditions. Also not that increases

in the middle infrared (MIR) spectral region (3–5 μm atmospheric window) are of a much greater

magnitude than those in the long-wave infrared (LWIR) spectral region (8–14 μm atmospheric

window)
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methods, and can be made through the full depth of Earth’s atmosphere, even

through significant smoke (Fig. 18.3).

Of course, in contrast to the passive solar reflectance observations that are

typically used to detect burn ‘scars’, the thermal radiation emitted by fires must

(by necessity) be measured whilst combustion is actually occurring. Hence, the

technique is often referred to as ‘active fire’ remote sensing. Taking 600 and

1000 K as representative temperatures of smoldering and flaming combustion,

respectively (Kaufman et al. 1998a; Sullivan et al. 2003; Dennison et al. 2006),

Fig. 18.2 indicates that in comparison to the radiant energy emitted from the

ambient temperature background (~300 K), (i) the rate of thermal radiant energy

release from a vegetation fire is much greater, and (ii) the peak thermal radiant

energy release is at much shorter wavelengths. These two physical principles,

which stem directly from Planck’s Law and Wien’s Displacement Law, serve as

the basis for the thermal remote sensing of active fires.

The fact that actively burning fires emit IR so strongly, particularly at MIR

wavelengths as demonstrated in Figs. 18.2 and 18.3, means that their identification,

even from Earth orbit, can be based on relatively simple detection algorithms (see

Sect. 18.3). It also means that (i) the output of such detection algorithms (such as

‘hotspot’ counts and fire location maps) can be rapidly delivered to users, and

(ii) fires that cover only a very small fraction of the pixel area can in theory still be

detected since they can significantly increase the MIR ‘pixel integrated’ signal

(Fig. 18.3; Robinson 1991; Giglio and Justice 2003). Figure 18.4 demonstrates this

Fig. 18.3 Nighttime thermal imagery subset collected by the AVHRR sensor over southern

Borneo on 24th August 1991 (coastline vector in black). Land clearance fires, large scale forest

and peatland degradation and an El Niño related drought conspired at this time to allow large scale

fires to develop across the region. AVHRR collects data in both the (a) MIR [3.6–3.9 μm
waveband] and (b) LWIR atmospheric windows [in this case the 10.3–11.3 μm waveband].

Clearly at the 1.1 km nadir spatial resolution of AVHRR, the fires are not filling pixels, but rather

are highly subpixel events as modeled in Fig. 18.4. The original spectral radiance measures, of the

type simulated in Fig. 18.4, have here been converted to brightness temperature measures via the

inverse Planck function, and a linear contrast stretch applied for display purposes. The fires affect

the MIR pixel integrated brightness temperatures much more than the LWIR brightness

temperatures. The image subset shown in (c), calculated as the difference between the MIR and

LWIR brightness temperatures, therefore highlights fire affected pixels particularly well
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principle further by simulating the spectral signature of a series of different ground

targets observed from Earth orbit using the MODTRAN-5 (MODerate resolution

atmospheric TRANsmission) radiative transfer code, assuming a US 1976 Standard

atmosphere and rural aerosol. Whilst the savannah pixel containing a 0.5 % cover-

age of a 1000 K fire shows a slightly elevated signal in the LWIR (8–14 μm)

compared to the non-fire savannah, it actually shows a lower signal than the 320 K

solar heated bare soil. The fire pixel is, however, very well separated from all the

ambient pixels in the MIR (3–5 μm), where it has a spectral radiance signal ~20�
higher than the non-fire savannah pixel. However, as also illustrated, sun glints can

also generate high spectral radiances in the MIR, and relatively lower spectral

radiances in the LWIR, so can potentially be confused with pixels containing

sub-pixel sized fires. However, sunglint pixels can be discriminated from active

fire pixels using measurements in the VIS-to-NIR spectral region (0.4–1.2 μm),

since highly sub-pixel fires emit insignificantly here (see Fig. 18.4).

The informative, rapid and directly useable capability to detect even very highly

sub-pixel sized areas of burning vegetation has led to the widespread utilisation of

active fire remote sensing over the last few decades, including from spaceborne

platforms and at scales ranging from local and regional (e.g. Figs. 18.1 and 18.3) to

Fig. 18.4 Top-of-atmosphere spectral radiance simulated at four different target pixels (note

logarithmic x and y axes) using the MODTRAN 5 radiative transfer code. Shown are simulations

for a savannah surface at 300 K; the same surface but with a 1000 K fire covering 0.5 % of the

ground field-of-view (FOV), specularly reflected sunglint from a 300 K surface; and solar-heated

(320 K) bare soil. The pixel containing the sub-pixel fire shows a signal highly elevated in the MIR

(3–5 μm) spectral region compared to all other targets, equivalent to a brightness temperature of

around 400 K (See Wooster et al. 2012 for more detail)
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continental and global (e.g. Figs. 18.5 and 18.6). As just one example, the Fire

Information for Resource Management System archives and distributes MODIS

(Moderate Resolution Imaging Spectroradiometer) Active Fire detections and

associated fire maps in near real time to many worldwide users (URL1; Davies

et al. 2009). Furthermore, thermal remote sensing techniques can move beyond fire

Fig. 18.5 Active fire detections made across Africa in 12 months (February 2004 to January 2005)

using data from the geostationary Meteosat SEVIRI instrument. Detections are coloured by day of

detection to define the different fire seasons north and south of the equator. Multiple fires in the

same grid cell are given the date of the last detected fire event. Fire detections were made using the

algorithm of Roberts and Wooster (2008), an adaptation of which is used to generate the near real-

time Meteosat FRP (fire radiative power) Pixel products available from the EUMETSAT Land

Satellite Application Facility (URL2). Inset shows African land cover aggregated into four broad

classes, as derived from the Global Land Cover 2000 dataset (Mayaux et al. 2004) (Figure adapted

from Roberts et al. 2009)
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detection to offer more quantitative descriptions of fire’s radiant energy release

(Kaufman et al. 1998a; Wooster et al. 2003). Equation (18.1) indicates that the

radiant energy released by a fire relates linearly to the amount of material combusted,

and the amount of gas and aerosol emissions (‘smoke’) produced, pointing the way to

the estimation of these quantities via measurement of fire-emitted electromagnetic

radiation (Kaufman et al. 1998a;Wooster et al. 2005; Freeborn et al. 2008; Ichoku and

Kaufman 2005; Kaiser et al. 2012; see Sect. 18.7).

Though very detailed observations of fires can be made through smoke, meteo-

rological cloud cover remains a problem. Fortunately, the ‘fire season’ of most fire-

affected regions generally follows dominant climatic patterns, and times of peak

fire usually coincide with dryer periods with lower cloud cover (Fig. 18.5).

Furthermore, in many ecosystems the majority of the area burned in wildfires,

and thus the majority of the smoke emitted, occurs in the largest few percent of fire

events. Therefore, many thermal remote sensing applications need not aim to detect

every single fire, but can rather focus on the more significant, larger and/or longer-

lived events, which are generally the easiest to detect (Schroeder et al. 2008a).

Figure 18.6 illustrates the global fire situation for a 10 day period based on data

from the polar-orbiting MODIS sensors.

Fig. 18.6 Global active fire map based on the accumulated locations of fires detected by the

MODIS instrument on board the Terra and Aqua satellites. Detections were made over a 10-day

period (16–25 December 2012) using the algorithm of Giglio et al. (2003). Each red/yellow dot
indicates a location where MODIS detected at least one fire during the compositing period. Colour

ranges from red (low fire count) to yellow (high fire count). Fire map created by Jacques

Descloitres. Fire detection algorithm developed by Louis Giglio. Blue Marble background

image created by Reto Stokli. The latest near-real time image maps can be obtained via the

NASA LANCE (Land and Atmosphere Near-real-time Capability for Earth Observing) system

(URL3) and links therein, whilst regularly updated global active fire location data is available from

MODIS via the FIRMS (Fire Information for Resource Management System) (URL1)
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18.3 Methods of Active Fire Detection from Space

18.3.1 Algorithm Basics

Flaming fires emit very significantly in the shortwave infrared (SWIR) atmospheric

window (1.6–2.5 μm; Figs. 18.1 and 18.2). However, as already stated, strong

daytime solar reflections at these wavelengths, and the fact that many more fires

burn by day than by night (Fig. 18.7), has steered the development of active fire

detection towards use of the middle infrared (MIR) atmospheric window (3–5 μm).

Here, levels of solar reflected radiation are lower than in the SWIR, while thermal

energy emission rates from fires are very much higher than from the ambient

temperature background, such that pixels containing even highly sub-pixel active

fires often show up clearly in MIR imagery (Figs. 18.3 and 18.4). As a result, cooler,

smoldering fires that might be almost impossible to detect in the SWIR region can

still be quite clear in the MIR, and flaming fires generally show up extremely well.

Many works have outlined the basis by which such ‘fire pixels’ can be automati-

cally discriminated (e.g. Robinson 1991). Since at MIR wavelengths the spectral

radiance (W m�2 sr�1 μm�1) emitted from flaming vegetation can be up to four

orders of magnitude higher than from the surrounding ambient background

(Fig. 18.2), areas of combustion occupying even a very small fraction of the pixel

area (e.g. 0.1–1.0 %) can result in significant increases in the pixel-integrated signal

(see example in Fig. 18.4). Detection of these types of elevated MIR channel signals

is therefore the basis of most active fire detection algorithms (Robinson 1991), and

a review can be found in Li et al. (2002).

By day, solar-heating of bare ground and/or specularly reflected sunlight can

increase MIR channel signals in non-fire pixels, potentially resulting in false

positives if fire pixel detection is based on thresholding of the MIR channel pixel

signals alone (Zhukov et al. 2006). Therefore, in addition to simple MIR channel

signal thresholding, a series of additional spectral and/or spatial tests are generally

employed to best discriminate ‘true’ fire from false alarms. Rather than identifying

fires based on the pixel-integrated spectral radiances, such as are modeled in

Fig. 18.4, most active fire detection algorithms in fact work on brightness tempera-

ture (BT) measures, which are easily calculated from the spectral radiances using

the inverse Planck function (Wooster et al. 1995). Areas of solar heated vegetation,

bare soil, and rock tend to exhibit quite similar brightness temperatures in the MIR

and LWIR atmospheric windows (i.e. BTMIR ffi BTLWIR), but pixels containing

sub-pixel sized actively burning fires can be discriminated these since the latter

typically show BTMIR � BTLWIR as was demonstrated in Fig. 18.3. Therefore,

thresholds based on the brightness temperature difference measured between the

MIR and LWIR channels is a common feature of active fire remote sensing

algorithms. Although such elevated BT differences can also occur in pixels affected

by sunglint (either from clouds or water bodies), it is possible to exclude such

pixels since they typically show increased signals in the visible wavelength region,

while active fire pixels usually do not (Fig. 18.4). Based on these basic principles,
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multispectral active fire detection algorithms enable the identification of even

highly sub-pixel actively burning fires, while mostly avoiding false alarms (e.g.

Giglio et al. 2003; Zhukov et al. 2006; Roberts and Wooster 2008).

Early active fire detection algorithms were designed for data collected in a

particular geographic region and/or season, often relying on subjectively fixed

detection thresholds (e.g. Flannigan and Vonder Haar 1986). Most were intended

for use with data from polar orbiting satellite instruments such as the Advanced

Very High Resolution Radiometer (AVHRR), which has a spatial resolution of

1.1 km at nadir or lower if the sub-sampled GAC version of the data are used (e.g.

Wooster and Strub 2002). For example, Baum and Trepte (1999) classed AVHRR

pixels as containing actively burning fires if they passed the following four simple

tests:

BTMIR > 314K (18.2)

BTMIR � BTLWIR > 10K (18.3)

BTLWIRðclear skyÞ � BTLWIR < 6K (18.4)

Fig. 18.7 The diurnal fire cycle in northern hemisphere Africa, based on the number of active fire

detections made using data from the geostationary Meteosat SEVIRI imaging radiometer,

examples of which were shown in Fig. 18.5. The fire pixel detection statistics are here shown

binned into fire radiative power (FRP) bins covering 30 MW intervals (shown in various grey
shades). FRP is a measure of the rate of release of thermal radiative energy by all fires burning

within the pixel (see Sect. 18.6 of main text). Numbers of fire pixels decrease as FRP increases,

which is also demonstrated in the frequency-density plots shown later in Fig. 18.14. Fire pixels at

all FRP magnitudes are maximal in the early to late afternoon, which is the peak of the diurnal fire

cycle in most fire affected regions
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BTLWIR < 310K (18.5)

Fixed-threshold approaches such as this can work well for individual scenes or

time periods, but often provide poor performance during multi-regional and/or

multi-seasonal analyses, and are not really appropriate for use in studies where

the sensor used may change over time. In such cases, issues such as spatio-temporal

changes in the ambient background thermal conditions make the use of fixed

thresholds problematic (Giglio et al. 1999). This realization led to the development

of so-called ‘contextual’ active fire detection approaches (Justice et al. 1996; Flasse

and Ceccato 1996; Kaufman et al. 1998a). These approaches generally have two

pathways by which pixels containing actively burning fires can be identified. The

first ‘fixed threshold’ pathway may use a single algorithm stage, and is designed to

detect pixels unambiguously containing large and/or intensely burning fires. The

stage generally consists of thresholding tests akin to those in Eqs. (18.2), (18.3),

(18.4), and (18.5), with fixed thresholds set sufficiently high such that in theory only

pixels certain to contain fires pass the tests. The second ‘contextual’ pathway

typically consists of two or more stages, whereby potential fire pixels (PFPs) are

first identified using a fixed threshold approach based on relatively low thresholds

(thus selecting many non-fire pixels as well as true fires), and then testing each PFP

against the statistical properties of its immediately surrounding ‘ambient back-

ground’ pixels in order to confirm whether or not it is a ‘true’ fire pixel. The entire

algorithm, incorporating the ‘two pathway’ approach, is generally termed a ‘con-

textual active fire detection algorithm’.

Most current methods for identifying actively burning fires include some form of

contextual approach, including the algorithms used to generate the Geostationary

Operational Environmental Satellite (GEOS) Advanced Biomass Burning Algo-

rithm (ABBA) fire products (Prins and Menzel 1992), the MODIS Active Fire and

Thermal Anomaly products (Giglio et al. 2003), the BIRD Hotspot Recognition

Sensor (HSRS) fire products (Zhukov et al. 2006) and the Meteosat SEVIRI fire

products (Roberts and Wooster 2008). Variants of the approach exist in each

algorithm, for example the algorithms developed for use with BIRD HSRS and

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) data first

divide each scene into a set of sub-scene windows, from which obvious non-fire

pixels are masked out. A set of ‘background statistics’ calculated from these

non-fire pixels are then used to test whether the remaining pixels within the window

are likely to contain active fires (Zhukov et al. 2006; Wooster et al. 2012).

Table 18.1 lists the main polar orbiting Earth Observation sensors currently used

for active fire detection, including their basic spectral, spatial, and temporal

specifications, and some suggestions for references where further information can

be obtained. While the Defense Meteorological Satellite Program (DMSP) Opera-

tional Linescan System (OLS) does not have a dedicated MIR or LWIR spectral

band for active fire detection, the low-light visible wavelength imaging capability

of this sensor has long been used for active fire detection (Elvidge et al. 1996).

Apart from the DMSP OLS, and the Terra Advanced Spaceborne Thermal
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Emission and Reflection Radiometer (ASTER) sensor, whose active fire detection

capability is based on analysis of 30 m spatial resolution SWIR data, all other

sensors listed primarily employ MIR and LWIR measurements in the active fire

detection process. Furthermore, in addition to these polar orbiting instruments,

there exists a strong capability to detect fires from geostationary sensors, with

improved temporal resolution compared to polar-orbiting systems. Examples here

include fire products created from the GOES East and West imagers (Prins and

Menzel (1992, 1998, URL4), Xu et al. (2011; URL5) and from Meteosat Second

Generation (MSG) (Roberts and Wooster 2008; URL2). Examples of data from the

latter were shown in Fig. 18.5.

18.3.2 Further Active Fire Detection Algorithm Adaptations

In addition to the multispectral tests discussed above, several additional processing

methods can be used to potentially improve active fire detection accuracy, and/or

increase processing speed. For example, the aforementioned Sentinel-3 SLSTR

algorithm uses the ‘spatial filter’ edge detection test first introduced for use with

geostationary Earth observation imagery by Roberts and Wooster (2008) and then

by Xu et al. (2011). The aim is to enable use of very liberal thresholds during Stage

1 of the contextual detection pathway, maximising the ability to detect small or

weakly burning fires, whilst minimizing the number of non-fire PFPs passed to the

‘contextual’ Stage 2 due to these being relatively computationally demanding (and

thus time-consuming). In order to reduce errors of omission and commission, the

unique high frequency, fixed viewing geometry afforded by geostationary

platforms enables further inclusion of multi-temporal tests that make use of imag-

ery taken at different times of day. Figures 18.5 and 18.7 show examples of the

broad spatial coverage, high temporal resolution data that can be gathered from use

of geostationary fire detection methods, in this case applied to Meteosat SEVIRI

(Roberts et al. 2009). The Advanced Biomass Burning Algorithm (ABBA) devel-

oped for use with the GOES imager (Prins and Menzel 1992) makes use of high

temporal information to filter out active fire pixels detected only once at the same

pixel location in any 12 h period, assuming most of these to be false alarms (Prins

et al. 1998). An alternative multi-temporal approach, also developed for GOES and

described by Xu et al. (2011), does not filter out such ‘single pixel detects’, but

instead separates fires from false alarms by exploiting fluctuations in a pixel’s MIR

radiometric signal as a new fire ignites, intensifies, and ultimately extinguishes or

propagates into a neighboring pixel.

Since meteorological clouds are generally quite opaque at IR wavelengths, and

very thick smoke plumes can also be difficult to sense through, the utility of any

active fire detection strategy can be thwarted under such conditions. Therefore, in

an active fire remote sensing product, a pixel may be denoted as a ‘non-fire pixel’

due to the presence of cloud cover, rather than as the result of active fire detection

testing. For this reason, a number of satellite-based active fire products also include
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cloudiness metrics for each pixel, sometimes alongside other information such as a

land/water classification and a mask of areas identified as sun glint. The MODIS

Active Fire and Thermal Anomaly (MOD14/MYD14) products listed in Table 18.1

include this type of information (Giglio et al. 2003), as do the Meteosat SEVIRI

FRP-PIXEL products available from the EUMETSAT (European Organisation for

the Exploitation of Meteorological Satellites) Land Satellite Application Facility

(URL2). An example of the latter is shown in Fig. 18.8, and some studies use this

type of information to normalize active fire pixel counts for the proportion of the

land surface actually viewed, for example to better compare active fire statistics

across space and time (e.g. Di Bella et al. 2006) or to estimate total fire activity from

the viewable fraction (e.g. Kaiser et al. 2012).

18.4 Airborne Active Fire Detection

Whilst the active fire detection capability from the low Earth orbit systems listed in

Table 18.1 offers a high degree of utility and data richness, and the geostationary

systems can offer an additional coarser spatial resolution but much higher temporal

resolution view, satellite-based systems are still restricted in what they can provide

to help analyze the type of fine scale, rapid variations in fire behavior associated

with variable topography, fuel properties, and weather. Furthermore, the real or

Fig. 18.8 Fire mask for North Africa down to the equator, created from Meteosat SEVIRI

imagery. The mask delineates pixels which are processed by the active fire detection algorithm,

and which are not (due for example to cloud cover, or to their being classified as water bodies).

Other information includes which pixels are potentially contaminated by sun glint, and which are

confirmed active fires. This mask forms the ‘Quality Flag’ component of the ‘FRP Pixel product’

obtainable in near real-time from the EUMETSAT Land Satellite Application Facility (URL2)
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perceived delays involved in the obtaining of satellite active fire products are

often cited by field personnel involved in fire management as reasons against

incorporating such products into operational and strategic fire management plans

(Trigg and Roy 2007). This is despite the actually quite rapid delivery of EO

products such as those supported by, for example, FIRMS (URL1; Davies et al.

2009), GOES ABBA (URL4), and the EUMETSAT Land Satellite Application

Facility (URL2). Nevertheless, the fact that airborne systems can operate near

continuously as needed (albeit at a logistical and financial cost), and can quite

easily provide meter or even sub-meter spatial resolution imagery, at repetition

frequencies as high as every few minutes or even better, means they are highly

capable of supporting fire management operations. Table 18.2 details some of the

commonly used airborne remote sensing systems related to active fire observations,

and although issues of geo-referencing and calibration typically become more

significant hurdles than with satellite data products, there are airborne systems

that can directly deliver quantitatively useful datasets rapidly to users on the

ground. Airborne thermal remote sensing therefore provides a very useful tool

with regard to active fires, and its exploitation has followed two main paths. Firstly

an ‘operational’ agenda for direct use in fire suppression and post-fire rehabilitation

operations, and secondly a research agenda related in some cases to future satellite

instrument or algorithm development.

18.4.1 Operational Airborne Thermal Fire Mapping

Thermal imaging systems have had a long and widespread use in patrol aircraft,

aiding spotters looking for new forest fires. Many airborne IR systems are also used

Table 18.2 Example specifications of some of the key airborne IR sensors commonly used for

active fire detection and study

Sensor Bands Spectral coverage IFOV FOV

AVIRIS 224 VIS-NIR-SWIR 1 mrad 34�

Phoenix 2 MIR-LWIR 120�

ABAS 3 NIR-MIR-LWIR 0.3 mrad 80�

0.7 mrad 19�

AIRDAS 4 VIS-SWIR 2.6 mrad 108�

MIR-LWIR

AMS 12 VIS-NIR-SWIR 1.3 or 43�

MIR-LWIR 2.5 mrad or

86�

FireMapper 2 LWIR 1 mrad 35�

MASTER 50 VIS-SWIR 2.5 mrad 86�

MIR-LWIR

MAS (now enhanced MAS) 50 VIS-SWIR 2.5 mrad 86�

MIR-LWIR
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as decision support tools. Though costly to acquire and deploy operationally, the

use of IR imaging in this way can help minimize ineffective fire suppression

strategies. This is particularly the case during prolonged responses to large or

contentious wildfires (often termed ‘project fires’, ‘siege campaigns’, or in the

United States as ‘Type 1’ fires), where the Incident Commander is responsible

not only for effecting fire suppression, but also for defending human, economic and

cultural values. This task can require a great deal of information to affect success-

fully, including on both current and forecast fire behavior. Such ‘project fires’ often

take place in situations involving severe fire behavior and significant risk to human,

economic and/or cultural values, resulting in suppression costs often exceeding US

$1 million per day.

During a large fire event, the suppression tactics employed depend strongly on

knowledge of a fire’s current behavior. However, thick smoke columns, heteroge-

neous fuel structures, and dense canopy cover often conspire to make assessment of

the fire situation difficult with the human eye, even from an airborne vantage point.

Tasks such as differentiating the intensity of surface fuel combustion within a single

fire perimeter, or locating spot fires outside of the perimeter, can become very

difficult. In such cases, the enhanced view of the fire provided by airborne thermal

imaging, which as mentioned above can penetrate smoke, and to some extent also

vegetation cover, allows for a much better assessment of current fire behavior (see

example in Fig. 19.9). This capability helps Incident Commanders evaluate the

success of ongoing suppression efforts, allowing them to make better informed

tactical decisions regarding the distribution of manpower and other resources. The

ability to provide clearer views of the fire situation than can be gained with unaided

eyesight or optical wavelength imaging is also the operational driver for the instal-

lation of thermal imagers onboard fixed wing tanker aircraft. This allows pilots to

acquire suitable targets for water or flame retardant drops, even through smoke

columns. In the later stages of fire suppression, ground personnel are also sometimes

equipped with handheld thermal imagers, particularly to help locate areas of smol-

dering combustion below layers of ash, and thus ensure that more thorough suppres-

sion is conducted and new fires cannot start from still smoldering areas of fuel.

Much of the early development work regarding the thermal imaging of fires from

aircraft was conducted by the United States Forest Service (USFS). USFS projects

like FIRESCAN had been using thermal sensors for ‘wildland’ fire detection,

monitoring and decision support since the early 1960s (Warren and Celarier

1991; Lentile et al. 2006). According to Warren (1992), the focus was on airborne

systems even in the early days, with little or no use made of the type of ‘fixed area’

thermal scanners used in several European countries at the time. Such tower

mounted systems usually included both a thermal and optical imaging capability,

which were exploited by an operator to perform scans of all or part of the full 360�

view around the installation. Thermal imaging from aircraft allowed larger areas to

be rapidly surveyed, and early USFS studies were based on IR line scanners, often

modified militarily equipment operating in both the longwave IR (8–14 μm using a

HgGe detector) and middle IR (3–5 μm using an InSb detector) spectral regions.

These systems were considered to deliver data with acceptable accuracy at the time,

364 M.J. Wooster et al.

http://dx.doi.org/10.1007/978-94-007-6639-6_19


could image in excess of 2,500 km2 h�1, and were able to detect very small

fires. Particularly so when the dual waveband systems were used, due to the

aforementioned increased hotspot sensitivity and algorithm performance when

exploiting MIR data (Sect. 18.3; Hirsch and Madden 1969; Warren and Celarier

1991). When ‘handheld’ ‘Forward Looking Infrared’ (FLIR) thermal imaging

systems first became commercially available in the late 1970s and 1980s, they

also became part of the airborne fire detection arsenal. The small size of FLIR

systems, and (unlike line scanners) their lack of a requirement for aircraft forward

motion to build a 2D image, meant they were particularly well suited to deployment

on helicopters, which due to their ability to hover, takeoff and land in small spaces,

and carry a variety of payloads, are widely used in fire management and suppression

operations (Warren and Celarier 1991). The helicopter-mounted FLIR imagers

often provided much more detail than line scanning systems, albeit generally over

smaller areas, and due to their high spatial resolution it was not particularly

necessary to have a system that operated at MIR wavelengths since in many cases

pixels were completely filled by fire.

From 1985, the US Forest Service ‘Fire Mouse Trap’ (Flying Infrared Enhanced

Maneuverable Operational User Simple Electronic Tactical Reconnaissance and

Patrol) system attempted to exploit FLIR technology alongside LORAN navigation

to deliver a semi-near real time forest fire mapping capability from helicopters and

small fixed wing aircraft (Dipert and Warren 1988; Warren and Celarier 1991).

Around the same time, the United States National Aeronautics and Space

Administration’s Jet Propulsion Laboratory (NASA-JPL) developed an airborne

fire mapping program called the Fire Logistics Airborne Mapping Equipment

(FLAME) project. The FLAME instrument was a dual-band (MIR and LWIR)

IR-scanner system, apparently able to detect 1 m2 fires from 3.5 km altitude

(Nichols et al. 1989). The subsequent ‘Firefly’ system exploited same two

wavelengths, and became the first digital fire detection and monitoring system

used by the United States National Interagency Fire Center, with data processed

onboard aircraft and transmitted by way of satellite to the Incident Command Post

(Warren and Celarier 1991; USFS 2012). FLAME was further upgraded in 1998

and repackaged as the Phoenix system, which also provided digital imagery output.

More recently, the US Wildfire Airborne Sensor Program (WASP) has been

developed using three commercially available FLIR-style cameras operating at

1.3, 3.25, and 8.6 μm (Li et al. 2002). In Canada, systems such as the Airborne

Wildfire Intelligence System (AWIS) and the ITRES TABI-1800 (Thermal Broad-

band Imager) provide similar support to operational fire management (Fig. 18.9).

In addition to its role in fire management and response, an important additional

remit for airborne thermal remote sensing in relation to fire has been to assist

national agencies and aerospace organizations in the testing of new instrument

types, the evaluation of new algorithms, and the calibration of satellite-based

sensors. Instruments often more capable than those typically deployed on fires on

an operational basis are often used for these applications. Examples are the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) measuring from 0.4 to 2.5 μm in

224 contiguous spectral bands, the FireMapper IR imaging radiometer (Riggan and

Tissell 2009), and the MODIS Airborne Simulator (MAS) (Green 1996; Hook et al.

2001). MAS for example is a scanning imaging spectro-radiometer which measures

18 Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events 365



reflected solar and emitted thermal radiation in 50 narrowband channels between

0.55 and 14.2 μm. At nadir it delivers 50 m spatial resolution data from the NASA

ER-2 aircraft flying at 20 km altitude. An evolution of MAS is the MASTER

MODIS/ASTER airborne simulator, developed firstly to support ASTER data vali-

dation and secondly as a back-up instrument for MAS (Hook et al. 2001). MAS was

deployed during the Southern African Regional Science Initiative (SAFARI-2000),

which conducted prescribed burns coincident with overpasses of the then recently

launched EOS (Earth Observing System) Terra satellite, in part to help validate the

MODIS active fire detection algorithms (Swap et al. 2002).

18.4.2 Unmanned Aerial Vehicles

There are limitations to the use of airborne thermal imaging in wildfire activities,

often related to the high operational costs involved, and to the risks to aircraft and

crews when flying in potentially dangerous low visibility/high turbulence situations

close to fires and/or smoke columns. To try to overcome some of these issues,

Unmanned Aerial Vehicles (UAVs) equipped with thermal imaging capabilities can

be exploited. In the mid-2000s, the Altair-FIRE project (First Response Experi-

ment) was amongst the first efforts aimed at demonstrating the utility of integrating

UAV capabilities, advanced thermal imaging, cost-effective telemetry and (semi-)

automated image geo-rectification systems (Ambrosia et al. 1994; Wegener et al.

Fig. 18.9 Geocoded thermal imagery produced during a Alberta Environment and Sustainable

Resource Development (ESRD) response to a 2011 Northern Alberta wildfire, where active fire

fronts and residual hot-spots are evident as white pixels. The image was acquired using the ITRES

Thermal Airborne Broadband Imager (TABI-1800), which has 1800 across-track pixels and

provides MIR data to produce ortho-mosaic thermal maps in the 3.7–4.8 μm wavelength range

(URL5). Vector data products of active fire fronts, hot-spots, and fire perimeters can be extracted

from the imagery and used along with the thermal map to support fire suppression activities. The

high temperature sensitivity of the TABI-1800 (NEdT < 30mK) allows for discrimination of

subtle thermal details in addition to the highly radiant fire pixels (Image courtesy of Alberta

ESRD). Image courtesy of ITRES (URL6)
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2002; Ambrosia et al. 2003). Mounted on an Altair platform, a modified version of

the military ‘Predator’ UAV, the payload consisted of a multispectral imager

having a visible-to-thermal imaging capability (Fig. 18.10). In parallel, studies

such as Merino et al. (2006) have tested the capability of much lower cost civilian

UAVs and small micro-bolometer based LWIR cameras for the detection, monitor-

ing, and measurement of forest fire targets.

18.5 Thermal Imagery Contributions to Burned

Area Mapping

While the focus of the spaceborne and airborne thermal remote sensing methods

discussed thus far has been on the detection of actively burning fires, such mea-

surement capabilities also have some relevance to the identification and mapping of

burned areas. This has often been simply through use of active fire detections to

Fig. 18.10 The FiRE demonstration controlled burn conducted at El Mirage, California on 6th

September 2001 (Lat 34� 37.40, Lon �117� 36.2). The infrared colour composite collected by the

ALTUS II in flight at ~945 m altitude highlights the highly radiant location of the fire, with a

photographic view of the scene taken from a higher altitude aircraft shown in the inset
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gauge the ultimate size of the fire-affected area, generally via some form of

empirical relationship linking the number of active fire detections to the size of

the area burned (e.g. Giglio et al. 2005). Since fire behaviour varies greatly between

environments, such associations require careful testing and calibration. Reported

slopes of the linear relationships linking the two metrics ranged in the global study

of Giglio et al. (2005) between 0.29 km2 of burned area per active fire pixel in

southern-hemisphere South America, to 6.6 km2 of burned area per active fire pixel

in Central Asia. Once such relationships are established for the areas of interest, the

types of long term active fire detection record available from MODIS, TRMM

VIRS (Tropical Rainfall Measuring Mission, Visible and Infrared Scanner) and (A)

ATSR ((Advanced) Along Track Scanning Radiometer) can be used to estimate

burned area trends, provided of course that the active fire products are appropriately

inter-calibrated for differences in sensor spatial resolution (and thus minimum

active fire size), satellite overpass time, and image repetition frequency.

Until the recent version 3 of the widely-used Global Fire Emissions Database

(GFED; Van der Werf et al. 2010), this ‘hotspot counting’ approach to burned area

estimation based on active fire detections (Giglio et al. 2006) actually provided the

vast majority of the burned area estimates used within GFED, proving its utility at a

time when global burned area datasets based on spectral reflectance measurements

were still largely at the development and testing stage. The most commonly used

wavelengths for burned area mapping reside within the near-infrared (~0.8–1.2 μm)

and shortwave infrared (~1.6–2.2 μm) spectral regions, where changes in vegetation

cover and of the proportion of bare soil and charred surfaces have significant impact

on reflectances. Burning of less than half of the pixel can be detected by such

methods (Pereira et al. 1997; Smith et al. 2007), which while far less sensitive than

active fire detection methods is still a very useable change detection threshold. The

types of surface spectral reflectance change seen on burning are also often

accompanied by changes in the emitted spectral radiance, and thus in the apparent

brightness temperature (Fig. 18.11; Trigg and Flasse 2000; Smith et al. 2007). Such

thermal changes result, for example, from the albedo decreases that come from the

presence of charred surfaces, to the increased cover of exposed soils, from evapo-

transpiration decreases due to stress or loss of live vegetation, and from the

presence of still smouldering or glowing combustion (Eva and Lambin 1998;

Smith and Wooster 2005). LWIR observations are therefore sometimes used to

attempt performance enhancement of burned area mapping algorithms. When

mapping fire affected areas in Central Africa from ERS-1 satellites Along Track

Scanning Radiometer (ATSR), Eva and Lambin (1998) noted that upon burning

many pixels exhibited a sharp fall in SWIR spectral reflectance, and a simultaneous

increase in LWIR brightness temperature. This was exploited to map burn scars

across the Central African Republic, and without the inclusion of the LWIR data to

expand the information beyond the single ATSR solar reflected (1.6 μm) waveband

it is likely that classification accuracies would have been reduced. Despite this

success however, most approaches attempting to incorporate both emitted and

reflected spectral radiance data in a single ‘burned area mapping’ index have

shown mixed results (e.g. Holden et al. 2005; Smith et al. 2007), and widespread

adoption of the approach has not occurred. This is in part because the temperature
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of post-fire surfaces is controlled not only by land cover characteristics, but also by

processes unrelated to vegetation fires (e.g. other landcover properties, solar inso-

lation and cloudiness variations; see Fig. 18.11). Also, VIS-SWIR wavelength data

are often available from spaceborne sensors at a much higher spatial resolution than

are the accompanying thermal imagery (e.g. MODIS’ 250 m/500 m optical bands,

compared to the matching 1 km thermal bands; and Landsat 7 ETM’s 30 m optical

bands compared to the 60 m LWIR band), making the merging of the thermal and

optical wavelength imagery a less attractive prospect.

Another avenue of investigation aiming to exploit thermal measurements in

burned area mapping applications has been to separate the daytime MIR spectral

radiance signal into its separate solar reflected and thermally emitted contributions.

This aims to exploit the perceived strong sensitivity of the reflected component to

changes in certain surface characteristics, including vegetation moisture (Boyd and

Petitcolin 2004). Petitcolni and Vermote (2002) detail one way to attempt this

separation, based on careful atmospheric correction and the use of the Temperature

Independent Spectral Indices of Emissivity (TISIE) defined by Becker and Li

(1990). The resulting MIR spectral reflectance measures can, for example, be

used in place of VIS wavelength data in various types of vegetation index

(Kaufman and Remer 1994; Barbosa et al. 1999), and under certain conditions

Fig. 18.11 2002 Landsat ETM+ imagery of the 559 km2 Hayman Fire (Colorado, USA; Lat 39�

10.00, Lon �105� 15.00). At right is a false color composite (RGB ¼ ETM+ bands 7, 5, 4), where

exposed soil and charred surfaces appear as a reddish colour, and areas of unburned vegetation

appear blue. The right image depicts the low-gain ETM+ band 6 LWIR spectral radiance data of

the same area in a greyscale rendition. This indicates the burned area to have generally higher

spectral radiances (warmer). However, careful interpretation of such thermal data is necessary,

since areas of exposed soil (scene bottom left) and forest clear cuts (scene top) also show signs of

being warmer than the vegetated areas
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this has been shown to add value when attempting to discriminate burned and

unburned pixels (Libonati et al. 2009).

In terms of approaches to exploiting thermal band data in burned area (BA)

mapping algorithms, probably the most successful has been the inclusion of active

fire detections into burned area data processing chains. Specifically, the locations of

detected active fire pixels (made using the types thermally-based algorithms cov-

ered in Sect. 18.3) can very usefully act as ‘seed locations’ for optical waveband

change detection methods aimed at identifying newly burned areas from optical

wavelength data. Among the earliest examples is the Hotspot And NDVI

Differencing Synergy (HANDS) algorithm, used to map burned areas across the

Canadian boreal forest (Fraser et al. 2000). More recently, Giglio et al. (2009)

utilised the technique to produce a global, multi-year burned area product from the

10+ year MODIS data record, a product which is now used as the primary burned

area dataset within version 3 of the Global Fire Emissions Database (GFED;

Van der Werf et al. 2010).

18.6 Fire Characterization

In addition detecting active fire pixels and contributing to the mapping of post-

fire burned area, thermal IR remote sensing has a strong part to play in the

characterisation of fire properties, for example the temperature and area covered

by the active fire, and its rate of radiative energy emission.

18.6.1 Fire Radiative Power and Fire Radiative Energy

The complete combustion of a fixed amount of biomass releases an approximately

fixed amount of thermal energy (the so-called fuel heat yield discussed in Sect. 18.2

and defined by e.g. Byram 1959 and Pyne 1984). Assuming the fraction released as

radiant energy does not vary toomuch, then remotely sensedmeasurements of emitted

IR radiation hold strong potential to be used to ‘back calculate’ the amount of fuel

that was burned to produce that energy (Kaufman et al. 1998a; Wooster et al. 2005).

Initial attempts to use thermal remote sensing to quantify total energy emission

from open vegetation fires were largely based on airborne imaging of fire spread

rates. For example, Budd et al. (1997) used airborne IR data to map fire perimeters

at 6–7 min intervals over a series of experimental bushfires in Australian Eucalypt.

By inserting the derived rate of spread and pre-burn fuel load into the formula for

Byram’s (1959) fireline intensity, it was estimated that peak head fire intensity for

most fires (averaged over 6 min) exceeded 1000 kW per meter of the fire front

(kW m�1), and ranged as high as 3,280 kW m�1. Assuming a fuel heat yield of

around 18 MJ kg�1 discussed in Sect. 18.2, these figures equate to fuel consumption

rates exceeding 3 kg min�1 per meter of fireline length. At a similar time, Kaufman
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et al. (1998a) proposed estimating the rate of radiant energy release from burning

vegetation fires more directly, via direct quantitative analysis of the thermally

radiant signals themselves. MODIS Airborne Simulator (MAS) was used, and the

target was Brazilian cerrado fires, with the ‘radiative energy release rate’ metric

defined by Kaufman et al. (1998a) (now usually termed ‘fire radiative power’, FRP)

calculated via an empirical relation based on MIR brightness temperature (BTMIR)

measurements (Eq. 18.6). This equation has subsequently been used to generate the

FRP information stored within the MODIS Active Fire Products (Giglio 2010):

FRP ¼ 4:34 	 10�19Asampl

X

BT8
MIR � BT8

MIR;bg

� �

(18.6)

where BTMIR and BTMIR;bg are the MIR brightness temperature (K) of the fire pixel

and surrounding ambient temperature background pixels respectively, and Asampl is

the MODIS ground pixel area (km2). Note that pixel area did not appear in the

original formulation of Kaufman et al. (1998a), so earlier versions of the MODIS

Active Fire Products (Collection 4 and previous) delivered FRP data in units of

W m�2 for any pixel location in the swath. However, the most recent version of the

MODIS Active Fire Products (Collection 5 onwards) accounts for the change in

pixel area across the MODIS swath, and so provides FRP data directly in MW per

pixel (Giglio 2010)

Equation (18.6) was derived specifically for the spectral and spatial

characteristics of MODIS, and the coefficients were optimized for the retrieval of

FRP from fire pixels with a maximum BTMIR of ~450–500 K (which represents the

approximate saturation temperature of the MODIS’ 3.95 μm ‘fire’ channel [band

21]). When applied to much higher spatial resolution imagery, where fire often fills

a greater pixel proportion and BTMIR values can be much higher than for MODIS,

the coefficients in Eq. (18.6) are no longer appropriate. In part to counteract this,

Wooster et al. (2003, 2005) derived an alternative approach to estimating FRP,

approximating the Planck function with a simple power law and using this to linearly

relate FRP to the fire’s emitted MIR spectral radiance (Wooster et al. 2003):

FRP ¼ Asampl:σ:ε

a:εMIR
LMIR � LMIR;bg

� �

(18.7)

where σ is the Stefan-Boltzmann constant (5.67 � 10�8 J s�1 m�2 K�4) and ε and
εMIR are the broadband and MIR spectral emissivities respectively (which cancel if

the fire can be considered a greybody or blackbody, which is the commonly

assumed case). LMIR, is the MIR spectral radiance of the fire pixel, LMIR,bg is the

MIR spectral radiance of the ambient background (both in units Wm�2 sr�1 μm�1),

and a [W m�2 sr�1 μm�1 K�4] is dependent upon the sensor spectral response

(see Wooster et al. (2005) for a full derivation).

Using multiple overpasses of fires by MAS in the Brazilian cerrado, Kaufman

et al. (1998a) successfully related the detected FRP at each timestep to the rate of

increase of burned area. The coefficient of determination (r2) between the time
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integrated FRP and the change in burn scar size over the same period was 0.94,

significantly stronger than the r2 ¼ 0.74 relationship between the number of active

fire pixels integrated over the same period and the change in burn scar size. This

improvement helps indicate the additional value of quantitative thermal analyses of

active fire pixels, and specifically the FRP metric, beyond simple counting of

numbers of ‘hotspot’ pixels. The assertion of Kaufman et al. (1998a) that FRP

could be directly related to fuel consumption and smoke production was later

experimentally tested by Wooster et al. (2005) and Freeborn et al. (2008) under

laboratory conditions. Handheld thermal imaging cameras were used to collect MIR

data at a sample rate of one frame per second, and estimates of FRP derived using

Eq. (18.7) were temporally integrated over the lifetime of each fire to calculate Fire

Radiative Energy (FRE, MJ). The FRE was found to be very well related to the fuel

biomass burned, and the slope of the linear best fit relationship between FRE and fuel

burned was termed the ‘combustion factor’ C (kg MJ�1) (Fig. 18.12).

Whilst integrating time-series measurements of FRP to yield FRE is tractable at

higher imaging frequencies (e.g. the 1 Hz or better available with ground-based

thermal imaging systems, or the few minutes available from repeated aircraft

overpasses), retrieving FRE from sequential satellite images can become problem-

atic since assumptions must be made about the temporal trajectory of fire behavior

Fig. 18.12 Linear relationship between fuel consumption and Fire Radiative Energy (FRE, J).
FRE is the temporal integral of the fires radiative power output (FRP, MW) over the fires lifetime.

Open circles represent herbaceous fuel, and closed circles are woody fuel. Results taken from

laboratory scale fire experiment detailed in Wooster et al. (2005). The ‘combustion factor’ C

relating these two measures is calculated as 0.366 (kg MJ�1)
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based on often prolonged, uneven, and temporally undersampled observation times

(Freeborn et al. 2009). Hence, geostationary satellites become attractive since they

offer the highest sampling rates available from Earth orbit and are thus able to take

data semi-continuously across the full diurnal cycle (Fig. 18.7).

18.6.2 Fire Diurnal Fire Cycle and Geostationary FRP
Observations

Geostationary active fire observations can provide unprecedented temporal detail

from high Earth orbit (Fig. 18.13). Such data show vegetation fires undergoing

characteristic changes in size and/or intensity that are reflected in the FRP time-

series. These variations often correlate with the metrological diurnal cycle of

relative humidity, air temperature and wind, leading to the typical fire diurnal

cycle seen in Fig. 18.7. More detailed analysis of FRP data returned from analysis

Fig. 18.13 Time-series of fire radiative power (FRP) observations made using the geostationary

Meteosat SEVIRI instrument over a single fire that burned on 6–7 August 2004 in an area of

grassland in northern Botswana (26.12� E, 18.28� S). SEVIRI FRP observations are available

every 15 min, and for this fire there was minimal cloud cover to obstruct the surface from view

during the entire measurement period. All detected active fire pixels at each imaging slot had their

FRP calculated using Eq. (18.7), and the total FRP for that time slot calculated via summation of

the individual per-pixel values. The typically strong fire diurnal cycle results in this case with the

fire falling below SEVIRI’s active fire pixel detection threshold at night, only to be re-detected the

next day. The total FRE for the fire is calculated from temporal integration of the individual FRP

records for the fire made at each 15 min time-slot, and equates to 12 � 106 MJ. Using these data in

Eq. (18.10) and applying the ‘combustion factor’ (C, kg MJ�1) from Fig. 18.12, this FRE equates

to ~4,400 ton of dry biomass. The SEVIRI FRP product is operationally available from the

EUMETSAT Land Satellite Application Facility (URL2)
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Fig. 18.14 (a) Fire radiative power (FRP) data of Africa, collected by the polar orbiting MODIS

and geostationary SEVIRI instruments. (a) Day and night frequency density distributions of FRP

for collocated fire pixels detected at the same time by SEVIRI and MODIS. Both sensors record
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of Meteosat SEVIRI imagery by Roberts et al. (2009) illustrated the somewhat

skewed distribution of the African fire diurnal cycle. The highest FRP fire pixels

appear to occur most frequently at the peak of the diurnal fire cycle, 
14:00 hrs

local time, and progression in fire activity throughout the afternoon and into the

evening is characterized by a greater proportion of lower FRP fire pixels.

However, the larger pixels sizes typically available from geostationary orbit do

offer some limitations, and when polar orbiting and geostationary systems view a

fire affected area at the same time, the latter typically fail to detect a greater

proportion of the true fire activity (Freeborn et al. 2009). Since lower FRP fires

are generally more frequent than high FRP fires (Fig. 18.14a), the omission of the

lowest FRP fire pixels may result in a somewhat altered apparent fire diurnal cycle,

and a spatio-temporal bias in both the FRP and FRE records. To attempt to account

for such biases, Freeborn et al. (2009) combined spatially and temporally concur-

rent geostationary (Meteosat SEVIRI) and polar orbiting (Aqua and Terra MODIS)

observations, to estimate the FRP that would be derived from a MODIS-like sensor

operating at the temporal resolution of SEVIRI. Figure 18.14b indicates that this

‘virtual MODIS’ FRP record lies consistently above that of the native SEVIRI

sensor, reflecting the fact that, when viewing the same area at the same time,

MODIS-type instruments generally detect a more complete record of regional fire

activity than do geostationary sensors. However, in reality polar orbiters only

provide such data at best a few times per day at most locations.

An alternative approach to bias correction was taken by Roberts et al. (2011),

who attempted to blend geostationary FRP data with the types of burned area

information commonly derived from optical remote sensing (Fig. 18.15).

The aim was again to adjust the measurement record for the presence of

non-detected active fires, which remained undetected either due to their low size

and FRP, or because of near continuous cloud cover while they were burning.

Figure 18.15 displays the results of this ‘blending’ approach, indicating that this

methodology provides fuel consumption estimates across Africa closer to those

presented in version 3 of the GFED database than are the estimates derived from the

geostationary FRE record alone. A related integrating approach based on MODIS-

derived FRP and burned area data had been previously explored by Boschetti and

�

Fig. 18.14 (continued) fewer fire pixels at night due to the strong fire diurnal cycle (see Figs. 18.7

and 18.13), and distributions suffer from left-hand truncation due to the inability to identify a

substantial proportion of the (very frequent) smaller and/or less intensely burning fires. This

truncation appears at a higher FRP threshold for SEVIRI since the SEVIRI ground pixel area is

~10� that of MODIS at nadir, and the FRP detection limit is directly related to pixel area. Note the

distributions also suffer from (more limited) right-hand truncation due to sensor saturation over

some of the largest/highest intensity fires. (b) Fire radiative power (FRP) data of Africa, collected
by the polar orbiting MODIS and geostationary SEVIRI instruments. (b) Direct comparison

between summed FRP actually measured by SEVIRI for a 5� grid cell over Africa every

15-min, and the higher values which would be measured by MODIS over the same area if it

could operate at the same temporal resolution as SEVIRI (Adapted from Freeborn et al. 2009)
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Roy (2009), in this case attempting to limit the impact of the lower temporal

resolution sampling provided by MODIS rather than the lower spatial resolution

sampling provided from geostationary orbit.

18.6.3 Sub-pixel Fire Characteristics

In addition to the estimation of fire radiative power and energy, the primary

additional active fire characteristic directly derivable from spaceborne and airborne

thermal remote sensing is the ‘fire effective’ temperature and (sub-pixel) active fire

area (Dozier 1981; Robinson 1991; Giglio and Kendall 2001). Note that ‘area’ in

this sense does not refer to the size of the burn scar, but rather the instantaneous area

undergoing (flaming and/or smoldering) combustion at the time of thermal image

Fig. 18.15 Monthly total biomass consumption in fires across the African continent, calculated

from three different methods. The ‘FRE-only’ approach uses the SEVIRI FRP product (Roberts

and Wooster 2008) to calculate the total Fire Radiative Energy released by fires across the

continent, in a manner akin to that shown in Fig. 18.13 for a single fire. This FRE total is then

converted into an estimate of fuel consumption using Eq. (18.10) and the ‘combustion factor’ (C,

kg MJ�1) derived in Fig. 18.12. The ‘Integrated FRE-BA’ approach combines the SEVIRI-derived

FRE estimates with burned area maps from the MODIS sensor, in order to attempt to adjust the

FRE-only estimate for the non-detection of some fire events, due for example to their being

low-FRP events or burning under cloud cover (Roberts et al. 2011). The ‘GFEDv3’ approach is

based on the MODIS burned area maps alone (no FRE data) combined via a version of Eq. (18.9)

with estimates of fuel load (β, g m�2), derived from the CASA ecosystem production model, and

combustion completeness (γ, unitless) derived from e.g. soil moisture estimates (van der Werf

et al. 2010). Integrating the burned area maps with the FRE observations results in a fuel

consumption estimate closer to that of GFED version 3
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acquisition. Of course, a single temperature and active fire area cannot precisely

match the multi-thermal component structure of an actual vegetation fire, so these

metrics instead can be viewed as representing the temperature and size of a perfect

IR emitter that would provide the same spectral signal as observed from the active

fire itself. Nevertheless, despite being an oversimplification of the actual fire

situation, such data may be useful in a variety of wildfire measurement and/or

modeling scenarios (Zhukov et al. 2006; Dennison et al. 2006; Freitas et al. 2007;

Eckmann et al. 2008; Reid et al. 2009).

The primary approach taken to derive the ‘fire effective’ temperature and

(sub-pixel) area is the bi-spectral (or ‘dual band’) method of Dozier (1981),

originally developed to support sub-pixel hotspot detection (Robinson 1991). The

technique is based upon measurements of infrared spectral radiance made at two (or

sometimes more) well-separated wavelengths, most often with regard to active fires

in the MIR and LWIR spectral regions. The same method is also commonly used

for analysis of volcanic IR spectral radiance data, though SWIR wavebands are

more commonly used in the volcanological case (e.g. Rothery et al. 1988; Francis

and Rothery 2000; Ramsey and Harris 2012).

Robinson (1991), Giglio and Kendall (2001), Wooster et al. (2003) and Zhukov

et al. (2006) provide great detail on the theory of the bi-spectral method applied to

vegetation fire analysis. Assuming blackbody fire behavior, and given the spectral

radiance (Lλ) measured at a detected fire pixel in waveband λ, along with a radiance
estimate for the non-fire fraction of the fire pixel (Lλ,bg) obtained from surrounding

non-fire pixels, the following equation can be formulated for two different

wavebands and thus solved to provide an estimate of the fire’s effective temperature

(Tf) and sub-pixel areal proportion (pf):

Lλ ¼ pf τλB λ; Tf
� �þ 1� pf

� �

Lλ;bg þ pf L
"atm
λ (18.8)

Where B(λ,T) is the Planck function (W m�2 sr�1 μm�1) for waveband λ and

temperature T, and τλ and L
"atm
λ are respectively the atmospheric transmissivity and

upwelling atmospheric radiance in that spectral band. The last term will always be

small compared to one of the first two terms, and can thus be neglected, enabling the

‘fire effective’ temperature (Tf) and proportion (Pf) to be retrieved using versions of

Eq. (18.8) operating in two different wavebands.

Giglio and Kendall (2001) and Giglio and Justice (2003) provide great detail on

the bi-spectral approach, including on limitations related to uncertainties in the

ambient background signal at LWIR wavelengths, where the fire signal is typically

very much weaker (see Figs. 18.2, 18.3, and 18.4). Additional problems potentially

arise from imprecise co-registration between the two spectral channels used, and/or

large differences in their point spread function (Langaas 1995). Shephard and

Kennelly (2003) modeled the potentially large magnitude of these geometric errors,

but Zhukov et al. (2006) suggest they can be largely mitigated against by applying

the bi-spectral technique to the average spectral radiances measured at hotspot

clusters, rather than at individual fire pixels. Many researchers continue to use the
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bi-spectral approach (e.g. Qian and Kong 2012), and the fire effective temperature

output from the method may hold some relevance when attempting to discriminate

different combustion zones or combustion effects, for example areas of predomi-

nantly flaming or smoldering activity or different levels of soil heating (Zhukov

et al. 2006; Hanley and Fenner 1998). Similarly, the fire effective area has been

used within models of smoke plume injection height (Freitas et al. 2007) and to

estimate the fraction of pixels that are releasing smoke into the atmosphere (Reid

et al. 2009). Of course, Tf and pf can also be used together to estimate FRP via the

Stefan Boltzman Law (e.g. Wooster et al. 2003).

Alternative approaches to the estimation of subpixel fire effective temperature

and area also exist, including those related to the work of Green (1996) and others

who used the shape and magnitude of the spectra recorded at active fire pixels by

the AVIRIS imaging spectrometer to deduce active fire properties. Dennison et al.

(2006) built on this approach to ‘unmix’ AVIRIS active fire pixel signals into a

combination of subpixel (endmember) features (Fig. 18.16). This ‘multiple

endmember spectral mixture analysis’ (MESMA) method was later adapted for

usewith imagery fromalternative IR imaging sensors, such asMODIS (Eckmann et al.

2008) and the HYPER–SIM.GA (Galileo Avionica Multisensor Hyperspectral Sys-

tem) imager whose active fire spectral were shown in Fig. 18.1 (Amici et al. 2011).

Fig. 18.16 Spectral fits between the measured spectral radiance recorded at an active fire pixel by

the airborne AVIRIS instrument, and the modeled best-fit spectrum (calculated as a function of

emitted and solar reflected spectral signals). Minimisation of the residuals between the measured

and best-fit modeled spectrum allows fire characteristics (e.g. ‘fire effective’ temperature and

sub-pixel size) controlling the emitted radiance component of the measured spectrum to be

retrieved (Figure adapted from Dennison et al. 2006)
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18.7 Carbon, Trace Gas and Aerosol Emissions

Calculations

Once information on the location and thermal characteristics of actively burning

fires have been obtained from the types of remote sensing approaches detailed in the

preceding sections, a variety of downstream information can be calculated, for

example the rate of spread, (radiative) fireline intensity, and head fire or backfire

classification, based on various spatio-temporal analyses of the active fire detection

and FRP records (e.g. Smith and Wooster 2005). But perhaps the most significant

application is related to estimation of pyrogenic carbon, trace gas and aerosol

emissions (e.g. Riggan et al. 2004; Roberts et al. 2009; Kaiser et al. 2012).

Conventional calculations aimed at estimating the mass (Mx) of a particular

chemical species x released in a smoke plume are generally based on a multiplica-

tion of the amount of biomass burned (kg) by an emissions factor (EFx, g kg�1).

Tables of EFx for different environments and for dozens of different chemical

species present in biomass burning plumes are available in papers such as Andreae

and Merlet (2001) and Akagi et al. (2011), so the primary task is to reliably estimate

Mx. The approach of Seiler and Crutzen (1980), which in fact was very similar to

the original calculations made by von Danckelman (1884), was to determine the

amount of biomass burned via the multiplication of burned area (A, m2), fuel load

per unit area (β, g m�2), and the fraction of the available fuel that burns (γ, on a

0–1.0 scale):

Mx ¼ A� β � γ � EFx (18.9)

As satellite-derived burned area estimates have been refined through use of

increased spatial resolution datasets and improved burned area detection algorithms

(see Sect. 18.5), attention has turned toward uncertainties in the pre-burn fuel load

and combustion completeness, which possibly exceed 100 % in some circumstances

(Reid et al. 2009; Knorr et al. 2012). To help tackle this limitation, independent

estimates of total fuel consumption are often welcomed, at the very least for

comparison to those derived via the approach. Results such as those shown in

Fig. 18.12 indicate that fire radiative energy (FRE) should be linearly related to

the mass of fuel consumed in a fire (Wooster et al. 2005; Freeborn et al. 2007), and

use of an FRE measure and a simple ‘combustion factor’ C (kg MJ�1) therefore

allows Eq. (18.9) to be replaced by:

Mx ¼ FRE� C� EFx (18.10)

The FRP time series for a single African fire was shown in Fig. 18.13, and in this

case the FRE and equivalent biomass consumption was estimated as 12 � 106 MJ

and ~4,400 ton respectively. Roberts et al. (2009) include comparisons between a

set of such FRE-derived fuel consumption estimates and those derived from burned

area measures and pre-fire fuel loads, indicating a reasonably linear relationship
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between the two approaches. The fire radiative power approach to estimating

emissions of carbon, trace gases and aerosols has now reached semi-operational

status in the prototype Global Monitoring of Environment and Security (GMES)

Atmospheric Service (URL8), currently planned to become operational around

2014. Figure 18.17 shows a map of global ‘fire radiative power areal density’

(mW m�2) produced by the Global Fire Assimilation System (GFAS) of the

GMES Atmospheric Service. The GFAS system uses spaceborne FRP observations

to map the daily global release of 40 gas-phase and aerosol trace species present

within biomass burning smoke, based on an adaptation of Eq. (18.10) (Kaiser et al.

2012). The system presently assimilates only MODIS FRP observations, and

spatially varying adjustments to the ‘combustion factor’ C have been calculated

for different land cover types via a comparison between the FRP-derived metrics

calculated by GFAS and version 3 of the GFED database. The resulting emissions

fields are fed into a variety of regional and global atmospheric chemistry transport

models, supporting near-real time decision making and policy development, includ-

ing for air quality applications (see URL9 for examples).

Fig. 18.17 Example global active fire FRP data record for 19 January 2013, produced by the

prototype GMES Atmospheric Service currently being developed by the Monitoring Atmospheric

Composition and Climate (MACC II) project (URL8). The widespread nature of biomass burning

activity is easily seen in this global view. The data represent the daily average of the Fire Radiative

Power (FRP) observations made from all active fires detected on this day in 125 km grid cells and

expressed in units of FRP divided by grid-cell area [mW/m2] (max. value 0.49 W/m2). Since the

rate of release of thermal radiation by a fire is believed to be related to the rate at which fuel is

being consumed and thus smoke produced (see e.g. Fig. 18.12), these data are used for the global

estimation of open vegetation fire trace gas and particulate emissions, which are then passed onto

the other MACC services for incorporation as model source terms. Publically available data are at

present mostly derived from FRP observations made by the MODIS instruments, and future

increases in temporal resolution beyond daily averages are planned via use of geostationary FRP

products. Products and examples of severe atmospheric perturbation by fire emissions can be

found at URL9 and the reader is referred to Kaiser et al. (2012) for further details
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18.8 Summary, Conclusions and Some Recommendations

This chapter has demonstrated the basic principles and developments in the thermal

remote sensing of active fires, and has reviewed some of the ways in which the

resultant datasets have contributed to both (i) a research agenda, aimed for example

at better quantification of the amount and variability of worldwide biomass burning,

studying its behavior and effects on both the land and atmosphere, and (ii) an

operational agenda related to both fire management and fire suppression, and to the

monitoring (and sometimes forecasting) of the effects of biomass burning events on

the land surface, atmospheric composition, air quality and climate. The prototype

GMES Atmospheric Service (URL8) is just one example of how active fire satellite

thermal remote sensing now directly supports real-time operational monitoring and

management of biomass burning impacts in this way, another being the FLAMBE

(Fire Locating and Modeling of Burning Emissions) system described in Reid et al.

(2009). The active fire information available in real-time from systems such as

FIRMS (URL1) and the EUMETSAT Land Satellite Applications Facility (URL2)

also support other, sometimes unexpected, applications. For example, whilst the use

of active fire detections in the planning of vegetation management strategies to aid

future fire severity reductions might perhaps be foreseen, their use by the South

African power company Eskom in avoiding damage from fire-induced “flashover”

events in power distribution systems seems far from obvious (Davies et al. 2009).

The 2000s have seen a strong degree of growth in the use of thermal remote

sensing to study vegetation fires and biomass burning events. According to an

analysis using Google Scholar, prior to 1998 there were fewer than 100 journal

articles including the words “active fire” published annually, but that number

has grown in a strong linear trend (r2 ¼ 0.97, n ¼ 14) to ~600 year�1 currently.

This growth has most likely been driven both by the availability of new datasets,

including most importantly from the highly successful NASA Earth Observing

System (EOS) and the accompanying publically available data records (Kaufman

et al. 1998b), and by the increasing realization that even relatively spatially limited

fire events such as the 1997–1998 fires on Borneo and Sumatra can significantly

affect the environment at regional (e.g. Mott et al. 2005) and global scales (Page

et al. 2002; Simmonds et al. 2005).

Further developments in sensor technologies and observing systems will be one

of the key drivers of future active fire remote sensing. Spaceborne systems such as

the proposed Hyperspectral Infrared Imager (HyspIRI; URL10) offer more thermal

bands with improved performance with regard to active fire observations than are

available currently from systems such as Landsat ETM+ (Enhanced Thematic

Mapper Plus) and ASTER. The next generation of imagers onboard the operational

GOES and Meteosat satellites will also provide significant benefits for active fire

observation. Planning for each of these includes one or more ‘low gain’ thermal

bands, somewhat akin to the current MODIS Band 21 ‘fire channel’ (Kaufman et al.

1998b), which should allow unsaturated thermal observations of even very large

and/or intensely burning fires. The forthcoming Sentinel-3 SLSTR (Sea and Land

Surface Temperature Radiometer) instrument, which follows on from the long-

standing (A) ATSR series, also offers a similar capability (Wooster et al. 2012).

18 Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events 381



Being a rapidly changing, somewhat transient phenomena, validation of active

fire observations is in some ways more difficult than for longer-lived occurrences

such as burn scars. Validation of the MODIS active fire detection products was

greatly aided by the presence of the higher spatial resolution ASTER thermal sensor

onboard the same Terra platform, albeit with ASTER’s spatial coverage limited to

coverage of the central region of the MODIS swath (Morisette et al. 2005;

Schroeder et al. 2008a, b). Validation remains an important research focus, not

only in terms of active fire detections, but also in terms of the outputs from fire

characterization algorithms. The efficacy of metrics such as ‘fire effective’ temper-

ature and area’ deduced via the Dozier (1981) or similar sub-pixel analysis

techniques (Sect. 18.6) has received relatively little scrutiny compared to active

fire detection accuracy, in part because of their difficulty of validation and because

they are in any case only approximations to the true heterogeneous reality existing

within fires. This situation is rather similar to that of satellite volcanology, where

strategies using very high spatial resolution handled (FLIR) observations have been

employed to at least validate some of the assumptionsmadewhen using such sub-pixel

analysis methods (e.g. Wright and Flynn 2003). Coordinated under flights of satellites

with manned aircraft or UAVs carrying more sophisticated thermal sensors is another

avenue for cross-comparison, similar to that conducted during SAFARI-2000 shortly

after MODIS launch (Swap et al. 2002). This should be repeated for different

environments now that data processing chains are more mature.

In addition to validating the algorithms themselves, another key requirement is

gaining confidence in the parameters used to quantify fuel consumption and

biomass burning emissions. For example, increasing use of fire radiative power

and energy approaches requires that the combustion factor (C, kg MJ�1; Sect. 18.6)

be verified beyond the limited range of fuels and small fires investigated so far (e.g.

Wooster et al. 2005; Freeborn et al. 2008), and the impacts of attenuation by smoke,

the ambient atmosphere and vegetation canopies (particularly for surface fires)

should gain increased consideration (Kaiser et al. 2012). The optimization of

emissions factors (EFx; see Sect. 18.7) used in deriving chemical emissions

estimates from measures of fuel consumption will also continue, driven by required

improvements in plume chemistry and transport modelling (e.g. Van Leeuwen and

van der Werf 2011). Estimates of fuel moisture, fuel load, fire severity, FRP, and

perhaps metrics resulting from other existing or as yet undeveloped fire characteri-

zation methods may all have a part to play in such optimization.

The outputs from emissions monitoring and modelling systems (e.g. the GMES

Atmospheric Service and FLAMBE) should be continuously evaluated against

more direct atmospheric constituent observations (e.g. from satellite, aircraft, tall

tower or lidar-based systems; Kaiser et al. 2012), and research into methods to

adjust for the limited temporal sampling provided by polar orbiting systems, and/or

the non-detection of smaller/lower FRP fires, needs to be continued (Vermote et al.

2009; Ellicott et al. 2009; Boschetti and Roy 2009; Freeborn et al. 2009, 2010;

Roberts et al. 2011). Here, the development of ‘fire-targeted’ satellite remote

sensing missions, such as TET-1 (Technology Experiment Carrier 1) and BIROS

(Berlin InfraRed Optical System) (Roemer and Halle 2010) can very likely contrib-

ute, telling us the frequency distribution of different fire types (Zhukov et al. 2006).
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Current BIRD HSRS data suggest that fires having FRP < 10 MW are by far the

most common, but are often missed by MODIS class sensors. These data also

suggest that such fires are responsible for only a few percent of globally observed

total FRP (Zhukov et al. 2006), so the impact of these omissions could be limited.

However, the same records indicate that fires with FRP below 100 MW are also

responsible for only ~7 % of the global FRP record, which seems incompatible with

indications of a roughly two-fold difference between the amount of FRP detected

by MODIS and by geostationary systems during long duration, simultaneous

sampling periods (Roberts and Wooster 1998; Freeborn et al. 2009). The fact that

the BIRD mission preferentially targeted large fire events is one possible cause of

these discrepancies, and missions like TET-1, BIROS and future higher resolution

thermal imagers such as HyspIRI should ideally be used to evaluate the true situation.

Beyond the above suggestions, further objectives come from the ‘Global Obser-

vation of Forest Cover and Land Cover Dynamics’ (GOFC-GOLD) initiative

(URL11), which in addition to a focus on data availability, quality and validity is

stimulating the development of a ‘geostationary active fire network’ to provide

almost continuous coverage of fire at lower latitudes, albeit currently with the

low-spatial resolution bias associated with geostationary observations. GOFC-

GOLD is also highlighting the need for continued production of long-term datasets

for better climate-relevant records, against which potential changes in fire regimes

may be tested (e.g. Krawchuk et al. 2009). The MODIS data record demonstrates a

very strong start in this area, as does the ATSR World Fire Atlas that contains a

global record of active fire detections back to 1995 made using a simple nighttime

fixed thresholding approach (Mota et al. 2006). It is possible that exploitation of the

long-term AVHRR data record, at least for some areas and ‘extreme fire’ periods

warrants further attention (e.g. Cahoon et al. 1994; Stroppiana et al. 2000), particu-

larly after adjusting for differing levels of cloud cover and satellite overpass times

(e.g. Wooster et al. 2012).

At the time of writing, the active fire product from the new Visible/Infrared

Imager Radiometer Suite (VIIRS) sensor, building on the MODIS experience and

flying onboard the NPOESS (National Polar-orbiting Operational Environmental

Satellite System) Preparatory Project Suomi satellite, is undergoing testing and

calibration (URL7). The VIIRS sensor, along with the ESA Sentinel-3 SLSTR and

future ‘fire-capable’ geostationary imagers, are planned to provide operational active

fire datasets for the next two decades. This should stimulate the development of

new algorithms and analysis methods, which will likely influence the next generation

of spaceborne and airborne sensors for Earth system monitoring, along with

their exploitation in continued active fire research and fire management operations.
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Àgueda A, Pastor E, Perez Y, Planas E (2010) Experimental study of the emissivity of flames

resulting from the combustion of forest fuels. Int J Therm Sci 49(3):543–554

Akagi SK, Yokelson RJ, Wiedinmyer C, AlvaradoMJ, Reid JS, Karl T, Crounse JD,Wennberg PO

(2011) Emission factors for open and domestic biomass burning for use in atmospheric models.

Atmos Chem Phys 11(9):4039–4072

Alexander ME (1982) Calculating and interpreting forest fire intensities. Can J Bot 60(4):349–357

Ambrosia VG, Brass JA, Allen JB, Hildum EA, Higgins RG (1994) AIRDAS, development of a

unique four channelscanner for natural disaster assessment. In: Proceedings of the first

international airborne remote sensing conference, Strasbourg, 11–15 Sept 1994, pp 129–141

Ambrosia VG, Wegener SS, Sullivan DV, Buechel SW, Dunagan SE, Brass JA, Stoneburner J,

Schoenung SM (2003) Demonstrating UAV-acquired real-time thermal data over fires.

Photogramm Eng Remote Sens 69(4):391–402

Amici S, Wooster MJ, Piscini A (2011) Multi-resolution spectral analysis of wildfire potassium

emission signatures using laboratory, airborne and spaceborne remote sensing. Remote Sens

Environ 115(8):1811–1823

Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob

Biogeochem Cycle 15(4):955–966. doi:10.1029/2000GB001382
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Chapter 19

Analysis of Lava Flow Effusion Rate Using

High Spatial Resolution Infrared Data

Valerio Lombardo and Maria Fabrizia Buongiorno

Abstract Remote sensing thermal data of active lava flows allow for the evaluation

of instantaneous effusion rates. This is made possible by simple formulae relating

the lava effusion rate to the power energy radiated per unit time from the surface to

the flow. The most questionable assumption is probably the constancy of the surface

temperature. Due to the assumptions of the model, this formula implies that heat

flux, surface temperature and lava temperature varies as a function of the flow

thickness. These relationships, never verified or validated before, have been used

by several authors as a proof of the weakness of the model. Herein, MIVIS (Multi-

spectral Infrared and Visible Imaging Spectrometer) high spatial resolution

(5–10m) thermal data acquired during Etna’s 2001 eruption were used to investigate

down-flow heat-flux variations in the lava flow emitted from a vent located at

2,100 m a.s.l. A high correlation between the down-flow heat-flux and the lava

flow thickness (measured from a pre-existing digital elevation model) was found.

According to this relationship, observed changes in the surface temperature would

be the expected consequence of differences in the down-flow lava flow thickness due

to topographic variations.

19.1 Introduction

Remotely sensed data can be used to estimate heat and mass fluxes of active lava

flows. The movement of lava flows is a complex subject that has provoked debate

regarding the mechanisms that control the areal extent and physical character of the

flow (e.g. Pieri and Baloga 1986; Lipman and Banks 1987; Oppenheimer 1991;

Oppenheimer et al. 1993a, b, c; Harris et al. 1997a, b, 1998, 1999; Lombardo et al.

2004, 2006, 2009; Lombardo and Buongiorno 2006). The effusion rate, defined as
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either an instantaneous or time-averaged volume flux feeding a lava flow from a

vent, is a major consideration in evaluating flow dynamics and the potential threat

posed by a lava flow. Higher effusion rates produce channel-fed flows that are

longer, more rapidly moving, voluminous, and extensive than flows with low

effusion rates (Walker 1973; Wadge 1977; Pieri and Baloga 1986). Flows with

high effusion rates thus have far greater potential to inflict damage on distant

communities with less advance warning. Measuring effusion rates is therefore of

great interest. Field methods for their determinations are usually based on estimates

of lava channel dimensions and lava flow velocity (e.g. Lipman and Banks 1987;

Barberi and Villari 1994). However, errors due to uncertainties in channel dimen-

sion, especially depth, are a major problem. Although not particularly useful for

monitoring purposes, accurate post-eruption measurements of total flow field

volumes provide reliable estimates of average effusion rates if the eruption duration

is known (e.g. Calvari et al. 1994).

Determining effusion rates for lava flows from space is an important but chal-

lenging task. The evaluation of lava effusion rates builds on a formula originally

proposed by Pieri and Baloga (1986) which relates the flow rate to the planimetric

area of a flow. If the flow rate is assumed to coincide with the effusion rate, the

formula states that the effusion rate is proportional to the heat radiated per unit time

by the surface of the flow. The formula of Pieri and Baloga (1986) was lately adapted

to extract effusion rates from satellite thermal data by Harris et al. (1997a, b, 1998,

2000, 2005) by including: the thermal contributions of convection in the air and

crystallization of lava and the contribution of heat conduction to the ground.

Although the formulae by Pieri and Baloga (1986) and Harris et al. (1997b) yield

reasonable results, Dragoni and Tallarico (2009) demonstrated how the current use

of the formula is often not consistent with the model itself. In this study, starting

from model assumptions and drawbacks, we show how our experimental

measurements match the theoretical basis of the Pieri and Baloga formula (1986).

19.2 From Heat to Mass Flux: History of a Model

The energy produced by an active lava flow is lost to the environment through a

combination of conduction, convection, and radiation. The formula originally

proposed by Pieri and Baloga (1986) can be obtained from a simple model

representing a lava flow cooling by radiation only. Following this approach effusion

rate (Er) can be estimated from the heat flux for a moving flow (Q) from:

Er ¼ Q

ρcpΔT
(19.1)
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where ρ is lava density, cp is lava specific heat capacity, ΔT is the difference

between temperatures of fluid lava at the vent Te and at the front T(L), L being

the flow length (Fig. 19.1).

In this model, Q is calculated using only the radiant contribution Qrad:

Qrad ¼ εσATs
4 (19.2)

In which ε is the emissivity, σ is the Stefan-Boltzmann constant and A is the

flow area.

There are several assumptions underlying this model (Fig. 19.1):

1. The lava flow is an unbounded fluid layer with uniform thickness h, flowing on
a sloping plane.

2. The flow is in a steady state both mechanically and thermally.

3. The fluid motion is unidirectional (occurring in the x direction).

4. The velocity v is uniform and constant (in particular the variation with z is

neglected).

5. The heat loss takes place exclusively by radiation at the upper surface of the

flow z ¼ h

6. The surface temperature Ts is constant

7. The ambient temperature is negligible with respect to Ts.

8. The temperature T of lava depends only on x: T(x) must be intended as the

average temperature over the flow thickness.

9. Viscous dissipation and heat produced by crystallization are negligible.

10. The heat flux q within the lava flow depends linearly on z.

11. The lava is incompressible and its ρ, cp and thermal emissivity ε are constant.

Harris et al. (1997b) introduced the thermal contributions of convection in the air

and crystallization of lava. Harris et al. (2005) also included the heat loss by

Fig. 19.1 ADD Summary and sketch of the model assumptions proposed by Pieri and Baloga

(1986). The lava flow is an unbounded fluid layer with uniform thickness h, length L, and width d
flowing on a sloping plane. The temperature T of lava depends only on x: T(0) is the eruptive

temperature and T(L) is the temperature at the lava front. The model can be applied to small

portion of the overall volume (length L’) to estimate the effusion rate as a function of the local

decrement in T
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conduction. These formulae are based on the same model as Pieri and Baloga’s

(1986) formula.

The thermal contributions of convection (Qconv) is calculated using the free

convection case given by Harris et al. (1997b, 1998). This reduces to:

Qconv ¼ hc½Ts � Tair� (19.3)

in which hc is the convective heat transfer coefficient and Tair is the ambient air

temperature.

The heat conducted through the base of the flow is given by (Harris et al. 1997b):

Qcond ¼ AkδT=δh (19.4)

where k is the lava thermal conductivity and δT is the temperature difference across

a flow of thickness δh.
Therefore, the total heat loss Q in Eq. (19.1) can be described by a simple model

for a subaerial channel-fed flow

Q ¼ Qrad þ Qconv þ Qcond: (19.5)

And Eq. (19.1) becomes:

Er ¼ Q

ρ cpΔT þ ϕCL

� � (19.6)

where ϕ is mass fraction of crystals grown in cooling through ΔΤ and CL is the

latent heat of crystallization. Because Eq. (19.1) is time-independent, which is a

consequence of the steady-state assumption, the same value of the effusion rate

should be obtained independently of the time when the measurement of Q is

performed. If we assume that the effusion rate is constant, as longer as the area of

the flow increases, increments inQ (Eq. 19.2) are balanced by a linear increments in

the temperature difference ΔT with L (Dragoni and Tallarico 2009). Therefore a

constant value of Er is obtained from Eq. (19.1) at different times. Similarly, at a

given time, Er has a constant value over the entire flow length considering that ΔT is

a function of x (0 < x < L) and can assume values in the range 0 < ΔT < Te � Ts.
Dragoni and Tallarico (2009) infer that the most questionable assumption in the

model is probably the constancy of the surface temperature Ts. On the one hand,

several field (Pinkerton et al. 2002) and remote sensing measurements (Lombardo

et al. 2009) confirmed that Ts is not uniform in actual flows. On the other hand, the

simple relationship between Er and Q can be obtained only assuming that Ts does
not vary within the flow. Dragoni and Tallarico (2009) showed that Pieri and

Baloga’s (1986) formula can work only if the surface temperature decreases rapidly

enough (at least exponentially) with the distance from the vent. This condition

would ensure that Q is independent of L. Herein, starting from the assumptions of

this model, we use high spatial thermal data to investigate the implication of

thermal flux distribution within active lava flows.
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19.3 The 2001 Etna Eruption and MIVIS Airborne

Campaign

The July–August 2001 eruption of Mount Etna was characterized by both effusive

and explosive activity. A detailed chronology of the events that comprised this

eruption is given by Calvari and Pinkerton (2004), Behncke and Neri (2003) and

Coltelli et al. (2007). We here focus on the lava flow erupted from the lower-most

fissure on the southern flank. This vent was located between 2,100 and 2,150 m and

was termed Lower Fissure System 1 (LFS1) by Coltelli et al. (2007). The channel-

fed lava flow field fed by this fissure was continuously active for 23 days from

18 July to 9 August, and was described and mapped by Behncke and Neri (2003)

and Coltelli et al. (2007). The lava flow field reached a maximum length of

6.4 km, extending down to an elevation of 1,040 m. The toe of the flow evolves

from channel-contained to dispersed. LIDAR (Light Detection And Ranging)

measurements (Favalli et al. 2010), supported by field mapping, show that the

flow front comprised eight lobes each 10–20 m high. The flow front appears to

have advanced not as a single unit, but as a series of lobes moving forward one lobe

at a time. Primary lobes were centered on the channel axis and marginal lobes were

off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow

core of the stalled flow front. Marginal lobes were abandoned and contributed to

marginal levees flanking the transitional channel. Maximum time-averaged dis-

charge rate (TADR), obtained on the basis of daily mapping, was ~31 m3/s (Coltelli

et al. 2007). This measurement was made on 22 July; TADRs of 24 and 18 m3/s

were obtained on 20 and 26 July (Coltelli et al. 2007). At this time, the maximum

lava flow length was attained. Following 27 July, effusive activity began to wane.

The TADR fell to ~5 m3/s by 2 August and the flow front progressively retreated

up-channel as the effusion waned (Coltelli et al. 2007; Behncke and Neri 2003).

The final volume for the LFS1 flow field was 21.4 � 0.37 � 106 m3 (Coltelli et al.

2007), which gives a mean output rate over the 23 days of activity of ~11 m3/s.

An airborne survey carrying a multi-spectral infrared and visible imaging spec-

trometer (MIVIS) was carried out on 29th July 2001, with the primary objective of

obtaining high-spatial-resolution image data to aid in tracking the 2,100-m-vent

flow that was moving towards Nicolosi (Fig. 19.2).
MIVIS is an airborne sensor flown on a CASA-212 aircraft recording in

102 wavebands between 0.4 and 12 μm. These are split between the very near

infrared (VNIR), short wave infrared (SWIR) and thermal infrared (TIR), with

80 wavebands in the 0.4–2.5 μm range and 22 in the 8–12 μm range. The MIVIS

flight altitude on 29th July was of 6,400 m a.s.l. giving a ground pixel resolution in

the range 6–12 m, depending on the surface elevation. We thus calculate pixel

resolution on a pixel-by-pixel basis using the pixel instantaneous field of view

(IFOV) and the difference between MIVIS flight altitude (6,400 m) and topographic

elevation obtained for each pixel (derived from a 10 m digital terrain model to

which the MIVIS image was fitted). The high spatial resolutions of unsaturated

infrared MIVIS data allow for detailed mapping of the lava flow surface
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Fig. 19.2 Shaded relief and coregistered composed MIVIS image (RGB ¼ 2.20, 1.52, 0.68 μm)

acquired on 29th July 2001

396 V. Lombardo and M.F. Buongiorno



temperature and thermal flux distribution (Lombardo et al. 2006, 2009). TIR data

were corrected for atmospheric effects using the atmospheric radiative transfer

model MODTRAN (MODerate resolution atmospheric TRANsmission) (Kneizys

et al. 1983).

19.4 Surface Temperature and Radiative Heat Flux

In order to assess the importance of radiative cooling for the lava flow, it is crucial

to examine the different heat flux contributions from vent to lava front. The map of

surface temperature derived from MIVIS thermal band is shown in Fig. 19.3.

Significant variations of the surface temperature occur within the flow, ranging

from about 313 to over 700 Kwith amean value of 386 K. Therefore, the assumption

of Ts as constant is not realistic as stated from the formula of Pieri and Baloga.

Figure 19.4 shows the down flow Ts temperature profile obtained for the lava channel

fed by the 2,100 m vent.

The trend displays a spatial variation in thermal structure consistent with rapid

near-vent surface cooling, a dominant zone of cooler, stable temperatures, and an

increase in temperature towards the flow front. This trend is consistent with that

proposed by Lipman and Banks (1987) and Harris et al. (2007) for channel-fed

Etnean flows, where the proximal channel represents the hottest zone of high heat

losses, but the majority of the flow is well-insulated as the surface cools and reduces

heat loss. We thus divided the flow into three thermally distinguishable zones:

proximal, medial-distal, and toe. The proximal zone is characterized by relatively

high Ts which rapidly decrease from a temperature of 750 to about 500 K after

flowing 0.4 km. Five saturated pixels (Fig. 19.4) mark the main outbreak zone along

the 2,100 vent fracture. The medial zone is defined by decrement in Ts showing a

weak down-flow decline. The medial trend is interrupted by a sudden increment in

the temperature profile at about 3.0 km from the lava vent (Fig. 19.3). This event is

followed by a rapid decrement in Ts and again by another progressive stabilization

of the decrement rate. We can recognize three further similar events at 3.9, 4.8 and

5.8 km respectively (Fig. 19.3). Finally, temperature variations at the toe of the flow

reflect the complexity of the lava structure emplacing in an “alluvial fan” fashion

(Fig. 19.3). Surface temperature suddenly falls down to a minimum of 320 K

beyond the stalled front of the lava flow.

Figure 19.3b shows the map of radiative heat flux calculated from Eq. (19.2).

While the maximum radiative heat flux in the image is 997 kW, the mean and

minimum values are 139 and 60 kW, respectively. Highest values (>950 kW) occur

at the vent location and throughout the channelized sections of the flow where Qrad

is 400–700 kW. In order to investigate variations in radiative heat flux, cross-flow

profiles from vent to front have been analyzed for location given in Fig. 19.3b. On

the basis of our heat flux observations and following the classification of Lipman

and Banks (1987), we can divide the flow into four distinct zones: the channel-

contained zone, the transitional channel zone, the dispersed zone, and the lava front
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Fig. 19.3 Surface temperature (a) and radiative heat flux (b) spatial distribution derived from the

29th July 2001 MIVIS data for the 2,100 m lava flow field with locations of profiles given in

Fig. 19.5
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(Favalli et al. 2010). Channel-contained zones are concentrated in a well-defined,

stable, central channel, bounded by broad zones of stationary lava which form the

levees (Lipman and Banks 1987). Examination of the cross-flow variation for

channel-contained zones reveals an abrupt reduction in heat loss when we move

from the middle of the active channel to the margin zones (Fig. 19.5, profile 1 and 2).

Mean heat-fluxes for the channelized and margin zones are 550 and 40 kW

respectively. The transitional channel is marked by a distinct channel bounded by

blocky or clinkery lava which form marginal zones of stagnant lava (Lipman and

Banks 1987). Zones of stagnant lava may include abandoned channel (profile 3) or

evolve into levees needed to create a self-formed channel (profile 4). The dispersed

zone is the section of flow across which movement is widespread, and the main

channel splits into two or more branches. Different branches are marked by distinct

peaks in the radiative heat loss profile 5 (Fig. 19.5d). Finally, the flow front of

2,100 m lava flow comprises eight discrete lobes, each 30–80 m across and 10–15 m

height, with a maximum thickness of 20 m (Favalli et al. 2010). Lobes are separated

from one another by a shallow valley of rubbly ‘a‘ā clinker material (Favalli et al.

2010). Figure 19.5e shows flux values of 250–300 and 80–120 kW for lobes and

clinker material respectively.

Analysis of cross-flow temperature profile for channel-contained zones shows a

Gaussian trend to fit our experimental data (Fig. 19.6a). Therefore, we use a Gaussian

interpolation to predict temperatures for saturated data (Fig. 19.6b). A maximum

surface temperature of 1,240 K was obtained at the flow vent.

In the case of 2,100 lava flow, there is an evident correlation between the zones

proposed by Lipman and Banks (1987) and the three thermal zones we identified on

the basis of our downflow thermal measurements. In the proximal zone, the heat

Fig. 19.4 Down flow profile of calculated surface temperature with locations of temperature

peaks (B1,. . ., B6). Highest temperatures (1,240 K) occur at the vent location (B1)
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Fig. 19.5 Cross-flow heat flux profiles for locations given on Fig. 19.3b. The heat flux profile

varies from a single finely tuned peak (e.g. profile 1 and 2) to multiple broad peaks (e.g. profile 5
and 6) as the flow evolves from channel-contained to dispersed

Fig. 19.6 Gaussian interpolation of heat flux cross-flow unsaturated (a) and saturated (b) data.

Interpolation of saturated data gives a maximum heat flux of about 1,200 kW
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flux profile (Fig. 19.5, profile 1 and 2) shows a well defined channel and lateral

levees. The distal segment of Etna’s 2001 lava flow showed an excellent transition

from stable channel-contained flow to dispersed flow. The lava toe includes a wider

dispersed zone and the lava front characterized by many discrete lobes.

19.5 Heat Flux and Topography

The radiative heat flux map (Fig. 19.3b) reveals alternation of decreasing and

increasing trends when moving from vent to lava front. Starting from the underly-

ing relationship between effusion rate and heat flux (Eq. 19.1), we investigate the

effects of topography on heat flux variations. In Fig. 19.7, the heat flux map

overlays a digital elevation model (DEM) to create a 3D composite view of the

2,100 m lava flow area. A qualitative analysis of Fig. 19.7 suggests that major

variations in Qrad occur with variations in slope profile. Figure 19.7a shows the

elevation drops from the 2,100 m vent down to the lava toe at about 1,100 m. Qrad is

displayed as a color map which varies from yellow (eruptive temperatures) to blue

(ambient temperatures). Smooth color gradients from yellow, to red, to green

indicate decrements in Qrad with a slightly constant down-flow decline.

Decreasing trends are interrupted by abrupt increases which are marked by color

changes from green to yellow. Five major peak-increments have been identified

(including the highest Qrad value at the vent) corresponding to the temperature

maxima analyzed in the down-flow Ts profile of Fig. 19.4.Qrad peak locations along

the lava flow are shown in Fig. 19.7b.

Comparison between elevation and heat flux profile (Fig. 19.8) indicates that

peak-increments in Qrad occur where significant changes in the terrain slope angle

occur. Down-flow topographic profile consist of facets of constant slope separated

by local dips and scarps (Fig. 19.8).

On the one hand, all peak values (with the exception of B3) are located in

proximity of topographic scarps. On the other hand, post-peak decreasing trends are

usually associated with constant-slope facet. Correlation between slope and heat

flux measurements is also evident at a larger-scale. Minor peaks that appear within

Qrad decreasing events (e.g. b1, b2, and b3) still correspond to small scarps in the

topographic profile.

Our DEM analysis shows significant down-flow variations in terms of geometry

of the lava channel. Variations in surface morphology produce changes in depth and

width of the cross-sectional area (S) of the lava flow. Since Er can be expressed as

the product of the flow velocity (v) and S, we use DEM and MIVIS data to

investigate the influence of changes in S on Qrad. Radiative heat flux has been

estimated for each cross-section profile (Q0) of the flow.Q0 represents the area under
theQrad profile curve (e.g. profiles shown in Fig. 19.5). The same profiles have been

used to calculate the cross-sectional area of the flow from vertical height

measurements on DEM data (Fig. 19.9).
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Fig. 19.7 (a) 3D view of the radiative heat flux distribution derived from MIVIS data for the

2,100 m lava flow with locations of main topographic relieves (a) and locations of temperature

peaks given in Fig. 19.7b. (b) 3D view of the radiative heat flux distribution derived from MIVIS

data for the 2,100 m lava flow with locations of temperature peaks



Our analysis demonstrates that, at least for the medial zone, flow depth

variations are larger than variations in width. Therefore, changes in lava flow

thickness mainly account for variations in S. An average lava thickness (Hm) has

been calculated for every cross-section profile.

Fig. 19.8 Comparison between slope and radiative heat flux down flow profiles. Major peaks in

the heat flux profile (B1,. . ., B6) occur in correspondence with main slope variations. Also minor

peaks appear to be related to significant topographic changes (b1,. . ., b3)

Fig. 19.9 Example of cross-flow sectional area derived from digital elevation data. The cross-

flow sectional area has been calculated from difference between the maximum height and every

elevation value below the flow planimetry
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When we compare the down-flowHmwithQ0, a good agreement simply emerges

from the inspection of the two trends (Fig. 19.10).

Q0 and Hm are normalized to allow for easy comparison of the different mea-

surement units. A cross correlation value of 0.82 is obtained indicating a reliable

match between the two trends. When comparing Q0 vs. Hm, it is important to note

that measurements were derived from completely different datasets: Q0 from

remote sensing radiance data and Hm from digital elevation data. Plots in

Fig. 19.10 clearly show that surface temperature, radiative heat flux, and effusion

rate estimate depend on the lava flow thickness, which is triggered by preexistent

topography.

19.6 Discussion

Starting from Eq. (19.1), the law of conservation of mass implies that a constant Er

is maintained at every cross-sectional area of the flow. Therefore, if ΔT0 is the

temperature drop of the lava flowing across S, under the assumptions of Pieri and

Baloga model (1986), the ratio of Q0 to ΔT0 should be a constant throughout

the flow.

If we assume a ΔT of 200 �C (difference between eruptive temperature at the

vent and solidus temperature at the front for Etnean basalts) and a linear decrement

of T with x, the lava temperature drop per unit length becomes ΔT/L. Due to MIVIS

Fig. 19.10 Comparison between normalized heat flux and lava thickness profiles shows a high

correlation. Heat flux varies with lava flow thickness that is triggered by topographic changes as

stated by the Pieri and Baloga formula
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spatial resolution, ΔT0 is equal to px ΔT/L, where px is the MIVIS pixel size.

Effusion rate derived at every cross-section of the flow is given by:

E0
r ¼ Q0

ρcpΔT0 (19.7)

Figure 19.11 shows the down-flow profile of derived E0
r for the 2,100 m lava

flow. E0
r is spanning a wide range from 0.1 to more than 9 m3/s along the flow, that

is far from being considered as a constant. Why did the model fail to yield the

predicted mass-flux constancy?

Relationship between Q0 and Hm provides a key to understanding the apparent

changes in down-flow derived Er. Let us suppose that a lava flow is flowing with a

constant effusion rate Er, through two different cross-sectional area S1 and S2. After
the same time interval Δt, the volumes passed through S1 and S2 are the same, but

the ratio between velocities is:

v1 v2= ¼ S2 S1= (19.8)

Fig. 19.11 Apparent variations in derived down flow effusion rates. These variations are not real

but caused by the assumption that lava flow has a uniform thickness h, flowing on an inclined plane
with constant slope
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According to the model, the ratio between radiative heat fluxes is then

Q1 Q2= ¼ S2 S1= (19.9)

However, if the cross-sectional areas have the same width, Eq. (19.9) also

implies

Q1 Q2= ¼ h2 h1= (19.10)

Which is exactly what we observe in our experimental data: the heat flux

measured for a thick flow is greater than that measured for a thin flow.

From Eq. (19.8) we can derive that the distance L travelled by the flow through

the two sectional areas over a time Δt is

L1 L2= ¼ S2 S1= (19.11)

Under the assumptions of the model of Pieri and Baloga (1986), the temperature

difference ΔT is proportional to the distance L. Then

ΔT1 ΔT2= ¼ h1 h2= (19.12)

Which means that also the lava temperature varies with the flow thickness. This

explains for the apparent changes in downflow E0
r (Fig. 19.11) obtained by

assuming a constant lava decrement with x. Thus, we can infer that surface

temperature variations in actual flows are the expected consequence of the Pieri

and Baloga (1986) model assumptions.

Our results suggest that topography affects heat flux changes at different scales.

On the one hand, the average slope angle appears to control the rate of decrement of

heat flux. The overall trend show a very rapid decrement from the vent followed by

a smoothly graded decrease over constant slope trajectories. Because surface

temperature rapidly decreases with the distance from the vent (Fig. 19.4), we can

infer that heat-flux can be considered independent from the flow length. The overall

trend is interrupted by abrupt increases in Qrad. These peaks are mainly associated

with significant slope changes such as dips and topographic scarps. On the other

hand, small variations in topographic height cause changes in lava flow thickness.

Therefore heat flux varies according to Eq. (19.10) as predicted by the model of

Pieri and Baloga (1986).

19.7 Conclusions

The formula originally proposed by Pieri and Baloga (1986), relates the effusion

rate to the heat flux radiated by the flow surface. Due to the assumptions of the

model, this formula also implies that heat flux, surface temperature and lava
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temperature varies as a function of the flow thickness. These relationships have

been recognized as a weakness of the model by several authors. Our study

demonstrated that such relationships do exist and that the Pieri and Baloga model

(1986) accurately predicts the lava flow emplacement mechanisms. These results

were achieved thanks to the effectiveness of high spatial resolution thermal data

acquired by MIVIS sensor during the 2001 Etna eruption. MIVIS thermal data

allowed for detailed mapping and analysis of the 2,100 m a.s.l lava flow. Integrated

results from digital elevation model (DEM) and MIVIS data indicate that topogra-

phy affects down-flow derived temperature, heat flux, and effusion rate estimates.

As a future work, we plan to extend our analysis to include different eruptive styles

(e.g. pahoehoe lava flows) and different thermal infrared datasets.
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of volcanic thermal features: Làscar Volcano, Chile, 1984–1992. J Geophys Res 98:4269–4286

Oppenheimer C, Rothery DA, Pieri DC, Abrams MJ, Carrere V (1993b) Analysis of Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots. Int J Remote Sens

14(16):2919–2934

Oppenheimer C, Rothery DA, Francis PW (1993c) Thermal distribution at fumarole fields:

implications for infrared remote sensing of active volcanoes. J Volcanol Geotherm Res

55:97–115

Pieri DC, Baloga S (1986) Eruption rate, area and length relationships for some Hawaiian lava

flows. J Volcanol Geotherm Res 30(29):45

Pinkerton H, James M, Jones A (2002) Surface temperature measurements of active lava flows on

Kilauea volcano, Hawai’i. J Volcanol Geotherm Res 113:159–176

Wadge G (1977) The storage and release of magma on Mount Etna. J Volcanol Geotherm Res

2:361–384

Walker GPL (1973) Lengths of lava flows. Philos Trans R Soc Lond A274:107–118

408 V. Lombardo and M.F. Buongiorno

http://dx.doi.org/10.1029/2008JB005648


Chapter 20

Thermal Analysis of Volcanoes Based

on 10 Years of ASTER Data on Mt. Etna

Maria Fabrizia Buongiorno, David Pieri, and Malvina Silvestri

Abstract The EOS-1 Terra ASTER (Advanced Spaceborne Thermal Emission

and Reflection Radiometer) has acquired about 200 images (100 of them suffi-

ciently cloud-free to be used) over Mt. Etna since 1999. This chapter shows the

results from the analysis of 10 years Mt Etna activity using thermal infrared

(TIR) high spatial resolution data by a semi-automatic procedure that extracts

radiance values of the summit area with the goal of detecting variation related to

eruptive events. Night time data showed a good correlation with the main

eruptive events that occurred both in the summit and in the flank areas. A

comparison of the variance of maximum ASTER TIR radiance with variance

of the maximum AVHRR TIR radiance (Advanced Very High Resolution Radi-

ometer) for the same area confirms good correlation in terms of trend and values

between the two data sets. Finally this study emphasizes the importance of high

spatial resolution TIR data during background monitoring to detect changes in

the thermal emission that may be related to an impending eruption and the need

to further improve the spatial resolution in the TIR channels to better separate

the thermal active areas in volcanic systems.

20.1 Introduction to Current Challenges in Volcano

Observation

Using remote sensing techniques to understand the world’s volcanoes is a focus of

the world’s major scientific agencies and space-faring countries (Solomon et al.

2003; USNRC decadal survey 2007). Such emphasis on volcanoes reflects the fact
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that 500 million people live under the direct threat of volcanic eruptions or their

associated environmental effects along with the pursuit of basic earth system

scientific information. Warning signs of eruptions, however, are inconsistent and

prediction time windows are imprecise and inaccurate. Eruption prediction is a

chancy idiosyncratic affair, as volcanoes often manifest waxing and/or waning

pre-eruption emission, geodetic, and seismic behavior that is unsystematic. Thus,

fundamental to increased prediction accuracy and precision are good and frequent

assessments of the time-series behavior of relevant precursor geophysical, geochem-

ical, and geological phenomena, especially when volcanoes become restless.

Signaling the onset of an eruption requires observing the thermal flux of a restless

volcano as an important source of information of both persistent low-level thermal

activity due to seasonal/diurnal geo-hydrothermal variations, and about rarer anom-

alous precursor thermal activity (e.g., Pieri and Abrams 2005). To detect such

behavior it is important to have knowledge of the thermal activity datum related to

a particular volcano in addition to the observation and characterization of its thermal

anomaly.

In the past several years there has been progress in using daily 1 km/pixel

observations of the Moderate Resolution Imaging Spectroradiometer (MODIS)

data. For such data, automated thermal thresholding algorithms are used to detect

global thermal anomalies (Wright et al. 2004) and measure volcanic plume and SO2

gas emissions (Realmuto et al. 1994). Although volcanic thermal features are

usually much smaller than a MODIS pixel, these data are capable of showing

some sub-pixel thermal anomalies, but typically miss many small subtle thermal

anomalies. The Advanced Spaceborne Thermal Emission and Reflection Radiome-

ter (ASTER; Yamaguchi et al. 1998) with multispectral Visible/Near InfraRed

(VNIR), Short Wave InfraRed (SWIR) and Thermal InfraRed (TIR) data measured

at higher spatial resolution (15, 30 and 90 m, respectively), detects even very

small thermal anomalies that are missed by MODIS (Vaughan and Hook 2006).

ASTER can point off nadir to view selected targets, such as erupting volcanoes,

every few days, thus supplementing the nominal 16 day nadir repeat cycle (Pieri

and Abrams 2004).

Here we report on the utilization of ASTER’s thermal infrared (TIR) remote

sensing capabilities and the Jet Propulsion Laboratory (JPL)ASTERVolcanoArchive

(AVA) as tools to systematically analyze the spatial and temporal relationships

(positively correlated, uncorrelated, and/or negatively correlated) of volcanogenic

thermal anomalies and eruptions at Mt. Etna on the Italian island of Sicily. We

have examined approximately 200 day and night ASTER images of Mt. Etna with

respect to:

1. seasonally biased thermal emission baseline behavior;

2. the form and magnitude of time-dependent thermal emission variability;

3. the limits of spatio-temporal detection of pre-eruption temporal changes in

thermal emission in the context of eruption precursor behavior.
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Our goal has been to create and analyze a catalog of data by examining the

magnitude, frequency, and distribution of Mt. Etna’s summit crater thermal

signatures at the highest available spatial resolution (90 m/pixel) to exploit one of

the largest thermal remote sensing time series of Mt. Etna ever compiled. Further,

we demonstrate the value of high spatial resolution TIR time-series data for

monitoring significant volcanogenic hazards and risks, especially in the area of

thermal precursor activity detection.

Important specific questions inherent in the thermal monitoring of volcanoes are:

(a) Can eruption precursor phenomena be reliably detected by optical remote

sensing techniques?

(b) What are the spatial, temporal, and spectral intensity relations and detection

limits as defined by statistical analyses at high accuracy (e.g., snow vs. cloud

mapping for DEM (Digital Elevation Model) creation; low temperature precur-

sor detection; hydrothermal alteration detection);

(c) How do measurements of relevant time-variable precursors relate among them-

selves and to overall eruption processes?

(d) How do such measurements relate to the magnitude, character, and timing of

consequent eruptions?

(e) Are there regional inter-volcano trends in precursor and eruptive phenomena?

(f) Finally, do the points above relate to the style of volcanism, and can we identify

areas where improvement is needed with respect to instrument design or

observation strategies?

Systematic global cataloging of volcanic thermal anomalies as measured from

high spatial resolution spaceborne sensors is still in its infancy. As the topic matures,

it will help to understand the relationships between precursor phenomena and

eruptions in the context of global volcanism, as well as in developing a comprehen-

sive observational strategy for spaceborne global monitoring of volcanoes. More-

over, deviations in thermal flux (especially when correlated with gas emissions and

surface deformation) may be precursors of changes in the activity state of a volcano,

and a subsequent eruption. Nevertheless, eruption forecasting requires both knowl-

edge of the thermal flux data of a given volcanic center and the past relationship

between deviations and eruption onset to recognize and rationalize significant

change. Ultimately emerging methodologies should and will be refined for

applications by the volcanological community to further benefit from presently

held and future data sets for active and potentially-active volcanoes.

In particular, such insights and databases will be of use for researchers studying

volcanoes that threaten population centers (e.g., Mt. Etna, Mt. Rainier, Mt. Hood,

Mt. St. Helens, Vesuvius; the African Rift volcanoes) or air routes (e.g., volcanoes of

the Pacific Northwest (Cascades); Indonesian-Philippine archipelagos), especially

where volcanoes are not routinely monitored due to the combination of remote

location and few resources. Eruption and hazard forecasting for such sites is compli-

cated when there is no sustained local volcanological infrastructure, and when anec-

dotal reports of volcanic activity conflict. High spatial resolution satellite monitoring
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(e.g., ASTER, EO-1) can validate eruption reports, especially where little systematic

data exist beyond satellite measurements (Vaughan et al. 2007).

20.2 Theoretical Background of Volcano Monitoring

There is and has been a long and evolving heritage of the spaceborne monitoring of

volcanoes. Thermal anomalies associated with volcanic activity with low-resolution

weather satellite images were first recognized in the 1960s and 1970s (Gawarecki et al.

1965; Simkin and Kreuger 1977), and subsequent monitoring and analyses progressed

from low resolution hot spot detection to more precise and accurate temperature

measurements using higher spatial resolution SWIR and TIR data (Lombardo et al.

2006; Ramsey and Dehn 2004). Time-series analyses followed along with techniques

for modeling the heterogeneous structure of sub-pixel temperature components (Doz-

ier 1981; Francis and Rothery 1987; Rothery et al. 1988; Crisp and Baloga 1990; Pieri

et al. 1990; Oppenheimer 1993; Oppenheimer et al. 1993a, b; Flynn et al. 1994, 2001;

Oppenheimer and Francis 1997; Oppenheimer and Yirgu 2002; Wooster and Rothery

1997, 2000; Harris et al. 1997, 1999; Wright et al. 1999, 2000; Lombardo and

Buongiorno 2003, 2006; Wright and Flynn 2003; Kaneko and Wooster 2005; Pieri

and Abrams 2005; Vaughan et al. 2005, 2007; Vaughan and Hook 2006; Harris and

Ripepe 2007).

Currently, for prompt response and hazard mitigation, long time series based on

low spatial resolution images (e.g., 250–1,000 m/pixel) with high revisit time are

used, as MODIS (Flynn et al. 2002; Wright et al. 2004; Dean et al. 2004; Harris and

Ripepe 2007), AVHRR (Harris et al. 1997), GOES (Geostationary Operational

Environmental Satellite) (Harris et al. 2001; Pergola et al. 2004), MSG (Meteosat

Second Generation) and other weather satellites (Gouhier et al. 2012).

Far fewer studies have utilized higher spatial resolution data (such as ASTER

[15 m panchromatic, 30 m multispectral VIS-SWIR, 90 m TIR] or Landsat [30 m

multispectral VIS-SWIR, 120 m (MSS, TM) or 60 m (ETM + (Enhanced Thematic

Mapper Plus)) TIR]) to obtain more spatially detailed time-series of thermal

measurements over volcanoes (Pieri and Buongiorno 1995; Pieri and Abrams

2005; Vaughan and Hook 2006; Ramsey and Dehn 2004). This is because of less

frequent observation opportunities of higher spatial resolution ASTER data for a

particular volcano due to its smaller swath width and less frequent revisit as

compared to the weather satellites. Therefore, an increased probability of obscura-

tion by cloud cover exists. However, since the launch of ASTER in December 1999,

140,000+ images of volcanoes have been acquired worldwide with a number of

volcanoes seen frequently enough with ASTER at acceptable cloud coverage. Thus,

useful times series data analyses can be undertaken. For instance, one such analysis

(Pieri and Abrams 2005) detected winter-time summit crater meltwater in advance

of an early spring eruption by the sub-arctic Chikurachki Volcano in the Kurile

Islands. ASTER data are currently the only orbital remote sensing data set which

allow the detection of low temperature thermal anomalies smaller than the resolu-

tion limit of the coarser spatial resolution, MODIS data.
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20.3 Mt. Etna Volcano

20.3.1 Geological Background

Mt Etna is a large basaltic composite volcano near the eastern coast of Sicily. It is

located in a complex geodynamic environment characterized by the collision of the

African and Eurasian continental lithospheric plates (Fig. 20.1a). The geological

history of Mt. Etna is subdivided into four main periods (Branca et al. 2004) starting

with early submarine activity dated about 500,000 years back to the mid-Pleistocene,

to a stratovolcano phase that began about 60,000 years before present, when the

eruptive activity further shifted toward the northwest.

Mt Etna is Europe’s largest volcano, rising 3,320 m above sea level and with a

volume of>350 km3, and one of the most active volcanoes on Earth (in the sense of

eruptive deposit volumes “production” and eruption frequency, Fig. 20.1b). It has

frequent periods of intermittent to persistent activity in the summit area and major

eruptions from new vents on its flanks every 1–20 years. The main feature of Etnean

activity is voluminous lava emission with occasionally strong explosive activity

that occurs in its current configuration of four summit craters. Some of the eruptions

from its flanks also show high degrees of explosivity, such as those in 1669, 1879,

and 2002–2003 (as reported in URL 1 and URL 2). Mt. Etna lies near the eastern

(Ionian) coast of Sicily and occupies a surface area of around 1,200 km2 with a

perimeter exceeding 135 km. Its summit height varies frequently as a function of

eruptive activity or due to minor collapse events at the summit craters. Growth of

the summit was concentrated at the Northeast Crater, a feature that was formed in

1911 with nearly constant activity at the crater since the mid-1950s which has led to

the growth of a large cone around it. Activity at the Northeast Crater became rather

infrequent since the mid-1980s and since then the height of its cone decreased to

3,330 m asl (as measured in 2007). The Southeast Crater which was formed in 1971

has the youngest cone of the four summit craters, and underwent a period of

dramatic growth between 1998 and 2001. Within the last 2 years, that growth has

continued causing instability of the aggrading growing cone and there have been

frequent lava fountains and lava flow eruptions.

Mt. Etna is unique for a number of reasons. First, it has the longest record of

historical eruptions among all volcanoes on Earth (Simkin and Siebert 1994;

Branca and Del Carlo 2004). Its first historically documented eruption occurred at

about 3500 BP, and the total number of documented Mt. Etna eruptions is

209 (18 among them questionable) through late 1993 (Simkin and Siebert 1994).

In addition to these aforementioned eruptions, relatively recently spectacular and

vigorous summit eruptions have occurred in 1995–2001, flank eruptions in 2001,

2002–2003, 2004–2005, and 2008–2009, plus a period of intermittent summit

activity during the period 2006–2011. Over to the last four centuries Mt. Etna has

shown a rapid increase of activity also in terms of magma erupted (Fig. 20.1b).

Most magma ascends to the surface through the central conduit system of Etna,

which leads to the frequent summit activity. Unless magma ascent is very rapid,
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much gas is lost from the magma during its ascent to the surface, and significant

volumes of relatively gas-poor magma are stored in the shallow plumbing system of

the volcano (Fig. 20.2). During many flank eruptions of Etna, such gas-poor magma

exits laterally from the central conduits, resulting in relatively weak or almost no

Fig. 20.1 (a) Mt. Etna geographic location; (b) a plot showing the increase of erupted magma

volume starting from the end of the eighteenth century and a further increase between the end of

the twentieth and the beginning of twenty-first century (Courtesy of Behncke et al. 2005; Neri et al.

2011). Note also the most recent increased rate of magma eruption
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explosive activity but copious lava outflow. Most flank eruptions during the twen-

tieth century were of this type; they are commonly called “lateral” flank eruptions.

Typically such eruptions are accompanied by the cessation of summit activity and

some collapse at the summit craters, as the central conduit system is drained of

magma.

20.3.2 Study Area

Our analysis was focused on the Mt. Etna summit area in order to monitor and

detect changes in the thermal emission during both quiescent and eruptive periods

(e.g., selected Area of Interest [AOI, rectangle] in inset a of Fig. 20.3). A second

area, called “Piano delle Concazze” (inset b of Fig. 20.3) was also selected as a

reference background since it is characterized by mineralogically homogeneous

terrain composed of fine tephra and ash deposits.

20.4 Available Data and Data Processing

20.4.1 ASTER Thermal Infrared Data Set Acquired
Between Year 2000 and 2010

ASTER is one of the five sensors systems on-board the Terra platform launched in

December 1999 as part of the NASA Earth Observing System (EOS). ASTER was

built by a consortium of the Japanese government, industry, and research groups.

Fig. 20.2 Hypothetical and simplified scheme of the magmatic plumbing system of Etna,

illustrating magma transport feeding summit activity and the two different types (lateral

vs. eccentric) flank eruptions (Courtesy of Behncke and Neri 2003, edited)
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Currently, it is the only known available sensor acquiring images at high spatial

resolution in TIR channels (Table 20.1).

Since the launch of the EOS-1 Terra Satellite, images have been acquired over

the 10 year period between 2000 and 2010 for Mt Etna area, in Sicily. During this

period a number of eruptions have occurred with substantially different intensity

and durations. Some occurred at the summit while others occurred on the flanks of

Mt. Etna, and several eruptions have manifested as small lava fountains events.

Here we focus on the changes of thermal emission in the summit area of Mt. Etna

as analyzed in 200 ASTER images, including 91 daytime and 109 nighttime

images. Table 20.2 shows the whole ASTER Mt. Etna data collection reported in

terms of number of images per year, broken down with respect to daytime and

nighttime acquisitions (e.g. 10:00 AM UTC time and about 21:00 UTC time,

respectively).

20.4.2 AVHRR Thermal Infrared Data Set Acquired
During the 2006 Eruption

In 2004 INGV established a NOAA-AVHRR (National Oceanic and Atmospheric

Administration – Advanced Very High Resolution Radiometer) station, which

Fig. 20.3 Aster image acquired on 2009, 7th October . Summit craters area and Piano delle

Concazze reference area shown on ASTER RGB composite from VIS channels. (a) Selected Area

of Interest [AOI, rectangle]: upper left corner ¼ 37�44025.9800 lat 14�59010.9700 lon; lower right
corner ¼ 37�4504300 lat 15�002700 lon; maximum elevation ¼ 3,330 mASL; 550 pixels in area; (b)

AOU center ¼ 37�45053.6400 lat 14�109.8400 lon, elevation ¼ 2,800 mASL, approximately 5 pixels

in area
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consists of a fully integrated antenna tracking and ground station for receipt of

AVHRR satellite imagery.

The AVHRR sensor provides imagery in the visible, near infrared and thermal

infrared wavelength bands. The NOAA satellites have a circular, polar, sun-synchronous

orbit, with an altitude of 850 km andwith a period of about 100min. A sun-synchronous

orbit means that each satellite overpass always occurs at the same point at the same local

time. For the NOAA satellite constellation, this allows up to ten overpasses per day,

depending on the latitude of the volcano target (Table 20.3).

The AVHRR is a radiation-detection imager that can measure the surface

emitted/reflected electromagnetic radiation in different bands ranging through

visible, near IR and IR wavelengths.

For this work we focus on the changes of thermal emission in the summit area of

Mt. Etna as analyzed in 579 overall AVHRR images nighttime starting from 1st

June 2006 to 30th November 2006. The result of this analysis will be compared in

the next sessions with results obtained by using ASTER data. The 2006 eruption has

been chosen for the high availability of ASTER and AVHRR data.

Table 20.1 ASTER instrument characteristics (Yamaguchi et al. 1998)

Instrument VNIR SWIR TIR

Bands and spectral range (μm) 1 0.52–0.60 4 1.60–1.70 10 8.125–8.475

2 0.63–0.69 5 2.145–2.185 11 8.475–8.825

3N 0.78–0.86 6 2.185–2.225 12 8.925–9.275

7 2.235–2.285 13 10.25–10.95

8 2.295–2.365 14 10.95–11.65

9 2.360–2.430

Spatial resolution (m) 15 30 90

Swath width (km) 60 60 60

Cross track pointing �318 km (�24�) �116 km (�8.55�) �116 km (�8.55�)
Quantisation (bits) 8 8 12

Revisit time (days) 16 16 16

Table 20.2 ASTER data collection during 10 years, daytime and nighttime images and main

eruptive events

Year

n. of ASTER images daytime

(about 10:00 UTC)

n. of ASTER images nighttime

(about 21:00 UTC)

Start main

eruptive events

Stop main

eruptive events

2000 4 3

2001 4 13 17 July 9 August

2002 6 21 26 0ctober

2003 13 12 23 January

2004 15 7 7 September

2005 4 10 8 March

2006 8 13 14 July 15 December

2007 15 12 4 September 5 September

23 November 24 November

2008 9 5 13 May

2009 4 7 4 July

2010 9 6 – –
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20.4.3 Data Processing: Method

Considering the goal of detecting very small changes in the radiant emission

from volcano summit craters, the methodology adopted in this study was based

on the analysis of the radiance values measured by the ASTER sensor. We

avoided the application of inversion algorithms to calculate the ground temper-

ature, due to its strong dependence on knowledge of the ground emissivity and

local atmospheric conditions. The availability of a stable reference background

area (“Piano delle Concazze”) very near to the summit crater area permits us to

use a statistical approach for a long time series of observations. A goal of this

study is to calculate changes in thermal emissions from very well calibrated

and geocorrected TIR images to perform a rapid analysis of the thermal

behaviour in active volcanic areas where the ground monitoring is not available

or insufficient.

The ASTER data product L1B data (i.e., radiance at the sensor) was first

separated into daytime and nighttime data, as well as summer and winter

acquisitions. The L1B was used because it contains images already resampled to

the geometry of the appropriate UTM projection with the WGS84 Datum. In fact

the ASTER Level-1B Registered Radiance at the Sensor product contains radio-

metrically calibrated and geometrically co-registered data for the acquired channels

of the three different telescopes of Level-1A data. The Level-1B data set is

produced by applying the radiometric calibration and geometric correction

coefficients to the Level-1A.

The most suitable data for analyses was extracted based on visual inspection

selecting 37 daytime and 65 nighttime cloud free ASTER images. Unfortunately,

the relatively infrequent repetition cycle of ASTER’s (i.e., 16 day nadir repeat) and

cloud occurrence reduced the number of available ASTER observations for the

assessments of volcanologically quiescent and active periods.

For each data set, the maximum radiance, mean radiance and variance were

calculated using ASTER’s TIR Band 13 (10.65 μm) that is not affected by SO2

emissions. This channel was utilized because of the high elevation of the site (e.g.,

over 3,000 m asl, hence low atmospheric column water vapor and atmospheric

correction were not required because in thermal region the aerosol type plays a

negligible role because of the long wavelength) and high emissivity in the selected

Table 20.3 AVHRR instrument characteristics (from NOAA web site, URL 3)

Instrument VNIR MIR-SWIR TIR

Bands and spectral range

(μm)

1 0.580–0.680 3a 1.580–1.640 4 10.3–11.3

2 0.725–1.000 3b 3.550–3.930 5 11.5–12.5

Spatial resolution (km) 1.1 1.1 1.1

Swath width (km) �1,447 1,447 1,447

Revisit time (considering all

NOAA constellation)

Daily (about 7

acquisition per day)

Daily (about 7

acquisition per day)

Daily (about 7

acquisition per day)
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TIR channel (ε ~ 0.95 as measured during field campaigns by means of FTIR

(Fourier Transform InfraRed) instrument, model 102F, Fig. 20.4).

All cloud free data have been processed by means of IDL code and ENVI

algorithms, implemented in three steps:

• first step: from the original cloud free data format (L1B), the georeferenced

images are obtained using ENVI batch command and the radiance at the sensor

is automatically produced.

• second step: for each image the selected area has been analyzed extracting

maximum, variance and mean according to area reported in the in Fig. 20.3.

• third step (only for AVHRR data processing): for each image, considering the

area in the inset a of Fig. 20.3, the pixel containing clouds are rejected. As first

approximation, the cloud presence is verified if the brightness temperature is

negative (AVHRR channel 4 unit is brightness temperature). Only positive

pixels are converted in radiance and used to compute the maximum and the

variance.

20.5 Results and Discussion

Data analysis was performed to test our capability to detect the starting phase of

an eruptive event using the variation in thermal emissions from thermal active areas

(e.g., summit craters or fumaroles fields) as an index. The 10 years ofMt. Etna activity

showed a large number of eruptive episodes spanning modalities that included short-

lived explosive emissions of lava in fountains, to persistent effusive lava flow events

both from summit craters and flank fissures. This high variability volcanic activity

modes made it very difficult to consistently detect initial stages of such events

using the variation of surface emitted radiance as a criteria. Additionally, the large

area of the volcanic structure exhibited a complex overlay of multi-temperature

thermal emission sources comprised of previously-erupted-now-cooling materials in

close proximity of a new thermal event. To distinguish these different volcanic phases,

and understanding of both the spatial and temporal resolutions of satellite sensors

plays a very important role. The ASTER’s daytime time series data acquired shows

high variance in perceived (surface) thermal energy, and the volcanic thermal emis-

sion component is not clearly separable from insolation (Fig. 20.5a). In contrast,

ASTER’s night observations show well defined episodes of increasing thermal

emission of summit craters (Fig. 20.5b) because nighttime data generally exhibit a

more uniformbackground temperature that resulted from the low thermal inertia of the

porous volcanic surface tephra layer (e.g., intrinsically low Shannon entropy). Thus,

we found that the statistical (Gaussian) variance of thermal radiant emissions is able to

delineate main eruptive episodes with respect to the maximum geothermally induced

radiance, especially for the 2001, 2002, 2006, and 2008 eruptive episodes (Fig. 20.5b).

Even if in 2004–2005 an eruption occurred, the variance value is not high enough to

delineate the event. For the two 2007 eruption events no ASTER data were available.
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Particular focus was directed at the 2006 summit eruption which started in July

2006 and showed many different phases although erupting only manifested with

two main lava flows (Fig. 20.6). For this eruption, we analyzed the pre-eruptive

phase since four night time ASTER TIR images were available. These data show an

Fig. 20.4 At the top Etna summit craters area are shown; on the bottom, summit crater scoria/

tephra spectral emissivity measured at this site and spectral signature resampled at ASTER TIR

wavelengths. The ground emissivity has been measured during field campaigns (2009, 7th October

2009) by means of FTIR (Fourier Transform InfraRed) instrument, model 102F
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Fig. 20.5 (a) Maximum summit crater radiances for Mt. Etna, derived from ASTER TIR data,

along with the statistical variance of radiance and in the designated background area during

daytime. (b) Maximum summit crater radiances for Mt. Etna, derived from ASTER TIR data,

along with the statistical variance of radiance and in the designated background area for the

nighttime observations, showing the increase of thermal energy emission from the summit areas

during the 2001, 2002, 2006 and 2008 eruptions. The black line describes for both plots the main

eruptive events reported in Table 20.2. For both plots the adimensional variance is reported on the

right side of Y axis and the radiance (Watt/m2/sr/micron) on the left Y axis, respectively
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increase in the emitted summit crater radiance starting in May 2006 (Fig. 20.7).

In the plot of Fig. 20.7 the presence of an higher value of the background respect to

the summit crater area is probably due to the presence of scattered thin clouds

over the summit crater area which may absorbs part of the emitted radiance toward

the sensor for the 29th April 2006 image.

Regrettably, the relatively low frequency of the ASTER data acquisitions

(nighttime in particular) did not permit verification of similar pre-eruptive increase

in the Mt. Etna summit crater thermal activity for the 2001, 2002 and 2008

eruptions.

Fig. 20.6 Map of the 2006 lava flow location and extent (Courtesy of Behnke et al. 2008)

Fig. 20.7 ASTER maximum radiance emitted from summit craters before the beginning of the

July 2006 eruption. The value inversion on April 29th 2006 is due to thin clouds present on summit

craters which reduce the radiance values compared with the background
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Finally, the variance of the maximum ASTER TIR radiance during the 2006

eruption was compared with the variance of the maximum AVHRR TIR radiance

for the Mt. Etna summit area. Despite the large difference in spatial resolution

difference between the two sensors (ASTER ¼ 90 m/pixel, AVHRR ¼ 1,000 m/

pixel) and the dimension of the considered area which in AVHRR case covers all

parts of the summit ofMt. Etna, the plot in Fig. 20.8 shows a good correlation in terms

of trend and values between the two data sets. ASTER data show a higher variance of

maximum radiance values than AVHRR data due to the presence of active lava flows.

Clearly, the lower spatial resolution of the AVHRR pixels dilutes and smoothes the

contribution of emitting pixels in the variance of the radiant intensity, which is

resolved at over two orders of magnitude greater spatial resolution in the ASTER

TIR data. Even if this comparison shows that AVHRR sensor provides the frequency

necessary to detect the onset of large thermal anomalies, its low spatial resolution

allows us to detect only very large or very hot anomalies; similarly the ASTER sensor

provides information at an improved spatial scale more suitable for scientific analysis,

but less useful for a rapid response monitoring systems (Ramsey and Dehn 2004)

because of relatively sparse temporal sampling.

20.6 Conclusion

Clearly, the monitoring of thermal features associated with the onset of volcanic

eruptions is important for fundamental scientific reasons. Such work has crucial

significance for anticipating and mitigating volcanic hazards, not only to people

Fig. 20.8 Cross-comparison of variance values obtained by using AVHRR and ASTER data

acquired during the 2006 eruption
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living in close proximity to volcanic features, but also for those living at long

distances from the erupting volcano, but who nevertheless may be affected from

related phenomena such as airborne ash hazards.

Recent advances in satellite and airborne remote sensing technologies provide

volcanologists with new tools for measuring the thermal emissions of restless

volcanoes. In particular, subtle (or not-so-subtle) changes in perceived radiance

may be prompt precursors of impending eruptions.

Mt. Etna presents an excellent opportunity for systematic investigation of

the potential relationships between changes in thermal radiance and the timing,

magnitude, and mode of subsequent eruptive activity because of its current restless

state and frequent summit crater activity that is often associated with lava flow

extrusions from its summit craters and flanks. In particular, the data record of

remote sensing observations provide one of the most comprehensive databases

available for volcanoes on Earth. Here especially the Landsat and ASTER earth

observation missions are of unprecedented value (e.g., Pieri et al. 1990; Pieri and

Buongiorno 1995; Wright et al. 2000; Pieri and Abrams 2004; Lombardo and

Buongiorno 2006).

We are now just beginning to mine such data archives and the current insights

are preliminary. However, at least a couple of conclusions can be drawn from the

results presented here:

1. For Mt. Etna, the total thermal energy emitted from its summit craters appears
to increase before an eruption. While this may seem intuitive, it is not a

guaranteed situation. It is more likely for basaltic volcanoes with fairly open

plumbing systems with relatively low viscosity magmas. For volcanoes that are

more silicic, and thus have higher viscosity magmas (e.g., Andean volcanoes,

such as Lascar), the opposite can be true. This results in the restricted magma

ascent in advance of internal pressure build-up and subsequent paroxysmal

explosions. This does not seem to be the current pattern at Mt. Etna.

2. From the remote sensing perspective, an increase in the variance of Mt. Etna
summit crater thermal energy output appears to be correlated with the eruption
onset. This tends to be more evident in night time data. However, during an

eruption the signal-to-noise ratio (SNR) of summit crater variance to back-

ground variance is a factor of five (or more) higher than the SNR of maximum

radiance (dependent on measurement of the radiance of single pixel) vs. average

background radiance. For data mining applications in newly emerging large

time-series data bases this distinction can be significant for automatic eruption

detection algorithms.

3. Volcanic summit crater activity at Mt. Etna is well-characterized at spatial
scales of <100 m/pixel and characterized relatively poorly at spatial scales
equal to or greater than 1,000 m/pixel for TIR data. At larger spatial scales,
maximum temperatures and variances are diluted and smoothed. In daytime data

effects of solar insolation hamper the detection of relevant changes in summit

crater radiant emissions, except for very strong precursor activity. This has not
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been viewed as a persuasive argument to increase the spatial resolution of new

TIR sensors planned for future earth orbital missions in Europe or the United

States. However, data and analyses presented here provide concrete evidence of

such a monitoring scenario. For volcanoes elsewhere, where observing

conditions may not be as optimal (e.g., frequent cloud cover, high humidity,

cryo-burdened summits – see Pieri and Abrams 2005) a spatial resolution

<100 m/pixel may be critical in detecting thermal precursors.

4. Frequent temporal sampling is also a crucial component in detecting thermal
changes that may precede eruptions, even for very well-posed volcano natural
laboratories like Mt. Etna. Current and recent orbital remote sensing missions in

low earth orbit (e.g., ASTER, EO-1, Landsat) have nadir repeat intervals of

about 16 days. ASTER with off-nadir pointing can reduce the revisit time up to

3 days but off-nadir view looks are disadvantageous in viewing geometry.

Nevertheless, future missions should investigate schemes for increasing tempo-

ral sampling at high spatial resolutions (<100 m/pixel) for TIR instruments.

Some strategies could include a constellations of satellites (e.g., “cube-sats”) or

satellites with much larger instantaneous fields of view. Clearly in the future,

such approaches are crucial to improve both our basic knowledge of volcanoes,

and our ability to protect property and human life from volcanic hazards.

We also hope that our work will support the development of future multispectral

and hyper-spectral airborne (e.g., manned and UAV) and spaceborne imagers by

providing a basis for instrument requirements (e.g., spatial and spectral resolution,

wavelength range, dynamic range) with respect to volcanogenic thermal anomaly

detection as convolved with intrinsic (e.g., flux, intensity, emissivity), and extrinsic

(e.g., atmospheric emissions, water vapor, clouds) scene parameters. Such knowl-

edge will also significantly influence the development of data collection strategies

(e.g., image swath, repeat time, pointing capability, orbital parameters) to maxi-

mize the probability that subtle early low intensity thermal anomalies related to

subsequent eruption activity will be effectively detected. We hope that this work

will help to guide the development of future airborne (manned/unmanned) and

orbital instrumentation for NASA (National Aeronautics and Space Administra-

tion), ESA (European Space Agency), ASI (Agenzia Spaziale Italiana), DLR

(German Aerospace Center) and others, for prediction and mitigation of volcanic

hazards, and in the pursuit of basic knowledge of volcanoes.

Acknowledgments The authors would like to thank US and Japanese colleagues of the ASTER

Joint Science Team, the NASA Land Processes Distributed Active Archive Center in Sioux Falls,

South Dakota (USA) and the Earth Remote Sensing Data Analysis Center (ERSDAC) in Tokyo

(Japan) for cooperation in obtaining and analyzing the ASTER data used for this study, as well as

the Japanese Ministry of Economy, Trade and Industry (METI) for its support of the ASTER

mission. This work was carried out, in part, at the Jet Propulsion Laboratory (JPL) of the California

Institute of Technology under contract to the Science Mission Directorate of NASA. Moreover the

authors would like to thank Marco Neri and Boris Behncke working at INGV Mt. Etna Observa-

tory who have provided the Mt. Etna eruption history and maps and Massimo Musacchio working

at INGV in Rome for many helpful discussions.

20 Thermal Analysis of Volcanoes Based on 10 Years of ASTER Data on Mt. Etna 425



References

Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol

65:461–476. doi:10.1007/s00445-003-0274-1

Behncke B, Neri M, Nagay A (2005) Lava flow hazard at Mount Etna (Italy): new data from a

GIS-based study. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geol

Soc Am Spec Pap 396, pp 187–205. doi:10.1130/0-8137-2396-5.189

Behncke B, Calvari S, Giammanco S, Neri M, Pinkerton H (2008) Pyroclastic density currents

resulting from interaction of basaltic magma with hydrothermally altered rock: an example

from the 2006 summit eruptions of Mount Etna. Italy Bull Volcanol 70:1249–1268.

doi:10.1007/s00445-008-0200-7

Branca S, Del Carlo P (2004) Eruptions of Mt. Etna during the past 3,200 years: a revised

compilation integrating the historical and stratigraphic records. In: Bonaccorso A, Calvari S,

Coltelli M, Del Negro C, Falsaperla S (eds) Etna volcano laboratory, Geophysical monograph

series 143. AGU, Washington, DC, pp 1–28, 369pp

Branca S, Coltelli M, Groppelli G (2004) Geological evolution of Etna volcano. In: Bonaccorso A,

Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Etna volcano laboratory, Geophysical

monograph series 143. AGU, Washington, DC, pp 49–63

Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95

(B2):1255–1270

Dean KG, Dehn J, Papp KR, Smith S, Izbekov P, Peterson R, Kearney C, Steffke A (2004)

Integrated satellite observation of the 2001 eruption of Mt. Cleveland, Alaska. J Volcanol

Geotherm Res 135:51–72

Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel

resolution. Remote Sens Environ 11:221–229

Flynn LP, Mouginis-Mark PJ, Horton KA (1994) Distribution of thermal areas on active lava flow

field: Landsat observations of Kilauea, Hawaii, July 1991. Bull Volcanol 56:284–296

Flynn LP, Harris AJL, Wright R (2001) Improved identification of volcanic features using Landsat

7 ETM+. Remote Sens Environ 78:180–193

Flynn LP, Wright R, Garbeil H, Harris AJL, Pilger E (2002) A global thermal alert using MODIS:

initial results from 2000–2001. Adv Environ Monit Model 1:37–69

Francis PW, Rothery DA (1987) Using the Landsat thematic mapper to detect and monitor active

volcanoes: an example from Lascar Volcano, northern Chile. Geology 15:614–617

Gawarecki SJ, Lyon RJP, Nordberg W (1965) Infrared spectral returns and imagery of the Earth

from space and their application to geological problems: scientific experiments for manned

orbital flight. Am Astronaut Soc Sci Technol Ser 4:13–133

Gouhier M, Harris A, Calvari S, Labazuy P, Guéhenneux Y, Donnadieu F, Valade S (2012) Lava
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Chapter 21

Thermal Infrared Remote Sensing of Surface

and Underground Coal Fires

Claudia Kuenzer, Jianzhong Zhang, Li Jing, Guo Huadong,

and Stefan Dech

Abstract Surface and underground coal fires are burning in numerous countries

worldwide. China, India, the USA, Australia, Indonesia, South Africa, and many

other countries all report uncontrollably burning coal fires. They ignite through

spontaneous combustion of coal, or through lightning, forest fires, fires in garbage

dumps, or careless human behaviour. Coal fires lead to the loss of the valuable

resource and lead to the emission of green-house gasses as well as toxic gasses.

These gasses contribute to climate change and also impact human health. Vegeta-

tion above the fires deteriorates. Due to the volume loss underground coal fires also

trigger land subsidence and surface bedrock collapses. The surface and under-

ground fires can be detected and monitored by means of remote sensing. Data

acquired with handheld thermal cameras, airborne sensors, and also spaceborne

sensors have been analyzed by numerous authors. However, exact and simulta-

neously standardized as well as transferable methods for coal fire detection and

monitoring are hard to establish, and research gaps still exist This chapter presents a

broad overview of past and current coal fire work, as well as the challenges which

can be addressed based on thermal data of recent and upcoming sensors.
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21.1 Introduction to Coal Fires

Coal fires are fires which occur in accumulations of coal. Coal fires can burn

sub-surface in underground coal seams, or can occur as surface coal fires in exposed

seams, coal storage piles, or coal waste piles. The oxidation of the carbon contained

in the coal with the oxygen of the surrounding air is an exothermal process, during

which heat is released. If this heat cannot disperse easily the coal can start to ignite

at temperatures as low as 80 �C. This process is termed spontaneous combustion.

It occurs in well-aerated coal volumes underground, as well as in surface accumula-

tions. Spontaneous combustion probability is the higher, the lower the rank of the

coal, the higher its volatile contents, the more the coal volume is fractured, the larger

the coal’s inner surface (e.g., through frequent quelling and shrinking due to mois-

ture), and the hotter the general outside temperatures. Mining activities often produce

many of the above-mentioned preconditions (e.g., by exposing formerly covered

seams to air, fracturing the coal volumes, increasing the inner reactive surface, etc.)

(Banerjee 1982, 1985; Banerjee et al. 1972). Anthropogenic activity can also lead to

the ignition of coal volumes, such as careless handling of fire (throwing away burning

cigarettes in mines, cooking activities, mine gas explosions, power shortages). Coal

fires can also be ignited via lightning, nearby forest and peat fires, or burning garbage

dumps (Coward 1957).

Kuenzer and Stracher (2011) elaborated that coal fires can be classified into

surface versus subsurface coal fires, ancient versus recent coal fires, and natural

versus human-induced coal fires, to give only some examples. Furthermore, coal

fires can also be ranked according to their burning stage into recently ignited,

accelerating, steadily burning, burning out, and extinct coal fires.

The fires occur everywhere around the globe and are a much larger geohazard than

the public is aware of. Numerous coal fires rage in coal mining areas of China

(Kuenzer 2005) and India (Bhattacharya et al. 1991; Bhattacharya and Reddy

1994), where the problem is most prominent. But also in the USA (Coates et al.

2005), Australia (Ellyett and Fleming 1974), South Africa (Bell et al. 2001; Pone

et al. 2007), Venezuela, and eastern Europe coal fires burn uncontrollably. Figure 21.1

below presents a map of fire locations the authors are aware of.

In the USA a burning garbage dump near the small town of Centralia in

Pennsylvania led to the ignition of an underground coal seam in 1962. The coal

seam started to burn and smoulder underground. This led to volume loss under-

ground, bringing with it dangerous sudden land subsidence and collapse. Toxic

fumes started to seep through cracks in the overburden bedrock and into people’s

houses. After years of unsuccessful coal fire fighting the town of Centralia had to be

evacuated. Today, Centralia is an uninhabited ‘ghost town’ and the coal fire

continues to burn (Chaiken et al. 1998; Elick 2001).

Negative impacts of coal fires are countless. They release greenhouse-relevant

(CO2, CH4) and toxic gases (CO, N2O, SO2, NOx, etc.) which are a threat to climate

and human health (Finkelmann 2004), as well as to all biota in the vicinity of the
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fires. They lead to collapse and fracturing of the land surface due to the volume loss

underground, and thus endanger settlement, infrastructure, and general land access.

They furthermore lead to the loss of the valuable economic resource coal, as coal

that burnt can no longer be sold on the national or international coal market

(Kuenzer et al. 2007b) (Fig. 21.2).

Coal fire extinguishing is difficult. Basically, three approaches exist. Firstly, one

can deplete the fire of its combustible – the coal itself. This is usually done by

digging out burning parts of the coal seam and transporting them to distant areas

where the burning coal cannot ignite further coal layers. This is a very dangerous

approach, as miners have to excavate glowing coal and load it onto trucks, and

injuries are common. However, burning parts of a seam can also be separated from

not-yet affected parts of the seam through trenches. In this way burning volumes

can also be isolated. A second method is to deplete the fire of oxygen. This is

usually done by covering surface or underground fires with loess, sand, or other

overburden material in the hope that the filling of cracks, vents, and oxygen supply

pathways to the underground will extinguish the fire. In advanced or economically

strong mines, colloidal foams (mixtures of water, ash, and oxygen-reducing

chemicals) are pressed into the underground via high pressure systems. The third

method is to deplete the fire of its energy. This is undertaken via the injection

of water. However, it has proven that fire extinguishing is a very complex task,

and oftentimes fires flare up again only weeks after they were thought to be

extinguished (Fig. 21.3).

0 2.500 5.000 7.50010.000

Kilometers

1:200.000.000

Fig. 21.1 Coal fires worldwide. The map shows where coal fires have been reported. It was

generated based on the best knowledge of the authors and probably underestimates the fire

situations, as many coal fire areas are still unknown today
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21.2 An Overview of Coal Fire Remote Sensing

Coal fires are an ideal phenomenon for remote observation and analysis, as access to

the fire areas is usually limited for safety reasons. The bedrock surface above

subsurface coal fires can easily reach temperatures of 60 �C up to several 100 �C
due to long term conduction of underground heat. Hot gasses released from vents,

cracks, and fissures in the overlying bedrock have been recorded to even exceed

Fig. 21.2 Subsurface coal fires. The release of greenhouse relevant and toxic gasses, land

subsidence due to volume loss underground, vegetation deterioration, crystallization of toxic

minerals, and the genesis of pyrometamorphic rock are only some of the visible consequences

(All photographs taken in Wuda, China, by C. Kuenzer)
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1,000 �C (Kuenzer and Stracher 2011). Furthermore, many coal fire areas are located

in remote areas which are already hard to access, irrespective of the fire hazard.

In the infancy years of suitable spaceborne thermal sensors for coal fire mapping

and monitoring in the 1970s, thermal assessment of coal fires was still mainly

undertaken based on airborne surveys. Especially airborne coal fire monitoring in

the USA played a crucial role (Greene et al. 1969; Kim and Chaiken 1993). Even

today, numerous fire surveys are still undertaken with thermal cameras and thermal

scanners mounted on airplanes or helicopters. Renner (2005), for example,

undertook a very detailed survey of over 50 uncontrolled coal fires burning mainly

in abandoned mines in the state of Colorado. Here, especially the South Canyon

coal fire not far from Glenwood Springs, ignited by a forest fire, has reached fame

through numerous publications (Stracher et al. 2007). But also in other countries

airborne surveys have been the preferred choice for detailed detection of fire centres

and extent, or the monitoring of extinguishing activities, such as undertaken in the

Wuda coal mine, China, by the Beijing Remote Sensing Center, BRSC. Airborne

Fig. 21.3 Examples of coal fire extinguishing attempts. Upper left: on the upper left part of the
image can be seen former mine entrances, which were improperly sealed with loess and sand. The

coal seam below is burning. To rescue other parts of the seam from igniting as well (the part where

the people are located), a trench was dug by local miners to separate the burning part of the seam

from the not (yet) burning part. The other three photographs show the attempt to pump a mixture of

water, coal dust, ash, and special colloids into the underground to fill up cavities and cracks and

therefore deplete the fire of oxygen (Photographs taken in Wuda, China, by J. Zhang)
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survey has the advantage that it delivers data of very high spatial accuracy in the

below-meter range, but it is also very costly. An airborne campaign including

renting the airplane, pilot, and scanner, and expenses for gas, flight planning, data

analysis, etc. can easily cost several hundred thousand euros or US dollars. Further-

more, airborne data are difficult to analyze, with complex geometry due to the

airplane’s pitch, roll, and gear during the data acquisition process, as well as relief

induced object displacement.

Since the onset of high resolution thermal remote sensing with sensors such as

Landsat MSS (Multispectral Scanner) and Landsat TM (Thematic Mapper) (ther-

mal bands at 120 m resolution), coal fire areas have been monitored and analyzed

from space (Zhang et al. 2004). Research focussed for many years on the world’s

large coal fire areas – such as the coal fires burning (up to today) in the Jharia

coal field in India (Saraf et al. 1995; Agarwal et al. 2006; Chatterjee 2006;

Gangopadhyay 2006), or the coal fires analyzed in depth in the 1980s and the

1990s in Xinjiang, China (Rosema et al. 1999; Cassells 1997; Prakash et al. 1999).

From 2000 to today especially the numerous coal fires in the Wuda syncline, Inner

Mongolia, China, were investigated (Kuenzer 2005, 2013; Litschke 2005; Litschke

et al. 2005), and coal fire research in the USA has also picked up speed again

(Stracher and Taylor 2004). Currently, a five volume coal fire atlas, published by

Elsevier, is being compiled, of which the first two volumes have already been

released. This work of literally over thousands of pages on coal fires is probably the

most comprehensive work ever compiled on this subject and addresses all coal fire

research disciplines, such as coal fire geology, geomorphology, chemistry, miner-

alogy (Stracher et al. 2012), geophysics (Wessling et al. 2008), and last but not least

also surveying and monitoring techniques based on remote sensing data.

Foci of spaceborne analyses are manifold. Kuenzer (2005) investigated the

impact of coal fires on vegetation degradation in the vicinity of the fires and

found out that the underground heat in the root zone as well as hot and toxic gasses

released by vents and cracks lead to the deterioration of plants. One indicator of

underground coal fire activity therefore can be abnormally low vegetation density

on the surface.

Coates and Heffern (2000) and Kuenzer (2005) analyzed whether pyrometa-

morphic rocks – an indicator of coal fires – can be detected in remote sensing data

from sensors such as those on Landsat, Aster (Advanced Spaceborne Thermal

Emission and Reflection Radiometer), and Quickbird. Pyrometamorphic rocks are

rocks which change their colour and texture once they are heated by an adjacent

fire. These rocks can have been partially remelted. Usually they have a yellowish,

orange to reddish colour and can be well differentiated from the typical background

rocks (Zhang 1996).

Chen (1997) tried to detect coal fire related land subsidence based on interfero-

metric synthetic aperture radar data. Several authors found that such approaches are

not suitable for coal fire related subsidence analysis, as subsidence in these areas

often occurs very suddenly (sudden crack of a sinkhole, very much comparable to

subsidence in karst regions) rather than very slowly – like, for example, in very large

(non-coal-fire-affected) mining areas or region of groundwater withdrawal. Sudden
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subsidence, however, means that the connection of fringes in interferograms is lost,

and subsidence thus cannot be quantified.

Yang et al. (2008) focussed on high resolution optical data from sensors such as

those on Ikonos or Quickbird to map coal fire induced subsidence and cracks in the

overburden bedrock associated with the underground fire front. It is known that the

‘crack fields’ and fissures on the surface of underground fires usually develop

orthogonal to the spreading direction of the fire and that cracks and fissures usually

act as a precursor to fire movement and can be found in an area also a few meters

ahead of the current underground fire front.

Cracknell and Mansor (1992), Kuenzer et al. (2008a, b, c, d), Yang et al. (2005),

Zhang (2004), and Hecker et al. (2007) employed time series of thermal daytime

and nighttime data to detect coal fire related thermal anomalies with semi-

automated and automated methods, and also to derive coal fire related energy

release for the extracted burning clusters (Tetzlaff 2004). It was in 2004 that for

the first time unknown coal fires were first detected in remote sensing data, and

were later found and validated at remote locations in-situ in the field (Kuenzer et al.

2007a). This was a breakthrough in spaceborne remote sensing of coal fires, as

before fires were usually analyzed whose location and extent were already known

from in-situ observations.

In the past 5 years one focus has been the attempt to utilize remote sensing data

to estimate coal fire related greenhouse gas emissions, which might be interesting

for post-Kyoto relevant emission trading schemes among countries, such as the

Clean Development Mechanism, CDM. However, up to today it was not possible to

establish a clear emission baseline for any of the coal fires worldwide that would

have led to the trade of emission certificates (van Dijk et al. 2011; IPCC 2006; Ide

and Orr 2011; Kuenzer et al. 2007c).

21.3 In-Situ Mapping of Coal Fires

21.3.1 Coal Fire Characteristics

Surface coal fires occur in open pit coal mines as well as in coal storage and waste

piles. They are usually easy to identify, as smoke rising from the burning coal can be

observed. Minerals such as sulphur or ammonia condensate near the burning coal are

often visible as yellowish or whitish crusts (Fig. 21.4). Sometimes, pyrometamorphic

rocks can also form within coal waste piles, where surrounding bedrock (e.g., shale,

sandstone, etc.) changes in texture and colour. Surface fires are usually easy to detect

in thermal remote sensing data, as the burning coal is not covered by overlying

bedrock layers. However, surface coal fires are usually small in size (restricted to the

size of a waste or storage pile) and as they are easy to access they are usually

extinguished relatively fast (especially in storage piles, which even occur in coal

volumes transported on ships). In addition to their thermal signal, these fires can, for
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example, also be indirectly detected. If the first snow falls, the area of surface coal

fires usually remains snow-free, as the snow will immediately melt. This phenome-

non can be observed in remote sensing data.

Underground coal fires are a more complex phenomenon Heat from fires in

underground seams, abandoned, or even operating mines can be transferred to the

bedrock surface via conduction (a process that takes very long, and only yields a

weak thermal signal on the surface), or via convection of hot gasses released

through vents, cracks, and fissured that form due to the volume loss underground.

The gasses released can reach temperature exceeding several hundred degrees

Celsius. However, the localities are very small in spatial extent. If a 20 cm long

fissure releases 200 �C hot gas, this might only slightly elevate the temperature

recorded in a (for example) 60 by 60 m thermal Landsat ETM+ (Enhanced The-

matic Mapper Plus) pixel. Thus, the main challenge for the remote sensing based

detection of underground fires is the extraction of very subtle thermal anomalies

with temperatures only slightly elevated against the background.

21.3.2 Mapping with Radiometers and Handheld
Thermal Cameras

Figure 21.5 depicts coal fire signals as detected with handheld thermal cameras.

It can be observed that the thermally anomalous events are relatively confined to the

openings in the overburden bedrock. A detailed overview of thermal characteristics

of coal fires can be found in Zhang and Kuenzer (2007). These authors present in

depth insights on how thermal anomalies behave with growing perpendicular

distance to the bedrock opening, how thermal signals behave vertically when

Fig. 21.4 Measuring underground coal fire related temperatures in-situ with handheld Raytek

radiometers (Small image courtesy of Raytek. Photographs: C. Kuenzer (left), C. Hecker (right))

436 C. Kuenzer et al.



Fig. 21.5 Coal fires as observed with a handheld thermal camera (FLIR). The upper two images

show a shrub on a sandstone surface. An aluminium pocket light acts as a scale. The two images

visualize the impact of daytime versus nighttime observation. During the daytime (left) the shrub
(due to its water content) is colder than the surrounding sandstone. The shiny aluminium of the

pocket light leads to incorrect temperature readings in the minus-range, due to the extremely low

emissivity (see Chap. 1). During nighttime (upper right) the shrub is warmer than the surrounding

sandstone (high thermal inertia of water in the shrub). Average background temperature of

the sandstone is about 40–50 �C during the day, but only around 10–20 �C during the night. The

middle row depicts images showing cracks in the bedrock surface, where hot gasses reach the

surface. Temperatures at the cracks (which are below 1 m in length) reach well above 100 �C.
A pocket light and a geology hammer act as a scale. In coal fire areas several such hot anomalies

might exist within, e.g., a 60 m � 60 m area (typical Landsat ETM+ pixel); however, the

anomalies are usually sub-pixel phenomena. The lower two images depict a very hot crack

(left), where the thermal camera saturates (red, temperature far above 350 �C). The round object
on the left is the aluminium lid of a cooking pot (scale). The lower right image displays the thermal

anomalies of underground coal fires observed in a nighttime landscape
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measured inside a vent, crack, or fissure, and also how the thermal signal of the

background is impacted by diurnal temperature variation due to time of day, slope,

aspect, and material characteristics. Thermal radiometer readings published by

numerous authors confirm that subsurface, fire related thermal signals can range

from temperatures only slightly above the background to over 1,000 �C.
Very important is the fact that thermal anomalies have a higher contrast against

the background in thermal nighttime data. During the night the bedrock surfaces

and objects in the landscape cool off, and a thermal anomaly can be picked up easier

than in daytime data. This can also be observed in the sketch shown in Fig. 21.6

below. Figure 21.6 shows that solar illumination impacts the daytime signal of the

background surfaces, which is higher and also exhibits a higher variability than

during nighttime. Even though the peak anomaly is similar for both recordings, the

contrast between the fire related anomaly and the background is stronger in the

nighttime data.

The impact of observation time on fire detection and monitoring was assessed in

detail in Tetzlaff (2004), Zhang (2004), Zhang et al. (2007), and Zhang and

Kuenzer (2007).

Concerning the time of the day, imagery acquired pre-dawn (shortly before

sunrise, when the solar effects of the previous day are least accentuated) are best

suited for anomaly extraction, but general nighttime data are also suitable and

should be favoured over daytime data.

Fig. 21.6 Underground coal fire induced thermal anomalies during daytime and nighttime;

schematic sketch
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Concerning season, data acquired in the winter (scenes should be snow-free)

yield the largest temperature contrast. However, scenes acquired in fall and spring

are also suitable, while scenes acquired in summer should be avoided.

The higher the spatial resolution the larger the anomalous area that can be

extracted. Landsat-7 ETM+ data outperforms Landsat TM (Thematic Mapper)

and MSS (Multispectral Scanner) data, as well as even coarser resolution MODIS

(Moderate Resolution Imaging Spectroradiometer) or Envisat AATSR (Advanced

Along-Track Scanning Radiometer) data. However, for an in-depth assessment and

mapping, airborne thermal scanner data as well as handheld thermal camera data

and radiometer recordings deliver the most detailed picture.

21.4 Coal Fire Thermal Anomaly Detection

in Remote Sensing Data

21.4.1 Threshold Techniques for Anomaly Detection

Thermal anomaly detection for coal fire analyses has often been undertaken

employing thresholding approaches. With a threshold approach the thermal image

analyst usually defines a temperature above which an area is declared ‘anomalous’.

However, the shortcomings of such an approach are firstly, that subsurface fire

related anomalies which are weaker than the threshold cannot be detected, and

secondly that the size of thermally anomalous clusters is very arbitrary. The result

of a coal fire mapping will look completely different if, for example, an analyst

chooses a threshold at 65 �C or at 70 �C. Therefore, simple threshold approaches

have often been criticized as too simplistic for the complexity of the phenomenon

(Figs. 21.7 and 21.8).

To overcome the shortcomings associated with simple thresholding, Zhang

(2004) developed an algorithm which enables the extraction of subtle regional

thermal anomalies. This algorithm enables extraction in one and the same image

of, for example, a 55 �C hot pixel within a surrounding of 40 �C hot pixels, as well

as a 70� hot pixel in a background of 60 �C hot pixels. This means that pixels of

different temperatures can be detected as thermally anomalous. The algorithm is

based on a moving window approach, which is explained in the following section.

21.4.2 Moving Window Approach for Subtle Anomaly
Extraction

As summarized in Kuenzer et al. (2008d), “the algorithm for automated thermal

anomaly extraction from the thermal bands of either Landsat 7 ETM+, ASTER or

MODIS uses raw satellite data (DN values) or calibrated and corrected thermal data
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as input for sub-image statistical analysis. Within a moving window of varying size

the histogram for these subsets of the scene are investigated concerning the

occurrence of thermally anomalous pixels. Image histogram statistics of coal fires

were studied in very great detail and the average statistical “behavior” of coal fires

within thermal images was determined. Specific features within the subset

histograms (first local minimum after the main maximum) could be defined as

thresholds allowing the separation of thermally anomalous pixels from background

Fig. 21.7 Principle and shortcomings of simple thresholding approaches. Thresholds yield anom-

alous images even if they do not exist (upper), and might lead to a huge under- (middle), or over-
estimation (lower example) of the thermally anomalous area
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pixels. With the concept of a moving window, each pixel within the scene is

sampled many (>1,000) times. Depending on how often a pixel is regarded as

thermally anomalous (>70 % of cases), it is declared as a thermal anomaly (Zhang

2004). The advantage of this approach is that contrary to an overall threshold

Fig. 21.8 Disadvantages of simple thresholding in coal fire related analyses. The upper left
thermal image stems from September 2002. Coal fire related thermal anomalies as mapped

in-situ during a field campaign are overlain in yellow. We can see that – depending on the choice

of the threshold – the number of pixels declared as anomalies varies considerably. When setting

the threshold at 25 �C (all pixels above 25 �C declared anomalous) most sunlit slopes (especially

sun exposed desert sand dunes, as well as other hills) are extracted as well. At 28 �C only a few

anomalies – still including some coal fires – remain. However, in the colder December image

already a 22 �C threshold leads to the extraction of some coal fire anomalies, but also here solar

effects and sunlit slopes are likewise extracted. There is no overall valid threshold; depending on

image acquisition time, thresholds have to be chosen interactively, which is unsatisfying. Large

subset: UL: 39�41054N, 106�20022E, LR: 39�17057N, 107�05003E
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definition regional thermal anomalies will be extracted. This means that – fully

depending on the surrounding background – thermal anomalies of completely

different temperature can be extracted” (Kuenzer et al. 2008d: 9).

This is also depicted in Fig. 21.9. The temperature band is analyzed within a

moving filter of varying window size (19 * 19 up to 35 * 35). The histogram of this

sub-window can contain no thermal anomaly at all, or be gradually filled up to

100 % with a thermal anomaly. Zhang (2004) assumes that every sub-window

histogram is made out of the part of the histogram representing the background DNs

(temperatures) (in Fig. 21.9, green) and the thermally anomalous part (in Fig. 21.9,

red). The first local minimum after the main histogram maximum is defined as the

relative threshold to separate the two. This automated method will lead to a loss of

thermal anomalies if, e.g., the sub-window is 100 % filled by a thermal anomaly.

It will furthermore indicate coal fire or thermal anomalies if no thermally anomalous

Fig. 21.9 Method for the extraction of subtle thermal anomalies of differing temperature relative

to their background (Zhang 2004; Kuenzer et al. 2008d)
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area is contained in the image and the high temperature end of the histogram with a

Gaussian distribution is extracted. However, since every center pixel is investigated

over 1,000 times and has to be declared “thermally anomalous” in at least 70 % of the

tests, this last error is kept as low as possible (Kuenzer et al. 2008d).

Furthermore, the thermally anomalous pixels are clustered according to an 8-

neighbourhood scheme. Since one pixel is surrounded by eight other pixels, it is

checked whether directly adjacent pixels are also anomalous, so that clusters can be

formed These thermally anomalous clusters are numbered and statistically

investigated for their minimum, maximum and mean DN, their standard deviation,

and their spatial coverage. For example, coal fire areas do not exceed a certain size

(>1 km2). If the algorithm picks out an anomalous cluster of several square

kilometers it is probably a sun illuminated slope. Warm water surfaces can be

excluded based on the cluster’s DN or temperature variance. While water surfaces

show a very low temperature variance, coal fire clusters show a high variance

(Zhang 2004). In this way, the final output image only contains thermal anomalies

of small size, which have a reasonable chance of being coal fires.

Nevertheless, automated statistical analysis of thermal anomalies also leads to

the extraction of anomalous pixels unrelated to coal fires. These cannot necessarily

be distinguished from a coal fire anomaly. Such anomalies can be small, sun

illuminated surfaces, thermal anomalies resulting from the heating of houses,

industry, the burning of agricultural fields or garbage, limestone burning, or even

forest or grassland fires. Demarcated coal fire (risk) areas derived with methods

presented in Kuenzer (2005) can serve as a spatial limitation to exclude many of

these thermal anomalies not stemming from coal fire influence (Zhang 2004)

(Fig. 21.10).

21.5 Coal Fire Quantification and Emission Estimation

Coal fire related emission estimation based exclusively on remote sensing data has

so far not been successful. However, this is not due to a lack of available ideas or

methods, but rather to a lack of suitable thermal data of high spatial and high

temporal resolution.

Coal fires release mainly CO2, CO, SO2, and in some cases also CH4. These are

the predominant gasses, but others occur as well. Coal fires underground do not

burn in a ‘clean’ efficient process, as would be the case in a coal fired furnace for

electricity generation. They smoulder under conditions with varying oxygen avail-

ability and intruding precipitation-related moisture. However, the relationship

between the amount of coal burnt and the greenhouse gasses released can be

established, if coal petrology and chemistry is known. In this way a triangle

relationship can be established (Fig. 21.11).

If it is known howmuch coal is burning (or has burnt in a certain amount of time)

underground, one can calculate how much greenhouse gas was released. Remote

sensing sensors which monitor gas concentrations are however much too coarse in
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spatial resolution to be of any use for coal fire related research. But additionally, a

relationship exists between coal fire related energy release and the amount of coal

burning (or burnt) underground. It is therefore possible to observe coal fires and to

derive the coal fire related energy release from thermal remote sensing data. From

the energy release one can then calculate back to the amount of coal burning.

Tetzlaff (2004) has calculated the energy release from coal fire clusters which

were derived by in-situ mapping. Figure 21.12 depicts this based on Landsat ETM

+ nighttime data for the Wuda coal mining area, China.

However, so far, it has not been possible to really quantify the amount of burnt

coal or the amount of greenhouse gases released solely based on earth observation

data. Reasons are the following: firstly, coal fire related thermally anomalous

clusters cannot be derived with the same precision as is possible with field mapping

(see red polygons in Fig. 21.12, left side). Many weaker underground fires cannot

Fig. 21.10 Result of thermal anomaly extraction using the algorithm presented by Zhang (2004)

on Landsat ETM+ nighttime data. Thermal anomalies are presented in yellow. The backdrop is a

Landsat ETM+ false colour infrared daytime scene. The two white boxesmark the coal fire regions

of Wuda (upper) in Inner Mongolia and of Ruqigou (lower) in Ningxia province. Anomalies

within the yellow boxes stem from formerly unknown coal fires in coal waste piles (left, the fires of
Hulusitai and Shitanjing) and in surface coal mines (right, east of the Yellow River). Anomalies

outside these areas stem from industry, biomass burning, and households
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be extracted with thermal data available at a resolution equal to or below 60 m.

Furthermore, even if more or less exact coal fire outlines are available from field

campaigns, the fire related energy release is hard to determine.

It fluctuates on a daily basis depending on underground processes, precipitation,

wind, and changes in the overlying bedrock. Therefore, time series of thermal data

would be needed to retrieve representative energy release. Furthermore, coal

burning underground might not always lead to surface anomalies. Independent of

available data, the calculation of burnt coal amounts based on energy release

will always lead to an underestimation of the truly burned coal. Due to all these

difficulties and uncertainties, no hard baselines as needed for emission trading

protocols can be established.

Fig. 21.11 Triangle relationship between amount of burning (burnt) coal, amount of energy

released and amount of gasses emitted (Source: Kuenzer et al. 2007c)

Fig. 21.12 Coal fire related energy release. Left: thermal Landsat-7 ETM+ summer nighttime

image from 2002 with red fire outlines overlain on thermal satellite data. Right: energy release in

MW for the individual coal fires as mapped in situ. Polygons defining an area need to be available

so that the algorithm can calculate a fire’s energy release. The subset shows 20 * 20 km and

represents the Wuda coal mining syncline, UL: 39�36016N, 106�30050E, LR: 39�27059N,
106�43019E, 1,130 m asl. Tetzlaff (2004)
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However, coal fire emission estimation is also very tricky due to political and

other biases influencing the numbers that were released in recent years. Table 21.1

suggests that higher greenhouse gas emission numbers might be motivated by

authors wanting to generate interest in their own research topic, and even by the

desire to obtain higher research funding. Emission estimates furthermore will have

an impact on the amount of governmental funding for extinguishing fires. It is thus

very hard to find reliable numbers in literature. In our opinion the most transparent

article was published by Van Dijk et al. (2011).

21.6 Existing Gaps in Coal Fire Research

In the following, challenges for coal fire related remote sensing which are not yet

fully solved are indicated.

Most prominent coal fire locations in this world are relatively well known.

However, up to now no remote sensing scientists have assessed all these fires

based on the same data types, with the same methods, and in a comparable manner.

Most scientists have focussed on one specific area, where in-situ validation data was

available. However, a global, standardized coal fire monitoring system considering

Table 21.1 Interrelationships of public, political and economic consequences with regard to low

or high estimates of coal fire related greenhouse gas emission

Low GHG emission number [%] High GHG emission number [%]

Public attention Less More

Research funding

money

Less More

Probability of

incorrect

estimation

Very low Very high

Political

consequence

in investing

country

Low economic benefit and probably

limited interest in pursuing CDM

activities

High economic benefit for single

companies, strong interest in

pursuing CDM related activities,

technology transfer means

additional economic benefit

Political

consequence

in country of

emission origin

Probably none. However, country

could “proudly” present how

harmless the fire problem is

Competition might occur. Country

with emissions might be able to

choose contractor. Networking

Economic

consequence

in investing

country

Receives fewer (lower) certificates,

less extra output “at home”

possible

Receives more (higher) certificates,

more extra output “at home”

possible

Economic

consequence

in country of

emission origin

Need to minimize its own emissions

(if capable), less transfer of

technology, know-how and ideas

from outside the country

Large international projects lead to

transfer of technology, know-

how, and ideas from outside the

country

Source: Kuenzer et al. (2007c)
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thermal imagery of the fire areas over a period of several years is urgently needed.

Even if fire locations are roughly known it is important to observe the fire’s

dynamics, to monitor extinguishing activities and their aftermath, and to look for

new ignitions in the vicinity of existing fires. The shortcomings here relate to TIR

(Thermal infrared) sensor availability and data access over a long period of time.

Furthermore, so far no proper relationships between coal fire related energy

release and the amount of coal burnt and greenhouse gasses released could be

established. Even though this is a complex endeavour due to a number of

unknowns, also here one limiting factor is the lack of frequent data availability at

a suitable resolution.

A perfect sensor for coal fire related thermal analyses would be a sensor which

contains highly resolved bands in the optical domain (better than 5 m, optimally

even 1 m) which allow for mapping coal fire related subsidence, cracks, and even

mineralogical features, accompanied by two thermal bands; one in the 3–5 μm
domain, and one in the 8–12 μm domain. These thermal bands should allow for a

spatial pixel resolution of better than 50 m. The two thermal bands would allow

differentiation of the very hottest anomalies from average coal fire induced

anomalies. Citizen science – the concept of in situ data collection and publication

by non-scientists – could lead to the supply of in-situ gas and temperature

measurements via smartphones; currently still a vision, but probably one that is

not too far away. Currently, the most important need is for a strong lobby for

thermal infrared sensors on board future earth observation platforms.

21.7 Conclusions

Thermal remote sensing of coal fires belongs to one of the more complex and

challenging tasks in thermal infrared remote sensing. The reason is that coal fires

can occur as surface but also – and predominantly – as underground fires. Thermal

anomalies on the bedrock surface are very subtle and usually only cover a fraction

of a thermal pixel. Unlike very hot lava or forest fires, coal fire heat is either

transported via slow conduction processes to the overlying bedrock surface, or via

the convection of very hot gasses through vents, cracks, and fissures. The thermal

phenomena are usually of subpixel extent, and overall pixels temperatures are only

elevated a few degrees against the background. The challenge in coal fire remote

sensing therefore lies in the detection of very subtle thermal anomalies. Moving

window approaches allowing extraction of relative thresholds based on sub-image

histograms are to date the best choice for coal fire related thermal anomaly

extraction. However, automatically extracted anomalies can still stem from other

heat sources. Therefore, the availability of additional data and indicators (geologic

maps indicating coal underground, multispectral data for the extraction of

pyrometamorphic rock, patches of degraded vegetation, or a severely cracked

bedrock surface) supports thermal coal fire mapping. From 2013 onwards, sensors

such as the Landsat ETM+ follow on (Landsat Data Continuity Mission, LDCM)
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containing a thermal band will re-activate coal fire researchers to address the still

existing challenges. These are the long-term monitoring of coal fire dynamics, the

derivation of coal fire related energy release, and last but not least approximating

coal fire related greenhouse gas emission.
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Chapter 22

Thermal Infrared Remote Sensing

of Geothermal Systems

Christian Haselwimmer and Anupma Prakash

Abstract In areas of anomalously high crustal heat flow, geothermal systems

transfer heat to the Earth’s surface often forming surface expressions such as hot

springs, fumaroles, heated ground, and associated mineral deposits. Geothermal

systems are increasingly important as sources of renewable energy, or as natural

wonders of protected status attracting tourists, and their study is relevant to moni-

toring deeper magmatic processes. Thermal infrared (TIR) remote sensing provides

a unique tool for mapping the surface expressions of geothermal activity as applied

to the exploration for new geothermal power resources and long term monitor-

ing studies. In this chapter, we present a review of TIR remote sensing for investiga-

tions of geothermal systems. This includes a discussion on the applications of TIR

remote sensing to the mapping of surface temperature anomalies associated with

geothermal activity, measurements of near-surface heat fluxes associated with these

features as input into monitoring and resource assessment, and the mapping of

surface mineral indicators of both active and recently active hydrothermal systems.

22.1 Introduction

Geothermal systems occur in regions of anomalously high crustal heat flow that

may be related to the presence of young igneous bodies or hot rocks located deeper

in the crust (Rybach 1981; DiPippio 2005). This elevated geothermal heat is

normally transferred to the surface by the convection of ground waters that forms

hydrothermal systems: surface waters circulate to depth where they are heated and

rise to the surface via a subterranean ‘plumbing system’ of closely spaced fractures

or other zones of permeable rock. If rising hot waters reach the surface then

C. Haselwimmer (*) • A. Prakash

Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA

e-mail: chha@gi.alaska.edu

C. Kuenzer and S. Dech (eds.), Thermal Infrared Remote Sensing: Sensors,
Methods, Applications, Remote Sensing and Digital Image Processing 17,

DOI 10.1007/978-94-007-6639-6_22, © Springer Science+Business Media Dordrecht 2013

453

mailto:chha@gi.alaska.edu


characteristic geothermal features such as hot springs, fumaroles, geysers, and mud

pots may form (Fig. 22.1) (Heasler et al. 2009).

When the heat contained within fluid filling fractures and permeable rocks is

sufficiently accessible, this energy can be exploited for power generation or direct

use (geothermal energy). Around the world, geothermal energy accounts for

approximately 10,700 megawatts-electric (MWe) of power production with

estimates of the potential resource ranging from 35 to 2,000 gigawatts-electric

(Fridleifsson et al. 2008). In areas of high crustal heat flow geothermal power offers

an attractive, reliable, and low-carbon alternative to traditional fossil-fuel based

Fig. 22.1 Examples of geothermal surface features; (a) Hot springs and associated surface

deposits at Mammoth Hot Springs, Yellowstone National Park, USA (Image source: Brocken

Inaglory, 6th July, 2008, Creative Commons Attribution); (b) Geysers in Yellowstone National

Park, USA (Image source: Jim Peaco, National Park Service, September 1999); (c) Fumarole at

Námafjall, Iceland (Image source: Wolfgang Sauber, 20th July 2009, Creative Commons Attribu-

tion); (d) Mud pot at Akan National Park, Japan (Image source: Arama80, 5th March 2012,

Creative Commons Attribution)
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energy resources. For example, as of 2010, Iceland produces ~26 % of its nation’s

energy from geothermal sources (Landsvirkjun 2012). The interest in geothermal

power has stimulated increasing efforts to undertake exploration and characteriza-

tion of these resources around the world.

Studying surface geothermal activity and heat loss associated with magmatic-

related systems is important for monitoring of subsurface igneous activity. For

example, the abundant geothermal features at Yellowstone National Park are the

surface expressions of the largest active volcanic system in North America. Surface

hydrothermal activity at Yellowstone has changed over time indicating variations in

geothermal system activity that may be in-turn related to changes in magmatic

activity (Heasler et al. 2009). In addition, the monitoring of geothermal activity

has a role to play in efforts to conserve geothermal systems that are of cultural

significance or are economically important tourism destinations; with the increas-

ing development of geothermal resources there is potential to negatively impact

these sites (Bromley et al. 2010).

Thermal infrared (TIR) remote sensing provides data with synoptic coverage for

investigating the surface manifestations of geothermal systems as applied to both

geothermal energy exploration and also for more fundamental research and moni-

toring. TIR remote sensing provides a method for rapid mapping and quantifying

surface geothermal features in support of exploration and assessment of new

resources (Hodder 1970; Mongillo 1994; Allis et al. 1999; Mongillo and Graham

1999; Eneva et al. 2006, 2007; Kratt et al. 2006a, b; Coolbaugh et al. 2007;

Rockwell and Hofstra 2008; Kienholz et al. 2009; Littlefield and Calvin 2009,

2010; Scherer et al. 2009; Taranik et al. 2009; Haselwimmer et al. 2011; Reath and

Ramsey 2011). In addition, TIR data can be used to monitor these features at

developed reservoirs that may provide indications of unsustainable resource extrac-

tion (Allis 1980; Bromley et al. 2010) or provide estimates of surface heat loss as

input to reservoir models (Bromley et al. 2011). The use of TIR data to map and

quantify surface geothermal features also supports long term monitoring of

magmatic-related and/or protected systems (Watson et al. 2008; Heasler et al.

2009; Seielstad and Queen 2009).

In this chapter, we describe the use of TIR remote sensing for studying geother-

mal systems. This includes a discussion on the application of TIR remote sensing to

the mapping of surface temperature anomalies associated with geothermal activity,

the measurement of near-surface heat fluxes associated with these features as input

to monitoring and resource assessments, and mapping of surface mineral indicators

of both active and recently active hydrothermal systems.

22.2 Surface Manifestations of Geothermal Systems

Geothermal systems display surface manifestations when there is sufficient

permeability that enables geothermal waters to rise to, and outflow at the surface

(DiPippio 2005). Depending upon the temperature and outflow rate of geothermal
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fluids, discrete surface features can include hot springs, seeps, fumaroles, geysers,

mud-pots, and steam-heated pools. More widespread areas of heated or steaming

ground occur due to conductive heat loss above outflow zones containing geother-

mal fluids and as a result of the direct convective heating from steam or hot water

(Rybach 1981; DiPippio 2005) (Fig. 22.2). The temperatures of geothermal fluids

show a considerable range: low-temperature systems (<90 �C) are referred to as

spring-dominated as outflow occurs via hot springs or seeps. Systems with interme-

diate (90–150 �C) and high (150–240 �C) temperature fluids are vapor-dominated

as these fluids boil in the subsurface, due to lowering hydrostatic pressure, produc-

ing steam or water/steam dominated surface features such as fumaroles, geysers,

and steaming ground (Rybach 1981) (Fig. 22.2).

Subsurface geothermal fluids will dissolve minerals in the rocks along the fluid

circulation paths that they travel. This can lead to the development of new alteration

minerals, such as clays, zeolites, and calcite and the removal of minerals as the

dissolved load in geothermal fluids (Glassley 2010). Mineral alteration in geother-

mal systems reflects the temperature and chemistry of geothermal waters, as well as

the composition of the surrounding bedrock. As geothermal waters cool and move

away from the heat source, the dissolved mineral load will start to precipitate.

In some cases, surface discharge of these fluids forms mineral deposits as the

waters cool and the dissolved load precipitates that include: (1) siliceous sinters

encompassing various forms of silica deposited by high-temperature fluids

(>175 �C); (2) travertine, which is mainly calcium carbonate deposited by lower

temperature geothermal fluids; (3) borates, sulfates, and chlorides (Glassley 2010).

Many geothermal systems do not display active surface expressions and are

termed ‘blind’ systems. These may occur when geothermal fluids cool before they

Fig. 22.2 Schematic diagram of geothermal systems (a) formed by deep circulation of fluids

along faults and (b) related to magmatic activity. Arrows indicate direction of flow of meteoric and

geothermally-heated waters. Numbers on the figure indicate: 1 zone of recharge of meteoric

waters, 2 conductive heating of waters by geothermal source, 3 upflow along fault or fractures,

4 lateral outflow in deep aquifer forming a blind reservoir, 5 outflow in shallow aquifer with

associated surface manifestations, 6 boiling of geothermal waters in the subsurface (Source: this

work)
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reach the surface or are unable to reach the surface due to lateral flow in deeper

aquifers or the presence of impermeable capping layers (Fig. 22.2). Considerable

effort has focused on the exploration for blind geothermal resources. Coolbaugh

and Shevenell (2004), for example, estimate that these undiscovered geothermal

resources in the State of Nevada significantly exceeds the known resources.

22.3 Mapping Geothermal Surface Temperature

Anomalies

TIR remote sensing data can be used to map and quantify temperature anomalies

associated with surface geothermal features such as hot springs, geysers, fumaroles,

and heated ground. This approach has been used as a cost-effective tool for

geothermal exploration over large areas enabling subsequent selection of targets

for further exploration using ground-based surveys (Hodder 1970; Lee 1978;

Mongillo 1994; Haselwimmer et al. 2011). In addition, TIR remote sensing has

been applied to the cataloguing and long-term monitoring of thermal features

associated with developed and protected geothermal systems (Mongillo 1994;

Seielstad and Queen 2009).

Much of the published research on the use of TIR remote sensing for mapping

surface temperature anomalies has focused on the use of airborne thermal imagery

acquired with broadband (Hodder 1970; Lee 1978; Haselwimmer et al. 2011) or

multispectral instruments (Mongillo 1994; Seielstad and Queen 2009). High reso-

lution airborne thermal data (i.e. <5 m pixels) enables detailed mapping of surface

geothermal features that may be small in size or display limited temperature

contrast with surrounding non-geothermal surfaces.

Hodder (1970) acquired pre-dawn broadband thermal imagery (in the 8–14 μm
wavelength region) in the region of Long Valley and the Salton Sea, California,

USA to map surface geothermal anomalies. Simple visual analysis and application

of thresholds to the thermal data provided the basis for identification of hot waters at

springs and heated ground overlying faults providing potential indicators of geo-

thermal upwelling zones. Lee (1978) also exploited pre-dawn airborne thermal

imagery to map geothermal features in the Black Rock Desert area of Nevada,

USA. The thermal data provided an effective method for inventorying known

geothermal features and mapping many previously unreported hot springs and

related fractures.

Mongillo (1994) utilized a GEOSCANMkII aerial scanner to acquire 3 m spatial

resolution, multispectral TIR data (six bands in the 8.4–11.6 μmwavelength region)

during 1992 and 1993 for a 100 km2 area covering the Waimangu-Waiotapu

geothermal region with the aim of mapping and monitoring surface geothermal

features. The acquired thermal data was empirically calibrated using in-situ

measurements of non-geothermal water bodies and the resultant surface tempera-

ture data was visually interpreted. The results enabled mapping of all the known and
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many previously unidentified geothermal features including hot springs, hot

ground, and thermal seeps into lakes. The results clearly outlined that geothermal

features at theWaiotapu field occur along lineations providing strong evidence for a

fault controlled upflow/outflow of geothermal fluids. Comparison of the results

from different years indicates that a large hot spring appeared in the Waimangu

geothermal field between the two survey dates, which demonstrates the potential of

TIR data for monitoring temporal changes in geothermal surface features.

Seielstad and Queen (2009) used airborne multispectral midwave- (MWIR:

3.6–5.1 μm) and longwave-infrared (8.1–12.4 μm) data acquired with an ADS

SpectraView and US Fish and Wildlife Service (USFWS) ‘Firemapper’ system

respectively to map and monitor thermal features in the Norris Geyser Basin,

Yellowstone National Park. The ~1–3 m spatial resolution data acquired during

daytime and nighttime surveys in 2005 and 2006 were calibrated to surface kinetic

temperature values with an empirical correction using in-situ temperature

measurements. The TIR data enabled detailed mapping of surface geothermal

phenomena in the Norris Geyser Basin including discrete features such as hot

springs and geysers as well as ‘background’ areas of sinter and heated ground.

Seielstad and Queen (2009) used the data to broadly delineate the geographic

boundaries of the Norris Geyser Basin that was previously poorly defined. In

addition, more detailed mapping of a series of sub-basins within the Norris Geyser

Basin was also undertaken. For the 2005 data, snow fall prior to the survey

facilitated the mapping of geothermal ground that was snow free in contrast to

the surrounding snow covered non-geothermal areas.

Haselwimmer et al. (2011) acquired ~1 m spatial resolution airborne thermal

imagery using a broadband FLIR (Forward Looking Infrared) systems A320 cam-

era (operating in the 7.5–13 μm wavelength region) during fall and winter-time

surveys over Pilgrim Hot Springs located near Nome in Western Alaska. The TIR

data was calibrated to surface temperature values using a combination of

MODTRAN (MODerate resolution atmospheric TRANsmission) and an empirical

adjustment with in-situ temperature measurements. Georeferencing of the data

was undertaken using the GPS positions of low-emissivity thermal blankets

that provided distinctive ‘cold’ targets in the TIR imagery. The mosaicked and

calibrated data enabled the detailed mapping of known and previously unmapped

geothermal features including hot springs and pools, thermally anomalous ground

(Fig. 22.3), and ice free-areas on the nearby Pilgrim River that indicated geothermal

outflow at a distance from the known spring’s site. In particular, this data provided

very detailed information on the location and temperature of hot springs and

sources of more diffuse geothermal outflow that were not obvious from field

investigations. Mapping these features indicated two broad swaths of generally

high temperature and low temperature springs that suggested the presence of an

elongated zone of permeability, possibly related to an N-S oriented fault. The 2011

TIR data, acquired during Alaskan winter-time conditions, was effective for

mapping areas of heated ground that appeared as areas of anomalous snow-melt.

These areas did not display anomalous surface temperatures in the fall 2010 survey,

due to the presence of vegetation cover or the effects of solar heating.
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Although coarse spatial resolution satellite thermal sensors (60–90 m pixels),

such as Landsat or ASTER, have limited potential for detailed mapping of discrete

geothermal features a number of studies have exploited these datasets for broader

scale detection of geothermal anomalies (Coolbaugh et al. 2007; Eneva et al. 2007;

Eneva and Coolbaugh 2009; Kienholz et al. 2009). These studies have commonly

applied data processing techniques to enhance and detect what may be subtle

surface temperature anomalies. At the resolution of satellite TIR data, pixels

corresponding to geothermal areas normally record a mixture of emitted radiance

from geothermal sources as well as from background non-geothermal surfaces. This

acts to reduce the measured temperature of pixels corresponding to geothermal

sources. When this is compounded by other environmental factors such as land

surface type, topography, albedo, and thermal inertia then it can be difficult to

locate geothermal anomalies with confidence.

Kienholz et al. (2009) used multi-temporal Landsat thermal data to map geo-

thermal anomalies on the Island of Akutan located on Alaska’s Aleutian Arc.

Twelve summertime cloud-free scenes were selected from the Landsat archive

corresponding to acquisitions over Akutan Island between 1985 and 2008. The

Landsat thermal bands were calibrated to surface kinetic temperature and an image

stacking procedure was used to highlight persistent surface temperature anomalies

and subdue background transient temperature effects associated with local scene

specific conditions. As some persistent temperature effects remained after stacking,

Fig. 22.3 Calibrated surface temperature data for part of Pilgrim Hot Springs acquired during

winter 2011 (a) and fall 2010 (b) airborne surveys using a FLIR thermal camera. This data

highlights the location of hot springs, hot pools and areas of heated ground as manifested in

areas of anomalous snow melt in the winter 2011 data (From Haselwimmer et al. 2011)
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the results were further classified based upon elevation, slope, vegetation type and

geology. This processing strategy mapped the locations of the known fumarole field

and thermal springs and also revealed three new distinct regions of surface thermal

anomalies providing targets for field investigations.

A number of studies have used ASTER (Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer) data to detect surface geothermal anomalies by

minimizing the temperature variations caused by diurnal solar heating effects

(Coolbaugh et al. 2007; Eneva et al. 2007; Eneva and Coolbaugh 2009). Factors

such as albedo, topographic slope/aspect, emissivity, and thermal inertia affect the

temperature changes of Earth surfaces over the 24-h temperature cycle (Taranik

et al. 2009). These variations potentially mask subtle temperature anomalies related

to subsurface geothermal heating in TIR data. An example of this is the main sinter

terrace at Steamboat Springs, Nevada, USA, where pre-dawn TIR images do not

detect a thermal anomaly in spite of their being numerous fumaroles present at the

site (Taranik et al. 2009). This is explained by the high albedo of the sinter that

reflects much of the sun’s energy during the day, and its low thermal inertia, which

causes it to cool off rapidly at night.

In a study of Brady’s Hot Springs, Nevada, USA, Coolbaugh et al. (2007)

processed a day/night pair of ASTER scenes (acquired on the same date) to

minimize the effects of diurnal heating. Using the ASTER Level 2 on-demand

surface kinetic temperature product (AST08), Coolbaugh et al. (2007) applied

corrections for albedo, topographic slope, and thermal inertia based upon a

simplified heat energy model describing net surface radiation flux. Surface temper-

ature variations related to differences in albedo were corrected using the ASTER

visible and infrared bands and a Digital Elevation Model (DEM) was used to

correct for the effects of topographic slope and aspect. The impact of thermal

inertia on surface temperature was corrected using mean surface temperatures for

the diurnal cycle derived by adjusting the average of theASTER day/night pair using

field measurements of ground surface temperatures made over the same 24-h period

(Coolbaugh et al. 2007). The resultant processed image (Fig. 22.4) shows that

background variations in temperature were reduced by 30–50 % whilst the intensity

values of geothermal anomalies were retained. This made it easier to distinguish

geothermal activity from false thermal anomalies associated with variations in

topography, rock/soil types, and non-thermal springs (Coolbaugh et al. 2007).

Eneva et al. (2006) applied a simplified version of the method used by

Coolbaugh et al. (2007) to map thermal anomalies in the Coso geothermal field,

California, USA, also using a daytime/nighttime pair of ASTER images. In this

study, the correction for thermal inertia effects was simplified due to the lack of

field measurements of surface temperatures over the 24 h cycle. In spite of this, the

processed ASTER data was effective in enhancing some thermal anomalies and

suppressing false positives.

Whilst the method of Coolbaugh et al. (2007) is effective at enhancing geother-

mal anomalies and suppressing many non-geothermal effects, there are several

limitations of this approach. The method uses a simplified surface energy balance

model that does not account for sensible and latent heat losses. The assumption of

radiation being the main control on heat loss is valid for dry non-vegetated ground,
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such as is commonly encountered in the Great Basin of the Western US, but will not

hold for areas of moist ground or vegetation where heat loss will be dominated by

evaporation and transpiration (Coolbaugh et al. 2007). Eneva and Coolbaugh

(2009) describe how elevation and temperature inversions may effect ASTER

surface temperature values and that these factors should ideally be taken into

account when processing thermal images to enhance geothermal anomalies.

Fig. 22.4 ASTER day-night image for the Brady’s Hot Springs area processed to minimize

variations in temperature related to albedo, topographic slope/aspect, and thermal inertia (a) and

unprocessed ASTER nighttime surface kinetic temperature (AST08) image (b). Around 34–53 %

of temperature variation in (b) has been removed in (a) as evidenced from the variances in

temperature of the areas encompassed in boxes 1 and 2. This processing has resulted in the

Fumaroles at Brady’s Hot Springs being more readily discernible. Abbreviations: c clouds,

s ground water springs, v vegetation, W ‘warm’ ground (Adapted from Coolbaugh et al. 2007)
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22.4 Quantifying Geothermal Heat Fluxes

Hot springs, fumaroles, mud-pots, and steaming or heated ground are the surface

expressions of conductive and convective heat loss from geothermal systems. As

described in the previous section, TIR remote sensing provides a means to map the

spatial distribution, extent, and temperature of these features that can in turn be used

to estimate the conductive and convective heat loss near the surface. The measure-

ment of this surface heat loss (aka. the near surface Geothermal Heat Flux – GHF) is

important for long-term monitoring of geothermal systems (Heasler et al. 2009),

can be used to assess the resource potential of undeveloped geothermal reservoirs

(Wisian et al. 2001), and also be applied to monitoring and modeling of developed

resources (Allis 1980).

Although TIR remote sensing has been widely used to monitor heat loss from

volcanoes (e.g. Pieri and Abrams 2004; Carter et al. 2008), it has been applied less

in the monitoring of geothermal or hydrothermal systems. Much of this work has

focused on Yellowstone National Park. Airborne thermal surveys of the Norris

Geyser basin acquired between 2002 and 2006 have been used to map surface

geothermal activity and monitor the associated GHF (Seielstad and Queen 2009)

(Fig. 22.5). Seielstad and Queen (2009) estimated a lower bounds for the GHF by

calculating emitted radiation from the calibrated surface temperature values

(derived from the airborne thermal imagery) using the Stefan-Boltzmann equation:

M ¼ σT4 (22.1)

whereM is emitted radiation in units of W m�2, σ is the Stefan-Boltzmann constant

(5.667 � 10�8), and T is the surface radiant temperature in Kelvin. For geothermal

features the emitted radiation from surfaces at background temperatures was

subtracted to leave just the emitted radiation related to the geothermal activity.

Rather than using a single value for the background flux, the flux was calculated for

each land cover type. For example, the background flux of vegetation outside the

geothermal areas was used to correct flux values of vegetated patches within

elevated temperature areas. Using this approach Seielstad and Queen (2009)

estimated the GHF for Norris Geyser Basin from 2002, 2005, and 2006 airborne

thermal data to be 136, 137, and 114 megawatts of thermal energy (MWth),

respectively. Given the uncertainty in background flux, combined with noise from

calibration and emissivity separation, Seielstad and Queen (2009) concluded that

there was no detectable change in the GHF over this period. Seielstad and Queen

(2009) also highlighted that from a synoptic perspective most of the geothermal

heat loss did not occur from discrete high temperature features, such as hot springs

or fumaroles, but from the more spatially extensive areas of ‘background’ thermally

anomalous ground.

Watson et al. (2008) mapped a lower bound for the surface GHF for Yellowstone

National Park using Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) data by

calculating a residual terrestrial emittance anomaly (TEA) for snow free areas using
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a surface energy balance model. In this model, terrestrial emittance ðMterrÞ represents
one component in a systemoffluxes at the surface that balances heat losses against heat

gains:

Mterr þ HS þ HL þ HQ ¼ GHFþ S� RþMdown �Mrefl þ Hp þ Δ (22.2)

where S and R are incident and reflected total solar radiation,HS andHL are sensible

and latent heat exchange with the atmosphere, Hp and HQ are advected heat flux in

precipitation and runoff, and Δ accounts for change in storage in the subsurface.

Fig. 22.5 Radiant temperature values (in �C) for Norris Geyser Basin, Yellowstone National

Park, USA, acquired on October 06, 2005 between 1 and 3 pm using ADS SpectraView system

(From Seielstad and Queen 2009)
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Based upon a simplified version of this surface energy balance equation Watson

et al. (2008) calculated the TEA as the residuals of a multiple linear regression

model linking surface heat losses to the surface temperature and non-geothermal

heat gains to elevation and absorbed solar radiation. The latter was derived from a

simple model of solar irradiation of hilly terrain, and surface albedo estimated from

summation of the non-thermal bands of the ETM+ data (Watson et al. 2008). Using

this approach, Watson et al. (2008) mapped the TEA with values ranging from 0 up

to 94 W m�2 throughout Yellowstone National Park that clearly discriminated

geothermal from non-geothermal areas. The TEA results were validated against

values of GHF calculated from the inversion of a snowpack model. Comparison of

TEA and GHF values showed good agreement although the TEA was consistently

lower and therefore provided a lower bound on GHF for the Yellowstone geother-

mal system (Watson et al. 2008).

Vaughan et al. (2011) analyzed ASTER and MODIS (Moderate Resolution

Imaging Spectroradiometer) thermal data for Yellowstone National Park acquired

in the 2000–2010 period with the aim of monitoring surface geothermal activity by

calculating the radiant component of heat loss for geothermal areas. This study

aimed to identify normal background thermal changes so that significant or abnor-

mal changes related to geothermal activity could be recognized. Frequent but low

resolution (1 km) MODIS data were analyzed and a method for subtracting the

seasonal variation in background thermal flux was developed. Analysis of the

MODIS data using this method indicated that all of the thermal areas were stable

during the 2000–2010 period. Vaughan et al. (2011) used higher spatial resolution

but less frequently acquired ASTER thermal data to calculate radiant GHF for the

whole of Yellowstone National Park that resulted in an estimate of ~2 GWth

(gigawatts thermal energy), which is somewhat lower than the value of 4–6 GWth

calculated from geochemical methods.

A number of studies have applied airborne TIR remote sensing to estimate

geothermal heat flow in support of the assessment of new geothermal prospects

and monitoring of existing developed resources (Allis et al. 1999; Mongillo and

Graham 1999; Bromley et al. 2011; Haselwimmer and Prakash 2011). Allis et al.

(1999) analyzed pre-dawn airborne thermal imagery over the Dixie Valley

(Nevada, USA) and Wairakei (New Zealand) developed geothermal fields with

the aim of mapping the near-surface conductive component of GHF. Using in-situ

shallow temperature measurements and a fixed value of soil thermal conductivity

(~0.5 W/m�C), Allis et al. (1999) established an empirical relationship between

surface conductive heat flow and thermal infrared surface temperature values for

areas of heated ground. Although this approach provided a simple method of

converting TIR imagery into surface heat flow maps, Allis et al. (1999) point out

a number of significant limitations and uncertainties with this approach: (1) the

‘ambient’ temperature of non-geothermal ground must be in the range 15–20 �C;
(2) the surface soil temperature for geothermally heated ground must be less

than 90 �C so that steam does not affect TIR-derived temperature values; (3) the

effects of solar heating, emissivity or rainfall should be minimized. Mongillo and
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Graham (1999) applied the same empirical approach to estimate conductive

heat flow using airborne thermal data acquired over part of the Taupo geothermal

area in New Zealand. Moreover, they mapped anomalous geothermal features with

temperatures >2 �C above background and estimated a conductive heat flow of

~2.5 MWth that was supporting these features.

Bromley et al. (2011) used airborne thermal imagery to estimate the heat flux

associated with steaming ground at the Wairakei-Tauhara geothermal system in

New Zealand. Three different approaches were applied to the airborne thermal data

to calculate the heat flux associated with steam-heated ground:

1. For thermally anomalous ground, areas of steam heating were delineated (based

upon a dip in expected surface temperature related to the presence of steam) and

surface temperature values for these areas were used to derive boiling point

depths that then formed the basis of heat flux estimates using an empirical

relationship.

2. For areas of steam-heating, the heat flux was directly calculated using an

empirical relationship between heat flux and the temperature difference between

steam-heated ground and ambient atmosphere.

3. For areas of steam-heated ground, the thermal flux was calculated directly from

the surface temperature data by accounting for radiative, convective and con-

ductive heat fluxes from anomalously hot ground to the air.

Bromley et al. (2011) produced consistent values for heat flux associated with

steam heated ground of 35.6, 33.4, and 32.4 MWth respectively for the three

different methods. When these measurements were coupled with heat flux estimates

from springs, seeps, and craters a total heat flux of ~86 MWth was calculated for the

Wairakei-Tauhara area.

Haselwimmer and Prakash (2011) used airborne thermal imagery acquired over

Pilgrim Hot Springs during two surveys to quantify the convective heat flux and

corresponding outflow rate of surface geothermal fluids as input into the resource

assessment of this undeveloped system. The convective geothermal heat flux

associated with surface geothermal fluids (i.e. hot springs, hot pools) was estimated

from calibrated TIR surface temperature data for areas of hot water by accounting

for radiative, evaporative, and sensible heat losses as well as heat gains from the

geothermal source, incoming solar and atmospheric TIR radiation. Using this

approach, the total convective heat flux supporting geothermal fluid outflow was

conservatively estimated at ~3.65 MWth, which corresponded to a flow rate of ~195

gallons per minute (GPM), assuming a fixed hot spring temperature of 81 �C. This
value for the hot spring heat flux was higher than previous estimates of ~2 MWth of

energy that was derived from in-situ measurements of the flow rate of the hot

springs. Given the difficulty in determining the flow rate of diffuse hot springs/

seeps and the lack of well confined outflow at Pilgrim Hot Springs, Haselwimmer

and Prakash (2011) suggest that the airborne thermal imagery provides a more

realistic estimate of the total hot spring heat flux and flow rate.
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22.5 Mapping Geothermal Indicator Minerals

Surface minerals commonly deposited or produced from geothermal waters or

hydrothermal alteration have spectral absorption features in the visible to thermal

infrared wavelength regions related to electronic and molecular vibrations. These

spectral absorption features provide the basis for mapping of these materials using

multispectral and hyperspectral remote sensing that can map both active and blind

geothermal systems (Kratt et al. 2006a, b).

Numerous studies have exploited the visible/near-infrared to shortwave infrared

(VNIR/SWIR) wavelength region for mapping hot spring deposits and related

bedrock alteration products using multispectral (Kruse 2002; Hellman and Ramsey

2004; Kratt et al. 2006a, b) and hyperspectral (Hellman and Ramsey 2004; Nash

et al. 2004; Kratt et al. 2006a, b; Littlefield and Calvin 2010) remote sensing. In the

0.4–2.5 μm wavelength region, mineral spectral absorption features record the

interaction of light with cations (Fe, Mg, Al), and anions (OH, H2O, CO3) in

mineral structures (Hunt 1977). Minerals displaying diagnostic absorption features

that occur in and typify hydrothermal alteration systems include hydroxyl bearing

clays, sulfates, carbonates, and sinters (Huntington 1996).

In the TIR wavelength region, mineral groups including silicates, carbonates,

sulfates, phosphates, and hydroxides display diagnostic spectral absorption features

(reststrahlen features) that appear as emissivity minima, which are related to

fundamental molecular vibrations within different anion groups such as CO3,

SO4, PO4, and SiO4. Further, the stretching and bending modes of major cations

(e.g. Mg, Fe, Ca, Na) provide the basis for detailed discrimination of mineral

species and excellent identification of specific silicate and carbonate minerals

(Christensen et al. 2000). At TIR wavelengths the spectral emission properties of

mixed materials can be considered to represent the linear combination of the

constituents spectra weighted by their areal proportion (Hapke 1993). This provides

the basis for quantitative estimation of the modal compositions of mixed thermal

emission spectra based upon approaches such as linear spectral deconvolution

(Ramsey and Christensen 1998). Typical minerals deposited by hot springs or

associated with hydrothermal alteration display unique spectral emission features

in the thermal infrared (Fig. 22.6). Although many minerals of importance for

geothermal exploration do display distinctive absorption features in the VNIR/

SWIR region, emission data provides capabilities in particular for discrimination

of silicate and carbonate minerals. The synergistic use of VNIR/SWIR and TIR

spectral data provides the greatest potential for unambiguous mapping of specific

mineral occurrences in support of geothermal exploration (Riley et al. 2008).

Most research on the application of thermal emission data for mapping geother-

mal indicator minerals has focused on the use of the airborne SEBASS (the Spatially

Enhanced Broadband Array Spectrograph System) andMASTER (MODIS-ASTER

Airborne Simulator) instruments particularly for study sites located in the Great

Basin of the Western United States. SEBASS is an airborne pushbroom hyper-

spectral imaging spectrometer designed by the Aerospace Corporation that acquires
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256 channels of data, 128 in the 2.5–5.2 and 128 in the 7.5–13.5 μm wavelength

regions (Hackwell et al. 1996). The MASTER system was designed by the NASA

AMES Research Center and the Jet Propulsion Laboratory to simulate the MODIS

and ASTER instruments on board the NASA Terra satellite (Hook et al. 2001).

MASTER acquires multispectral TIR imagery using 15 and 10 bands covering the

3.1–5.2, and 7.8–12.9 μm wavelength regions, respectively.

Vaughan et al. (2005) have made the most significant contribution to the

geothermal remote sensing literature in their study of the Steamboat Springs active

Fig. 22.6 Top: results of mineral mapping using SEBASS data for Steamboat Springs – mapped

minerals are shown in the different colors overlaid onto a gray-scale emissivity image. Bottom:
SEBASS spectra (colored lines) for the field localities indicated by triangles on the mineral map

shown next to pure and mixed mineral library spectra (black lines) (From Vaughan et al. 2005)
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geothermal system in Nevada, USA. This study used high spatial resolution

MASTER (5 m) and SEBASS (2 m) thermal emission data acquired on airborne

surveys over Steamboat Springs during September 1999. The at-sensor long-wave

infrared radiance data for the two instruments were atmospherically corrected using

the MODTRAN radiative transfer model (Berk et al. 1989) and the ISAC (In Scene

Atmospheric Compensation) (Johnson 1998; Vaughan et al. 2003) algorithm,

respectively, followed by temperature-emissivity separation using the TεS,
(Gillespie et al. 1998) and emissivity-normalization (Kealy and Gabell 1990)

methods. Mineral mapping using SEBASS and MASTER thermal emission data

were undertaken using the commonly applied ‘hour-glass’ processing workflow

(Kruse et al. 2003) that couples procedures for image data reduction (Minimum

Noise Fraction transformation), end-member extraction (Pixel Purity Index), and

spectral classification (Spectral Angle Mapper/Matched Filter). The mineralogy of

mapped end-member classes were interpreted with reference to the spectra of pure

minerals from the ASTER (Baldridge et al. 2009) and Arizona State University

(ASU) (Christensen et al. 2000) spectral libraries. For the SEBASS results, linear

mixtures of pure mineral library spectra were calculated to approximate the

SEBASS end-member spectra and identify the presence of the dominant mixed

components. The results of mineral mapping with MASTER data enabled broad

discrimination of silica- and sulfate-rich ground (mapped as quartz, alunite, or opal)

representing active geothermal areas and clay-rich ground (mapped as kaolinite or

montmorillonite) corresponding to areas of hydrothermal alteration. The spectral

resolution of the SEBASS data enabled more detailed discrimination of pure

minerals and assemblages including opal, quartz, alunite, albite, andesine, kaolin-

ite, and a Na-Al sulfate. These mineral maps provided the basis for mapping of:

1. Opaline sinter formed by recent geyser activity.

2. Chalcedonic sinter (quartz) formed by older geyser activity.

3. Na-Al sulfates formed around active fumaroles.

4. Rocks that have undergone steam heated acid-sulfate alteration.

Vaughan et al. (2005) found that the SEBASS thermal emission data provided

the unique capability for discrimination of opaline sinter, which is a primary

indicator mineral characteristic of active or recently-active geothermal systems.

More recently, Reath and Ramsey (2011) analyzed SEBASS data acquired

during airborne surveys in 2009 and 2010 over the Salton Sea active geothermal

field in California, USA. Linear spectral deconvolution (Ramsey and Christensen

1998) was applied to the 128 long-wave infrared channels to map surface mineral

assemblages associated with geothermally active areas. Mapped minerals included

anhydrite, gypsum, and an unidentified sulfate mineral. Mapping results for the

latter indicated variations in abundance and extent between the two data

acquisitions suggesting this mineral is of a transitory nature having been formed

due to surface and ground water activity. Scherer et al. (2009) integrated SEBASS

with the airborne VNIR/SWIR ProspectTIR sensor to acquire full spectrum wave-

length hyperspectral data in 600 channels across the VNIR/SWIR, mid-wave, and
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long-wave (thermal) infrared regions for the purposes of mineral mapping. The use

of this combined system provided complimentary spectral information to map a

variety of minerals associated with active and recently active hydrothermal systems.

Littlefield and Calvin (2009) used MASTER data for geothermal exploration in

the region of Buffalo Valley, Nevada, USA. Mineral mapping using the MASTER

thermal bands discriminated silica- and clay-rich surface materials. The MASTER

VNIR/SWIR bands mapped carbonate and green vegetation. Overall, the results

were inconclusive in terms of identifying specific geothermal indicator minerals.

Littlefield and Calvin (2009) attribute this to either the absence of these surface

minerals or to the low spectral resolution of MASTER data that was unable to

uniquely identify geothermal minerals.

Although ASTER TIR data (bands 10–14) have been used to map surface

temperature anomalies associated with geothermal systems (Coolbaugh et al.

2007) and for broader lithological mapping (Ninomiya et al. 2005) this has not

been used extensively in the mapping of specific geothermal indicator minerals.

This reflects the low spatial (90 m) and spectral resolution of this instrument that

has limited potential for mapping small exposures of minerals produced by hydro-

thermal activity (Kruse 2002; Littlefield and Calvin 2009). ASTER thermal data

does have potential to contribute regional-scale information that could be used to

generate exploration targets or provide context for higher spatial resolution airborne

surveys. For example, Rockwell and Hofstra (2008) investigated the potential of

ASTER thermal emission data to contribute to geological mapping and resource

exploration studies across northern Nevada. This work analyzed a regional mosaic

of ASTER thermal emission data to map quartz and carbonate minerals. For a

number of localities these mineral maps corresponded to siliceous and travertine

deposits associated with active hot springs.

22.6 Conclusions

TIR remote sensing provides a unique tool for qualitative and quantitative

investigations of surface geothermal activity that can be applied to the exploration

for new geothermal power resources and the study and monitoring of geothermal

systems. Airborne broadband TIR data enable detailed mapping of discrete surface

geothermal features such as hot springs and fumaroles as well as more extensive

areas of thermally anomalous ground. This supports geothermal power exploration

by providing a means to locate unidentified resources as well as enabling detailed

mapping of known systems that can contribute to targeting and planning of field

work (e.g. using maps of hot spring locations to guide water sampling). Airborne

and spaceborne TIR data supports long-term monitoring of geothermal systems by

providing a rapid and repeatable method of inventorying surface geothermal

features. In addition, methods for relating the temperatures of surface geothermal
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phenomena to estimates of near-surface heat loss provide important inputs to the

monitoring of geothermal activity and as applied to geothermal resource assessment

and modeling. The application of these methods to high resolution airborne TIR

data provides estimates of conductive or convective heat loss supporting specific

surface geothermal features. This information can provide system-wide estimates

of near-surface heat loss, when integrated over the larger geothermal area. Time

series of these data may indicate changes in geothermal activity related to deeper-

seated magmatic unrest, hydrological changes, or caused by unsustainable produc-

tion of developed geothermal reservoirs. The increasing availability of low-cost

broadband and multispectral TIR imaging systems, Unmanned Aerial Systems

(UAS), and advanced image processing software (particularly for automated

image registration and mosaicking) will reduce the costs of acquiring high spatial

resolution airborne TIR imagery over large areas. This will support the use of

airborne TIR imaging as a routine tool for exploration and monitoring of geother-

mal systems.

Although the spatial resolution of satellite TIR data is too coarse to investigate

specific geothermal features at this time it has an important role to play in geother-

mal exploration and monitoring. Approaches to enhancing geothermal anomalies in

TIR data have potential to facilitate the mapping of undiscovered resources,

including blind systems, over large areas and at low-cost. The repeat coverage of

satellite TIR sensors also provides a crucial capability for long-term monitoring

studies and augments airborne surveys by providing rapid, basin-wide estimates of

geothermal heat loss in a consistent and repeatable manner. Exploration and

monitoring of geothermal systems will be supported by current and future satellite

TIR imaging instruments. In particular, the enhanced spatial and temporal resolu-

tion of the proposed NASA HyspIRI (Hyperspectral Infrared Imager) instrument

has the potential to enhance monitoring capabilities.

Airborne hyperspectral thermal emission data, whilst currently not routinely

used for mapping of surface mineral deposits or alteration products for geothermal

exploration, has potential in the future to support these activities in synergy with

hyperspectral VNIR/SWIR data. Hyperspectral TIR emission data provides

improved capabilities over data from the VNIR/SWIR region for quantitative

mapping of silicates and carbonates that may be associated with surface hydrother-

mal activity. This has the potential to improve the mapping of blind geothermal

systems based upon the recognition of old hot spring deposits. The application

of hyperspectral TIR emission data for these purposes will be supported by the

further development of instrumentation by both government and commercial

organizations.
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Chapter 23

Analysis of Surface Thermal Patterns

in Relation to Urban Structure Types:

A Case Study for the City of Munich

Wieke Heldens, Hannes Taubenböck, Thomas Esch, Uta Heiden,

and Michael Wurm

Abstract Scientists have reached to a large extent agreement on climate warming

for the coming decades. This will especially have immense impact on cities which

show in general a significantly higher temperature compared to rural surroundings,

e.g. due to high percentage of impervious surfaces. This study shows capabilities of

airborne and spaceborne thermal remotely sensed data to derive and analyze land

surface temperatures (LST). Dependencies of LST to urban structure types (UST)

with respect to their location within the city are analyzed. Results prove distinct

correlations between LST and vegetation fraction as well as percentage of impervi-

ous surfaces. Beyond this, different USTs prove influences on LST. Last but not

least, a general decrease of LST with increasing distance to the city center is

confirmed for the city of Munich. However, the USTs superimpose this trend and

have a significant influence on the local LST.

23.1 Introduction

Land surface temperature is an important parameter for urban climate studies. It

influences the air temperature in the lower layer of the urban atmosphere, plays an

important role in the energy balance, supports the analysis of the internal climate of

buildings and indirectly affects the human comfort in cities (Voogt and Oke 2003).

Thermal remote sensing can be used to map urban surface temperature patterns and

the surface urban heat island (SUHI) (Weng 2009). The SUHI indicates the often

higher surface temperatures of urbanized areas in comparison with the surrounding

rural area. Intra-city differences in surface temperature occur due to differing

surface material types, urban morphology or vegetation fraction. This phenomenon
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has been studied frequently, for example for the cities of Beijing (China) (Cai et al.

2011), Toronto (Canada) (Rinner and Hussain 2011), Seoul (Korea) (Bhang and

Park 2009), Debrecen (Hungary) (Bottyán et al. 2005) or Athens (Greece)

(Stathopoulou and Cartalis 2009). It should be noted, that the surface temperature –

and thus the surface urban heat island – differs from the air temperature and the

according urban heat island (UHI) (Roth et al. 1989; Voogt and Oke 2003). For

example, where the SUHI reaches its highest intensity during the day, the UHI

intensity reaches its maximum during the night. Among others, the air tempera-

ture within the urban canopy is also influenced by convection and therefore

differs from the surface temperature (Voogt and Oke 2003).

For urban planners it is important to know the location of local heat islands as

well as the causes so they can mitigate the negative effects. Areas with similar

climatic conditions require similar planning measurements (Fehrenbach et al. 2001;

Houet and Pigeon 2011). This chapter focuses on the surface temperature patterns

and not on air temperature because it is made use of thermal remote sensing. If the

urban morphology shows systematic correlations to LST, urban planning options

for reducing the effect of SUHI can be identified. For this analysis, the concept of

urban structure types (UST) is used. This is a common means to group urban areas

with similar characteristics (Pauleit 1998) which require consequently similar

planning measures.

In this chapter, we show how the analysis of thermal patterns can be carried out

based on the framework of urban structure types using the example of the city of

Munich (Germany). First, the concept of urban structure types is introduced.

Second, the thermal patterns of the city of Munich are addressed as they are

recorded by both, an airborne and a satellite-based sensor. Third, the mapping of

urban structure parameters, with which the urban structure types can be identified

and differentiated, is presented. Fourth, different methods that relate surface tem-

perature to urban structure types and their spatial characteristics are discussed. We

combine these approaches to suit the analysis within the framework of USTs

and finally discuss the advantages and limitations of such an approach for urban

planning purposes.

23.2 Urban Structure Types

Urban structure type (UST) mapping is a commonly used tool in many German cities

to support urban planning. This approach delineates the urban system into distinct

configurations of built-up areas, impervious open spaces, urban green spaces and

infrastructure (Heiden et al. 2012). The principle of UST was introduced in the 1990s

in Germany and since has been applied to a wide range of German cities (Pauleit

1998; Sukkop andWittig 1998;Wickop et al. 1998) and adapted by other countries as

well (Tang 2007). USTs are characterized by a number of features describing their

physical properties (e.g. surface materials, building density or floor space index),
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their environmental characteristics (e.g. climate, hydrology) and functional properties

(e.g. land use) (Pauleit and Duhme 2000; Wurm et al. 2010).

The city of Munich is selected as study area. In this city, a large range of urban

structure types (UST) are present. In an UST map provided by the municipality of

Munich, 41 structure types are distinguished, including both urban and agricultural

types (Fischer 2002). The structure types are assigned on the basis of building

blocks (the smallest area surrounded by public streets). The city consists of more

than 7,000 building blocks.

Here we focus on a selection of eight urban structure types: block development

(I), perimeter block development (II), regular block development (III), row house

development (IV), detached and semi-detached housing (V), high rise buildings

(VI), large multi-storey buildings (VII) and parks and urban green (VIII). Together

these eight urban structure types are found in almost 4,500 building blocks in

Munich. Table 23.1 shows an exemplary building block of each of the eight

urban structure types.

23.3 Thermal Patterns of Urban Structure Types

Remotely sensed thermal infrared data are widely used to study LST patterns for

urban climate and environment studies (Weng 2009; Tomlinson et al. 2011;

Arnfield 2003). Often the UHI effect is studied (e.g. Weng et al. 2011; Stathopoulou

and Cartalis 2009; Hart and Sailor 2009; Yuan and Bauer 2007) or the relationship

between LST and various biophysical parameters (e.g. Zhang et al. 2009; Weng and

Hu 2008; Yue et al. 2007).

For this study, thermal imagery of the Landsat satellite (60 m pixel size) and of

the airborne sensor Daedalus (4 m pixel size) was available. The Daedalus data

were recorded on 2007-6-25 at 12:05 AM, the Landsat scene 2 months later, on

2007-8-26 at 11:56 AM. The Landsat data covered the whole city of Munich and its

surroundings. The Daedalus data consisted of one flight line, covering a part of the

city in the northern half of the image and rural area in the southern half. The LST of

the Landsat thermal band was calculated with the software package ATCOR

(Atmospheric and Topographic Correction for Satellite Imagery) (Richter 2009).

With this software a temperature-emissivity-separation (TES) algorithm was

applied. Since only one thermal band is available, an emissivity of 0.98 was

assumed for all land cover types. The airborne Daedalus image was received as

calibrated temperature equivalents, corresponding with at-sensor brightness tem-

perature. To retrieve (near) land surface temperature a correction for the atmo-

spheric water vapour column is required, e.g. with the ATCOR software package.

However, an extensive atmospheric correction was not possible due to a lack of

meta-data. Therefore, it was assumed that the water vapour column in the Daedalus

image is equal over the whole image and an offset based on the difference to

the Landsat retrieved surface temperature was applied to adjust the Daedalus
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temperature to the land surface temperature of Landsat. All surface temperatures

are converted to degree Celsius.

By comparing the mean surface temperature of the city – defined by the

municipal boundaries – to the mean surface temperature of the rest of the image,

the SUHI intensity can be determined. For the Landsat data, a SUHI intensity of

2.8 �C was found. The municipality covered 5 % of the Landsat image. The

dominant land cover in the rest of the image is agricultural land, followed by

forests and smaller settlements. Using the Daedalus data, a SUHI intensity of

5.3 �C was determined. The municipality covers 33 % of the Daedalus image.

The remaining part of the image consists mainly of forest, followed by urban area

and agricultural land. The difference in the intensity of the SUHI between the two

Table 23.1 Examples of the eight selected urban structure types (ortho-photos with varying

scales)

Description Example Description Example

I Block development V Detached and semi-

detached housing

II Perimeter block

development

VI High rise buildings

III Regular block

development

VII Large multi-storey

buildings

IV Row house

development

VIII Parks and urban green
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sensors can be explained among others by the acquisition date. At the end of the

summer when the Landsat image was recorded, many fields are harvested. The

resulting bare soil causes a much higher surface temperature for the rural area,

whereas the surface temperature in the city is similar. This matches results

published by Imhoff et al. (2010). They analyzed the SUHI intensity for many

cities in the USA, categorised after different biomes. In biomes with higher

amounts of standing biomass, such as temperate broadleaf and mixed forests higher

SUHI intensities were found then in biomes with mainly grassland. Although the

difference thus can be explained, the difference in SUHI intensity measured from

the two sensors also shows the large dependency of this measure on the time of the

year, the sensor field of view and the ratio of urban and rural area within the image.

The LST maps of the municipality of Munich derived from both sensors are

shown in Fig. 23.1. The LST in the city centre is the highest and decreases towards

the border of the city. The dark blue patches are the cooler, large parks, such as the

Nymphenburger Park (A) and the flood plains of the river Isar (B). Patches of high

LST outside the city centre are mainly industrial areas (e.g. C). Also along the main

rail road tracks there is a higher LST (D, E). The high resolution data of the

Daedalus sensor shows similar patterns. A closer look shows that different LST

of buildings, vegetation and roads can be separated in the Daedalus data, whereas in

the Landsat map only the cooler park can be recognised. Sobrino et al. (2012)

studied the impact of spatial resolution by resizing airborne thermal imagery in the

city of Madrid. They found that small thermal structures, such as streets or gardens

can be detected at spatial resolutions up to 50 m. With coarser resolutions, these

patterns become mixed and from 500 m onward the heterogeneity between

neighbourhoods is lost. At a spatial resolution of 1 km thermal structures within

different districts cannot be recognised anymore.

Figure 23.2 shows the variation of LST within each of the eight USTs for the two

sensors. The 25 % of the pixels with lower LST than the median are indicated by the

blue range, the 25 % of the pixels with higher LST than the median are indicted in

red. Thus, the blue and red ranges together cover the values of 50 % of the pixels

belonging to a certain UST. The figure shows that the general pattern of the LST

between the UST and the two remote sensing sources are quite similar. However the

variation within the Daedalus data is much larger than in the Landsat data. This is

due to the influence of the spatial resolution. The Landsat data not only covers a

larger area with one pixel – meaning each pixel provides a more averaged temper-

ature, but also fewer pixels contribute to the USTs.

The differences between the eight USTs are most clear in the height of the

median LST. Block development and large multi-storey buildings have the highest

LST. In the Landsat data even all pixels belonging to these USTs have values higher

than the mean of the whole image (all UST, dotted line). The UST with the lowest

temperatures is ‘parks and urban green’, of which almost 90 % of the pixels have

temperature values below the image mean. The temperature ranges of regular block

developments and row house development are similar to each other. The LST of

detached and semi detached housing is comparable to these two USTs as well, but
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with slightly lower values. In Daedalus data, the 25 % of the pixels with an LST

below median cover a smaller range than the 25 % above the median.

In general we observe that those UST showing significantly different physical

parameters also showed significant differences in LST. However, the empirical

estimation of the temperature is not possible just based on the USTs

Fig. 23.1 Surface temperature of the city of Munich as measured by Landsat (60 m pixel size) and

Daedalus (5 m pixel size)
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23.4 Spatial Characteristics of Urban Structure Types

Urban areas can be described with remote sensing data by a range of parameters

(Heldens et al. 2011). In addition to land cover, common examples are building

density (Orenstein et al. 2011; Zha et al. 2003; Bochow et al. 2009), impervious

surfaces (Weng 2012) or vegetation fraction (Chen et al. 2006; Stefanov and

Netzband 2005), describing the spatial characteristics of urban areas. Further

parameters include e.g. floor space index, construction volume (Taubenböck et al.

2010; Wurm et al. 2011), building alignment, morphological homogeneity

(Taubenböck and Kraff 2013) or dominating materials (Heldens 2010). Approaches

such as texture analysis or spatial metrics are also used to describe urban structure

(Herold et al. 2003; Pesaresi et al. 2008). To characterise the urban structure types

in Munich within the scope of urban climate, the parameters building density,

percentage impervious surface (imperviousness), vegetation fraction, surface mate-

rial and sky view factor are selected. These parameters are important factors

contributing to the LST in urban environments (Weng 2009).

The surface cover material, building density, impervious surfaces and vegetation

fraction are derived from airborne hyperspectral data, supported by height data.

Other relevant information is the sky view factor. It is calculated based on a DEM

derived from stereo photogrammetry and described below.

Hyperspectral data used here were recorded in June 2007 by the HyMap sensor

with 125 spectral bands and a spatial resolution of 4 m (Cocks et al. 1998). Before

use, the HyMap data were atmospherically corrected with the ATCOR software

(Richter 2009) and geometrically corrected with ORTHO (Müller et al. 2005).

Fig. 23.2 Variation of LST within different USTs. The dotted line indicates the mean LST of the

whole study area (Landsat: 28.8 �C, Daedalus: 27.0 �C). I block development, II perimeter block

development, III regular block development, IV rowhouse development,V detached and semi-detached

housing, VI high rise buildings, VII large multi-storey buildings and VIII parks and urban green
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The surface material map is derived from the HyMap data using a linear spectral

unmixing algorithm developed especially for urban applications by the GFZ Ger-

man Research Centre for Geosciences (Roessner et al. 2011; Heiden et al. 2012).

With this unmixing approach, up to 40 urban surface materials can be identified at

sub-pixel level. They include various roof materials, materials of impervious,

partially pervious and pervious non-built surfaces and three vegetation types

(grass, coniferous and deciduous trees). The result is an abundance map for each

material, with the coverage percentage for each pixel. In order to express the

characteristics of a building block, the abundance maps of the materials are

aggregated. To calculate the imperviousness, building density and vegetation

fraction, the abundances of the materials for each pixel are also aggregated per

building block. The building density is defined as the average abundance of all roof

materials. The imperviousness is defined as the average abundance of all roof

materials, all non-built impervious surfaces (e.g. asphalt roads) and 0.5 times the

abundance of partially impervious surfaces (e.g. cobblestone pavements). The

average abundance of all vegetation types defines the vegetation fraction per

building block. The results of these three indicators are expressed in percentage

per building block (the detailed methodology is described in Heiden et al. (2012)

and Heldens (2010)).

The sky view factor (SVF) is frequently used in urban climate studies (Eliasson

et al. 2006; Rigo and Parlow 2007). The SVF has been defined by Watson and

Johnson (1987) as “the ratio of radiation received by a planar surface from the sky

to that received from the entire hemispheric radiating environment”. Thus

expressing the amount of radiation that can maximally reach or leave the surface,

the SVF plays a role in the heating of the surface during the day and its cooling

during the night. This way, SVF is an important variable in understanding both the

surface and air urban heat island.

For this study, SVF was calculated based on a DEM (Digital Elevation Model)

recorded with the HRSC (High Resolution Stereo Camera) (Scholten et al. 2003) in

2004. The DEM contained both buildings and vegetation. A ray tracing program

implemented in ATCOR was used to calculate the SVF which is scaled from 0 to

100 % (Richter 2009). The resulting SVF calculated for the top of canopy,

providing values for either the ground surface or the top of any present objects

(e.g. building roofs and tree crowns).

The results of the analysis of urban surface characteristics are shown in the

Figs. 23.3 and 23.4. Figure 23.3 shows the average material abundance for the eight

urban structure types. The most common roofing material is roofing tiles. The

abundance of green roofs is overestimated because of classification errors, caused

by buildings covered by tree crowns and the general spectral confusion between

vegetation on roofs and vegetation on the ground. In the urban structure types with

larger buildings (VI: high rise buildings, VII: halls and storage buildings, but also I:

dense block developments), roofing materials commonly found on flat roofs, such

as concrete, metal and bitumen are more common. The non built surfaces in all

urban structure types are mainly covered by vegetation (both trees and lawns), but

also asphalt and concrete contribute to up to 10 % of the area. Hereby it should be
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noted, that by the definition of the building blocks the roads separating the building

blocks have been excluded from the analysis.

Figure 23.4 shows the mean and standard deviation of four spatial indicators for

the selected urban structure types. Each of the USTs has a typical combination of

the four indicators. The mean sky view factor for most USTs is around 70 %. Higher

Fig. 23.3 Mean material abundances in the different UST. Type I represents block development,

II perimeter block development, III regular block development, IV row house development,

V detached and semi-detached housing, VI high rise buildings, VII large multi-storey buildings

and VIII parks and urban green

Fig. 23.4 Mean spatial characteristics for different urban structure types. Type I shows block

development, II perimeter block development, III regular block development, IV row house

development, V detached and semi-detached housing, VI high rise buildings, VII large multi-

storey buildings and VIII parks and urban green
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sky view factors are reached for row houses, detached and semi-detached housing,

halls and storage buildings and parks. These are all structure types with either

relatively low building density (IV, V, VIII) or few large buildings and little trees

(VII). The largest percentage of impervious surface is found in block development,

followed by large multi-storey buildings. The vegetation fraction in the residential

USTs ranges from 18 to 49 %. Of course the vegetation fraction in the parks and

urban green (76 %) is very high.

23.5 Relating Thermal Patterns to Urban Structure Types

To analyse the relationship of thermal patterns and urban structure types and their

spatial characteristics, a regression analysis at building block level was carried out.

For each building block the mean abundance of surface cover materials and the

spatial indicators as presented in the previous section were used as independent

variables. The building blocks belonging to the different urban structure types have

been analyzed separately. A multiple linear regression was applied, using IDL

(Interactive Data Language) regression routines (ITT 2010). As dependent variable

the mean LST for each building block is used. As a result, for each urban structure

type a regression equation consisting of a constant and coefficients for each variable

were retrieved, as well as the multiple linear correlation coefficient and the linear

correlation coefficients for each variable. To improve the comparability among

USTs, the coefficients of the regression equation are normalised to percentage.

Additionally, scatter plots of the LST against each of the spatial variables have

been produced, in which the different urban structure types are indicated. A selection

of these plots is shown in Fig. 23.5.

The results of the regression analysis of the surface materials and the LST show

high multiple correlation coefficients ranging from 0.59 (dense block development)

to 0.70 (halls and storage buildings) for the LST derived from Landsat. For the

Daedalus derived LST the multiple correlation coefficients are even higher: they

range from 0.69 (parks and urban green) to 0.89 (high rise buildings). For most

USTs the coefficients of the different materials are within the same range, around

8 %. Materials with a slightly higher coefficient are the different types of vegetation

(in high rise buildings, halls and storage buildings and parks), roofing tiles (in dense

block development and row house development), metal roofing materials (dense

block development), synthetic roofing materials (perimeter block development) and

asphalt (regular block development). Among the Landsat derived regression

coefficients the variation is larger and also the mean value of the coefficients is

lower (around 4 %). Higher contributions are from vegetation (multiple types),

vegetated roof, other roofing materials, roofing tiles, roofing bitumen. They con-

tribute with 10–29 % to the equation. Except for the vegetation types (including

green roofs) all materials have a positive correlation to LST. Figure 23.5a, b show

the correlation between LST and roofing tiles and LST and asphalt. The correlation

coefficients of roofing tiles to LST are not very high (0.2 for most of the USTs).
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For asphalt they are slightly higher, ranging from 0.23 to 0.49. Whereas the

different USTs have each a clear position on the scale of asphalt and roofing tile

abundances, USTs of the same type cover a broad range of LST values. This is

especially true for halls and storage buildings, perimeter block development and

row house development.

The regression analysis of the indicators shows similar results. The multiple

correlation coefficients range from 0.55 to 0.74 in the Daedalus data and from 0.49

to 0.64 within Landsat data. The USTs with the highest multiple correlation

coefficients are perimeter block development (0.74) and high rise buildings (0.73)

in Daedalus data and with Landsat data parks and urban green (0.64), detached

and semi detached housing and regular block developments (both 0.63). The

coefficients of the different indicators in the regression equation vary largely. For

most USTs, either vegetation fraction or imperviousness has the highest coefficient

(up to 55 % for vegetation fraction and up to 48 % for imperviousness), suggesting a

large influence of these indicators on the LST. In the Landsat data additionally

Fig. 23.5 Scatter plots of mean LST (Daedalus data) and mean abundance of selected surface

materials and indicators per building block
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building density and sky view factor have large coefficients with contributions of up

to 27 % to the multiple regression equation. In Daedalus data fully sealed surfaces

determine the LST distinctively with contributions up to 39 %. These results

suggest that, in order to reduce LST, for all USTs it would be advantageous to

reduce imperviousness, building density and/or the amount of fully sealed surfaces

or increase the vegetation fraction (negative correlation). Changes in the amount of

partially sealed surfaces, soil or water will have less effect, according to this

analysis. The importance of vegetation fraction and imperviousness is also

illustrated by the fact that these indicators have also the highest linear correlation

coefficients (0.43–0.64 for vegetation fraction and 0.40–0.64 for imperviousness),

where the higher coefficients are reached with the Daedalus data. Figure 23.5c, d

show the correlation of imperviousness and vegetation fraction for the different

USTs in a scatter plot. The plots are almost inverse to each other. At lowest and

highest percentages of impervious surface, all building blocks with the UST parks

and dense block development are located. The other USTs are somewhat mixed at

medium LST and impervious surface percentages. The same is the case in the

scatterplot of vegetation density (Fig. 23.5d). However, here dense block develop-

ment is mixed with perimeter block development, and halls and storage buildings

which have also very low vegetation fraction in many building blocks. Bechtel

(2011) found similar patterns in Hamburg while assessing mean height, the

normalised difference vegetation index (NDVI), and the dominant land use in

comparison to the mean annual surface temperature and the yearly amplitude of

the surface temperature for seven urban and non urban structure types. Houet and

Pigeon (2011) found significant differences in climate between different urban

structure types (urban climate zones) in Toulouse. Making use of the differences

in spatial characteristics, Stewart and Oke (2012) defined a classification scheme in

order to support urban temperature observations e.g. in the context of urban heat

island analysis. These ‘local climate zones’ resemble urban structure types.

The previous analyses show the relationship of the urban structure types to LST

by means of the surface cover parameters. However, also the location of the

building block within the city might play a role in the LST of urban structure

types. The SUHI in Munich has the highest temperatures in the centre of the city

and the intensity decreases towards the border of the city. Therefore, the spatial

organization of urban structure types and LST within the city is analyzed. The

results are presented in Fig. 23.6. As representative centre of the city, the

Marienplatz was selected. Its location is indicated by the crossing of the transects

in the map of Munich in Fig. 23.6. The four transects (from west to centre, centre to

east, north to centre and centre to south) provide a means to analyze the LST from

the urban centre to the urban periphery. Beyond this, the analysis can be carried out

with respect to the particular urban structure types that occur along the transects.

The eight USTs are displayed in colour in Fig. 23.6 with their respective location.

The figure shows that dense block development is mainly found in the centre of the

city, followed by a ring of regular block development and on the outer ring detached

and semi-detached housing. Parks and halls and storage buildings are spread

486 W. Heldens et al.



Fig. 23.6 LST profiles over the USTs in Munich along the transects (black lines) indicated in the

map. The colour bars in the LST figures correspond to the colours of the urban structure types in

the map

23 Analysis of Surface Thermal Patterns in Relation to Urban Structure Types. . . 487



irregularly over the entire city. This is also true for regular block development, row

house development and high rise buildings, but their amount is not as large.

For the analysis LST profiles are derived from the Landsat data along the

transects. The four profiles are shown in the lower part of Fig. 23.6. The colours

below each profile indicate the spatially associated urban structure types. All

profiles generally show an increasing LST towards the city centre. In the eastern

and southern profile the influence of the river Isar is clearly visible by a dip in the

LST of 5� (south) and 10� (east). Other dips in LST in the eastern profile at 5.5 and

7 km have to be contributed to agricultural fields. Peaks are visible at almost all

locations were halls and storage buildings occur, but they vary largely in height

with a maximum difference to the surrounding of up to 10�. Dips of LST can be

found at the location of most of the parks. They are up to 5� cooler than their

surroundings. The peaks and dips are more pronounced in the east – west profiles

than in the north – south profiles.

It is interesting to note that the transect north of the centre shows the lowest

variance and a generally consistent increase in LST. This is due to the

characteristics of the transect which is not interrupted by parks or any other open

spaces. The only significant peak is measured at the halls and storage buildings of

an industrial site. In comparison, the three other transects show a higher variance

due to a frequent change of open spaces and built environment as well as a higher

spatial alternation of USTs. Thus it becomes obvious that in Munich LST decreases

with distance to the city centre. However, the influence of USTs on the LST

superimposes this trend and determines the local LST.

23.6 Discussion and Conclusion

In the previous sections results on the mapping and characterisation of urban

structure types and LST using two thermal sensors at different spatial resolutions

have been presented. The higher spatial resolution of the airborne sensor is advan-

tageous for this analysis. It allows the mapping of small scale variations in thermal

patterns and the resulting correlation of LST and spatial indicators and surface

materials is stronger for the different building blocks and USTs. These findings

correspond with extensive studies on spatial scale for urban thermal pattern

mapping by Sobrino et al. (2012). Nevertheless, the Landsat data provide some

useful insights in the variation of LST within the city. Because of the larger pixel

size, it is no problem to cover the entire urban area of 25 by 15 km.

The regression analysis showed that vegetation fraction and impervious surfaces

are main determining factors for the LST. This is in agreement with the results of

many other studies (e.g. Jenerette et al. 2007; Mostovoy et al. 2008; Zhang et al.

2009; Weng et al. 2004, 2011; Xiao et al. 2007). These results are confirmed

by Figs. 23.2 and 23.4 as well. Dense block development has the highest

imperviousness and the lowest vegetation density of all USTs (Fig. 23.4). At the
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same time, this UST shows the highest LSTs (Fig. 23.3). The profiles in Fig. 23.6

show also an increase of LST with an increase of dense block development.

However, one should notice that the occurrence of dense block development

increases towards the city centre. The UST with the second highest LST, halls and

storage buildings, have similar values for vegetation fraction and imperviousness

but are more evenly spread over the city. In many instances, their high percentage of

impervious surfaces and low vegetation fraction result in an LST higher then their

surroundings. But this UST is characterised by a high variation both within the

building blocks (Fig. 23.2) and among the building blocks of this UST (Fig. 23.5).

It might be the case that the location of the building blocks within the city also plays

a role in this. For the analysis, administrative borders of the building blocks (public

streets) were used; local (weather) characteristics were not considered. To gain more

insight on the influence of the location within the city on the LST in building

blocks and the variation among building blocks of the same types, profiles of more

cities should be analyzed.

Although the different USTs show characteristic values for SVF, this parameter

seems not to be very dominant in determining LST. However, studies on SVF and

street geometry emphasise on the importance of these parameters for the energy

balance and wind flow (Hoyano et al. 1999; Rigo and Parlow 2007; Offerle et al.

2007; Eliasson et al. 2006).

In the literature, often research is done on the influence of land use on LST and

strong relationships were found (Chen et al. 2006; Hart and Sailor 2009; Hu and Jia

2010). Although land use was not investigated in this study, urban structure types

are closely related to land use. The definition of the USTs is based on physical

characteristics, but the building blocks belonging to one type often show similar

land use. This is an advantage for the use of USTs as framework for LST analysis in

urban areas.

Surface temperature is only a part of the urban climate. Remote sensing maps

surface temperature at different heights (street, roof, tree tops), of which many are

not very relevant for inhabitants. Thus, the LST measured by remote sensing

explains only a small part of the urban climate. Nevertheless, analyses such as

carried out here can provide insight on materials and spatial characteristics that can

mitigate or intensify unwanted climatic effect, because the surface properties also

influence the energy balance. The relation of USTs to the energy balance, air

temperature, wind and other climate parameters is important for urban planning

practice (Pauleit and Duhme 2000). Quah and Roth (2012) analyzed the contribu-

tion of different urban structures and land uses on the energy balance in which the

anthropogenic heat produced by the different land uses plays an important role.

Since USTs in Germany are closely related to land use, they might provide a means

to estimate the anthropogenic heat production in a generalised way. Future research

should therefore further combine the knowledge on the various climatic aspects and

their interaction with urban morphology and surface cover within the framework of

urban structure types.
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comments of the reviewers greatly helped to improve the manuscript.

References

Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of

energy and water, and the urban heat island. Int J Climatol 23:1–26

Bechtel B (2011) Multisensoral remote sensing for the microclimatic characterisation and classifi-

cation of urban structures. Photogrammetrie Fernerkundung Geoinformation 2011(5):325–338

Bhang KJ, Park SS (2009) Evaluation of the surface temperature variation with surface settings on

the urban heat island in Seoul, Korea, using Landsat-7 ETM+ and SPOT. IEEE Geosci Remote

Sens Lett 6:708–712
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Chapter 24

Mineral Mapping with Airborne

Hyperspectral Thermal Infrared Remote

Sensing at Cuprite, Nevada, USA

Dean N. Riley and Christoph A. Hecker

Abstract This is a case example of mineral mapping of unaltered and altered rocks

at the Cuprite mining district, southwestern Nevada using the Spatially Enhanced

Broadband Array Spectrograph System (SEBASS), a thermal infrared hyperspectral

sensor that collects radiance measurements in the mid-wave infrared and thermal

infrared portions of the electromagnetic spectrum. Cuprite, Nevada has been a test

bed for a variety of multispectral and hyperspectral sensors that have predominantly

covered the visible through short-wave infrared portion of the electromagnetic

spectrum. In 2008, 20 SEBASS flight lines were collected at an average altitude of

4,735 m yielding an average 3.35 m ground sample distance (GSD).

Rock forming and alteration minerals found in this mining district have

reststrahlen features (emission minima due to fast changes in refractive index

with wavelength) in the thermal infrared portion of the electromagnetic spectrum

(7.5–13.5 μm). Mineral mapping with hyperspectral thermal infrared data provi-

des unique and complementary information to visible-shortwave (0.4–2.5 μm)

hyperspectral data. Mineral maps were produced using a spectral feature fitting

algorithm with publicly available mineral spectral libraries containing signatures.

These mineral maps were compared to the geological and alteration maps along

with mineral maps generated by previous studies of visible-shortwave infrared

hyperspectral sensors to assess some of the difference in mineral mapping with a

hyperspectral thermal infrared sensor. This study shows that hyperspectral thermal

infrared data can spectrally map rock forming minerals associated with unaltered

rocks and alteration minerals associated with different phases of alteration in altered

rocks at Cuprite, Nevada.

D.N. Riley (*)

The Aerospace Corporation, Chantilly, VA, USA

SpecTIR, LLC, Fairfax, VA, USA

e-mail: Driley@spectir.com

C.A. Hecker

Faculty of Geo-Information Science and Earth Observation (ITC),

University of Twente, Enschede, The Netherlands

C. Kuenzer and S. Dech (eds.), Thermal Infrared Remote Sensing: Sensors,
Methods, Applications, Remote Sensing and Digital Image Processing 17,

DOI 10.1007/978-94-007-6639-6_24, © Springer Science+Business Media Dordrecht 2013

495

mailto:Driley@spectir.com


24.1 Introduction

Thermal spectroscopy of rocks and minerals has been of interest to the geological

community and in its infancy was assisted by Kennecott Mining, and NASA (Lyon

et al. 1959; Lyon and Burns 1963). The Air Force Research Lab and the USGS

continued to support the early work of Lyon, Hunt, Salisbury, Vincent and others

(Lyon and Burns 1963; Lyon 1965; Hunt 1970; Hunt and Salisbury 1974, 1976;

Vincent et al. 1975) and show that the silicate and carbonate minerals have

reflectance features from 8.0 to 14.0 microns (μm). These minerals are the primary

rock forming minerals for almost every type of igneous, sedimentary, and meta-

morphic rock. Since this early work, these researchers and their students developed

many of the techniques originally used in the multispectral remote sensing commu-

nity. Work in the Long-wave Infrared (LWIR) did not stop after this early work.

NASA and the USGS conducted numerous field studies in the late 1970s and

1980s to develop and characterize multispectral airborne sensors (TIMS (Thermal

Infrared Multispectral Scanner), GER-D (Kahle et al. 1980; Kahle 1987)). Continu-

ation of the work led to the development of DAIS 7915, NASA’s MASTER

(MODIS-ASTER Airborne Simulator) airborne instrument and others (Hook et al.

2001; Mauger 2003; Müller et al. 2005). MASTER has 25 bands in the Midwave

Infrared (MWIR, 3.0–5.5 μm) and LWIR in addition to 25 bands in the VNIR-SWIR

(visible to short-wave infrared). Airborne LWIR (long-wave infrared) hyperspectral

sensors were first built in the 1990s that included the MIRACO2LAS (midinfrared

airborne CO2 laser system), SEBASS, AHI (Airborne Hyperspectral Imager), and

ARGUS sensors (Whitbourn et al. 1990; Hackwell et al. 1996; Lucey et al. 1998;

Cudahy et al. 1999). MIRACO2LAS and ARGUS are line profiling instruments;

whereas, SEBASS and AHI are airborne imaging instruments. ITRES of Canada

(Pignatti et al. 2011) has started to sell and fly its 32 channel LWIR imager (TASI,

Thermal Airborne Spectrographic Imager) and Specim of Finland (Holma et al.

2009, 2011) has begun production of its 84 channel LWIR imager (OWL). More-

over, The Aerospace Corporation (Aerospace) has built and flown new sensor

designs, a 32-channel LWIR imager, MAGI (Mineral and Gas Identifier) (Hall

et al. 2008), and a 128-channel LWIR imager, MAKO (Hall et al. 2011), using

Dyson spectrometers, and NASA Jet Propulsion Laboratory (JPL) just recently flew

HyTES (Hyperspectral Thermal Emission Spectrometer) in late 2012 (Hook 2012,

personal communication). There has been a continued maturation of LWIR

instruments from research and development prototypes towards production and

this will increase the amount of TIR data that is available for exploitation.

Cuprite Hills of Nevada, USA has been imaged with a variety of airborne and

spaceborne multispectral and hyperspectral instruments (ATM (Technology Micro-

wave Sounder), AIS (AirborneImaging Spectrometer), TIMS, Geoscan, AVIRIS

(Airborne Visible/Infrared Imaging Spectrometer), AISA (Airborne Hyperspectral

Imaging Systems), CASI (Compact Airborne Spectral Imager), HYDICE

(HYperspectral Digital Imagery Collection Experiment), MASTER, Landsat,

Hyperion, ASTER (Advanced Spaceborne Thermal Emission and Reflection
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Radiometer), and SEBASS) (Abrams et al. 1977; Ashley and Abrams 1980; Kahle

and Goetz 1983; Kruse and Taranik 1989; Swayze et al. 1992; Mumin et al. 1996;

Clark et al. 2003; Rowan et al. 2003; Allibone et al. 2004; Benavides et al. 2008a, b;

Hecker 2012). The focus of this chapter is a case study demonstrating mineral

mapping of rock forming and alteration minerals using airborne emittance spec-

troscopy over a site that has been consistently tested with visible to short-wave

infrared (VNIR-SWIR) hyperspectral airborne and spaceborne sensors. Results

from this study can be compared with the results from lower spectral resolution

systems and lower signal to noise airborne sensors such as Aerospace’s Mineral and

Gas Identifier (MAGI), NASA JPL’s MODIS/ASTER Airborne Simulator (MAS-

TER), ITRES’s TASI, or Specim’s OWL sensors or current spaceborne sensors

such as the Advanced Spaceborne Reflection and Emission Radiometer (ASTER)

or NASA’s proposed HYSPIRI sensor. Twenty SEBASS flight lines were flown and

radiance data was recorded from 3.0 to 5.5 μm and 7.7 to 13.5 μm on June 14th,

2008 with a 3.35 meter (m) spatial resolution (Table 24.1).

24.2 Geologic Setting

In the southwestern part of the Great Basin in the United States south of the town of

Goldfield, Nevada are the Cuprite Hills. These hills have limited vegetation cover

and range from 1,400 to 1,700 m above sea level. Topographic relief in the western

Table 24.1 Flight log of SEBASS collection over Cuprite, Nevada

Session

Target X

time (GMT) Target name

Platform

HAE (m) WGS84 Frames IFOV (mrad)

080614_122714 12:32:12 CPRT4m_02 4738.88 3,500 1,100

080614_123753 12:42:19 CPRT4m_01 4717.83 3,500 1,100

080614_124749 12:52:42 CPRT4m_03 4725.82 3,500 1,100

080614_125914 13:03:02 CPRT4m_04 4749.33 3,500 1,100

080614_130855 13:13:31 CPRT4m_05 4717.25 3,500 1,100

080614_131925 13:23:56 CPRT4m_06 4732.5 3,500 1,100

080614_132934 13:34:21 CPRT4m_07 4732.18 3,500 1,100

080614_134040 13:44:53 CPRT4m_08 4740.28 3,500 1,100

080614_135032 13:55:14 CPRT4m_09 4731.83 3,500 1,100

080614_140047 14:05:12 CPRT4m_10 4753.42 3,500 1,100

080614_141108 14:15:26 CPRT4m_11 4746.1 3,500 1,100

080614_142046 14:25:41 CPRT4m_12 4731.78 3,500 1,100

080614_143111 14:35:36 CPRT4m_13 4731.21 3,500 1,100

080614_144104 14:45:30 CPRT4m_14 4730.06 3,500 1,100

080614_145038 14:55:16 CPRT4m_15 4721.26 3,500 1,100

080614_150031 15:05:12 CPRT4m_16 4733.35 3,500 1,100

080614_151028 15:14:40 CPRT4m_17 4732.91 3,500 1,100

080614_152001 15:24:27 CPRT4m_18 4753.63 3,500 1,100

080614_153016 15:34:33 CPRT4m_19 4743.58 3,500 1,100

080614_153943 15:44:08 CPRT4m_20 4747.14 3,500 1,100
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part of the hills is controlled by a north trending ridge and circular hills in the

eastern part of the hills. This area has moderately easy access as U.S. Highway

95 runs through the area (Ashley and Abrams 1980) (Fig. 24.1).

In the Cuprite Hills, the oldest rocks are found in the western section and are

Cambrian in age. These are the Harkless, Mule Spring, and Emigrant Formations.

The Harkless Formation (Ch) the oldest sequence in the area and is composed of

siltstone, quartizitic siltstone, and orthoquartzite sandstone. Minerals present in

these rocks are commonly chlorite, muscovite, biotite, and quartz. This is overlain

by the Mule Spring Formation (Cms) which is a thin-bedded limestone that is finely

crystalline. The primary mineral present in this formation is calcite. Overlying the

Mule Spring Formation is the Emigrant Formation (Ce) which has limited outcrops

and consists primarily of limestone and chert (Albers and Stewart 1972; Ashley and

Abrams 1980) (Fig. 24.1).

Unconformably overlaying the Cambrian rocks are a series of Tertiary volcanic

and sedimentary lithologies. The oldest Tertiary rocks are a rhyolite (Ts) that is

observed in the eastern and western sections of the area and a quartz latite tuff,

which is found in the western section. Minerals present are sanidine, quartz,

plagioclase, and biotite. Plagioclase is absent in the quartz latite dike and biotite

is limited. In the eastern section, there are exposures of porphyritic plagioclase

olivine basalt that overlie the rhyolitic rocks (Ts). The minerals in this basalt (Tb1)

are olivine and calcic-rich plagioclase. The basalt is overlain by the Stonewall Flat

Tuff (Tsf) that consists of devitrified sodic rhyolitic ash-flow tuffs and some quartz

latite dikes. Minerals present in this formation are sanidine, quartz, plagioclase and

biotite. Whereas, the quartz latite dike in this formation has quartz, sanidine, and

biotite phenocrysts. Lastly, the Pediment basalt (Tb2), in the western section, is a

olivine-rich basalt and is the youngest of the Tertiary rocks with olivine and

plagioclase as the primary minerals (Ashley and Abrams 1980) (Fig. 24.1).

The youngest rocks in the area are, Quaternary sand and gravel deposits (Qal)

and Quaternary playa that overlay the Tertiary age rocks unconformably (Ashley

and Abrams 1980) (Fig. 24.1).

24.2.1 Hydrothermal Alteration

Silicic, Opaline, and Argillic hydrothermal alteration were mapped in the area using

traditional geological alteration mapping methods (Fig. 24.2). Silicic alteration is

most prevalent in the eastern section of the area, but the areal extent is less than

present in the western section. Hydrothermal quartz is the dominant mineral with

minor kaolinite, alunite, and calcite (Ashley and Abrams 1980).

The most prevalent alteration is opalization. Opal, alunite, and kaolinite are the

dominant minerals associated with this alteration. To a lesser degree, dickite,

pyrophyllite, calcite, buddingtonite, muscovite, montmorillonite, and jarosite are

observed in these rocks (Ashley and Abrams 1980; Swayze et al. 1992; Swayze

1997) (Fig. 24.2).
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Fig. 24.1 Generalized geologic map of Cuprite mining district, Nevada (Rowan et al. 2003). Qal
sand, gravel, and boulders, Qp playa deposits, Tb2 olivine basalt, Tsf sodic ash-flow tuff, Tb1
porphyritic olivine basalt, Ts crystal-rich rhyolite and latite tuff, conglomerate, and sandstone, Tf
quartz latitic felsites, Ce limestone and chert, Cms limestone and lower limey siltstone, Ch
phyllitic siltstone and minor sandy limestone (Modified from Ashley and Abrams 1980; Swayze

1997); inset map shows location of area in western Nevada
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Argillic alteration is the least intense and prevalent alteration style in the district.

Recognition of this alteration is observed by plagioclase altering to kaolinite,

bleaching of biotite, and volcanic glass altering to opal, montmorillonite, and

kaolinite with quartz and sanidine remaining unaltered (Ashley and Abrams

1980) (Fig. 24.2).

24.3 Emittance of Minerals at Cuprite

Rock forming minerals have spectral features in the Thermal Infrared (TIR)

region of the electromagnetic spectrum (5–25 μm). Fundamental vibrational

frequencies of silicates, carbonates, sulfates, and phosphates show spectral features

Fig. 24.2 Generalized map showing the distribution of three hydrothermally altered rock units:

(1) red, silicified; (2) blue, opalized; and (3) yellow, argillized (Rowan et al. 2003) (Modified from

Ashley and Abrams 1980)
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in the 8–14 μm portion. Mineral identification is feasible because the spectral

features (reststrahlen bands, i.e., emission minima due to fast changes in refractive

index with wavelength) are diagnostic and display variations in wavelength posi-

tion due to cation substitution (Salisbury et al. 1991; Hapke 1993).

Rocks and minerals have been measured in the laboratory using TIR spectros-

copy and are used for mapping and identification of surface materials (Lyon et al.

1959; Lyon 1965; Farmer 1974; Salisbury et al. 1991; Christensen et al. 2000).

Spectral libraries are readily available for mapping with airborne and spaceborne

multispectral and hyperspectral data that contain spectra from 5 to 45 μm. The

United States Geological Survey (USGS), NASA’s Jet Propulsion Laboratory

(JPL), Johns Hopkins University (JHU), Arizona State University (ASU) all have

developed spectral libraries and are available online. NASA’s ASTER spectral

library is available online and is a compilation of the JPL’s, JHU’s, and the

USGS’s spectral libraries (Clark et al. 2007).

1. ASU spectral library (URL1)

2. ASTER spectral library (URL2)

3. USGS spectral library (URL3)

TIR spectra measured in hemispherical reflectance can be used to calculate

emissivity using Kirchhoff’s law. Emissivity (ε) is related to hemispherical reflec-

tance (ρ) with the following equation (Salisbury et al. 1994).

This allows the use of rock and mineral spectral libraries collected in hemispher-

ical reflectance to be used for spectral mapping of TIR data that has been converted

to emissivity.

Mineral groups that have been mapped using multispectral TIR remote sensing

data include silicates, carbonates, sulfates, phosphate, and clays (Kahle and Rowan

1980; Kahle and Goetz 1983; Gillespie et al. 1984; Kahle et al. 1988; Sabine et al.

1994; Crowley and Hook 1996; Hook et al. 1999; Rowan and Mars 2003). The use

of hyperspectral TIR data for mineral mapping has received considerably less

attention; however, silicates, carbonates, sulfates, and clays have been mapped

(Cudahy et al. 2000; Hewson et al. 2000; Calvin et al. 2001; Vaughan et al. 2003,

2005; Vaughan and Calvin 2005; Riley et al. 2007, 2008; Aslett et al. 2008).

In previous hyperspectral TIR studies a single flight line was flown over interesting

geological features. This study involves mineral mapping of unaltered and altered

rocks at Cuprite, across several parallel flightlines.

24.3.1 Unaltered Rocks

The Harkless Formation is made up of chlorite, muscovite, biotite, and quartz

(Ashley and Abrams 1980). Chlorite has three reststrahlen bands in the 8–12 μm
region, a deep one at 9.75 μm and two shallower features at 9.35 and 10.4 μm.

Muscovite has reststrahlen features at 9.25 and 9.4 μm. The reststrahlen features of

biotite are 9.2 and 9.8 μm. Quartz has two doublet reststrahlen features, one

centered at 8.65 μm with minima at 8.5 and 8.9 μm and the other at 12.6 μm with
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minima at 12.5 and 12.8 μm. Whereas, the Mule Spring Formation is limestone and

its primary mineral is calcite which has a reststrahlen feature at 11.3 μm (Figs. 24.3

and 24.4).

Rhyolite (Ts) is composed of quartz, sanidine, plagioclase, and biotite

phenocrysts. The quartz latite tuff (Tf) consists of predominantly quartz and

alkali-feldspar (sanidine) with scarce biotite phenocrysts. The Stonewall Flat Tuff

(Tsf) is composed of devitrified sodic rhyolite ash-flow tuffs and a quartz latite dike.

These rocks have sanidine phenocrysts with quartz and sodic feldspar groundmass

(Ashley and Abrams 1980). Plagioclase in silicic volcanic rocks is commonly

albite, oligoclase or even andesine. Reststrahlen bands for sanidine are at 8.65

and 9.5 μm and biotite has bands at 9.2 and 9.8 μm. Albite has multiple reststrahlen

features at 8.7, 9.2, 9.6, and 9.9 μm. Oligoclase has reststrahlen bands at 8.7 and

9.9 μm and andesine has bands at 8.8 and 9.9 μm. As the calcic content of

plagioclase increases from albite to andesine there is a shift to longer wavelength

from 8.7 to 9.0 μm reststrahlen band. The reststrahlen bands for plagioclase shift

from anorthite to albite (Cudahy et al. 2000) (Figs. 24.3 and 24.4).

Fig. 24.3 Upper plot:
Thermal spectral signatures

of chalcedony (blue, upper),
quartz (green, middle), calcite
(red, lower). Lower plot:
Thermal spectral signatures

of opal (blue, upper),
kaolinite (green, middle),
alunite (red, lower)
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24.3.2 Altered Rocks

Silicic alteration ismore prevalent in eastern section of area, but the areal extent is less

in the western section. Hydrothermal quartz is the dominant mineral with minor

kaolinite, alunite, and calcite (Ashley and Abrams 1980). Hydrothermal quartz has a

doublet of reststrahlen features with a peak in between centered at 8.65 μm and the

features at 8.5 and 8.9 μm. Kaolinite has multiple reststrahlen features at 8.9, 9.6, 9.9,

and 11.0 μmwith the features at 9.6 and 11.0 being themost significant. Alunite has an

asymmetric doublet with a peak at 8.7 μmand the features at 8.4 and 9.0 μm(Figs. 24.3

and 24.4). An asymmetric doublet that is slightly different than pure quartz has been

noted (Vaughan et al. 2003). Moreover, chalcedony has an asymmetric doublet that is

similar to the quartz-alunite combined signature. As noted by (Vaughan et al. 2003),

these spectral similarities make separating quartz, alunite, quartz-alunite, chalcedony,

and opal in the TIR difficult (Figs. 24.3 and 24.4), but feasible.

Fig. 24.4 Upper plot:
Thermal spectral signatures

of muscovite (blue, upper),
chlorite (green, middle),
biotite (red, lower). Lower
plot: Thermal spectral

signatures of andesine (dark
green, upper), Oligoclase
(dark red, upper-middle),
albite (blue, middle),
orthoclase (green, lower-
middle), sanidine (red, lower)
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Opalized alteration is the most prevalent alteration present. Opal, alunite, and

kaolinite are the dominant minerals associated with this alteration. Dickite, pyro-

phyllite, calcite, buddingtonite, muscovite, montmorillonite, and jarosite can be

observed in these rocks as well (Ashley and Abrams 1980; Swayze et al. 1992;

Swayze 1997). Opal has a single reststrahlen feature at 8.8 μm. Alunite has

reststrahlen bands at 8.4 and 9.0 μm with a peak in between at 8.7 μm. Kaolinite’s

multiple reststrahlen bands are at 8.9, 9.6, 9.9, and 11.0 μm (Figs. 24.3 and 24.4).

Calcite has a reststrahlen band at 11.3 μm and muscovite has features at 9.25 and

9.4 μm. The reststrahlen features of dickite, pyrophyillite, buddingtonite, montmo-

rillonite, and jarosite will not be discussed as these minerals will not be mapped for

brevity (Figs. 24.3 and 24.4).

The areal extent of argillic alteration in the district is the least intense and

prevalent. This alteration is recognized by plagioclase altering to kaolinite,

bleaching of biotite, and volcanic glass altering to opal, montmorillonite, and

kaolinite. Quartz and sanidine are unaltered (Figs. 24.3 and 24.4).

24.4 SEBASS Analysis

24.4.1 Data Collection and Calibration

Spatially Enhanced Broadband Array Spectrograph System (SEBASS) measures

reflected and emitted radiation with 128 channels from 2.5 to 5.3 μm and

measures emitted radiation with 128 channels from 7.6 to 13.5 μm of the electro-

magnetic spectrum. This instrument operates as a pushbroom sensor with 128 pixels

in the cross-track direction and has a 7.8� FOV and 1.1-mrad IFOV per pixel.

A flight altitude of approximately 3,000 m above ground level (AGL) producing

a 3.35-m resolution was flown for this study. When flown with greater area

coverage, the signal-to-noise (SNR) ratio has been tested greater than 2,000:1

(Hackwell et al. 1996).

Under clear sky conditions, SEBASS data were collected over Cuprite, Nevada

in June, 2008. Following the steps outlined by Hackwell et al. (1996), these data

were calibrated to at-sensor radiance. Especially important was the use of cold and

hot blackbodies at the beginning and end of each flight line for in flight calibration.

These data were preprocessed for striping prior to atmospheric compensation and

masking of bad pixels (Dykstra and Segal 1985). At surface radiance data were

produced using an In Scene Atmospheric Correction (ISAC) algorithm (Young

et al. 2002). These data were converted to apparent emissivity and temperature

using a Emissivity Normalization Method (ENM) for the temperature emissivity

separation (TεS) (Gillespie 1986; Kealy and Hook 1993). The emissivity data were

smoothed using a Savitzky-Golay filter prior to spectral mapping (Savitzky and

Golay 1964; Tsai and Philpot 1998; King et al. 1999; Ruffin and King 1999). Lastly,

these LWIR data were subset from 8.0 to 12.0 μm prior to spectral feature
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absorption mapping because most of minerals at Cuprite have absorption features

constrained to this region.

24.4.2 Image Analysis

Figure 24.5 shows a false color composite image and a decorrelation image of

SEBASS’s channels at 11.09, 9.60, and 9.02 μm displayed as red, green, and blue

(Gillespie et al. 1986). Vaughan et al. (2003) noted that quartz dominated regions

should appear yellow, clay-rich areas are magenta, quartz-sulfate mixtures are a

green, and quartz-feldspar-clay mixtures are orange-brown in color. At Cuprite

using similar wavelengths, the Harkless Formation appears as red which primarily

composed of chlorite, muscovite, biotite, and quartz. Whereas, the Mule Spring

Formation appear as blue (calcite-rich) and the Stonewall Flat Formation appears as

blue with a lot of orange-brown (quartz- and feldspar-rich). The alteration centers

appear as green with yellow and they are dominated with quartz-alunite mixtures;

while, the orange-brown areas are quartz, feldspar, and clay rich.

24.4.3 Spectral Feature Processing

Spectral mapping of the minerals was conducted using spectral feature fitting

in ENVI with a spectral library constrained to the probable minerals at Cuprite

which is similar to the methods developed by (Clark and Roush 1984; Swayze

1997; Clark et al. 2003). ENVI’s spectral feature fitting routine produces a scaled

image and a root mean square (RMS) image for each spectral signature mapped

using a least squares routine and a “fit image” can be generated by dividing the

scaled image with the rms image. A threshold of two standard deviations was

applied to the fit image.

Alunite is spectrally mapped in the western section moderately well when

compared to VNIR-SWIR spectral mapping of Clark et al. (2003). Spatially there

is less alunite mapped in eastern alteration location. In both cases, alunite is

spectrally mapped as a bulls-eye pattern around the silicified alteration. The allu-

vium is mapping some alunite which is probably from the weathering of the rocks.

Spectral mapping of chlorite is predominantly in the Harkless Formation (Ch),

western section of Fig. 24.7. Chlorite is seen in the alluvium as well and is most

likely from the weathering of the Harkless Formation. The Stonewall Flat Tuff

(Tsf) also has some chlorite spectrally mapping on it. The weathering of biotite to

chlorite is most likely the result of this spectral mapping.

In the eastern alteration center, the spectral mapping of quartz is coherent and

overlies the silicified alteration described by Ashley and Abrams (1980). Quartz

also maps well the smaller silicified alteration observed in the western alteration
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center. The rhyolitic tuffs and quartz latite is spectrally mapped well in the

northwestern section (Fig. 24.8).

Calcite is spectrally mapped in the southwestern portion of the figure and

correlates well with the Mule Spring Formation. Calcite is also mapped spectrally

in smaller outcrops in the northwest and in the southeast. U.S Highway 95 is also

Fig. 24.5 Upper left: Mosaicked false color composite (FCC) image at R: 11.09, G: 9.60, and B:

9.02 μm.Upper right: Mosaicked decorrelation stretch false color composite (FCC-DCS) image at

R: 11.09, G: 9.60, and B: 9.02 μm. Lower left: Mosaicked albite gray scale image from least

squares material matching algorithm overlain with threshold at 2 standard deviations. Lower right:
Mosaicked alunite gray scale image from least squares material matching algorithm overlain with

threshold at 2 standard deviations
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mapped with calcite which is not surprising since asphalt commonly has calcite in it

(Fig. 24.6).

Chalcedony is spectrally mapped in the western alteration center overlying the

silicified alteration zone. It is also mapped in the Stonewall Flat Tuff (Tsf) and over

Fig. 24.6 Upper left: Mosaicked andesine gray scale image from least squares material matching

algorithm overlain with threshold at 2 standard deviations. Upper right: Mosaicked biotite gray

scale image from least squares material matching algorithm overlain with threshold at 2 standard

deviations. Lower left: Mosaicked calcite gray scale image from least squares material matching

algorithm overlain with threshold at 2 standard deviations. Lower right: Mosaicked chalcedony

gray scale image from least squares material matching algorithm overlain with threshold at

2 standard deviations
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parts of the Mule Spring Formation (Cms). The spatial coherency of chalcedony is

less than quartz spectral mapping over the silicified alteration center (Fig. 24.6).

Spectral mapping of muscovite occurs over the Harkless Formation in the

western alteration area and in some of the argillic alteration area in the east

alteration center (Fig. 24.7). This mapping in the eastern area is mainly located

between the eastern alteration area and the Stonewall Flat Tuff (Tsf).

Fig. 24.7 Upper left: Mosaicked chlorite gray scale image from least squares material matching

algorithm overlain with threshold at 2 standard deviations. Upper right: Mosaicked kaolinite gray

scale image from least squares material matching algorithm overlain with threshold at 2 standard

deviations. Lower left: Mosaicked muscovite gray scale image from least squares material

matching algorithm overlain with threshold at 2 standard deviations. Lower right: Mosaicked

oligoclase gray scale image from least squares material matching algorithm overlain with thresh-

old at 2 standard deviations
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Kaolinite spectrally maps mostly in the western alteration area and along the

west and north of the eastern alteration area. Kaolinite is also found in the alluvium

as well and maps around the Pediment basalt (Tb2) coherently (Fig. 24.7).

Opal is found from spectral mapping in the western alteration area and outside of

the silicified alteration in the eastern alteration area. Opal is spectrally mapped in

Fig. 24.8 Upper left: Mosaicked opal gray scale image from least squares material matching

algorithm overlain with threshold at 2 standard deviations. Upper right: Mosaicked orthoclase

gray scale image from least squares material matching algorithm overlain with threshold at

2 standard deviations. Lower left: Mosaicked quartz gray scale image from least squares material

matching algorithm overlain with threshold at 2 standard deviations. Lower right: Mosaicked

sanidine gray scale image from least squares material matching algorithm overlain with threshold

at 2 standard deviations
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the Stonewall Flat Tuff (Tsf) which is the result of weathering and devitrification of

the rhyolites and quartz latite (Fig. 24.8).

Coherent patterns of alunite, calcite, chalcedony, chlorite, kaolinite, muscovite,

opal, quartz, sanidine were mapped using a least-squares based spectral feature

fitting algorithm applied to SEBASS apparent emissivity data. Rock formingminerals

associated with unaltered rocks were mapped correlating with the Harkless, Mule

Spring, and Stonewall Flat Tuff Formations. Alteration minerals associated with

argillic, opalized, and silicified alteration were mapped and correlate with alteration

map produced by (Ashley and Abrams 1980).

Mineral mapping of chlorite correlates with the Harkless formation. Some

muscovite and quartz spectrally maps with the Harkless Formation as well. Calcite

spectrally maps predominantly within the Mule Spring Formation in the southwest-

ern section of the district.

Argillic alteration is limited, but kaolinite and muscovite both map outside of the

opalized alteration in the eastern and western alteration centers.

Opalized alteration is predominantly in the eastern alteration center and is

spectral mapped using an opal signature. Alunite was detected in the opalized

alteration areas as well, while Chalcedony does not significantly overlap with opal.

Silicified alteration (represented by quartz spectral map) is dominantly detected

in the eastern alteration center. Chalcedony maps in the silicified alteration as well,

but this is more likely the result of minor alunite being present than chalcedony

being present. This is similar to what was seen with other quartz-alunite rocks

having a similar spectral signature to chalcedony (Vaughan et al. 2003). Separating

different types of siliceous minerals is feasible even though the minerals have

similar spectral shapes and absorption features.

24.5 Summary and Conclusions

Thermal infrared hyperspectral remote sensing at Cuprite, Nevada shows Stonewall

Flat Tuff, rhyolite, and quartz-latite tuff can be spectrally mapped. This is in

addition to the Harkless and Mule Spring Formations being spectrally mapped as

well. The eastern and western alteration centers with their silicic, opaline, and argillic

alteration are also mapped spectrally. These results indicate that rock forming and

alterationminerals can bemappedwith similar and complementary results to visible to

short-wave infrared hyperspectral mineral mapping. Differentiating chlorite and

calcite in the thermal infrared is much easier in the thermal infrared than in the

short-wave infrared since the absorption features of these minerals do not overlap

this portion of the electromagnetic spectrum. Moreover, mineral mapping techniques

developed for the visible to short-wave infrared hyperspectral sensors are applicable in

the thermal infrared once the data has been converted to emissivity.
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Chapter 25

Validation of Thermal Infrared (TIR)

Emissivity Spectra Using Pseudo-invariant

Sand Dune Sites

Glynn Hulley and Alice Baldridge

Abstract Land surface temperature and emissivity (LST&E) are important

variables used in surface energy balance models, monitoring land-cover land-use

changes, and in surface composition mapping. For most retrieval algorithms that

generate LST&E products from spaceborne thermal infrared data, accurate retrieval

of the LST depends on an accurate estimate of the spectral emissivity in the TIR

region between 8 and 12 μm. This is because both determine the amount of thermal

radiance that gets emitted to the atmosphere from the Earth’s surface. Conse-

quently, validation of emissivity products from sensors such as MODIS and

AIRS is a critical aspect for better quantifying uncertainties in the long-term LST

record, and to help better constrain surface energy balance modeling. Two methods

of validating the emissivity currently exist; an in situ method that utilizes TIR

instruments such as radiometers employed in the field, and a laboratory-based

method that uses a high spectral resolution spectrometer to measure field collected

samples in a controlled environment. This chapter will discuss the methodology for

validating emissivity products over pseudo-invariant sand dune sites using the

lab-based method.

25.1 Introduction

Accurate knowledge of the land surface emissivity in the Thermal Infrared (TIR:

8–12 μm) domain of the electromagnetic spectrum is essential to derive accurate

Land Surface Temperatures (LSTs) from spaceborne TIR measurements such as the
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Atmospheric Infrared Sounder (AIRS) (Susskind et al. 2003), the Moderate-

Resolution Imaging Spectrometer (MODIS) (Wan 2008) and the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Gillespie

et al. 1998; Hulley et al. 2008). LST and emissivity are both key parameters used

in monitoring land surface dynamics, climate modeling, and surface-boundary

layer interactions. The emissivity in particular is an important constraint for

balancing the Earth’s surface radiation budget. For example recent sensitivity

tests based on the NCAR (National Center for Atmospheric Research) Community

Land Model (Bonan et al. 2002) indicate that an emissivity error of 0.1 (10 %) in

desert regions will result in current climate models having errors of almost 7 Wm�2

in their upward longwave radiation estimates (Jin and Liang 2006; Zhou et al.

2003). This represents a much larger term than the surface radiative forcing due to

an increase in greenhouse gases (~2–3 Wm�2), and makes accurate knowledge of

the surface emissivity a key component for climate change studies.

The standard ASTER LST product, AST08, has been validated primarily over

vegetated and water surfaces (Coll et al. 2005; Hook et al. 2007; Tonooka and

Palluconi 2005), while the emissivity product, AST05, has been validated primarily

over bare surfaces (Hulley et al. 2009a; Sabol et al. 2009; Schmugge et al. 2003;

Schmugge and Ogawa 2006). Currently, the most comprehensive emissivity vali-

dation of the ASTER product encompassing a wide variety of different minerals

was performed in validating the North American ASTER Land Emissivity Surface

Database (NAALSED) v2.0 emissivity product (Hulley et al. 2009a). NAALSED

was validated over arid/semi-arid regions using a set of large pseudo-invariant sand

dune sites in the southwestern USA. The emissivity of sand samples collected at

each of the dunes sites was measured in the laboratory using a Nicolet 520 FT-IR

spectrometer and convolved with the appropriate ASTER system response

functions. The average difference in emissivity with the lab measurements was

found to be 1.6 % for all wavelengths (Hulley et al. 2009a). Other sensors such as

AIRS and MODIS are more difficult to validate because of their coarse spatial

resolution at 1 km or more. For example, due to the coarse resolution of the AIRS

emissivity product (~50 km), two large sand seas in southern Africa – the Namib

Desert in Namibia, and the Kalahari desert in Botswana, were used to validate the

AIRS v5 emissivity product using lab-measured sand samples collected from both

sites (Hulley et al. 2009b). Different versions of the MODIS MOD11B1 emissivity

product were also validated in the same manner at the Namib site (Hulley and Hook

2009a), while a new MODIS TES (MODTES) product, which uses the same

retrieval algorithm as ASTER, was validated at Kelso dunes and the Algodones

dunes in southern California using the lab-based method (Hulley and Hook 2011).

Validation of emissivity data from space ideally requires a site that is homoge-

neous in emissivity at the scale of the imagery, allowing several image pixels to be

validated over the target site (Hulley et al. 2009a). Pseudo-invariant bare ground

sites such as playas, salt flats, and claypans are generally the preferred targets for

the long-term validation and calibration of visible, shortwave, and thermal infrared

data (Bannari et al. 2005; Teillet et al. 1998). More recently Hulley and Hook

(2009a) found that large, homogeneous sand dune fields are particularly useful for
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the validation of TIR emissivity spectra due to their consistent and homogeneous

mineralogy and physical properties over long time periods. One big advantage that

sand dunes have over playas is that after rain events water gets rapidly infiltrated

into the ground, whereas playas store water for much longer periods. Furthermore,

drying of the sand surface does not lead to cracks and fissures, which typically

occurs at any site with a large clay component such as playas and silt pans. It has

been shown that surface roughness and cracks could artificially raise the emissivity

due to cavity radiation effects (Mushkin and Gillespie 2005).

Using sand samples collected at specific sites, the mineralogy and composition

of the sand can be accurately determined in the laboratory using reflectance and

x-ray diffraction (XRD) measurements. Ideally the dune sites should be spatially

uniform and any temporal variability of the surface due to changes in soil moisture

and vegetation cover should be minimal since these changes have the effect of

increasing the emissivity for all wavelengths.

The ten U.S. sand dune sites that have been proposed for the long term validation

of TIR include: Great Sands National Park, Colorado; White Sands National

Monument, New Mexico; Kelso Dunes, California; Algodones Dunes, California;

Stovepipe Wells Dunes, California; Coral Pink Sand Dunes, Utah; Little Sahara

Dunes, Utah; Killpecker Dunes, Wyoming; Moses Lake Basalt Dunes, Washington,

and SandMountain, Utah. Of these sites, a super-set of the best sites in terms of size,

homogeneity, and long term stability will be discussed in this chapter. These are the

Algodones dunes, White Sands, Kelso Dunes, Great Sands, and Little Sahara.

25.2 Sand Dune Fieldwork

25.2.1 Sampling Methods

Sand samples at each of the ten sand dune sites were collected during five separate

field campaigns from July–September 2008 (Hulley et al. 2009a). The samples were

collected in dry conditions, i.e. no soil moisture from dew or recent rainfall. Google

maps were used to locate the most homogeneous areas of the dune sites with

minimal vegetation cover. Samples were collected randomly in these regions at

intervals of approximately 100 m over an area roughly equivalent to 100 ASTER

pixels (1 km � 1 km). At a few sites, samples were collected along transects across

the dune site. Sampling areas included the crests, troughs, windward and leeward

slopes of the dunes, including interdune areas. Approximately one tablespoon of

sand was collected per sample, and the location recorded by GPS. Samples were

collected by scooping the upper most few millimeters of the surface of the dunes

which most closely represents what the satellite instrument observes in the TIR.
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25.2.2 Laboratory Measurements

The reflectivity of each sand sample was measured from 2.5 to 15 μm using

a Nicolet 520 FT-IR spectrometer equipped with a Labsphere integrating sphere

(Baldridge et al. 2009), and then converted to emissivity using Kirchhoff’s law,

ε¼ 1� r. The measurement consists of 1,000 scans at 4 cm�1 spectral resolution

acquired over a 10 min/sample and then average together (Baldridge et al. 2009).

The uncertainty associated with the Nicolet FT-IR emissivities is 0.002 (0.2 %)

(Korb et al. 1999). In order to remove background radiation, a spectrum is first

acquired using a diffuse gold plate and then subtracted from the measurement. The

corresponding emissivity for any particular sensor can then be found by convolving

the lab spectrum with the appropriate sensor’s system response function.

Figure 25.1 shows an example of lab emissivity measurements using the Nicolet

that have been convolved to the spectral response functions of ASTER TIR bands

10–14. The solid line shows the mean lab spectra of 12 sand samples collected at the

Kelso Dunes in southern California at full resolution. Errorbars on the convolved

lab spectra (crosses) show the standard deviation of the different samples measured.

Emissivity variations are typically greatest in the quartz Reststrahlen band which

falls roughly between 8.3 and 9.6 μm. Figure 25.2 shows mean lab emissivity

spectra for the ten sand dunes sites where sand samples were collected. This

selection of dune sites was chosen because they encompass the full range of

expected surface emissivities for bare surfaces in the TIR region. For example,

Fig. 25.1 Emissivity spectra comparisons between ASTER (solid squares), lab measurements

convolved to ASTER bandwidths (crosses), and the measured full resolution laboratory spectra

(solid line) for the Kelso Dunes in southern California. Errorbars show standard deviation of the

lab measured sand samples
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emissivites in the quartz band range from as low as 0.55 (Coral Pink) all the way up

to 0.95 (Moses Lake).

X-Ray Diffraction (XRD) measurements were made for each sample at Arizona

State University using the Rigaku D/Max-IIB. Samples were powdered and

mounted on glass slides and scanned over the full 2θ range at a scan rate of 2 s

per step at intervals of 0.020�. XRD peak lists were compared against the full

International Catalog of Diffraction Data (ICDD) powder database for bulk mineral

analysis. Each sample was also sorted and sieved. Table 25.1 shows the bulk

mineralogy for each sand dune site in terms of their major and minor constituents

as determined from the XRD measurements.

25.3 Sand Dune Sites

The following sections will describe the four super-set of sand dune sites in terms of

locality, sand source and mineralogy. Each dune site section includes a figure

(Figs. 25.3, 25.4, 25.5, 25.6, and 25.7) that shows an ASTER visible image of the

dune site showing sampling areas, and emissivity spectra comparisons between the

lab measured samples and the ASTER standard AST05 emissivity product.

Fig. 25.2 Mean emissivity spectra measured by the Nicolet 520 FT-IR spectrometer of sand

samples collected from ten sand dunes sites in the southwestern USA
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25.3.1 The Algodones Dunes

The Algodones Dunes are located along the eastern portion of the Salton Trough

near El Centro in the southeastern portion of California. The dunes are approxi-

mately 72 km long by 10 km wide, with dunes up to 80 m high and have very little

vegetation cover. The prevailing northerly and westerly winds in the area cause the

dunes to trend along a northwest-southeast axis (Norris and Norris 1961). The

Imperial Valley and the Coachella Valley form the elongated, enclosed Cahuilla

Basin, which was cut off from the Gulf of California by the formation of the

Colorado River. Longshore currents moved large volumes of sand from the

Whitewater River system at the north end of the lake. The shoreline gradually swings

from south to southeast. Wind from the northwest moves sand parallel to the beach.

The main source of sand, therefore, is deposits from the eastern beaches of Lake

Cahuilla, which are composed primarily of quartz and feldspar (McCoy 1987).

25.3.2 White Sands National Monument

White Sands National Monument, located in the Tularosa Basin in south-central

New Mexico, form the largest gypsum dune field in the world. The dune fields are a

Table 25.1 Grain size and bulk mineralogy for ten sand dune sites determined from X-Ray

Diffraction (XRD) measurements

Mineralogy (XRD)

Dune site Grain size Major Minor

Algodones Medium to coarse Quartz –

32.95 N, 115.07 W

Coral Pink Medium Quartz –

37.04 N, 112.72 W

Great Sands Medium to coarse Quartz Potassium feldspar

37.77 N, 105.54 W

Kelso Medium Quartz Potassium feldspar, magnetite

34.91 N, 115.73 W

Killpecker Medium Quartz Plagioclase feldspar, epidote, magnetite

41.98 N, 109.10 W

Little Sahara Fine Quartz Plagioclase feldspar, pyroxene carbonate,

magnetite39.7 N, 112.39 W

Stovepipe Wells Medium Quartz Plagioclase feldspar, potassium feldspar

36.62 N, 117.11 W

Moses Lake Fine Quartz Albite

47.05 N, 119.31 W

White Sands Fine Gypsum –

32.89 N, 106.33 W
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maximum of 10 m high and cover an area of approximately 704 km2, with the active

dunes moving up to 10 m a year in the northeasterly direction. The dunes are

bordered on the southwest by ephemeral Lake Lucero, on the west by the Sand

Andres Mountains and on the east by the Sacramento Mountains. The dune sand

originates from ablation and transport of Lake Lucero evaporitic gypsum deposits

by southwesterly winds (McKee 1966).

Fig. 25.3 Visible ASTER image (left) showing locality of dune site and sampling locations (blue
dots within box) for the Algodones dunes, California and emissivity spectra comparisons (right)
between lab measurements of sand samples collected during 2008 and a mean ASTER emissivity

standard product from 2000 to 2009

Fig. 25.4 Same as Fig. 25.3 except results are for White Sands National Monument, New Mexico
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25.3.3 Kelso Dunes

The Kelso Dunes are located in the Mojave Desert National Preserve southeast of

Baker, CA. Sand from the Mojave River alluvial apron is driven approximately

56 km by predominantly westerly winds, piling up at the base of the Granite and

Providence mountains, which flank the south and southeast sides of the dune field.

The dune field covers an area of 115 km2 and contains dunes that rise up to 195 m

Fig. 25.5 Same as Fig. 25.4 except results are for Kelso Dunes, California

Fig. 25.6 Same as Fig. 25.5 except results are for Great Sands National Park, Colorado
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above the terrain. Large portions of the dunes have sparse vegetation cover that

stabilizes areas of previously drifting sand. The dunes are composed predominately

of quartz and feldspar eroded from granitics of San BernardinoMountains to the south

but also contain a large proportion of lithic fragments (Edgett and Lancaster 1993) .

25.3.4 Great Sands National Park

Southwesterly prevailing winds have deposited sand in the San Luis Valley of

southern Colorado and have deposited the greatest mass of sand near the western

flank of the Sangre de Cristo Mountains. This area is preserved as the Great Sand

Dunes National Monument, covering approximately 104 km2 and containing the

tallest dunes in North America. The tallest dune rises 230 m from the floor of the

San Luis Valley to an altitude of 2,600 m above sea level. The dunes are composed

of up to 70 % volcanic rock fragments derived from the surface of the Santa Fe

and Alamosa formations along with more recent fluvial and lacustrine deposits

carried from the San Juan Mountains by the Rio Grande (Johnson 1967).

25.3.5 Little Sahara Dunes National Recreation Area

The Little Sahara sand dunes are the largest dune field in Utah at 563 km2. The dune

field is located 10 km north of Lynndyl and 40 km northeast of Delta, UT. The dune

field is made up of primarily northwest trending active traverse dunes that average

Fig. 25.7 Same as Fig. 25.6 except results are for Little Sahara, Utah
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about 10 m high, but climb to 200 m tall at the Sand Hills. One of the largest Lake

Bonneville depositional features preserved is the Provo Shoreline related delta of

the Sevier River. Regression of the lake from the Provo shoreline exposed the

deltaic deposits, which were subsequently reworked into the aeolian dunes (Sack

1987). While the sand consists primarily of quartz grains, with minor amounts of

feldspar, biotite, calcite from these deltaic deposits, they also contain lithic

fragments, garnet and magnetite derived from the basaltic ash of the Pahvant

Butte south of Delta, UT.

25.4 Discussion and Summary

Sand dune sites have been proposed as validation targets for validating high to

medium spatial resolution emissivity products from spaceborne and aircraft sensors

due to their pseudo-invariant characteristics over long time periods (Hulley et al.

2009a). Factors that could potentially result in temporal and spatial surface changes

include seasonal vegetation phenology, aeolian processes such as wind erosion,

deposition and transport, and daily variations in surface soil moisture from precipi-

tation, dew, and snowmelt. Field observations by Hulley et al. (2009a) during the

summer of 2008 showed the major portion of the dune sites to be bare, with the

exception of Kelso and Little Sahara, which contained sparse desert grasses and

reeds on the outer perimeter of the dune field and in some interdunal areas. As a

result, care was taken not to include any ASTER pixels bordering on perimeter

areas of the dunes in the validation results. Rainfall events, which would increase

the surface soil moisture over the sand would result in a significant increase in TIR

emissivity at the dune sites, especially in the 8–10 μm range (Hulley et al. 2010;

Mira et al. 2007). However, careful analysis using a combination of Advanced

Microwave Scanning Radiometer – EOS (AMSR-E) soil moisture data and Tropi-

cal Rainfall Measuring Mission (TRMM) rainfall data showed no precipitation

events close to the ASTER observations used for the validation. Furthermore, the

majority of dune validation sites are in windy regions, at high altitude with low

humidity <40 % (except for Algodones), and in semi-arid regions with high mean

annual temperatures. These factors would limit lifetime of soil moisture in the first

few micrometers of the surface skin layer as measured in the TIR. Using controlled

lab measurements, Hulley et al. (2010) showed that almost all soil moisture in the

top layer of two different types of sand were evaporated within the first hour of

being exposed to morning sunlight resulting in emissivity decreasing back to the

equilibrium ‘dry state’. This is in contrast to clays and silt pans that hold water for

much longer periods due to their high clay content.

Figures 25.3, 25.4, 25.5, 25.6, and 25.7 showvalidation results ofASTERemissivity

spectra from the North American ASTER Land Surface Emissivity Database

(NAALSED) v2.0 (Hulley and Hook 2009b) with laboratory measurements of sand

samples collected at each site. Errorbars show spatial standard deviations of the

lab-measured sand samples and spatio-temporal variations of the ASTER observations
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for each site. ASTER visible images of each dune site are included showing dune

coloration, surrounding topography and sampling locations (blue dots). The results

show that ASTERmatches closely the shape andmagnitude of the lab emissivity at the

majority of dune sites. ASTER emissivity differences with the lab results were on

average<1.6% for all wavelengths. For Kelso, Great Sands, andLittle Sahara ASTER

typically had emissivities a few tenths of a percent higher than the lab measurements,

and this is most likely due to either limitations in the TES calibration curve to capture

the full spectral contrast, or atmospheric correction effects.

25.5 Conclusions

Sand dune sites have been shown to be excellent targets for validating emissivity

data from TIR sensors. This is due to the pseudo-invariant characteristics with

respect to temporal and spatial surface changes and their consistent composition

over long time periods. It is expected that TIR data from future missions such as the

Hyperspectral Infrared Imager (HyspIRI) spaceborne sensor and the Hyperspectral

Thermal Emission Spectrometer (HyTES) aircraft sensor will use sand dune targets

as their primary validation targets. New field campaigns will be scheduled to collect

a new set of sand samples in order to assess any temporal changes in composition at

each site.
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