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Preface

The book provides an insight on advanced methods and concepts for the design and
analysis of structures against earthquake loading. This second volume of the series
is a collection of 28 chapters written by leading experts in the field of structural
analysis and earthquake engineering. Emphasis is given on the current state-of-the-
art methodologies and concepts in computational methods and their application in
engineering practice. The book content is suitable for both practicing engineers and
academics, covering a wide variety of topics in an effort to assist the timely dis-
semination of research findings for the mitigation of seismic risk. Due to the dev-
astating and socioeconomic consequences of seismic events, the topic is of great
scientific interest and is expected to be of valuable help to scientists and engineers.
The chapters of this volume are extended versions of selected papers presented at
the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the aus-
pices of the European Community on Computational Methods in Applied Sciences
(ECCOMAS).

In the introductory chapter of Mylonakis et al. the seismic response of inhomoge-
neous soils is explored analytically using one-dimensional viscoelastic wave propa-
gation theory. The authors treat the problem analytically obtaining the exact solution
of the Bessel type for the natural frequencies, mode shapes and base-to-surface re-
sponse transfer function. The model proposed is validated using available theoretical
solutions and finite-element analyses. The chapter presents results that demonstrate
the effect of salient model parameters such as layer thickness, impedance contrast
between surface and base layer, surface-to-base shear wave velocity ratio in the in-
homogeneous layer, rate of inhomogeneity and hysteretic damping ratio.

Lekidis et al. study the Evripos bridge, a famous structure in central Greece that
connects the island of Evia to the mainland. The bridge is cable stayed and its behav-
ior to seismic excitations has been continuously monitored. The authors investigate
the dynamic response of the bridge due to asynchronous base excitations along its
supports and make comparisons with the conventional design procedure of assum-
ing a synchronous base excitation at all supports. Valuable conclusions are drawn
regarding the impact of spatially variable ground motion on the seismic response of
cable-stayed bridges.
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In the chapter of Kostic et al., the authors present a novel beam-column element
formulation for the inelastic three-dimensional analysis of frames. Beam-column el-
ements with section resultant plasticity for the hysteretic behavior of the end plastic
hinges are widely used for numerical simulations in earthquake engineering because
they offer a good compromise between accuracy and computational cost. The chap-
ter presents a lumped plasticity beam-column element with significant capabilities
for the description of the global and local response of frames under monotonic and
cyclic loads. The proposed element accounts for the interaction of the axial force
with the bending moments about the principal section axes with suitably defined
yield and limit surfaces that permit the description of the gradual yielding and the
post-yield hardening behavior of the end sections. Comparisons of the hysteretic
response of structural elements and small structural models between the proposed
element and the more accurate, but computationally much more intensive fiber sec-
tion description of the cross section demonstrate the capabilities of the proposed
model.

Adam et al. present a methodology for predicting the seismic peak response of
vibratory non-structural elements. The non-structural elements may be attached to
both elastic and ductile load-bearing frame structures. The proposed methodology is
based on modified modal superposition of floor response spectra for single-degree-
of-freedom (SDOF) oscillators on SDOF supporting structures. For several exam-
ple problems, the “exact” results are contrasted with the outcomes of the proposed
methodology. The comparison provides evidence that the proposed methodology
delivers sufficiently accurate predictions of the seismic peak response.

Lignos et al. discuss the effectiveness of simplified nonlinear models for the seis-
mic assessment of steel moment frames using single and multi-mode nonlinear static
methods. It is demonstrated that the nonlinear static procedure (NSP), also known as
pushover analysis, has much value in understanding important behavior character-
istics that are not being explored in a nonlinear response history analysis (NRHA)
in which engineers usually focus on a “blind” demand/capacity assessment rather
than interpretation and visualization of the steel frame behavior. It is also shown that
NSP procedures have many limitations for quantitative assessment of steel moment
frame demands even for low-rise frames. The authors conclude that both NSP and
NRHA have intrinsic value and that it is advisable to employ a combination of both
to understand seismic performance of steel moment frames and to quantify impor-
tant engineering demand parameters for these lateral resisting structural systems.

Pardalopoulos et al. propose a new approach for the rapid preliminary assess-
ment of the seismic vulnerability of reinforced concrete buildings. The method de-
termines the columns’ limiting shear resistance at the critical story of the struc-
ture by applying a strength assessment procedure associated with typical column
details representative of the state of practice from the time that the building was
constructed. The severity of the seismic displacement demand and the maximum
seismic acceleration that the building can sustain is evaluated with the aid of a stiff-
ness index assessment. The presented method requires prior knowledge only of the
basic geometric and material properties of the building. The method is verified on
two reinforced concrete buildings that failed during the 1999 Athens earthquake,
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proving that this approach allows engineers to immediately identify the most vul-
nerable buildings that are likely to collapse in a potentially strong earthquake and
also to assist them on setting objectives for the rehabilitation of RC buildings.

Existing structures have lightly reinforced shear walls and in most cases, espe-
cially under cycling loading, shear cracks will appear, reducing the shear capacity
of the wall. The aim of the work of Panagouli et al. is to estimate the post-cracking
strength of shear walls, taking into account the geometry of existing cracks and the
mixed friction-plastification mechanisms that develop in the vicinity of a crack. In
this chapter, Panagouli et al. examine a typical shear wall of an existing structure
where a crack has been formed. The authors propose a new approach for model-
ing the geometry of the crack, using the notion of fractal geometry. Due to the
significance of the crack geometry, a multi-resolution analysis is performed. The
materials (steel and concrete) are assumed to have elastic-plastic behavior, while for
concrete both cracking and crushing are taken into account in an accurate manner.
On the interface unilateral contact and friction conditions are assumed to hold. For
every structure resulting for each resolution of the interface, a classical Euclidean
problem is solved. The obtained results lead to valuable conclusions concerning the
post-cracking strength of lightly reinforced shear walls.

Mergos and Kappos investigate the seismic behavior of existing RC buildings
designed and constructed in accordance with standards that do not meet current
seismic code requirements. In these structures, not only flexure, but also shear and
bond-slip deformation mechanisms need to be considered, both separately and in
combination. The authors have developed a novel finite-element model for the in-
elastic seismic analysis of planar RC frames. The proposed model is able to capture
the gradual spread of inelastic flexural and shear deformations as well as their inter-
action at the end regions of RC members. Additionally, it is capable of predicting
shear failures caused by degradation of shear strength in the plastic hinges of RC
elements, as well as pullout failures caused by inadequate anchorage of the rein-
forcement in the joint regions. The proposed element is verified against experimen-
tal results involving individual column and plane frame specimens with non-ductile
detailing, showing that satisfactory correlation is established between the model
predictions and the experimental evidence.

Taiebat et al. investigate the seismic response and design of basement walls. The
authors examine the current state of practice that is based on the Mononobe-Okabe
(M-0O) method and perform a series of dynamic numerical analyses on a typical
basement wall designed with the M-O earth pressures. The wall is subjected to three
ground motions spectrally matched to the Uniform Hazard Spectrum prescribed by
the NBCC2010 guidelines and the seismic performance of the wall under this level
of demand is discussed. The authors give emphasis on peak ground acceleration
(PGA) levels appropriate for the design of such structures, since the provisions of
current standards tend to overestimate the demand. Particular attention is also given
to the resulting drift ratio in the walls.

In the chapter of Asteris et al., the authors discuss the seismic modeling of in-
filled framed structures. The feasibility of possible immediate implementation for
practical design of some recent developments both in analysis and design of in-
filled frames is first investigated. Moreover, contemporary seismic design codes and
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guidelines introduce provisions for the calculation of the stiffness of solid infilled
frames mainly through modeling the infill walls as “diagonal struts.” However, the
case of infilled frames with openings is still an open issue. This chapter uses avail-
able finite-element results to propose an analytical equation in order to obtain a
reduction factor for the case of frames with openings against solid frames. The va-
lidity of the methodology is demonstrated by comparing the results of the proposed
equation with the results of various researchers in the literature.

Dasiou et al. deal with the topic of seismic efficiency of restored ancient colon-
nades using fragments of architectural members. As a common practice, restoration
projects of ancient colonnades have to deal with joining together fragments of ar-
chitectural members using threaded titanium bars (as reinforcement) fixed into place
with cement mortar. The basic criterion for the design of such connections is that, in
case of a seismic event, the reinforcement should absorb the seismic energy and fail
before the marble suffers any damage. The efficiency of the reinforcement of the
connection calculated with this methodology is investigated, while two case stud-
ies with different geometries: a column of the Parthenon Pronaos and the Southern
colonnade of the Ancient Agora of Kos in Greece, are examined. The induced forces
were calculated using the distinct element method.

Dimitrakopoulos and DeJong investigate the seismic response of rocking struc-
tures and discuss their retrofit with external viscous dampers. Stand-alone rocking
structures have been thoroughly investigated, but there are relatively few theoretical
studies on the response of retrofitted rocking structures. In this chapter emphasis is
given in optimizing the rocking behavior, instead of preventing it, with the aid of
viscous dampers. A single rocking block analytical model is utilized to determine
the optimal viscous damping characteristics which exploit the beneficial aspects
of rocking motion while dissipating energy and preventing overturning collapse. To
clarify the benefits of damping, overturning envelopes for the damped rocking block
are presented and compared with the pertinent envelopes of the free rocking block.
Preliminary experimental work to verify analytical modeling is also presented. In
the end of the chapter, the principles of controlling rocking behavior with damping
are extended to a particular class of rocking problems, the dynamics of masonry
arches. A pilot application of the proposed approach to masonry arches is also pre-
sented.

Perus et al. present a web-based methodology for the prediction of approximate
IDA curves. The proposed methodology consists of two independent processes. The
first process results to a response database of the single-degree-of-freedom model,
whereas the second process involves the prediction of approximate IDA curves
from the response database by using n-dimensional linear interpolation. The web
application utilizes a response database of IDA curves, which was calculated for
thirty ground motion records and the discrete values of the six parameters, which
describe the period, damping and the force-displacement relationship of a build-
ing’s pushover curve. The web application enables quadrilinear idealization of the
pushover curve, including strength degradation. Structural collapse capacity can
therefore also be estimated. A very good agreement between the computed and the
approximated IDA curves is observed, demonstrating that this tool can be a valuable
aid for earthquake engineering practice in the future.
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De Luca et al. discuss the issue of bilinear fitting of static pushover curves. The
authors propose an improvement of codes’ bilinear fit for static pushover curves
aimed at decreasing the error introduced in the conventional pushover analysis by
the piecewise linear fitting of the capacity curve. The error introduced by the bilinear
fit of the force-deformation relationship is quantified by studying it at the single-
degree-of-freedom (SDOF) system level. Incremental Dynamic Analysis (IDA) is
employed to enable a direct comparison of the actual curved backbones versus their
piecewise linear approximations. A near-optimal elastic-plastic bilinear fit can be an
enhanced solution to decrease systematically the error introduced in pushover anal-
ysis, compared to the fit approaches provided by most codes. The main differences
are (a) closely fitting the initial stiffness of the capacity curve and (b) matching the
maximum strength value, rather than disregarding them in favor of balancing ar-
eas or energies. The proposed approach is shown to reduce the conservative bias
observed for systems with highly curved force-deformation backbones.

Gkimousis and Koumousis investigate the inelastic behavior of reinforced con-
crete structures subjected to a number of strong ground motions of escalated In-
tensity Measure, by monitoring the characteristic Engineering Demand Parameters
(EDPs). This provides the necessary data to estimate the overall performance of a
structure at a particular site of specified seismic hazard within the framework of In-
cremental Dynamic Analysis. A series of plane frames of different number of spans
and stories is investigated. Moreover, the authors examine also the effect of some
general design code provisions on the collapse capacity of the frames studied, such
as stiffness distribution along the building height and the strong column-weak beam
design principle.

Borzi et al. study the seismic risk assessment of Italian school buildings. The
work is based on the idea of defining a methodology that implements an analysis in
successive steps with an increasing level of detail in an attempt to identify the most
seismically vulnerable school buildings in Italy. The school building location, the
exposure data and the seismic input information are implemented in a WebGIS plat-
form through interactive maps and tabs. By means of the developed WebGIS tools,
the seismic risk analyses of the school buildings are performed and the obtained
results are presented in terms of maps and tables.

Vassilopoulou and Gantes investigate the geometric nonlinear dynamic response
of saddle-shaped cable nets subjected to uniform harmonic loads using an equivalent
SDOF model. The transformation from the MDOF cable net to the SDOF system is
obtained with the aid of similarity relationships. The comparison between the two
models by means of the steady-state amplitude of the central node demonstrates that
the behavior of the SDOF model describes satisfactorily the response of the MDOF,
predicting the dominant nonlinear phenomena.

Naprstek et al. present a work on the nonlinear dynamic behavior of a ball vi-
bration absorber, modeled as a holonomous system. Using Lagrange equations of
the second type, the governing nonlinear differential system is derived. The solution
procedure combines analytical and numerical processes, where the 2nd Lyapunov
method is used as the main tool for the dynamic stability investigation. The func-
tion and effectiveness of an absorber identical to those installed at the existing TV
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towers was examined in the laboratory of the Institute of Theoretical and Applied
Mechanics. The response spectrum demonstrates a strongly nonlinear character of
the absorber.

Casarotti et al. attempt to evaluate the response of an isolated system based on
double curved surface sliders. The objective is to study the response of a particular
installation system for Double Curved Surface Sliders for buildings with large plan
development in case of construction defects related to the non-perfect co-planarity
of the devices. A case study is presented, in which the effects of randomly simulated
construction defects are analyzed. Preliminary results showed that the simulated
construction defects have only limited influence on the global hysteretic behavior of
the system and that the simultaneous loss of contact may occur only for a limited
number of devices.

During strong earthquakes, structural poundings may occur between adjacent
buildings due to deformations of their stories. In the case of seismically isolated
buildings, pounding may occur with the surrounding moat wall due to the insuf-
ficient seismic gap at the base of the building. Polycarpou and Komodromos in-
vestigate numerically the effectiveness of rubber shock-absorbers as a mitigation
measure for earthquake-induced structural poundings. The study presents a method-
ology that can be used to numerically simulate the use of rubber layers between
neighboring structures with relatively narrow seismic gaps in order to act as colli-
sion bumpers and mitigate the detrimental effects of earthquake-induced poundings.
The efficiency of this potential impact mitigation measure is parametrically inves-
tigated considering both cases of conventionally fixed-supported and seismically
isolated buildings subjected to various earthquake excitations.

Lavan and Daniel present a methodology for sizing, tuning and allocating mul-
tiple tuned-mass dampers in 3D irregular structures. The methodology is based on
a two-step iterative analysis/redesign algorithm, which allows obtaining a very ef-
ficient amount of added dampers’ mass while converging to an allowable response
of the structure. This performance-based design methodology is simple, relies on
analysis tools only, and is fast converging and thus its use is attractive for the engi-
neering practice. The proposed method allows reducing absolute accelerations to a
desirable level following the performance-based design principles. This is achieved
using several TMDs located at different places and tuned to several frequencies. The
methodology is general in scope and suitable for all types of structures, regardless
of the amount of irregularity.

Melkumyan presents three remarkable projects on retrofitting buildings using
base isolation. The first is about retrofitting of a five-story stone apartment building
without resettlement of the occupants. The second involves the retrofitting of a 60-
year-old, three-story stone historical school building and the third project is about
the development of the design on retrofitting by base isolation of a 180-year-old
historical building. The retrofitting scheme is described and detailed results of the
earthquake response analysis for two cases, i.e. when the building is base isolated
and when it has a fixed base, are given. For all three buildings comparative analyses
of the cost of innovative base isolation retrofitting technology versus the costs of the
different methods of conventional retrofitting are presented.
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Manos and Mitoulis present an expert system developed for the preliminary
design of the seismic isolation of bridges, assumed to respond as a SDOF sys-
tem. The expert system and the developed software include a series of checks of
Eurocode 8-2, in order to ensure the satisfactory seismic “optimum” performance
of the selected isolation scheme. In doing so, the software accesses a specially cre-
ated database of the geometrical and the mechanical characteristics of commercially
available cylindrical or prismatic elastomeric bearings, than can be easily enriched
by relevant data from laboratory tests on isolation devices. The proposed methodol-
ogy is validated through rigorous 2D and 3D MDOF parametric numerical analyses
and with the case study of a real bridge.

Burczynski et al. investigate new soft-computing techniques in structural dynam-
ics where one tries to study, model, analyze and optimize very complex phenomena,
for which more precise scientific tools of the past were not able to give low-cost
and complete solutions. The paper deals with various applications on optimization
problems of bio-inspired methods, such as evolutionary algorithms (EA), artificial
immune systems (AIS) and particle swarm optimizers (PSO). Structures considered
in this work are analyzed using the finite-element method (FEM) and the boundary
element method (BEM). The bio-inspired methods are applied to optimize shape,
topology and the material properties of 3D structures modeled by the FEM and
to optimize location of stiffeners in 2D reinforced plates modeled by the coupled
BEM/FEM. The structures are optimized using criteria that depend on frequency,
displacements or stresses. Numerical examples demonstrate that methods based on
soft-computing can be very effective for solving optimal design problems.

Gencturk and Hossain study the optimal design of RC frames, a widely used
structural type around the world, considering both the initial cost and structural per-
formance as problem objectives. Initial cost comprises the total cost of materials and
workmanship for structural components, while structural performance is measured
by a two-level approach. First, each design is checked for acceptability according
to existing codes, and next performance is quantified in terms of maximum inter-
story drift obtained from nonlinear inelastic dynamic analysis. This multi-objective,
multi-level approach allows one to investigate the implications of the selection of
design parameters on the seismic performance while minimizing the initial cost and
satisfying the design criteria. The results suggest that structural performance varies
significantly within the acceptable limits of design codes and lower initial cost could
be achieved for similar structural performance.

Moutsopoulou et al. present their work on nonsmooth and nonconvex optimiza-
tion for the design and the order reduction of robust controllers used in smart struc-
tures. H-infinity controller design for linear systems is a difficult, nonconvex typi-
cally nonsmooth optimization problem when the controller is fixed to be of order
less than the one of the open-loop plant, an important requirement in embedded
smart systems. A new optimization package is used, aiming at solving fixed-order
stabilization and local optimization problems, based on a new hybrid solution algo-
rithm. The problem is to reduce the vibration of the smart system using H-infinity
control and nonsmooth and nonconvex optimization.

Decision-making for infrastructure systems is a difficult task to perform be-
cause of the complexity and the variety of the types of risks that may occur in
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the different phases of the life-cycle of an infrastructure system. In their chapter
Xenidis and Angelides propose a new methodology for risk-based decision mak-
ing for planning and operating infrastructure systems. The methodology integrates
the variability of impact upon risk occurrence, the available risk-response strate-
gies, and the preference of the decision maker over these strategies with regard to
the criticality of the various impacts upon risk occurrence. It considers four risk-
response strategies, namely: acceptance, mitigation, transfer, and avoidance. Three
approaches are applied, in order to determine the preference margins between these
strategies: Compliance with regulations and specifications, determination based on
data elaboration, and subjective judgment. Once the expected value of the impact
upon risk occurrence is estimated, the decision maker is able to decide for the re-
spective risk-response.

In the last chapter, Soroushian et al. investigate the practical performance of a
recent technique for more efficient dynamic analysis of bridge structures with direct
time integration. A typical multi-span concrete bridge is considered, in two struc-
tural cases (original and upgraded with nonlinear elements), and subjected to four
major earthquakes. The analyses are carried out with the Newmark average acceler-
ation method, and the modified Newton Raphson method for nonlinearity iterations,
once conventionally (not implementing the recently proposed technique), and then
again with implementing the technique proposed. Having implemented the proposes
technique in time integration analysis, the responses obtained are very close to the
responses of the conventional analyses, while the computational cost is considerably
reduced.

The aforementioned collection of chapters provides an overview of the present
thinking and state-of-the-art developments on the computational techniques in the
framework of structural dynamics and earthquake engineering. The book is targeted
primarily to researchers, postgraduate students and engineers working in this scien-
tific field. It is hoped that this collection of chapters in a single book will be found a
useful tool for both researchers and practicing engineers.

The book editors would like to express their deep gratitude to all authors for the
time and effort they devoted to this volume. Furthermore, we are most appreciative
to the reviewers for their effective comments that helped the authors to improve
their contributions. Finally, the editors would like to thank the personnel of Springer
Publishers for their kind cooperation and support for the publication of this book.

Athens, Greece Manolis Papadrakakis
December 2012 Michalis Fragiadakis
Vagelis Plevris
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1D Harmonic Response of Layered
Inhomogeneous Soil: Exact and Approximate
Analytical Solutions

George E. Mylonakis, Emmanouil Rovithis, and Haralambos Parashakis

Abstract The seismic response of inhomogeneous soils is explored analytically by
means of one-dimensional viscoelastic wave propagation theory. The system un-
der investigation comprises of a continuously inhomogeneous layer over a homoge-
neous one of higher stiffness. The excitation is specified at the bottom of the base
layer in the form of vertically propagating harmonic S waves. Shear wave propaga-
tion velocity in the inhomogeneous layer is described by a generalized parabolic
function, which allows modeling of soil having vanishing shear modulus at the
ground surface. The problem is treated analytically leading to an exact solution
of the Bessel type for the natural frequencies, mode shapes and base-to-surface re-
sponse transfer function. The model is validated using available theoretical solutions
and finite-element analyses. The exact analytical solution is compared with energy-
based Rayleigh techniques and equivalent homogeneous soil approximations. The
latter are defined by means of alternative definitions for the representative shear
wave velocity in the inhomogeneous layer. Results are presented in the form of nor-
malized graphs demonstrating the effect of salient model parameters such as layer
thickness, impedance contrast between surface and base layer, surface-to-base shear
wave velocity ratio in the inhomogeneous layer, rate of inhomogeneity and hys-
teretic damping ratio. Harmonic response of inhomogeneous soils with vanishing
shear wave velocity near soil surface is explored by asymptotic analyses.
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1 Introduction

Under certain conditions such as those encountered in thick and soft soil deposits,
conventional one-dimensional analysis procedures based on discretizing the soil in
a multi-layer system with constant properties within each layer, may underestimate
soil amplification with respect to the actual response of a continuously inhomoge-
neous medium, depending primarily on frequency content of input motion. Based
on a detailed in-situ investigation of dynamic properties of soft deposits, Towhata
[1] demonstrated analytically that shear wave propagation velocity may vary contin-
uously with depth even for complex stratifications involving different soil materials
and geologic environments. In this case, pertinent analytical solutions reveal the
possibility of higher amounts of seismic energy reaching the ground surface with
respect to soils with discontinuous variation in shear modulus.

Continuously inhomogeneous soils have been studied for different types of soil
inhomogeneity or of seismic waves in multiple directions providing closed-form
solutions for natural frequencies, modal shapes and base-to-surface amplification
functions. Following the early work of Ambraseys [2] and Seed and Idriss [3], Do-
bry et al. [4] studied the dynamic response of inhomogeneous soils with shear wave
propagation velocity of the form V, = cz", z being depth and n a positive inho-
mogeneity coefficient associated with zero shear modulus at the ground surface.
A special case of the above equation, corresponding to n = 2/3, was adopted by
Travasarou and Gazetas [5] as part of an investigation of seismic response of soft
marine clay sediments. Based on earlier suggestions by Dobry et al. [4] and Towhata
[1], the above authors showed analytically that seismic strains may tend to infinity
at soil surface depending on the rate of increase of shear wave velocity with depth.
Heterogeneous soils with shear wave velocity increasing from a non-zero value at
the free surface were examined by Ambraseys [2], Toki and Cherry [6], Schreyer
[7] and Gazetas [8], focusing on the effect of rate and type of heterogeneity. An
extended one-dimensional model was later developed by Towhata [1], who inves-
tigated the behavior of the medium for the whole set of positive inhomogeneity
coefficients (0 < n < 00) considering zero or finite stiffness at the surface. More
recently, Parashakis [9] and Semblat and Pecker [10] presented analytical solutions
of the wave equation for a heterogeneous soil profile with shear wave velocity in-
creasing with depth according to a generalized power law and different boundary
conditions at the base.

The effect of soil inhomogeneity has also been studied for different types of seis-
mic waves in multiple dimensions. For instance, the late Professor Vardoulakis [11]
considered the case of torsional waves in an inhomogeneous half space. Later, Vret-
tos [12] solved the eigenvalue problem of dispersive SH-surface waves propagating
in an inhomogeneous half-space for both bounded and unbounded variation of shear
modulus with depth. In a very recent publication [13], the same author treated an-
alytically, by means of infinite series, a soil layer with exponential variation of soil
shear modulus with depth with a bounded value at infinity. A set of solutions pertain-
ing to 1D- and 2D-viscoelastic wave propagation problems has been presented in a
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series of publications by Manolis and Shaw [14-16]. A collection of available solu-
tions for wave propagation in inhomogeneous media can be found in Brekhovskikh
and Bayer [17].

On the other hand, design practice often requires knowledge of the vibrational
characteristics of soil deposits by means of simplified approximations. In support
of the above, modern seismic codes [18-20] classify sites according to the average
shear wave propagation velocity within the top 30 meters (termed Vj 3¢) of the soil
profile, referring to homogeneous or inhomogeneous profiles without strong gradi-
ents in shear wave velocity with depth. However, in case of a moderately-to-strongly
inhomogeneous soil, the choice of a pertinent, “representative” shear wave veloc-
ity is not straightforward especially when thick and soft deposits are encountered.
In this context, Dobry et al. [21] investigated alternative approximate methods to
estimate the fundamental period of a layered soil profile, following the early work
of Madera [22]. Based on an extensive parametric investigation performed for an
ample range of representative soil profiles the above author showed the efficiency of
the Rayleigh procedure [23] in predicting the first natural frequency of the system,
leading to comparable results with respect to the exact values. A series of energy-
based Rayleigh solutions have been reported recently by Miha [24] encompassing
different types of soil inhomogeneity.

In the herein reported study, seismic response of inhomogeneous soil is investi-
gated in the realm of one-dimensional viscoelastic wave propagation theory, based
on a recent publication by the authors [25]. Following the work by Towhata [1],
a generalized parabolic function is adopted to describe the wave propagation veloc-
ity in the inhomogeneous soil, thus allowing both for zero and finite shear modulus
at the surface. The surficial inhomogeneous zone is followed by a homogeneous
layer supported on a rigid base, leading to bounded shear wave propagation velocity
at large depths. Soil mass density and material damping are assumed to be con-
stant within each layer, but could be different between the upper and the lower one.
Thereby, the proposed model is capable of describing a much wider set of geometric
and material configurations over earlier models considering a single layer. Further-
more, inhomogeneous soils having vanishing values of shear modulus at ground
surface can be modeled, thus allowing study of dependence of near-surface dis-
placements and strains to corresponding soil stiffness. Single- and two-layer inho-
mogeneous deposits are examined considering free or forced harmonic oscillations.
The problem is treated analytically leading to a closed-form solution for the vibra-
tional characteristics and the base-to-surface transfer function of the system. The
model is thoroughly validated by means of both analytical and finite-element solu-
tions. The exact solution for single- and two-layer systems is compared with simple
approximations derived using the Rayleigh technique and equivalent homogeneous
soil considerations. The latter are defined by means of alternative definitions for
the representative shear wave velocity in the inhomogeneous layer corresponding
to: (i) the shear wave propagation velocity at the base of the inhomogeneous layer,
(ii) the shear wave velocity in the middle of the inhomogeneous layer, (iii) the mean
shear wave velocity within the inhomogeneous layer, (iv) the shear wave velocity
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V5=Vr(p+qZ/Zr)n
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NONINVONVONVINVONVONVIIEENINVINVINIVONVINIVONISNYS

Rigid rock Harmonic Rigid rock Harmonic
S-waves S-waves

Fig. 1 (a) Single inhomogeneous layer over rigid rock. (b) Two-layer deposit comprising of an
inhomogeneous surface layer followed by a homogeneous layer over a rigid base

providing equal travel time from base to surface between homogeneous and inho-
mogeneous soil and (v) the shear wave velocity leading to an equivalent homoge-
neous soil having the same fundamental frequency as the inhomogeneous profile.
The dependence of near-surface shear strains for inhomogeneous soils with very
small surface-to-base shear wave velocity ratios is investigated by means of asymp-
totic analyses.

2 Continuously Inhomogeneous Soils: Analytical Investigation

A continuously inhomogeneous viscoelastic soil zone of thickness H over a rigid
base (Fig. 1a) is considered as a basis of the layered inhomogeneous soil examined.
Soil mass density, p and hysteretic damping ratio, £, are considered constant with
depth, while shear wave propagation velocity is assumed to increase with depth
according to the generalized power law function:

Vs=vr<b+qi) (1)

Zr
where n, b, g are dimensionless inhomogeneity factors and z is the vertical coordi-
nate (depth) measured from ground surface. V, and z, stand for a reference shear
wave velocity and a reference depth, respectively. For positive values of b, Eq. (1)
results in non-zero shear wave velocity at the surface (z = 0). Introducing the shear
wave velocities at the surface (V,) and base (Vg ) and setting g = (1 — b), z- = H,
the model can be cast in the more convenient form:

v, =vﬂ[b+(1 —b)ﬂ ®)
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where b = (V,/ Vi)/". Evidently, for small values of the inhomogeneity factor 7,
the velocity model simplifies to a uniform distribution, whereas for values of n close
to unity the model converges to a linear distribution. Setting b = 0 in Eq. (2), the
variation reduces to one starting from a zero value at the surface. This special case
yields some important results as to the amplitude of near surface shear strains and
displacements which are discussed in the ensuing.

A more general case of an inhomogeneous surface layer underlain by a homoge-
neous one of finite thickness £ and shear wave propagation velocity Vj, is examined
as a generalized two-layer deposit (Fig. 1b). This extended model allows for differ-
ent soil properties between the inhomogeneous and the homogeneous layer to be
accounted for. A similar two-layer model has been studied by Afra and Pecker [26],
considering the lower layer as a viscoelastic half space.

The input motion is specified at the base of the system in the form of a harmonic
horizontal displacement, u = u, exp(iwt), w being the cyclic excitation frequency,
thereby generating S waves propagating vertically up and down in the profile.

2.1 Single Inhomogeneous Layer

Under harmonic oscillations, one-dimensional shear waves in a soil layer with con-
stant mass density p and variable shear modulus G (z) are described by the ordinary
differential equation

i[G( )d—”}+ 2, =0 3)
dz ¢ dz peit=

Substituting G(z) = /oVs2 ()= ,oVrz(b +qz /zr)z” into the above expression yields:

d*u q( z)ldu 2( z)z”
—+2n—|b+q— — +k\b+g— u=0 4
dz? 2 1 Zr dz " i % @
where k, = w/V, is a reference wave number. Introducing the linear transformation
x =b+ qz/z, and employing the chain rule of differentiation, Eq. (4) simplifies to

d? d k7 \?
d—xbz‘+2nx—1£+< ;*) 2y =0 (5)

which is a differential equation of the Bessel type. Upon substituting # = x* and
u = explirz!/?], it is easy to establish by dominant balance, that x = 0 is a regular
singular point with two power-law behaviors and x = infinity is an irregular one
with two exponential behaviors. Restricting our interest to the most common case
0<n<1]19,27,28], the general solution to Eq. (5) is given by [29]:

u(x) = x*[C1J, (ax"?) + CoN, (Ax"7?)] (6)

where J,() and N, () denote the Bessel functions of the first and second kind and
order v, respectively, while £ = 2(1 — n) is a dimensionless parameter representing
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the step of the associated power series solutions [30]. Parameters @ and v are ob-
tained from the asymptotic behavior near the origin (x = 0), which is satisfied for
w=(1—2n)/2 and v= (2n — 1)/2(1 — n), while the asymptotic behavior of the
solution at infinity requires A = 2k, z,/£q. Accordingly, the solution to Eq. (6) takes
the form:

1 k 1k
u(x) =xM C1Jy _r_erg/z + CyN, rzrxg/z )
l—n ¢ 1—-n g

where C| and C; are integration constants to be determined from the boundary
conditions. Of these, t(0) = G(z2)y(2)|;=0 = 0 describes the physical restriction
of zero shear tractions at the soil surface. Using y (z) =du/dz = q/z- du/dx and
considering a layer with finite shear modulus at the surface (b > 0), this condition
yields a proportionality relation between constants Cq and C»:

1 err 2/2 1 err 22 -
C=-CiJypi| ———> Nyi1 —b ®)
1—n g¢q 1—-n ¢
Upon eliminating constant C, in Eq. (7) by means of the above expression yields

a standing wave that satisfies the boundary condition of a traction-free surface. Re-
calling that x = b + qz/z,, the solution to the differential equation is

_ Cib+qz/z)* 2\ )
M(Z)—W{J\;[}»<b+q;> i|Nv+1[)vb ]

2\ 42
—Jv+1[kbe/2]N,,[)»<b+qz—> “ )

which describes the variation of displacement within the layer.
Shear stresses are obtained upon differentiation of Eq. (9) with respect to z:

Cra?p 2\ s
=——1/]J A b — N, Ab /
T kvaH(W/Z){ ”“[ ( +"zr) v [2]

£/2
SN IV [x (b " qi> } } (10)
Zr

2.1.1 Natural Frequencies and Mode Shapes

In the absence of earthquake disturbances at the base of the layer, wave amplitude
at z = H must vanish. Enforcing this condition to Eq. (9) yields the characteristic
equation:

Jo1 (Amb )Ny ) = o) Nyt (Amb?) = 0 (11)

the solution of which provides the natural frequencies of the layer, w,,; these can be
written in normalized form as

W

Wy =

2
=2 =)0 =Dy, m=12.3,... (12)
T

@Dln
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where w1, =7 Vg /2H is the fundamental natural frequency of a homogeneous soil
layer of same thickness as the inhomogeneous one, and shear wave propagation
velocity equal to wave velocity at the base, Vg.

Employing Lommel’s identity [30]:

/2 £/2 ¢/2 /2
Jost (MBE)N, (DY) — 0, (ALY 2) Ny (A7) = — i (13)
the solution for the displacement at soil surface (z = 0) simplifies to:
—2C bH=t12
w0 = ——1— (14)
ANy +1(1b4/2)

Normalizing Eq. (9) by u(0) in Eq. (14) yields the modal shape @,,(z) =
um(2)/um(0) of the layer:

22
®, (2) Thm(b+qz/z, )" {J‘,H[Ambm]Nv [/\m <b +qi) ]

2bH—t/2 Zr

z L/2
—Nv+1[xmb‘/2]Jv[Am(b+q—'> ]} (15)

Zr

which can be readily evaluated, as function of depth, for any given eigenvalue A,,.

2.1.2 Steady State Harmonic Response

Under harmonic base excitation, the base-to-surface transfer function is defined in
terms of the familiar amplification factor [31, 32]:

u(0)
u(H)

Taking the ratio of Egs. (14) and (9) and setting z = H, the transfer function of the
inhomogeneous soil layer is obtained as

F(w) = (16)

2142

F(w) = [Jo1 (AN, ) = LN (6921 ()

where A is now a continuous function of excitation frequency w. Note that soil
damping can be accounted for in the above analysis by means of the correspondence
principle of viscoelasticity using the standard substitutions G — G* = G(1 + 2i§)
and V;(z) — V) (2) = Vi(2)4/1 +2i& [31, 32]. Also, the solution is equally appli-
cable to the case of vertically-propagating P waves if the appropriate wave velocity
and damping ratio are employed.

2.2 Two-Layer Inhomogeneous Soil

Referring to the generalized two-layer inhomogeneous soil in Fig. 1b, the above
analytical solution can be extended to account for the presence of an underlying
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homogeneous layer of thickness %; and shear wave propagation velocity V. The
response of the homogeneous layer due to a harmonic horizontal displacement ap-
plied at the base is given by the elementary function [31, 32]:

up(zp) = Ay sin(kpzp) + Az cos(kpzp) (18)

where z; is the vertical coordinate measured upwards from the base of the layer,
A and A, represent the amplitudes of the waves traveling upward and downward
in the layer, respectively; k, (= @/ V) is the corresponding wave number.

Upon enforcing the continuity of stresses and displacements at the base of the
system and the interface of the surface and the base layer:

up(0) =u,
up(hp) =u(H) (19)

w(hp) = —7(H)
the analytical expressions for u(z), 7(z) and up(zp) in Egs. (9), (10) and (18), yield
the following simultaneous algebraic equations in A1 and Cj:
Ay sin(kphyp) + u, cos(kphyp)

1-2n
qu 2(1=n) Jv(eH)Nerl (60) — NV(QH)JU+1 (6,)
=Ci|(1—-n)
err Nv-‘,—l(@o)

) 20)

a) .
pr[Al cos(kphp) — u, Sln(kbhb)]

1
qu ) 2(1=n) l Joti (QH)NV+1 6o) — Joti (GO)NU-"-] On)
krzy ky Nv+1(00)

where 0, = Ab*/2, 0y = A(b+qH /z,)"/*; py and pyp, stand for soil mass density of
the inhomogeneous and the homogeneous layer, respectively.

The solution to Egs. (20) yields the following expressions for parameters Aj
and Cy:

= clpHaP((l —n)

1-2n
q9H ] 2=, (0a)Ny11(80) — Ny (Or) Jv+1(60)

Ar=Ci|(1—n) ;
! 1[ krzr sin(kphp) Ny+1(60)

Up

B tan(kphyp) @h

and

q0H 2
Cr=uoNy+1(0o)1 | (1 — n)k Z [Jv(eH)Nv+l(90)
r<r

— Ny(On) Jv11(00) ] cos(kphp)
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prkphp qHH ﬁ
 pokeH |:(1 B n)krz,] [0 Or) Not1(00)
-1
— Ny (Or) Jv+160)] sin(kbhb)} 22)

2.2.1 Natural Frequencies and Mode Shapes

For the free vibrations of the soil column one obtains the following frequency equa-
tion:
" opk Jy(Or)Ny+16,) — Ny (Or)J, (6,
tan(kbhb):(b—i-iH) PbKr v(OH)Ny11(65) v(Or) Iy (65) (23)
r pakp Jyr1OH) Ny11(85) — Nyr1(0r) Jy11(05)

from which the natural frequencies of the two-layer system can be numerically eval-
uated in terms of A, or 6,,, and 6p,,. The normalized mode shapes are obtained
from Eq. (15) and

710,,( 1—b )lzz”sinacbzm

1+—H
> Ut sin(k,hp)

X [JoOm)No11(00) = Ju41(00) Nu(0n) ] (24)

within the inhomogeneous and the homogeneous layer, respectively, for the perti-
nent values of A, (or 6,,, and Og,,).

Dy (zp) =

2.2.2 Steady State Harmonic Response

Under harmonic base excitation, the base-to-surface transfer function for the two-
layered inhomogeneous soil is defined in the same spirit as in Eq. (16):

u(0)
up(0)

where uj, (0) denotes the soil displacement at base level. After some lengthy algebra,
Eq. (25) yields the solution:

2(1 — 1—b
F(w)=[ ( nr;))l(/zH L "]{kﬂpb[fv(eﬂ)zvv+1(eo)

— Ju11(60) Ny (On) | cos(kphp)
— kpor[Jv+1Om) Nug1(60)
— Jus100) Nyt 10)] sin(kphy)} " (26)

As already mentioned, material damping in the soil can be readily incorporated
in the above equations by replacing the real wave numbers kg (= @/ Vg) and kp
(= w/ V) with the complex counterparts kK, = w/ V}; and ky = w/ V", respectively.

F(o) = (25)
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Fig. 2 (a) Numerical 167 p Analytical solution
discretization of the idealized (Eq.26)
V; profile within the 12 Analytical solution
inhomogeneous layer. VJ/Vy _ (Eq.17)
(b) Comparison of the 0 02040608 1 B8] [l -mmmn ANSYS finite

. . . 0 = element solution
analytical solution against a a
rigorous numerical solution
for V,/ Ve =0.7, hp/H =4, 0.2
Vo/Vu =1, op/pn =1,
n=0.25,&=0.05. 04 /101
(c) Comparison of the =
proposed analytical solution N 16 ¢ AEnall>’7tical solution
with the solution in Ref. [8] 0.6 (Eq. ) ]
for the case of a single 124 f ------- Analytical solution
. . (Eq.27 [8])
1nh0m0geneouAs layer w.1th T — Theoretical V,
wave propagation velocity profile )
varying linearly with depth; Numerical
Vo/ VH =0.5, E =0.05 1 discretization

3 Model Validation

A comparison against a rigorous numerical finite-element analysis was undertaken
to validate the analytical solution. To this end, a two-dimensional finite-element
model was developed using a general-purpose finite-element platform [33]. The soil
stratum was discretized with 4-noded planar elements, with the length of each ele-
ment established according to the anticipated wavelength of the shear waves prop-
agating in the medium. A sufficiently fine discretization was adopted, aiming at a
good discrete approximation of the continuously varying velocity profile (Fig. 2a).
Shear wave velocity ratios at the surface and the base of the inhomogeneous layer
and the inhomogeneity factor were selected at V,,/ Vg = 0.7 and n = 0.25 respec-
tively. For the two-layer case, ratios hp/H, V},/ Vg and pp/pp were taken at 4, 1
and 1 respectively. Following the proposed solution, the FE model was analyzed
in the frequency domain for harmonic base excitation. The numerical solution in
the form of base-to-surface transfer function was compared to the analytical model
for both single- (Eq. (17)) and two-layer (Eq. (26)) inhomogeneous soil, with the
abscissa normalized by the fundamental resonant frequency, f1s,;;. Based on the
comparative results shown in Fig. 2b, it is evident that the analytical and numerical
solutions provide very similar results.

Auvailable solutions from the literature were also employed within the validation
scheme. To this end, the solution obtained in [8]

2s
(=172 4 5)(1 + b)=1/2=s 4 (1/2 4 5)(1 4 b)~1/2+s

was utilized, corresponding to a heterogeneous soil layer with shear wave velocity
varying linearly with depth in the form Vy = V,(1 + gz). In the above expression,

F(w) =

27)
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z/H

Fig. 3 Normalized shapes of the first (a), second (b) and third (c) natural mode of an inhomo-
geneous layer over rigid rock. Note the different curvatures of the modes for high values of the
inhomogeneity factor n near the surface; V,,/ Vg =0.1

b stands for the dimensionless rate of heterogeneity (b= q H) and the parameter s

is given by:
s=|-— a)i (28)
4 V2s2(1+2i€)

Base-to-surface transfer functions computed from Eq. (17) and Eq. (27), respec-
tively, are compared in Fig. 2c for a V,,/ Vg ratio of 0.5. The observed amplification
patterns are nearly identical.

4 Parametric Investigation: Effect of Salient Parameters

Vibrational characteristics of the system and base-to-surface transfer functions were
explored, as affected by salient model parameters such as inhomogeneity factor n,
surface-to-base shear wave velocity ratio (V,/Vy), shear wave velocity contrast
(Vp/ Vi), relative layer thickness (h,/H) and hysteretic damping ratio £. Figure 3
compares the shapes of the first, second and third modes of the single inhomoge-
neous layer computed from Eq. (15) for different values of the inhomogeneity factor
n in the range O to 1. Shear wave velocity at the free surface was taken as a small
fraction of the base value (V,/Vy = 0.1), that represents an inhomogeneous soil
with significantly reduced shear modulus near the ground surface. As expected, for
values of the inhomogeneity factor close to zero (n = 0.01), mode shapes closely re-
semble those of a homogeneous deposit, approaching ground surface tangent to ver-
tical that is, at zero shear strain. On the contrary, when the inhomogeneity factor n is
above 0.5, modal amplitudes exhibit a sharp increase near the surface, approaching
ground surface tangent to horizontal that is, at infinite shear strain. Similar observa-
tions have been reported in Ref. [5] for soils of this type. This behavior is associated
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Fig. 4 Effect of 20 - n=0.01
inhomogeneity factor n on a o1
base-to-surface transfer ’
function of (a) a single 16 7 5 ————— 0.3
inhomogeneous layer and ) o 06

(b) a two-layer
inhomogeneous soil with
Vo/Vy =3, hp/H =2,
p»/pu = 1 as function of
frequency. In all plots
Vo/Vu =0.1,£ =0.05

F(w)

with large shear strains near the free surface, in agreement with interpretations of
earthquake data [34].

The analytical base-to-surface transfer function obtained for the single inhomo-
geneous layer (Eq. (17)) is plotted in Fig. 4, referring to the combined effect of
inhomogeneity factor n and shear wave velocity ratio V,/ Vg, with the abscissa
normalized by the fundamental frequency of the soil, fis. It is observed that for
small V,/ Vg ratios (V,/ Vg = 0.1), increasing the inhomogeneity factor amplifies
response (Fig. 4a) and shifts higher mode resonances to lower frequencies [24, 35].
For the above range of soil inhomogeneity, the response of the two-layer soil ob-
tained for high shear wave velocity contrasts (V,,/ V) at the interface of the surface
and the base layer presents particular interest. Contrary to the well-known response
of a piece-wise homogeneous two-layer soil, where the role of higher soil modes
progressively diminishes, response of inhomogeneous soil exhibits significant reso-
nant amplitudes at higher modes, a behavior akin to decreasing soil damping with
increasing frequency (Fig. 4b). The important role of higher modes is evident re-
gardless of thickness of the underlying homogeneous layer (hj). Relative layer
thickness (hp/H) referring to the two-layer system was set at 0.5, 1, 2 and 3, re-
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Fig. 5 Effect of hy,/H ratio 20 — =001
on base-to-surface transfer
functions of a two-layer
inhomogeneous soil for

(@) hy/H =0.5,

(b) hy/H = 3. In both graphs
£=0.05,V,/Vyg =0.1,

Vo/ Ve =2, pp/pr =1

F(®)

spectively. Figures 5a and 5b show representative base-to-surface transfer functions
corresponding to the inhomogeneous two-layer deposit for a h;,/H ratio of 0.5 and
3, respectively. In both cases, strong amplification is observed at higher resonant
frequencies with respect to the homogeneous case (n = 0.01). Evidently, deeper
deposits tend to respond at lower frequencies with larger peak amplitudes (Fig. 5b).

For larger V,,/ Vg surface-to-base wave velocity ratios (e.g. V,,/ Vg = 0.75) cor-
responding to mild variations of shear wave propagation velocity within the surface
inhomogeneous layer, the effect of the inhomogeneity factor is understandably di-
minished. In this case, the harmonic response of the single- and two-layer inhomo-
geneous system resembles that of the homogeneous soil (n = 0.01). This is clearly
demonstrated in Figs. 6a and 6b where Eqgs. (26) and (17) are plotted, respectively,
for a V,,/ Vy ratio of 0.75 providing comparable base-to-surface transfer functions.

5 Comparison with ‘“Equivalent” Homogeneous Soil

Five equivalent homogeneous layers are examined using the following alternative
definitions for the representative propagation velocity Vjom:
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Fig. 6 Effect of 20 n=0.01

inhomogeneity factor n on a
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e Viomi, equal to the shear wave propagation velocity Vg at the base of the inho-
mogeneous soil

Viom1 = Vu (29)

This is a reference case corresponding to an always-stiffer soil with respect to the
actual one.

e Viom2, equal to the shear wave propagation velocity Vi (H /2) at the mid depth of
the inhomogeneous layer. This is an elementary, yet potentially useful averaging
approach following Ref. [8]

Vhom2 = VY(H/Q’) (30)

e Viom3, equal to the mean shear wave propagation velocity within the inhomoge-
neous layer:

1 H
Views = — / Vi(@)dz 31
H Jy

where Vi (z) is given by Eq. (2).
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e Vioma, providing equal base to surface travel times between homogeneous and
inhomogeneous soil [36]

H 1 -1
omd = d 32
Viomt H[[O — z} (32)

e Vpoms, corresponding to an equivalent homogeneous soil having the same funda-
mental frequency as the inhomogeneous profile

Vhoms = fllnhom4H (33)

This is another reference case, which requires knowledge of the actual natural fre-
quency. Alternatively, Vj,,5 may be viewed as the shear wave propagation velocity
in the inhomogeneous soil corresponding to the “equivalent” depth (z.,) proposed
by Dobry et al. [21]. For the single layer system, z., normalized by the layer thick-
ness H may be computed from Eq. (2) as

1
Zeq 1 Vioms \ "
L —b 34
H 1—19[( VH> ] Gy

Based on the above expression, the dependence of z.,/H to the inhomogeneity fac-
tor n is plotted in Fig. 7, referring to a moderately to strongly inhomogeneous soil.
For this range of soil inhomogeneity (i.e. V,,/ Vg ratio lower than approximately 0.5
and an inhomogeneity factor n above 0.3), Eq. (34) yields a normalized equivalent
depth in the range of 0.55 to 0.65.

5.1 Single Layer System

The above shear wave velocity profiles are compared to the generalized parabola
Vs(2) (Eq. (2)) in Figs. 8a and 8b referring to V,/ Vg ratios of 0.1 and 0.75 re-
spectively. The inhomogeneity factor n has been taken in these graphs equal to 0.6.
It is observed that for large V,,/ Vg ratios, the above expressions yield comparable



16 G.E. Mylonakis et al.

V,/Vy
0 2 4 6 8 10 12 0 2

0 : 0 —_ V{2
0.2 0.2 = Viom
) m = - Vhom.Z

~ 0.4 3 0.4
N === Vhom.3
06 4 06 4 R T eeesssss Vhom,4
— = Vium
08 0.8 hom:3

1 u

1,

Fig. 8 Comparison of the parabolic function V(z) in an inhomogeneous soil to the shear wave
velocities of five equivalent homogeneous profiles for (a) V,/Vy = 0.1 and (b) V,,/ Vg =0.75
and an inhomogeneity factor n = 0.6

results due to the smooth variation of Vi(z) with depth; small V,,/ Vy ratios lead to
larger deviations among the computed Vj,, profiles (Fig. 8a).

In Fig. 9, the inhomogeneous system is compared to the above equivalent ho-
mogeneous soils in terms of its natural vibrational characteristics. To this end, the
ratio of the fundamental frequency of the equivalent homogeneous profile to the first
natural frequency of the inhomogeneous soil ( f1xom/f1mhom) 1S plotted against the
inhomogeneity factor n for the examined V,,/ Vi ratios. Each plot in Fig. 9 corre-
sponds to a different equivalent homogeneous soil according to Eqs. (29)-(33). The
same results are shown in Fig. 10 referring to the second natural frequency of the
deposit (i.e. fanom/ famhom)- Recall in this regard that for a homogeneous viscoelas-
tic layer of thickness H, resonant frequencies are given by the well-known formula
[32]:

\%
‘]('m=ﬁ(1_|_2n1)7 m=0,1,2,3,... (35)

Based on the comparative results of Figs. 9 and 10 several trends are worthy of
note. First, insignificant deviations of the analytical solution from the equivalent
homogeneous layers are observed for V,/ Vg ratios above 0.75. In these cases, the
prescribed frequency ratios are close to unity regardless of the adopted equivalent
homogeneous soil scenario. On the contrary, for small V,,/ Vg ratios and inhomo-
geneity factors n close to unity, replacing a continuously inhomogeneous soil with
an equivalent homogeneous may lead to substantial over- or under-estimation of
the resonant frequencies depending on the value of Vj,,,. Note, for example, that
for a strongly inhomogeneous soil (i.e. V,/ Vg =0.1, n = 0.9), finom/f1imhom ratio
based on Eq. (32) can be about 0.6 (Fig. 9d), which suggests an underestimation of
the fundamental frequency of the inhomogeneous deposit, whereas Eq. (29) yields
a value of 1.7 (Fig. 9a), which indicates a strong overestimation of the fundamental
natural frequency of the system. Naturally the use of Vg as the shear wave propa-
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Fig. 9 Ratio of fundamental frequency of the equivalent homogeneous soil (fipom) to first
natural frequency of the inhomogeneous soil ( fiznem) as function of inhomogeneity factor n:
(a) Vhom = Vhoml B (b) Vhom = Vhom2s (C) Vhom = Vhom3» (d) Vhom = Vhom4a (e) Vhom = VhomS~ In
all plots, £ =0.05

gation velocity of an equivalent homogeneous soil through Eq. (29) always results
in a stiffer soil, leading to frequency ratios above unity independent of both V,,/ Vg
and n (Figs. 9a and 10a).

Of particular interest is the case of low V,,/ Vg ratios, where the fundamental
frequency of the inhomogeneous soil is well predicted by an equivalent homoge-
neous layer having the same propagation velocity at the mid depth of the deposit
(Eq. (30)). In this case the f1,0m/f1mhom ratios are close to unity, exhibiting a slight
underestimation of the fundamental frequency with increasing inhomogeneity fac-
tor (Fig. 9b). This should be correlated to the continuous nature of the generalized
parabola adopted for describing the wave propagation velocity in the inhomoge-
neous layer. Similar trends can be seen in Fig. 9c, where the equivalent homoge-
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Fig. 10 Ratio of second natural frequency of the equivalent homogeneous soil ( f240m) to second
resonance frequency of the inhomogeneous soil ( f2hom) as function of inhomogeneity factor n:

(a) Viom = Viom1, (b) Viom = Vhom2, (C) Viom = Viom3» (d) Viom = Vhom4, (e) Viom = Vhoms. In
all plots, £ =0.05

neous soil is defined by Eq. (31). At higher resonant frequencies, Eqgs. (30) and
(31) provide a good approximation when V,/ Vg ratios above 0.25 are considered
(Figs. 10b and 10c). However, for low V,,/ Vg ratios (V,,/ Vg = 0.1) high resonant
frequencies are not well captured, leading to overestimated values especially for
high levels of the inhomogeneity factor n. Considerable deviations from the exact
solution are also observed at high resonances (Fig. 10e) when the equivalent homo-
geneous soil is defined by Eq. (33). Recall that V},,,,,5 computed by means of Eq. (33)
corresponds to a homogeneous layer having the same fundamental frequency as the
inhomogeneous one, leading to a fi50m/f1mhom ratio of 1 (Fig. 9e).

Further comparisons between continuously inhomogeneous and equivalent ho-
mogeneous soils were performed, relating peak resonant amplitudes of base-to-
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Fig. 11 Ratio of resonance amplitudes of the equivalent homogeneous soil (A, ) to resonance
amplitudes of the inhomogeneous soil (A ,50m) against the inhomogeneity factor n for the first (a),
second (b) and third (c) natural frequency of the soil deposit. In all plots, £ = 0.05

surface transfer functions. Resonant amplitude ratios Apgm/Amhom defined in the
same spirit as the resonant frequency ratios are plotted in Fig. 11 against the inho-
mogeneity factor n, corresponding to the first (Fig. 11a), second (Fig. 11b) and third
(Fig. 11c) natural frequencies of the system. Linear hysteretic damping was taken
at 0.05 for both inhomogeneous and equivalent homogeneous cases. The resonant
amplitudes of the latter are computed from [32]:

2 1

Ap~ =
" EQm—1)

m=0,1,2,3,... (36)
which are independent of Vj,,, and, thereby, of the approach followed to define
the equivalent homogeneous soil (Eqs. (29)—(33)). Based on the results of Fig. 11,
it is observed that in terms of resonant amplitudes, the replacement of a continu-
ously inhomogeneous soil layer with an equivalent homogeneous one may be valid
only for sufficiently smooth variation of shear wave velocity with depth. Indeed,
Aphom/ Anhom 1atios remain close to unity only for large V,,/ Vg ratios or small in-
homogeneity factors n. On the contrary, when strongly inhomogeneous soils are
encountered (i.e. V,,/ Vg ratios below 0.5 and inhomogeneity factors n larger than
0.3), use of an equivalent homogeneous soil may substantially underestimate res-
onant amplitudes with respect to the exact solution, especially at high resonances
(Figs. 11b, 11c).
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5.2 Two-Layer System

Two-layer equivalent homogeneous systems defined by means of Egs. (29)—(33)
in the same spirit as in the single-layer case were also investigated as simplified
approximations of continuously inhomogeneous such as that described in Eq. (2).
Representative two-layer homogeneous profiles are presented in Fig. 12 referring
to V,/Vu, Vy/Vy, hp/H ratios and inhomogeneity factor n at 0.1, 1, 1 and 0.6.
For the purpose of this parametric investigation both V},/ Vg and hj/H ratios were
consecutively set at 1, 2 and 3. Recall that for a homogeneous viscoelastic two-layer
soil, base-to-surface transfer function is given by the expression [31]:

F () = [cos(qhom H) cos(qs Hy) — Ir sin(@rom H) sin(gs Hp)] ™ (37)

where gnom (= @/ Viom) and g (= w/ V}p) stand for the wave numbers of the surface
and the base layer, respectively, and Ig (= pp Vi/0H Viom) 1s the impedance contrast
between the two layers.

Ratio of the fundamental frequency of the equivalent two-layer homogeneous
profile to the first natural frequency of the inhomogeneous soil ( f1nom/f1mmhom) 18
plotted in Fig. 13 against the inhomogeneity factor n for the examined V,/ Vg ra-
tios. In all graphs, Vo, is defined by Eq. (29) (i.e. Viom = Vg) and V;/ Vg ratio
was set at 3. Each plot corresponds to a different 4,/ H ratio; 1, 2 and 3 respectively.
Similar to the single-layer case, definition of the equivalent homogeneous case by
means of Vg leads to frequency ratios above unity especially for moderately-to-
strongly inhomogeneous soils (small V,/ Vg ratios and large inhomogeneity fac-
tors n). Larger hp/H values corresponding to deeper soil deposits lead to lower
Sf1hom/ filnhom ratios (Figs. 13b—13c), indicating a prevailing contribution of the un-
derlain homogeneous layer to the overall response. Mention has already been made
to the good approximation of the resonant frequencies of smoothly-to-moderately
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Fig. 13 Ratio of fundamental frequency of the equivalent two-layer homogeneous soil ( fipom) to
first natural frequency of the inhomogeneous soil ( f1nx0m) as function of inhomogeneity factor n:
(@) hy/H =1, (b) hp/H =2, (¢) hp/H = 3. In all plots, Viow = Viom1, Vo/Vu =3, pp/ o =1,
£=0.05

inhomogeneous soils (i.e. V,,/ Vg > 0.25) when an equivalent homogeneous soil of
either equal shear wave propagation velocity at the mid depth of the inhomogeneous
deposit, or of equal mean wave propagation velocity within the whole layer is imple-
mented. Similar trends were observed in the case of the two-layer system leading to
resonant frequencies ratios close to unity. This is demonstrated in Figs. 14a and 14b
showing f1nom/fiinhom and fanom/ fomhom frequency ratios, respectively, computed
by means of Egs. (30) and (31) referring to the two-layer system for different V,/ Vy
and hyp/H ratios. Insignificant deviations from the exact solution are observed for
low V, / Vg ratios (V,,/ Vg = 0.1) leading to slightly overestimated frequencies with
increasing inhomogeneity factor n, especially at high resonances (Fig. 14b). On
the contrary, when the equivalent homogeneous soil is defined through Eq. (32)
(Vhom = Vhoma) the actual fundamental frequency of the inhomogeneous deposit is
underestimated (Fig. 14c). The above trend was also observed when Eq. (33) was
implemented within definition of the equivalent homogeneous soil.

In terms of peak resonant amplitudes, the equivalent two-layer homogeneous
approximation deviates substantially with respect to the actual response, in agree-
ment with the conclusions derived from the single-layer case. In support of the
above, resonant amplitude ratios corresponding to the second natural frequency (i.e.
A2nom/ A2mmhom) of a two-layer deposit with V,/ Vg =3 and h;/H = 2, are plotted
in Fig. 15. Contrary to the single-layer system, resonant amplitudes of a two-layer
system depend on the specific value of the equivalent shear wave velocity (Viom)-
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Thus, each plot in Fig. 15 refers to a different equivalent homogeneous soil based on
Eqgs. (29)—(33). The effect of replacing a continuously inhomogeneous soil with an
equivalent homogeneous is evident leading to over- or under-estimated resonant am-
plitudes, especially at higher resonances of moderately-to-strongly inhomogeneous
soils. Note, for example, that A2jom/A2mhom ratios vary in the range 0.4 (Fig. 15a)
to 4.5 (Fig. 15e). The above trend was observed independently of the Vj,/ Vg and
hy/H values.

6 Comparison with Energy-Based Solutions: Rayleigh Method

Within an approximate analysis framework, the Rayleigh procedure is implemented
to compute the fundamental natural frequency of inhomogeneous soils based on
the principle of virtual work. For this purpose, both left- and right-hand side of
Eq. (3) are multiplied by an arbitrary function u*(z) that satisfies the displacement
boundary conditions of the problem in the same manner as u(z):

d du(z)
— [G(Z) iz

dz
Upon integrating by parts the first term in Eq. (38), yields:

}u*(z) = —p(w*uR)u*(z) (38)
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Fig. 15 Resonant amplitude ratios (Azxom/A2imhom) corresponding to the second natural fre-
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du(z)

G(2) u*(z)

H H * H
B / G(z)du(Z) du (Z)dZ = _wZ/ p(@Qu(z)u*(z)dz
0 0 dz dz 0

(39)

The first term in the left-hand side of the above expression is zero due to the
stress-free ground surface and the boundary condition at the base of the system (i.e.,
u(H) = 0). Taking into consideration that u*(z) = u(z), Eq. (39) simplifies to:

H 2 H
/ G(z)(d’;(z)> dz = o? / p(2)u?(2)dz (40)
0 < 0




24 G.E. Mylonakis et al.

from which the natural frequencies of the system may be extracted in the form of
the Rayleigh quotient:

o G(E)d
fo p(Du2(z2)dz

Substituting u(z) = u, ¥ (z), G(z) = ,O(Z)VSZ(Z) and p(z) = p, referring to constant
soil mass density within the layer, Eq. (41) yields:
H d 2
2 _ Jo Vsz(z)( %Z)) dz
w] = T 42)
f() I/f (Z)dZ
where 1/ (z) is a unitary dimensionless shape function representing the mode shape
corresponding to the fundamental natural frequency (f1 mhom) Of the inhomoge-
neous layer. Introducing depth and shear wave propagation velocity as dimension-
less variables by means of the expressions:

z/H (43)

(41)

z
and
Vi@ =Vs@)/Va=b+(1—-b)2z (44)

respectively, and employing the chain rule of differentiation Eq. (42) may be rewrit-
ten as:

152 = (dYy@\2 ;=

o = V_Hfo V,@(“%?) dz
= : —
H [ v2@)dz

Recalling that w1, = 7 Vg /2H, w1, being the fundamental natural frequency of a

homogeneous soil of thickness H and shear wave propagation velocity equal to Vg,

the Rayleigh expression for the normalized fundamental frequency (i.e. f1_punom) Of
the inhomogeneous layer is

(45)

o _ 3[f0‘ Vi@%wzdz]” (@6)
T

7 nhom —
1,Inh fol wz(z)dz

1n

6.1 Sensitivity of Rayleigh Predictions on Selection of Shape
Function

As evident from the foregoing, the accuracy of the fundamental frequency predicted
by means of the Rayleigh method depends entirely on the selected shape function
¥ (2). In order to investigate the effect of () on ?1’ Inhom- @ linear, a parabolic and
a sinusoidal shape function were examined respectively. For a linear shape function
described by:

Yv(@)=1-2 47)
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the solution (Eq. (46)) for the normalized fundamental frequency of a inhomoge-
neous layer with normalized shear wave velocity given by Eq. (44) is [24]

2\/? bl+2n —1 1/2
|:(l+2n)(b— 1)i|

It is reminded here that n stands for the inhomogeneity factor and b = (V,,/ Vg)
For the parabolic shape function

71,Inhom,lin = (48)

l/n.

Y@ =1-7° (49)

the corresponding solution yields, after some straightforward algebra [24]:

V30

fl,]nhom,par =

[b3+2" —1—3n—2n%+3b+8nb + 4nb — 3b* — 5nb? + 2n2b2}‘/2

X
(I+n)(1+2n)(3+2n)(b - 1)3
(50)
Finally, for the sinusoidal shape function
— T _
¥ (2) =cos(5z) (51)

Equation (46) takes the following form by means of Eqs. (44) and (51) [24]:

_ 1 ) aE\2 12
fl,]nhom,xin = ﬁ[/ [b + (1 - b)Z] " sin(7> d?:| (52)
0

The above Rayleigh-based equations are compared to the exact solution (Eq. (11))
in Fig. 16 in terms of the normalized fundamental frequency of the system against
the inhomogeneity factor n. Each plot corresponds to a different V,/ Vg ratio set
at 0.1, 0.5 and 0.9 in Figs. 16a, 16b and 16c, respectively. It is observed that for
smoothly-to-moderately inhomogeneous soils, the Rayleigh method provides reli-
able predictions of the fundamental frequency showing a slight sensitivity on the
selected shape function (Figs. 16b and 16¢). However, for low V,,/ Vg ratios and
large inhomogeneity factors referring to strongly inhomogeneous soils (Fig. 16a),
the above method deviates from the exact solution leading to a stiffer response.

7 Special Case: Vanishing Stiffness at Soil Surface

For an inhomogeneous soil layer having zero stiffness at the surface (b = 0), it can
be shown [24, 35] that the displacement and stress fields are given by the expres-
sions:

H 1—n
=i a6 = () )

H 1-n
+Cpr [Nv (rz'?) — ‘;—H (%) Nopi (/\z‘/z)] (53)
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Fig. 16 Normalized fundamental frequency of the inhomogeneous layer as function of inho-
mogeneity factor n. Comparison of the exact solution with approximate Rayleigh solutions for
(@) V,/Vu =0.1,(b) V,/ Vg =0.5, and (¢) V,,/ Vy = 0.9. In all plots £ = 0.05

and
(2) = —p**[C1 1, (A2"%) + C2N, (127?) ] (54)

where v =1/2(1 —n), £ =2(1 —n) and u = 1/2. Enforcing the boundary condition

of zero shear tractions at the surface yields the equation:
1ir%[—clpwzzl/2Jv(xz‘/2) — Copa*z' PN, (12%)] =0 (55)
—

For values of z close to zero, the first term inside the brackets becomes asymptoti-

cally equal to [37]:

1 AzZ2\Y
27 G2y~ 2L (A2 56
2 0,(A2%) ~ 2 F(l+v)(2 (56)
Since z!/27"¢/2 = 71/271/2 = 7 [recall that v€ = 2(1 — n)/2(1 —n) = 1 in this solu-
tion], the expression in Eq. (56) vanishes at the surface, thereby satisfying the stress
boundary condition.

For the second term the corresponding asymptotic expression near the origin is
[37]:

~1 2\’
V2N (5282 ~ ;12 57
e PN (A275) ~ 2 sin(vn)r(l—u)(/\zfﬂ) (57)
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As 71/277v8/2 = 71/2,-1/2 — 70 — | the second term in Eq. (55) is finite at the sur-
face unless integration constant C is zero. Accordingly, setting C> = 0, the solution
compatible with the stress-free boundary condition at the surface is:

1-n
— wH [ z
u(@)=Ciz" 2| Jy ()\25/2) -——\= Ju+1()\4Z€/2) (58)
Vg \ H
From Egs. (56) and (58) the displacement at ground surface is [24, 35]:

()\'/2)1) w (A/2)U+1 ZZ(]—")] (59)

u(0) = lim Cy |: —
=0 '(l+v) VgH™"TI'Q2+4v)
The above result suggests that as long as n is smaller than 1 (as assumed in this
study), surface displacement would be finite. This finding contradicts the assertion
in Ref. [1] that displacement at ground surface is infinite when V,,/ Vg = 0.
Shear strain y (z) in the soil is obtained by differentiating Eq. (58)

2

o H (27 172 2/2
)/(Z)=—V—13<ﬁ> Ciz' 20, (A2"7) (60)

Repeating the asymptotic analysis for small z’s yields the expression:

L 2HL/240E/2 _ =Onk1/241/2 _ 1=2n 61)

which indicates that for n > 1/2 the exponent (1 — 2n) becomes negative and,
thereby, the magnitude of shear strain at the surface is infinite. This holds regardless
of frequency and excitation amplitude, and despite the fact that the corresponding
shear stress is zero and the displacement is finite. On the contrary, for n < 1/2 the
exponent is positive and shear strain is zero at the surface. In other words, strain am-
plitude at the surface can be either zero or infinite, but never finite. These findings
are in agreement with those obtained in Ref. [5] for the special case where n =2/3.

The effect of vanishing shear wave propagation velocity near the soil surface is
further investigated in terms of base-to-surface transfer function in Fig. 17, for a
single layer described by four different inhomogeneity factors and three different
damping ratios. For values of the inhomogeneity factor less than 0.5, the response
strongly resembles that of a homogeneous layer. On the other hand, a remarkably
amplified response is evident when the inhomogeneity factor is higher than 0.5.
This behavior becomes more pronounced as the inhomogeneity factor approaches
1, leading to considerably stronger amplification at higher resonances with respect
to the fundamental one.

As real soils almost invariably possess a finite amount of stiffness at the sur-
face, the behavior of the solution at very small V,,/ Vg ’s is further investigated in
Fig. 18. Significant amplification patterns are evident at higher mode resonances, as
V,/ Vg and n tend to 0 and 1, respectively. This suggests that strong amplification
will develop even for finite surface stiffness (under zero shear strain), which will
merely get maximized at the theoretical limit V,,/ Vg = 0. From a practical view-
point, a V,,/ Vg ratio of less than 0.1 and an inhomogeneity coefficient n of over
0.5 suffice to trigger this effect. An explanation is that the strong amplification is
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Fig. 17 Effect of inhomogeneity factor n on base-to-surface transfer functions for a single inho-
mogeneous layer having zero stiffness at the surface and damping ratio £ of 0.02, 0.05 and 0.10

associated with fransition phenomena (i.e., accumulation of wave energy in areas
of progressively smaller elastic modulus near the surface leading to an increase in
wave amplitude) as opposed to reflection phenomena associated with development
of resonance in the layer.

As a final remark, it is worth mentioning that for values of v of the semi-integer
type (i.e., v=p+1/2, p=0,1,2...), the Bessel functions simplify to expres-
sions involving trigonometric functions. For the single layer system, this condition
requires n =2(p + 1)/(2p + 3) thatis n =2/3,4/5,8/9, 10/11, etc. For the first
two cases (i.e., n =2/3,4/5), the amplification function in Eq. (17) can be shown
to reduce to:

F(w) = A[Ab"3 cos(16'/? — 2) — sin(ab'/3 — )] (62)
and
F(0) =2[(3x"° = 30+ 27b*) cos(ab'/° — 1)
— (3= 225 4+ 322 5) sin(ab"/5 =) (63)

respectively, which can be evaluated by elementary means.
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Fig. 18 Effect of inhomogeneity factor n on base-to-surface transfer functions for a single inho-
mogeneous layer having V,/ Vg ratio of 0.1, 0.01, 0.001 and 0. In all plots, £ = 0.05

8 Conclusions

An analytical closed-form solution was derived for one-dimensional viscoelastic
harmonic wave propagation in layered inhomogeneous soil over a rigid base, when
the propagation velocity is described by means of a generalized parabolic function
of depth. The vibrational characteristics and base-to-surface transfer functions of
the system were examined, as affected by salient model parameters. Equivalent ho-
mogeneous soil approaches and approximate Rayleigh solutions were investigated
in terms of both resonant frequencies and response amplitudes. The special case of
an inhomogeneous soil having zero stiffness at the surface was explored as to the
variation of shear strain with depth.
The main conclusions of the study are:

e Modal amplitudes in soft inhomogeneous soils exhibit strong gradients near the
ground surface, which correspond to large shear strains. This is important for
inhomogeneity factors n larger than 0.5.

e For soils with low shear modulus at ground surface, an increase in inhomogeneity
factor n will tend to shift higher mode resonances to lower frequencies resulting
in amplified seismic response. This may have significant practical implications
for input motions of low frequency content.
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e Two-layer inhomogeneous soils demonstrate significant resonant amplitudes,
even at higher modes, regardless of thickness of the underlying homogeneous
layer.

e Resonant frequencies of moderately inhomogeneous soil (V,/ Vg > 0.25) may
be adequately captured by an equivalent homogeneous layer of either equal shear
wave propagation velocity at the mid depth of the inhomogeneous deposit, or of
equal mean wave propagation velocity within the whole layer. On the contrary,
resonant amplitudes of a moderately-to-strongly inhomogeneous soil (V,/ Vg <
0.5 and inhomogeneity factor above 0.3) may be significantly underestimated
when an equivalent homogeneous soil is adopted, especially at higher resonances.

e Approximate energy-based solutions derived by means of the Rayleigh proce-
dure may lead to reliable estimates of the fundamental natural frequency of
smoothly-to-moderately inhomogeneous soils. For strongly inhomogeneous soils
the Rayleigh method results in stiffer soil response yielding larger values of the
fundamental natural frequency with respect to the exact solution.

e For the special case of vanishing shear wave velocity at the free surface (V,,/ Vg =
0), near surface shear strain may be either zero (for n < 0.5) or infinite (for n >
0.5) but never finite. This holds regardless of excitation frequency and amplitude.
On the other hand, surface displacements are always finite.

e Following up on the above conclusion, strong amplification will develop even
for finite surface stiffness (under zero shear strain), which will merely get maxi-
mized at the theoretical limit V,,/ Vg = 0. From a practical viewpoint, a V,/ Vg
ratio of less than 0.1 combined with an inhomogeneity coefficient n of over 0.5
will suffice to trigger this effect. An explanation is that the strong amplification
is associated with transition phenomena (i.e., accumulation of wave energy in
areas of progressively smaller elastic modulus near the surface leading to an in-
crease in wave amplitude) as opposed to reflection phenomena associated with
development of resonance in the layer.
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Monitored Incoherency Patterns of Seismic
Ground Motion and Dynamic Response
of a Long Cable-Stayed Bridge

Vassilios Lekidis, Savvas Papadopoulos, Christos Karakostas,
and Anastasios Sextos

Abstract The Evripos bridge in central Greece, connects the island of Evia to the
mainland. The cable-stayed section of the bridge is 395 m in length, with a central
span of 215 m and side-spans of 90 m each. The deck, 13.5 m in width, is at 40 m
above sea-level, suspended by cables from two, 90 m high pylons. A permanent ac-
celerometer special array of 43 sensors was installed on the bridge in 1994 by the
Institute of Engineering Seismology and Earthquake Engineering. Two triaxial sen-
sors have been monitoring the free-field (near pier M4) and pier M5 base response
on the mainland (Boeotean) coast and two others the respective locations (pier base
M6 and free-field near pier M7) on the Euboean coast. Since then the bridge’s behav-
ior to seismic excitations has been continuously monitored and investigated. From
various earthquake events recorded at the site, it became obvious that the excitation
at each of the aforementioned locations differs, with the lowest peak acceleration
values observed at site M7 for all three components, independently of magnitude,
azimuth and epicentral distance of the earthquake, a fact that can be attributed to
local site conditions. In the present research effort, an investigation of the dynamic
response of the Evripos bridge due to the asynchronous base excitations along its
supports is carried out. Comparisons are made with the conventional design pro-
cedure of assuming a common (synchronous) base excitation at all supports and
interesting conclusions are drawn regarding the impact of spatially variable ground
motion on the seismic response of the particular bridge.
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1 Introduction

During the last decade, time history analyses have become increasingly popular both
for design and research purposes, especially for the case of complex and/or impor-
tant bridges. This trend has significantly improved the analysis rigor and facilitated
the consideration of various physical phenomena that were too complicated to be
taken into account in the past. One of those issues, is the identification of a realistic,
spatially variable earthquake ground motion (SVEGM) which can be used for the
excitation of the bridge for design or assessment purposes. As it is well known, this
phenomenon may affect the seismic response of long bridges, or of bridges cross-
ing abruptly changing soil profiles; however, its potentially beneficial or detrimental
impact on the final bridge performance cannot be easily assessed in advance [1-5].

One major difficulty in assessing the spatially variable patterns of earthquake
ground motion is the complex wave reflections, refractions and superpositions that
take place as seismic waves travel through inhomogeneous soil media. Different
analytical formulations have been proposed in the past, but the inherent multi-
parametric nature of wave propagation and soil-structure interaction makes it prac-
tically impossible to predict the spatially varying earthquake input along the bridge
length in a deterministic manner. Dense seismograph arrays, primarily in Taiwan,
Japan and the U.S., have contributed in shedding some light into this problem which
can be primarily attributed to four major factors that take place simultaneously, i.e.,
wave passage effect, the extended source effect, wave scattering and attenuation ef-
fect [6]. The operation of these arrays, also led to the development of numerous
empirical, semi-empirical and analytical coherency models, fit to represent the de-
caying signal correlation with distance and frequency.

Despite the significant impact of the aforementioned analytical approaches and
experimental evidence, a reliable and simple methodology for the prediction of
the effects of asynchronous motion on bridges is still lacking. Even modern seis-
mic codes like Eurocode 8 deal with the problem through either simplified code-
based calculations or indirect preventive measures involving larger seating deck
lengths [7].

An interesting case for the study of this phenomenon using recorded data is
the Evripos cable-stayed bridge, which has been permanently monitored by an ac-
celerometer network since 1994 [8, 9]. A series of minor to moderate intensity seis-
mic events have been recorded by this network, providing a useful set of motions
recorded both in the vicinity of the structure and on specific locations on the struc-
ture and its foundation. The scope of this study therefore, is to:

e Investigate the impact of spatial variable ground motion by processing specific
input motions recorded on site as the bridge, due to its overall length, is sensitive
to asynchronous motion.
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Fig. 1 The central section of the Evripos cable-stayed bridge

e Make use of the recorded data in order to investigate the nature of earthquake
ground motion and the effects of its spatial variation on the dynamic response (in
terms of forces and displacements) of the particular cable-stayed bridge.

The description of the bridge, its monitoring system as well as its response under
various asynchronous ground motion records, is presented in the following.

2 Description of the Evripos Cable-Stayed Bridge

The Evripos bridge, a 694.5 m long R/C structure, connects the Euboean coast in the
island of Evia to the Boeotean coast in continental central Greece (Fig. 1). It com-
prises three parts, i.e. the central cable stayed section and two side (approaching)
parts made of pre-stressed R/C beams that rest on elastomeric bearings. The cen-
tral section of the bridge (Fig. 1) is divided into three spans of length 90 m, 215 m
and 90 m respectively, while the deck (of 13.50 m width) is suspended by the 90 m
height pylons M5 and M6 with cables. The displacements of the deck along the lon-
gitudinal direction are permitted in piers M4 and M7 while those in the transverse
direction are blocked [8, 9]. In the present study, it is only the central cable-stayed
section that is examined.

As already mentioned, the Evripos cable-stayed bridge behavior is constantly
monitored through a special accelerometer array installed by the Institute of En-
gineering Seismology and Earthquake Engineering (now EPPO-ITSAK). The net-
work is composed by four triaxial accelerometers installed at the base of the bridge,
in particular, on the pile caps of piers M5 and M6 and on soil surface in areas ad-
jacent to piers M4 and M7. There are also 31 additional uniaxial accelerometers
installed on the superstructure, for system identification purposes. It is noted that all
sensors have common time and common trigger settings [8, 9] thus permitting sig-
nal processing and correlation. The Finite Element model of the bridge is illustrated
in Fig. 2.
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Fig. 2 Finite element model
of the Evripos cable-stayed
bridge

3 Earthquake Strong Motion Data Available on Site

The expectation that the central cable stayed section of the bridge is asynchronously
excited during an earthquake due to its significant overall length (395 m) aroused
the interest in processing specific sets of records available on-site so that spatial
variation of earthquake ground motion could be confirmed or not. Among the avail-
able data of seismic events that have been recorded since the installation of the ac-
celerometers array, the recorded at the base of the piers accelerograms of the Athens
earthquake (7/9/1999, M;) which took place at a source-to-site distance of 43 km
were selected and are illustrated in Fig. 3.

Firstly, the time histories were filtered, using a band-pass filter in the frequency
range 0.65-25 Hz in order to remove the effects of the inertial soil bridge interac-
tion. In order to measure the similarity of the seismic motions between all pairs of
records, it is necessary to compute the lagged coherency, which indicates the degree
to which two different accelerograms are related [10], according to the following
expression:

5% ()]
VS @) S @)

where § jj and Six are the smoothed power spectral densities at the stations j and k
and are given by:

(D

7 H@)] =

+M
m=—M

where wy, is the discrete frequency, W (m Aw) the (Hamming) spectral window and
S;; the unsmoothed power spectra. S is the smoothed cross spectral densities
between the stations j and k expressed as:
+M
— 2
Sjilen) = — Z W (mAw) A j (@, +mAw) Ax(w, +mAw)
m=—M
x exp{i[ Pr(wn + mAw) — Py (wy + mAw)]} 3)

where A and Ay are the Fourier amplitudes in stations j and k respectively and @ ;
and @y are the corresponding phases. An 11-point Hamming window was used for
smoothing as proposed by Abrahamson for 5 % structural damping [10, 11]. The
described process was written as a GUI-based, Matlab script.
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Fig. 3 Horizontal and vertical components of the strong ground motions recorded at the base of
piers M4, M5, M6 and M7 due to the 1999 M, = 5.9 Athens earthquake

The diagrams of lagged coherency, computed individually for all components
of the records and for all pairs, are illustrated in Fig. 4 and confirm the spatially
variable nature of the ground motion. As anticipated, at low frequencies and short
separation distances the lagged coherency tends to unity while it decreases with
increasing separation distance and frequency.

In order for the seismic motion to be able to be predicted at different stations
over an extended area, several parametric coherency models have been proposed
in the literature. Many of them are empirical models developed with regression fit-
ting of different functional forms on specific data; some others are semi-empirical
models the functional form of which developed with analytical procedures but their
parameters were evaluated by recorded data; lastly there are also some analytical
models [10].

The comparison of the computed incoherences with one of the empirical and
a semi-empirical coherency model for the pairs M4-M5, M4-M6 and M4-M7 in
horizontal directions is made in Fig. 5. The models used for this comparison are:
the single functional form for the horizontal coherency of Abrahamson [6]:



38

Coherency Coherency Coherency Coherency Coherency

Caherency

0.5

0

1

0

1

0.5

05

0

Mm 05
M4-M5(L) 0
0 B 10
M4-M6(L)
0 5 10
1
05
M4-M7(L) 0
0 5 10
1
05
M5-M6(L
o] 5 10
M5-M7¢L)
0 5 10
M&-M7(L) 0
0 5 10
Frequency [Hz]

V. Lekidis et al.

1
05
M4-M5(T) 0 M4-M5(V)
0 5 10 0 5 10
1
0 M4-M&(V
0 5 10
1
05
M4-M7(T) 0 M4-M7 (V)
0 5 10 0 5 10
1
05
o IM5-M6(\)
0 5 10
1
05
o IM5-MF(V)
0 5 10
1
05
MB-M7(T) o M6-M7(V)
0 5 10 0 5 10
Frequency [Hz] Frequency [Hz]

Fig. 4 Lagged coherency of motions between piers M4-M5 (90 m), M4-M6 (305 m), M4-M7
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and the most commonly used pattern proposed by Luco and Wong which has the
form [12]:
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Fig. 6 5 % damped elastic response spectra of the longitudinal components of the records at piers
M4-M7 compared to the scaled ones (on the right) at the average spectrum for 7 = 1.64 sec

where the coherency drop parameter « controls the exponential decay and £ is the
distance between two stations examined. The drop parameter is usually taken equal
t0 2.5+ 1074 sec /m, but in this specific case, the results are not satisfactory. On the
other hand, the model of Abrahamson can predict the loss of coherency much better
than Luco and Wong as illustrated in Fig. 5.

4 Analyses Performed

Most analytical or numerical studies investigating the effects of spatial variabil-
ity of earthquake ground motion on the response of bridges compare the results of
multiple-support excitation analysis with those of a reference condition which typ-
ically assumes synchronous excitation among all bridge supports. The comparison
can then be made in terms of a ratio of the action effects (forces or displacements)
of specific structural components over the response under synchronous conditions.

In the case examined herein though, the fact that the ground motions have been
recorded at the bases of the four bridge piers gives the actual asynchronous ex-
citations due to the existing seismo-tectonic and soil conditions of the site under
study, but at the same time makes it difficult to the corresponding compatible “syn-
chronous” excitation conditions. One option would have been to select one of the
recorded motions and apply it synchronously at all pier supports; however, this op-
tion is limited by the fact that the available records show significant discrepancy
in terms of both their PGA and spectral amplification, primarily due to local site
effects at the location of pier M5 (Fig. 6).

In order to overcome this difficulty, it was decided to adopt the following proce-
dure: strongest component of the motions recorded is in the longitudinal direction,
all records (in all components) are scaled (Table 1) to the average spectral acceler-
ation of all records at period T = 1.64 sec, which is the period of the highest con-
tributing mode, activating 76 % of the mass in the longitudinal direction (Table 2).
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Table 1 The scaling factors for the records at M4, M5, M6, M7 compared to the average response
spectrum for T = 1.64 sec

Pier M4 M5 M6 M7

Scale factor 0.977 0.947 1.069 1.014

Table 2 Dynamic characteristics (eigenfrequencies and corresponding modal contribution) of the
Evripos cable-stayed bridge

Mode ID Period UX Uy uz RX RY RZ
#1 2.712 0 0 6.7 1.2 2.3 0
#2 2.385 20.2 0 0 0 0

#3 2.061 0 58.3 0 3.4 0 47.2
#4 1.645 76.3 0 0 0 0

#5 1.298 0 0 6.2 1.4 5.5 0
#9 1.065 0 0 37.4 7.3 28.8 0

Then, four different “synchronous” excitation scenarios are developed, assuming
each time that the scaled motions in piers M4, M5, M6 and M7 respectively, are ap-
plied uniformly at all supports. Given the aforementioned scaling, it is deemed that
the four different versions of uniform excitation are compatible in terms of spec-
tral amplification (at least at the period of vibration that is affected by the dominant
earthquake component), while the fact that all the resulting scaling factors are close
to unity, guarantees that the scaling-induced dispersion is limited.

Based on the above, five non-linear dynamic analyses of the Evripos cable-
stayed bridge are performed using the computer program SAP2000, i.e. one using
the recorded set of asynchronous motions and four considering the aforementioned
compatible “synchronous” excitation scenarios. All three components of the exci-
tations were applied simultaneously. The geometrical non-linearity induced by the
bridge cables was considered assuming tension-only capabilities and the initial cable
stress state due to dead loading was applied through non-linear staged-construction
static analysis.

Beam elements were used to model the piers, while the bridge deck was modeled
by shell elements. Piers were assumed fixed at their bases, while the supporting
conditions at the two bridge edges were considered as rollers in the longitudinal
direction and pined in the transverse.

The amplitude of the seismic moments (i.e., the earthquake-induced bending mo-
ments at the bases of piers M4 and M7 and at one of the two columns at each pier
M5 and M6), the displacements at the top of each pier and the displacements at the
middle of the deck are examined for all asynchronous and synchronous excitation
cases previously presented.

Figure 7 presents the comparison between the computed seismic moments at
the base of pier M6 using the Athens 1999 (asynchronous) recorded motions, and
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Fig.7 Comparison of the computed seismic moments at the base of pier M6 using the Athens 1999
(asynchronous) recorded motions, with those computed through the four “synchronous” excitation
scenarios (uniform application of records M4, M5, M6, M7). On the left the moment vector M2
is parallel to the bridge (transverse bending) while on the right it is normal to the bridge (M3,
longitudinal bending)

those computed through the four “synchronous” excitation scenarios, that is, by the
uniform application of records M4, M5, M6, and M7 respectively. The comparison
of the maxima among all cases are summarized in Table 3.
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Table 3 Comparison of maximum absolute earthquake induced bending moments developed in
pier M6 for synchronous and asynchronous excitation (cases M4, M5, M6, M7)

Uniform excitation ~ Case studied Pier M5 Pier M6

scenario M2 [kNm] M3 [kNm] M2 [kNm] M3 [kNm]

Synch M4 Synch 1350.70 798.54 1338.30 759.11
Asynch 833.53 743.05 949.48 943.70
Asynch/Synch-1 ~ —38 % -7 % —29 % +24 %

Synch M5 Synch 1510.39 1008.53 1403.31 919.10
Asynch 833.53 743.05 949.48 943.70
Asynch/Synch-1  —45% —26 % 32 % +3 %

Synch M6 Synch 1401.33 981.36 1345.28 815.00
Asynch 833.53 743.05 949.48 943.70
Asynch/Synch-1  —41 % —24 % —-29 % +16 %

Synch M7 Synch 1314.49 849.06 1335.77 658.05
Asynch 833.53 743.05 949.48 943.70
Asynch/Synch-1 =37 % —13 % -29 % +43 %

It can be seen that the moments M, developed at the base of pier M6 trans-
versely to the bridge plane, due to the asynchronous recorded ground motions is
systematically lower regardless of the “synchronous” excitation pattern adopted. As
anticipated, this is more intense (approximately 32 %) for the synchronous case in-
volving the uniform application of record M5, which, despite of the scaling to a
common level of spectral amplification, still corresponds to the highest PGA among
the records at all locations. On the other hand, the situation reverses for the bend-
ing moments M3 within the bridge plane and the asynchronous excitation results in
higher levels of stress in all cases, reaching 43 % increase in the extreme case of
applying record M7 uniformly at all support points. The respective results for pier
M35 are also summarized in Table 3. It can be seen that seismically-induced bending
moments in both directions are decreased when assuming non-uniform excitation
conditions independently of the scenario adopted.

As far as the displacements are concerned, the corresponding time histories are
plotted in Fig. 8 and Fig. 9 for the top of pylons M5 and M6 respectively, while
the maximum in time displacements for all directions are compared in Table 4 and
Table 5. The respective magnitudes at the middle of the deck are summarized in
Table 6. More specifically, asynchronous excitation is systematically favorable for
the span middle deck displacements which are decreased up to 36 %, 45 % and 63 %
along the three principal directions Uy, Uy and U,.

The same trend is also observed for the case of the top of pylon M5—though
to a lesser degree—and with the exception of a minor (6 %) increase in longitu-
dinal displacements for one of the scenarios studied. In contrast to the above, the
transverse displacements at the top of pylon M6 derived under the asynchronous
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Fig. 8 Comparison of the seismic displacements at the top of pylon M5 using the Athens 1999
(asynchronous) recorded motions, with those computed through the four “synchronous” excitation
scenarios (uniform application of records M4, M5, M6, M7). On the left displacements are in the
longitudinal bridge direction while on the right are in transverse direction

recorded ground motions are increased compared to the synchronous case and are
almost double (increased by 82 %) when compared to the uniform application of
record M4. As for the vertical displacements in both pylons can either decrease or
increase depending on the assumed “synchronous” scenario.



Monitored Incoherency Patterns of Seismic Ground Motion

x 10

synch M4
-3

asynch

|

5 10 15 20
synch M5

x10°

[m]
o

x10

5 10 15 20

synch M6 asynch
3

[m]
=)

x10

5 10 15 20
synch M7 asynch

-3

[m]
=)

5 10 15 20
Time [sec]

[=])

2

45
synch M4 asynch.
x10°
o} 5 10 15 20
synch M5 asynch
-3
x 10

0 5 10 15 20

synch M5 asynch
x10°
0 5 10 15 20
synch M7 asynch
-3
x10

0 5 10 15 20

Time [sec]

Fig. 9 Comparison of the seismic displacements at the top of pylon M6 using the Athens 1999
(asynchronous) recorded motions, with those computed through the four “synchronous” excitation
scenarios (uniform application of records M4, M5, M6, M7). On the /eft displacements are in the
longitudinal bridge direction while on the right are in the transverse direction

These results indicate that the inherently complex nature of ground motion inco-
herency is strongly correlated to the dynamic characteristics of the excited structure
and does not systematically lead to a uniform increase or decrease of the corre-
sponding action effects.
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Table 4 Comparison of maximum absolute earthquake induced displacements [cm] developed at
top of pier M5 for synchronous and asynchronous excitation (cases M4, M5, M6, M7)

Uniform excitation Case studied U, [cm] Uy [cm] U, [cm]

scenario

Synch M4 Synch 0.09 0.18 0.05
Asynch 0.07 0.16 0.05
Asynch/Synch-1 —22 % —12 % +7 %

Synch M5 Synch 0.067 0.23 0.05
Asynch 0.071 0.16 0.05
Asynch/Synch-1 +6 % —34 % 0 %

Synch M6 Synch 0.09 0.27 0.06
Asynch 0.07 0.16 0.05
Asynch/Synch-1 —20 % —42 % —14 %

Synch M7 Synch 0.09 0.25 0.05
Asynch 0.07 0.16 0.05
Asynch/Synch-1 —23 % —37% —6 %

Table 5 Comparison of maximum absolute earthquake induced displacements [cm] developed at
top of pier M6 for synchronous and asynchronous excitation (cases M4, M5, M6, M7)

Uniform excitation Case studied U, [cm] Uy [cm] U, [cm]

scenario

Synch M4 Synch 0.09 0.16 0.04
Asynch 0.07 0.29 0.05
Asynch/Synch-1 —20 % +82 % +11 %

Synch M5 Synch 0.08 0.19 0.047
Asynch 0.07 0.29 0.049
Asynch/Synch-1 —10 % +49 % +4 %

Synch M6 Synch 0.11 0.23 0.054
Asynch 0.07 0.29 0.049
Asynch/Synch-1 —36 % +28 % -9 %

Synch M7 Synch 0.11 0.21 0.050
Asynch 0.07 0.29 0.049

Asynch/Synch-1 —35% +38 % —2%
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Table 6 Comparison of maximum absolute earthquake induced displacements [cm] developed
at the middle of the bridge deck for synchronous and asynchronous excitation (cases M4, M5,
M6, M7)

Uniform excitation Case studied U, [cm] Uy [cm] U, [cm]

scenario

Synch M4 Synch 0.11 0.14 0.16
Asynch 0.08 0.10 0.07
Asynch/Synch-1 —28 % —25 % —56 %

Synch M5 Synch 0.09 0.14 0.17
Asynch 0.08 0.10 0.07
Asynch/Synch-1 —15% —29 % —58 %

Synch M6 Synch 0.12 0.18 0.20
Asynch 0.08 0.10 0.07
Asynch/Synch-1 —36 % —45 % —63 %

Synch M7 Synch 0.12 0.16 0.18
Asynch 0.08 0.10 0.07
Asynch/Synch-1 —36 % —41 % —60 %

5 Conclusions

The scope of this study was to examine the effects of asynchronous excitation on the
Evripos cable-stayed bridge, utilizing the recorded time histories at four locations
of the accelerometer network maintained by EPPO-ITSAK, due to the My = 5.9,
7/9/1999 Athens earthquake. Initially the records were filtered to remove inertial in-
teraction effects and after that their coherency was computed for all available record
pairs. Comparison of these results with two different coherency models presented
in literature proved that there was a significant difference in the accuracy of the
predictions of the two models, and hence the selection of a coherency model for
the investigation of spatial variability of earthquake ground motion should be done
with caution. A detailed finite element model of the cable-stayed bridge was de-
veloped and its response was computed using both the recorded motions and four
synchronous excitation scenarios. The comparative study of the results indicates
that:

e For the particular bridge studied, spatial variability of seismic ground motion has
a generally favorable effect, at least on the pier base bending moments and the
displacements middle of the central span deck. Apparently, the extent of this ben-
eficial phenomenon is very much dependent on the assumptions made regarding
the definition of the “synchronous” excitation, which, in contrast to the actual,
recorded asynchronous case, is not obvious.
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e There are specific cases (i.e., out-of-plane bending moments and displacements at

the top of the two bridge pylons) where the asynchronous excitation has a clearly
critical effect.

The results of the investigations of the present study indicate that the complex

nature of ground motion incoherency is strongly correlated to the dynamic char-
acteristics of the excited structure and does not systematically lead to a uniform
increase or decrease of the corresponding action effects.
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An Efficient Beam-Column Element for Inelastic
3D Frame Analysis

Svetlana M. Kostic, Filip C. Filippou, and Chin-Long Lee

Abstract Beam-column elements with section resultant plasticity for the hysteretic
behavior of the end plastic hinges are widely used for numerical simulations in
earthquake engineering practice because of the good compromise between accuracy
and computational cost. This chapter presents a three-dimensional inelastic beam-
column element of this type with significant capabilities for the description of the
global and local response of frames under monotonic and cyclic loads. In the pro-
posed element the concept of generalized plasticity is extended to section resultants
and element deformations and is used to describe the hysteretic behavior of the
plastic hinges forming at the element ends. The element accounts for the interaction
of the axial force with the bending moments about the principal section axes with
suitably defined yield and limit surfaces that permit the description of the gradual
yielding and the post-yield hardening behavior of the end sections. Comparisons of
the hysteretic response of structural elements and small structural models between
the proposed element and the more accurate, but computationally more expensive
fiber section description of the cross section demonstrate the capabilities of the pro-
posed model.
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1 Introduction

Nonlinear analysis methods are of increasing importance in earthquake-engineering
practice with modern performance-based design codes requiring better insight into
the inelastic structural behavior and more detailed information about the nonlinear
structural response than traditional design procedures. In the professional practice
environment the impetus to deploy more advanced and accurate analysis methods
is tempered by the cost of analysis and evaluation. Because of the good compro-
mise between accuracy and computational efficiency and the relative ease of re-
sponse evaluation, frame elements are commonly used in earthquake engineering
practice.

There are two basic types of nonlinear frame element, the concentrated (lumped)
plasticity element and the distributed inelasticity element. In the concentrated plas-
ticity element, the inelastic deformations arise only at the element ends, while the
rest of the element behaves elastically. On the other hand, in the distributed inelas-
ticity element, inelastic deformations may arise at any of several monitored sections
along the element. With either element type the inelastic behavior of the monitored
sections is described either directly with section resultant relations or with the fiber
discretization of the cross section and the integration of the material response over
the cross section area. The fiber section discretization offers a high level of accu-
racy and flexibility in modeling the 3D inelastic response of structural members,
but places high demands on computer storage and memory and is computationally
intensive.

Consequently, the description of the inelastic section behavior with section re-
sultant relations is more common than the use of fiber beam column elements in
the simulation of the seismic response of three dimensional structural models. If the
resultant constitutive relations arise in the context of a lumped plasticity model, they
represent element end force-deformation relations. This chapter uses the name resul-
tant plasticity model for this type of formulation and presents a new element of this
type that is based on the concept of generalized plasticity for material stress-strain
response put forward by Lubliner, Aurichio and Taylor [1-3]. It overcomes the most
common shortcoming of the elastic-perfectly plastic element response, the absence
of gradual yielding and material hardening, while preserving the computational ef-
ficiency of elastic-perfectly plastic lumped plasticity beam-column elements.

2 Resultant Plasticity Beam-Column Elements

To date, many studies have been conducted on concentrated plasticity or point hinge
beam-column elements [4-9]. Among these, the resultant plasticity beam-column
elements use concepts of plasticity theory to describe the relation between basic el-
ement forces and deformations. The interaction of the axial force and bending mo-
ments about the principal axes of the cross section is described by a stress-resultant
yield surface, which is identified as yield surface in the following discussion. Yield
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surface equations for different types of cross section are available [4, 10-12]. Also,
different strategies have been proposed for approaching the yield surface and pre-
venting the element force path from drifting away from it. Orbison [4] used a single
polynomial expression for the yield surface of wide-flange steel sections and pro-
posed a five step procedure for mapping the element forces onto the yield surface.
The algorithm is limited by the need to subdivide each increment into several sub-
increments to prevent large errors. Moreover, the element cannot represent the grad-
ual yielding and hardening at the element ends, because the end hinges are assumed
to be elastic, perfectly-plastic.

Several models that improve the shortcomings of Orbison’s model were pro-
posed in the last 15 years. The idea of loading and bounding surfaces for material
plasticity by Dafalias and Popov [13] was successfully extended to concentrated
and distributed plasticity beam-column elements [7, 8, 14—16]. In these models, the
loading and bounding surfaces have the same shape to prevent the two surfaces
from overlapping. Once the point representing the element force resultants in the
force space touches the loading surface at some point A, it moves along the line
connecting point A with its conjugate point A’ on the bounding surface, if plastic
loading occurs.

The generalized plasticity material model by Lubliner, Aurichio and Taylor [1-3]
proposes a different procedure for the gradual, asymptotic approach of the stress
to the limit surface. The model is simple, does not require an expression for the
limit surface and has a straightforward implementation with its dependence on two
parameters with clear physical meaning. With the implementation of the return map
algorithm it is also computationally very efficient.

The proposed element extends the concept of the generalized plasticity mate-
rial model to element deformations and force resultants. The backward-Euler al-
gorithm with general closest point projection [17] is adapted to the element force-
deformation relation. The element accounts for isotropic and kinematic hardening
and is computationally efficient because of the relative simplicity of the formulation
and the quadratic convergence of the algorithm with general closest point projection.

3 Element Formulation

3.1 Basic Framework

The underlying assumption of generalized plasticity theory is the existence of two
continuous real valued functions, the yield function f and limit function F in Fig. 1
[2, 3]. The yield function f encloses the elastic region forming the boundary be-
tween elastic and inelastic response:

e f <0 — elastic state—no inelastic effects
e f >0 — inelastic state—inelastic effects may or may not occur depending on
loading or unloading
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Fig. 1 Limit function F and
yield function f

Fig. 2 (a) Basic element
forces q; (b) End plastic
hinges

The limit function F separates admissible and inadmissible stress states:

e F < (0 — admissible stress state
e F > 0 — inadmissible stress state

The basic forces q of a three-dimensional (3D) frame element of length L without
rigid body modes are shown in Fig. 2(a). The corresponding deformations are de-
noted with v. EA denotes the axial stiffness, EI; and EI the flexural stiffness about
the z- and y-axis, respectively. N is the axial force, and M, and M, are the bending
moments about the z- and y-axis, respectively. Zero-length plastic hinges may form
at one or both element ends, while the rest of the element is elastic, as shown in
Fig. 2(b).

In beam-column elements with stress-resultant plasticity the concepts of classical
material plasticity are applied to axial force and biaxial bending moment interaction
under inelastic response. The following equations govern the element behavior:

1. The element deformations v are decomposed into the linear elastic contribution
v¢ and the plastic contribution vP:

v=v"+vP (1)

2. A linear elastic relation is assumed between the basic element forces and the
elastic deformations:

q=Kev¢ =Kk(v—vP) 2)

where K, is the elastic element stiffness matrix.
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Fig. 3 Apprqach of basic. q asyw‘p@e
force q to limit surface with
increasing element
deformation v

3. Ateach element end, the yield function f depends on the basic element forces q,
a vector a describing the position of the surface center, and a hardening variable o
representing isotropic hardening. The non-dimensional isotropic and kinematic
hardening parameters are denoted with H;s, and Hy;,, respectively. The yield
function f distinguishes between elastic and inelastic states.

f(q,a,0) =P(q—a) — Hisx 3)

4. The limit function F' depends on the nonnegative consistency parameter A and
assumes the following form for generalized plasticity models

d
F:h(f)E(q))—A “4)

f
h(f)= ®)
3B — f) + (Hiso + Hiin) B
where § and § are two non-dimensional positive constants, with § measuring
the rate of approach to the asymptotic behavior, and f measuring the distance
between the yield function and the asymptote. The graphical representation of
these parameters is shown in Fig. 3.
5. An associative plastic flow rule is assumed with the following evolution relation
a
VP = A—f 6)
dq
6. The surface motion describing the kinematic hardening mechanism is defined by
the following relation:

. . af
a = Hy;,[IVvP = HkinH)»a— @)
q

where IT is a scaling matrix that accounts for the different dimension of a and vP.
In the proposed model it has the form:

H:diag{—,—,T,T, 7 } ®)

7. The simplest evolutionary equation is used for o based on the equivalent plastic
strain:

e of
= VPl = P
i) =+ 2| ®
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1/2
el =[50) 3]
aq aq aq

with a scaling matrix A defined as:

where:

1
A=diag{ 2,1,1,1,1} (11)

8. The Kuhn-Tucker complementarity conditions are:
A>0, F <0, AF=0 (12)

These conditions reduce the plastic problem to a constrained optimization prob-
lem.
9. The limit equation can be written in the following form:

d
k—h(f)a@):O 13)

Integrating this equation over the time interval (#,, #,+1), gives the discrete limit
condition:

AL = h(f)(Ppy1 — Pu) =0 (14)

3.2 Integration Algorithm

The proposed model can be transformed into a discrete constrained optimization
problem by applying the implicit backward Euler numerical integration algorithm.

Assuming that the state of the element is known at time step #, implies that the
values {vy, vﬁ, ap, oy} are given. The corresponding basic forces are determined
with Eq. (2):

Qn =ke(vn — V1) (15)

Under a given increment of element deformations Av at time step 7,4+ the to-
tal deformation is known: v = vy + Av. The problem to be solved consists of
determining the state and updating the other state variables VP apt1 and ot g.

The application of the backward-Euler method gives: e
Vool =Vh+Ent1(@nt1s Anp1) AL (16)
an+1 = an + HiinlIgn+1(gn+1, any1) AL (17)
On+] =0opn+ ||gn+1(Qn+1, ant1)| AL (13)
where AA = fan Adt and g = The discrete version of the Kuhn-Tucker condi-
tions (12) is:
AL >0, Fyy1 <0, AAF,41=0 (19)

The discrete system of equations is solved by the two-step predictor-corrector return
mapping algorithm.
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3.3 Return Mapping Algorithm

The return mapping algorithm is an efficient and robust integration scheme belong-
ing to the family of elastic predictor-plastic corrector methods. In the predictor step
a purely elastic trial state qilrf{ is computed. If the trial state violates the limit condi-
tion F < 0, the element forces are corrected in the corrector step with the trial state
as initial condition. Otherwise, a corrector step is not necessary, because the trial
state represents the solution at time step #,,41.

Since the element has two nodes, plastic deformations can arise at one or both
ends. To account for this the yield functions f; and f>, limit functions F| and F,
the consistency parameters AA; and AX, and the hardening variables o) and oy
are collected into vectors f, F, AX and «, respectively. The diagonal 2 x 2 matrix
composed of the value of f] and f> is denoted with diag(f). The same convention
is used for the other terms: diag(F), diag(AL), etc.

When both ends yield, g is a 3 x 2 matrix, with the first column equal to
dq.f1 = g1 and the second equal to dq f> = g>. If only one end yields, gis a3 x 1
vector and is equal to g; or g, depending on which end yields. In this case the
parameter A AX for the nonyielding node is zero.

1. Predictor step: An elastic step results by freezing the plastic flow, so that AL = 0.

Q% =Ke(Var1 — vh) (20)
=i @1
a,lqr.if{ —a, (22)
ocﬁz’_’f{ =a, (23)
£ = faye a e ) = D] — Hisot) Y] (24)
@ = (g —ay) (25)

Once the trial state is computed, the limit condition ' < 0 arising from AA =0

et rial trial
reduces to the condition ffl+1 (¢n+1 —@,)<0.

If this condition is satisfied, the trial state is admissible, and all state variables
can be updated according to:

Ve =V (26)
a1 =ay, 27
oy =0y (28)
Qi1 = g7 (29)
k.11 =k, (30)

If the condition f;’ f{ (@ ;’f{ — @,) < 0is not satisfied, the trial state is inadmissible,

requiring a corrector step.
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2. Corrector step: Setting the limit condition in Eq. (14) and the residuals Ry p1,
Rj n+1 and R3 41 to zero gives:

Rint1=—Vh, | +Vn+8nr1AX 31)
Ro nt1 = —ant1 +an + Hipndlgni1 Adpyg (32)
R3nii = —onst +on + [|gnt1 | Aknt s (33)

The linearization of Eq. (14) and Egs. (31)—(33) followed by a few numerical
manipulations results in a nonlinear system of two equations for determining the
parameter A AA with the following form:

(aAAX)(DAALX) + cAAL +d =0 (34)

The smallest positive solution A AX for the increment of the consistency param-
eter in the k-th iteration corresponds to the physically correct result.

The system can be solved with the Newton method or any other suitable algo-
rithm for a nonlinear equation system. The solution of the linear system cAAX +
d = 0 can serve as initial value.

For § =0 and Hj;, = Hyi, = 0 the model reduces to elastic-perfectly plastic
behavior with the solution:

(k) (k) \T A (k) (k) =1 olk) k) \T (k) k)
AA}'n—H = ((gn—H) An+1gn+l) (fr(H—l - (gn-H) An+1R1,n+l) (35)
where
2
—1 -1 0 f

The elastic-perfectly plastic solution also results when g = 0 and H;5, = Hyin = 0.
For the case that only one end yields, the system of nonlinear equations trans-
forms into a single quadratic equation.
After finding the increment A AX from the solution of a single equation or of a
system of nonlinear equations, the consistency parameter can be updated:

(k+1) k) (k)
Ad = ANL +HAAL (36)

The tangent stiffness results from the enforcement of the linearized discrete form
of the limit condition. As is the case with the consistency parameter AAX, when
6 =0 and Hjs, = Hyj =0 or B =0 and Hjy, = Hyj, = 0, the consistent tangent
stiffness matrix reduces to the expression for the elastic-perfectly plastic case:

-1
Kut1=Aunt1 — Anti18n+1 (g,{+1An+lgn+l) gz;.:,.]An-ﬁ—l (37)

4 Numerical Examples

The capabilities of the proposed element are assessed through the following four nu-
merical examples. The response of the new GPNMYS element (Generalized Plastic-
ity N-M Yield Surface) is compared with the solution of the elastic-perfectly plastic
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concentrated plasticity (EPPNMYS) element [18] and the fiber hinge element [19]
whose results denoted with FIBER serve as the benchmark solution. The simula-
tions were done with FEDEASLab [20], a Matlab toolbox for nonlinear static and
dynamic analysis.

4.1 Cantilever Column

The first example refers to the cantilever column in Fig. 4(a) which was the subject
of an earlier study on the efficient cross section discretization for fiber beam-column
elements [21, 22]. In the numerical tests, the column was subjected to a uniaxial tip
translation history in test B6, and biaxial tip translation history in test B8_7 with
variation of the axial force between —0.05N), and —0.45N, (Fig. 4(b) and (c)).

The response of a homogeneous column with elastic, perfectly plastic material
for the distributed inelasticity fiber model with a section discretization of 288 fibers
and with four Gauss-Lobatto integration points along its length is compared with
the response of the concentrated plasticity elements, GPNMYS and EPPNMYS.
The assumed yield function corresponds to the N-M,-M,, interaction curve for each
column end:

fp,mz,my) = 1.15p2 +m§ —l—m‘y‘ + 3.67p2m§ + 3p6m§,
+ 4.65m§m§ —c (38)

where p = (N —a,)/Np, m; =(M; —a;)/Mp;, my = (My —ay)/Mpy. N is the
plastic axial capacity, M, is the plastic moment capacity about the strong axis, and
M, the plastic moment capacity about the weak axis. ap, a, and a, are the com-
ponents of the position vector for the yield surface center in the N-M_-M, space.

(a) variable axial (b) TESTB6 TEST B8_7
force
strong strong
. -— axis axis
imposed v
cyclic weak weak
displacements M axis axis
g
=) 3
T—te - tip displacement
d 1 (©) A1 unit=5.1cm)
= x| | = : T
2 N 1T
! pseudo
1 time
) VIV
3 Vi1
4 YTV

Fig. 4 (a) Cantilever column; (b) Tip displacement pattern for numerical tests B6 and B8_7;
(c) Tip displacement history
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Fig. 5 Test B6: normalized bending moment—normalized axial force path (a) GPNMYS and
FIBER; (b) EPPNMYS and FIBER element
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Fig. 6 Test B6: normalized bending moment—rotation relation (a) GPNMYS and FIBER;
(b) EPPNMYS and FIBER element

Its displacement during loading accounts for kinematic hardening. The variable ¢
controls the size of the yield surface. The coefficients in Eq. (38) are derived from
a best fit of the yield surface of a W12x30 US steel cross section with ¢ = 1.0 [4].
c is set equal to 0.3 in the GPNMYS element, and equal to 1.0 in the EPPNMYS
model. Additional parameters of the GPNMYS model are: § = 0.15, § =0.70 and
Hjso, = Hyin = 0. The simulation results are shown in Figs. 5 and 6 for Test B6 and
in Figs. 7, 8, 9 and 10 for Test B8_7.

The elapsed times for the numerical tests were in the approximate ratio of
1:1.15:21 for EPPNMYS, GPNMYS and FIBER element, respectively.

To assess the ability of the GPNMYS element to represent the hardening re-
sponse, the test B6 was repeated with a material having a kinematic hardening ratio
of 3 % in the FIBER model. The kinematic hardening parameter Hy;, of the GPN-
MYS model was set equal to 0.08, while the remaining parameters were kept at the
values for the test B6 without hardening. The results are shown in Fig. 11.
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Fig. 7 Test B8_7: normalized bending moment about Z—normalized axial force path (a) GPN-
MYS and FIBER; (b) EPPNMYS and FIBER element
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Fig. 8 Test B8_7: normalized bending moment about ¥ —normalized axial force path (a) GPN-
MYS and FIBER; (b) EPPNMYS and FIBER element
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Fig. 9 Test B8_7: normalized bending moment about Z—rotation relation (a) GPNMYS and
FIBER; (b) EPPNMYS and FIBER element
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Fig. 10 Test B8_7: normalized bending moment about ¥ —rotation relation (a) GPNMYS and
FIBER; (b) EPPNMYS and FIBER element
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Fig. 11 Test B6 with hardening—GPNMYS and FIBER element: (a) normalized bending mo-
ment—normalized axial force path; (b) normalized bending moment about Y —rotation relation

4.2 Portal Frame Example

The second example deals with the portal frame in Fig. 12 from a study by El-
Zanaty [23]. Gravity loads were applied first and kept constant while the lateral
load of gradually increasing magnitude was applied. The residual stresses were not
accounted for, because this effect cannot be represented with the EPPNMYS el-
ement. In the GPNMYS element this effect can be included with the size of the
elastic domain [24].

The nonlinear geometry under large displacements is accounted for with the
corotational formulation [25]. In the three models (GPNMYS, EPPNMYS and
FIBER) a member of the portal frame is represented with one element. The ma-
terial model is assumed to be elastic-perfectly plastic. Three different levels of ver-
tical load are applied equal to 20 %, 40 % and 60 % of the ultimate vertical load
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Fig. 13 Comparison of
adopted N-M, yield function
for EPPNMYS and
GPNMYS elements with
exact yield function for
WEF8x31 steel section
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capacity of the frame. The results for bending about the major axis are given in
Fig. 14.

The same yield surface function as in the cantilever column example is used. For
2D bending about the strong axis it reduces to the following expression:

f(p,my) =1.15p* + m? +3.67p°m? — ¢ (39)

where p and m; are as defined earlier. The value of parameter c is equal to 1.0 in
the EPPNMYS element, and equal to 0.73 for the GPNMYS element. Additional
parameters of the GPNMYS model are: § = 0.1, 8 = 0.27. The numerically exact
yield curve was established with a fiber section discretization of 288 fibers. It is
contrasted with the assumed yield curves for the concentrated plasticity elements
EPPNMYS and GPNMYS in Fig. 13.

As can be seen from the results, the response of the GPNMYS element is closer
to the numerically exact FIBER solution on account of its ability to describe the
gradual yielding of the cross section.
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Fig. 14 Load-displacement 08 . "
response of El-Zanaty frame == -EPPNMYS
[|oeee GPNMYS

—FIBER

o
b

m= . PIPy=02]
7/, =X

o
o

o
n

RS b

%N, PIPy=04
R

o
w

o
[N
L

RN

<'s PIPy=06 ]

Normalized lateral load HL/(2Mp)
o o
- =

D 1 1 1 1 1 1
0 0005 001 0015 002 0025 003 0035
Lateral deflection AJL

4.3 Two Story Frame Example

The third example is the two story space frame in Fig. 15 from a study by Vogel
[26]. All columns and beams have a WF14 x43 steel section. The frame is subjected
to gradually increasing loading with the pattern in Fig. 15. The material model is
elastic-perfectly plastic. The nonlinear geometry and the residual stress effects are
not accounted for. As with the other examples, for the three models one element is
used per member of the structural model.

For the two concentrated plasticity elements GPNMYS, EPPNMYS the yield
function follows Eq. (38). The parameter c is equal to 0.7 in the GPNMYS model
and equal to 1.0 in the EPPNMYS model. Additional parameters of the GPNMYS
model are: § = 0.02, g = 0.30 and Hjs, = Hiin = 0. The load-displacement re-
sponse in the X-direction at point A is shown in Fig. 16.

The results with the EPPNMYS element are remarkably close to the results of
the numerically exact FIBER solution, while the results of the GPNMYS element
are virtually indistinguishable from the numerically exact solution.

Fig. 15 Vogel 3D frame 4F

WF14x43
L=287.8m

E =210 GPa
G=80GPa

fy =248.3 MPa

Plan view
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Fig. 16 Load-displacement response of Vogel frame—without material hardening: (a) GPNMYS
and FIBER; (b) EPPNMYS and FIBER element

Fig. 17 Load-displacement 250 T T . :
response of Vogel
frame—with isotropic
hardening, GPNMYS and 200} i
FIBER element
Z 150t i
=
[1'
o
3
9 100t .
50+ B
FIBER
0 1 1 1 T
0 1 2 3 4 5

Displacement of point A in X dir. [cm]

The same frame is also used to study for the effect of material hardening. Since
the EPPNMYS element is not able to account for hardening, only the results of
the GPNMYS element and the numerically exact FIBER element are compared.
The isotropic hardening ratio is assumed equal to 3 % for the steel material in the
FIBER model. The isotropic hardening parameter Hj, of the GPNMYS model is
set equal to 0.008, while the remaining parameters are those for the case without
hardening.

The results in Fig. 17 show that the solution of the GPNMYS model matches the
numerically exact FIBER model response perfectly.
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4.4 Four Story Frame Example

The last example deals with the 3D nonlinear dynamic response of the steel frame
in Fig. 18 [21]. The frame was subjected first to the static gravity loading in Fig. 18
with P =289 kN, and then to a biaxial ground excitation with the 1940 El Centro
earthquake record scaled to a peak ground acceleration of 0.9565g.

In the three models the first story columns are modeled with the EPPNMYS,
GPNMYS and FIBER elements, respectively, while the other members are assumed
to remain linear elastic, so that elastic 3D frame elements can be used. The yield
function and the other parameters of the EPPNMYS and GPNMYS elements are the
same as for the cantilever column example without hardening. The mass is lumped
at each node with a value of 8.75 t. Rayleigh damping is assumed in the analysis
with a viscous damping ratio of 4 % for the first two vibration modes of the elastic
structure.

The analysis results are presented in Fig. 19 and Table 1. The bending moment
history for element 1 at the fixed end is shown in Fig. 19. Because of the significant
overturning moment the axial compressive force of the column varies between 9 %
and 48 % of the plastic axial capacity N,. The response similarity between EPPN-
MYS and GPNMYS models is evident, since both concentrated plasticity elements
are based on the same principles of plasticity theory. The ability to represent the
gradual yielding of the cross section brings the response of the GPNMYS element
closer to the numerically exact FIBER solution. For the same reason the errors of
the global frame response in Table 1 in terms of the extreme roof displacements in
the X- and Y-direction at point A, are smaller for the GPNMYS model.
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Fig. 19 Bending moment path in column 1 at fixed base: (a) GPNMYS and FIBER; (b) EPPN-
MYS and FIBER element

Table 1 Extreme roof displacement values at point A for the nonlinear dynamic response of the
four-story steel frame to a biaxial El Centro ground acceleration history

Displacement of EPPNMYS GPNMYS FIBER Error (%) Error (%)
point A (cm) EPPNMYS GPNMYS
X direction—Max 53.39 49.74 48.75 9.52 2.03
X direction—Min —23.60 —24.15 —24.01 1.71 0.58
Y direction—Max 37.34 36.01 37.18 0.43 3.15
Y direction—Min —45.88 —45.00 —45.07 1.80 0.16

5 Summary and Conclusions

This chapter presented a three-dimensional nonlinear beam-column element for the
simulation of the global and local response of frames under monotonic and cyclic
loading. The element belongs to the family of concentrated plasticity elements, with
the behavior of plastic hinges at the element ends based on yield and limit surfaces
for force resultants. The inelastic response of the hinges is described by extension
of generalized material plasticity concepts to force resultants. The element takes
into account the interaction of the axial force with the bending moments about the
principal section axes and the hardening behavior. The gradual yielding of the cross
section is described by the asymptotic approach of the force resultants to the limit
surface. The model is relatively simple and uses two parameters with clear physical
meaning. With the implementation of the return mapping algorithm with quadratic
numerical convergence it is computationally robust and very efficient.

The capabilities of the proposed element are assessed with four examples by
comparing its response with the response of an elastic perfectly plastic resultant
plasticity element, and with the response of a fiber beam-column element, which is
assumed to represent the numerically exact solution. The proposed element proves
significantly more versatile than the perfectly-plastic element for the simulation of
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the hysteretic frame response under complex loading conditions without signifi-
cant increase in computational effort. This effort is approximately 15 % of the
computational effort of the fiber beam-column element with an adequate level of
discretization. The demand on memory, data storage and data processing is also
reduced significantly. The proposed element is consequently suitable for the earth-
quake response analysis of large frame structures under a portfolio of acceleration
records, as required by current codes of performance-based design.
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Floor Response Spectra for Moderately Heavy
Nonstructural Elements Attached to Ductile
Frame Structures

Christoph Adam, Thomas Furtmiiller, and Lukas Moschen

Abstract This paper presents a methodology for predicting the seismic peak re-
sponse of vibratory single-degree-of-freedom (SDOF) nonstructural elements with
simple measures. The non-structural elements may be attached to both elastic and
ductile load-bearing frame structures. The methodology is based on modified modal
superposition of floor response spectra for SDOF oscillators on SDOF supporting
structures. Dynamic interaction between the substructures is considered, and thus,
the peak response of moderately heavy nonstructural elements can be assessed. The
presented results are based on numerical simulations involving 44 ground motion
records of the ATC63 far-field set and subsequent statistical evaluation. For sev-
eral example problems “exact” results are contrasted with outcomes of the pro-
posed methodology. This comparison provides evidence that the proposed method-
ology delivers sufficient accurate predictions of the seismic peak response of simple
vibration-prone nonstructural elements on ductile load-bearing structures.

Keywords Ductile supporting structure - Inelastic floor response spectrum -
Nonstructural element - Modified modal superposition

1 Introduction

Strong motion earthquakes of the last decades have demonstrated that the seismic
resistance of load-bearing structures designed according to actual guidelines is in
most cases sufficient. However, very often the serviceability of buildings was sig-
nificantly impaired as a consequence of severe damage of nonstructural elements.
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Additionally to the economic loss, damaged nonstructural elements represent a sub-
stantial safety risk for people in and around those buildings subjected to seismic
excitation. Examples of such elements are large antennas, suspended ceilings, parti-
tion walls, supply lines, electrical equipment, etc., i.e. all parts of the building, which
do not belong to the load-bearing system. Vibration-prone nonstructural elements
are particularly vulnerable to damage, because they are exposed to the amplified
response of the seismic excited supporting structure. Moreover, they exhibit a sig-
nificant smaller mass and stiffness than the load-bearing structure, and thus natural
periods of both substructures can become tuned, i.e. closely spaced. In the litera-
ture nonstructural elements are also referred to as secondary structures/elements,
or nonstructural components/containments. Synonyms for load-bearing system are
primary structure/system and supporting structure.

Many rational methods have been developed in an effort to predict the dynamic
response of nonstructural elements. Villaverde [1] provides a comprehensive state-
of-the-art report of methods for the seismic analysis of vibration-prone nonstructural
elements. However, there still exists a need for methodologies of analysis, which
give an accurate prediction of the seismic response without performing expensive
time history computations of the coupled system consisting of non-structural ele-
ments and the supporting structure. This can be cumbersome or even impossible,
because buildings may be equipped with a large number of vibration-prone non-
structural elements. Moreover, numerical difficulties may arise due to the fact that
the mass of nonstructural elements is in general much smaller than the mass of the
supporting structure. Thus, most of the developed procedures are based on sim-
plifications such as omitting the interaction between supporting structure and non-
structural element [1]. As a prominent example the floor response spectrum method
is mentioned [2, 3], where the peak response of single-degree-of-freedom (SDOF)
nonstructural elements is plotted against its period of vibration. Floor response spec-
tra are in general derived without considering dynamic interaction between the sub-
structures. Thus, when a mode of the supporting structure becomes closely spaced
to the period of the nonstructural element, this approach leads to satisfactory peak
response predictions only for very light nonstructural elements. A further issue is
non-classical damping, because in many applications the supporting structure and
the nonstructural element exhibit different inherent viscous damping [4]. As men-
tioned by Villaverde [1] the effect of inelastic deformations of the load-bearing
structure on the dynamic response of nonstructural elements is not well understood.
The results of several numerical and experimental investigations [5—12] have shown
that a yielding supporting structure may have a severe impact on the dynamic re-
sponse of nonstructural elements. However, only a few studies are based on a set
of real ground motions, e.g. [9-12], which permits a statistical quantification of
the response. Medina et al. [10, 11] introduce an acceleration modification factor
to quantify the effect of inelastic deformations of earthquake excited load-bearing
structures on the acceleration response of light nonstructural elements. Since their
studies are restricted to light elements, they do not consider dynamic interaction be-
tween the substructures. Adam and Furtmiiller [12] have assessed and quantified the
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effect of dynamic interaction and tuning between inelastic SDOF supporting struc-
tures and elastic SDOF nonstructural elements. They have derived floor response
spectra based on numerical simulations involving a set of 40 earthquake records.

In this study a modified floor response spectrum method is presented, where dy-
namic interaction between supporting structures and simple nonstructural elements
is considered approximately. Thus, the response of moderately heavy nonstructural
elements attached to elastic as well as inelastic multi-degree-of-freedom (MDOF)
supporting structures can be predicted with simple measures. The methodology is
based on the modal decomposition of the load bearing structure and floor response
spectra of simple oscillators attached to SDOF supporting structures. Results of pre-
liminary studies have been presented in [13, 14]. It is demonstrated that the proposed
methodology is simple to apply and yet sufficiently accurate to estimate the seismic
peak response of simple vibration-prone nonstructural elements.

2 Single-Degree-of-Freedom Supporting Structures

2.1 Structural Model and Governing Equations

In the first part of the present study the load-bearing structure is modeled as an
SDOF oscillator composed of a lumped mass m p, a viscous dashpot damper with
damper constant c,, and an elastic-plastic spring with initial stiffness k,. A bilin-
ear hysteretic loop of the spring according to Fig. 1(a) represents non-degrading
nonlinear behavior of the supporting structure under seismic excitation. The hard-
ening ratio between the post yielding stiffness and the initial stiffness is denoted
by «. A linear elastic SDOF oscillator composed of lumped mass mg, linear elas-
tic spring with stiffness k;, and viscous dashpot damper with damper constant ¢ is
utilized to characterize the vibration-prone nonstructural element. Connected in se-
ries both substructures form a two-degree-of freedom (2DOF) oscillator, as shown
in Fig. 1(b). Base acceleration i, excites the coupled system to seismic vibrations.
The equations of motion of this 2DOF system, expressed by the relative displace-
ments x, (with respect to the base displacement x;) and x, (with respect to the
displacement of the supporting structure x; + x,) of the lumped masses m, and
my, respectively, are given by

l4+m m]| (i 20,0 0 x 0wl 07 (x
) () 2] ()

2 -
_<%p)x5’:_(lzm>xg (1)

m=mg/m,, m<Il 2

where

denotes the ratio of mass of the nonstructural element and of the supporting struc-
ture, which is in general significantly smaller than one: m < 1. The natural circular
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Fig. 1 (a) Bilinear cyclic behavior of the SDOF supporting structure. (b) SDOF supporting struc-
ture equipped with SDOF nonstructural element

frequencies w,, wy; and damping coefficients ¢,, ¢ of the decoupled supporting
structure and the decoupled nonstructural element, respectively, read as:

wp =+/kp/mp, ws =~/ kg/myg

{p=cp/QRupmp), &s = cs/ Qusmy)

3)

x;’,’l denotes the plastic part of deformation of x,.

For a given ground motion record X, the characteristic response parameters of
the system according to Fig. 1(b) are the mass ratio m, damping coefficients ¢, s,
periods of the decoupled substructures Ty = 27 /wy, Tp = 27 /wp, strain hardening
coefficient «, and ductility ratio p of the supporting structure. Ductility u charac-
terizes the magnitude of inelastic deformations, and it is defined as the ratio of the
absolute maximum relative displacement max |x,| of the supporting structure in a
single time history analysis related to the corresponding displacement x,, at the
onset of yielding

H=max [xp|/xpy “4)

2.2 Floor Response Spectra

In the most general approach, for a given ground motion record X, the equations of
motion, Eq. (1), are solved together with the constitutive equations in a nonlinear
time history analysis. The results are response time histories x, (¢) and x(z).

For small mass ratios 711 < 1073 the interaction between both substructures is of
minor significance [6], if the natural frequencies of both substructures are detuned,
i.e. wp and wy are well separated. Very small mass ratios m << 1 may even lead
to numerical instabilities in a time history analysis based on Eq. (1). Thus, in a sim-
plified procedure the interaction between both substructures is neglected. Thereby,
in a first step the response x,, of the SDOF supporting structures without attached
nonstructural element is determined. Subsequently, the response x; of the SDOF
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secondary system is analyzed, where the total acceleration (¥, + X)) of the mass
m p is the input excitation. This simplified approach is common in engineering prac-
tice, however, for moderately heavy nonstructural elements it leads to considerable
over-conservative results, if the frequencies of the substructures are tuned.

In design practice most applications require the information of the peak acceler-
ation and the peak displacement of the nonstructural element only. The representa-
tion of the peak response plotted against the period T of the nonstructural element
is referred to as floor response spectrum. In the following floor response spectra for
moderately heavy secondary oscillators attached to elastic and inelastic SDOF sup-
porting structures are derived. Since the underlying system of these spectra is the
2DOF oscillator depicted in Fig. 1(b), in the following these spectra are denoted as
2DOF floor response spectra.

The seismic input of the presented spectra is based on a set of ordinary ground
motions with similar overall characteristics. The selected ATC63 far-field set con-
tains 44 ground motions (two records from 22 earthquakes), which were recorded
on NEHRP site classes C (soft rock) and D (stiff soil) [15]. The records of this set
originate from severe seismic events of moment magnitude between 6.5 and 7.6 and
closest distance to the fault rupture larger than 10 km. Thereby, only strike-slip and
reverse sources are considered.

Based on Eq. (1) for each 2DOF system with fixed parameters m, T, T, {p, s,
W, o, and each earthquake record fully coupled time history analyses are performed.
Floor response spectra considering inelastic behavior of the supporting structure are
derived for pre-assigned target ductilities. Thus, in each analysis the yield strength
of the inelastic spring has to be determined iteratively to give this target ductility.
The relative peak displacement of the nonstructural element gives for a certain set of
structural parameters one value of the displacement floor response spectrum, the to-
tal peak acceleration renders one value of the acceleration floor response spectrum,

F(2DOF)

(2DOF)
ds,i =max |xs|;, F,

us.i =max ¥ +Xp +Xsl;, i=1,...,44 (5
The statistical evaluation of the individual response spectra for each of the con-
sidered 44 ground motions leads to median, 16th percentile, and 84th percentile dis-
placement floor response spectra F x’lfrgg), F ;fﬁgp), F(;?’I;40F)’ and to corresponding
acceleration floor response spectra. Subsequently, the focus is on median spectra.
Displacement and acceleration floor response spectra may be presented in three-
dimensional form as function of the decoupled periods 7, and 7§ of the supporting
structure and the nonstructural element, respectively. Exemplarily, Figs. 2(a) and
2(b) show the contour plot of a median displacement and a median acceleration
floor response spectrum for unlimited elastic structures with parameters m = 0.05,
¢p =0.05, ¢ = 0.01, a = 0.03. Both figures verify that interaction between both
substructures is most pronounced for 7}, ~ T;. Response peaks occur for unlim-
ited elastic behavior, if period Ty is slightly larger than period 7),. While the peak
acceleration becomes a maximum for very stiff substructures, peak displacements
increase with growing tuned periods. The illustration of the response in terms of a
contour plot provides an excellent overview of the global dynamic behavior, how-
ever, for design purposes a two-dimensional representation of floor response spectra
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Fig. 2 (a) Displacement and (b) acceleration floor response spectra. Elastic SDOF supporting
structure with the following parameters: m = 0.05, ¢, = 0.05, ¢, = 0.01

Fig. 3 Displacement floor 0.8
response spectra. Elastic
SDOF supporting structure

" " " T
SDOF supporting structure
elastic

with the following __ 06
parameters: m = 0.05, £
¢p=0.05, ¢ =001 o 04|
Selected periods of the =8
supporting structure i:% I
0.2

for discrete structural periods T}, is more appropriate. Hence, in Figs. 3 and 4 for
the periods T, = 0.30 s,0.60 s,0.90 s,1.20 5,2.40 s,3.60 s corresponding two-
dimensional floor response spectra are depicted. They represent a vertical section in
Figs. 2(a) and 2(b), respectively, at these periods.

The impact of inelastic material behavior on the response of nonstructural ele-
ments is visualized in Figs. 5, 6 and 7. Figure 5(a) represents median peak displace-
ments of a nonstructural element attached to an elastic-plastic SDOF supporting
structure with a target ductility of 4. All other parameters are the same as before. It
is readily observed that inelastic deformations lead to a displacement mitigation of
more than 50 % compared to the unlimited elastic response, compare Fig. 2(a) with
Fig. 5(a), and Fig. 3 with Fig. 6. Moreover, the domain of resonance is shifted. For
a given structural period of T}, (of the corresponding elastic system) the effective
inelastic period is elongated, and thus peak displacements are shifted to larger val-
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response spectra. Elastic SDOF supporting structure |

E 7,=0.30 . ]

SDOF supporting structure 30 b s elast'lc

with the following 7o median
parameters: m = 0.05, E [
¢p =0.05, &, =0.01. = 20 |
Selected periods of the %\9 15"
supporting structure S5 E
S 10 |
:
0 C

ues of the elastic period T of the nonstructural element. Figure 5(a) proves evidence
that the maxima of median peak displacements constitute a plateau with almost con-
stant peak displacements in the domain 7y > T), (i.e. on the right hand side of the
diagonal Ty = T),). Peak accelerations are reduced considerably compared to elastic
structural behavior, however, maxima still occur at resonance of the elastic system:
T, ~ Ty, see Figs. 4 and 7.

Since the primary objective of the presented study is the prediction of floor re-
sponse spectra for nonstructural elements attached to multi-story frame structures,
2DOF floor response spectra will not be discussed in further detail. Note that in
Adam and Furtmiiller [12] the effect of interaction between both substructures has
been assessed and quantified based on an intensive study on 2DOF floor response
spectra including inelastic deformations of the supporting SDOF structure.

(2DOF), (2DOF), 2
Fds,med [m] Fas,med [m/s ]

inelastic

(@

Fig. 5 (a) Displacement and (b) acceleration floor response spectra. Inelastic SDOF supporting
structure with the following parameters: m = 0.05, ¢, = 0.05, {; =0.01, u =4
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3 Multi-Degree-of-Freedom Supporting Structures

3.1 Structural Model and Governing Equations

In the second part of the present study the supporting structure is an elastic-plastic
regular planar multi-story moment resisting frame structure with N stories, where
the mass is lumped at story corners as shown in Fig. 8(a). The horizontal story
displacements x;,i =1, ..., N, relative to the seismic base displacement x, are the
N dynamic degrees-of-freedom of the supporting structure, which are assembled in
vector X. The kth floor is equipped with an elastic SDOF vibratory nonstructural
element of mass my, stiffness ky, and viscous damping parameter cs. The horizontal
displacement x; of this element with respect to the displacement of the kth story
(xg + xi) represents the (N + 1)th degree-of-freedom of the coupled system. The
coupled set of equations of motion are separated into the equations of the MDOF
frame structure

MX + m (X + X5)gk + Cx + Kx — Go? = —(Me + m,gy) i, (6a)
and of the vibratory SDOF nonstructural element

my (¥ + Xs) + s Xy + kyxs = _msjég (6b)
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@

Fig. 8 (a) Generic multi-story frame structure equipped with an SDOF nonstructural element.
(b) Bilinear cyclic behavior of the rotational springs

M, C, K are the mass matrix, damping matrix, and initial stiffness matrix, respec-
tively, dimension [N x N], of the frame structure. The damping matrix C is pro-
portional to M and K, which leaves the coupled system non-classically damped.
Influence vector e [N] represents the displacements of the story masses resulting
from a static unit ground displacement in direction of the seismic excitation. In the
considered generic frame model inelastic deformations are confined to bilinear ro-
tational springs located at the base and at both ends of the beams, compare with
Fig. 8(a). For such a concentrated plasticity model vector @? contains the plastic
chord rotations of the elastic-plastic springs. Alternatively, in a fiber model vector
@? would contain the plastic curvatures, which are distributed along the frame or,
in a plastic hinge model, plastic curvatures are confined to pre-selected locations of
the frame. @7 is of dimension [M], where M is the number of discrete frame loca-
tions, which may exhibit plastic deformations. Matrix G is the rectangular influence
matrix of plastic spring chord rotations (plastic curvatures) of dimension [M x N].
The nonstructural element is coupled to the supporting structure via the influence
vector g of dimension [ N], whose kth component is one, and all other components
are zero. This vector identifies the location of the nonstructural element in the kth
story of the load-bearing structure.
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3.2 Floor Response Spectra

The evaluation of floor response spectra for vibratory nonstructural elements on in-
elastic multi-degree-of-freedom (MDOF) supporting structures is an expensive and
time-consuming venture, in particular if interaction between the substructures can-
not be neglected. It necessitates the time history solution of the complete set of
coupled non-classically damped equations (6a)—(6b) together with the constitutive
equations of the inelastic springs. Again, relative displacement and total accelera-
tion floor response spectra according to Eq. (5) are derived for the ATC63-FF set of
earthquake records. However, for MDOF frame systems, where inelastic deforma-
tions may occur at different stories, the definition of ductility is not unique. It must
be distinguished between local ductilities, which denote the ratios of the maximum
individual interstory drifts related to their corresponding values at onset of yield,
and the global ductility defined as

w=max |xy|/xny (N

max |xy| is the absolute relative peak displacement of the roof in a single time
history analysis, and x, is the corresponding displacement at onset of yielding. In
this study characterization of inelastic deformations of MDOF frame structures is
based on the global ductility according to Eq. (7).

For the sake of comparison “exact” floor response spectra of nonstructural ele-
ments in MDOF supporting structures are derived for given global target ductilities.
This requires a repeated solution of Egs. (6a)—(6b) until the actual global ductility
ratio matches the desired target ductility.

3.3 Simplified Prediction of Floor Response Spectra

In order to avoid such an expensive computation subsequently a methodology for
the simplified prediction of the seismic peak response of the nonstructural element
is established, based on 2DOF floor response spectra. Starting point of this method-
ology is a modal decomposition of the frame substructure displacements x into the
N mode shapes ¢,,n =1, ..., N, of this subsystem,

N
X=)" . ®)
n=1

which transforms Egs. (6a)—(6b) into a set of N coupled modal equations with off-
diagonal coefficients in the resulting modal matrices, see e.g. [9]. For modal mass
ratios

_ ms‘ﬁgk
My = —F ,
¢n M¢n

much smaller than one, m, < 1, the off-diagonal coefficients become small com-
pared to the diagonal terms. If the natural frequencies of the supporting structure

n=1,...,N (€))
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and of the nonstructural element are well separated, these coefficients may be ne-
glected [2], and Eq. (6a) decomposes into N modal SDOF oscillator equations of
motion [9]:

. . I ..

Gn + 2800nGn + 02 (qn — qh') = —Tnke, n=1,...,N (10)

In Eq. (10) g, denotes the nth modal coordinate of the stand-alone frame struc-
ture, ¢, is the corresponding modal damping coefficient, and I, represents the nth
effective participation factor [16],

B ¢ Me
 ¢IMg,

The inelastic portions of the modal coordinates ¢,/ ! and the vector of plastic chord
rotations (or curvatures, alternatively) ¢? are related according to

(11)

n

pl_ ; T'Go? 12

4n w%(bquSn $,Go (12)

Note that the N Egs. (10) are coupled through the vector of plastic deformations ¢?.

However, if the mth mode of the supporting structure is tuned to the mode of

the nonstructural element, i.e. the substructure frequencies w,, and w; are closely

spaced, coupling terms between these modes must be considered. Then, the follow-

ing modal equations of motion of a non-classically damped 2DOF system are to be
solved [9],

Dk 1 Xy 0 285wy Xg

2 2 =
w, 0 qdm \ [ @ pl _ Do + M [ Gk -
+[0 wZKX) <0>q’”_ < 0 )
in addition to (N — 1) SDOF modal oscillators according to Egs. (10),

.. . ! .
q,,+2§nwnqn+wﬁ(qn—qnp):—F,,xg, n=1,....m—1,m+1,....,N
(14)

In (13) ¢, is the kth component of the mth primary structure mode shape ¢,,,.

Inspection of Egs. (1) and (13) reveals that the structure of the equations of mo-
tion of the real 2DOF system and of the modal 2DOF system is similar. In par-
ticular, if the mode shapes are normalized leaving their kth element equal to one,
ie. ¢our =1, n=1,..., N, both differential operators are equal. The only differ-
ence concerns the excitation. While the first of Egs. (1) is excited by (1 +m)X,, the
corresponding expression in Eqs. (13) is (I, 4+ m1,,)Xg (for ¢ = 1).

This observation leads to the assumption that floor response spectra based on a
2DOF oscillator according to Fig. 1(b) can be employed to estimate approximately
floor response spectra of SDOF nonstructural elements attached to MDOF support-
ing structures as shown in Fig. 8(a). However, 2DOF floor response spectra must
be modified as outlined in the following before they provide appropriate results for
MDOF substructure assemblies.
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In order to obtain the mth modal component of the floor response spectrum it
is proposed to multiply the spectral values of 2DOF floor response spectra (where
period T}, damping coefficient ¢}, and mass ratio 7 correspond to their modal coun-
terparts T,,, = 2w /wp,, {m, and m,, of MDOF structure) by an effective participation

coefficient 15,

(m) - (2DOF) , - __ - _ _
Fytmed = TnFgsmea (1 =1, Ty =T, Ep = Cm)

15)
= 2DOF) , - —
F(m) d = FmFa(s,med)(m =mp, Tp=Tn, §p = Em)

as,me

L,=7rl, (T;) depends on the period T of the nonstructural element, as discussed in
the following. For rigid nonstructural elements (i.e. 75 = 0) its response is identical
to the response of the supporting structure at the attachment point, and hence, the
spectral values of 2DOF floor response spectra are to be multiplied by the effective
participation coefficient |I7,|. At tuned periods, 7,, & Ty, the interaction between
q,, and x; is strong. Particularly, the response x; is affected by the mth modal co-
ordinate g,,, because the corresponding primary modal mass is much larger than
the secondary mass m;. It is reasonable to multiply 2DOF floor response spectra
by |I},]| for T,, = T;. However, for systems with T > T, the supporting struc-
ture is more rigid compared to the nonstructural element, and thus, the response x;
is mainly induced by ¥, and remains almost unaffected by the parameters of the
supporting structure (such as parameter I7,). As a result, from these empirical con-
siderations it is proposed to define period dependent effective participation factors
I, (Ty) according to

[ 0<T,<&T
N(T) = (L/Ti=yD( 0= D/IG —yDTil+1 ST <Ty<nTi m=1
1 Ty 2 yiT
(16a)
|Fm| OS TS' SSme
ﬁm(Ts) =1 L5/ T — vl Tl /1B — vi) Tl ST < Ty < YT m>1
0 Ty > ym T
(16b)

These effective participation factors I, (Ty) are provided with a bar to distinguish
them from the original period independent participation factors I7,. Up to Ty =
8T, T (Ty) complies with the absolute value of the corresponding I7,: T (Ty) =
|7, ]. Afterwards follows a linear ramp, which ends at period 75 = v, T;,,. As it can
be seen in Fig. 9, for periods Ty > y,, T;, the effective participation factor is different
for the fundamental mode (m = 1) and for higher modes (m > 1): I'|(Ty) = 1 for
Ts > y1Th, for all other modes T, (Ty) = 0. Coefficients 8, and Ym,m=1,...,N

m=1: & =15, y1 =50
(17)
m>1: 6,=0, y,=3.0

are based on an empirical optimization procedure.
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Fig.9 Period dependent effective participation factor for (a) the fundamental mode, and (b) higher
modes

Finally, an approximation of the actual floor response spectrum is determined
by superposing modal 2DOF floor response spectra according to the SRSS mode
superposition rule [16]

R<N
Fas,med = Z (Fa(:il,)ned)z (18)

m=1

Fds,med =

In the modal superposition the number R (< N) of considered modal 2DOF floor
response spectra depends on the sum of the effective modal mass as proposed in
earthquake engineering [16]. It is noted that the SRSS mode superposition has not
been developed for absolute accelerations for which a strong correlation between
modal responses is observed because of the presence of the ground acceleration
component. However, here the total peak acceleration of the nonstructural element
(and not of the supporting structure) is considered, where the impact of the ground
acceleration is less significant. This fact is supported by the outcomes of the subse-
quently presented application examples.

For a series of example problems, considering various elastic and inelastic sup-
porting structures with different modal parameters, coefficients §,, and y,, were
derived minimizing the error of the proposed approximate floor response spectra
according to Eq. (18) with respect to the exact outcome [17]. Afterwards, the mean
of all individual outcomes as given in Eq. (17) was determined. In the following
several example problems are presented to assess these values and the complete
procedure.

3.4 Assessment and Application

Generic planar multi-story single-bay frames of N stories as shown in Fig. 8(a)
serve as load-bearing structure. They are composed of elastic columns, rigid beams,
and rotational springs at both ends of the beams [10, 11]. Identical point masses
are assigned to each joint of the particular frame. The fundamental mode shape of
the MDOF frames follows a straight line. Global cyclic response under earthquake
excitation is represented by non-degrading bilinear hysteretic behavior of the rota-
tional springs, see Fig. 8(b). Strain hardening ratio « is 0.03 for all springs. The
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Table 1 Structural periods of vibration, modal mass ratios, and participation factors of selected
frame structures for the first three modes

N Ni[s]  Tols]  Ta[s] ny 3 |11 [T T3]

9 stiff 0.90 0.35 0.21 0.050 0.065 0.039 1.42 0.63 0.30
9 flex. 1.80 0.71 0.42 0.050 0.065 0.039 1.42 0.63 0.30
12 stiff 1.20 0.48 0.29 0.050 0.075 0.054 1.44 0.68 0.36

spring strength is tuned to obtain simultaneous onset of yielding at all springs in a
pushover analysis with linear design load pattern. This tuning provides inelastic de-
formations distributed in the entire structure when subjected to a severe earthquake.
For inelastic supporting frame structures the global target ductility u is selected
exemplarily to be 4. 5 % modal viscous damping is assigned to each mode of the
frame structure with N dynamic degrees-of-freedom. The fundamental period of
vibration 77 is 0.1N s for stiff, and 0.2N s for more flexible frame structures. On
top of the frames a vibratory nonstructural element is connected, which is modeled
as an elastic SDOF oscillator with light inherent damping, {; = 0.01. The effective
fundamental modal mass ratio is m1 = 0.05 for all considered structure assemblies.
In the proposed simplified analyses of floor response spectra the Nth component of
all mode shapes is setto 1: ¢,y =1, n=1,..., N. In Table 1 the first three peri-
ods, the corresponding modal mass ratios, and the period independent participation
coefficients are compiled for all considered frame structures.

Figures 10 and 11 represent median displacement and median acceleration floor
response spectra, respectively, for a nonstructural element attached to an unlimited
elastic stiff 9-story frame structure. The black full line corresponds to the results uti-
lizing the complete set of Eqgs. (6a)—(6b), i.e., full dynamic interaction between the
frame structure and the nonstructural containment is considered. Figure 10 shows
that the median displacement floor response spectrum exhibits a peak, where the
fundamental mode of the frame is closely tuned to the mode of the nonstructural
element, i.e. 71 =~ T. The acceleration floor response spectrum in Fig. 11 shows an
additional peak at the 7> &~ T. Furthermore, the results of the proposed simplified
analysis are displayed. Thereby, the contributions of three median 2DOF floor re-
sponse spectra are employed, whose periods T}, and mass ratios m correspond to
the first three natural periods and modal mass ratios of the frame structure. These
periods and mass ratios are: 0.90 s/0.050, 0.35 s/0.065, and 0.21 s/0.039. The corre-
sponding 2DOF response spectra for 7, = 0.90 s and m = 0.05 are shown in Figs. 3
and 4. The underlying 2DOF floor response spectra multiplied by the period depen-
dent effective participation coefficients are depicted in Figs. 10 and 11 by thin lines.
Their superposition according to the SRSS rule leads to the approximation of the
floor response spectra shown by bold light gray lines. It can be observed that there
is a good overall match between the exact solution and its approximate counterpart.
As expected, the median peak displacement response can be approximated suffi-
ciently accurate by the floor response spectrum of the fundamental mode only, see
Fig. 10. This outcome supports the proposed period dependent effective participa-
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tion factor I for the fundamental mode according to Eqs. (16a) and (17), compare
also with Fig. 9(a).

However, the contributions of the second and third mode on the median acceler-
ation floor response spectrum are essential, see Fig. 11. This figure shows that for
this example problem the three mode SRSS approximation underestimates the peak
acceleration response in the vicinity of the second structural mode: 75 =~ T5. Thus,
for this example the choice of the effective participation factor for higher modes
I, n > 2, according to Eqs. (16b) and (17) is not optimal. However, it is repeated
that I, n > 2, was determined utilizing an optimization procedure, which included
various different elastic and inelastic frame structures with different fundamental
periods and stories. In order to keep the procedure simple a unique I, n > 2 was
determined, which minimizes the average error for all considered cases.

In Figs. 12 and 13 the results of the SRSS superposition of 2DOF floor response
spectra, which are multiplied by a constant (i.e. period independent) effective par-
ticipation factor, are shown additionally. It is demonstrated that the resulting floor
response spectra overestimate the peak response considerably. Thus, the assump-
tion of period depending effective participation factors implemented according to
Egs. (16a)—(16b) is justified.

The effect of interaction between the supporting structure and the nonstructural
element is examined in Figs. 14 and 15. Additionally, in these figures floor response
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spectra are shown, which are generated omitting coupling between the substruc-
tures. In such a decoupled analysis the dynamic input for the nonstructural element
is the seismic response of the stand-alone supporting structure at its attachment
point. The results verify that this decoupled approach overestimates for the selected
mass ratio the actual response by more than 100 % for closely spaced substructure
periods. Thus, for the utilized mass ratio a decoupled analysis, which is common en-
gineering practice, may lead to results much too conservative. These results confirm
the proposed simplified methodology, which is simple and yet sufficiently accurate.

Next, the methodology is assessed including inelastic behavior of the support-
ing frame structure. The same structure as before is utilized, however the results of
this example problem are based on a global ductility ratio of 4. The corresponding
median displacement and median acceleration floor response spectra are presented
in Figs. 16 and 17. Thereby, the outcomes of the simplified methodology are based
on the modal superposition of three modified 2DOF floor response spectra. These
modal contributions are graphically displayed in Figs. 16 and 17. The correspond-
ing original 2DOF floor response spectra for the fundamental mode 7, = 0.90 s
are illustrated in Figs. 5(a) and 5(b). Figures 16 and 17 verify that the proposed
procedure approximates floor response spectra with sufficient accuracy also for in-
elastic behavior of the supporting structure. In contrast to results based on unlimited
elastic deformations the simplified procedure underestimates slightly the median
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peak displacement response (compare Fig. 10 with Fig. 16). In this example the su-
perposition of modified 2DOF acceleration floor response spectra leads to a better
approximation of acceleration floor response spectra than for the unlimited elastic
structure, see Fig. 11 and Fig. 17. Note that ductile deformations of the supporting
structure lead to energy dissipation and period elongation, and thus, floor response
spectra do not exhibit pronounced peaks at tuned natural periods. For moderately
heavy nonstructural elements Figs. 18 and 19 demonstrate the importance of inter-
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action between an inelastic supporting structure and an elastic nonstructural element
for tuned substructure periods.

Subsequently, a more flexible inelastic 9-story frame structure with a fundamen-
tal vibration period of 77 = 1.80 s is considered. The global target ductility of the
frame structure is again 4. The modal mass ratios and the damping coefficients are
identical with the ones of the stiff frame structure (77 = 0.90 s), see Table 1. Me-
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dian floor response spectra of this structural assembly confirm previous findings, see
Figs. 20 and 21. The approximation utilizing 2DOF floor response spectra leads to
a satisfactory prediction of the actual median peak response.

For a 12-story supporting structure with a fundamental vibration period of
T1 = 1.20 s median floor response spectra are presented in Figs. 22 and 23. In this
example the proposed methodology based on the first three modes leads to an excel-
lent match compared to the exact floor response spectra. Comparison with outcomes
from decoupled analyses (Fig. 23) shows the improvement of this method compared
to the classic decoupled engineering approach.

4 Conclusions

In this study it was demonstrated that the seismic peak response of vibratory non-
structural elements attached to plane regular multi-story frame structures can be pre-
dicted efficiently and with sufficient accuracy by modal superposition of modified
floor response spectra for SDOF nonstructural elements on SDOF supporting struc-
tures. The obtained results of this study reveal that for both unlimited elastic and
ductile load-bearing structures the proposed methodology captures effects of cou-
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pling, dynamic interaction, and tuning. However, it is emphasized that the proposed
period-dependent effective participation factors were calibrated to results based on
a far-field set of earthquake records. The application of these relations to earth-
quake records with other characteristics needs to be assessed in a subsequent study.
In all considered example problems plastic deformations are distributed through-
out multi-story supporting frame structures. Thus, the procedure was not tested for
structures with highly inelastic localized deformations, which arise for example in
soft story structures. Furthermore, only non-deteriorating inelastic component be-
havior is considered. In the near future such a procedure will become even more
competitive when the underlying floor response spectra coupled 2DOF systems for
various structural parameters may be found in a database available to the engineer-
ing public, which is currently compiled by the authors.
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Seismic Assessment of Steel Moment Frames
Using Simplified Nonlinear Models

Dimitrios G. Lignos, Christopher Putman, and Helmut Krawinkler

Abstract This chapter discusses the effectiveness of simplified nonlinear models
for seismic assessment of steel moment frames using single and multi-mode non-
linear static methods. It is demonstrated that the nonlinear static procedure (NSP)
has much value in understanding important behavior characteristics that are not be-
ing explored in a nonlinear response history analysis (NRHA) in which engineers
usually focus on a “blind” demand/capacity assessment rather than interpretation
and visualization of the steel frame behavior. It is also shown that NSP procedures
have many limitations for quantitative assessment of steel moment frame demands
even for low-rise frames. The conclusion is that both NSP and NRHA have intrinsic
value and that it is advisable to employ a combination of both to understand seismic
performance of steel moment frames and to quantify important engineering demand
parameters for these lateral resisting structural systems.

Keywords Nonlinear static analysis - Higher mode effects - Component models -
Nonlinear response history analysis - Performance-based earthquake evaluation

1 Introduction

In the context of Performance Based Earthquake Engineering (PBEE) a number of
engineering guidelines [1-7] are currently being used for seismic evaluation and re-
habilitation of steel and reinforced concrete structures. A structural engineer would
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commonly evaluate the performance of a structure by using the nonlinear static pro-
cedure (NSP), which is also referred as pushover analysis (PA). In the current engi-
neering practice in the U.S., a pushover analysis is typically based on an invariant
lateral load pattern that is applied along the height of a structure. This structure is
then pushed to a pre-defined target roof displacement. Many researchers have con-
ducted extensive research on the evaluation of seismic demands of structural sys-
tems with nonlinear static procedures based on invariant load patterns, e.g., [8—12].
These studies summarize major drawbacks of these procedures to predict seismic
demands of structures. Others [13—16] have conducted research on enhanced NSPs
that account for higher mode effects and either retain the simplicity of invariant
load patterns or employ adaptive procedures in which the lateral load pattern varies
during the NSP. Typically, these methods improve the prediction of engineering de-
mand parameters compared to the single mode PA. The value of NSP is in the fact
that this procedure permits inspection of structural response. It is also a simple tool
to identify critical regions of a structural system in which the potential for significant
strength or stiffness discontinuities is high.

Based on FEMA-440 [5], the major differences between results obtained from
NSP and nonlinear response history analysis (NRHA) are attributed to the cyclic
deterioration in strength and stiffness of structural components as part of a struc-
ture [6]. These effects are typically ignored by NSP. Other reasons for observed
differences between NRHA and NSP in prediction of seismic demands of a struc-
tural system are (1) inaccuracies in the prediction of the target roof displacement
at which the structural response is to be evaluated, and (2) multi-degree-of-freedom
(MDQOF) effects. In order to improve nonlinear MDOF modeling for the estimation
of the seismic response of a structural system, the National Institute of Standards and
Technology (NIST) initiated a program of focused studies [17]. This chapter sum-
marizes one of these studies, which address the minimum level of MDOF modeling
sophistication and appropriateness of nonlinear methods for seismic evaluation of
special steel MRFs.

2 Archetype Steel Buildings

The evaluation of the Engineering Demand Parameters (EDPs) predicted with
NRHA and NSP procedures is done with a two-, four- and eight-story archetype
steel building with perimeter special MRFs as their primary lateral resisting sys-
tem. These archetype steel buildings were designed as part of the NIST [18] project.
These structures comprise 3-bay special steel MRFs with Reduced Beam Sections
(RBS) designed in accordance with AISC 358-05 [19]. A plan view of a typical
archetype is shown in Fig. 1. The three steel buildings that are utilized in this study
are designed based on Response Spectrum Analysis (RSA) for a seismic design cat-
egory Dy,y. This corresponds to a design spectral acceleration at the short period,
Sps, and at a period of 1 second, Spi, equal to 1.0g and 0.60g, respectively. The
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detailed design of the archetype steel buildings is summarized in [18, 20]. In the sub-
sequent discussion, the three special steel MRFs are denoted as 2-Story-RSA-Dpax,
4-Story-RSA-Dpax and 8-Story-RSA-Dpy,«, respectively.

3 Modeling of Archetype Steel Moment Resisting Frames

In order to model the seismic response of the perimeter steel MRFs shown in Fig. 1,
two types of two-dimensional (2-D) analytical models are developed. The first ana-
Iytical model is the 3-bay model with all the components (beams, columns and panel
zones) of the steel MRF explicitly modeled. The second model is a single bay sim-
plified frame whose properties are tuned to represent the detailed steel MRF shown
highlighted in Fig. 1. In both models, P-Delta effects are simulated with a leaning
column that is connected to the steel MRF with axially rigid trusses. The subsequent
sections discuss details of these two analytical models.

3.1 Three-Bay Steel Moment Resisting Frame Model

The steel MRF, which is highlighted in Fig. 1, is modeled in a customized version of
DRAIN-2DX (Prakash et al. [21]). In this model, beams and columns are modeled
with elastic beam-column elements with concentrated plastic hinge springs at their
ends. These springs simulate the hysteretic response of a steel component (beam or
column) subjected to cyclic loading including strength and stiffness deterioration
based on the modified Ibarra-Medina-Krawinkler (IMK) deterioration model [22,
23]. Panel zone shear distortion is explicitly modeled [24]. The exact location of
the RBS section is also incorporated in the model. The deterioration parameters
of steel columns and beams with RBS are determined by multivariate regression
equations that have been developed based on information retrieved from a recently
developed database for deterioration modeling of steel components [23, 25]. These
analytical models have been used extensively for quantification of building seismic
performance factors using the FEMA P-695 methodology [18].
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3.2 Simplified Single-Bay Frame Model

To reduce the computational effort in estimating seismic demands of the steel MRFs
with NRHA and evaluate the effectiveness of simpler representations of the 3-bay
stee]l MRFs discussed in Sect. 3.1, a simplified model (see Fig. 2) is developed. In
this model, a single bay frame represents the three-bay moment-resisting frame so
that the overturning moment and column axial deformation effects are adequately
simulated. Luco et al. [26] developed similar models for computing the seismic in-
elastic demands of steel MRFs. P-Delta effects are simulated with a leaning column
that is always present in the numerical model. Strength and stiffness properties of
the gravity framing that is not part of the moment resisting frame can be repre-
sented with the “fishbone” model shown at the right of Fig. 2. However, stiffness
and strength of the gravity framing was not specifically used in the majority of the
current study except for an ancillary study, which is discussed in Sect. 4.2. Lump-
ing together multi-bay frames into a single bay frame can be accomplished by the
following rules for steel beams,

ZEIi/Li =EI/L ¢))
> Myi=M, )

in which I;, L;, and M ; is the moment of inertia, length and plastic bending
strength of the i-th beam in a story, respectively, and EI/L and M), are the stiff-
ness and plastic moment of the single bay beam. For steel columns,

Z El; =2EI 3)

> Mpei=2Mpe )

in which M ; is the plastic moment of the i-th column of the multi-bay frame
and M, is the plastic moment of the single bay column in the presence of an axial
load. For taller steel MRFs in which overturning moment and axial deformations in
columns are important, these effects can be approximated by setting L of the single
bay frame equal to the distance between the end columns of the multi-bay frame; and
by setting the area of the single bay column equal to the area of the end column of
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the multi-bay frame. This simplification is based on the assumption that overturning
effects are resisted mostly by the end columns of a steel MRF. The approximations
summarized herein are reasonable if all bays of the steel MRFs are of about equal
width, and become more approximate when spans of the steel MRF vary consider-
ably. Ignoring panel zone shear deformations and using centerline dimensions for
beams and columns introduce additional approximations to the analytical models.
The expected gravity load that is used to simulate P-Delta effects is based on a linear
combination of the dead load (D) and 25 % of the live load (L) applied uniformly
at the individual floors of the structure. The tributary gravity load to the columns of
the perimeter MRF was directly applied to the columns of the 1-bay frame.

Figure 3a shows a comparison between the pushover curves of the 3-bay four-
story steel MRF and the simplified 1-bay model. In this figure, the base shear V is
computed from the inertial forces only (V) and is normalized with respect to the
seismic weight W of the steel MRF. The roof drift 6, is defined as roof displacement
8 over the total height H of the steel MRF. As seen from this figure, the response of
the 1- and 3-bay models is almost identical. The 1-bay models are implemented in
the OpenSees simulation platform [27] whereas the 3-bay models are implemented
in Drain-2DX [21]. The base shear histories for a single ground motion obtained
from the 3-bay model developed in Drain-2DX (ATCW 3-Bay) and the 1-bay model
developed in OpenSees is shown in Fig. 3b. A comparison between absolute peak
overturning moments (OTM) obtained for the eight-story 3-bay and 1-bay frames
is shown in Fig. 3c. These simulations are based on the FEMA P-695 [7] set of 44
ground motions for a scale factor (SF = 2.0). Note that a SF = 2.0 corresponds to
approximately a maximum considered event (MCE) in California. From these com-
parisons shown in Fig. 3, in both static and dynamic analysis the seismic response
based on the 1-bay and 3-bay models is almost identical, providing confidence in
both the simulation platforms and in the ability of the simplified model to represent
the response of the 3-bay steel MRF.

4 Seismic Assessment of Steel Moment Resisting frames

This section focuses on evaluating the seismic response of steel MRFs with the
simplified models discussed in Sect. 3.2. The assessment is based on a comparison
between NSP and NRHA results.

Feasibility and limitations of the NSP is illustrated with the case studies that
were investigated. Since the emphasis is on simple methods that can assess multi-
mode effects on the seismic response of steel frame structures the modal pushover
analysis (MPA) [13] is also evaluated. Two main options are used for modeling the
components of the steel MRFs discussed in Sect. 3. These options are summarized
as follows:

e ASCEA41: All the steel components are modeled in accordance with ASCE/SEI
41-06 [3] utilizing the component model shown in Fig. 4a. Note that the post-
capping stiffness of this model is obtained by linearly connecting peak point C
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Fig. 3 Comparison of response predictions using the 3-bay and 1-bay simulation models

and point E of the generic ASCE/SEI 41-06 model. This modification is made
in order to provide a better match with data and analysis models developed in
the past decade [22, 23] and also to avoid numerical instability problems in the
nonlinear analysis due to the sharp decreases in stiffness between time steps and

force increments.



Seismic Assessment of Steel Moment Frames

Fig. 4 Steel component
models; (a) ASCE 41;
(b) Modified IMK model,
Options 1 and 3

Force F

Force F

97
i ASCE-4l
' _.__. Approximation
mrom
c
Y
Deformation 8
@
: 8 P § P
' ) ' e '
i \F i
i i Option 1

_________________________

_______

l..-.Option3

8'=1.58
u c
Deformation &

®)

e Analyt.M1: All the steel components are modeled with the modified IMK com-
ponent model [23]. For this purpose, a monotonic backbone curve is used as
shown in Fig. 4b. This option is the same as the ATC-72-1 [28] analysis Op-
tion 1. Cyclic deterioration is not reflected in the component model for monotonic
response and subsequently in the NSP. However, in the NRHA the component
model deteriorates cyclically based on the rules discussed in [22, 23]. For com-
parison purposes in the same figure we have superimposed the modified backbone
curve based on the IMK model (see ATC-72 [28] analysis Option 3).

The following options are used to determine the target roof displacement for the

NSP:

o ASCE41: The target displacement is obtained from the ASCE/SEI 41-06 [3] co-

efficient method.

o EqSDOF: The target displacement is based on the median displacement obtained
from NRHA of the first mode equivalent Single-Degree-Of-Freedom (SDOF)
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system. The 44 ground motions of the FEMA P-695 [7] set is used. The anal-
ysis is conducted with the IIIDAP [29] tool. The properties of the equivalent
SDOF are obtained from the base shear without P-Delta effects (i.e., V;—roof
displacement pushover curve). This implies that P-delta effects are accounted for
approximately in the properties of the equivalent SDOF.

Note that for the MPA procedure only the Analyt.M1-EqSDOF option is ex-
plored. This implies that the pushover analysis is conducted with the Analyt.M1
model, and the target displacement for the individual modes is determined from
an equivalent SDOF analysis with the analysis tool IIIDAP [29]. This program
computes the inelastic response of SDOF systems including cyclic deterioration in
strength and stiffness. The cyclic deterioration parameter A [25] is set equal to the
median value for steel components obtained from a steel database for deterioration
modeling (Lignos and Krawinkler [25]).

4.1 Single Mode Nonlinear Static Analysis Procedure

Figures 5a and 5b show the pushover curves with (V;4p_a) and without P-Delta
(V) effects for the 4-Story-RSA-Dpax MRF based on the ASCE-41/Analyt.M1
component models, respectively. In the same figures we have superimposed the ide-
alized trilinear curve based on the ASCE-41-06 [3]. When the ASCE41 component
model is used in the analysis, the NSP underestimates the post-yield strength and de-
formation capacities compared to the Analyt.M1 model. The implication is that the
target roof displacements predicted from the equivalent SDOF systems (see Figs. Sc
and 5d) are different for large ground motion intensities.

The use of the pushover curve based on the ASCE-41 component model (see
Fig. 5a) together with the equivalent SDOF model for target displacement prediction
(ASCE41-EqSDOF) may provide performance estimates that are lower than might
be justifiable. For a scale factor SF = 2.0 the EQSDOF leads to 33 collapses, which
are a direct consequence of the relatively short yield plateau obtained from using
ASCE41 component models in the pushover analysis. For all options, NSP story
drift predictions show a significant deviation from median NRHA values (Figs. 6a,
6b). In the inelastic range (SF = 2.0) drifts in the lower stories are overestimated
and drifts in the upper stories are underestimated. Results are illustrated for the
two- and four-story steel MRFs but the same observation applies for the eight-story
MRF.

Story shear predictions for the four-story steel MRF based on the NSP show poor
correlation with results from NRHA in the inelastic range (SF = 2.0). This can be
seen in Figs. 6¢c and 6d. Story shears are consistently underestimated, particularly
in the upper stories. The reason is the dynamic redistribution, which amplifies story
shear forces compared to those obtained from a predetermined lateral load pattern.
If story shear forces are an important performance consideration, then the validity
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Fig. 5 Single mode pushover curves and equivalent SDOF systems for the 4-Story-RSA-Dp,x
steel MRF

of quantitative values obtained from a pushover analysis diminish for this four-story
steel SMF. Similar observations apply to floor OTMs, which control axial forces in
columns of frame structures. In the upper stories, the NSP predictions are less than
half from those obtained from NRHA (see Figs. 6e and 6f). The situation is better at
the base, because absolute maximum shear forces in individual stories occur at dif-
ferent times. The outcome is that even for relatively low-rise steel MRF structures,
NSP predictions may provide misleading quantitative information, particularly for
force quantities.

The all-important issue of lateral load pattern is not explored here. Previous work
[5] has addressed this issue and came to the conclusion that variations in invariant
lateral load patterns do not improve the accuracy of EDP predictions. The load pat-
tern applied in all cases discussed here is based on the elastic first mode deflected
shape, as recommended in [3].
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4.2 Incorporation of Gravity System in the Analysis Model

The gravity system components must have sufficient strength and deformation ca-
pacity to resist tributary gravity loads at the maximum drifts computed for the lat-
eral load resisting system. The structural engineer typically decides weather or not
to include contributions of the gravity system to the lateral stiffness and strength
of a building. It is recommended to incorporate the gravity system in the analytical
model of the structural system because the analysis might expose weaknesses that
are not evident from inspection. An incentive for incorporating the gravity system
is its potential benefit in decreasing drift demands and increasing collapse capacity
of a structural system. This might be particularly attractive if the pushover curve
exhibits an early negative tangent stiffness that may lead to large displacement am-
plification or even collapse. The negative stiffness will be potentially reduced by
incorporating the gravity system or might even turn into a positive stiffness (Gupta
and Krawinkler [30]).

A simple way to incorporate the gravity framing is by means of the “fishbone”
arrangement (see Fig. 2). In order to prevent accumulation of large axial force in
the column of the fishbone, an arrangement with two beams is preferred. In this
arrangement, all beams are lumped into a single beam (I /L of beam = > EI; /L;
of all beams), all columns are lumped into a single column (7 of column =) I fi
of all columns), and all gravity connections are lumped into two connections repre-
sented by rotational springs. Beams can be usually represented by elastic elements,
provided that the connections of beams to columns are weaker than the beams. The
column bending strength should include the effects of tributary axial forces due
to gravity loads. Post-yield properties of the columns should be based on average
plastic hinge properties of the columns. For modeling of the gravity system of the 4-
Story-RSA-Dpax steel MREF, a preliminary design of the gravity beams and columns
is performed using tributary areas deduced from the plan view shown in Fig. 1. Since
half of the structure is modeled, the spine (column) of the “fishbone” represents 6
gravity columns and 4 moment frame columns bending about the weak axis. The
beam represents 7 gravity beams.

Shear connection properties were estimated from tests summarized in [31, 32].
The cyclic behavior of a typical steel shear tab connection is shown in Fig. 7a. The
pinching04 model in OpenSees [27] is utilized to simulate the response of this con-
nection. Because of the complex behavior of these connections, greatly simplified
models may be employed that are easily utilized by the engineering profession; thus,
a simple elastic-perfectly plastic spring model superimposed on the experimental
results is also used (see Fig. 7a). The yield rotation for this spring is 0.008 rad.
Pre- and post-capping plastic rotations 6,, 6, are 0.10 rad and 0.15 rad, respec-
tively. The yield strength is a compromise between positive and negative strength
values that can be sustained at large inelastic rotations. This model ignores the addi-
tional strength at relatively small rotations. A comparison of pushovers without and
with gravity system is presented in Fig. 7b. In this example not much is gained in
pushover strength and deformation capacity by incorporating the gravity system in
the analysis model.
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Fig. 8 Effect of gravity system on story drift ratios of the four-story MRF for SF = 3.0

The gain in peak story drift ratios when incorporating the gravity system in this
example is seen in Fig. 8. This figure shows NRHA and NSP results for a ground
motion scale factor SF = 3.0. For this scale factor, the maximum response is mostly
in the negative tangent stiffness region of the pushover (roof drift > 3 % as seen
from Fig. 7b). Figure 8a shows the median story drift ratios along the height of the
bare four-story steel MRF for the set of 44 ground motions for SF = 3.0. This scale
factor represents the median collapse capacity of this steel MRF, because collapse
occurred under 22 out of 44 ground motions.

Incorporation of the gravity system reduced the number of collapses from 22 to
11, which has a significant effect on the probability of collapse of the steel MRF.
The median roof drift is reduced from 0.049 to 0.034 rad. It is understood that the
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Fig. 9 Pushover curves for 1st and 2nd lateral load pattern of the 4-Story-RSA-Dy,ax steel MRF
together with equivalent SDOFs

observations made here are case specific, and the benefit gained from incorporating
the gravity system may depend strongly on the structural configuration.

4.3 Multi-mode Nonlinear Static Procedures

The basic steps for seismic evaluation of the peak response of a steel MRF using
MPA are summarized in [13, 17]. Figures 9a and 9b show the pushover curves of the
four-story steel MRF using the 1st and 2nd mode lateral load patterns. The idealized
equivalent SDOF systems based on the Analyt.M1 component model are shown in
Figs. 9c and 9d for the 1st and 2nd mode load pattern, respectively. The IIIDAP
program is used to compute median displacements for the equivalent modal SDOF
systems using the 44 ground motions from FEMA P695.

Goel and Chopra [33] concluded that estimates of plastic hinge rotations and
member forces using MPA into the inelastic range can be improved by computing
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Fig. 10 Peak story drift ratios for the four- and eight-story steel MRF as predicted with NRHA
and MPA for SF = 2.0

plastic hinge rotations from the total story drifts [34]. However, this will require an
additional nonlinear static analysis. For the sake of simplicity, this approach was not
implemented in the results presented in this section. In many cases, particularly for
low-rise regular structures, the higher mode target displacement obtained from the
equivalent SDOF system is less than the yield displacement, which implies that the
higher mode contribution is elastic. If this is the case, all deformations and forces
obtained from the MPA are modal combinations of inelastic first mode and elastic
higher mode contributions. In general, this is a preferred procedure compared to
the elastic response spectrum analysis (RSA) in which all modal contributions are
assumed to be elastic up front [17].

The results presented in this section are for the four- and eight-story steel MRFs.
Note that their seismic response has not entered the negative tangent stiffness region.
The following summary observations are made on the benefits of MPA predictions
for steel SMFs compared to single mode NSP predictions:

e In all cases that were investigated, the MPA led to improved EDP predictions
compared to the single mode NSP options. The MPA employed here is based on
the component model used in the NRHA (Analyt.M1) and on predicting modal
target displacements from NRHA of equivalent modal SDOF systems.

e Incorporation of the second mode led to considerable improvement in EDP pre-
dictions. Consideration of the 3rd mode did not change the results by much even
for the eight-story steel MRF (see Figs. 10, 11).

o In the case of the four-story steel MRF (see Figs. 10a, 11a, 11c) the improvement
of all the story-based EDP predictions compared to NSP predictions is remark-
able. In the eight-story steel MRF the MPA significantly improved the story drift
ratios (Fig. 10b), shear force (Fig. 11b), and overturning moment predictions in
the upper stories (Fig. 11d), compared to the single mode NSP. But predicted
drifts based on MPA in the lower stories are more than 50 % larger than those
obtained from NRHA for a SF = 2.0. The reason is that for this scale factor, the
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Fig. 11 Peak story shear forces and overturning moments for the four- and eight-story steel MRF

as predicted with NRHA and MPA for SF = 2.0

first mode pushover shows large amplification of story drifts in the lower stories,
which is not present in the NRHA. This shows the sensitivity of the predictions
to invariant load patterns, which is present as much in the MPA as it is in a single

mode NSP.

e The second mode contribution was elastic, which simplifies the modal combi-
nation and avoids ambiguities that might be caused by displacement reversals
sometimes observed in inelastic higher mode pushover analyses.

4.4 Residual Deformations and Absolute Acceleration Demands

Figure 12 shows the residual story drift ratios and peak absolute floor accelerations
along the height of the four-story steel MRF for SF = 1.0 and 2.0. It is notewor-
thy that the maximum absolute floor acceleration does not vary radically over the
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Fig. 12 Residual story drift ratios and peak floor accelerations for the four-story MRF for SF =
1.0 and 2.0

height of the four-story MRF, and that it is distributed almost uniformly over the
height for a ground motion scale factor of 2.0 at which the structure responds in the
highly inelastic range. Similar observations are made for the rest of the structures
that are part of this study. It is a shortcoming of the NSP that it does not provide
any estimation of these two important EDPs, considering the increasing importance
of floor acceleration and residual drift in loss assessment of structures [35-37], and
the importance of floor accelerations in estimating diaphragm forces.

5 Summary and Conclusions

This chapter presents an assessment of simplified techniques for the seismic eval-
uation of steel moment resisting frames. This assessment is based on direct com-
parisons of engineering demand parameters such as story drift ratios, story shear



Seismic Assessment of Steel Moment Frames 107

forces and overturning moments of 2-dimensional models of two-, four- and eight-
story archetype steel buildings as predicted with nonlinear single and multi-mode
static procedures and nonlinear response history analysis. The archetype steel build-
ings are designed as part of NIST [18]. Detailed 3-bay models and simplified 1-bay
models of the perimeter steel MRFs of these buildings are utilized, with the results
produced by the two types of models being almost identical. Modeling of gravity
framing can be achieved by means of a simple “fishbone” model. The main findings
from the results presented here, which are representative for regular steel moment
resisting frames only, are summarized as follows:

e For regular frames of four- and more stories, results from a single mode pushover
analysis with an invariant load pattern do not correlate well with median results
from nonlinear response history analysis. This holds true for story drifts, shear
forces, and overturning moments.

e Modal Pushover Analysis leads to improved EDP predictions compared to the
single mode NSP options by incorporating the second mode in the analysis in
addition to the first mode. The second mode contribution is elastic for the cases
evaluated in this study, which simplifies the modal combination.

e The sensitivity to invariant load patterns in single mode NSP and MPA typically
leads to amplification of story drifts in lower stories compared to NRHA.

e Incorporating the gravity system into the analytical model of the structural sys-
tem typically leads to a reduction in story drift ratios compared to the bare frame
only. This reduction may not be very important, except when the ground motion
intensity is large and collapse becomes an issue. Further studies need to be con-
ducted to address in detail the effect of gravity system on the seismic response of
stee]l MRFs.

e Nonlinear static analysis procedures are not capable of providing relevant infor-
mation on residual drifts and floor absolute accelerations. These two EDPs are
very important in loss assessment of buildings; the former for nonstructural ac-
celeration sensitive damage, and the latter for assessing the need for demolition.

e In the authors’ opinion, the main value of a nonlinear static (pushover) analy-
sis is to inspect the load-deformation response at a global and local level for the
purpose of evaluating behavior characteristics such as the importance of P-Delta
effect, global yielding, post-yield and post-capping strength and stiffness charac-
teristics. The nonlinear static analysis is also valuable for detection of potential
strength and stiffness discontinuities that might adversely affect the dynamic re-
sponse of a structure. Quantification of demand parameters from pushover results
is questionable for structures that have considerably higher mode effects and/or
significant strength or stiffness discontinuities. Such quantification can be ob-
tained, approximately, from NRHA using simple component models such a bilin-
ear hysteresis model, and a small set of spectrum-matched ground motions. More
accurate assessment of demand parameters, including measures of uncertainties,
will necessitate more accurate structural modeling for NRHA and ground mo-
tions that represent the intensity characteristics and record-to-record variability
inherent in seismic hazard.
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Preliminary Seismic Assessment Method
for Identifying R.C. Structural Failures

Stylianos J. Pardalopoulos, Georgia E. Thermou,
and Stavroula J. Pantazopoulou

Abstract In this chapter, an efficient method for rapid preliminary assessment of
the seismic vulnerability of reinforced concrete buildings is presented. The method
determines the columns’ limiting shear resistance at the critical storey of the struc-
ture, by applying a strength assessment procedure associated with typical column
details representative of the state of practice from the era of the building’s period
of construction and evaluates the severity of seismic displacement demand and the
maximum seismic acceleration that the building can sustain by applying a stiffness
index assessment. For application of the method, only knowledge of the basic geo-
metric and material properties of the building is required. The proposed method is
applied for verification reasons to two reinforced concrete buildings that failed dur-
ing the 1999 Athens earthquake. It is shown that the proposed method can be used
as a diagnostic tool for identification of both the building’s fragility and the pre-
vailing failure mechanism, allowing the engineers to immediately identify the most
vulnerable buildings that are likely to collapse in a potentially strong earthquake, as
well as to set objectives for their rehabilitation.

Keywords Lightly reinforced concrete - Rapid assessment - Substandard
construction - Brittle failure - Buildings

1 Introduction

Recent earthquakes have repeatedly illustrated the deficiencies of brittle reinforced
concrete buildings built according to earlier design codes. This class of buildings,
which today represents the majority of the built environment in the greatest part
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of the world, is typified by a number of features such as small section columns,
relatively stiff beams, inadequately confined joints and insufficient anchorage of
longitudinal and transverse reinforcement. Although the application of detailed as-
sessment procedures for seismic evaluation of every single existing structure is of
vital importance, the immense volume of required work makes it seem an unrealistic
scenario. This difficulty could be removed by applying a rapid evaluation procedure,
where information readily available for most buildings will be used; in such a rapid
assessment, critical features of the structure that render it more vulnerable could be
immediately identified, thereby simplifying the process of singling out those struc-
tures that represent a major threat to human life in the event of a strong earthquake.

The objective of this study is to present a methodology where the building’s
geometrical characteristics, material properties and reinforcement detailing of the
structural elements are considered sufficient information so as to single out the most
vulnerable buildings that are likely to collapse in a potential strong earthquake, but
can also be used to determine the objectives for their rehabilitation. Existing rein-
forced concrete buildings, “non-conforming” according to modern standards, are as-
sessed based on prioritising of the various alternative modes of failure. Mechanisms
considered refer to column flexure, degraded shear, anchorage and lap-splice devel-
opment, exceedance of joint shear capacity, connection punching and reinforcement
yield at the adjacent to columns beams; the rate of degradation of these mecha-
nisms with increasing displacement amplitude and number of cycles is idealised
through simplified mechanistic constructs which allows the prioritising of failure
modes as degradation proceeds. Furthermore, the seismic vulnerability of this cate-
gory of buildings is assessed as a function of interstorey drift demand imposed by
the design earthquake [1]. For confirmation, the methodology is applied in two rein-
forced concrete buildings that collapsed during the 1999 Athens earthquake. Results
indicated that in all cases buildings failed in a brittle manner practically prior to de-
velopment of any displacement ductility (i.e. elastic-brittle damage), a conclusion
compatible with the reconnaissance reports.

2 Construction Practice of Reinforced Concrete Buildings in the
1960’s and 1970’s

The rapid population growth and the shift from the agricultural to the industrial
economy model throughout Southern Europe in the first 2/3rds of the 20th century
led to massive urbanisation of cities. Multistorey reinforced concrete constructions
were established as the basic building unit, as they provided capability of arranging
the structural elements according to the architectural designs, short construction
time, low construction cost and endurance in earthquake excitations.

In this period, construction details were not strictly addressed by the design
codes, since their role in seismic response was yet to be fully understood and as
such they were seldom specified in design drawings of that era. Implementation
in practice was, to a large extent, determined by the experience of the labourers
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and the foreman responsible for the site. Credentials were never questioned and su-
pervision was relatively lenient. Reconnaissance studies from collapsed buildings
in major earthquake events over the past 30 years suggest that specific trade prac-
tices were used throughout Southern Europe (tie patterns and spacing, layout of
reinforcement), regardless of details—if any—that may have been specified in of-
ficial drawings. Typical details based on the standards of the period (summarised
in fib Bulletin 24 [2]) comprised smooth rectangular stirrups anchored with 90°
hooks in the ends, made of StI (fyx = 220 MPa) 6—8 mm diameter bars spaced at
250-300 mm o.c. (on centres) along the member lengths. Longitudinal reinforce-
ment of StIII ( fyx = 420 MPa) at relatively low area ratios and concrete quality of
Bn150 to Bn200 (defined as per DIN 1045, [3]) corresponding to modern concrete
characteristic strengths of 12 to 16 MPa were utilised. Lap splices were uncon-
fined whereas starter bars had arbitrary lengths. Regarding typical column section
sizes those ranged between 250 and 500 mm. Beam sizes were 250 mm by 600 to
700 mm, common slab thicknesses ranged from 120 to 160 mm, reinforced with
10 mm diameter bars usually spaced at 200 mm o.c. Other features commonly re-
ported refer to short or captive columns owing to the mixed use of the first floor of
the buildings and unconfined beam-column joints particularly in connections over
the perimeter of an R.C. frame building. Single column footings were mostly used
and, in well-attended structures, they were joined at the column base with lightly
reinforced, small section connecting beams.

Despite these systematic inadequacies, the percentage of buildings that have col-
lapsed in major earthquakes in the Mediterranean basin is relatively low when com-
pared to the total number of available buildings that belong to this substandard con-
struction categorys; this is not the case in other parts of the world such as in Haiti [4].
One issue that can be concluded, however, from post-earthquake reconnaissance ev-
idence and forensic evaluations of collapsed buildings which led to loss of human
life, is that collapse usually occurs due to premature failure if the gravity load bear-
ing elements of the structures, prior to attainment of the nominal yielding displace-
ment. This is contrary to the focus of most modern assessment methodologies that
are based on comparisons between ductility demand and supply. Note that the usual
point of reference in these procedures is columns where transverse reinforcement is
not adequate to support shear strength under displacement reversals beyond flexural
yielding of the individual members of a structure. For this reason, values of rotation
capacity in what is termed “non-conforming” members are usually deemed in the
range of 1 % to 1.5 %. This focus could be justifiable for structures with columns
where the member size (in the range of 500 mm or higher) is twice that of typical
stirrup spacing used in the 1960’s, so that a nominal 45° shear plane in a column
would intersect at least two stirrups. But in case of structures with smaller column
sizes, in the range of 350 mm, as is often encountered in older residential build-
ings, the practical spacing of stirrups from the 1960’s (250 mm) could mean that a
nominal potential sliding plane could be formed, intersecting no stirrup at all and
therefore being unable to mobilise any form of shear resistance.
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3 Method for Rapid Seismic Assessment of Reinforced Concrete
Buildings

In light of the limited knowledge of actual construction details in older structures,
preliminary assessment targeted toward identification of the most vulnerable build-
ings must necessarily rely on a marginal collection of data that is readily available,
such as the overall geometric details of the structure (number of floors, floor height,
floor area, location and gross geometry of load carrying members in plan), on the
implicit assumption that all reinforcing details are represented by the historical con-
struction information for the period and region of construction of the building stud-
ied. With these data, building seismic vulnerability is based on the following two
criteria:

(a) A strength assessment criterion, which is used to determine the weakest mech-
anism of resistance, likely to control the sequence of failure of the vertical ele-
ments of the structure, as well as their limiting resistance.

(b) A stiffness index assessment criterion, which is used to quantify the interstorey
drift demand of the critical storey of the building and the maximum ground
acceleration that the building can sustain.

Strength Assessment Collapse occurs when the vertical elements of the critical
floor lose their load carrying capacity. This process may be initiated either by loss
of lateral load resistance of the columns, or by punching and loss of support of
the floor diaphragms. Assuming the point of inflection (zero moment) at midspan
of the column length, enables the establishment of a static relationship between
the critical strengths of various mechanisms that could be responsible for column
failure along the line of a single column and the column shear sustained when any
of these phenomena is occurring: V% = (M"P 4 Mbotomy /p . where he, is the
deformable length of the column (i.e. the clear storey height, or free column length
in captive columns, Fig. 1(a)). This enables using column shear as a common basis
for comparison of strengths in order to establish a hierarchy of possible events that
threaten the integrity of a structure under lateral sway.

The flexural shear demand associated with flexural yielding in the column ends
under lateral sway, is a point of reference in the hierarchy of failure (Fig. 1(b)), as
flexural yielding is the only failure mode associated with ductile member behaviour.
Assuming the maximum developed stress of the column longitudinal reinforcement
equals to the steel yielding stress, f), the flexural shear demand can be calculated
according to Eq. (1), taking into consideration the column’s internal force equilib-
rium.

h b-d*- f.
VﬂexZZ'My/hcolz[p(,tot'?’(l_o-“"g)“l‘v'<E_O-8'S>i|‘Tlf

where, My is the flexural moment at yielding; o s is the total longitudinal rein-
forcement ratio of the column; fy is the longitudinal reinforcement yield stress;
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Fig. 1 Moment distribution and (b)—(f) possible failure modes of a reinforced concrete columns:
(b) Flexural yielding, (¢) Shear failure, (d) Bar anchorage/lap-splice failure, (e) Joint shear failure,
(f) Connection punching failure, (g) Column shear limited by plastic hinging in the beams =
ductile frame behaviour

fe is the concrete compressive strength; & is the normalised depth of compression
zone given in Fig. 2(b) as a function of py ,; and the (service) axial load ratio,
v, acting on the cross section (Ng10.34/(b-d - fc)); h is the column height; d is the
column effective depth; b is the column width and A, is the deformable length of
column (equal to free storey height or to the column length in the case of captive
columns).

Lightly reinforced columns, where transverse reinforcement is not adequate to
support shear strength under displacement reversals beyond flexural yielding, is a
common occurrence in older structures. A first estimate of the shear strength can be
obtained from the typical reinforcing details used in construction in the 1960-70’s,
by considering the simple statics of a column with symmetric end conditions un-
der lateral sway. Shear strength is supported by the stirrups that are intersected by
the critical plane of diagonal tension failure. To this end, it is assumed that shear
failure occurs by formation of a sliding plane inclined at an angle 6, with respect
to the longitudinal axis of the typical column (Fig. 1(c)). 6, determines the number
of stirrup legs actively participating to shear strength; based on calibration with test
and analytical results it is taken equal to 30°. The concrete contribution to shear
strength is accounted for by the horizontal component of a diagonal strut that car-
ries the column axial load through the web to the support. The angle of inclina-
tion of the diagonal strut, «, is determined from the line connecting the centres
of the compression zones in the opposite ends of the column (over its height), i.e.
tane =(h —0.8-&-d)/heot = (h/d — 0.8 -&) -d/hco (Fig. 2(a)), where £ is the
normalised depth of compression zone at the onset of yielding (Fig. 2(b)) and /# and
d are the height and the effective depth of the column’s cross section. Generally, it
is required that o < 6,.

The shear force that can develop to a column at the exhaustion of its shear
strength is:

d—¢&-d
V,,:v-tanoz~b~d~fc+A,r-fS,-i-cotev 2)
S
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Fig. 2 (a) Lightly reinforced column model used for the methodology; (b) Relationship between
&, pe.1or and normalised axial load, v, for columns at the onset of yielding

where, Ay is the area of stirrup legs in a single stirrup pattern in direction normal to
the splitting plane; s is the stirrup spacing and f;; is the stirrup yield stress.
Another possible mechanism of failure that can develop in reinforced concrete
columns is anchorage failure of longitudinal reinforcement (Fig. 1(d)). Anchorage
of areinforcement bar in tension is achieved through friction, developed between the
surface of the bar and the surrounding concrete. In cases of bars with ends formed
as hooks, an additional constant force is added to the total anchorage capacity of
the bar [5]. When the maximum anchorage force that can be developed by the bar
is lower than the tension force corresponding to the bar yield, f, - A, (where Ay is
the cross section area of the bar), anchorage failure is anticipated and the maximum
tension force developed by the bar is limited to its maximum anchorage capacity. In
this state, the column’s anchorage shear demand can be calculated according to:

min{ 5%+ @popr - 50 fis fy}
Pe,tot
V, = fz
C(1=04-&)+v- <3—0.8-s>

where, pg o is the total longitudinal reinforcement ratio of the column; L,
is the anchorage length; f, is the concrete bond stress, calculated according
to Model Code 2010 [5] (fp =2 - fp.o, Where fp, = ny - ng - (f/20)%,
n1 = {1.80 for ribbed bars; 0.90 for smooth bars}, n4 = {1.2 for f, =400 MPa;
1.0 for f, = 500 MPa}. Note that the anchorage capacity of a smooth bar hook
is considered equal to with that of a ribbed bar, = 50 - f} - Ap); Dy is the diame-
ter of longitudinal reinforcing bars; o0k s a binary index (1 or 0) to account for
hooked anchorages (otjoox = 0 = no hooks); fy is the longitudinal reinforcement
yield stress; f. is the concrete compressive strength; & is the normalised depth of
compression zone (Fig. 2(b)); v is the (service) axial load acting on the cross sec-
tion; & is the column height; d is the column effective depth; b is the column width;
h¢oi 1s the column’s deformable length.

bed f,

hcol (3)
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Lap failure of longitudinal reinforcement bars (Fig. 1(d)) occurs when the tension
force developed to the one of the two paired bars cannot be fully transferred to the
other one, due to insufficient concrete bond stress. Note that laps usually occur at
the lower end of the column, where starter bars from the floor below are paired
with their extensions. Concrete bond stress is increased by the transversal pressure
provided by the column stirrups along the lap length, whereas hook development at
the ends of the lapped bars also increase the tension force that can be transferred
from one bar to another. The column’s shear demand at the onset of its longitudinal
reinforcement bars lap capacity can be calculated as:

A

. /J/fr'L[ap~[%.fst_}_ab.(b_Nb.Db)'ft] . ' .

mln{< +ah00k'50‘Nb'Ab'fb s Nb - Ap fy
'd'(l_0-4"‘;‘_)+U'b'd2'fc'(0.5-h/d—0_4.g)

hcol/2

Vlap =
“)

where, in addition to the symbols described in previous cases, - is the friction
coefficient (0.2 < s < 0.3 for smooth bars; 1.0 < ug < 1.5 for ribbed bars); Ly,
is the lap length; o, is a binary index (1 or 0) depending on whether ribbed or
smooth reinforcement has been used (this variable regulates the contribution of the
concrete cover); Nj, is the number of tension bars; f; is the concrete tensile strength;
Ay is the area of a single tension bar.

Preservation of gravity load carrying capacity and lateral load strength in rein-
forced concrete frame structures under earthquake action is linked to the integrity
of the beam-column joints, since these elements are part of both the vertical and
the horizontal load path. Transfer of forces through the joints is necessary for the
development of the flexural strengths of the adjacent beam and column elements at
the joint faces. During an earthquake, the moment distribution at the element ends
adjacent to the opposite joint faces, impose the development of significant shear
forces in the joint core. In a new reinforced concrete construction, stirrups inside
the joint act as a mechanism of confinement, preserving the integrity of the diagonal
compressive stress-field, through which concrete participates to the joint shear ac-
tion, while also enabling sharp force gradients along the beam and column primary
reinforcements through development of high bond stresses. In an older construction,
with absence of stirrups inside the joint, the integrity of the joint relies to the limited
tensile strength of the joint panel. In both cases, when the shear capacity of the joint
core (Egs. (5a)—(5b)) is less than the corresponding developed shear forces, result-
ing from the flexural response of the adjacent to elements to the joint faces, joint
failure during an earthquake (Fig. 1(e)) may be very brittle.

— For unreinforced or lightly reinforced joints:

Vj - fe ) bj -d - dpeam
05V heo

Vi=y;-05-Vfer |1+ (5a)
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— For well reinforced joints:

U"fc bj'd'dbeam:| fst
Vi=l|y:-05-VFf |1+ — . 1+ ) horiz - ok
] |:yj fe 0.5V fe heot Jhortz Ji

(5b)

In Egs. (5a)—(5b), y; equals 1.40 for interior joints and 1.00 for all other cases; v; is
the (service) axial load acting on the bottom of the column adjusted at the top of
the joint; b; is the joint width; dpeg, is the beam depth; p; sori; is the area ratio of
joint horizontal reinforcement (i.e. total area of stirrup legs in the joint parallel to
the plane of action, divided by b; - dpeam)-

Punching shear of flat slabs in slab-column connections (Fig. 1(f)) is a failure
mode associated to the concentration of shear stresses over a relatively small area,
around the column. The associated column shear is estimated from equilibrium of
moment transfer, V,, = Mpy/ heoi, Where M, is the strength for moment transfer
of the critical punching perimeter at the slab-column connection, as:

0.12-min {1+ /3%2} - (100 p st - f)'/? - dgy - 0.25 - upie - (h+4 - dyp)
Von = -
heot

(6)

where, dy; is the slab depth, pg g is the total slab reinforcement ratio at the critical
punching perimeter around the column, u ;.

The limiting shear strength that controls the behaviour of the column, V, jiy,
is the least value obtained from Eqgs. (1)—(6), also identifying the mode of column
failure, thus,

Vi, iim = min{ Vﬂe}m Vo, Ve, Vla/n Vj’ Vpn} (7N

The above scenarios, which correspond to brittle failure modes except for the col-
umn flexural yield, may be suppressed if the shear force input to the column is
limited by yield of the longitudinal reinforcement of the adjacent beams (Fig. 1(g)).
In this case, the limiting shear strength of the column is:

+M,

beam) _ 0.85 - Ppeam * Dbeam 'dgeam : f}l?eam
hst hcol

where, Ppeam 1s the tension longitudinal reinforcement ratio of the beam (i.e. the
total longitudinal reinforcement ratio of the beam section adjacent to the column
if an interior connection is considered, or in the case of exterior connections the
value of the top or bottom beam reinforcement ratio (whichever is largest, since the
numerator in original form of Eq. (8) is simplified to absolute maximum of M ;; am
or M, ); Dpeam 1S the beam width; dpeg, is the beam effective depth and fybe“m is

beam
the yield stress of the beam longitudinal reinforcement.

M

beam

Viy = 3

Stiffness Index Assessment From the earliest earthquake studies the area ratio
of the vertical load-bearing elements in a structure was used to characterise the
magnitude of lateral stiffness. The first generation of Seismic Codes (up to 1950’s)
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Fig. 3 Lateral displacement profiles; (a) shear-type; (b) soft-storey

required that the floor area ratio of walls should be 2 %o times the number of floors in
the structure. The relationship between generalised stiffness, K* and the floor area
ratios of columns, p., walls, py,., and infill walls, p,;,, in a multistorey structure was
explored recently [1]. Next, the fundamental period of the structure, 7 (T ~2 -7 -
\/[0.8 -W/(g- K*)]), was used, in order to derive expressions for the displacement
demand under the design earthquake, Sy, in terms of p., Pyc, and Py, (Where the
seismic hazard is given in relative displacement vs. period spectrum coordinates).
Here the Design Earthquake Spectrum of Type I, as prescribed by ECS8-I [6] has
been used.

Using function @; = sin(r - i/(2n)) as an approximation to the fundamental
mode shape of vibration of the structure (modelling shear-type behaviour for older
construction, Fig. 3) in calculating K* and T (= 27 Jimi/K; - Zqﬁl?/Z(tp,- —
¢i_1)2], where K; and m; are the stiffness and mass of the typical storey i), it is
possible to develop generic charts of the type shown in Fig. 4 that relate drift de-
mand in the first floor of the structure to a combined stiffness geometric index, k, as
follows:

0.15<T <050: & =121.6-ag-n?- [ —L— ) -sin( = (9a)
E.-k 2-n
0.5
o= (N

where, ag is the peak ground acceleration, n is the number of floors, E. is the elastic
modulus of concrete, Ay, is the storey height and y is the mass per unit area of the
floor.

The combined stiffness geometric index, k, for dual systems is obtained from:

k= pc+ nwm 'plevm (10)

where:

%
— (4 25)

m,ave
2
h.&t

e pe i = Pwm,i + : * Pwe,i
Ee- (o +2.5) o (4 2 425) Eum

m,ave w,ave

Nwm =
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For frame-structures index k is substituted by k', defined as:

2
10 - fuk (]+lzhst )

k= Pt n;}JmIme’ where n:um = E @l — (11)
c

where E., Ey,, are the elastic moduli of concrete and masonry, respectively, o, is
the columns’ area ratio in the floor plan, p;,  , is an equivalent compound dimen-
sionless area index that represents both masonry walls and R.C. walls expressed in
terms of masonry wall properties, h; is the storey height, Iy ave, lw.ave are the aver-
age lengths of masonry and R.C. walls in the plane of seismic action, respectively,
Jfwk 18 the compressive strength of masonry and @ is the estimated chord rotation
demand of the first storey.

In cases of inadequate shear resistance collapse of substandard buildings in a
critical earthquake could be prevented only if the interstorey drift demand, ©®,, in
the critical floor (if the critical floor is the first floor, ®, = ©,1), is less than the
estimated drift at failure, @p;. The fraction of the interstorey drift demand devel-
oped through deformation in the columns, is: @5 = A. - ©,,, where A, is the relative
column stiffness ratio in the frame connections of the building [1]: Ac = A/(1 + A),
A=Y Elphg /> EIl.Lp, where summation refers to the number of beams (1 or 2)
and columns (1 or 2) converging to the connection.

If failure occurs prior to flexural yielding of the columns, i.e., when the estimated
base shear force at the occurrence of the controlling mode of failure of the column,
Viu,lim 18 less than the base shear corresponding to the onset of yielding of column
reinforcement, Vy gy, then the drift at failure is obtained from:

c Vu,lim

@fail = v P : @§,nom =Vu,lim * @;,nom = @;,crit ke @y,crit
y.flex
1 c 1 c
= @fail = )L_ . @fail = )L_ : @y,crit (12)
c c

In the above, @y is the estimated interstorey drift at longitudinal reinforce-
ment yielding of the critical floor—for typical frame structures (with floor heights
around 3 m) this is usually in the range of 0.5 %. @;) rir 18 the average interstorey
drift at longitudinal reinforcement yielding of the vertical members of the critical
storey. For typical older construction (stirrups spaced at distances over 200 mm), it
is shown through detailed calculation in the next section that the ratio r, j;;, may be
as low as 0.3-0.6, depending on the size of the columns for the typical details used
in the period of reference (due to the widespread practice of using uniformly large
stirrup spacing around 250 mm, values for the ratio are lower in the case of smaller
column section sizes owing to the lower number of stirrup layers engaged by the
sliding plane).

The plot in Fig. 4 has been drawn for the ECS8 [6] design spectrum (Type I) using
a unit value of peak ground acceleration for a period range 0.15 <7 < 0.5 sec
(Eq. (9a)); thus, demand (ordinate in the graph) should be multiplied by the specified
peak ground acceleration of the site in consideration, a,. The plot has been derived
for concrete quality C20/25 (f/ = 20 MPa) and mass per unit area of the floor,
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Fig. 4 Seismic vulnerability of old construction curves: relate the required composite floor area
ratio of vertical members to interstorey drift demand ratio for a unit value of peak ground accelera-
tion, a; =1 m/s? and a mass per unit area of the floor, y = 1 t/m?. (For any other PGA or y value
given in m/s? and in t/m?, the vertical axis should be multiplied by the product of these values
(without the units); e.g. if @, = 0.36g =3.53 and y = 0.5, then the vertical axis value should be
multiplied by the product 3.53 - 0.5 = 1.765)

y = 1.0 t/m?. (For a different mass value (e.g. 0.5 t/m?), the ordinate values in
the graph should be multiplied by this value. A detailed example is provided in the
legend of Fig. 4.) The range of the y-axis in the plot (i.e. 1st-floor drift demand)
0.1 % < ©®1 <0.5 %, is defined for buildings susceptible to brittle failures: the
upper limit corresponds to nominal interstorey drift at yielding for frames, whereas
the baseline value of 0.1 % is the estimated drift limit associated with inclined web
cracking (owing to diagonal tension failure) of concrete members; it is also in the
range of shear angle associated with masonry infill cracking. The chart may be used
to determine the level of peak ground acceleration that may be sustained without
failure, given the area ratios of the vertical, load-bearing elements in an existing
structure; alternatively, it may be used to determine the required floor index so as to
guide the retrofit strategy for upgrading the structure to a specified level of regional
seismic demand.

4 Application of the Seismic Assessment Procedure

The proposed methodology for rapid evaluation of the limiting resistance of “non-
conforming” reinforced concrete buildings through prioritising of the individual col-
umn shear strengths is tested through application to two building examples. Those
buildings are field examples of structures that collapsed during the 1999 strong
ground motion of Athens. Both buildings were located in the northern region of
Athens, were the ground motion possessed “near-field” characteristics. The essen-
tial attributes of each building and the estimated strengths and modes of failure are
studied using the expressions for strength ratios and drift demands detailed in the
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Fig. 5 (a) Plan configuration of Building A; (b) External dimensions and reinforcement details of
the building’s columns (dimensions in m)

preceding section; the characteristics of the performance point are estimated with
reference to the EC8 [6] spectrum adjusted to the level of peak ground accelera-
tion reported for the site in consideration. The estimated performance limit state
is compared with the observed behaviour based on post-earthquake reconnaissance
reports.

Building A was a two-storey fully symmetric in plan, industrial building, with
external plan dimensions of 38.00 m by 26.00 m (Fig. 5(a)). The first and the
second storey heights were 5.40 m and 5.30 m, respectively. Building A was sep-
arated by seismic gaps from two adjacent wing buildings along the two smaller
sides. The structural system was formed as an orthogonal grid of columns, beams
and slabs, according to typical construction practice of reinforced concrete frame
structures in Southern Europe. Details of the column geometry and longitudinal
reinforcement are presented in Fig. 5(b). Column longitudinal bars were smooth
220 mm in all cases, whereas stirrups were smooth, rectangular ties, approxi-
mately categorised based on site reconnaissance as @8/300 mm. Slab thickness was
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0.15 m. All perimeter beam cross sections were 0.70 m (height) by 0.30 m (width),
0.70 x 0.45 m for beams spanning between columns and 0.70 x 0.25 m for the
secondary beams. During the earthquake the building collapsed without any hor-
izontal dislocations of its structural elements, whereas the two adjacent buildings
were intact. From tests of core samples, the mean value of concrete compressive
strength was determined as 24.8 MPa, whereas steel yielding and ultimate stresses
were found to be for the longitudinal reinforcement 431.5 MPa and 512.0 MPa re-
spectively and for the stirrups 402.0 and 553.0 MPa, respectively.

The results of the strength assessment of the first storey columns in x and y direc-
tions for Building A are presented in Fig. 6. The building’s columns were divided in
four groups, according to their geometric properties (Fig. 5) and service loads, cal-
culated according to the g + 0.3 - g earthquake combination. Note that shear strength
at lap-splice and at anchorage of column primary reinforcement are calculated con-
sidering L4y =20 - Dy and L, = Lygp + dy, Tespectively. Also considered was the
existence of hooks in both ends of each longitudinal reinforcement bar. The prevail-
ing failure mechanisms for all the orthogonal section columns (i.e. column groups
1, 2 and 3) was failure due to exhaustion of the lap-length development capacity
of tension reinforcement when seismic action is considered in a direction parallel
to the columns’ smaller side and joint shear failure when the direction parallel to
the columns’ bigger side is considered. Rectangular section columns (i.e. columns
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Fig. 7 Vulnerability curve of 1.2%
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C7-C9 and C12-C14) were found vulnerable to shear failure. Shear strength at
beam yielding, Vjy, was not calculated due to insufficient information concerning
the beam reinforcement. The total shear force that the first storey columns of Build-
ing A could sustain was 1386 kN and 1301 kN in x and y directions, respectively,
whereas the corresponding flexural strength was estimated equal to 2346 kN and
2138 kN, respectively.

Results of the stiffness index assessment of the first storey columns are shown
in Fig. 7. Considering mass per unit area, ¥ = 0.66 t/m> (derived from the
g + 0.3 - g seismic combination), total storey mass, m = 651.1 t and storey stiff-
ness, Ky =53161.1 kN/m and K, = 52498.9 kN/m, the estimated building period
was Te =Ty =112 sec (T =2-7 - Jlmi/K; - Y. @7/ 3 (i — ®i—1)*]). The
vulnerability curve derived for Building A (Eq. (9b)) for a PGA value of 0.38g
which is the reported site acceleration for the critical earthquake. From the floor
plan of Fig. 5(a) the area ratio of vertical elements and corresponding k parameters
(Eq. (10)) where estimated equal to k = p. = 0.31 % in both x and y directions,
indicated that for the estimated area ratio of the vertical members in both directions,
the first storey drift demand would be @ y = ®1,, = 1.00 % (Fig. 7). The aver-
age nominal drift at yield, ©Y ,,,,, was estimated equal to 1.00 % and 0.88 % in
x and y directions, respectively. Note that interstorey drift at column yielding was
estimated using a “stick model” cantilever extending from the support to the point
of inflection around the midheight of the column [7, 8]: @;’mm =1/3-®y - Ly,
where @, = 2.14 - &5,/ h (&5y is the nominal yield strain of longitudinal reinforce-
ment). Premature failure was estimated for the columns by applying the strength
criteria (Eq. (7)) in the x and y directions, respectively (Fig. 6(a)—(b)). In all col-
umn group cases the controlling limiting shear strength was smaller than the corre-
sponding flexural shear demand (note that V}, was not estimated due to insufficient
information), indicating brittle failure with no ductility. The average values of the
first storey columns were Vi jim,x/ Vfiex,x = 0.61 and V,, jim.y/ Vfiex,y = 0.65 and the
corresponding drifts at failure (@;,crit =Trulim @;’,wm, Eq. (12)) were 0.61 % and
0.56 % in x and y directions, respectively. The estimated first storey drift at failure in
each direction for an average value of A, = 0.70 18 O x = 1/A.-0.61 % =0.86 %
and Oy = 1/Ac - 0.56 % = 0.80 % (horizontal dashed lines). The outcome of
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Fig. 8 (a) Plan configuration of Building B; (b) External dimensions and reinforcement details of
the building’s columns (dimensions in m)

the stiffness index assessment procedure (©1 x > O x and O1 y > Oy y) renders
Building A susceptible to collapse in the 1999 Athens earthquake, a finding compat-
ible with the reconnaissance report.

Building B was also an industrial building, having a 37.60 m by 22.80 m or-
thogonal plan (Fig. 8(a)). The building had two basements and four storeys, each
2.85 m high. The structural system comprised a grid of columns which were con-
nected with beams only along the buildings’ perimeter, the beams having a section
height of 0.60 m and 0.20 m web width. In the centre of typical floor plan, columns
supported a flat-plane Zoellner system, having a thickness of 0.22 m. During the
earthquake the building collapsed, except for the stairwell in the corner of the plan
(Fig. 8(a)). The stairwell was connected to the building through the floor slabs which
were lightly reinforced (¢ s/ around 1.0 %). Thus the connection was deficient in its
capacity to transfer the inertia forces of the diaphragm to the perimeter walls of the
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stairwell over the 5 m long unilateral contact provided at each floor level; in light of
this poor connection, mobilisation of walls in providing lateral load resistance to the
building was marginal, as evidenced by the building wreckage. After tests conducted
on material samples, the concrete was found to have a mean compressive strength of
20 MPa, while longitudinal reinforcement and stirrups were found to have smooth
surface and were classified as S400 (f, =400 MPa) and S220 ( f, = 220 MPa) re-
spectively. Column dimensions and longitudinal reinforcement details (bar diameter
equal to 16 mm in all cases, except for the rectangular columns where @20 mm bars
were utilised) are presented in Fig. 8(b), whereas transverse reinforcement com-
prised @6/300 mm rectangular, smooth stirrups.

To perform strength assessment, the building’s columns were divided in three
column groups, as presented in Fig. 8, according to their geometrical properties and
their service load (calculated according to the seismic combination g + 0.3 - gq).
Longitudinal reinforcement bars were considered to have a lap length, L, equal
to 25 - Dy, and an anchor length, L, = L4y + dy, whereas hooks were consid-
ered in both ends of each bar. Strength assessment (Fig. 9(a)-(b)) has revealed
that the prevailing failure mechanism of the first storey columns was failure due
to exhaustion of slab punching strength. The total shear force that the first storey
columns of Building B could sustain at the onset of slab punching was 3602 kN
and 3422 kN in x and y directions, respectively, whereas the corresponding flex-
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ural strength was estimated equal to 9650 kN and 8345 kN, respectively. Con-
sidering first storey total weight, We4 03, = 31836 kN (total mass, m = 811.3 t
and mass per unit area, y = 1.08 t/m?) and storey stiffness, K, = 1059906 kN/m
and K, = 1051293 kN/m, the estimated building period was T, = Ty = 0.50 sec.
The vulnerability curve of Building B (Fig. 10) derived from Eq. (9a), considering
ag = 0.38¢, which was the peak ground acceleration in the Sepolia region where
the building was located. The area ratios of the first storey columns was estimated
equal to k = p. = 1.00 % in both x and y directions, thus the first storey drift de-
mand for Building B would be ®1 x = &1, =1.35 %. The average nominal drift at
yielding of the vertical elements, ©7 ,,,,, (O ,,,, =1/3- Py - Ly, Py =2.14 &5,/ h
[7, 8]), was estimated equal to 0.35 % and 0.29 % in x and y dlrectlons respectively,
whereas the failure drift of columns, (); crir» Was equal to less than 50 % of the av-
erage nominal drift at yield (O ,;, . =0.37-6OF ., «, OF .;, , =0.41-6O5 ).
The first storey drift at failure, Oy (Ae = 1. 00) (