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BVOC-Mediated Plant-Herbivore Interactions
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Abstract Plants release unique blends of biogenic volatile organic compounds
(BVOCs) into the atmosphere, part of a silent language used to communicate with
other organisms in their community. Within this high traffic chemical environment,
plants and insects, among other organisms, are receiving, processing, modifying,
and responding to information conveyed through varying suites of molecules. Be-
cause plants and insects are part of an integrative complex of food web relationships,
one common topic of conversation is defence. Plants maintain a baseline level of
BVOC emissions as a bottom-up constitutive defence, emitting compounds that
act as repellents or deterrents to feeding and/or egg deposition by herbivores. Due
to the autonomy of their attackers, plants can also employ an indirect top-down
defence strategy, releasing induced volatiles in response to feeding that attract the
natural enemies of their herbivore attackers, such as predators and parasitoids. Both
bottom-up and top-down BVOC-mediated strategies have important consequences
for herbivore preference, performance, and survival with even broader ecological
and evolutionary consequences for tritrophic interactions. In this chapter we discuss
how constitutive BVOCs mediate aspects of plant defence within a hierarchical
spatiotemporal framework. Next we bring to light some of the most recent research
on oviposition- and herbivore-induced BVOC synthesis and subsequent effects on
the recruitment of natural enemies. We follow up by discussing the ecological effects
of induced BVOCs in the context of multiple herbivores, expression from various
plant organs, time-lags associated with BVOC induction, and heterogeneity within
the infochemical environment. The critical feature of insect learning is described
and we highlight some of the major evolutionary implications of BVOC-mediated
plant defence syndromes that rely on the unique timing of events at the biochemical,
atmospheric, organismal, and community scales.
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2.1 Introduction

Organisms are in continuous communication with each other to facilitate survival,
defence, cooperation, and social connections. The study of the ability of organisms
to interpret and communicate information is known as biosemiotics (von Uexküll
1926) and extends far beyond the signals that human are most adept at perceiving.
We are constantly in the midst of countless mutualistic, antagonistic, and uninfor-
mative dialogs that are carried out in a chemical language that developed long before
humans walked the Earth. The terrestrial fossil record provides evidence of volatile
chemical signalling at the beginnings of the evolutionary arms race between species
via structures such as plant essential oil glands (Fahn 2002; Krings et al. 2002)
and olfactory appendages (Strausfeld and Hildebrand 1999; Labandeira 2002). The
ability of plants to communicate with plants and other organisms via volatile organic
compounds (BVOCs) is fascinating, and influences important evolutionary and
ecological processes that we are only beginning to understand.

Definitions

Allelopathy: Biogenic phenomenon where secondary chemicals produced by one
organism affect the development, growth, survival, and reproduction of other
organisms.

Constitutive defence: A plant defence strategy that is always expressed in the plant.
Direct plant defence: Plant traits that negatively influence the physiology or

behavior of herbivores.
Indirect plant defence: Plant traits that enhance the efficacy of the natural enemies

of herbivores, such as herbivore-induced BVOCs.
Induced response: Change in a plant following stress or damage.
Induced resistance: An induced response that reduces herbivore survival, repro-

duction, or preference for the plant of interest, but may not necessarily benefit
the plant.

Induced defence: A response that decreases the negative fitness consequences of
attacks on plants, but may not necessarily affect herbivores.

Infochemical: A chemical that conveys information between two organisms or
individuals resulting in a physiological or behavioral response in the receiver
that is adaptive to one or both parties.

Tritrophic interactions: Relationship between a plant, an herbivore, and the natural
enemies of the herbivore, mediated by plant chemistry and/or BVOCs.

Plants emit more than 30,000 different BVOCs including terpenoids, green
leaf volatiles, phenylpropanoids, benzenoids, and methyl esters of plant hormones
(i.e., methyl jasmonate and methyl salicylate). These BVOCs mediate plant-plant,
plant-insect, and multitrophic interactions and play critical roles in plant defence
(Yuan et al. 2009; Fineschi et al. 2013). Effective defence is critical for plant survival
and reproduction as plants are subject to constant attack from pathogens, fungi,
insects, mammalian herbivores, and other biotic agents. To combat herbivory by
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Fig. 2.1 Scheme highlighting the role of biogenic volatile organic compounds (BVOCs) in
mediating interactions between trees and herbivores. Plants constitutively synthesize and release
BVOCs from leaves, stems, and roots, as demonstrated on the left hand side of the figure.
Constitutive BVOC emissions from different organs within a tree and trees within a forest (blue) are
transported to the atmosphere (black lines) where they are mixed by turbulence. Different mixtures
and concentrations of BVOCs are present in different plant parts, as indicated by coloration.
Constitutive BVOC emissions are also mixed with BVOCs whose synthesis and/or emission was
induced by herbivores, as demonstrated on the right-hand side of the figure, resulting in the total
BVOC signal in red. Herbivores perceive and respond to BVOC concentrations within the plant
(red dashed lines), and their feeding activities may induce plants to produce and release a different
combination of BVOCs locally, or in other parts of the plant as demonstrated by the dashed white
lines. Other organisms perceive and respond to BVOCs in their environment (or Umwelt following
von Uexküll 1926), as represented by dashed black lines. The multitrophic interactions that are
mediated by BVOCs, including herbivore activity and parasitoid oviposition behavior, are central
components of forest population, community and ecosystem ecology

heterotrophic organisms that span multiple taxa and developmental stages, plants
employ a diverse arsenal of chemical defence mechanisms that include BVOCs.
Thus, BVOCs are an integral part of a comprehensive bottom-up and top-down plant
defence strategy because they enable plants to resist herbivory within and beyond
the leaf, stem, and root (Fig. 2.1).

This chapter focuses on the role BVOCs play in interactions between plants and
insects. We place particular emphasis on spatial and temporal aspects of both consti-
tutive and insect-induced BVOC dynamics to highlight the role played by BVOCs in
tritrophic ecological interactions. We also discuss above- and belowground factors
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that control BVOC emissions, and the influence of the resulting emissions on
tritrophic interactions associated with both roots and leaves. Our focus here is on
biotic interactions in natural unpolluted environments, and we refer the reader to the
chapter of Holopainen et al. (2013) in this book for a discussion of the modification
of biotic interactions in polluted atmospheres and under global change. We further
refer the reader to Peñuelas and Llusià (2003), Loreto and Schnitzler (2010), and
Possell and Loreto (2013) and Calfapietra et al. (2013) in this book about the role
of abiotic stresses, including climate change, in altering BVOCs, and subsequent
consequences for ecological signalling. We conclude with a brief overview of the
evolutionary implications of BVOCs in the context of insect learning in complex
environments.

2.2 Constitutive BVOCs

Constitutive BVOCs serve as constant barriers to herbivore attack by deterring
colonization through their antixenotic function and inhibiting growth, reproduction,
development, and/or survival through their antibiotic function (Paiva 2000; Walling
2000). We refer to these characteristics as ‘bottom-up’ defences as they directly
impact herbivore performance. In a natural setting, both the rate at which volatiles
are released and their spatial and temporal persistence in the environment determine
their relevance in ecological signalling. However, complex feedbacks exist between
the phylogenetic constraints on biosynthesis, environmental controls on emissions,
and compound-specific physico-chemical responses to the environment. As a result,
the spatial and temporal heterogeneity of BVOC emission rates is often pronounced,
with important implications for multispecies interactions. We discuss consequences
of BVOC emissions at the leaf level and then describe controls on and consequences
of BOC emissions at the organ, whole plant, and community scale.

2.2.1 Role of Constitutive BVOCs in Defence
and Host Selection

Trees maintain a baseline level of volatile metabolites that are released from the
leaf upon production, or some time after production from storage sites (e.g., resin
canals) (Paré and Tumlinson 1999). Within the last decade, an emphasis has been
placed on understanding the role of constitutive vegetative BVOCs in deterring
herbivory. Unfortunately we still lack a mechanistic understanding of how BVOCs
released from plants directly repel herbivores and/or inhibit feeding. One possibility
is that constitutive emissions are directly toxic to impending attackers, potentially
affecting physiological and neurological processes by influencing gene expression
and/or interfering with the macronutrient digestion. However, studies have yet to
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demonstrate how relatively low-emission rates, typically on the scale of nano-
or micrograms per hour per gram of leaf tissue, elicit toxic physiological effects
(Unsicker et al. 2009).

Herbivores must discriminate between true ecological signals that might increase
their fitness, and background noise resulting from a highly variable infochemical
environment. Most phytophagous insects are specialist feeders that utilise a limited
number of species as resources, and chemical cues are critical in selecting suitable
hosts. It is not in the best interest of a plant to attract herbivores; however,
specialists are capable of exploiting the characteristic volatiles emitted by their
hosts to gain information on quality, susceptibility, and natural enemy status.
Reddy and Guerrero (2004) give two examples of how insects exploit BVOCs with
different pheromone-mediated implications for plant resistance. Some insects can
use constitutive BVOCs for their own defence. For instance, green leaf volatiles
(GLVs) released from non-host tree species serve as repellents in host selection
and inhibit the pheromone response of several bark beetles. Other insects can
use constitutive BVOCs to their advantage in finding mates. When male Ips
and Dendroctonus spp. are exposed to the volatile myrcene, they modify the
compound, which results in the production of oxygenated pheromones in their
hindgut. However, predators and parasitoids attacking adults and eggs have learned
to eavesdrop on these pheromone signals to locate prey more effectively (Stowe
et al. 1995). As a consequence, constitutive BVOC signals that are attractive to
specialists can be intercepted and used by the herbivore’s natural enemies as a
type of indirect defence. Thus, constitutive and induced defence strategies should
be assessed in an integrative fashion to fully appreciate the ecological role played
by BVOCs.

2.2.2 Spatiotemporal Patterns

2.2.2.1 Leaf-Level Responses

BVOC emissions exhibit significant variations across space and time at the scales of
leaves, organs, whole plants, and ecosystems. At the leaf level, rates of constitutive
BVOC production and emission are sensitive to a number of abiotic factors, includ-
ing light and temperature as discussed by Niinemets et al. (2004) and other chapters
in this volume. These factors can interact with ontogenetic changes in emissions
and result in variable emission rates from leaves close in proximity. For instance,
constitutive monoterpene (C10) emissions can be detected from young hybrid poplar
leaves (Populus deltoides x Populus nigra). However, mature leaves on the same
tree were found to emit only isoprene (C5) and at a rate of about five times greater
than monoterpenes released from young leaves (Brilli et al. 2009), suggesting
that the amount of carbon invested towards isoprenoid biosynthesis changes with
leaf ontogeny. Differences in BVOC quality and quantity between leaves have
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important consequences for herbivore host selection, and these differences can
result from the presence of specialized structures and/or the vascular connections
within the tree. Even subtle spatial variation can be critical for specialists that
have learned to associate proximate volatile signals with host quality. For example,
BVOC emissions tend to be significantly higher in sunlit leaves when compared
to shaded leaves on the same plant and/or branch, due largely to an increase in
light and temperature and higher rates of physiological activity (Harley et al. 1996).
While this increase in emissions may have consequences for herbivore preference,
it is also possible that BVOCs serve multiple ecological functions simultaneously
(e.g., protecting leaves from photodamage at high temperature and light conditions)
(Peñuelas and Llusià 2002) with evolutionary implications via multiple selection
pressures. Furthermore, some plant BVOCs with low vapour pressures tend to
condense on leaf surface as a function of leaf temperature and position in the canopy
and may serve as defence agents against herbivores and pathogens (Holopainen and
Gershenzon 2010), but it is unknown if this mode of BVOC function represents an
effective defence.

2.2.2.2 BVOC Variation Between Vegetation and Flowers

The suite of volatiles released by healthy trees can also vary spatially within a
plant among organs including leaves, stems, flowers, and roots (Fineschi and Loreto
2012; Mumm and Hilker 2006; Takabayashi et al. 1994). The survival of a plant is
determined by investment in reproduction (e.g., flowers, nectar) and growth (e.g.,
vegetative biomass). Thus, allocation of resources to defence may come at the
expense of investment in reproductive tissues and affect mutualistic relationships,
pollination events, and fitness (Mothershead and Marquis 2000). For instance, floral
and vegetative BVOC emissions are differentially attractive and repellent to species
that specifically feed on those organs, yet BVOCs from both plant parts are likely
to be mixed in the atmosphere before their perception by an insect. Thus, chemical
information from other plant organs may confound perception and host identifi-
cation, particularly in response to damage (see Induced Responses). Because both
herbivores and pollinators are selective agents on floral chemistry and emissions, it
is critical to understand the degree to which defensive vegetative BVOC production
alters nectar and pollen quality and thereby affects fitness. Furthermore, compound
type and emission rate can vary substantially between organs as a function of the
predictability of attack on various plant parts (see optimal defence theory, Rhoades
(1979); Zangerl and Rutledge (1996)) and ecophysiological constraints (e.g., tissue-
specific biosynthesis or allocation, Niinemets et al. 2004). While many BVOCs
appear to be exclusively produced in either flowers or leaves, compounds can also
be passively transported into the nectar and/or pollen and subsequently released
into the atmosphere. Future studies should focus on plant allocation and tissue type
to fully understand the dynamics of plant-pollinator-herbivore-interactions (Kessler
and Halitschke 2009).
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2.2.2.3 Belowground BVOC-Mediated Interactions

While most studies focus on BVOC-mediated interactions between aboveground
plant parts and herbivores, plants must also defend themselves against soil-dwelling
herbivores including rodents, insects, and nematodes, all of which play key roles
in terrestrial ecosystem community structure. Due to the limited mobility of soil
organisms and the low transport rates of root compounds, interactions in the
soil occur over significantly smaller spatial scales than aboveground interactions
(van der Putten et al. 2001). Despite the difference in characteristic spatial scales
of influence, the role of BVOCs might be more important for belowground
communities where visual cues are lacking and with soil-dwelling herbivores often
exhibiting poor eyesight (Rasmann et al. 2005; van Dam and Heil 2011). A number
of compound classes emitted from aboveground organs have been shown to mediate
plant-herbivore interactions belowground, but in different compositions (Wenke
et al. 2010). Nonetheless, BVOCs can directly or indirectly influence belowground
communities, support symbioses, combat competitive plant species, and defend
against pathogenic fungi, bacteria, and herbivores (Nardi et al. 2000).

Herbivore host choice for oviposition is critical for the next successful generation
of soil dwelling herbivores. Adults of the large pine weevil (Hylobius abietis)
are attracted to suitable hosts in a dose-dependent manner, depending on BVOC
concentrations released from conifer roots (Nordlander et al. 1986). BVOC compo-
sition is also important; larvae of the forest cockchafer (Melolontha hippocastani)
exhibited a noted preference for monoterpenes released from carrots over the fatty
acid derivatives emitted from oak roots (Weissteiner and Schütz 2006). Despite
being separated in space, roots, shoots, leaves, and flowers are connected and so
are their resources, metabolic activities, and defences. Belowground organisms can
induce defence responses aboveground and vice versa, the cost: benefit ratio of
these induced responses and their consequences are discussed in more detail in the
Sect. 2.3: Induced BVOCs.

2.2.2.4 BVOC Variability Between Plants

At the whole-plant level, BVOC emission rates are dependent on a number of
environmental and biotic factors, including developmental stage as well as plant
species, genotype, and age (see Dicke 1999; Paré and Tumlinson 1999). Consti-
tutive plant defences are expressed differentially with ontogeny, and while BVOC
emissions have been shown to decrease in mature cultivated herbs (Cole 1980),
information about their ontogenetic patterns in mature trees and seedlings remains
largely unknown (Boege et al. 2011). Studies focused on ontogenetic changes in
tree BVOC emissions, foliar chemistry, and predator/parasitoid foraging dynamics
may offer mechanistic insight into tritrophic patterns observed in the field. In
addition to age, specific chemotypes and plant varieties have differential growth and
resistance properties (Staudt et al. 2001). For example, mango (Mangifera indica)
tree cultivars that are the most susceptible to mango gall flies (Procontarinia spp.)
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emit significantly higher levels of ’-pinene and “-pinene throughout the growing
season; these volatiles are highly attractive to this pest (Augustyn et al. 2010). At
the plant population level, BVOCs emitted by particular genotypes of seedlings
of Pinus pinaster in plantations have been found to be susceptible to a generalist
phloem-feeding pine weevil (Hylobius abietis). Blanch et al. (2012) showed that
under high nutrient availability, susceptible trees exhibited higher terpene emission
rates, including ’-pinene, an attractant for H. abietis (Moreira et al. 2008), which
could explain the pattern of weevil damage observed in the field (Zas et al. 2008).
Thus, BVOC emission rates must be investigated in the context of plant genetics,
development, and the environment to better-understand herbivore-natural enemy
development, behavior, and natural ecological patterns.

2.2.2.5 Community-Level Variability

Observed spatial variations in foliar BVOC emissions range over several orders of
magnitude at the community level due to changes in species composition and foliar
density (Guenther 1997). Spatial patterns in both the magnitude and composition
of BVOCs that herbivores and their natural enemies perceive are critical for their
behavior, and therefore, for their reproduction and survival. However, the identifi-
cation of specific cues signalling host availability and quality may be influenced by
the background of chemicals present in the habitat from other species, requiring
adaptive and integrative abilities to extract useful search information from the
milieu of chemicals present in the environment (Hilker and McNeil 2008). Drastic
community shifts, via invasive species or changes in climate, can influence plant-
herbivore interactions by altering the proportion of species that produce varying
types and quantities of BVOCs. Depending on the ability of the insect to learn
(see Sect. 2.4, Insect Perception and Learning) and the time required to make
new host-BVOC associations, changing habitats can modify the probability of a
particular plant-herbivore interaction occurring, the intensity of the interaction, and
coevolutionary processes (Agrawal and Fishbein 2006).

2.2.2.6 Variation in Time: Diurnal Cycles of BVOC Release

The effects of time on BVOC emissions extend beyond ontogeny. BVOC emissions
are a product of day length (light), corresponding changes in temperature and
water status, as well as seasonality. Many BVOCs released constitutively from trees
exhibit diurnal cycles, increasing rapidly in the morning with temperature and solar
radiation, peaking in the middle of the day, and decreasing during the afternoon
and evening (Pio et al. 2005; Grabmer et al. 2006). High emissions make plants
more “apparent” to insects, and may determine the employment of other defensive
strategies used by plants to protect against herbivory (Feeny 1976; Rhoades and
Cates 1976). However, “apparency” due to high daytime emissions and their role
in increasing plant vulnerability to herbivores is dependent upon the peak foraging
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time of the insect attacker as well as the searching behaviors of their natural enemies.
Furthermore, because vegetative and reproductive tissues exhibit diurnal variability
in emissions, plasticity in volatile production from both types of plant organs can be
critical, as the specificity with which insects choose to visit flowers on fruiting trees
may be the result of the quantitative relationship between the attractant and repellent
components in the blend contributed from leaves (Euler and Baldwin 1996).

2.2.2.7 Variation in Time: Seasonal Trends

Seasonal trends in BVOC emissions have been observed in a number of forest types,
including mixed hardwood (Karl 2003), boreal coniferous (Hakola et al. 2003),
and Mediterranean (Owen et al. 2001; Pio et al. 2005). Similar to emission rates
observed over a shorter time scale, the seasonal release of BVOCs is a function
of changes in light, temperature, and compound-specific physico-chemical controls
(see Niinemets et al. 2004 and Grote et al. 2013 for detailed discussion of controls on
seasonal changes in emissions). For example, within a mixed hardwood forest, Karl
(2003) found, among other patterns, a spring peak for methanol and attributed it to
rapid leaf expansion. While the large amount of methanol released from vegetation
has long been assumed to be a metabolic waste product, studies have shown that
herbivory can also elicit its release, suggesting the potential role of methanol in
mediating plant-insect relationships (Peñuelas et al. 2005). Furthermore, application
of methanol to plants in quantities mimicking herbivore-elicited release affects
bottom-up controls by decreasing plant foliar defences (e.g., trypsin proteinase
inhibitors) and enhancing the performance of the herbivore (von Dahl et al. 2006).
Thus, seasonally-driven BVOC-specific spikes may not only impact plant-insect
signalling, but also force within-plant feedbacks that negatively impact defence
capabilities resulting in higher herbivore pressure at key developmental times of
the year.

2.3 Induced BVOCs

Plants are the primary food source for millions of insect species, each using
unique strategies to obtain nutrients from both above- and belowground tissues.
In contrast to constitutive ‘hard-wired’ plant traits that confer resistance to insect
pests regardless of insect infestation risk, herbivore-challenged plants can exhibit
phenotypic plasticity and can mount active defence responses that are induced
by insect behavior. Trees are thought to have evolved induced defences to save
on allocation costs when pressure from herbivores is low (Heil 2002). When
expressed following herbivory, induced responses can serve as direct defences,
affecting the herbivore through immediate toxicity (i.e., a ‘bottom-up’ defence)
or as an indirect (‘top-down’) defence, affecting the herbivore via recruiting its
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natural enemies (Dicke and Vet 1999). Both induced direct and indirect defences
can alter herbivore behavior and development. BVOCs released immediately after
herbivory consist of preformed volatiles, some resulting from the bursting of storage
structures, and depend on the mode of damage such as wounding, egg deposition,
and herbivore feeding (Walling 2000). Other BVOCs released with feeding are
synthesized de novo and exhibit delayed emissions on time scales of minutes, hours,
days, and potentially seasons. These emissions can also be expressed both locally
and systemically (Paré and Tumlinson 1999). Plant BVOCs are not only mediators
of aboveground plant-insect interactions, but also affect herbivore dynamics in the
soil. In fact, damage by below- and/or aboveground herbivores has been found
to affect pollinators and higher trophic levels, particularly the natural enemies
of herbivores in both root and shoot food webs (see van Dam and Heil (2011)
and references therein). Here we briefly expand upon these topics, with particular
focus on herbivory and oviposition-induced BVOCs and the consequences of the
spatiotemporal dynamics of emissions on above- and belowground defence.

2.3.1 Herbivore and Oviposition-Induced BVOCs:
Induction Depends on Mode of Damage,
Elicitors, and Signal Transduction

The synthesis of novel BVOCs in response to herbivory is not part of a general
syndrome in response to stresses (i.e., drought, ozone, temperature, etc.), but is
a specific response to herbivory with a well-documented defensive role in trophic
interactions (Staudt and Lhoutellier 2007). Some of the earliest studies of induced
host volatiles were performed on trees, (e.g., Populus spp. (Baldwin and Schultz
1983)). With the ability to release hundreds of BVOCs, how do trees release such
specific chemical signals in response to herbivore attack? The quality and quantity
of herbivore-induced BVOCs are dependent on a variety of factors, including the
plant species, plant age, the tissue type being attacked, as well as the herbivore
species, feeding mode, and its developmental stage (De Moraes et al. 1998). The
mode, frequency, and severity of physical damage by herbivores and herbivore-
specific chemical elicitors initiate highly regulated modifications in the plant’s
transcriptional and metabolic processes by activating signalling pathways (Kessler
and Halitschke 2007). While these pathways are well known in herbaceous species,
there exists a gap in our knowledge regarding signals and pathways that induce
resistance in many tree systems. In light of a few recent studies, many assume
similar signal cross-talk and activation in trees as observed in herbaceous plants
(Eyles et al. 2010).

A number of elicitors initiating signal cascades involved in BVOC synthesis have
been isolated and characterized from insect saliva, regurgitants, and oviposition
fluids, and include enzymes, fatty acid-amino acid conjugates, and bruchins (Paré
et al. 2005). Once in contact with plant cells, these elicitors activate signal
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transduction pathways (e.g., the octadecanoid (C18-fatty acids) pathway) that
ultimately lead to gene expression and the synthesis of particular defence-related
BVOCs (for more detail on signal cascades see Kessler and Baldwin (2002)).
Numerous studies in trees have shown that in the absence of wounding, pathways
can also be induced through the application of herbivore oral secretions, elicitors
themselves, or phytohormones such as jasmonic acid (JA), ethylene, and salicylic
acid (SA) (Dicke et al. 1999; Eyles et al. 2010; Van Poecke et al. 2001). The
early steps in the herbivore elicitation process remain to be elucidated as well
as the mechanisms responsible for plant recognition of these herbivore-specific
compounds. Nonetheless, the result of these signal cascades is an herbivore-induced
BVOC blend comprised of tens to hundreds of compounds. While a number of these
compounds are species-specific and actively produced in response to herbivory,
many BVOCs also “leak out” or are released simply due to mechanical damage.
These compounds, known as green leaf volatiles (GLVs), consist of saturated and
unsaturated C6 alcohols, aldehydes, and esters produced by the oxidative breakdown
of membrane lipids (Paré and Tumlinson 1999). Within this complex blend of GLVs
and novel compounds synthesized de novo, however, only a subset of compounds
play a biological role in mediating higher trophic level interactions with herbivores
and natural enemies (see Dicke (2009) and references therein).

Individual signal cascades, as described above, have the ability to serve a variety
of functions. The involvement of several signal cascades in response to specific
forms of herbivory may help explain the specificity of BVOC profiles (Kessler
and Baldwin 2002). As such, plants must be able to not only identify the source
of damage, but also prioritize and tailor the signalling pathway that will mount
the most effective defence strategy (Reymond and Farmer 1998). A rich body of
literature exists regarding induced plant responses to attack by chewing insects and
the subsequent interactions between the two organisms (e.g., Karban and Baldwin
1997). There are also many studies that demonstrate the specific and differential
chemical response of plants to chewing insect species (e.g., De Moraes et al.
1998). However, plants are constituents of complex communities, and as such, are
rarely attacked by a single herbivore. Multiple biotic stressors can significantly
alter herbivore-induced BVOC emissions as concurrent feeding may induce cross-
resistance (Kessler and Halitschke 2007) or competing plant defence pathways,
both of which have important implications for defence and evolution (Rodriguez-
Saona et al. 2005). While far less is known about the induction of BVOCs by
herbivores of feeding guilds that cause less tissue damage (i.e., miners, galls,
and piercing-sucking insects), a study by Delphia et al. (2007) demonstrated
that simultaneous herbivory by insects with different feeding habits significantly
alters BVOC emission and defence strategies. However, ways in which plants
simultaneously integrate responses to multiple herbivores and the ecological and
evolutionary consequences for plant-insect interactions after attack, remains largely
unknown.

Herbivores not only induce changes in plant leaf BVOCs through feeding, but
also through egg deposition. Hilker and Meiners (2002) describe the mechanism
involved in oviposition-induced BVOCs in Scots pine (Pinus sylvestris) and field
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elm (Ulmus minor). In both systems, the adult female wounds the surface of the
leaf and needle just before oviposition. The eggs are then laid into the wounded
tissue along with oviduct secretions that surround the eggs securing them to
the plant. Only when the secretions, containing an elicitor, make it past the
cuticular barrier do leaves release parasitoid attractant BVOCs (Hilker and Meiners
2006). To date, only a few oviposition-associated elicitors have been identified,
including bruchins (Doss 2005) and benzyl cyanide (Fatouros et al. 2008). The
application of jasmonic acid can also elicit the release of BVOCs that attract
the egg parasitoids associated with each species, suggesting the involvement of
the octadecanoid pathway in driving oviposition-induced responses (Hilker and
Meiners 2002; Meiners and Hilker 2000). Similar to herbivory, insect egg deposition
induces plant responses that are specific to both the plant and herbivore species
attacking it, yet whether this specificity is due to species-specific elicitors or a
dosage-dependent response remains unknown for most systems (Hilker and Meiners
2010). While the induced BVOCs produced via feeding and oviposition differ in
composition, both BVOC blends may be perceived by the herbivore and parasitoid
with either negative or positive consequences. For example, herbivore-induced
BVOCs have been shown to deter female herbivores from oviposition in an attempt
to avoid competition (Kessler and Baldwin 2001; De Moraes et al. 2001). Future
work aimed at understanding the interaction of herbivore- and oviposition-induced
signalling pathways, the BVOCs emitted, and consequences for herbivores and
their natural enemies will offer insights into the evolutionary importance of these
compounds.

What is a parasitoid anyway?!?

Parasitoids spend only part of their lifecycle associated with a host. They feed
exclusively in or on the body of another arthropod, eventually killing it. Only a
single host is required for the parasitoid to complete its lifecycle.

Predators kill their prey, usually more than one species, but do not need a host
to complete any part of their lifecycle.

Parasites spend their entire life associated intimately with its host, usually at
the host’s expense, but without causing death.

2.3.2 Induced Volatiles Serve as Direct Plant Defences

Immediately following release, herbivore- and/or oviposition-induced BVOCs carry
a vast array of information through the environment with the potential to directly
influence the behavior of different members of the ecological community. Some
herbivore-induced volatiles have been shown to function as a plant defence by
deterring herbivore feeding and oviposition (Kessler and Baldwin 2001; Laotha-
wornkitkul et al. 2008; De Moraes et al. 2001). For instance, when foraging, starved
adult willow leaf bugs (Plagiodera versicolora) orient towards odors elicited from
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willow leaves infested by conspecifics as opposed to intact leaves, perhaps due
to increased quality or lower concentrations of secondary compounds (Yoneya
et al. 2009). Deception is another way in which plants use herbivore-induced
BVOCs to their advantage, such as in the case of the sesquiterpene, (E)-“-farnesene,
which is also an aphid alarm pheromone that signals aphids to stop feeding and
disperse (Bernasconi et al. 1998). Even oviposition-induced BVOCs can affect
the egg laying choice of other female herbivores. To avoid inter- and intraspecific
competition and a site attractive to egg parasitoids, laboratory choice tests showed
adult Xanthogaleruca luteola to prefer BVOCs from field elm (Ulmus minor) leaves
without eggs over those with eggs and/or feeding damage (Hilker and Meiners
2002). In addition to directly resisting the attacking herbivore, induced BVOCs
can also influence herbivores on neighboring plants by priming non-infested plants
to chemically respond faster to future insect attacks. One study showed that rates
of herbivory were lower in black alder (Alnus glutinosa) trees growing close to
damaged conspecifics (Dolch and Tscharntke 2000). This is similar to observations
made by Rhoades (1983), who reported that undamaged Sitka willow trees (Salix
sitchensis) in close proximity to herbivore-infested conspecifics mounted a more
aggressive chemical defence in response to fall webworm larvae (Hyphantria cunea)
than distant controls. If induced BVOCs can directly influence the chemical de-
fences within neighboring trees, it is not surprising that they can also elicit defence
responses in undamaged parts of the same tree. For instance, gypsy moth (Lymantria
dispar) feeding on branches previously exposed to herbivore-induced BVOCs from
nearby damaged branches was reduced by 70% compared with controls (Frost et al.
2007). In addition, extrafloral nectaries have been shown to increase in output when
undamaged leaves are exposed to herbivore-induced BVOCs emitted from damaged
leaves on the same plant, resulting in increased visits from predators (Heil and
Silva Bueno 2007). Despite evidence from experimental observations, we lack an
understanding of how the signals that induce priming are received by plants, which
compounds are biologically active within an herbivore-induced mixture, and the
signalling cascades responsible for indirect BVOC-mediated plant defence.

2.3.3 Induced Volatiles Serve as Indirect Plant Defences

The attraction of the natural enemies of herbivores by damage-induced volatiles
is a well-established phenomenon in many plant species, and probably the first
defence strategy that comes to mind when discussing induced BVOCs. For over
40 years (Green and Ryan 1972), a vast array of herbivore-induced plant BVOCs
has been shown to effectively recruit insects of the third trophic level that prey
upon or parasitize larval herbivores, as well as eggs. By doing so, BVOCs reduce
the preference and/or performance of herbivores, serving as an indirect defence
and an important mediator of tritrophic interactions (Karban and Baldwin 1997).
Nonetheless, because most palatable herbivores are cryptically coloured and well
hidden on the undersides of leaves, the probability of parasitoids effectively finding
their hosts using visual cues and random searches is relatively low. However, the
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suite of compounds released following herbivore-damage is quite sophisticated and
unique, differing in total abundance and composition following attack by different
herbivores (e.g., De Moraes et al. 1998). The species-specific plumes present within
the local environment contain critical host-location information for parasitoids,
which have developed the ability to learn chemical cues associated with the presence
and quality of their specific host (see Sect. 2.4, Insect Perception and Learning).
For instance, some parasitoids are capable of differentiating between parasitized
and unparasitized larval hosts in flight due to the different odor blends induced
by each caterpillar (Fatouros et al. 2005). While herbivore-induced volatile blends
can be quite complex, a number of individual BVOCs involved in attraction of
parasitoids have been identified (e.g., Halitschke et al. 2008; Ibrahim et al. 2005).
However, it is highly unlikely that a parasitoid will be exposed to only one BVOC
in nature, and the context within a BVOC blend is perceived may be important. In
fact, the eulophid egg parasitoid (Chrysonotomyia ruforum), while attracted to the
herbivore-induced release of (E)-“-farnesene, requires the presence of background
non-induced pine odor to locate its sawfly host (Diprion pini) (Mumm and Hilker
2005). While individual herbivore-induced BVOCs may be involved in parasitoid
host location, it is often critical that they are perceived in the context of other BVOCs
so as to distinguish variation in quality and quantity.

Although most available information on BVOC-mediated tritrophic interactions
comes from studies in agricultural or herbaceous species, a number of studies
has also demonstrated the attraction of the natural enemies to herbivore-induced
BVOCs elicited by pests attacking trees, particularly in fruit trees [e.g., apple
(Malus domestica), mango (Mangifera indica), and grapefruit (Citrus paradisi)],
conifers [e.g., Scots pine (Pinus sylvestris) and loblolly pine (Pinus taeda)], as well
as some deciduous species [e.g., elm (Ulmus minor) and black poplar (Populus
nigra)] (see Dicke (1999) and Mumm and Dicke (2010)). For instance, fruit fly
parasitoids (Diachasmimorpha longicaudata: Braconidae) significantly preferred
BVOCs from infested mangoes (with higher BVOC concentrations) and their
extracts (particularly 2-phenylethyl acetate) over healthy and mechanically damaged
fruits, suggesting that parasitoids use induced BVOCs to locate hosts in this system
(Carrasco et al. 2005). In conifers, a dosage-dependent synergistic effect among
pine terpenoids and bark beetle pheromones can attract predators and parasitoids to
their hosts. For instance, the attraction of the predatory beetle Thanasimus dubius
was positively correlated with the concentration of ’-pinene when mixed with the
pheromones of its scolytid prey (Mumm and Hilker 2006). Parasitized herbivores
have also been shown to induce different BVOC blends compared to unparasitized
herbivores, affecting parasitoid choice (Fatouros et al. 2005). However, mutualistic
interactions with herbivores (e.g., aphids and ants) can also alter induced BVOCs
with potential consequences for parasitoid host location (Paris et al. 2011). There
is also evidence that oviposition-induced plant BVOCs successfully recruit egg
parasitoids, such as in the case of Pinus sylvestris and egg deposition by Diprion
pini (Meiners and Hilker 2000). In the deciduous species Ulmus minor, terpenoid
hydrocarbons induced by oviposition of the elm leaf beetle (Xanthogaleruca
luteola) are exploited by the egg parasitoid Oomyzus gallerucae. Despite the work
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in these systems, more studies are needed to fill gaps in our knowledge pertaining
to the importance of induced indirect defences employed by trees, particularly in
determining community structure and outbreak dynamics.

2.3.4 Spatiotemporal Aspects of Induced Indirect Defence

Similar to constitutive BVOCs, herbivore-induced BVOCs not only vary over space
and time, but their associated costs to plant fitness vary as well. Most factors
influencing constitutive emissions have similar effects on herbivore-induced volatile
defences as discussed in previous sections here and in other chapters in this
volume. Thus, rather than reiterating these points, we place the spatial and temporal
variability of herbivore-induced BVOCs in an ecological framework by discussing
ecological interactions influenced by the location of induction in a plant and the
timing and patterns associated with the response.

2.3.4.1 Local vs. Systemic Induced Responses

Induced BVOCs that serve a resistant or defensive role for plants can be expressed
locally at the wounding site or systemically via mobile signals and phloem
transport (Turlings and Tumlinson 1992; Heil and Ton 2008). The ability to
respond systemically to herbivory enables a plant to have a larger BVOC response,
potentially serving as long range cues capable of recruiting natural enemies that
forage over spatial scales of metres to kilometres (Puente et al. 2008). Furthermore,
these systemic signals can give parasitoids an initial estimate of patch quality
(e.g., number of hosts in a habitat) to aid in determining whether or not to pursue
hosts in a given area. However, once parasitoids orient themselves within the
general vicinity of their host, the specific blend associated with the herbivore at
the damage site itself becomes more important, and constitutes a reliable indicator
of host location (Cortesero et al. 1997). BVOC communication between branches
or leaves of the same individual could enable faster responses, particularly when
signalling via phloem and xylem is thwarted by limited vascular connections or
distance, for example in larger trees (Dicke 2009). For instance, Frost et al. (2008)
demonstrated that both mechanically-injured and gypsy moth-damaged leaves of
hybrid poplar (Populus deltoides x P. nigra) primed defence responses in undamaged
leaves of the same plant. This “second route” for signal transduction within plants
can provide a relatively large benefit to the emitting plant in lieu of synthesis
costs. Herbivore-infested plants also mediate plant-plant interactions in unattacked
neighboring plants, thus increasing their attractiveness to natural enemies and
decreasing their susceptibility to herbivory (Baldwin et al. 2006). While within-
plant BVOC signalling has gained much interest, interspecific volatile signalling
between plants has remained a topic of debate (Agrawal 2000; Baldwin and Schultz
1983; Bruin and Dicke 2001; Dudareva et al. 2006; Farmer and Ryan 1990).
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2.3.4.2 Spatially Separated but Connected: Above- and Belowground
Induced Responses

Herbivores can attack spatially-disparate plant organs, such as roots and leaves
simultaneously, leading to variation in herbivore-induced BVOCs and consequences
for above- and belowground defences. Due to vascular connections, aboveground
herbivory can change the quantity and composition of root BVOCs and vice versa.
While the majority of studies focus on BVOC-mediated tritrophic interactions
above-ground, these relationships occur belowground as well and have important
effects on aboveground communities (Van der Putten et al. 2001). To our knowledge,
no studies to date have described the integration of above and belowground BVOC-
mediated tritrophic interactions in trees. While such interactions are likely to exist,
they will likely occur at different temporal time scales due to longer generation
times and contributing phenological factors. Recent studies focused on herbaceous
plants have shown that the vegetative portions of plants experiencing belowground
herbivory emit lower total BVOC emissions and produce different BVOC profiles
compared to plants solely attacked by an aboveground herbivore (Rasmann and
Turlings 2007). Thus, the presence of soil herbivory in this case appears to lower the
potential for defence, particularly when the belowground herbivore causes increased
damage as a function of development and size (Soler et al. 2007). Another study
demonstrated the effects of belowground herbivory on aboveground indirect defence
by showing that black mustard (Brassica nigra) plants experiencing root herbivory
emit high levels of sulfur-containing BVOCs, highly toxic for insects, and low levels
of (E)-“-farnesene, an attractant for parasitoids (Soler et al. 2007). In addition to
soil herbivores, mutualistic mycorrhizal associations can also effect aboveground
signalling, as in the case with parasitoids of aphids attracted to mycorrhizal plants
in the absence of their aphid hosts (Guerrieri et al. 2004). Because of signal cross-
talk, the timing of attack by above- and belowground herbivores can be crucial
when examining the extent to which communities are affected. Clearly, more studies
investigating BVOC responses to simultaneous attacks by above- and belowground
herbivores in forest species are needed.

2.3.4.3 Induced BVOCs Exhibit Diurnal Patterns

The release of herbivore-induced BVOCs occurs both locally and systemically
in space and also varies over time. For example, hybrid poplar leaves (Populus
trichocarpa � P. deltoides) attacked by forest tent caterpillars (Malacosoma
disstria) released similar characteristic blends of volatiles, including mono-,
sesqui-, and homoterpene compounds, that peaked during the light period (Arimura
et al. 2004). This diurnal pattern could be critical depending on parasitoid and
predator foraging patterns and the biologically-active compounds present. In
Nicotiana tabacum, several herbivore-induced BVOCs are exclusively released
at night and repel female moths (Heliothis virescens) searching for oviposition sites
(De Moraes et al. 2001). Because most parasitoids search during the day, these
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nighttime emissions may not be relevant as top-down defences, but the impact of
daytime indirect forcings and nighttime bottom-up effects may have significant
multiplicative consequences for herbivore densities. Currently, we lack studies
describing exclusive and additive diurnal ecological relationships mediated by
herbivore-induced emissions in tree systems.

2.3.4.4 Induced BVOCs: Immediate vs. Delayed Responses

A limitation of inducible volatile defences is the time-lag between damage,
induction, signalling, and the actual plant response (Dicke 2009). Upon feeding or
oviposition, the plant can emit BVOCs within seconds to minutes. Most of these
emissions, are not under control of the plant, but rather released as a consequence
of exposure to the atmosphere (Maffei et al. 2007). Compounds synthesized in
response to metabolic changes and involved in indirect plant defence are usually
expressed within hours or days following damage (Kunert et al. 2002). Thus,
parasitoids and predators must perceive and respond to these compounds within a
critical window of time before the benefits of effective host-location are missed.
Abiotic conditions and emissions from other organisms in the environment can
also influence herbivore-induced cues with important implications for top-down
controls over time, the scope of which is beyond this chapter. Rapid herbivore-
induced BVOCs active in plant resistance may stabilise insect densities; however,
delayed induced resistance, via foliar chemistry, potentially contributes to popula-
tion cycles (e.g., Roden and Mattson 2008). Some studies demonstrate that needles
of previously defoliated trees exhibit higher suitability for subsequent defoliator
generations (Lyytikäinen 1992; Clancy et al. 2004), while others have demonstrated
induced resistance after defoliation (Hódar et al. 2004; Šmits and Larsson 1999).
The susceptibility or resistance of previously defoliated trees depends on a number
of variables (i.e., tree age, intensity of defoliation, herbivore species, etc.), yet the
influence of BVOCs emitted during and after defoliation on higher trophic level
interactions has not been studied.

2.4 Insect Perception, Learning, and Evolutionary
Considerations

Insects must perceive and process enormous amounts of sensory information,
including chemical information, to locate their hosts within dynamic heterogeneous
environments (Vet 2001). BVOC infochemicals are sensed by olfactory sensory
neurons, primarily within antennae but also located within chemosensory sensilla
on other parts of the insect’s body, to aid in perceiving chemical signals in the
atmosphere. The ability to perceive BVOCs plays a key role in host location for
both herbivores and their natural enemies (Meiners et al. 2003), and many insects are
capable of identifying compounds present in the atmosphere at levels much lower
than some of our most sensitive analytical instruments.
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The ability of an insect to perceive and respond to stimuli is not fixed, and can
change upon association with favorable or unfavorable stimuli. For example, female
parasitic wasps have a well-developed learning capacity to associate herbivore-
induced plant BVOCs with the presence of suitable hosts (de Boer and Dicke
2006). The ability of insects to exploit information from BVOCs can be both innate
(Gandolfi et al. 2003a; Steidle and van Loon 2003; Wang et al. 2003) and learned
(Dicke 1999; Wäckers and Lewis 1999). We briefly highlight studies that focus on
parasitoid learned behavior to emphasize the important role of behavioral ecology
in BVOC-mediated multitrophic interactions.

Regardless of the strict categorical descriptions, learning a given task in nature
likely involves a combination of stimulus-stimulus and stimulus-response asso-
ciations, allowing a parasitoid to take advantage of a variety of cues, including
unrewarding experiences, which might aid in future decisions and actions (Vet
et al. 2003). Learning behavior tends to be more prevalent in generalist parasitoids
(Geervliet et al. 1998) than in specialists (Mumm et al. 2005), suggesting that
specialist parasitoid species are more ‘hardwired’ when it comes to responding
to plant BVOCs expressed in response to their specific host. While this genetic
component may be beneficial in relatively stable environments, changes in climate
and/or community composition could confound host-associated signals with impor-
tant consequences for parasitoid adaptations and herbivore dynamics. Furthermore,
not all generalist species have the capability to learn (Tamò et al. 2006), which
complicates our ability to generalize parasitoid behavior in response to dynamic
chemical cues.

The ability of parasitoids to remember learned behavior also varies with time
and stimulus. Recollection of unrewarded activities often fade within a few hours to
days (Peri et al. 2006), but learning responses to odors of advantageous activities
tend to be more persistent (Takasu and Lewis 2003), and can even occur at
preimaginal stages before the adult stage (Gandolfi et al. 2003b). The coordination
of plant BVOC emissions with the window of parasitoid ‘memory’ is thus critical
for eliciting parasitoid response. Importantly, learning behavior has been found
to positively impact fitness (Dukas and Jun 2000) and contributes to coexistence
between parasitoids and their insect hosts (Hastings and Godfray 1999), which
emphasizes that learning plays an important role in not only chemical ecology, but
also in insect evolution and plant-insect coevolution.

BVOCs impact evolutionary pressures on herbivores and parasitoids through
their role in determining fitness. Biogenic BVOCs are involved in a range of
ecological functions (Fig. 2.1), and as a consequence, their role in plant evolution
is dynamic (Yuan et al. 2009). Adaptive explanations have been offered to address
the diversity of BVOCs found among and within plant families (Lerdau and Gray
2003; Wink 2003). It has also been argued that natural selection also exploits the
volatility of the compounds themselves and thereby the context in which they are
perceived by herbivores and their natural enemies (Peñuelas and Llusià 2004). The
precise ecological functions and evolutionary consequences of every BVOC are not
yet known (Niinemets et al. 2004), so their full contribution to plant-insect evolution
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has yet to be characterized. However, the importance of BVOCs to plant, herbivore,
and parasitoid fitness highlights their role in the evolution of each taxonomic group,
and their role in ecological signalling suggests that they play a substantial role in
coevolution among taxonomic groups.

2.5 Conclusions

BVOCs influence plant-insect interactions across multiple levels of ecological
organization and play active roles in bottom-up and top-down defences against her-
bivory. Important ecological consequences stem from feedbacks that exist between
constitutive and herbivore-induced BVOC emissions, herbivore and parasitoid
behavior, and the environment. Researchers are only beginning to uncover the role
BVOCs play in mediating tritrophic interactions and influencing coevolutionary
processes that exist between plants and insects. An improved understanding of the
impacts of global change on plant and insect ecology and evolution will help us
understand the full consequences of BVOC-mediated plant-insect interactions in
forested ecosystems, including the role of insects in recently observed forest die-
off (Raffa et al. 2008; Rhoades 1983). Models of surface-atmosphere exchange
have long had the capability to include BVOC dynamics (Guenther et al. 1995),
and their mechanistic representation of BVOC emissions is continuously being
improved (Monson et al. 2012). We suggest that including plant-insect interactions
into models of BVOC emissions will improve our understanding of the impacts of
these interactions on ecosystems, and to the entire Earth system.

Acknowledgments The authors acknowledge Russell K. Monson and Deane Bowers for en-
lightening conversations and sharing their enthusiasm for plant-insect interactions. PCS also
acknowledges funding from the National Science Foundation (‘Scaling ecosystem function: Novel
Approaches from MaxEnt and Multiresolution’, Division of Biological Infrastructure #1021095)
and the State of Montana.

References

Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences
for two specialist and two generalist caterpillars. Oikos 89:493–500. doi:10.1034/j.1600-
0706.2000.890308.x

Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149
Arimura G-i, Huber DPW, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria)

induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus
trichocarpa � deltoides): cDNA cloning, functional characterization, and patterns of gene
expression of (�)-germacrene D synthase, PtdTPS1. Plant J 37:603–616

Augustyn WA, Botha BM, Combrinck S, Maree JE, du Plooy GW (2010) Effect of sec-
ondary metabolites on gall fly infestation of mango leaves. Flavour Frag J 25:223–229.
doi:10.1002/ffj.1999

http://dx.doi.org/10.1034/j.1600-0706.2000.890308.x
http://dx.doi.org/10.1002/ffj.1999


40 A.M. Trowbridge and P.C. Stoy

Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence
for communication between plants. Science 221:277–279

Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in
plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced
emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp
Appl 87:133–142. doi:10.1023/A:1003200108763
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