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    Abstract     Both genetic alterations and epigenetic regulations of genes could lead 
to the development of human cancers. However, recent studies have shown that 
epigenetic alteration contributes signifi cantly not only to the development of cancer but 
also responsible for the progression of cancer to metastatic disease. The epigenetic 
regulations of specifi c genes in human cancer cells include DNA methylation, 
acetylation, histone modifi cation, nucleosome remodeling, and small non-coding 
RNA regulation including the regulation of microRNAs (miRNAs). Among many 
epigenetic regulations, DNA methylation is the most common event and has been 
well studied for understanding the mechanisms of epigenetic regulation of genes. 
The DNA hypermethylation occurs in the promoter sequences of tumor suppressor 
gene or tumor suppressive miRNAs leading to the down-regulation in the expres-
sion of tumor suppressor mRNAs or miRNAs, resulting in the development and 
progression of various cancers. Interestingly, recent studies have shown that several 
non- toxic natural agents known as nutraceuticals including isofl avone, curcumin, 
(−)-epigallocatechin-3-gallate, resveratrol, indole-3-carbinol, 3,3′-diindolylmethane, 
and lycopene could demethylate DNA at their hypermethylation sites or modulate 
histone, demonstrating their potential roles in the epigenetic regulation of mRNAs 
and miRNAs. These epigenetic regulations of mRNAs and miRNAs could be one of 
the molecular mechanisms by which nutraceuticals inhibit carcinogenesis and cancer 
progression, and thus either nutraceuticals or their synthetic analogs could serve as 
novel demethylating agents for the treatment of human malignancies.  
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14.1         Introduction 

 Human cancer is the second leading cause of death after cardiovascular disease in 
the United States and in the world. It is known that both genetic alterations and 
epigenetic regulations of genes could cause human cancers. The genetic changes 
including DNA point mutations, gene amplifi cation, gene translocation, etc. have 
been traditionally believed as major causes of cancer development. However, 
recent studies have demonstrated that epigenetic alterations contributes signifi -
cantly to the development and progression of cancers [ 1 ]. Moreover, it has been 
found that genetic and epigenetic regulations are not separate biological events in 
cancer. Epigenetic regulations could cause genetic mutations while genetic muta-
tions in epigenetic regulators could alter epigenome [ 1 ], suggesting the complex 
biological regulations of these genetic events in the development and progression 
of cancer. 

 The epigenetic regulation of specifi c genes in human cancer cells include DNA 
methylation, histone modifi cation, nucleosome remodeling, and small non-coding 
RNA (ncRNA) regulation including microRNAs (miRNAs). These regula-
tions lead to the alterations in the expression of genes without altering the 
DNA sequences. Among the different types of epigenetic regulations, DNA meth-
ylation is the most common event and has been well studied. DNA methylation is 
heritable and plays critical role in cell differentiation and embryogenesis. 
However, the hypermethylation occurs in the DNA sequences in the promoter of 
tumor suppressor genes which could cause gene silencing through the obstruction 
of transcriptional activators, leading to the development and progression of vari-
ous cancers (Fig.  14.1 ).

   In recent years, studies have focused on the investigations of the roles and the 
epigenetic regulation of miRNAs in cancer development and progression. The miR-
NAs could inhibit its target gene expression by binding to the 3′-untranslated region 
(3′-UTR) of target mRNA, causing either mRNA degradation or inhibition of trans-
lation. The miRNAs could be oncogenic or tumor suppressive depending on their 
specifi c functions during cancer development and progression. Interestingly, it has 
been found that some miRNAs are also epigenetically regulated in various cancers 
[ 2 ], resulting in altered expression of miRNAs and their target mRNAs. The DNA 
hypermethylation occurs in the promoter region of miRNA gene which could result 
in the low expression of miRNAs and, in turn, up-regulates the expression of 
specifi c target mRNAs and proteins. The epigenetically regulated tumor suppressive 
miRNAs could cause increased expression of oncogenes both at the mRNA and 
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protein levels, which in part could be responsible for the development and progres-
sion of various cancers (Fig.  14.1 ). 

 Since epigenetic regulations of mRNAs and miRNAs through DNA methylation 
and histone modifi cation play important roles in cancer development and progres-
sion, targeting the epigenetic deregulations in cancers could become a novel and 
effective approach to fi ght the battle against cancers. Several epigenetic inhibitors 
have been synthesized and used in epigenetic therapy trials to re-express abnormally 
silenced tumor suppressor genes. However, the side-effects of the demethylating 
agents and histone deacetylase inhibitors (HDAC inhibitors) appear side-by-side 
with the benefi cial effects [ 3 ]. Interestingly, recent studies have shown that several 
non-toxic natural agents known as nutraceuticals including isofl avone, curcumin, 
(−)-epigallocatechin-3-gallate (EGCG), resveratrol, indole-3-carbinol (I3C), 
3,3′-diindolylmethane (DIM), and lycopene could demethylate DNA sequences or 
inhibit HDACs, demonstrating their roles in epigenetic regulation of mRNAs and 
miRNAs. These epigenetic regulations of mRNAs and miRNAs could be one of the 
molecular mechanisms by which nutraceuticals inhibit carcinogenesis and cancer 
progression, suggesting that either nutraceuticals or their synthetic analogs could 
serve as novel demethylating agents for the treatment of human malignancies.  

  Fig. 14.1    DNA methylation regulated mRNA and miRNA expressions in cancer development and 
progression       
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14.2     Epigenetic Regulation of mRNAs in Cancers 

 Epigenetics refers to heritable as well as non-heritable changes in gene expression 
and cellular phenotype that are not due to alterations in DNA sequence. Epigenetic 
regulations could alter the expression of mRNA of specifi c genes. During cancer 
development and progression, the epigenome precedes multiple alterations including 
genome-wide loss of DNA methylation (known as hypomethylation), frequently 
increased methylation of CpG islands in the gene-specifi c promoter sequence, 
changes in histone modification and nucleosome, and alterations in ncRNA 
profile. These alterations are beginning to be appreciated as the molecular basis of 
carcinogenesis and cancer aggressiveness. Therefore there are signifi cant efforts in 
the areas of drug development research focusing on epigenetic deregulation of 
genes for the treatment of human malignancies. 

14.2.1     DNA Methylation 

 Among the epigenetic regulations, DNA methylation is the most widely investigated 
area in cancer research. During the process of DNA methylation, methyl group is 
added to cytosine base of CpG dinucleotides through enzymatic methyl transfer 
catalyzed by DNA methyltransferases (DNMTs). DNA methyltransferases consist of 
DNMT1, DNMT3A, DNMT3B, and DNMT3L, which are grouped into maintenance 
and  de novo  methyltransferases. DNMT1 is a maintenance methyltransferase, which 
recognizes hemimethylated DNA produced during cell division and methylates 
newly synthesized CpG dinucleotides, to maintain the status of methylation. 
DNMT3A and DNMT3B are  de novo  methyltransferases to produce DNA meth-
ylation during embryogenesis or tumorigenesis. DNMT3L does not possess enzymatic 
activity; however, it regulates the activity of other methyltransferases to alter the 
status of methylation. 

 DNA methylation is a fundamental event in epigenetic regulation, and plays 
critical roles in the control of gene expression. The methylation of CpG islands, 
which are the regions with a high density of CpG dinucleotide, in the promoters of 
genes obstructs transcriptional activators, leading to the down-regulation of mRNA 
expression. In addition, DNA methylation also infl uences the remodeling of nucleo-
some. Wrapped nucleosomal DNA is less accessible than linker DNA; therefore, 
compressed nucleosomes strongly prevent transcription activators binding to DNA 
sequences. The methylation of CpG islands allows compressed nucleosome formation 
and blocks transcription. Moreover, DNA methylation also provides an environment 
for several methyl-CpG binding proteins including MBD1, MBD2, MBD3, and 
MECP2, which recruit histone-modifying enzymes to modify histone and regulate 
gene expression. Therefore, DNA methylation together with other epigenetic regu-
lations could lead to the aberrant expression of tumor suppressor genes, causing 
carcinogenesis and cancer progression.  
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14.2.2     DNA Hypermethylations in the Promoters of Tumor 
Suppressor Genes in Cancers 

 In normal cell, about 50 % of the CpG islands in the promoter region of genes are 
un-methylated and these genes are expressed for normal functions [ 4 ]. In cancer 
cells, more methylations occur within CpG islands of promoters, especially hyper-
methylations in the promoter region of tumor suppressor genes. It has been found 
that 5–10 % of normally unmethylated CpG islands in the promoter regions become 
highly methylated in various human cancer [ 5 ]. DNA hypermethylation has 
been commonly correlated with signifi cant down-regulation of gene expression. 
The reported gene silencing due to hypermethylation in cancers include hMLH1, 
APC, E-cadherin, CHFR, CASP8, TGF-βRII, p73, HOX A11, COMT, SPRY2, 
RASSF1A, GPR54, CDH1, RSK4, etc. These DNA hypermethylations commonly 
do not appear in normal cells; however, it could be observed in hyperplasia, 
pre-cancerous cells, and in cancer cells. 

 It is now well known that APC is a tumor suppressor gene. The DNA hypermeth-
ylation in the APC gene promoter has been found in atypical hyperplasia, early 
pre-cancerous cells, and in cancer cells. The frequency of DNA hypermethylation 
in the APC promoter region has been shown to be negatively correlated with pro-
gression of some types of cancer, suggesting that APC hypermethylation could be 
an early event in tumorigenesis [ 6 ]. SPRY2 is another tumor suppressor gene 
involved in the control of cell proliferation, differentiation and angiogenesis through 
the inhibition of MAPK signaling. The expression of SPRY2 has been shown to 
be down-regulated in various cancers because of the DNA hypermethylation in 
SPRY2 promoter [ 7 ]. RASSF1A is also a tumor suppressor gene which inhibits 
RAS- MAPK signaling. It has been found that the RASSF1A promoter is hyper-
methylated in cancer cells, leading to reduced expression of RASSF1A consistent 
with malignant transformation of different types of cells [ 8 ]. In addition, more DNA 
hypermethylations have been observed in the promoters of other tumor suppressor 
genes in various cancers [ 9 ], demonstrating that the silencing of tumor suppressor 
genes is in part regulated through epigenetics in human cancers.  

14.2.3     Histone Modifi cations in the Regulation 
of Gene Expression 

 It is well known that highly conserved histone proteins (such as H1, H2A, H2B, H3 
and H4) and DNAs are the basic components of eukaryotic chromatin. The histones 
undergo a series of post-translational modifi cations including acetylation, methylation, 
phosphorylation, ADP-ribosylation, and ubiquitination. Among them, acetylation 
and methylation of histones are more relevant to the regulation of gene expression 
(Fig.  14.2 ). Histone acetylation has been widely investigated and believed to be 
one of the important modifi cations during cancer development. It has been found 
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that some selected lysines (such as lysines 9 and 12) are acetylated by histone 
acetyltransferases (HATs) or deacetylated by histone deacetylases (HDACs) to keep 
the balance of stable status in the DNA modifi cation [ 10 ]. Methylation of lysine 
residues in histone is another important post-translational modifi cation involved in 
cancer development. It has been known that methylation of H3 at different lysines 
could lead to deregulation in the expression of genes. The methylation of H3 at 
lysine 4 (H3K4) could activate gene expression while the methylation of H3 at 
lysine 9 (H3K9) and 27 (H3K27) could inhibit the expression of genes [ 10 ,  11 ].

   Although both DNA methylation and histone modifi cation have their own 
enzymes to catalyze different chemical reaction, DNA methylation and specifi c histone 
modifications could influence each other to regulate gene expression. Histone 
methylation could infl uence DNA methylation to form different methylation patterns 
whereas DNA methylation could serve as a template for some histone modifi cations 
[ 11 ]. The molecular interactions among histone, DNA methyltransferases, and 
other enzymes and proteins contribute to orchestrate interrelationship between 
DNA methylation and histone modifi cations. During DNA methylation, methylation- 
binding proteins (MBDs) and histone deacetylase (HDAC) are recruited to the chro-
mosome. MBDs prevent transcription factors and cofactors binding to the promoter 
of genes, and thus, inhibit the expression of genes. HDAC in the region of methyl-
ated DNA also reduces the activity of the promoter and deacetylates the lysine of 
histone, resulting in the tightly packed chromosomes which block transcription 
factor access [ 1 ,  11 ]. Therefore, both DNA methylation and histone deacetylation 

  Fig. 14.2    Histone modifi cations in cancer development       
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work together in regulating gene expression, which prompted the development 
of drugs that could function as demethylating agents of the inhibitors of HDACs. 
Advances have been made in the clinical arena for testing the anti-tumor activity 
of some agents; however, more clinical trials especially phase III clinical trials 
are warranted.   

14.3     Epigenetic Regulations of miRNA Expression in Cancers 

 The miRNA is one type of short noncoding RNA that down-regulates the expression 
of its target genes though degradation of target mRNA or interruption of target 
translation. Emerging evidences have shown that DNA methylation in the promoter 
region of miRNA genes could also down-regulate the expression of specifi c tumor 
suppressive miRNAs, resulting in the up-regulation of oncogenic targets of these 
miRNAs (Fig.  14.1 ). The up-regulated oncogenic signaling caused by DNA meth-
ylation mediated through miRNA down-regulation could promote carcinogenesis, 
cancer invasion and metastasis. In the following section we will summarize the role 
of selected miRNAs whose expression has been found to the regulated through epi-
genetic events although we cannot catalog all miRNAs due to space limitation. 

 DNA hypermethylation in the region of miR-9 promoter has been found in renal, 
gastric, and lung cancers [ 12 ,  13 ]. The hypermethylation caused the silencing of 
miR-9 gene resulting in reduced expression of miR-9. Importantly, it has been found 
that the hypermethylation of the miR-9 promoter is associated with cancer develop-
ment, metastasis, recurrence, and shorter overall survival [ 12 ,  13 ], suggesting the 
prognostic value of miR-9 methylation and further suggest that selective demethyl-
ating agents would be useful therapeutic approach for these malignancies. 

 The miR-34 belongs to a tumor-suppressor miRNA family. The expression of 
miR-34 family could be regulated by tumor suppressor p53 and DNA hypermethyl-
ation [ 14 ]. The down-regulation of miR-34 expression is commonly observed in 
various cancers. We and other investigators have found lower expression of miR-34 
which was in part due to DNA methylation of the promoter region of miR-34 gene 
[ 15 ,  16 ]. It has been shown that androgen receptor (AR), Notch-1, and SIRT1 are 
the direct targets of miR-34. Therefore, the AR, Notch-1, and SIRT1 signaling is 
usually up-regulated in cancer cells due to the silencing of miR-34 expression, 
which could be causally linked with cancer development and progression. 

 The miR-29a is also a tumor suppressive miRNA. We and other investigators 
have found that miR-29a is down-regulated in lymphoma, prostate and pancreatic 
cancer cells and tissues due to DNA methylation of the promoter of miR-29a gene 
[ 17 ,  18 ]. Other studies have shown that miR-29 family directly targets both 
DNMT3A and DNMT3B and that the down-regulation in the expression of miR-29 
family causes overexpression of DNA methyltransferases 3A and 3B [ 19 ]. These 
fi ndings suggest a regulatory loop of miR-29/DNMT/methylation in the epigenetic 
regulation of cancer specifi c genes and their signaling. 
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 The miR-124a is a known tumor suppressive miRNA. The DNA hypermethylation 
and the epigenetic silencing of miR-124a have been observed in different types 
of cancers [ 20 ]. The expression of miR-124a has been found to be signifi cantly 
down-regulated which leads to the overexpression and activation of its target 
gene, CDK6. The epigenetic silencing of miR-124a expression also leads to the 
phosphorylation of tumor suppressor gene retinoblastoma [ 20 ], resulting in the 
promotion of cancer cell growth. 

 The miR-129-2 is another miRNA with tumor suppressor feature. The miR- 
129-2 directly targets the expression of SOX4 by 3′-UTR binding. It has been found 
that the level of miR-129-2 was signifi cantly down-regulated while the expression 
of SOX4 was highly up-regulated in gastric and endometrial cancer cells [ 21 ]. 
Moreover, the DNA hypermethylation in the miR-129-2 CpG islands was observed 
in gastric and endometrial cancer cell lines and in 68 % of human endometrial cancer 
tissues. Histone acetylation and DNA demethylation has been shown to up- regulate 
the expression of miR-129-2, and consequently down-regulates the expression of 
SOX4, resulting in the inhibition of cancer cell proliferation [ 21 ], suggesting the 
epigenetic regulation of miR-129-2 in cancers. 

 The down-regulation of tumor suppressive miR-145 has been observed in vari-
ous cancers. It has been found that the expression of miR-145 is silenced through 
DNA hypermethylation and p53 mutation. Moreover, the promoter region of miR- 
145 gene has been found to be highly methylated in both human prostate cancer 
tissues and cell lines [ 22 ]. Since miR-145 could down-regulate OCT, SOX2 and 
KLF4 which are markers of the embryonic stem cells, the epigenetic deregulation 
of miR-145 in cancers could contribute to the growth of cancer stem cells; however, 
further studies in this area is required. 

 The miR-152 is also a tumor suppressive miRNA which could be deregulated by 
DNA hypermethylation. The methylation of miR-152 promoter and low expression 
of miR-152 has been observed in acute lymphocytic leukemia, endometrial and 
other cancers [ 23 ]. The expression of miR-152 could be recovered by demethyl-
ating agent 5-aza-dC. It has been found that DNMT1, E2F3, and MET are targets 
of miR-152. The methylation of miR-152 promoter could increase the expression of 
DNMT1, E2F3, and MET [ 23 ], leading to high methylation status during cancer 
development. 

 The miR-200 family has been known to play important roles in the regulation of 
epithelial-to-mesenchymal transition (EMT) through the inhibition of ZEB1 and 
ZEB2. ZEB1 and ZEB1 are the transcriptional repressors of E-cadherin, which is a 
critical molecule for epithelial structure. The DNA hypermethylation in the region 
of miR-200 promoter has been found in lung and bladder cancers [ 24 ]. The meth-
ylation of miR-200 promoter caused lower expression of miR-200, leading to EMT 
and increased proliferation of cancer cells [ 24 ]. 

 In addition, the epigenetic deregulation of other miRNAs including miR-92, 
miR-127, miR-137 miR-148a, miR-203, miR-26, etc. have also been observed in 
different types of cancers [ 2 ], which leads to the development and progression 
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of cancers. Therefore, targeting aberrant miRNA expression altered by epigenetic 
regulation could be an effective strategy for cancer prevention and treatment. 
Although there have been some progress in the areas of drug development such 
as demethylating agents or HDAC inhibitors, there remains many challenges espe-
cially the unwanted toxicity of these agents, which prompted many investigators to 
turn into agents that are abundantly found in the nature and are known to be non-toxic 
as discussed in the following paragraphs.  

14.4     Epigenetic Regulations of mRNAs and miRNAs 
by Nutraceuticals 

 Emerging evidences have demonstrated that several nutraceuticals including 
isofl avone, curcumin, EGCG, resveratrol, and lycopene could serve as epigenetic 
regulators to reverse the deregulated expression of tumor suppressive mRNAs 
and miRNAs, leading to the inhibition of cancer development and progression 
(Fig.  14.3 ). The effects of these selected agents are discussed below although we 
cannot summarize all natural agents because of space limitation.

  Fig. 14.3    The effects of nutraceuticals on epigenetic regulations in cancer development and 
progression       

 

14 Epigenetic Regulations of mRNAs and miRNAs by Nutraceuticals 



260

14.4.1       Epigenetic Regulations by Isofl avone 

 Isofl avones are mainly derived from soybean and could epigenetically up-regulate 
the expression of tumor suppressor mRNAs and miRNAs by modulating DNA 
methylation and chromatin confi guration, leading to the suppression of cancer cell 
survival. To explore the effect of isofl avone genistein on epigenetic regulation of 
miRNAs, the miRNA expression profi les of PC-3, DU145, and LNCaP prostate 
cancer cells after genistein and Aza-dC treatment were compared. It has been 
found that genistein had similar effects on miRNA regulation compared to Aza-dC, 
suggesting that genistein and demethylating agent Aza-dC could have similar 
epigenetic regulatory effects on miRNAs [ 25 ] which is in part due to the role of 
genistein as a demethylating agents among many other effects of genistein. We have 
also found higher level of methylation in the promoter region of miR-29a and 
miR-1256 in prostate cancer cells compared to normal prostate epithelial cells [ 17 ]. 
Importantly, we found that isofl avone could demethylate the methylated promoter 
of miR-29a and miR-1256 and, in turn, up-regulate the expression of miR-29a and 
miR-1256. By up-regulation of miR-29a and miR-1256, isofl avone could reduce the 
expression of TRIM68 and PGK-1, which are targets of miR-29a and miR-1256. 
However, it is important to note that isoflavone was not a pan-demethylating 
agent like Aza-dC. We found that Aza-dC up-regulated oncogenic miR-155 and 
miR-421 expression by demethylation while isofl avone decreased the expression of 
miR-155 and miR- 421, suggesting the specifi c targeting effect of isofl avone [ 17 ]. 
Other investigators also reported that isofl avone genistein could regulate the expres-
sion of miR-145, miR-221, and miR-222, leading to the inhibition of prostate cancer 
growth through epigenetic regulations [ 26 ,  27 ]. 

 Studies have shown in LNCaP and DuPro prostate cancer cells that isofl avone 
genistein could up-regulate the expression of tumor suppressor genes p21 WAF1  and 
p16 INK4a . This effect of isofl avone genistein was mediated by epigenetic regulation. 
It has been found that genistein increased the expression of histone acetyltrans-
ferases and the level of acetylated histones 3, 4, and H3K4 at the transcription start 
sites of p21 WAF1  and p16 INK4a , leading to the up-regulation of tumor suppressor genes 
p21 WAF1  and p16 INK4a  [ 28 ]. In ARCaP 

E
  and ARCaP 

M
  prostate cancer model of EMT, 

isofl avone genistein affected histone H3K9 acetylation and increased the expression 
of histone acetyltransferase 1 (HAT1). Moreover, genistein combined with histone 
deacteylase inhibitor vorinostat could signifi cantly enhance cell death in prostate 
cancer cells [ 29 ]. The effects of isofl avones, genistein and daidzein, on DNA meth-
ylations in the promoter regions of glutathione S-transferase P1 (GSTP1) and ephrin 
B2 (EPHB2) genes have also been tested in prostate cancer cells. After treatment 
with isofl avones, the authors have found signifi cant demethylation of GSTP1 and 
EPHB2 promoters with corresponding increase in their protein expression [ 30 ]. All 
these fi ndings demonstrate the potent effects of isofl avone on epigenetic regulations 
of genes in prostate cancer, and as such genistein may serve as a demethylating 
agent for the treatment of human malignancies although further in-depth investiga-
tions are required. 
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 The effects of isofl avone on breast cancer in terms of epigenetic regulation have 
also been investigated. A study showed that the promoters of BRCA1 and BRCA2 
tumor suppressor genes were highly methylated in MCF-7 and MDA-MB-231 
breast cancer cells [ 31 ]. However, demethylation agent Aza-dC or isofl avones 
including genistein and daidzein could reduce DNA hypermethylation and conse-
quently up-regulate the expression of BRCA1 and BRCA2, suggesting the demeth-
ylating effect of genistein and daidzein in breast cancer [ 31 ]. In MCF-7 breast 
cancer cells, isofl avone genistein also showed its ability to inhibit the expression of 
hTERT (human telomerase reverse transcriptase) and DNA methyltransferases 
(DNMT1, 3a and 3b). Moreover, isofl avone genistein could remodel chromatin 
structures of the hTERT promoter by induction of trimethyl-H3K9 and reduction of 
dimethyl-H3K4 in the hTERT promoter. The combination treatment with isofl avone 
genistein and demethylating agent Aza-dC led to a signifi cant inhibition in the 
expression of hTERT, suggesting the epigenetic regulation of telomerase by isofl a-
vone genistein [ 32 ]. In addition, lignans as isofl avones are one of the major classes 
of phytoestrogens. The nordihydroguaiaretic acid (NDGA) is a member of the 
lignan family and it was found that NDGA could reverse DNA hypermethylation 
in p16 INK4a  CpG islands and restore its expression in T47D breast cancer cells, 
leading to cell cycle arrest at G1 phase [ 33 ]. These fi ndings suggest the effects of 
isofl avone on epigenetic regulations in breast cancer and similar effects may occur 
in other cancers. 

 BTG3 is a tumor suppressor gene and its expression has been found to be down- 
regulated in renal cancers due to DNA hypermethylation in the BTG promoter. 
However, isofl avone genistein and demethylating agent Aza-dC signifi cantly inhib-
ited the DNA hypermethylation in the BTG promoter [ 34 ]. Isofl avone genistein and 
Aza-dC also induced acetylated histones 3, 4, 2H3K4, 3H3K4 and RNA polymerase 
II at the BTG3 promoter. Moreover, genistein and Aza-dC decreased DNA methyl-
transferase and methyl-CpG-binding domain 2 activity, leading to increased BTG 
expression and cell cycle arrest. Similar effects of isofl avone genistein have also 
been observed in prostate cancer cells [ 35 ], suggesting the epigenetic effects of 
isofl avone on tumor suppressor BTG3 expression and cancer cell proliferation. 

 In myeloid and lymphoid leukemia, genistein exerted its anti-tumor activity 
through reactivation of tumor suppressor genes which are commonly silenced by DNA 
methylation [ 36 ]. In the clinical setting, Aza-dC has been used for the treatment of 
leukemia. It has been found that isofl avone genistein combined with Aza-dC could 
signifi cantly enhance anti-leukemic activity against murine Aza-dC resistant 
cells [ 37 ], suggesting that genistein could increase the clinical effi cacy of Aza-dC 
through epigenetic regulation. In esophageal squamous cell carcinoma cells, genis-
tein has been shown to inhibit DNA methyltransferase activity and, in turn, 
up- regulate RARβ, p16 INK4a , and MGMT expression, causing the inhibition of cancer 
cell growth [ 38 ]. 

 DKK1 is an antagonist of Wnt signaling and DNA methylation in DKK1 pro-
moter has been found in colon cancer cells. The effects of isofl avone genistein on 
epigenetic regulation of DKK1 have been detected. DNA methylation at the DKK1 
promoter was not altered by genistein treatment; however, genistein induced histone 

14 Epigenetic Regulations of mRNAs and miRNAs by Nutraceuticals 



262

H3 acetylation of the DKK1 promoter region in colon cancer cells, leading to 
increased expression of DKK1 [ 39 ]. These results suggest the epigenetic regulatory 
effects of isofl avone on Wnt signaling. In addition,  in vivo  animal studies showed 
that isofl avone exerted its inhibitory effects on DNA methylation. The overall meth-
ylation was found to be increased in liver and muscle tissues when monkeys 
switched from soy diets to no soy diets. The involved genes in epigenetic regulation 
by isofl avone  in vivo  are specifi cally homeobox genes (HOXA5, HOXA11, and 
HOXB1) and ABCG5 [ 40 ]. These reported results all support the epigenetic effects 
of isofl avone although further mechanistic and clinical studies are warranted.  

14.4.2     Epigenetic Regulations by Curcumin 

 Curcumin is a natural compound present in turmeric and possesses anti- infl ammatory, 
antioxidant, and anti-cancer activity. Experimental studies have demonstrated that 
curcumin could mediate epigenetic modulation of miRNA expression. The miR- 203 
is a tumor suppressive miRNA and it is frequently down-regulated in bladder cancer 
because of DNA hypermethylation in its promoter [ 41 ]. Curcumin could up-
regulate the expression of tumor suppressive miR-203 in bladder cancer through 
demethylation of miR-203 promoter. Since Akt2 and Src are the targets of miR-203, 
the up-regulation of miR-203 by curcumin could down-regulate the expression of 
Akt2 and Src, leading to reduced proliferation and increased apoptosis of bladder 
cancer cells [ 41 ], suggesting the epigenetic regulatory effects of curcumin on 
miRNA expression. 

 In addition to the regulation of miRNA, curcumin could also epigenetically regulate 
mRNA expression, leading to cell growth inhibition. Curcumin has been found to 
inhibit the activities of DNMT, HAT, and HDAC. However, the molecular mechanism 
by which curcumin inhibits DNMT is unclear. By molecular docking analysis of 
curcumin and DNMT1 interaction, it was found that curcumin could block the cata-
lytic thiolate of C1226 of DNMT1 to inhibit the activity of DNMT1 [ 42 ]. Another 
mechanism of DNMT inhibition by curcumin involves cyclic nucleotide phospho-
diesterases (PDEs). The effects of curcumin on PDE-regulated DNMT1 have been 
investigated in B16F10 murine melanoma cells. It has been found that curcumin 
was able to down-regulate PDE1 and PDE4 activities and, in turn, inhibited the 
expression of DNMT1, leading to the inhibition of melanoma cell proliferation [ 43 ]. 
Histone deacetylase inhibitors have been used as epigenetic drugs but have shown 
low effi cacy in cancer monotherapy. It was found that HDAC inhibitors could activate 
tumor-progressive genes to enhance cell migration and tumor metastasis. However, 
HDAC inhibitors combined with curcumin have been shown to suppress HDAC 
inhibitor-activated tumor progressive proteins and cell migration  in vitro  and 
signifi cantly inhibited tumor growth and metastasis  in vivo  [ 44 ], suggesting the 
superior effects of HDAC inhibitor in combination treatment with curcumin. 

 In LNCaP prostate cancer cells, curcumin demethylated the fi rst 14 CpG sites of 
CpG island in Neurog1 gene and, in turn, up-regulated the expression of Neurog1 [ 45 ]. 
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Curcumin also signifi cantly inhibited MeCP2 (one of the epigenetic modulators) 
binding to the promoter of Neurog1, leading to decreased expression of Neutog1. 
Moreover, curcumin inhibited the enrichment of H3K27me3 at the Neurog1 
promoter region and the activity of HDAC [ 45 ], suggesting the strong effects 
of curcumin on epigenetic regulation in prostate cancer. In addition, Nrf2 has been 
found to be a regulator of cellular antioxidant defense system and it is epigenetically 
silenced during the development of prostate cancer in TRAMP mice. Curcumin 
could reverse the methylation of the fi rst 5 CpGs in the promoter region of the Nrf2 
gene. The demethylation of Nrf2 by curcumin has been found to be correlated with 
the re-expression of Nrf2 and its target gene NQO-1 [ 46 ], suggesting that curcumin 
could exert its chemopreventive effect through epigenetic modifi cation of the Nrf2-
mediated anti-oxidative stress pathway. 

 In cervical cancer cells, several tumor suppressor genes have been reported to be 
silenced by promoter methylation. It has been found that curcumin could demeth-
ylate the promoter methylation of RARβ2 gene in SiHa cervical cancer cells [ 47 ]. 
In HeLa cervical cancer cells, the hypermethylation of RARβ2 gene was also reversed 
after 6 days of treatment with curcumin. The reversal of RARβ2-methylation led to 
the induction of apoptosis. Curcumin could also reverse promoter hypermethylation 
and increase gene expression of FANCF in SiHa cervical cancer cells. Methylation 
specifi c PCR and bisulphite sequencing analysis showed that curcumin was able to 
demethylate 12 CpG sites in the region of FANCF promoter [ 48 ], suggesting the 
potent demethylating effects of curcumin on tumor suppressor genes. 

 Wnt inhibitory factor-1 (WIF-1) is another tumor suppressive gene and the 
hypermethylation of WIF-1 promoter has been found in lung cancer cells and tis-
sues. To reactivate the expression of WIF-1, three major curcuminoids including 
curcumin, demethoxycurcumin and bisdemethoxycurcumin have been used [ 49 ]. 
It was found that bisdemethoxycurcumin had the strongest demethylation effect 
 in vitro . The curcuminoids could restore WIF-1 expression through the demethyl-
ation effect [ 49 ], suggesting their therapeutic benefi t for lung cancer. In acute 
lymphoblastic leukemia (ALL), it was found that the expression of several genes in 
the TP53 pathway was decreased due to DNA hypermethylation. The DNA meth-
ylation of genes in TP53 pathways was signifi cantly associated with a higher relapse 
and mortality rate. Importantly, curcumin or Aza-dC treatment reversed the epigenetic 
abnormalities, resulting in the increased expression of genes in TP53 pathways, and 
also led to the induction of apoptosis of ALL cells [ 50 ], suggesting the epigenetic 
regulation of tumor suppressors by curcumin. 

 Histone methyltransferase EZH2 is a critical epigenetic regulator and plays 
important roles in the control of cell proliferation, apoptosis, and cancer stem 
cell function. We found that difl ourinated-curcumin (CDF), a novel analogue of 
curcumin, down-regulated the expression of EZH2 and up-regulated the expression 
of several tumor-suppressive miRNAs including let-7a, b, c, d, miR-26a, miR-101, 
miR-146a, and miR-200, leading to the inhibition of cell survival, clonogenicity, 
formation of pancreatospheres, cell migration, and cancer stem cell function in 
human pancreatic cancer cells [ 51 ], suggesting the benefi cial effects of CDF on 
epigenetic regulation.  
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14.4.3     Epigenetic Regulations by EGCG 

 EGCG is extracted from green tea and has been shown to have antioxidant and 
anti- cancer properties. It has been found that EGCG could decrease global DNA 
methylation in cancer cells. EGCG down-regulated 5-methylcytosine, DNMT1, 
DNMT3a, and DNMT3b. EGCG also inhibited the activity of histone deacetylase 
and promoted acetylation in lysine9 and 14 on histone H3 and lysine5, 12 and 16 on 
histone H4, leading to the up-regulation of silenced tumor suppressor genes, p16 INK4a  
and p21 WAF1  in A431 cancer cells [ 52 ]. EGCG showed its inhibitory effect on the 
DNMT1-mediated DNA methylation. Computational modeling studies revealed 
that the gallic acid moiety of EGCG is critical for its inhibitory interaction with the 
catalytic site of DNMT1. 

 EGCG could also demethylate the DNA methylation in the promoter regions of 
several tumor suppressor genes including p16 INK4a , p15 INK4b , retinoic acid receptor β 
(RARβ), O(6)-methylguanine methyltransferase (MGMT), and human mutL homo-
logue 1 (hMLH1) genes, resulting in the up-regulation of these genes in various 
cancer cells including HT-29 and Caco-2 colon cancer, KYSE 150 esophageal 
cancer, and PC-3 prostate cancer cells [ 53 ]. EGCG could also demethylate the DNA 
hypermethylation in the promoter region of tumor suppressor WIF-1 gene and 
restore the expression of WIF-1 in H460 and A549 lung cancer cells [ 54 ]. By 
epigenetic regulation of WIF-1, EGCG decreased the level of cytosolic β-catenin 
and suppressed the activity of Tcf/Lef reporter, suggesting the inhibitory effects of 
EGCG on Wnt signaling pathway through the epigenetic mechanism [ 54 ]. RECK is 
also a tumor suppressor gene which down-regulates matrix metalloproteinases 
(MMPs) and suppresses invasion, angiogenesis and metastasis of cancer. It has been 
found that EGCG could partially reverse the DNA hypermethylation in the region 
of RECK promoter and signifi cantly up-regulate the expression of RECK, causing 
the down-regulation of MMP-2 and MMP-9, and the suppression of invasion in oral 
squamous cell carcinoma cells [ 55 ]. These fi ndings demonstrate the up-regulation 
of tumor suppressors by EGCG through epigenetic regulation. 

 It is well known that the status of estrogen receptor-α (ERα) predicts the clinical 
prognosis and therapeutic outcome in breast cancer. ERα-negative breast cancer 
commonly has progressive disease and poor prognosis. The silence of ERα is 
believed to be due to epigenetic regulation in breast cancer cells. It has been found 
that EGCG could remodel the chromatin structure of the ERα promoter by the 
inhibition of transcription repressor complex binding to the regulatory region of 
the ERα promoter [ 56 ]. In this way, EGCG has been found to increase the expression 
of ERα in ERα-negative MDA-MB-231 breast cancer cells. Combination treatment 
with EGCG and HDAC inhibitor showed a synergistic effect by increasing ERα 
expression and sensitizing breast cancer cells to tamoxifen, suggesting the benefi cial 
effects of EGCG in the treatment of breast cancer through epigenetic regulation. 

 It is known that polycomb group (PcG) proteins are epigenetic regulators of gene 
expression. Multiprotein PcG complexes such as PRC2 and Bmi-1 could up- regulate 
histone methylation and down-regulate acetylation, resulting in an altered chromatin 
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conformation and gene expression. In SCC-13 skin cancer cells, the expression and 
activity of PcG protein were up-regulated with increased cancer cell proliferation 
and survival. However, the treatment of SCC-13 cells with EGCG signifi cantly 
inhibited the expression of Bmi-1 and EZH2, leading to reduced cell survival [ 57 ]. 
EGCG treatment could also reduce histone H3 lysine 27 trimethylation through 
inhibition of PRC2 complex deregulation. The decreased expression of PcG protein 
by EGCG caused reduced expression of cdk1, cdk2, cdk4, cyclin D1, cyclin E, 
cyclin A and cyclin B1, and increased expression of p21 WAF1  and p27 kip1 . Further 
studies have shown that EGCG could reduce the expression of HDAC1 and the 
formation of H3K27me3 and H2AK119ub, leading to the up-regulation of tumor 
suppressors and the suppression of cell survival. The PcG-mediated epigenetic 
regulation could be one of the molecular mechanisms by which EGCG inhibits skin 
cancer cell survival. 

 EGCG could also regulate acetylation of NF-κB. It is known that p300/CBP- 
mediated hyperacetylation of RelA (p65) promotes the activation of NF-κB in cancer 
cells. EGCG could inhibit the acetylation of p65 and abrogate p300-induced p65 
acetylation  in vitro  and  in vivo , leading to the inhibition of NF-κB activation [ 58 ]. 
By the inhibition of p65 hyperacetylation, EGCG suppressed TNFα-induced p65 
nuclear translocation. Furthermore, EGCG decreased the p300 binding to IL-6 
promoter with an increased recruitment of HDAC3 [ 58 ]. These results demonstrate 
that EGCG could regulate NF-κB signaling by epigenetic regulation. 

 EGCG has also been found to down-regulate telomerase activity in breast cancer 
cells through the inhibition of hTERT by epigenetic mechanisms. EGCG decreased 
the level of acetyl-H3, acetyl-H3K9, and acetyl-H4 in the hTERT promoter and 
modulated chromatin structures of the hTERT promoter [ 59 ]. Moreover, EGCG 
promoted hTERT repressors including MAD1 and E2F-1 binding to the hTERT 
regulatory region. Furthermore, EGCG could demethylate DNA hypermethylation 
in the promoter of CTCF and increase the expression of CTCF which down- 
regulates hTERT expression by binding to hTERT promoter. These fi ndings all 
suggest the effects of EGCG on epigenetic regulation in multiple cancers.  

14.4.4     Epigenetic Regulations by Resveratrol 

 Resveratrol is a dietary compound from grapes and shows anti-carcinogenic activity. 
It has been found that resveratrol could epigenetically regulate the expression of 
several tumor suppressor genes. The BRCA1 protein is a tumor suppressor, especially 
in breast cancers. Aromatic hydrocarbon receptor (AhR) could down-regulate the 
expression of BRCA1. The activation and recruitment of AhR to BRCA1 promoter 
blocked the expression of BRCA1 with reduced acetylated histone 4 and AcH3K9, 
and increased DNMT1 and MBD2. However, this AhR-dependent repression of 
BRCA1 expression could be reversed by resveratrol treatment [ 60 ], suggesting 
that epigenetic silencing of BRCA1 gene could be prevented by resveratrol. 
Moreover, resveratrol could inhibit the function of tumor promoter, 2,3,7,8 
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tetrachlorodibenzo- p-dioxin (TCDD). It has been found that TCDD could inhibit 
17β-estradiol-dependent stimulation of BRCA1, and could also induce hypermeth-
ylation of CpG sites that has been found in the start site of BRCA1 transcription, 
leading to the lower expression of BRCA1 in breast cancer cells. Therefore, resveratrol 
treatment could epigenetically reactivate BRCA1 by inhibition of AhR/TCDD/
DNMT1 signaling [ 61 ]. In addition, it has been found that BRCA1 binds to the 
SIRT1 promoter and promotes the expression of SIRT1, which in turn suppresses 
survivin by epigenetic modifi cation of histone H3. Resveratrol could increase the 
expression of Sirt1 and, in turn, could down-regulate the expression of survivin, 
suggesting that resveratrol treatment combined with conventional chemotherapeutics 
could be a strategy for the treatment of BRCA1-negative breast cancer [ 62 ]. Moreover, 
Resveratrol could inhibit RASSF-1α DNA methylation and, in turn, increase the 
expression of RASSF-1α, leading to the inhibition of prostaglandin PGE 

2
  in breast 

cancers [ 63 ], suggesting the benefi cial effects of resveratrol in the epigenetic regula-
tion of tumor suppressors in breast cancer. 

 Resveratrol could also inhibit the expression of some oncogenes which partici-
pate in epigenetic regulations. Metastasis-associated protein 1 (MTA1) is an onco-
genic protein which promotes deacetylation of histones. It has been shown that 
MTA1 is overexpressed in prostate cancer and its overexpression is associated with 
tumor aggressiveness and metastasis. It has been found that resveratrol could 
decrease the expression of MTA1, leading to the acetylation and activation of p53 
[ 64 ]. The acetylated p53 could recruit to p21 WAF1  and Bax promoters, resulting in the 
apoptosis of cancer cells. HDAC inhibitor SAHA shows similar effects as resvera-
trol, suggesting the epigenetic regulation of resveratrol in cancer cells [ 64 ]. It has 
also been found that lysine acetylation of the oncogenic transcription factor STAT3 
is increased, leading to the high expression of STAT3 in cancers. Resveratrol could 
reduce acetylation of STAT3 at Lys685 and, in turn, increase the expression of several 
tumor-suppressor genes, leading to the inhibition of cancer growth. The reduction 
of acetylated STAT3 also caused demethylation and activation of ERα, which could 
sensitize triple-negative breast cancer cells to anti-estrogen therapy [ 65 ]. 

 In addition, it has been shown that viruses, including HIV-1, could increase the 
expression of human DNA methyltransferases, leading to the development of cancers. 
Interestingly, the HIV-1 induced overexpression of DNA methyltransferase could 
be prevented with resveratrol treatment through the inhibition of transcription factor 
AP1 signaling [ 66 ], suggesting the chemopreventive effects of resveratrol through 
epigenetic regulation.  

14.4.5     Epigenetic Regulations by I3C and DIM 

 I3C and its  in vivo  dimeric product DIM are phytochemicals derived from crucifer-
ous vegetables and has been shown to have no known toxicity in humans. Both I3C 
and DIM could inhibit carcinogenesis in different types of cancers. In recent years, 
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HDAC inhibitors have been synthesized for cancer prevention and therapy; however, 
the side effects and toxicity limits the use of HDAC inhibitors in humans. 
Interestingly, it was found that both I3C and DIM could inhibit HDAC activity in 
prostate cancer cells [ 67 ]. I3C modestly inhibited HDAC activity in androgen sensi-
tive LNCaP cells whereas DIM signifi cantly inhibited the expression of HDAC2 
and reduced the activity of HDAC with increased expression of p21 WAF1  in both 
LNCaP and PC-3 cells, suggesting that DIM is a better natural agent for the regula-
tion of aberrant epigenetic patterns in prostate cancer prevention or treatment [ 67 ]. 
We have also found that DIM treatment could demethylate the DNA methylation in 
the promoter of miR-34a, leading to the up-regulation of miR-34a expression and 
the down-regulation of target genes, AR (downstream targets of AR, PSA) and 
Notch 1 in LNCaP and C4-2B cells [ 15 ]. Moreover, DIM intervention in prostate 
cancer patients prior to radical prostatectomy resulted in the re-expression of miR- 34a 
and consequently led to decreased expression of AR, PSA and Notch-1 in prostate 
tumor tissues [ 15 ]. These results suggest that epigenetic silencing of tumor suppres-
sive miR-34a in prostate cancer could be reversed by DIM treatment. 

 The overexpression of oncogenic cyclooxygenase-2 (COX-2) has been found in 
several types of cancers with activation of AhR signaling. It was found that AhR 
ligand could induce the rapid formation of complex with the AhR, the histone acetyl 
transferase p300, and acetylated histone H4 at the COX-2 promoter [ 68 ]. Importantly, 
DIM could inhibit the recruitment of AhR and acetylated histone H4 to the COX-2 
promoter and, thereby, down-regulate the expression of COX-2 in MCF-7 breast 
cancer cells, suggesting that the use of DIM could be a novel strategy against 
epigenetic activation of COX-2 by AhR.  

14.4.6     Epigenetic Regulations by Lycopene 

 Lycopene is the red pigment in tomatoes and has shown its chemopreventive potential 
in cancer research. The effects of lycopene on DNA methylation in the promoter of 
tumor suppressor genes have been tested in MDA-MB-468 breast cancer cells and 
MCF10A breast epithelial cells. It was found that lycopene partially demethylated 
the DNA hypermethylation in the promoter of glutathione S-transferase P1 (GSTP1) 
tumor suppressor gene in MDA-MB-468 cells. The expression of GSTP1 was 
signifi cantly up-regulated after lycopene treatment. However, the demethylation of 
another tumor suppressor gene RARβ by lycopene was only observed in noncancer-
ous MCF10A breast epithelial cells [ 69 ]. A controversial observation has been 
reported in prostate cancer cells. GSTP1 has been found to be hypermethylated in 
90 % of prostate cancers; however, lycopene was unable to alter the methylation and 
expression of GSTP1 in LNCaP prostate cancer cells while a demethylating agent 
was able to signifi cantly decrease the methylation of GSTP1 gene [ 70 ]. These 
results suggest that the effects of lycopene on epigenetic regulation could be cell 
type and context-dependent.   
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14.5     Conclusions and Perspectives 

 Mounting evidence suggests that epigenetic regulations of mRNAs and miRNAs by 
DNA methylation and histone modifi cation play important roles in cancer develop-
ment and progression; therefore, targeting the epigenetic deregulations in cancers is 
a key and effective approach to fi ght against cancers. Several epigenetic drugs or 
HDAC inhibitors have been synthesized and used in epigenetic therapy trials to 
re- express abnormally silenced tumor suppressor genes. However, the adverse 
side- effects of the demethylating agents and histone deacetylase inhibitors limit the 
broader application of these agents to appreciate their benefi cial effects. Therefore, 
using non-toxic nutraceuticals including isofl avone, curcumin, EGCG, resveratrol, 
I3C, DIM, and lycopene to demethylate DNA sequences or inhibit HDACs could 
epigenetically deregulate the expression of tumor suppressive mRNAs and miRNAs. 

 Indeed, the  in vitro  experiments and  in vivo  animal studies have demonstrated 
that the epigenetic regulation of mRNAs and miRNAs could be one of the molecu-
lar mechanisms by which nutraceuticals could inhibit carcinogenesis and cancer 
progression. These natural agents exert their potent effects on the inhibition of cancer 
cell growth, invasion, and metastasis partly mediated through epigenetic regulation, 
suggesting that these non-toxic agents having anti-cancer effects could be useful 
in combination treatment with conventional chemotherapeutics for the treatment of 
cancers. It is important to note that recent development of technologies such as 
next-generation of sequencing coupled with chromatin immunoprecipitation 
(ChIP-seq) and DNA methylation profi ling will lead to a deeper understanding of 
the epigenetic regulations in cancers and the effects of nutraceuticals on epigenome. 
However, more mechanistic experiments and clinical trials are needed to appreciate 
the value of nutraceuticals in cancer prevention and treatment which is mediated in 
part due to their roles in epigenetic deregulation of genes relevant to human cancers.     
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