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    Abstract     Epigenetic states are orchestrated by several converging and reinforcing 
signals, including DNA methylation, histone modifi cations and non-coding RNAs. 
Growing evidence indicates that acquired epigenetic abnormalities participate with 
genetic alterations to cause cancer. In this review we describe recent advances in the 
fi eld of cancer epigenomics and microRNAs (miRNAs) with special emphasis on 
renal cancer. We discuss whether epigenetic changes are the cause or consequence 
of cancer initiation and the use of epigenetic biomarkers and miRNAs for cancer 
diagnosis or prognosis. Finally we address the potential of epigenetic based anti- 
cancer therapeutic strategies.  

  Keywords     Epigenetics   •   MicroRNA   •   Renal cancer  

4.1         Background 

 The term ‘epigentics’ was originally coined by Conrad Waddington in 1942 for the 
molecular mechanisms that convert genetic information into observable traits or 
phenotypes during development [ 1 ]. By contrast, Arthur Riggs et al. defi ned epigenetics 
as “the study of mitotically and/or meiotically heritable changes in gene function 
that cannot be explained by changes in DNA sequence” [ 2 ]. The term may be cur-
rently defi ned as the mechanisms that initiate and maintain heritable patterns of 
gene function and regulation without affecting the sequence of the genome [ 3 ]. The 
sum total of all epigenetic information is termed the ‘epigenome’ and comprises 
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some of the instructions directing the genome to express genes at particular places 
and times [ 4 ,  5 ]. Unlike the genome, the epigenome is highly variable between cells 
and fl uctuates in time according to conditions even within a single cell. Each of us 
has essentially one genome, however each cell type in each individual is believed to 
have a distinct epigenome that refl ects its developmental state [ 6 ]. The epigenetic 
state of a cell is affected by developmental as well as environmental infl uences that 
may leave epigenetic traces which the cell remembers, referred to as cellular mem-
ory [ 7 ]. Thus the epigenome provides a crucial interface between the environment 
and the genome. Recent breakthroughs in the understanding of epigenetic mecha-
nisms provide evidence that they are fundamental to the regulation of many cellular 
processes, including gene and microRNA expression, DNA-protein interactions, 
suppression of transposable element mobility, cellular differentiation, embroygen-
esis, X-chromosome inactivation and genomic imprinting [ 8 ]. The disruption of 
epigenetic changes underlies a wide variety of pathologies including cancer [ 9 ]. 
The cancer epigenome is characterized by global changes in DNA methylation 
including hypomethylation, promoter specifi c hypermethylation, histone modifi ca-
tion, chromatin-modifying enzyme expression profi les and global dysregulation of 
non-coding microRNAs (miRNAs). These aberrations confer a selective growth 
advantage to neoplastic cells, apoptotic defi ciency and uncontrolled cell prolifera-
tion, leading to cancer initiation and progression. For didactic purposes, epigenetic 
mechanisms may be grouped into DNA methylation, histone modifi cation and 
remodeling and miRNAs. In this review, we will describe these mechanisms with an 
emphasis on alterations of the epigenome taking place in renal cancer.  

4.2     DNA Methylation 

 Aberrant DNA methylation is the best characterized cancer-related epigenetic 
modifi cation. DNA methylation occurs predominantly at the symmetrical dinucleo-
tide CpG sites [ 10 ] that are scattered throughout the genome at a lower-than-
expected frequency. However, in certain areas of the genome, a high concentration 
of CpG dinucleotides is found, and are referred to as “CpG islands” (CGIs) [ 11 ]. 
In a normal differentiated cell, CpG loci disseminated across the genome are highly 
methylated, whereas most promoter CGIs are protected from methylation inside 
their boundaries [ 11 ]. In general CGI methylation is associated with gene silencing. 
Gene silencing associated with CGI promoter methylation may be due to restricted 
access of transcription factors or binding of methylcytosine-binding proteins 
(MBD), which cooperate with DNMTs and histone deacetylases (HDACs) [ 12 ]. 
An important role in the regulation of gene expression has also been credited to low 
density CpG regions located in the vicinity of CpG islands, the so-called “CpG 
island shores” [ 13 ,  14 ]. These are sequences up to 2 kb distant from CpG islands, 
that are associated with gene expression. Remarkably, methylation patterns at CpG 
island shores are mostly tissue-specifi c and cancer-associated alterations in these 
patterns occur at sites that vary normally in tissue differentiation [ 14 ]. Differentially 
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methylated CpG island shores are suffi cient to distinguish between specifi c tissues 
and are conserved between human and mouse [ 13 ,  15 ]. Aberrations in DNA meth-
ylation include both global and gene-specifi c hypomethylation as well as gene- 
specifi c CpG island promoter hypermethylation [ 3 ,  16 ] (Fig.  4.1 ). Since global 
DNA hypomethylation and promoter-specifi c hypermethylation can be commonly 
observed in benign neoplasias and early-stage tumors, it is becoming apparent that 
epigenetic deregulation may precede the classical preliminary transforming events 
such as mutations in tumor suppressors, protooncogenes and genomic instability [ 17 ]. 
These aberrations have also have been considered to be the earliest events in the 
process of tumorigenesis [ 18 ]. The impact of gene-specifi c alterations in DNA 
methylation depends on the function of the affected gene and the type of alteration. 
Whereas promoter hypomethylation may cause activation of proto-oncogenes, 
hypermethylation induces silencing of cancer-related genes with tumor suppressive 
properties [ 18 ]. On the other hand, genome-wide hypomethylation may lead to 

  Fig. 4.1    Two epigenetic pathways of transformation from normal cells to cancer cells. In normal 
cells, DNA is unmethylated in CpG islands, while in repeat sequences and CpG sparse regions, 
DNA is heavily methylated. When DNA is less methylated in repeat sequences and CpG sparse 
regions, cells are transformed (Cancer A with global hypomethylation). If DNA is heavily methyl-
ated in CpG islands, cells are also transformed (Cancer B with regional hypermethylation)       
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genomic instability in repetitive sequences, especially at pericentromeric regions, 
predisposing to abnormal recombination, facilitating translocations, deletions, and 
chromosomal rearrangements [ 19 – 21 ].

   Renal cell carcinoma (RCC) is genetically and histopathologically a heterogeneous 
disorder. The most common subtype of RCC is clear cell RCC (ccRCC; approxi-
mately 75 %) and the next most frequent subtype is papillary RCC (pRCC; approxi-
mately 15 %) [ 22 ]. The most frequent genetic abnormality in ccRCC is inactivation 
of the von Hippel-Lindau ( VHL ) tumor suppressor gene [ 23 ] and promoter methyla-
tion of tumor suppressor geness (TSGs) is common in both subtypes of RCC. The 
 VHL  and  p16   INK4a   TSGs are inactivated by promoter hypermethylation in up to 20 % 
of clear cell [ 24 ] and 10 % of all RCC [ 25 ]. The  RASSF1A  and the  Timp-3  genes are 
hypermethylated in 27–56 % [ 26 ] and 58–78 %, of primary RCCs respectively [ 26 ]. 
Table  4.1  provides an overview of the commonly methylated genes in renal cancer 
based on the published reports. A survey of published work in 2010 by Morris and 
Maher [ 36 ] has identifi ed 58 genes that are methylated in RCC and 43 of these 
genes had a mean combined methylation/mutation rate of over 20 % (Ref. [ 36 ]). 
Cancer genome projects such as TCGA (  http://cancergenome.nih.gov/l    ) and 
CAGEKID (  http://www.icgc.org/icgc/cgp/65/812/817    ) have elected to defi ne the 
mutational status and methylation profi le of RCC. Hence large amount of data will 

  Table 4.1    Genes and 
microRNAs methylated 
in renal cell carcinoma  

 Gene  References 

 WNT7a  [ 27 ] 
 TCF21  [ 28 ] 
 SLC34A2  [ 29 ] 
 OVOL1  [ 29 ] 
 DLEC1  [ 29 ] 
 TMPRSS2  [ 29 ] 
 SST  [ 29 ] 
 BMP4  [ 29 ] 
 GATA5  [ 30 ] 
 Rap1GAP  [ 31 ] 
 KLHL35  [ 32 ] 
 QPCT  [ 32 ] 
 SCUBE3  [ 32 ] 
 ZSCAN18  [ 32 ] 
 CCDC8  [ 32 ] 
 FBN2  [ 32 ] 
 ATP5G2  [ 32 ] 
 PCDH8  [ 32 ] 
 CORO6  [ 32 ] 
 DLEC1  [ 33 ] 
 miR-34a  [ 34 ] 
 miR-34b/c  [ 34 ] 
 miR-9  [ 35 ] a  

   a For other methylated genes in RCC, 
please see Ref. [ 36 ]  
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be available to identify frequently methylated genes in RCC in the near future. 
Our group has also reported that various genes such as DNA mismatch repair genes 
[ 37 ], E-cadherin [ 38 ], gamma-catenin [ 39 ] and BTG3 [ 40 ] are silenced through 
promoter hypermethylation in renal cancer. We have also published extensively on 
the promoter methylation status of genes involved in the Wnt signaling pathway in 
renal cancer. Oncogenic activation of the Wnt pathway drives expression of genes 
that contribute to proliferation, survival and invasion. Inhibitors of this pathway can 
be divided into two functional classes, sFRP proteins that bind directly to Wnt and 
prevent its binding to frizzled receptor and the Dickkopt (DKK) proteins which bind 
to LRP component of the Wnt receptor complex. The  sFRP-1, sFRP-2, sFRP-4, 
sFRP-5  and related Wif genes are all frequently methylated in RCC [ 41 – 44 ], as are 
the DKK genes [ 45 ,  46 ]. An interesting fi nding by our group is that  sFRP1  is 
unmethylated/hypomethylated and thus over-expressed in metastatic renal tumors 
[ 47 ] compared to primary tumors where in its expression is attenuated by promoter 
hypermethylation [ 41 ]. Another study from our group by Yamamura et al. [ 48 ] chal-
lenged the Wnt inhibitory role of  sFRP2  and reported that overexpression of  sFRP2  
activates the canonical Wnt pathway, promoting cell growth through diverse signaling 
cascades in renal cancer cells [ 48 ].

4.3        Chromatin Remodeling and Histone Modifi cations 

 The coiling of DNA around nucleosome particles is the basis for organization of 
eukaryotic genomes. Each nucleosome encompasses ~147 bp of DNA wrapped 
around an octamer of histone proteins. The core histones H2A, H2B, H3 and H4 bind 
together (two H2A-H2B dimers and one H3-H4 tetramer) to form the nucleosome. 
The core histones are small basic proteins containing a globular domain and a fl exi-
ble charged NH2 terminus known as the histone tail [ 49 ]. Regulation of gene expres-
sion occurs through posttranslational covalent modifi cations of the histone tails 
including acetylation, methylation, phosphorylation, ubiquitination, sumoylation, 
proline isomerization, and ADP ribosylation [ 49 ,  50 ]. Generally certain histone 
modifi cations such as acetylation or phosphorylation are thought to change chroma-
tin structure by altering the net positive charge of the histone proteins, thereby mak-
ing the underlying DNA sequence accessible [ 51 ]. Alternatively, histone modifi cations 
can be recognized by specifi c protein domains (e.g., bromodomains, Tudor domains, 
chromodomains), which in turn might enforce or stabilize the recruitment of addi-
tional factors [ 52 ,  53 ]. Posttranslational modifi cations to histone tails govern the 
structural status of chromatin and the resulting transcriptional status of genes within 
a particular locus. These modifi cations are reversible and controlled by a group of 
enzymes including histone acetyltransferases (HATs) and deacetylases (HDACs), 
methyltransferases (HMTs), demethylases (HDMs), kinases, phosphatases, ubiquitin 
ligases and deubiquitinases, SUMO ligases and proteases which add and remove 
these modifi cations [ 8 ,  49 ]. In relation to transcriptional state, the human genome can 
be roughly divided into two distinct chromatin conformation states: euchromatin, 
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which has an open structure and is transcriptionally active and heterochromatin, 
which is densely compacted and transcriptionally inert [ 54 ]. Euchromatin is charac-
terized by high levels of acetylation and trimethylated H3K4, H3K36 and H3K79. 
In contrast heterochromatin is characterized by low levels of acetylation and high 
levels of H3K9, H3K27 and H4K20 methylation [ 8 ,  54 ]. The notion of heterochro-
matin as transcriptionally inactive has been challenged by the discovery of numerous 
noncoding RNAs (ncRNAs) derived from heterochromatic loci [ 55 ]. Well-known 
examples of this phenomenon in humans are the ncRNAs  XIST  and  HOTAIR  [ 56 , 
 57 ]. Histone modifi cations are predictive for gene expression as actively transcribed 
genes are characterized by enriched levels of H3K4me3, H3K27ac, H2BK5-azacytidine 
(H2BK5ac) and H4K20me1 in the promoter and H3K79me1 and H4K20me1 along 
the gene [ 58 ]. Therefore histone modifi cations infl uence chromatin structure which 
plays an important role in gene regulation and carcinogenesis (Fig.  4.2 ).

   Genome-wide studies have revealed that various combinations of histone modi-
fi cations in a specifi c genomic region can lead to a more ‘open’ or ‘closed’ chromatin 
structure resulting in the activation or repression of gene expression. Disruption of 
normal patterns of histone modifi cations is a hallmark of cancer [ 12 ,  59 ]. One of the 
most characteristic examples is the global reduction of H4K20 trimethylation 
(H4K20me3) and H4K16 acetylation (H4K16Ac), along with DNA hypomethylation, 

  Fig. 4.2    DNA methylation status in the promoter and the related chromatin structure. In normal 
cells, the CpG sites adjacent to transcription start site are unmethylated. The transcriptional 
machinery is activated by the binding of transcriptional factor (TFs) and co-acting factors (CAs) in 
this region. The gene promoter shown on the  upper left  is transcriptionally active. In upstream and 
downstream regions, DNA is methylated by DNA methyltransferases (DNMTs). In these regions, 
methylcytosine-binding proteins (MBPs) that bind to methylated CpG sites recruit histone deacet-
ylases (HDACs) and histone methyltransferases to form a complex.  Left bottom  shows the related 
chromatin structure around the transcriptionally active, unmethylated promoter. The lysine resi-
dues in the tails of histone H3 are acetylated (acK). Lysine 4 is methylated (mK4) and lysine 9 is 
unmethylated (K9). These changes contribute to open and relaxed conformation of the chromatin 
allowing key components of the transcription apparatus accessible to the promoter. In the upstream 
and downstream regions, the lysine residues are deacetylated (K), demethylated (K4) and methyl-
ated (mK9) respectively and the chromatin structure have closed and dense conformation. In cancer 
cells, shown in the  upper right , DNA methylation spreads toward the promoter regions near the 
transcriptional start site, resulting in transcriptional silencing. These events result in closed and 
dense chromatin conformation making it diffi cult for the key components of gene transcription 
apparatus to bind to the promoter       
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at repeat sequences in many primary tumors [ 12 ]. Furthermore, genes encoding for 
histone-modifying enzymes have been also reported to be mutated in ccRCC [ 60 ]. 
Mutated genes have been implicated in chromatin regulation through nucleosome 
repositioning and histone tail modifi cation.  PBRM1 , which was found to be mutated 
in nearly 40 % of human RCCs [ 61 ,  62 ], is a component of the Polybromo BRG1-
associated factor complex (PBAF, SWI/SNF-B). PBAF, like SWI/SNF, functions as 
a nucleosome remodeler and was shown to be involved in transcriptional regulation 
(24–26). Less common mutations were also identifi ed in two methyltransferases, 
SETD2 and MLL2, and two demethylases, UTX (KDM6A) and JARID1C [KDM5C 
Ref. [ 60 ]]. Deletion of chromosome 3p is a common fi nding in ccRCC associated 
with the loss of VHL at 3p25 and can also affect SETD2 and PBRM1, which are 
located at 3p21 [ 63 ]. SETD2 mediates the trimethylation of H3K36 [ 64 ], a histone 
mark that is placed during transcription and may be important for maintaining faith-
ful transcription [ 65 ], whereas MLL2 mediates H3K4me3, a mark associated with 
active transcription. UTX demethylates H3K27me3 [ 66 ,  67 ], a histone mark associ-
ated with repressed chromatin. Of interest, UTX associates with MLL2 [ 68 ], 
suggesting that demethylation of repressive modifi cation is associated with tran-
scriptional activation. The hypoxia response pathway has been shown to have a 
direct effect on histone modifi cation. HIF upregulation is a feature of ccRCC and it 
was shown to activate several chromatin demethylases, including JMJD1A 
(KDM3A), JMJD2B (KDM4B), JMJD2C (KDM4C), and JARID1B (KDM5B), all 
of which are directly targeted by HIF [ 69 – 71 ]. Indeed, both JMJD1A and JMJD2B 
were found to be elevated in a RCC cell line with loss of VHL function [ 70 ], and 
the expression of JMJD1A was reported to be higher in RCC cancer tissue sur-
rounding blood vessels, suggesting that JMJD1A is involved in tumor angiogenesis 
[ 72 ]. Reexpression of VHL in VHL-defi cient cell lines increased H3K4me3 levels 
associated with decreasing levels of JARID1C, a target of HIF2a [ 62 ]. Silencing of 
JARID1C in VHL-defi cient tumor cells augmented tumor growth in a xenograft 
mouse model, suggesting that JARID1C acts as a tumor suppressor. In contrast, 
hypoxia may increase methylation through HIF-independent mechanisms. Like 
HIF prolyl hydroxylase (PHD, EGLN3), histone demethylases are members of the 
dioxygenase superfamily, which requires oxygen as well as iron and 2-oxoglutarate 
for activity [ 73 ,  74 ]. In a manner analogous to stabilization of HIF via decreased 
hydroxylation, hypoxia was shown to suppress JARID1A (KDM5A) activity, result-
ing in increased H3K4me3 levels [ 75 ]. This suggests the hypothesis that loss of 
demethylases (and, by analogy, increased histone methylation) is part of a hypoxia 
phenotype that is selected for in RCC. This hypoxia phenotype, which is mimicked 
by  VHL  loss, would also be mimicked by loss of histone demethylase activity, 
which is a high-frequency event in RCC. Chromatin organization also infl uences 
HIF function. Studies of HIF induced under conditions of hypoxia showed prefer-
ential targeting of HIF to previously nucleosome depleted chromatin regions [ 76 ]. 
Moreover, the coexpression of SWI/SNF components BRG1, BAF170, and BAF57 
augmented HIF activity from an HIF responsive reporter [ 77 ]. The extent to which 
mutations of epigenetic regulators infl uence chromatin or HIF targeting remains 
unknown.  
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4.4     MicroRNAs 

 MicroRNAs are small, non-protein-coding sequences thought to regulate >90 % of 
human genes by targeted repression of gene transcription and translation [ 78 ]. 
These endogenous, silencing RNAs have been shown to play important roles in 
development and differentiation [ 79 ,  80 ], cellular stress responses [ 81 ], and growing 
evidence has strongly implicated the involvement of miRNAs in carcinogenesis 
[ 82 – 84 ]. Specifi c subsets of miRNAs have also been shown to be dysregulated in 
various solid tumors [ 85 ,  86 ]. Due to their tremendous regulatory potential and 
tissue- specifi c and disease-specifi c expression patterns [ 87 ,  88 ], there is increasing 
evidence that miRNA expression profi les could be indicative of disease risk. 

 DNA hypermethylation of CpG sites within CpG islands is known to lead to the 
inactivation of many tumor-suppressive miRNAs [ 89 – 91 ]. One of the most common 
causes of tumor-suppressor miRNA loss is silencing of their primary transcripts by 
CpG-island hypermethylation [ 92 – 96 ]. The DNA methylation profi le of tumors is 
useful to defi ne tumor type, clinical prognosis and treatment response [ 19 ,  20 ]. 
Epigenetic silencing of miRNAs is also involved in the acquisition of an invasive 
phenotype and the development of metastasis [ 93 ]. Dysregulation of miRNA 
expression seems to be pivotal for RCC development and progression. Table  4.2  
presents a list of miRNAs that are dysregulated in RCC. Depletion of tumor 
suppressor genes or upregulation of oncogenes has also been correlated with dys-
regulated expression of miRNAs in RCC. Our group has reported that several tumor 
suppressor miRNAs such as miR-1826 [ 102 ], miR-708 [ 100 ], miR-205 [ 104 ], miR- 
584 [ 105 ] are attenuated in RCC, where as oncogenic miR-21 was overexpressed 
[ 108 ]. There are controversial reports about the status of miRNA-34a in RCC. One 
study reported that inactivation of miR-34a correlates with its methylation status as 
they found methylation frequency of 58 % in RCC [ 34 ]. “Whereas in contrast, Liu 
et al. [ 109 ] reported increased levels of mir-34a caused loss of function of tumor 
suppressor  SFRP1  [   which again is a controversial tumor suppressor in RCC [ 47 ]] 
indicating its oncogenic potential” [ 109 ]. However no functional analysis was 

   Table 4.2    MicroRNAs and their targets in renal cell carcinoma   

 microRNAs  Function  Target gene  References 

 miR-99a  Tumor suppressor  mTOR  [ 97 ] 
 miR-138  Tumor suppressor  Vimentin  [ 98 ] 
 miR-204  Tumor suppressor  MAP1LC3B  [ 99 ] 
 miR-708  Tumor suppressor  Survivin  [ 100 ] 
 miR-1  Tumor suppressor  transgelin-2  [ 101 ] 
 miR-133a  Tumor suppressor  transgelin-2  [ 101 ] 
 miR-1826  Tumor suppressor  CTNNB1, MAP2K1  [ 102 ] 
 miR-34a  Tumor suppressor  c-Myc  [ 103 ] 
 miR-205  Tumor suppressor  Src kinase  [ 104 ] 
 miR-584  Tumor suppressor  ROCK1  [ 105 ] 
 miR-23b  Oncogenic  Proline oxidase  [ 106 ] 
 miR-21  Oncogenic  PTEN  [ 107 ] 
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performed in either study. A recent study by our group investigated the functional 
effects of miR-34a in RCC [ 103 ]. It reported that overexpression of miR-34a inhib-
ited cell invasion and suppressed the assembly and function of the c-Myc complex 
that activates or elongates transcription, indicating a tumor suppressor role in RCC 
[ 103 ]. Matching patterns between deregulated miRNAs and chromosomal aberra-
tions have been reported in ccRCC [ 110 ]. On the other hand, miRNA deregulation 
might serve as an alternative mechanism for gene expression alterations due to chro-
mosomal aberrations. This is well illustrated by the miR-204/211 family. Gain of 
chromosome 3q is a common fi nding in papillaryRCC that leads to upregulation of 
several genes including  C3orf58, CCDC50, DTX3L, PLD1, TRIM59, ECT2, RAP2B,  
and  SERP1  that are targeted by miR-204/211 [Ref. [ 109 ]], whereas in ccRCC, miR- 
204/211 downregulation might be the mechanism causing upregulation of the same 
set of genes, since 3q gain is rare in ccRCC [ 109 ].

4.5        Interplay Between Epigenetic Factors 

 There is interplay between histone modifi cations and DNA methylation and the best 
example is the relationship between DNMT3L and H3K4. DNMT3L specifi cally 
interacts with histone H3 tails, inducing  de novo  DNA methylation by recruitment 
of DNMT3A, however this interaction is strongly inhibited by H3K4me. 
Furthermore, several histone methyltransferases have also been reported to direct 
DNA methylation to specifi c genomic targets by recruiting DNMTs [ 111 ,  112 ], 
helping in this way to set the silenced state established by the repressive histone 
marks. Moreover, histone methyltransferases and demethylases can also modulate 
the stability of DNMT proteins, thereby regulating DNA methylation levels [ 113 , 
 114 ]. On the other hand, DNA methylation can also direct histone modifi cations. For 
instance, methylated DNA mediates H3K9me through MeCP2 recruitment [ 115 ]. 
MicroRNAs are also known to target the components of epigenetic machinery such 
as DNMTs, HDACs and polycomb genes [ 116 ]. Whereas, miRNAs may be affected 
by epigenetic changes, such as methylation of the CGIs and accompanying changes 
in histone modifi cations. miR-127 has been found to be attenuated in cancer cells by 
promoter hypermethylation and by a decrease in acetyl-H3 and methyl- H3K4 [ 95 ]. 
Genome-wide analysis of different cancer types has shown that global expression of 
miRNAs is infl uenced by DNA methylation and histone modifi cations [ 117 ].  

4.6     Epigenetic and miRNA Biomarkers 

 Methylated DNA sequences provide attractive options for biomarkers for cancer 
detection and prognosis including RCC [ 118 ]. The last decade has provided an 
extensive map of the aberrant DNA methylation events occurring in cancer cells, par-
ticularly for the hypermethylated CpG islands of tumor suppressor genes (TSG) [ 19 ]. 
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Consequently a myriad of DNA methylation-based biomarkers of many types of 
human neoplasias have been reported. Different RCC subtypes seem to display dif-
ferent gene sets deregulated by promoter hypermethylation [ 26 ], and a gene panel 
( CDH1 ,  PTGS2 , and  RASSF2 ) identifying most frequent RCC subtypes in tissue 
samples has been evaluated [ 119 ]. The epigenomic data have helped highlight the 
unique profi le of aberrant DNA methylation that defi nes each tumor type [ 120 ]. 
Epigenetic biomarkers are of particular interest as non-invasive biomarkers since 
methylated DNA can be detected from tumor cells sloughed into urine or blood. 
This has been shown with a three-gene panel ( APC ,  RAR β 2 ,  RASSF1A ) which 
detected RCC with high specifi city and sensitivity [ 41 ,  121 ]. Moreover,  RASSF1A  
promoter methylation might also prove useful for tumor surveillance/monitoring of 
RCC cancer patients [ 122 ]. Methylation of the Wnt pathway genes  SFRP1, SFRP2, 
SFRP4, SFRP5, DKK3  and  WIF1  have been detected in the serum of patients with 
corresponding tumor methylation and the frequency of methylation in serum cor-
related with increased grade and stage [ 41 ]. Therefore the detection of RCC- 
associated TSG methylation by analysis of serum or urine samples could have 
potential for early detection of RCC and for distinguishing benign and malignant 
renal cancers. Promoter hypermethylation of some genes has been associated with 
clinical and pathological features of tumor aggressiveness and also with prognostic 
relevance. Aberrant promoter methylation of  APAF1, DAPK1  and  GREM1  [ 123 ] 
has been associated with aggressive forms of RCC. Moreover, promoter methyla-
tion of  APAF1 ,  DAPK1  [ 124 ],  JUP  [ 39 ],  PTEN  [ 125 ],  UCHL1  [ 126 ],  DAL1-4.1B/
EPB41L3  [ 127 ]  BNC1  and  COL14A1  [ 128 ] have been associated with poorer sur-
vival, and most of them ( JUP ,  APAF1 ,  DAPK1 ,  PTEN ,  DAL1-4.1B ,  BNC1 , and 
 COL14A1 ) retained independent prognostic value in multivariate analysis [ 39 ,  124 , 
 128 ]. Clearly it is important that there should be additional studies of potential 
methylated biomarkers in tumor tissues and urine and/or blood with the ultimate 
aim of producing a panel of biomarkers that will enable non-invasive detection, 
molecular staging and prediction of prognosis. As the number of potential methyl-
ated TSG biomarkers increases, it will be of great importance to assay these in a 
standardized manner in prospective studies to establish their clinical utility. 

 Genome-wide studies of histone modifi cations have been performed to charac-
terize the chromatin of malignant cells by establishing the overall profi le of histone 
modifi cations in cancer cells. Signatures of histone modifi cations patterns, such as 
trimethyl-H3K9, are associated with patient prognosis in acute myeloid leukemia 
[ 129 ]. Silencing of genes marked by trimethyl-H3K27 in the absence of DNA 
methylation has also been reported [ 130 ]. Several histone modifi cations have been 
associated with poor prognosis in RCC, including low H3K4me2, H3K18ac, and 
H3K9me2 [ 131 ]. H3K4me1–3 levels were also found to be inversely correlated 
with Fuhrman grade, stage, lymph node involvement and distant metastases, and 
an H3K4me score was an independent factor for RCC progression free survival 
[ 132 ]. Similar observations have been made for global H3Ac and H4Ac levels, as 
well as for H3K9Ac levels in RCCs treated with partial nephrectomy [ 133 ], 
whereas H3K18Ac levels were an independent predictor of RCC progression after 
surgery [ 134 ]. 
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 The use of genome wide approaches has enabled the production of miRNA 
fi ngerprints in a range of tumors and the identifi cation of new potential biomarkers 
to distinguish tumor tissue from its normal counterpart. From a clinical point of 
view, miRNAs have great potential as diagnostic and therapeutic agents. Owing to 
the tissue specifi city of miRNAs, they have become a useful tool for defi ning the 
origin of tumors in poorly differentiated cancers [ 135 ]. Prognosis and survival of 
patients depends on the cancer stage at diagnosis and miRNA signatures have been 
reported to be useful tools for early diagnosis of cancer [ 136 ,  137 ]. Differential 
miRNA expression patterns between neoplastic and non-neoplastic renal tissues, as 
well as among different renal tumor subtypes have been described. Discrimination 
between ccRCC and normal kidney tissue have been described with a panel of nine 
miRs (miR-21, miR-34a, miR-142-3p, miR-155, miR-185, miR-200c, miR-210, 
miR- 224, and miR-592) [Ref. [ 138 ]], a combination of miR-141 and miR-155 [ 139 ] 
or by differential expression of miR-92a, miR-210, and miR-200c [ 140 ]. For a more 
clinical perspective with the aim of supporting diagnosis, a stepwise decision tree 
was created to differentiate between kidney cancer subtypes and oncocytoma, 
depending on miRNA signatures. This method is valuable in small biopsy samples 
and in cases where morphological assessment is not suffi cient for diagnosis [ 141 ]. 
Unsupervised hierarchical cluster analysis of miRNA microarray data showed that 
tumors derived from the proximal and distal nephrons can be distinguished by 
their miRNA profi le [ 140 ]. The differential expression patterns of miRNAs can also 
be used to subclassify renal cancer. In ccRCC 23 miRNAs are differentially 
expressed (let-7e, let-7f, let-7g, miR10b, miR-124, miR-126, miR-138, miR-140-5p, 
miR- 142-5p, miR-144, miR-184, miR-200c, miR-203, miR-206, miR-210, miR-218, 
miR-27a, miR-27b, miR-335, miR-373, miR-378, miR-92a, miR-98. However, 
some miRNAs are characteristic of sporadic ccRCC (let-7c, let-7d, miR-1, miR- 100, 
miR-10a, miR-148b, miR-191, miR-199a-3p, miR-19a, miR-215, miR-29b, miR-
30c, miR-363, miR-9) and others of hereditary RCC (let-7a, miR-125a-5p, 
miR-125b, miR-143, miR-146b-5p, miR-15b, miR-17, miR-193a-5p, miR-193b, 
miR-196a, miR-20b, miR-214, miR-23b, miR-32, miR-372) [ 61 ]. miRNA levels in 
sera of RCC patients and healthy controls, identifi ed miR-1233 as a promising bio-
marker for RCC detection and monitoring [ 142 ]. Altered levels of miRNA might 
also provide prognostic information. Whereas miR-155 and miR-21 expression in 
ccRCC tumors has been found to correlate with tumor size [ 143 ], higher miR-210 
levels were found in tumors displaying higher Fuhrman grade [ 140 ]. In ccRCC, 
overexpression of miR-32, miR-210, miR-21, and miR-18a correlated with poor 
survival [ 143 ,  144 ]. Lower miR-106b levels were associated with metastatic disease 
and poorer relapse-free survival [ 145 ]. High miR-210 expression was also found in 
tumors with lymph node metastasis [ 140 ], suggesting unique miRNA signatures in 
metastatic RCC, distinct from those of primary tumors [ 146 ]. Khalla et al. [ 147 ] 
compared distant metastases with primary tumors and found a distinct miRNA sig-
nature in metastases. Some of the primary tumor samples clustered together with 
the distant metastasis, suggesting that these primary tumors have a metastasis- 
specifi c signature [ 147 ]. Because miRNAs can be easily detected and quantifi ed 
in blood, serum assays based on metastasis-associated miRNAs may be of value. 
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In addition, Lin et al. [ 148 ] identifi ed 12 SNPs in miRNA-related genes that are 
signifi cantly associated with recurrence or survival and found a cumulative effect of 
multiple SNPs with recurrence. Taken together, additional studies in large patient 
cohorts are necessary to validate the potential use of miRNAs as diagnostic/
prognostic biomarkers.  

4.7     Epigenetics as Consequence or Cause of Cancer Initiation 

 Cancers are caused by accumulative mutations in the genes [ 149 ]. Mutations cause 
rearrangements of large chromosomal regions, which confer the cells with growth 
advantage under selection pressure due to abnormal expression of oncogenes [ 149 , 
 150 ]. The clonal expansion of the mutated cells leads to genomic instability and 
global demethylation, while the cell machinery progressively shuts down the anti- 
survival genes by hypermethylation. Thus mutations cause genomic instability, 
which precedes methylation changes. By contrast, congenital disorders such as 
ICF syndrome and Rett syndrome involve genes that encode the methylation 
machinery of the cell such as  DNMT3B  (ICF syndrome) and  MECP2  (Rett syn-
drome), but these disorders do not predispose to cancer. Thus, epigenetic changes 
were thought to be a consequence of altered gene expression rather than causal 
[ 151 ]. Further, activation of tumor suppressor genes by 5-aza-2′-deoxycytidine or 
 DNMT1  knockout may not be stable, as has been shown for both  MLH1  [ 152 ] and 
 p16  [ 153 ], suggesting that the altered methylation might be a consequence rather 
than a cause of gene silencing. Thus a key barrier to the acceptance of epigenetic 
alterations as a cause rather than a consequence of cancer has been the lack of 
well-defi ned human pre-neoplastic disorders that are caused by epigenetic muta-
tions. However the discovery of the mechanisms of Beckwith-Wiedemann syn-
drome (BWS) provides a good example of constitutional epigenetic alterations 
linked to cancer risk. BWS was shown to have various molecular causes, including 
loss of imprinting (LOI) of  IGF2  [ 154 ] or point mutations in the  CDKNIC  [ 155 ] 
gene or epigenetic lesions in the nearby antisense RNA  LIT1 . Furthermore, cancer 
predisposition might be specifi cally associated with LOI of  IGF2  and hypermeth-
ylation of  H19  [ 156 ]. In a large registry of patients with BWS gain of methylation 
at  H19,  presumably resulting in biallelic expression of  IGF2 , was found to be 
specifi cally and statistically associated with cancer risk [ 157 ]. BWS leads to an 
800 fold increased risk of embryonal tumors such as Wilm’s tumor of the kidney 
and rhabdomyosarcoma [ 158 ]. LOI of  IGF2  is specifi cally associated with 
increased cancer risk in children with BWS. Thus the epigenetic change precedes 
cancer and confers risk for cancer, a strong argument for causality. Another study 
showed that aberrant changes in the epigenome could indeed lead to cancers that 
do not display genomic instability [ 159 ].  Snf5  is a tumor suppressor gene and a 
core component of the chromatin remodeling complex SWI/SNF whose inactiva-
tion is detected in several types of tumors [ 160 ,  161 ], including the highly invasive 
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malignant rhabdoid tumors (MRTs) [ 162 ]. Differing from most other tumors where 
the chromosomes are usually fragmented, MRTs often display an intact genome. 
The authors generated  Snf5 -defi cient primary mouse embryonic fi broblasts and 
showed that tumors derived from these cells were diploid and the cancer pheno-
type was correlated with the expression of the cell cycle protein cyclin D1, which 
was epigenetically upregulated by SWI/SNF complexes [ 159 ]. An alternative 
approach to study the relationship between epigenetic changes and transformation 
is to study the epigenome of pre-cancerous cells. A series of studies on colon can-
cers found that global hypomethylation as well as regional gene promoter hyper-
methylation occur in pre-cancerous lesions or even benign colon polyps before 
they become malignant colon cancers [ 163 – 165 ]. Similar fi ndings have been 
observed in breast cancers, where normal tissues surrounding the tumors have 
been detected with aberrant DNA methylation patterns [ 166 ,  167 ]. These observa-
tions of methylation patterns change in pre-cancerous cells suggest that the loss in 
methylation can be an early event that precedes malignancy. Experimental data in 
mice also support a causal role for epigenetic changes in cancer. When  DNMT1  
hypomorphs are crossed with Min (multiple intestinal neoplasia) mice with an  Apc  
mutation, they show an increased frequency of intestinal neoplasia and liver can-
cers [ 168 ]. In addition, it has also been shown that global hypomethylation leads 
to elevated mutation rates [ 169 ], suggesting that epigenetic changes may initiate 
downstream oncogenetic pathways. Studying these model systems may therefore 
aid our understanding of how epigenetic processes contribute to the process of 
oncogenic malignancy.  

4.8     Epigenetic Therapy 

 Given that epigenetic modifi cations are reversible, it seems likely that understanding 
and manipulating the epigenome may hold promise for preventing and treating 
common human diseases including cancer. Much attention has been focused on the 
quest for epigenetic drugs, which restore the normal epigenetic landscape in cancer 
cells by inhibiting enzymes of the epigenetic machineries. Understanding the mech-
anisms underlying the tumor suppressor gene silencing in cancer has promoted the 
idea of pharmacologically relieving the inhibitory effects of DNA methylation and 
chromatin remodeling on gene expression. Identifi cation of frequently methylated 
RCC tumor suppressor genes has highlighted potential targets for therapeutic 
intervention. Decitabine, the clinical form of the demethylating agent 5-aza-2′-
deoxycytidine, has been used in several clinical trials, and promising responses have 
been reported for hematological malignancies such as myelodysplastic syndrome 
[ 170 ,  171 ]. Various studies have tested DNMT inhibitors or HDAC inhibitors either 
alone or in combination with conventional chemotherapeutic agents in RCC cell 
lines with promising results [ 172 – 174 ] but clinical studies are required to conclu-
sively demonstrate the therapeutic usefulness in RCC.  
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4.9     Conclusions 

 Understanding the complexity of the epigenome and all the actors involved in 
modulating its interactions with genomic sequences is of fundamental importance 
in health and disease. Owing to the reversible and plastic nature of epigenetic altera-
tions, these constitute an attractive target for novel therapeutic intervention. Studying 
epigenomic alterations and miRNAs provide opportunities for the development of 
innovative biomarkers to aid in disease detection, diagnosis, prognosis and predic-
tion of response to therapy. Understanding the complex molecular mechanisms 
involved in epigenetics and miRNAs, may lead to more effective cancer treatments 
and promote the change from current cytotoxic therapies to more targeted control of 
malignant phenotypes.     
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