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  Abstract 

 Haematopoietic stem cells (HSCs) are a rare cell population found in the 
bone marrow of adult mammals and are responsible for maintaining the 
entire haematopoietic system. De fi nitive HSCs are produced from meso-
derm during embryonic development, from embryonic day 10 in the 
mouse. HSCs seed the foetal liver before migrating to the bone marrow 
around the time of birth. In the adult, HSCs are largely quiescent but have 
the ability to divide to self-renew and expand, or to proliferate and differ-
entiate into any mature haematopoietic cell type. Both the speci fi cation of 
HSCs during development and their cellular choices once formed are 
tightly controlled at the level of transcription. Numerous transcriptional 
regulators of HSC speci fi cation, expansion, homeostasis and differentia-
tion have been identi fi ed, primarily from analysis of mouse gene knockout 
experiments and transplantation assays. These include transcription factors, 
epigenetic modi fi ers and signalling pathway effectors. This chapter 
reviews the current knowledge of these HSC transcriptional regulators, 
predominantly focusing on the transcriptional regulation of mouse HSCs, 
although transcriptional regulation of human HSCs is also mentioned 
where relevant. Due to the breadth and maturity of this  fi eld, we have pri-
oritised recently identi fi ed examples of HSC transcriptional regulators. 
We go on to highlight additional layers of control that regulate expression 
and activity of HSC transcriptional regulators and discuss how chromo-
somal translocations that result in fusion proteins of these HSC transcrip-
tional regulators commonly drive leukaemias through transcriptional 
dysregulation.  
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    11.1   Introduction 

 The haematopoietic system performs a number 
of critical functions for mammalian physiology 
including transport of oxygen and nutrients, as 
well as immune protection. Blood cells have a 
rapid turnover and the entire haematopoietic 
system is maintained by haematopoietic stem 
cells (HSCs), a rare cell type normally found in 
the bone marrow of adult mammals. 

    11.1.1   Functional De fi nition of an HSC 

 The gold standard functional de fi nition of an 
HSC comes from transplantation assays. In the 
mouse for example, a single HSC has the ability 
to reconstitute the entire haematopoietic system 
when injected intravenously into a sublethally 
irradiated recipient mouse (irradiation destroys 
the haematopoietic system), and stably maintain 
the haematopoietic system for the life of the 
recipient  [  1  ] . This so-called long-term reconstitu-
tion ability de fi nes the key characteristics of 
HSCs: (1) the ability to home to and colonise the 
bone marrow in adult mammals, (2) the ability to 
expand and self-renew to form and maintain a 
stable population size for the lifetime of the 
organism, and (3) the capacity to differentiate 
into any mature haematopoietic cell type (multi-
potency). Long-term self-renewal and expansion 
can additionally be determined by serial or com-
petitive transplantation assays, while multipo-
tency can also be analysed using in vitro colony 
forming assays. 

 Large efforts have been made to prospectively 
isolate pure HSC populations using a range of 
cell surface marker combinations (both their 
presence and absence), cellular characteristics 
such as their ability to ef fl ux certain dyes, and 
molecular signature such as gene expression 

patterns. Other combinations of markers have 
been identi fi ed that mark the various haematopoi-
etic progenitor and mature cell populations, 
alongside functional colony forming assays and 
morphological identi fi cation.  

    11.1.2   Key Experimental Approaches 

 A key approach used to characterise transcrip-
tional regulators of mouse HSCs has been gene 
targeting in embryonic stem (ES) cells followed 
by the generation of knock-out mice, which can 
then be used to assay the consequences of gene 
deletion on haematopoiesis during embryonic 
development, the adult HSC pool and differentia-
tion potential. Conditional gene targeting proto-
cols, such as those using the Cre-Lox system, 
allow genes to be deleted later during develop-
ment or in an adult cell population. Dosage 
effects can be analysed using heterozygous (+/null) 
mice, retrovirally inserted shRNAs or overex-
pression vectors. Recently, ES cell differentiation 
to embryoid bodies (EBs) has been validated as 
an in vitro model of developmental haemato-
poiesis (reviewed elsewhere  [  2  ] ), and has allowed 
analysis of some of these critical developmental 
transcriptional regulators in haematopoiesis. 

 Techniques such as phylogenetic footprinting, 
DNase I hypersensitive (DHS) assays, chromatin 
immunoprecipitation (ChIP) assays and mutagen-
esis have been used to identify  cis -regulatory ele-
ments within critical gene loci and determine 
upstream transcriptional regulators. Importantly, 
the tissue and developmental time speci fi c activity 
of regulatory regions identi fi ed using the above 
techniques can be validated using powerful in vivo 
assays including transient (F0) transgenic mouse 
embryo assays and comprehensive analysis of 
 haematopoietic parameters in the bone marrow of 
established transgenic mouse lines. The advent 



18911 Transcriptional Regulation of Haematopoietic Stem Cells

of next generation DNA sequencing coupled to 
ChIP (ChIP-seq) has allowed identi fi cation of 
genome-wide binding sites of speci fi c transcription 
factor within a given cell population and identi fi es 
putative regulatory sites and downstream targets. A 
current limitation of this technique is the large 
number of cells required, typically several million.   

    11.2   Transcriptional Regulation 
of HSC Formation 

    11.2.1   Biology of Mammalian 
Developmental Haematopoiesis 

 The haematopoietic system is derived from the 
mesoderm lineage in the developing embryo in a 
process called developmental haematopoiesis. 
Developmental haematopoiesis occurs at several 
distinct spatiotemporal locations in the develop-
ing embryo and can be broadly divided into two 
stages: (1) embryonic haematopoiesis and (2) 
de fi nitive haematopoiesis  [  3  ] . Embryonic hae-
matopoiesis occurs from E7.5 in the yolk sac, 
initially producing primitive erythroid cells, and 
later multilineage progenitors  [  4–  7  ] . However, 
these cell types do not ful fi ll the criteria of a true 
HSC as they are unable to reconstitute the entire 
haematopoietic system of an irradiated mouse. 

 True HSCs are only produced during the sec-
ond wave, de fi nitive haematopoiesis, which 
occurs from approximately E10 in the developing 
mouse embryo, when the  fi rst cells are generated 
that have the ability to both self-renew and recon-
stitute the entire haematopoietic system  [  6,   7  ] . 
De fi nitive HSCs are believed to bud off from the 
ventral wall of the dorsal aorta in a part of the 
embryo labelled the aorta-gonad-mesonephros 
(AGM) region  [  7  ] . Additional contribution to the 
pool of de fi nitive HSCs from extraembryonic tis-
sue is currently unresolved (reviewed in  [  3  ] ).  

    11.2.2   Speci fi cation of HSCs 

 Two models of haematopoietic speci fi cation, the 
haemangioblast and haemogenic endothelium 
models (reviewed in  [  3  ] ) have recently been 

 reconciled by Lancrin et al. who proposed a 
 linear pathway of haematopoietic speci fi cation 
from mesoderm, through a tri-potent haemangio-
blast cell type (with the capacity of forming 
 haematopoietic, endothelial and smooth muscle 
cells) to a bi-potent haemogenic endothelium 
(HE) cell type (with the capacity to commit to 
either haematopoietic or endothelial cell types), 
from which de fi nitive blood cells can be derived 
 [  8  ]  (Fig.  11.1 ). A number of transcriptional regu-
lators have been identi fi ed as playing a crucial 
role in the speci fi cation of HSCs during develop-
ment, and can be  fi tted into the pathway described 
above.   

  Fig. 11.1    Model of de fi nitive HSC speci fi cation from 
mesoderm during embryonic development. De fi nitive 
HSCs are derived from Flk-1 +  mesoderm, which are 
speci fi ed through a tri-potent haemangioblast stage (Etv2-
dependent), and bi-potent haemogenic endothelial stage 
(Scl-dependent). Haemogenic endothelium lineage 
speci fi cation to haematopoietic or endothelial cell types is 
dependent on the expression of antagonistic transcription 
factors Runx1 and HoxA3       
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    11.2.3   Formation of the 
Haemangioblast 
from Mesoderm 

 The E-twenty-six speci fi c (Ets) factor Etv2 (ER71) 
has recently been identi fi ed as a key transcriptional 
regulator of the mesoderm to haemangioblast 
transition  [  9  ] . Etv2 is essential for development of 
both endothelial and haematopoietic lineages at an 
early stage; mesodermal precursors of haemangio-
blasts are generated in Etv2 null embryos and 
during ES cell differentiation, but further 
speci fi cation is blocked. Etv2 is expressed early in 
developing mesoderm, and marks a subset of the 
Flk-1 +  mesodermal population with enhanced 
haematopoietic and endothelial potential  [  9  ] . 
Etv2 expression is downregulated by E9.5 and 
silenced by E10.5 in endothelial cells, suggesting 
it only plays a role in the early steps of mesoderm 
speci fi cation towards endothelial and hae-
matopoietic cell fates  [  9  ] . Lee et al. have previ-
ously identi fi ed a potential regulatory cascade 
acting upstream of Etv2 including Notch, BMP 
and Wnt signalling  [  10  ] . Liu et al. recently suggested 
that Etv2 plays a role in specifying a haematopoi-
etic rather than cardiogenic fate of Flk-1 +  meso-
derm through regulating Wnt signalling  [  11  ] .  

    11.2.4   Commitment of the 
Haemangioblast to Haemogenic 
Endothelium 

 Lancrin et al. demonstrated that the transition 
between haemangioblast and haemogenic endo-
thelium was dependent on expression of the basic 
helix-loop-helix (bHLH) transcription factor Scl 
(Tal-1), when analysed using ES cell in vitro dif-
ferentiation assays  [  8  ] . Scl is  fi rst expressed at the 
haemangioblast stage, and its expression is main-
tained through haemogenic endothelial and HSC 
stages  [  8,   12  ] . Expression of  Scl  is regulated by 
several developmental tissue-speci fi c enhancers, 
including three important for haematopoiesis. 
The -4  Scl  enhancer was found to drive expres-
sion to endothelium and foetal haematopoetic 
progenitors, mediated by Ets factor binding 
(including Fli-1 and Elf-1)  [  13  ] . The +19 enhancer 

is active in endothelial and haematopoietic cells, 
and critically depends on an Ets/Ets/Gata motif 
that binds Ets factors Fli-1 and Elf-1, and Gata2 
 [  14  ] . These two enhancers appear to have over-
lapping roles in HSC speci fi cation, with the +19 
enhancer being suf fi cient to drive  Scl  expression 
and blood formation in  Scl  −/−  embryos, but not 
necessary as its deletion does not result in loss of 
haematopoiesis  [  13  ] . The third enhancer is the 
+40 region, which drives  Scl  expression in 
embryonic and de fi nitive haematopoietic cells. 
The +40 enhancer may be particularly important 
to sustain rather than initiate  Scl  expression as its 
activity is regulated by Scl protein, thereby form-
ing an autoregulatory loop  [  15,   16  ] .  

    11.2.5   Speci fi cation of HSCs 
from Haemogenic Endothelium 

 Several critical factors have been identi fi ed as 
transcriptional regulators of de fi nitive HSC 
speci fi cation including Runx1, Mll1, TFIIS, 
Gata2, Notch1, Meis1, Erg, c-Myb and c-Myc 
(see references below). The role of c-Myb and 
c-Myc in transcriptional regulation of stem cells 
is reviewed in Chaps.   15     and   19    . 

 The core binding factor Runx1 (AML1) and 
its binding partner, CBF β , are both required for 
de fi nitive haematopoiesis  [  17–  19  ] . Using condi-
tional knockout mice models, Chen et al. recently 
identi fi ed the HE to de fi nitive HSC transition as 
dependent on Runx1  [  20  ] . Nottingham et al. 
identi fi ed an important Runx1 enhancer, the +23, 
which regulates Runx1 expression during HSC 
emergence, through binding of Gata, Ets and Scl 
factors  [  21  ] . 

 The Trithrorax-related Mll1, a histone H3 
lysine 3 (H3K4) methyltransferase, is required 
for de fi nitive haematopoiesis from analysis of 
 Mll1  null mouse embryos and chimera contribu-
tion  [  22  ] . However, a second  Mll1  knockout 
mouse model created by McMahon et al. sur-
vived up to E16.5 and contained a limited num-
ber of foetal HSCs  [  23  ] . The reason for this 
discrepancy is unclear. Mll1 forms a large 
multi-protein complex with many proteins, which 
is thought to activate and maintain transcription 

http://dx.doi.org/10.1007/978-94-007-6621-1_15
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and epigenetic memory (reviewed in  [  24  ] ). 
Although Mll1 contains a CXXC-type zinc 
 fi nger DNA binding domain, its recruitment to 
DNA is not fully understood and the recent 
identi fi cation of the possible involvement of 
non-coding RNAs (ncRNAs) suggesting at least 
in part non-classical modes of recruitment to tar-
get regions  [  25  ] . The transcription elongation 
factor S-II (TFIIS), which is known to interact 
and synergistically function with the Mll1-
interacting PAF1 complex  [  26  ] , is also required 
for de fi nitive haematopoiesis  [  27  ] . Recently, a 
physical interaction between the C-terminal SET 
domain of Mll1 and the Runt domain of Runx1 
has been identi fi ed, responsible for recruitment 
of Mll1 to, and the regulation of, the Runx1 target 
gene  Spi - 1 / PU . 1   [  28  ] . Recruitment of Mll1 by 
Runx1 may in part explain the apparent func-
tional overlap of these two transcriptional regu-
lators in haematopoiesis. 

 The zinc  fi nger transcription factor Gata2 is 
essential for de fi nitive haematopoiesis. Gata2 is 
expressed prior to HSC emergence and thought 
to mark haematopoietic-speci fi ed cells  [  29  ] . 
However, a reduction of Gata2 expression or 
activity appears necessary for haematopoietic 
commitment  [  30  ] . Once again, the Ets/Ets/Gata 
motif and E-box motifs were found in a  Gata2  
enhancer region (the -3 enhancer)  [  31,   32  ] . Gata2 
appears to have an overlapping role with Runx1 
in de fi nitive haematopoiesis, as  Gata2  +/−  Runx1  +/−  
mice are not viable and display haematopoietic 
defects at midgestation, while single heterozy-
gous mice are viable with only a minor hae-
matopoietic phenotype  [  33  ] . 

 The Ets transcription factor Erg was recently 
shown to be critical for early maintenance, but 
not speci fi cation, of de fi nitive HSCs as deletion 
results in rapid loss of HSCs  [  34  ] . Erg is thought 
to achieve this by acting as an upstream regulator 
of  Scl ,  Gata2  and  Runx1   [  14,   21,   31  ] . 

 Notch proteins are major constituents of a 
highly conserved signalling pathway. Notch pro-
teins are membrane bound receptors, which when 
bound by their ligand Jagged, proteolytically 
cleave their intracellular domain, the so-called 
Notch-IC domain, which translocates to the 
nucleus where it participates in the formation of 

multiprotein DNA-binding complexes to regulate 
transcription  [  35  ] . Notch1 (but not Notch2-4) is 
required for generating de fi nitive HSCs  [  36  ] . 
Further analysis using ES cell differentiation 
models and the generation of chimeric mouse 
embryos demonstrated that  Notch1 -de fi cient ES 
cells are capable of producing de fi nitive hae-
matopoietic progenitors, but fail to establish 
long-term de fi nitive HSCs  [  37  ] .  Runx1  appears to 
be a key target of Notch signalling during 
de fi nitive haematopoiesis  [  38,   39  ] . 

 Meis1, a member of TALE subfamily of 
homeobox proteins, is a Hox protein cofactor that 
modulates their DNA binding af fi nity and 
speci fi city. Several  Meis1 -de fi cient mouse mod-
els have been created and show similar pheno-
types; mouse embryos die by E14.5 with 
haemorrhaging and liver hypoplasia due to defec-
tive developmental haematopoiesis  [  40,   41  ] . 
De fi nitive haematopoiesis is compromised but is 
not completely ablated, and  Meis1 -de fi cient foe-
tal livers at E12.5 have reduced HSC populations, 
which lack reconstitution ability  [  41  ] .  Meis1  is 
expressed in de fi nitive haematopoietic clusters in 
the AGM, which are reduced in number and size, 
and have reduced  Runx1  expression in  Meis1 -
de fi cient embryos  [  40  ] . 

 Recently, a negative regulator of HE speci fi -
cation to HSC has been identi fi ed, the homeobox 
transcription factor HoxA3  [  42  ] . HoxA3 is a pos-
itive regulator of HE speci fi cation to endothelial 
lineage, and with Runx1 plays a key role in this 
lineage decision process. Runx1 acts to induce a 
haematopoietic transcription factor cascade to 
promote HSC formation, while inhibiting essen-
tial endothelial lineage genes. HoxA3 acts to 
maintain these endothelial lineage genes within 
the HE, and represses the haematopoietic cas-
cade, which appears to at least in part be achieved 
through direct repression of  Runx1   [  42  ] .  

    11.2.6   Migration, Expansion 
and Maintenance of Foetal HSCs 

 From approximately E12.5 of mouse embryonic 
development, de fi nitive HSCs generated in the 
AGM region migrate to and colonise the foetal 
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liver, the site of foetal haematopoiesis  [  43  ] . 
Around the time of birth, HSCs move to the bone 
marrow niche for the rest of the life of the mam-
mal  [  43  ] . It is estimated that at E11.5 there is one 
HSC produced in the AGM  [  44  ] . Expansion of 
these early HSCs is therefore critical to form a 
large enough population to maintain haematopoi-
esis for the life of the organism. This propensity 
to expand the HSC population, rather than main-
tain pool size is a key difference between foetal 
and adult HSCs, although adult HSCs retain this 
potential as demonstrated by transplantation 
assays. 

 Sox17 is a Sry-related high mobility group box 
transcription factor and within the haematopoietic 
system, is expressed in foetal and neonatal, but not 
adult HSCs  [  45  ] .  Sox17  de fi ciency severely impairs 
foetal haematopoiesis, and  Sox17 -null foetal and 
neonatal HSCs lose all reconstitution ability impli-
cating Sox17 in generation or maintenance of 
de fi nitive HSCs  [  45  ] . Loss of Sox17 expression 
correlates with acquisition of adult HSC character-
istics; slow cell cycling and adult surface marker 
phenotype  [  45  ] . A number of other transcriptional 
regulators of both foetal and adult HSCs have been 
identi fi ed, but are discussed in Sect.  11.4 .   

    11.3   Transcriptional Regulation 
of HSC Homeostasis 

 HSCs have the capacity to proliferate and self-
renew to maintain their population for the lifetime 
of the organism, and balance this with differentia-
tion into the committed haematopoietic cell types 
to replenish physiological turnover or injury. 
Additionally, to prevent population expansion to a 
physiologically dangerous size, programmed cell 
death (apoptosis) must also be regulated. In the 
adult, HSCs constitute an exceedingly rare cell 
population estimated at 1 in 10 4  to 1 in 10 5  bone 
marrow cells. Adult HSCs are believed to be pre-
dominantly quiescent, with recent estimates in the 
mouse suggesting one cell division every 145 days 
and may reversibly switch between this state and 
self-renewal during homeostasis and repair  [  46  ] . 
Further modelling suggested the existence of two 
kinetically distinct subpopulations of HSCs, one 

cycling every 149–193 days, and the other cycling 
every 28–32 days  [  47  ] . 

    11.3.1   Concepts of HSC Fate Decisions 

 It is generally assumed that HSC fate choices are 
associated with cell division, as HSC differentia-
tion without division would likely lead to HSC 
exhaustion  [  48  ] . These fate decisions would there-
fore be a result of the type of cell division; sym-
metrical division to produce either two HSCs or 
two progenitor cells, or asymmetric cell division 
into one HSC and one progenitor (Fig.  11.2a ). 
These cell division options would allow HSC pool 
size to be regulated (e.g. expansion after transplan-
tation) and respond to environmental stress  [  48  ] .  

 Cell intrinsic (e.g. transcription factor protein 
concentrations and distribution in daughter cells) 
and extrinsic (e.g. cytokines and cell-cell signal-
ling) cues determine lineage restriction. Two types 
of models have been proposed to explain HSC 
lineage commitment ( [  48,   49  ]  summarised in 
Fig.  11.2b ): (1) Instructive or deterministic mod-
els predict HSCs to respond to external stimuli, 
which directly guide lineage decisions during 
differentiation. (2) Selective or permissive models 
predict lineage choice is predominately random, 
which may be due to stochastic gene expression, 
and that external stimuli act to regulate survival 
and proliferation of these randomly produced 
progenitors and mature cells. Evidence for both 
models has been reported (see  [  48,   49  ]  and refer-
ences within, and  [  50,   51  ] ). It is important to 
mention that these two models are not mutually 
exclusive, and it seems likely extrinsic events can 
be both instructive and selective  [  48,   49  ] . 

 Cell intrinsic processes, in particular tran-
scription factor networks, are central to de fi ning 
the developmental stage and lineage potential, 
and determine the response of an external signal. 
External signals must act within these intrinsic 
parameters to instruct and/or select cell fate. 
Indeed, simply the regulation of cell surface 
receptor expression immediately determines the 
ability of a cell to respond to a particular extracel-
lular ligand. Numerous intrinsic positive and 
negative transcriptional regulators of HSC 



19311 Transcriptional Regulation of Haematopoietic Stem Cells

homeostasis have been identi fi ed, which control 
self-renewal, proliferation, quiescence and apop-
tosis, and include transcription factors, chromatin 
and DNA modifying enzymes, and signalling 
pathways, and are described below.  

    11.3.2   Transcription Factor Networks 
Active in Haematopoietic Cells 

 ChIP-seq experiments to de fi ne genome-wide 
occupancy of key transcription factors in HSCs 
have been limited by the relatively large cell 

numbers required for this technique, and the 
scarcity of HSCs. However, using cell line models, 
such as the mouse haematopoietic stem/progeni-
tor cell line HPC7, has allowed analysis of tran-
scription factor binding in early haematopoietic 
cells. So far, ChIP-seq of ten haematopoietic 
transcription factors has been published using 
this cell line, identifying combinatorial transcrip-
tional regulation of key genes and putative  cis -
regulatory sites  [  33  ] . Combining such ChIP 
experiments to de fi ne transcription factor occu-
pancy with knowledge of  cis -regulatory elements 
within gene loci has allowed modelling of the 

  Fig. 11.2    Models of HSC fate choices. ( a ) HSCs may 
divide symmetrically into two HSCs or two progenitors, 
or asymmetrically into one HSC and one progenitor. ( b ) 
The two types of model of HSC fate determination. 
Selective/stochastic models predict HSC fate choice is 

random and signalling molecules (e.g. cytokines) act to 
promote survival and proliferation or apoptosis of the 
fated progenitors. Instructive/deterministic models predict 
signalling molecules directly determine HSC fate 
decisions       
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interconnections within active transcription fac-
tor networks in haematopoietic cells (Fig.  11.3 ; 
reviewed in  [  52  ] ). Due to the availability of 
mature haematopoietic cell types for ChIP-seq 
experiments, the regulatory networks in the later 
stages of haematopoiesis are more advanced. An 
alternate method has been used by Novershtern 
et al., who used gene expression analysis (which 
require lower cell numbers) of pure hae-
matopoietic populations combined with known 
 cis -regulatory interactions to identify tightly 
interconnecting networks that control HSC and 
mature haematopoietic cell state  [  53  ] .   

    11.3.3   Basic Helix-Loop-Helix 
 Transcription Factors  

 Scl is highly expressed in HSCs and regulates qui-
escence by inhibiting the G0 to G1 transition  [  54  ] . 
The same study also identi fi ed a dosage-dependent 

role for Scl in long-term HSC reconstitution 
potential. A paralogue of Scl, Lyl1, also regulates 
foetal and adult HSC reconstitution potential and 
lymphoid differentiation  [  55  ] . Lyl1 appears to have 
a partially overlapping role with Scl, as  Lyl1 / Scl  
conditional double knockout HSCs have complete 
loss of reconstitution ability, and increased HSC 
and progenitor apoptosis, a more severe pheno-
type than loss of Scl or Lyl1 alone  [  56  ] . Scl forms 
a multifactor complex with transcription factors 
Gata2 and E2A proteins, along with bridging 
molecules Lmo2 and Ldb1 in foetal and adult 
HSCs and differentiating haematopoietic cells. 
Formation of this complex is essential for regula-
tion of HSC function, as loss of any component 
impairs HSC function (see below and  [  57,   58  ] ). 
Depending on the context, the Scl complex may 
also include Lyl1, Gata1, Lmo4, HEB, Eto2 and 
Sp1  [  59–  62  ] . 

 The E2A locus expresses two bHLH 
E-proteins; E47 and E12, which regulate HSC 

  Fig. 11.3    A model of a core transcriptional regulatory 
network active in haematopoietic stem/progenitor cells 
consisting of ten transcription factors predicted from 
Wilson et al.  [  33  ] . Interactions identi fi ed from analysis of 

transcription factor enrichment from ChIP-seq experi-
ments within gene loci at  cis -regulatory elements. The 
transcription factor regulatory network is highly intercon-
nected, rather than hierarchical in structure       
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cycling and promote early progenitor maturation 
 [  63  ] . Genetic deletion of E2A increases HSC 
cycling while reducing pool size, and HSCs lose 
long term reconstitution ability  [  63  ] . Recent anal-
ysis of pure HSC populations has identi fi ed a role 
for the E47 isoform in regulating HSC prolifera-
tion and energetics  [  64  ] ;  E47  −/−  HSCs progres-
sively lose self-renewal potential with concomitant 
hyperproliferation of progenitor populations. 
E2A protein activity is regulated through interac-
tions with inhibitors Id1-3; Id1 also regulates 
HSC homeostasis  [  65,   66  ] , while Id2 and Id3 
regulate haematopoietic lineage commitment 
 [  67–  69  ] . 

 Besides its role in de fi nitive haematopoiesis, 
c-Myc also regulates HSC homeostasis, playing a 
crucial role in balancing HSC self-renewal versus 
differentiation decisions  [  70  ] , as well as HSC 
survival and HSC lineage commitment  [  71,   72  ] . 
HSCs also express a second Myc protein, N-myc, 
which with c-Myc regulates HSC function and 
survival  [  71  ] . The role of Myc proteins in stem 
cells is considered in more detail in Chap.   19    .  

    11.3.4   Homeobox Transcription Factors 

  Hox  genes encode homeodomain transcription 
factors and are crucial for developmental pattern-
ing  [  73  ] . In mammals, 39  Hox  genes are co-ordi-
nately expressed from four loci. DNA binding of 
Hox transcription factors is modulated by interac-
tion with DNA binding cofactors; one of three 
Pbx family members and/or one of four Meis fam-
ily members (both families are also homeobox 
proteins)  [  74  ] . Several  Hox  genes have been 
implicated in HSC homeostasis, although dele-
tion of a single  Hox  gene does not usually severely 
affect HSC homeostasis, possibly due to their 
functional redundancy. Within the haematopoietic 
system,  Hox  gene expression is largely con fi ned 
to the HSC and progenitor compartment  [  75  ] . 

 Ectopic expression of  HoxA9 ,  HoxA10 ,  HoxA6 
HoxB4  and  HoxC5  expands HSCs in vitro 
 [  76–  80  ] . Additionally, genetic deletion of  HoxA9  
or  HoxB3  and  HoxB4  mildly impairs HSC prolifera-
tion  [  81,   82  ] .  HoxA9  null HSCs also have impaired 
differentiation and reduced reconstitution ability 

 [  82  ] . Compound deletion of  HoxA9 ,  HoxB3  and 
 HoxB4  caused an increase in bone marrow HSCs, 
but did not affect in vitro colony forming ability 
 [  83  ] . Interestingly, the defect in reconstitution 
ability of compound null HSCs was no worse 
than single  HoxA9  de fi ciency  [  83  ] . 

 Pbx1 can dimerise with a subset of Hox proteins, 
and can also trimerise with Hox and Meis proteins 
 [  84,   85  ] . Pbx1 is required to maintain de fi nitive 
HSCs in the foetal liver;  Pbx1  null mice are embry-
onic lethal at E15-16, and have severe anaemia 
due to defective foetal liver haematopoiesis  [  86  ] . 
Conditional deletion of  Pbx1  from adult HSCs 
results in the upregulation of several cell cycle regu-
lators with increased HSC cycling and progressive 
loss of HSC reconstitution ability  [  87  ] .  

    11.3.5   Ets Transcription Factors 

 Several Ets transcription factors are known to 
regulate HSC homeostasis and differentiation 
including Erg, Fli-1, Tel/Etv6, GABP α , PU.1/
Spi-1 and Elf4  [  88–  95  ] . Two of the most recently 
reported Ets factors are described below. 

 A role for Erg in adult HSC function was 
identi fi ed using a sensitised genetic screen in 
mice  [  88  ] . Erg is required to maintain HSC pool 
size and reconstitution ability, and differentiation 
to committed progenitors  [  88,   89  ] . Furthermore, 
additional mutation of  Fli - 1  in  Erg -de fi cient HSCs 
identi fi ed a partial functional redundancy of these 
two Ets factors, with the double de fi ciency causing 
a more severe phenotype  [  90  ] . Yu et al. recently 
identi fi ed GABP α  to be a critical regulator of HSC 
homeostasis and differentiation  [  91  ] . GABP α  
heterodimerises with GABP β  to form the GABP 
complex and is essential for early embryogenesis 
 [  96  ] . Conditional deletion of GABP α  in adult 
HSCs lead to a rapid loss of HSC self-renewal, 
increased apoptosis of HSCs and progenitors, and 
impaired differentiation  [  91  ] .  

    11.3.6   Zinc Finger Transcription Factors 

 Zinc  fi ngers are a protein domain that commonly 
interacts with DNA and are found in a wide range 
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of transcription factors, several of which are 
known to regulate HSC homeostasis including 
Gata2, Gata3, G fi 1, G fi 1b, Klf4, Ikaros, Evi-1, 
Sall4, Zfx and Prdm16  [  97–  108  ] . Interestingly, 
several of these zinc  fi nger transcription factors 
also regulate ES cell self-renewal and pluripo-
tency (Klf4, Sall4 and Zfx  [  100,   109,   110  ] ). 

 Analysis of  Gata2  heterozygous mouse 
embryos identi fi ed a role for Gata2 in expansion 
of de fi nitive HSCs in the AGM and their prolif-
eration after foetal colonisation  [  111  ] . However, 
Gata2 is generally thought to restrict cell cycle 
entry in adult HSCs (reviewed elsewhere  [  102  ] ). 
Additionally, GATA2 also regulates human HSC 
quiescence, with enforced expression increasing 
G0 residency  [  112  ] . More recently, a second Gata 
factor, Gata3, has also been identi fi ed as a regula-
tor of HSC maintenance, with  Gata3  null mice 
having a smaller HSC population  [  101  ] . 

 G fi 1 is a transcriptional repressor that pro-
motes HSC quiescence, and maintains HSC self-
renewal and reconstitution potential  [  103,   104  ] . 
Additionally, G fi 1 appears to be a direct target of 
p53 in HSCs, a key cell cycle regulator. The par-
alogue G fi 1b is also responsible for maintaining 
HSC quiescence, although  G fi 1b  −/−  HSCs retain 
self-renewal capacity  [  105  ] . G fi 1 and G fi 1b 
appear to have partially overlapping functions as 
 G fi 1 / G fi 1b  double deletion result in complete loss 
of HSCs  [  105  ] . 

 Ikaros and related family of transcription 
factors were initially identi fi ed as regulators of 
lymphoid lineages (reviewed in  [  113  ] ). However, 
Ikaros is also expressed in HSCs, although differ-
ent isoforms to those expressed in lymphoid 
progenitors  [  114  ] , and plays a role in HSC activity. 
Ikaros mutant mice have reduced numbers of 
HSCs and progenitors, and have reduced recon-
stitution ability  [  115  ] . More recently, a role for 
Ikaros in lymphoid lineage priming of HSCs has 
been identi fi ed  [  106  ] . 

 Evi-1 contains a SET/PR-domain with a total 
of ten zinc  fi ngers  [  116  ] . Deletions of  Evi - 1  
results in embryonic lethality at E10-16.5 
(depending on the mouse model), and the devel-
opment and expansion of de fi nitive HSCs is 
severely impaired  [  107,   108  ] , and reviewed in 
 [  116  ] . Conditional deletion of  Evi-1  from adult 

HSCs causes a shift from quiescence to cell 
cycling, reduction of the HSC pool size and loss 
of reconstitution ability  [  108  ] . Evi-1 expression 
has also been used as a marker of long term hae-
matopoietic reconstitution potential  [  117  ] . 
Interestingly, dosage of Evi-1 appears important 
as  Evi - 1  heterozygosity causes partial loss of 
HSC self-renewal while overexpression enhances 
HSC self-renewal at the expense of differentia-
tion  [  107  ] . However,  Evi - 1  is dispensable for lin-
eage commitment  [  107  ] . 

 A second SET/PR-domain protein, Prdm16, is 
also important for HSC homeostasis, and 
speci fi cally expressed in HSCs and early progen-
itors in the adult haematopoietic system  [  118  ] . 
Overexpression of  Prdm16  has previously been 
found to expand HSCs in vitro, and also causes 
myeloproliferative disease in vivo after trans-
plantation  [  119  ] . A transposon mutagenesis 
screen identi fi ed a role for  Prdm16  in regulation 
of adult stem cell reactive oxygen species (ROS) 
levels, apoptosis and cell cycle, and its loss lead 
to HSC depletion  [  120  ] . Aguilo et al. identi fi ed a 
role of Prdm16 in HSCs using  Prdm16  null mice 
embryos  [  118  ] ; foetal HSC and progenitors were 
reduced in number, had mild defects in vitro 
colony forming ability, severely impaired recon-
stitution ability, and increased apoptosis.  

    11.3.7   Myb Proteins 

 C-Myb plays an important role in HSC self-
renewal and adult haematopoiesis; its conditional 
deletion causing a defect in HSC proliferation, 
increased differentiation, and loss of reconstitu-
tion ability  [  121  ] . A genome-wide mutagenesis 
screen identi fi ed the ability of p300 to interact 
with the transactivation domain of c-Myb to be 
necessary for proper HSC proliferation and 
differentiation  [  122  ] . The role of c-Myb in stem 
cells is discussed in further detail in Chap.   15    . 

 The cyclin-D binding myb-like transcription 
factor 1 (Dmtf1) has been implicated in regulating 
HSC quiescence  [  123  ] .  Dmtf1  null mice are viable, 
but have increased blood counts, and  Dmtf1  null 
HSCs have increased proliferation, self renewal 
and long term reconstitution ability  [  123  ] .  
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    11.3.8   Core Binding Factors 

 A number of con fl icting papers have been 
published about the role of Runx1 in HSCs 
 [  124–  128  ] . The most recent from Cai et al., has 
sought to resolve the experimental discrepancies 
by highlighting that Runx1 regulates the expres-
sion of several key markers commonly used to 
identify HSCs by  fl ow cytometry, and report that 
conditional deletion of  Runx1  only moderately 
decreases the number of HSCs, while increasing 
those of early progenitors  [  129  ] . Loss of  Runx1  
also causes slight increases in HSC quiescence 
and reduces apoptosis, and combined suggest 
Runx1 promotes HSC proliferation and differen-
tiation. However, the three major Runx1 isoforms 
(Runx1a, b and c) appear to have at least partially 
distinct functions in the haematopoietic system 
 [  130–  132  ] . Ectopic expression of a short isoform 
of  Runx1 ,  Runx1a , expands HSCs in vitro (which 
retain in vivo reconstitution ability), while ecto-
pic expression of  Runx1b  promotes differentia-
tion  [  130,   132  ] . No functional difference between 
the two long isoforms,  Runx1b  and  Runx1c , has 
been identi fi ed  [  131  ] . Regulation of Runx1 in 
haematopoietic cells is considered in more detail 
in Sect.  11.6 . 

 By comparison, HSCs appear to be more sen-
sitive to CBF β  from hypomorph experiments; 
15–30 % of WT CBF β  levels promote HSC and 
progenitor expansion as well as mature cell 
differentiation  [  133  ] , and suggest a role for CBF β  
in HSC quiescence. Interestingly, Miller et al. 
suggest a Runx1-independent role for CBF β  
in foetal haematopoiesis in differentiation of 
haematopoietic progenitors, which is not due to a 
defect in bone marrow niche  [  134  ] . CBF β  can 
also heterodimerise with the two paralogues of 
Runx1, Runx2 and Runx3, to form protein com-
plexes that can bind to the same consensus DNA 
sequence (reviewed in  [  135  ] ). Partial overlap in 
function of Runx1– 3 in regulating HSCs would 
help explain the difference in Runx1 and CBF β  
phenotypes, although are yet to be identi fi ed. 
Defective bone marrow haematopoiesis in  Runx2  
null mice has been identi fi ed, but is thought to be 
a result of altered HSC niche due to defective 
osteoblast differentiation  [  136,   137  ] .  

    11.3.9   Cell Cycle Regulators 

 Unsurprisingly, cell cycle regulators have also 
been identi fi ed as regulating HSC homeostasis. 
Two of these involved in transcriptional regula-
tion are retinoblastoma (pRB) and p53 families 
 [  138–  141  ] . pRb, with family members p107 and 
p130, inhibit cell cycle entry by repressing E2F 
target gene expression, and have an overlapping 
function in regulating HSC quiescence and self-
renewal  [  138  ] . Conditional deletion of all three 
pRB proteins causes increased HSC prolifera-
tion, expansion of HSC numbers, loss of recon-
stitution activity and a lethal myloproliferative 
phenotype  [  138  ] . However, an extrinsic role for 
pRB in regulating HSC has also been identi fi ed 
 [  142  ] . The functionally similar Necdin, also 
regulates HSC quiescence state, and interac-
tions with p53  [  141,   143  ] . 

 A third cell cycle regulator has also been 
found to regulate HSCs; NF-Y, a trimeric tran-
scription factor complex composed of NF-Ya, 
NF-Yb and NF-Yc  [  144  ] . NF-Y is an important 
developmental regulator, with genetic deletion of 
 NF - Ya  causing embryonic lethality around E8.5 
 [  145  ] . NF-Ya overexpression promotes HSC self-
renewal  [  146  ]  while conditional deletion of 
 NF-Ya  causes defective cell cycle G2/M progres-
sion and increased apoptosis, resulting in death 
 [  147  ] .  

    11.3.10   Immediate Early Response 
Transcription Factors 

 Two immediate early response transcription fac-
tors, JunB and Egr1, have been implicated in 
regulating HSCs. Inactivation of JunB in HSCs 
results in increased proliferation and differentia-
tion  [  148  ] , but does not affect reconstitution abil-
ity. Additionally, JunB inactivation decreases 
HSC response to Notch and TGF β  signalling 
through loss of  Hes1  expression  [  148  ] .  JunB  is 
also a target of TGF β  signalling  [  149  ] . Egr1 regu-
lates HSC quiescence as well as retention within 
the HSC niche  [  150  ] . Interestingly,  Egr1  knock-
out HSCs expand and mobilise without losing 
reconstitution ability  [  150  ] .  
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    11.3.11   Epigenetic Regulation 

 A key mechanism by which transcription factors 
are thought to regulate eukaryotic gene expres-
sion is through their recruitment of epigenetic 
modifying enzymes, which catalyse histone or 
DNA modi fi cations. Epigenetic modi fi cations 
affect chromatin structure, recruit secondary 
factors and regulate transcription. Several epige-
netic modi fi ers have been identi fi ed to play an 
important role in HSC homeostasis, summarised 
below. 

 Three histone lysine acetyltransferases and 
transcriptional co-activators are essential for HSC 
self-renewal; CBP, p300 and MOZ  [  151–  153  ] . 
The H3K79 methyltransferase Dot1l is also cru-
cial for maintaining HSC function  [  154,   155  ] . 

 Both Mll1, and its cofactor Menin, are required 
for HSC self-renewal  [  156  ] . As described earlier, 
two mouse Mll1 knockout models display differ-
ing severity in phenotype, although both agree 
that Mll1 is necessary to maintain adult HSC 
self-renewal  [  23,   157  ] . Using a conditional gene 
knockout model, Gan et al. identi fi ed a role for 
Mll1 in post-natal but not foetal HSC mainte-
nance  [  158  ] . The distantly related Mll family 
member, Mll5, is also involved in regulating HSC 
self-renewal and haematopoietic differentiation 
 [  159–  161  ] . 

 Multiple polycomb group (PcG) proteins, 
which epigenetically regulate transcriptional 
repression, have been found to regulate HSCs 
(review in  [  162  ] ). PcG proteins form two discrete 
complexes, polycomb repressive complex 1 and 
2 (PRC1 and PRC2), which have distinct enzy-
matic activity (H2AK119 monoubiquitination 
and H3K27 trimethylation activities respectively) 
and discrete functions in HSCs  [  163  ] . Various 
gene knockout models suggest PRC2 limits HSC 
self-renewal  [  162–  167  ] . Ezh2, a core component 
of PRC2 is also required for maintenance of foe-
tal HSCs  [  168  ] . 

 Genetic deletion of PRC1 core components 
generally results in the loss of HSC self-renewal 
 [  169–  173  ] . Bmi-1 is a particularly important core 
component, with overexpression promoting mouse 
and human HSC self-renewal and ex vivo expan-

sion  [  170,   174  ] . A paralogue of Bmi-1, Mel-18, 
which replaces Bmi-1 to form a PRC1-like 
complex, promotes HSC proliferation and differ-
entiation  [  175,   176  ] . The balance between Bmi-1 
and Mel-18 expression may regulate HSC fate. 
A functional crosstalk between Bmi-1 and Mll1/
HoxA9 has also been identi fi ed in establishing 
HSCs  [  177  ] . 

 DNA methylation, generally 5 ́ -cytosine 
 methylation (mC) in a CpG dinucleotide context, 
is a key epigenetic mark and is thought to inhibit 
transcription. DNA methyltransferases Dmnt3a 
and Dmnt3b (involved in de novo DNA methyla-
tion), and Dnmt1 (involved in maintaining 
DNA methylation patterns) have been implicated 
in regulating HSC self-renewal  [  178–  180  ] . 
Additionally, Tet2, a methylcytosine dioxygenase 
that converts mC to 5-hydroxymethyl-cytosine 
(hmC), is required for HSC homeostasis  [  181–  183  ] . 
Chromatin remodelling complexes such as 
the Mi-2 β  containing NuRD complex are also 
important for maintaining HSC quiescence and 
self-renewal  [  184  ] .  

    11.3.12   Signalling Pathways 

 Several signalling pathways have been identi fi ed 
to regulate HSC self-renewal and differentiation 
through regulating transcription. These appear to 
play important, although not usually essential 
roles in HSC homeostasis. Functional redun-
dancy of signalling molecules within these 
pathways, as well as overlap and integration of 
different signalling pathways help explain the 
often con fl icting phenotypes after in vitro activa-
tion, in vivo genetic deletion, depletion, inhibi-
tion, constitutive activation or overexpression of 
the mediators of these pathways. 

 The downstream signalling transcriptional 
regulators Notch-IC (Notch signalling) and 
 β -catenin (Wnt signalling) have a fairly estab-
lished role in HSC self-renewal and expansion 
(reviewed in  [  35,   185–  187  ] ). Signalling 
through Smad transcription factors (TGF β  and 
BMP signalling) and Gli1-3 (Hedgehog sig-
nalling) are also thought to regulate HSC 
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self-renewal (reviewed elsewhere  [  187,   188  ] ). 
In contrast, retinoic acid receptor  γ  (retinoic 
acid signalling) stimulates HSC and progeni-
tor cell differentiation  [  189  ] . 

 Activation of the receptor tyrosine kinases 
c-kit (SCF receptor), c-mpl (thrombpoietin 
receptor) and Tie-2 (angiopoietin receptor) also 
regulate HSC maintenance, although through 
multiple signalling pathways including JAK-
STAT, phosphoinositide-3 kinase (PI3K), and 
MAPK. JAK-STAT signalling activation but 
PI3K signalling inhibition appears important to 
maintain HSC self-renewal (reviewed in  [  187, 
  190–  192  ] ).  

    11.3.13   Oxidative Stress 

 Regulation of oxidative stress is critical for HSC 
homeostasis. FoxO transcription factors are regu-
lated by PI3K signalling, and also play a critical 
role in HSC resistance to oxidative stress  [  193, 
  194  ] .  FoxO1 / 3 / 4  null HSCs have increased ROS 
levels, increased cell cycling and apoptosis, are 
reduced in number and defective in their recon-
stitution activity. Interestingly, anti-oxidative 
treatment alleviates the  FoxO -de fi cient pheno-
type  [  194  ] . Even single deletion of  FoxO3a  
results in elevated ROS in HSCs, which impairs 
HSC function  [  195  ] . As mentioned above, 
Prdm16 is also involving in regulation of adult 
stem cell ROS levels  [  120  ] . Additionally, proper 
regulation of the hypoxia-inducible factor 1 alpha 
(HIF-1 α ) is essential for HSC quiescence and 
reconstitution ability  [  196  ] .   

     11.4   Transcriptional Regulation 
of HSC Differentiation 

    11.4.1   Cellular Hierarchy of Mammalian 
Adult Haematopoiesis 

 HSCs have the ability to differentiate into at least 
ten different specialised mature cell types with a 
diverse range of functions, morphologies, life-
times and proliferative abilities, and their relative 

proportions are dependent on extracellular and 
external in fl uences. Adult HSCs differentiate 
through progressively more lineage-committed 
stages (progenitor cells) to form mature, termi-
nally differentiated haematopoietic cells. This 
lineage commitment is represented as a haemato-
poietic hierarchy or tree (Fig.  11.4 ). Numerous 
cell surface markers and functional assays have 
been used to identify and de fi ne these intermedi-
ate progenitors and mature cell types, although 
the complete de fi nition of in vivo potential of the 
many different progenitor populations is still 
ongoing. This detailed understanding of HSC dif-
ferentiation pathways has greatly facilitated the 
identi fi cation and dissection of the role of tran-
scriptional regulators of this process. Almost all 
transcriptional regulators of HSC homeostasis 
also regulate later lineage commitment decisions. 
Numerous other transcriptional regulators of this 
process have also been identi fi ed, predominantly 
controlling relatively late lineage commitment 
decisions. We refer to a number of recent reviews 
of the transcriptional regulation of these later lin-
eage commitment decisions for further detail 
 [  198–  203  ] .   

    11.4.2   HSC Differentiation 
and Lineage Speci fi cation 

 HSC differentiation is closely linked to prolifera-
tion, and many of the transcriptional regulators of 
HSC homeostasis also play a role in differentia-
tion, and have been mentioned above. Few tran-
scriptional regulators of the initial steps of HSC 
differentiation and commitment have so far been 
identi fi ed that do not also regulate HSC homeo-
stasis. Here we brie fl y describe two example 
transcriptional regulators of HSC differentiation: 
C/EBP α  and Hmgb3. 

 The CCAAT-enhancer binding protein alpha 
(C/EBP α ) is required for development of granulo-
cytes  [  204  ] , but also functions in HSCs to pro-
mote differentiation.  C / EBP  α  null HSCs have 
increased repopulating ability and self-renewal, 
and also display a block of early myeloid differen-
tiation  [  205  ] . Additionally, C/EBP α  determines 
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cell fate of multipotent progenitors, inducing 
myeloid differentiation while inhibiting erythroid 
differentiation  [  206  ] . 

 The high mobility group binding protein B3 
(Hmgb3) is a sequence-independent chromatin 
binding protein. Loss of  Hmgb3  does not affect 
HSC numbers, self-renewal or reconstitution 
ability, but does result in reduced CLP and CMP 
numbers  [  207,   208  ] . Of note, even though in vitro 
differentiation of  Hmgb3 -de fi cient CLP and CMP 
are unaffected, loss of  Hmgb3  appears to bias 
HSCs to self-renewal rather than differentiation 
into progenitors  [  207  ] .   

    11.5   Regulation of HSC 
Transcriptional Regulator 
Expression 

 Much of our understanding of the regulation of 
HSCs is at the transcriptional level, and transcrip-
tional regulation of haematopoietic transcription 
factors by  cis -regulatory elements has allowed 
modelling of transcription factor networks. 
However, additional regulatory mechanisms 
overlay and interconnect with these networks, 
including alternative promoter usage and splic-
ing, post-transcriptional and translational control 

  Fig. 11.4    The haematopoietic lineage tree illustrates 
HSC differentiation potential. HSCs differentiate through 
progressively more committed progenitors into at least ten 
mature blood cell types with diverse functions (which can 
be divided into myeloid and lymphoid cell types). The 
haematopoietic tree shows stable cell populations, which 
have been de fi ned by surface marker expression, although 
the exact branching points and potential of progenitors are 

still a matter of debate (see for example  [  197  ]  for further 
details).  LT-HSC  long-term haematopoietic stem cell, 
 ST-HSC  short-term haematopoietic stem cell,  MPP  multi-
potent progenitor,  CLP  common lymphoid progenitor, 
 CMP  common myeloid progenitor,  GMP  granulocyte 
monocyte progenitor,  MEP  myeloerythroid progenitor, 
 MK  megakaryocyte,  RBC  red blood cell       
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mechanisms, and post-translational regulation of 
protein activity and degradation. To highlight this 
additional complexity, we discuss the regulatory 
mechanisms known to control expression and 
activity of a single transcription factor, Runx1, 
within the haematopoietic system. 

    11.5.1   Transcriptional and 
Co-transcriptional Regulation 

  Runx1  is expressed from two promoters, a distal 
P1 and proximal P2, which play nonredudant roles 
in de fi nitive haematopoiesis, with the P2 being 
critically required  [  209  ] . Different transcription 
factor binding at the  Runx1  promoters confers 
speci fi city of promoter activity, and explain differ-
ential promoter activity during developmental hae-
matopoiesis  [  131  ] . Haematopoietic expression is 
also regulated by the activity of the  Runx1  +23 
enhancer  [  21  ] . As mentioned above, three major 
isoforms of Runx1 appear to have partially distinct 
functions  [  130  ] . However, over 12 differentially 
spliced  Runx1  cDNAs have so far been identi fi ed, 
which may play additional roles in the haematopoi-
etic system  [  209,   210  ] .  

    11.5.2   Post-transcriptional and 
Translational Regulation 

 MicroRNAs (miRNAs) are a class of small 
ncRNA that play a critical role in regulating gene 
expression (see Chap.   18     for further details). 
Ben-Ami et al. identi fi ed  fi ve miRNAs with the 
ability to bind the  Runx1  3 ′ UTR and inhibit 
expression  [  211  ] . Alternative splicing determines 
the length of the 3 ′ UTR, and therefore the ability 
of these miRNAs to bind and interfere with trans-
lation of Runx1. Ben-Ami et al. went onto 
describe a feedback loop active during mega-
karyocytic differentiation (of a myeloid cell line) 
between Runx1 and miR-27a  [  211  ] . MiR-27 has 
also been identi fi ed as inhibiting  Runx1  expres-
sion during granulocyte development  [  212  ] . 

  Runx1  promoter activity determines the 5 ′ UTR 
transcribed and site of translational initiation. 
Transcripts from the distal P1 promoter are 

translated by a Cap-dependent mechanism, while 
transcripts from the proximal P2 promoter are 
translated from an internal ribosome entry site 
(IRES)  [  213  ] . Regulation of these two transla-
tional start sites by different mechanisms adds 
an additional level of control to Runx1 expression. 
Interestingly, several studies suggest miRNAs do not 
inhibit translation from IRES  [  214,   215  ] , and could 
represent a further mechanism by which expression 
of alternative isoforms is differentially regulated.  

    11.5.3   Post-translational Modi fi cation 
by Phosphorylation, Acetylation 
and Methylation 

 Post-translational modi fi cation of proteins by 
phosphorylation, acetylation and methylation are 
common mechanisms to regulate protein activity 
through modulating tertiary structure and protein-
protein or protein-DNA interactions. Runx1 is 
phosphorylated by cyclin-dependent kinases 
(CDKs) in a cell cycle-speci fi c manner, which 
regulates Runx1 activity, protein-protein inter-
actions, stability and degradation  [  216–  218  ] . 
Runx1-DNA binding stability is also regulated 
by transcriptional co-activator p300- and MOZ-
mediated lysine acetylation  [  219,   220  ] . Runx1 
methylation has also been reported to alter its 
activity and transcriptional co-activator interac-
tions  [  221,   222  ] . Post-translational modi fi cation 
also appears important for the ability of transcrip-
tional regulator fusion proteins to drive leukaemias; 
lysine acetylation of RUNX1-ETO is necessary 
for its ability to mediate leukaemogenesis  [  223  ] .  

    11.5.4   Regulation of Runx1 
Activity by Smad6 

 Besides protein-protein interactions with tran-
scriptional co-activators and co-repressors that 
regulate Runx1 activity, Runx1 is also regulated 
by interaction with Smad6, a downstream regula-
tor of the BMP and TGF β  signalling pathways. 
Smad6 regulates Runx1 (as well as Runx2) activity 
by acting as an adaptor, mediating ubiquitination 
of Runx1 by Smurf2 (an E3 ubiquitin ligase), 
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which results in proteosomal degradation 
 [  224,   225  ] . A novel self-regulatory mechanism 
has recently been identi fi ed by Knezevic et al., 
whereby Runx1 controls its own expression during 
de fi nitive haematopoiesis through regulation of 
 Smad6  expression, an inhibitor of Runx1 activity 
 [  226  ] . Three key  Runx1  expression regulators 
Scl, Gata2 and Fli-1 also regulate  Smad6  expres-
sion, in combination with Runx1  [  226  ] . Runx1 
activity therefore determines  Smad6  expression, 
which in turn regulates Runx1 activity, and acts 
to maintain steady Runx1 activity during this 
process  [  226  ] .   

     11.6   Transcriptional Regulation 
in Leukaemogenesis 

    11.6.1   Mutation, Translocation 
and Aberrant Expression 
of Haematopoietic 
Transcriptional Regulators 

 Haematological malignancies are a heterogenous 
group of diseases, genotypically and phenotypi-
cally, and include leukaemias and lymphomas. 
Chromosomal translocations that produce gene 
fusions are particularly common in haematologi-
cal malignancies, with over 264 different gene 
fusions identi fi ed so far  [  227  ] . Mutation, translo-
cation, or aberrant expression of many transcrip-
tional regulators discussed above is associated 
with haematological malignancies, in particular 
leukaemias (reviewed elsewhere  [  197,   227,   228  ] ). 
A large number were in fact originally identi fi ed 
from cytogenetic analysis of chromosomal abnor-
malities in leukaemias. The molecular pathogen-
esis of translocations of the haematopoietic 
transcriptional regulator, MLL1, one the best 
understood examples, is discussed below.  

    11.6.2    MLL1  Translocations 
and Fusion Proteins 

 Chromosomal translocations involving  MLL1  
account for approximately 10 % of all leukae-
mias and cause a variety of phenotypes (from 

which MLL1 gets its name; Mixed Lineage 
Leukaemia 1). Over 60 different in-frame gene 
fusion partners of  MLL1  have been identi fi ed 
as well as  MLL1  partial duplication events  [  229, 
  230  ] . However, over 90 % of cases are accounted 
for by gene fusion with  AF4 ,  AF9 ,  ELL ,  ENL , 
 AF6  or  AF10   [  231  ] . Expression from the  MLL1  
promoter after translocation produces an MLL 
fusion protein consisting of the N-terminus of 
MLL1 and the C-terminus of the fusion partner, 
which does not contain H3K4 methyltransferase 
activity  [  230  ] . An increasing understanding of 
the molecular mechanisms by which MLL fusion 
proteins initiate and maintain leukaemias has 
helped developed targeted therapies. 

 MLL fusion proteins appear to “hijack” normal 
transcriptional regulators to mediate leukaemo-
genesis. Continued expression of the MLL 
fusion protein is required to maintain leukaemic 
growth  [  232  ] , and MLL-AF9 also requires 
expression of wild-type MLL1 to initiate and 
maintain leukaemia  [  233  ] . The MLL1 cofactor 
Menin is also required for maintenance of  MLL1  
leukaemias  [  234  ] , and Menin-MLL inhibitors 
have recently been found to ablate leukaemo-
genic activity of MLL fusion proteins  [  235  ] . 
Additionally, a PcG protein Cbx8 (and PRC1 
component) has recently been found to be 
necessary for initiation and maintenance of 
MLL-AF9 leukaemias, suggesting cooperation 
between PcG and MLL fusion proteins in leu-
kaemogenesis  [  236  ] . 

 Four of the most common fusion partners of 
MLL1 (AF4, AF9, ENL and ELL), along with 
the transcriptional coactivator pTEFb, the poly-
merase associated factor 1 complex, the H3K79 
methyltransferase DOT1L, and the BET family 
protein BRD4 are thought to form large molecu-
lar complexes with MLL fusion proteins at target 
genes  [  237–  241  ] . These data, combined with 
reports that H3K79 methylation pro fi les de fi ne 
multiple MLL fusion protein leukaemias  [  242  ] , 
led to the design of a DOT1L inhibitor, which 
was recently reported to selectively kill MLL1 
leukaemias  [  243  ] . BET inhibitors prevent BET 
proteins (including BRD4) from binding to acety-
lated histones. BET inhibitors are thought to 
destabilise MLL fusion protein complexes at 
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target genes, and have also recently been reported 
to be an effective treatment of  MLL1  leukaemias, 
inducing downregulation of  MYC , cell cycle 
arrest and apoptosis  [  244  ] . 

 The reports summarised above highlight the 
notion of how a molecular understanding of the 
transcriptional dysregulation that occurs in leu-
kaemias can facilitate the design of effective tar-
geted therapies. Furthermore, they suggest MLL 
fusion proteins may mediate leukaemogenesis 
through a common molecular mechanism involv-
ing inappropriate recruitment of transcriptional 
elongation promoting factors to MLL target 
genes. MLL fusion proteins are thought to target 
a subset of wild-type MLL1 targets, their aberrant 
expression promoting cellular proliferation and 
survival  [  245  ] . Perhaps unsurprisingly, several 
key MLL fusion protein targets are transcrip-
tional regulators of HSC self-renewal: Hox genes 
(in particular  HOXA9 ,  HOXA10 ),  MEIS1 ,  EVI - 1 , 
 MYC  and  MYB , which contribute to  MLL1  
leukaemogenesis  [  244,   246–  249  ] . 

 However, a comparison of two ChIP-seq data 
sets of genome-wide MLL fusion protein occu-
pancy (MLL-AF4 and MLL-AF9) identi fi ed few 
common gene targets  [  250  ] . This suggests that 
although MLL fusion proteins may act by a 
common mechanism to dysregulate transcrip-
tion of target genes, many of these target genes 
are likely to be unique to the particular  MLL1  
leukaemia, and may depend on cell of origin, 
MLL fusion partner, and/or additional mutations 
present. This may help to explain the heteroge-
neity in cellular phenotype and pathology of 
 MLL1  leukaemias.   

     11.7   Conclusions 

 Over the last 30 years, transcription factors have 
been identi fi ed as key regulators of every stage of 
normal and malignant haematopoiesis. However, 
most work to date has involved focusing on the 
role of single transcription factors within this sys-
tem. However, it is becoming increasingly clear 
that transcription factors act within large regula-
tory networks, often functionally and physically 
interacting. Further work is needed to synthesise 

all this information, as well as integrating the 
additional layers of regulation acting on these 
transcription factors, into a wider, coherent net-
work model. 

 Besides serving as a model of mammalian 
development, the overall aim of such research is 
its application to clinical problems, such as pro-
duction or expansion of HSCs for bone marrow 
transplantation and mature blood cell types for 
transfusion medicine, as well as rational design 
of treatments of HSC-associated diseases, such 
as leukaemias. As mentioned in Sect.  11.7 , sev-
eral small molecule inhibitors have recently been 
identi fi ed as potential revolutionary treatments 
of  MLL1  leukaemias. However, our understand-
ing of the leukaemogenic mechanisms of many 
other fusion proteins is less well advanced. 
Recent cancer genome sequencing projects are 
discovering ever more transcriptional regulators 
as candidate leukaemic oncogenes and/or tumour 
suppressors  [  251,   252  ] . However, further work is 
required to con fi rm their role and determine their 
function in driving leukaemia, as well as in nor-
mal haematopoiesis. 

 Mouse models have provided powerful tools 
to investigate the transcriptional regulation of 
HSCs, and in many ways account for our greater 
understanding of mouse HSCs over human HSCs. 
However, an over-reliance on mouse experiments 
must be avoided if research is to be successfully 
translated into clinical application. Although the 
roles of many transcriptional regulators of HSCs 
are likely conserved, differences in the basic biol-
ogy of mice and humans (such as life expectancy) 
as well as those speci fi c to HSCs will limit trans-
lation of knowledge. For example, HoxB4 is a 
potent regulator of mouse HSC expansion  [  78  ] , 
but has very limited ability to expand human 
HSCs  [  253  ] . Additionally, current isolation pro-
tocols for human HSCs provide less pure cell 
populations than mouse HSCs. Further charac-
terisation and dissection of human HSCs will 
therefore be important in the future. 

 In summary, transcriptional regulation of 
HSCs is a mature area of research that is continu-
ing at an exciting pace, and one which holds real 
promise for further clinical application in the 
near future.      
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