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    Abstract     The meaning of mathematical modelling and modelling competencies 
has been discussed frequently and, in parts also controversially, recently. There is 
still a debate about how to measure modelling competency and a comprehensive 
agreement is not yet in sight. In this chapter we applied six stages of mathematical 
modelling competency to classify student solutions according to their modelling 
performance and investigated 234 student solution approaches from grades 6 to 11 
for the modelling task,  Restringing a Tennis Racket . We identifi ed four main solu-
tion approaches. In the study we analysed the correlation of modelling competency 
stage and students’ grade as well as gender. The study shows that mathematical 
modelling competency is independent of gender issues in this specifi c case, and 
gives insights into the modelling behaviour of students of different grades.  

1         Introduction 

 In the last 10 years there has been a busy and controversial discussion about how 
mathematical modelling competencies can be evaluated and, especially, how they 
can be improved (e.g., Blomhøj and Jensen  2003 ; Kaiser et al.  2011 ). For this reason 
a variety of treatments have been established which show, among others, that the 
modelling competency, as well as incorporated sub-competencies (see Fig.  27.1 ), 
can defi nitely be improved by many different forms of treatments (e.g., DISUM  1  - 
project). Modelling competency is a quite diffi cult construct, involving many 
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factors, reaching from cognitive psychological aspects, like the infl uence of different 
thinking styles on the transition process from reality to mathematics (Borromeo 
Ferri  2010 ), through to problems concerning the analysis of empirical results, due 
to its limited measurability. In the context of measuring modelling competency 
there is still no consistent opinion. Isolated efforts have been made to operationalise 
modelling competency to have an assessable concept (e.g., Maaß  2007 ).

   The study of Ludwig and Xu ( 2008 ) investigated solutions, documented by 
Chinese and German students of different grades, concerning the mathematical 
background of peeling a pineapple in a presented, characteristic way. Based on the 
possibility that there are differences among the two populations, students from 
grade 9 to 11 from Germany and Shanghai were asked to mathematically explain, 
that is, to set up a mathematical model of the spiral-shaped appearance of a peeled 
pineapple, as it is customary in China. Besides the result that the solution quality is 
correlated to the grade (9–11) of the students, the authors argued that the ability to 
solve the problem successfully increases with the grade. The research question for 
the present chapter results from this observation and addresses the assumption that 
the required mathematical knowledge needs to be cognitively consolidated before 
it can be used in a targeted manner. This phenomenon forms the basic question of 
the present chapter. How will students from a wider range of grades solve a model-
ling task? Can we expect multiple solution strategies? Is there any difference 
according to gender? To answer these questions we fi rst have to analyse and evalu-
ate the student solutions.  

2     Theoretical Framework 

 This study is based on an evaluation scheme already applied in the study of Ludwig 
and Xu ( 2008 ) which assigns stages to the documented solutions of students, which 
represent their modelling progress in terms of the modelling cycle of Blum and Leiß 
( 2007 ). The implementation of the study as a cross section study of students from 

  Fig. 27.1    Modelling cycle according to Blum and Leiß ( 2007 ) completed with modelling compe-
tency stages       
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different grades allows for an investigation of the relationship between modelling 
competency and grade. The same modelling task is given to all of the students, so 
that a consistent comparison of performance can be archieved. In addition, by 
extracting different solution approaches, we are better able to understand the model-
ling process of students. 

2.1     The Stages 

 When elaborating on a mathematical modelling task, one passes through different 
phases of the modelling cycle, according to Blum and Leiß ( 2007 ) (see Fig.  27.1 ). 
The transition from one modelling phase to another, that is a progression in terms 
of the modelling cycle, requires a successful overcoming of cognitive obstacles 
(Blum  2007 ). Although we cannot assume a linear cycling through the modelling 
cycle by the students, as it was verifi ed by Borromeo Ferri ( 2006 ) that students 
follow individual modelling routes when being confronted with modelling tasks, 
most solutions indicate a more or less detailed solution process. Since it was not 
part of the study to reveal the actual modelling progress of the students, we concen-
trated on how far the students have gone through the modelling cycle refl ected by 
their solutions. We assigned so called  modelling competency stages  to each student 
solution, based on their solution progress within the modelling cycle. We applied a 
scale of six consecutive stages to categorise the student solutions (Ludwig and Xu 
 2008 ), which can be easily integrated in the modelling cycle of Blum and Leiß 
( 2007 ) (see Fig.  27.1 ). However we cannot preclude that the students would not 
have been able to reach a higher stage when having had more time to work on the 
task. This fact is represented by the terminology “stage” since “stage” refl ects a 
part of a progress which implies a potential achievement of a higher stage. 

 The defi nition of  modelling competency stage , as we use it in this chapter in 
relation to modelling competency, is based on the competency concept of Weinert 
( 2001 ), where he points out that competency is an ability which is subject to assess-
ment and used by a person explicitly. In a broader sense this understanding of 
modelling competency coheres with the defi nition of Blomhøj and Jensen where 
they pointed out that modelling competency is “headed for action” (Blomhøj and 
Jensen  2003 ). 

 In the following we will explain the stages as they are applied in this study. For 
a comparative explanation see Ludwig and Xu ( 2008 ). We have to note, that the 
stages are not distributed equidistantly in general. The reason for this lies in the fact, 
that the underlying scale is not metric.

•    Stage 0 indicates that the student does not understand the task or is not willing to 
solve it. There are no sketches or notes on the worksheet.  

•   Stage 1 shows that the student understands the given real situation, but the 
student is neither able to structure nor to simplify it. The student is also not 
able to fi nd a connection of real situation and mathematical ideas. There are 
some reasonable sketches on the worksheet but no simplifi cations or mathe-
matical formations are identifi able.  
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•   Stage 2 encompasses the development of a real model by simplifying and 
structuring the real situation. However, the student is not able to transfer this 
model into a mathematical model. There are sketches of the situation and 
assumptions to simplify it.  

•   Stage 3 contains the transfer of the real model into a mathematical model. The 
student is able to work to a limited extent with this model and produces a con-
crete result. However, the student is not able to generalise the solution process. 
The real model is set up, which implies a completion of any sketch with mathe-
matical notations. In addition, reasonable formula approaches are obvious and a 
solution in terms of a numeric value is identifi able.  

•   Stage 4 includes a generation of a mathematical question from the real situation. 
The student is able to work within the mathematical context and to establish a 
general formula; but this formula is not analysed or validated yet.  

•   Stage 5 indicates that the student analysed or validated the solution to better adjust the 
formula to the given situation. Thus, the student gives suggestions for improvement.      

3     The Study 

3.1     The Real Situation 

 The string of a tennis racket can only be replaced as a whole, in contrast to the 
strings of a guitar, which can be easily exchanged individually. In addition, the 
string needed for the racket has to be cut off from a big string coil, such that the total 
length must be known in advance. Of course the string should not be cut off too 
short, since then it is unusable. On the other hand, string should not be wasted. 

 Based on these considerations the question arises, how the minimal string length of 
a tennis racket can be determined using the dimension data of the racket. To be able to 
repair different sorts of rackets, as for example also badminton rackets, a general for-
mula has to be established which is independent of the actual dimension data given on 
the worksheet. This problem has also been considered by Ludwig ( 2008 ); however we 
focus here on the student solutions, their performance and correlation with gender 
aspects. An extended version has been published in Ludwig and Reit ( 2013b ).  

3.2     Sample and Study Implementation 

 The study was performed in grammar schools in Bavaria and Baden-Wuerttemberg 
in grades 6, 8, 9, 10 and 11 with students from the age of 12–17. We involved a total 
of 234 students, all not having had special training in mathematical modelling before. 

 The study was to be integrated into the normal school routine, so the task had to 
be able to be processed in a 45-min class, as is usual in Germany. We developed a 
modelling task which is, according to the German curricula, equally well suited for 
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all participants. The underlying mathematical knowledge, for example performing 
an approximation of the tennis racket by a rectangle, should already be available to 
5th graders, according to German curricula. 

 At the beginning of the lesson a 90 s clip was shown, illustrating the situation of 
the modelling task. The second phase of the lesson contained working on the actual 
modelling task in a seatwork setting. Therefore, the students received a worksheet 
in A4 landscape format (see Fig.  27.2 ); on the left side there is a picture of the tennis 
racket with the broken string. This picture is equipped with original specifi cations, 
indicating the horizontal and vertical length of the racket area. Additionally, the fol-
lowing two mathematical questions are below the picture (not shown in Fig.  27.2 ).    

     (a)    It is now up to you to estimate the total length of the string you need for this racket 
in a mathematical way. Perhaps the dimensions in the picture will help you.   

   (b)    Can you specify a simple formula that an employee in a sports shop can use to 
calculate the total length of the string of different rackets? The formula can use 
racket data, which are easy to determine.      

4        Solution Approaches 

4.1     Approach by Direct Measurement 

 With a direct measurement approach the student directly measures the string length 
illustrated on the worksheet with a ruler and translates these values subsequently 
into real values by calculating the scale using the dimensions given in the picture. 

  Fig. 27.2    Worksheet with the modelling task       
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This process can also be observed vice versa, that is, calculating the scale fi rst and 
then summing up the real string lengths to obtain the total length (see Fig.  27.3 ). 
The main problem of the direct measurement approach is that it is not possible to set 
up a general formula based on this approach so it must be classifi ed as stage 3. Most 
students using this approach stopped after subtask (a), having stated a numeric value 
for the total string length. Subtask (b) requiring aspects of generalisation, had often 
not been elaborated to some extent.

4.2        Rectangle Model 

 The rectangle model includes the approximation of the tennis racket area by a rectangle 
(see Fig.  27.4 ). Doing this, the respective students lengthen the strings beyond the frame 
of the racket. They count the vertical and horizontal strings (in our case 18 horizontal 
and vertical strings) and multiply these values by the given side length (here 32 cm) and 
width (here 26 cm) of the rectangle, or tennis racket respectively (see Fig.  27.5 ).

    The calculated result of 1,044 cm total string length in Fig.  27.5  qualifi es the 
solution approach for stage 3. Furthermore, the student argues, that the rectangle 
model is suffi ciently exact, because the resulting overestimation intuitively includes 
the extra string needed to fasten the string on the frame of the racket. This improves 
the student solution to stage 4. The establishment of variables for the number of 
horizontal and vertical strings and length and width of the racket leads to a general 
formula, which is valid for different rackets. This gives rise to rating the student 
solution at stage 5.  

  Fig. 27.3    A student solution 
using direct measurement 
(rated stage 3)       

  Fig. 27.4    The  rectangle  net 
overlaying the elliptical 
racket       
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4.3     Functional Model 

 By applying the functional model some students tried to approximate the shape of the 
elliptical tennis racket with a graph of a function (see Fig.  27.6 ). To do so, the student 
implicitly inserted a coordinate system into the picture on the worksheet such that three 
constraints ( f (16) = 13,  f (0) = 0,  f ′(16) = 0) can be set up. However, as long as the func-
tion type is unknown, the three equations are more or less unusable, even if they are 
indeed comprehensible. An explicit calculation could not be performed by the student 
which leads to a rating with stage 2, but the subsequent strategy was outlined perfectly. 
The student argued that the inverse function of the sketched function is necessary and 
that the outputs belonging to integer  x -values provide the single string lengths.

  Fig. 27.5    A rectangle solution of a student in grade 10 (rated stage 5)       

  Fig. 27.6    A solution using the function approach (rated stage 2)       
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4.4        Area Model 

 The area model, as shown in Fig.  27.7 , was used rather infrequently. It became clear, 
that the student had diffi culties in transforming the area of an object with the string 
length (see Fig.  27.7 ). One explanation may be the diffi cult accessibility of a circle 
or other geometric object by a functional term.

5         Results 

 The 234 solutions have been analysed by two independent raters classifying each 
solution approach according to our stages. They found the four main solution 
approaches and classifi ed them using the six stages. With Cohen’s reliability coef-
fi cient,  κ  = 0.789 and Pearson’s correlation coeffi cient,  r  = 0.84, there was a good 
inter-rater reliability. 

 In Fig.  27.8 , it is obvious that the students improve their modelling skills 
between grade 6 and grade 9, at least related to the given task. From grade 9 this 
development passes over to saturation. A possible assumption is that so long as the 
required mathematical knowledge is not cognitively consolidated to this point, 
we have a continuous process of improvement concerning modelling skills. This 
increase in modelling competency then reaches its maximum and stays at this 
stage.

  Fig. 27.7    A student solution 
using a circular model and 
ignoring units (rated stage 2)       

  Fig. 27.8    Distribution of stages per grade       
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5.1       Stages Within Grades 

 When looking at the distribution of stages within the grades, it is apparent that no 
student of grade 6 reached stage 5 and more than 80 % of the students of grade 6 and 
8 did not reach stage 4 (see Fig.  27.9 ). Grade 6 and 8 students appear to have had 
more problems with subtask (b), that is generalising their solution of subtask (a), 
than the others, since the elaboration of subtask (b) was prerequisite to reach stage 
4. The distribution of stages from grade 9 to 11 is not conspicuously different, con-
sistent with the fi ndings of Fig.  27.8 .

5.2        Performance by Gender 

 A Mann-Whitney- U -Test to detect differences in the modelling competency among 
boys and girls was not statistically signifi cant ( z  = −0.89,  p  = 0.374) (see also 
Fig.  27.10 ).

   Both, girls and boys have a maximum at stage 3, suggesting that stage 3 is a kind 
of barrier for the students. Figure  27.9  also clearly shows that most students reached 

  Fig. 27.9    Percentage of students by grade reaching various stages       

  Fig. 27.10    Percentage of 
boys and girls stopping at 
various stages       
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stage 3. The main step from stage 3 to 4 is the establishment of a general formula. 
It is known that generalisations are often very hard to understand and to accomplish 
by students (c.f. Stillman et al.  2007 ). However, this shows that the transfer to the 
actual modelling task, namely subtask (b), is still diffi cult for students.   

6     Discussion 

 The investigation of solutions of a single modelling task and the comparison to 
performance has not been done before explicitly in this manner and gives interest-
ing insights into modelling behaviour of students. A fi rst quite pleasing result of this 
study was that nearly all students were able to document a more or less useful solu-
tion to this modelling task in contrast to PISA 2000 where German students were 
not yet able to work on mathematical problem solving tasks in a satisfactory manner 
(Artelt et al.  2001 ). 

 As expected, especially students in younger grades seem to have had more diffi cul-
ties in solving this modelling task. This strengthens the assumption that mathematical 
modelling competencies are enhanced by experience and practice, even though the 
more advanced mathematical knowledge might also be an issue. Since the present 
study cannot uniquely determine the actual reasons for the differences in performance 
of grades, more data must be collected to clarify this. However, for all grades there is 
an obstacle proceeding from the explicit numeric result to its generalisation and this 
could be commensurate with similar diffi culties in purely mathematical contexts. 

 In contrast to the widespread stereotype of mathematically science oriented boys 
and linguistically gifted girls we did not fi nd statistical evidence of differences in the 
performance of boys and girls in elaborating on a modelling task. This coincides well 
with the fi ndings of Ludwig and Reit ( 2013a ) where tests support a general compa-
rability of boys’ and girls’ modelling competency with reference to the tennis racket 
task. To explain this in more detail, some more task oriented research is needed. The 
correlation between solution model and performance has not been investigated in 
this study. Moreover, with the evaluation of solution approaches it is possible to draw 
conclusions about the coherence of subject matter and approach used.     

   References 

    Artelt, C., Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., et al. (2001).  PISA 
2000 Zusammenfassung zentraler Befunde . Berlin: Max-Planck-Institut für Bildungsforschung.  

     Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: concep-
tual clarifi cation and educational planning.  Teaching Mathematics and Its Applications, 22 (3), 
123–138.  

   Blum, W. (2007). Modellierungsaufgaben im Mathematikunterricht – Herausforderungen für 
Schüler und Lehrer. In H. Humenberger et al. (Hrsg.),  Festschrift für Hans-Wolfgang Henn  
(pp. 8–22). Hildesheim: Franzbecker.  

M. Ludwig and X.-R. Reit



337

       Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling 
problems? The example “Sugarloaf”. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), 
 Mathematical modelling ICTMA 12: Education, engineering and economics  (pp. 222–231). 
Chichester, UK: Horwood.  

    Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling 
process.  ZDM – The International Journal on Mathematics Education, 38 (2), 86–95.  

   Borromeo Ferri, R. (2010). On the infl uence of mathematical thinking styles on learners’ model-
ling behaviour.  Journal für Mathematik-Didaktik  (Journal for Didactics of Mathematics) , 
31 (1), 99–118.  

    Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (2011).  Trends in teaching and learning 
of mathematical modelling: ICTMA 14 . New York: Springer.  

    Ludwig, M. (2008).  Mathematik + Sport: Olympische Disziplinen im mathematischen Blick . 
Wiesbaden: Vieweg + Teubner Verlag.  

   Ludwig, M., & Reit, X.-R. (2013a). Comparative study about gender differences in mathematical 
modelling. In G. Nagarjuna, A. Jamakhadia, & E.M. Sam (Eds.),  Proceedings of EPISTEME 5  
(pp. 48–54). Mumbai: Cinnamon Teal.  

    Ludwig, M., & Reit, X.-R. (2013b). Eine empirische studie zum mathematischen modellieren im 
sport. In R. Borromeo Ferri, G. Greefrath, & G. Kaiser (Eds.),  Mathematisches modellieren für 
schule und Hochschule – Theoretische und didaktische hintergründe . Berlin: Springer Vieweg.  

      Ludwig, M., & Xu, B. (2008). A comparative study of modelling competencies among Chinese 
and German students. In M. Blomhøj & S. Carreira (Eds.),  Mathematical applications and 
modelling in the teaching and learning of mathematics: Proceedings from TSG 21 at ICME 11  
(pp. 197–206). Roskilde: IMFUFA, Roskilde University.  

    Maaß, K. (2007).  Mathematisches modellieren – Aufgaben für die Sekundarstufe . Berlin: Cornelsen 
Verlag Scriptor GmbH & Co. KG.  

    Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in imple-
menting mathematical modelling in the secondary classroom. In J. Watson & K. Beswick 
(Eds.),  Proceedings of the 30th annual conference of the Mathematics Education Research 
Group of Australasia  (pp. 688–697). Adelaide: MERGA.  

    Weinert, F. E. (2001). Vergleichende Leistungsmessung in Schulen – eine umstrittene 
Selbstverständlichkeit. In F. E. Weinert (Ed.),  Leistungsmessungen in Schulen . Weinheim: Beltz.     

27 A Cross-Sectional Study About Modelling Competency in Secondary School


	Chapter 27: A Cross-Sectional Study About Modelling Competency in Secondary School
	1 Introduction
	2 Theoretical Framework
	2.1 The Stages

	3 The Study
	3.1 The Real Situation
	3.2 Sample and Study Implementation

	4 Solution Approaches
	4.1 Approach by Direct Measurement
	4.2 Rectangle Model
	4.3 Functional Model
	4.4 Area Model

	5 Results
	5.1 Stages Within Grades
	5.2 Performance by Gender

	6 Discussion
	References


