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Series Preface

Applications and modelling and their learning and teaching in school and university
have become a prominent topic in the last decades in view of the growing worldwide
relevance of the usage of mathematics in science, technology and everyday life.
However, although there is consensus that modelling should play an important role in
mathematics education, the situation in school and university is not satisfactory.
Given the worldwide impending shortage of students who are interested in mathe-
matics and science, it is essential to discuss possible changes of mathematics education
in school and tertiary education towards the inclusion of real world examples and
the competencies to use mathematics to solve real world problems.

This innovative book series established by Springer “International Perspectives
on the Teaching and Learning of Mathematical Modelling”, aims at promoting
academic discussion on the teaching and learning of mathematical modelling at
various educational levels all over the world. The series will publish books from
various theoretical perspectives around the world dealing with Teaching and
Learning of Mathematical Modelling in Schooling and at Tertiary level. This series
will also enable the International Community of Teachers of Mathematical
Modelling and Applications (ICTMA), an ICMI affiliated Study Group to publish
books coming out of its biennial conference series. ICTMA is a unique worldwide
group where not only mathematics educators dealing with education at school level
are included but also applied mathematicians interested in teaching and learning
modelling at tertiary level are represented as well. Two of these books published by
Springer have already appeared.

The planned books will display the worldwide state-of-the-art in this field, most
recent educational research results and new theoretical developments and will be of
interest for a wide audience. Themes dealt with in the books will be teaching and
learning of mathematical modelling in schooling and at tertiary level including
the usage of technology in modelling, psychological aspects of modelling and its
teaching, modelling competencies, curricular aspects, modelling examples and
courses, teacher education and teacher education courses. The book series aims to
support the discussion on mathematical modelling and its teaching internationally



vi Series Preface

and will promote the teaching and learning of mathematical modelling all over the
world in schools and universities.

The series is supported by an editorial board of internationally well-known
scholars, who bring in their long experience in the field as well as their expertise to
this series. The members of the editorial board are: Maria Salett Biembengut
(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia),
Toshikazu Ikeda (Japan), Mogens Niss (Denmark), and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to
promote the teaching and learning of mathematical modelling all over the world.

Gloria Ann Stillman Gabriele Kaiser
Ballarat, Australia Hamburg, Germany
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Chapter 1

Mathematical Modelling: Connecting to
Teaching and Research Practices — The Impact
of Globalisation

Gloria Ann Stillman, Gabriele Kaiser, Werner Blum, and Jill P. Brown

Abstract ICTMA is a community of researchers from different countries working
together to establish a learning culture of mathematical modelling. A clear aim is
globalization of knowledge and understandings about research and theory about the
teaching of mathematical modelling and applications that the community values.
A characteristic of this global community in mathematical modelling and applica-
tions education is that it operates from a large variety of different theories and
research paradigms when it comes to both research practices and teaching practices.
The purpose of this chapter is to show that diversity but at the same time the inherent
connections that create a fertile research field.
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1 Introduction

Different members of the ICTMA community have different levels of experience in
research, in general, and in research into the teaching of mathematical modelling,
in particular, as well as different levels of access to resources both for teaching and
researching. However, participation in the ICTMA community is seen as a pro-
fessional learning experience for all whether experienced or not. Through research
conferences it is hoped to foster international collaboration and connection and
knowledge networks but another clear aim is globalisation of knowledge and
understandings about the research and teaching of mathematical modelling in
various levels of schooling, in vocational education contexts and university settings.
The ICTMA community is quite fluid with biennial conference location having
impact both locally and globally in stimulating and disseminating research, both as
a lead up to the conference and post conference. At the same time many in the
ICTMA community, or others with similar research and scholarship interests, who
are unable to attend continue to theorise or research into the teaching of modelling
and applications. It is important that any published contributions stimulated by the
conference be connected to this on-going body of research and scholarship as well as
previous outputs from the community (e.g., Kaiser et al. 2011; Lesh et al. 2010).

2 Innovative Practices in Research and Teaching

A characteristic of this global community in mathematical modelling and applications
education is that its members operate from a large variety of different theories and
research paradigms in both research practices and teaching practices. This is, of
course, not unique to ICTMA (see e.g., Prediger et al. 2008) but a small community
such as this can lose some of its sense of connection if other theoretical ideas or
research paradigms are not considered thoughtfully with respect to what is valued,
even if eventually these are not embraced. “An important role of theory in research
is to provide new ways of conceptualizing practical questions” by transforming the
dilemmas and problems of practice into more tractable forms for resolution
(Rodriguez et al. 2008, p. 287). Different theoretical lenses and their implications
for research practices or teaching practices are examined in this book.

To begin, Galbraith takes the reader on such a journey in the chapter resulting from
his plenary lecture at ICTMA 15. The history of ICTMA is outlined highlighting
several issues derived from this community. The first set of issues is concerned with
the domain. Traditionally, modelling has two concurrent purposes: to solve a parti-
cular problem at hand and, over time, to develop modelling skills that individuals
can apply to problems in their world. Furthermore, “authenticity” has loomed large
as a domain issue in modelling discussions and will be discussed again in several
chapters in this book. It is proposed that authenticity be viewed in terms of four
dimensions: content authenticity, process authenticity, situation authenticity, and
product authenticity. The second set of issues is concerned with the community.
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By employing the Vygotskian idea of Zone of Proximal Development (ZPD),
Galbraith describes how, within the ICTMA community of practice, both practitio-
ners and researchers, experienced and inexperienced, are represented. By using the
diverse expertise of its members, a group ZPD could potentially be generated that
inspires visions that none of us alone could produce. The third set of issues is con-
cerned with practice. Research themes in the domain of practice are described,
especially focussing on the issues in formulating a mathematical model and the role
of metacognitive activity.

Arlebick and Frejd explore Sfard’s notion (2008) of commognition which merges
and combines principles from theories of communication and cognition. Thinking
is discussed within this perspective as a special type of interpersonal communica-
tion and learning as a change in discourses. Here, a discourse is characterised by the
meaning and use of language, including not only consensus on its interpretation, but
also established conventions for communicating and interacting among members of
the discourse. In addition, there are agreed formalised ways of establishing truth
within the discourse. When examining mathematical modelling activities in a teach-
ing and learning environment, several kinds of discourses come into play: everyday
discourses pervaded by personal experiences; literate discourses in which commu-
nication is characterised by the use of the special discourses (depending on the task)
where mathematical models are used, created, developed and modified; and class-
room discourses encapsulating school norms and rules. When Arlebick and Frejd
applied this approach operationalized as a research practice to transcripts of the
discourse of two students working on a modelling task, not only did they demon-
strate that this approach can identify the types of discourse processes that take place
when students engage in mathematical modelling but also they felt their analysis
highlighted how cognitive and social aspects are simultaneously manifested in mod-
elling activities. In the example used, the discourse is mediated by the social context
and the task itself. Even though the task is strongly pre-structured, it is still open
enough to provoke discourses on the relevance of different models.

De Oliveira and Barbosa examine tensions in discourses when Brazilian teachers
attempted to engage learners in mathematical modelling tasks, adding to their previ-
ous work (de Oliveria and Barbosa 2010). They analyse teachers’ discourses based
on Bernstein’s theoretical framework. Discourse in this instance is defined as an oral
or written text produced by an individual in a specific social context. The teachers
introduced real problems into their pedagogic practices but the students had diffi-
culties solving these, because they did not understand how to use mathematical
content in the solution and they were not able to produce a legitimate text (Bernstein
2000) for the development of the modelling task. Teachers then questioned how they
should resolve these student difficulties as well as how they should teach (previous
and new) mathematical content so such difficulties do not arise when using this
content for modelling. These questions represent discontinuities in relation to the
present discourses and the new discourse of mathematical modelling in the peda-
gogic practice. These discontinuities refer to the tension of students’ mathematical
performance. To deal with this tension teachers had taught the previous and
new mathematical content during the development of the modelling task in their
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lessons; but largely it is a timing dilemma as to when teachers should work on
mathematical content related to the theme of the modelling task. Others (e.g., Steen
and Turner 2007) have pointed this out previously but this dilemma is still not
unequivocally resolved by teaching or research.

The chapter by Borromeo Ferri and Lesh is epistemological in nature and has no
direct link to practice. It is relevant to the theory of learning and teaching of modelling
and as such could spark innovative practices in teaching with a consequential flow-on
effect to possible future research agendas. The question they ponder and thus ask the
reader to consider is: Should interpretation systems be considered to be models if they
only function implicitly? As has been pointed out previously, “in any application of
mathematics a mathematical model is involved, explicitly or implicitly” (Niss et al.
2007, p. 4). The authors note that implicit or intuitive models occur in situations such
as where “sense-making systems must function much more rapidly than is possible
using formal, analytic, or completely conscious thinking”, or where the information
needing to be considered “exceeds the processing power of available models”. These
“implicit models” rarely are used in textbooks.

Rosa and Orey argue that the application of ethnomathematical techniques and
tools of modelling allows us to examine systems taken from reality and offers
insight into forms of mathematics done in a holistic way. The pedagogical approach
that respects a diversity of cultural forms of mathematics is best represented through
ethnomodelling, which is a process of translation and elaboration of problems and
the questions taken from reality. Ethnomodels as cultural artefacts are pedagogical
tools used to facilitate the understanding and comprehension of systems taken from
the reality of cultural groups (Rosa and Orey 2009). Ethnomodels are thus consid-
ered to be external representations consistent with mathematical knowledge that are
socially constructed and shared by members of specific cultural groups. The inten-
tion of Rosa and Orey is to broaden the discussion of possibilities for the inclusion
of ethnomathematics and associated ethnomodelling perspectives that respect the
social diversity of distinct cultural groups with guarantees for the development of
understanding different ways of doing mathematics through dialogue and respect.

Relating a current problem to a similar problem solved previously has long been
associated with approaches to problem solving. Saeki and Matsuzaki provide an
analytical instantiation of this principle with respect to modelling problems. When
attempting to solve a modelling task there might be cases where changing from the
initial modelling task where progress has stalled, to a similar modelling task based
on prior experiences where some traction is considered possible by the modeler, is
advisable. There is switching between the two modelling cycles, and progress in the
first modelling cycle based on results or limitations obtained from the second mod-
elling cycle becomes deliberate. Saeki and Matsuzaki use the term “dual modelling
cycle” in a way that each problem has its own individual modelling cycle. Another
view is that the outworking of a generic modelling cycle has characteristics that dif-
fer according to the specifics of a given problem. From the perspective of Saeki and
Matsuzaki the purpose in using the dual modelling cycle is its utility in facilitating
teaching when a first modelling task is able to be related to a similar modelling task
in order to solve the initial task through feedback from the solution of the second.
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The three chapters by Buchholtz, Geiger and Rosa and Orey arose from a
symposium at ICTMA 15 about the role of theory in research about mathematical
modelling. As Buchholtz points out, a complex phenomenon such as the learning and
teaching of mathematical modelling cannot be fully described by just a single theory
particularly given the diversity of cultural backgrounds, research and educational
systems where the teaching and researching of mathematical modelling in education
is taking a foothold. Theory acts as a guide for research practices but also is shaped
by the findings of that research in a symbiotic process. Geiger refers to a more
general theoretical description formulated by Strisser generalising the notion of the
didactical triangle and applies it to describe and explain activities in the process
of mathematical modelling in a holistic way. He illustrates the applicability of
Strdsser’s tetrahedral description to mathematical modelling and application activity
by analysing an episode from his research data. Rosa and Orey see ethnomodelling
as an alternative methodological approach to analyse mathematical modelling and
mathematical ideas in different cultural contexts and describe the dilemma between
an “emic” and an “etic” perspective in this field of research, which occurs when taking
ethnomodelling as a research lens. They argue that traditional mathematical model-
ling does not fully take into account the implications of the cultural aspect of human
social systems and suggest ethnomodelling as a pedagogical approach which integrates
an “emic” perspective into a mathematical modelling curriculum.

3 Research into, or Evaluation of, Teaching Practice

Research into or evaluation of teaching practice is an on-going interest in the
ICTMA community (Niss 2001). At times this takes as its focus evaluation of
teaching or learning sequences focussing on modelling activities inserted into
more traditional mathematics curricula. In these cases there usually is a design
aspect to the teaching materials or the facilitation of activities or both. In other
instances it is the teacher’s behaviour (their practice) and the students’ behav-
iour in response to this that is described and investigated.

Ang describes a teaching experiment carried out in a Year 9 Singaporean class
with a complex modelling problem where a teacher with no experience in teaching
mathematical modelling and limited professional development on modelling made
an attempt to conduct a modelling activity. The task was carefully designed and
generally adhered to the principles of design suggested by Galbraith (2006) although
the teacher had no prior knowledge of these but had simply planned the tasks and
worksheets “based on [his] own understanding and pedagogical sense”. The teacher
lacked certain key skills in facilitating modelling activities. The lack of a strong
framework probably resulted in the need for the teacher to “over-facilitate” and
provide constant intervention in order to help students progress with the task.
This experiment also showed that in general, although they may face difficulties in
grasping and applying certain mathematical concepts, Singaporean students are not
opposed to the idea of engaging in mathematical modelling tasks.
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Blomhgj and Kjeldsen provide insights from their involvement in the teaching of
modelling projects at university over many years and an evaluation of the facilita-
tion of such a project to illustrate their conceptualisation of this. Their experience
from the course supports the notion that the modelling context provides a window
to students’ understanding and their images of the mathematical concepts they work
with as well as to their understanding of a mathematical model and modelling.
Dialogue is used deliberately to open such windows. For specific modelling tasks
conceptual difficulties seem to be rather stable across cohorts of students. To notice,
and to design and teach to overcome such particular learning difficulties is a way of
enhancing the students’ mathematical learning through modelling activities. The
modelling context provides opportunities to challenge and strengthen the students’
concept images concerning important mathematical concepts. Modelling projects
are designed deliberately to accentuate potential cognitive conflicts in the students’
concept images. The project and the related dialogue with teachers encourage stu-
dents to reflect on the mathematical meaning of a mathematical object as well as on
its interpretation and validity as a model. The authors note that such projects can be
a didactical vehicle both for developing modelling competency and for enhancing
students’ conceptual learning of mathematics.

Chan’s chapter focuses on an investigation of the engagement of Year 6 students
in mathematical modelling in a Singapore school by exploring the mathematical
reasoning of a group of students attempting to design an ideal tourism route.
Engaging in mathematical modelling activity provides affordances for student-task-
teacher interaction and in particular for the modelling task to drive learning. Chan
notes that in such an environment, the students’ cognitive engagement can be high
as they attempt to identify goals and variables, interpret problem situations, inter-
rogate data, make inquiries, monitor their solutions and improve their conceptuali-
sations. This form of instruction differs starkly from learning mathematics in a
traditional manner which Chan claims is limited in scope in revealing what students
are capable of. Engaging students in mathematical modelling paves the way for
teachers to redesign ways where students can solve problems in real-world settings
and bring their mathematical reasoning to the fore.

Fu and Xie investigated the effect of a one-semester course aiming to introduce
some basic modelling concepts and examples to first year students at a highly aca-
demic Chinese university. For 15 weekly lectures the teacher introduced a model-
ling situation related to the students’ daily lives, including basic models arising
from engineering, public administration, operations management, marketing and
economics. Out of class, students were asked to form groups to independently pose,
discuss and build up mathematical models to solve real world problems of interest
to them. At the end of the course, each group submitted a report presenting the
group’s work. Two tests originally designed by Haines et al. (2001) were used to
check whether there were any differences between the mathematical modelling
skills on entry to the university and after the course. Statistical analyses showed no
significant difference between scores achieved on the two tests. Fu and Xie attrib-
uted this in part to the already very high scores in the pre-test having a ceiling effect
which makes it difficult to improve further.
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Geiger, Goos and Dole describe the practice of one teacher who took advantage
of a major, potentially disruptive, building development within her school to design
a sequence of lessons in which students were challenged to adapt to the changes that
were associated with the construction in order to demonstrate their numeracy skills.
The teacher was participating in a project which used Goos’ (2007) model of numeracy
as a basis for planning for teaching and for reflecting upon the effectiveness of
practice. The teacher showed initiative taking a professional risk in building an
element of her mathematics teaching program around a disruptive event. Her actions
paralleled her attempts to promote flexible and adaptive thinking in her students in
relation to the use of mathematics in context. Thus, this position enabled her to
design an activity that wove the elements of the numeracy model into students’
learning in a seamless fashion.

Griinewald reports the evaluation of the effects of a short-term modelling
project on the development of modelling competencies by Year 9 students in
Germany. To evaluate the modelling project she developed her own modelling
test based on test proposals designed by Haines and Crouch (2001) and Houston
and Neill (2003), which focussed on the development of the sub-competencies
of mathematical modelling of students. In addition, five students were inter-
viewed at the beginning and the end of the project to gain deeper insight into
their development of modelling competencies. Results showed that it is possible
to foster at least students’ sub-competencies of mathematical modelling within
such a short-term modelling project.

Matsuzaki and Saeki describe and evaluate the effect of experimental classes for
undergraduate university students who were interested in mathematics education or
intended to become a mathematics teacher based on evidence of a dual modelling
cycle in their approach to tasks. The purpose of the chapter is to provide evidence
for their contention that using the dual modelling cycle is useful in facilitating
teaching when a first modelling task is able to be related to a similar modelling task
in order to solve the initial task through feedback from the solution of the second.
The authors verified some stages of a dual modelling cycle empirically. They
conclude that the dual modelling cycle framework they proposed appears to have
potential for drawing modellers’ attention to the possibility of solving the task at
hand by first solving a related problem as Polya (1988) suggested.

The posing of tasks that have several solutions, fostering development of several
solution methods, and the presentation and discussion of these solution methods
in the classroom are characteristic features of Japanese teaching method. How
crucial these features are for good performance in mathematics and whether
these teaching methods can also be used effectively in other countries are still
open questions. As an attempt to address this, Schukajlow and Krug present first
results from an explorative video study of pairs of Year 9 German students solv-
ing four modelling problems that demand two outcomes. Analysis of videos of
one task showed that students had only minor problems while solving the task. If
they could find one solution, the second outcome was developed also. Although
students validated their results, they rarely compared different outcomes inde-
pendently. Schukajlow and Krug see the comparison of solution methods as an
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important part of teaching tasks with multiple solutions that can improve student
performance and cognitive flexibility. They recommend that prompting the com-
parison of different outcomes and solution methods by teachers is crucial for the
improvement of modelling competency.

Stillman, Brown and Galbraith evaluate their role as mentors in an extracurricular
modelling event where Year 10 and 11 students chose their own situation to model and
worked on in small groups assisted by mentors for 2 days. They investigate whether
the student experience met their intended purposes as mentors, namely the whole
event be considered inherently valuable as a learning experience about modelling
and application of mathematics to real situations. Motivation for deciding on the
choice of real world problematic situation to model was mainly goal oriented with
many indicating the task was considered inherently useful and group members
were interested in learning from their modelling experience. The majority of groups
reported the outcome of the problem(s) they had formulated in their chosen situation
or contextual details they had discovered during their investigation of this situation
as their most interesting learning outcome from being involved in the event. Even
though the vast majority reported having not participated in similar school activities,
all groups were able to choose a situation to model and engage in attempts to model
it over the 2 days to an extent that enabled them to report increased understanding
of the complexity of the situation and to describe and critique their attempts at
mathematical analysis of self initiated questions about the situation. Stillman,
Brown and Galbraith conclude the whole event was considered by most participants
as inherently valuable as intended.

Yanagimoto and Yoshimura evaluate the use of two different sets of teaching
materials with Japanese junior high school students. They demonstrate that the
materials can be successfully used with students at this level in a teacher directed
whole class approach as an introduction to modelling. They suggest that more open
teaching practices such as using group learning would be necessary after the intro-
duction period. The mathematical modelling teaching materials which dealt with
societal and environmental issues aroused students’ interest and curiosity, and
encouraged students to open up to societal issues more, boosting their awareness as
members of society. An evaluation showed that with both sets of materials student
perception of the utility of mathematics in the real world increased.

4 Pedagogical Issues for Teaching and Learning

Pedagogical issues are the focus of both on-going research in areas where mathe-
matical modelling and applications have been present in curriculum documents for
some time (e.g., Australia, Denmark, Germany) and also when a new education
system (e.g., Singapore) starts advocating the use of applications and modelling in
teaching, learning and/or assessment contexts. It is not surprising that when the first
efforts at implementation arise in new educational systems that pedagogical issues for
the teaching of modelling soon become the focus. “The pedagogy of applications
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and modelling intersects with the general pedagogy of mathematics instruction ...
but simultaneously involves a range of practices that are not part of the traditional
mathematics classroom” (Niss et al. 2007, p. 21). In order to fulfil the goals of
teaching applications and mathematical modelling, according to Henn (2007, p. 322)
“an adequate Modelling Pedagogy is necessary”. This entails “adequate problems,
adequate teaching methods and instructional modes, adequate tools and adequate
modes of assessment”.

4.1 Appropriate Problems for an Adequate
Modelling Pedagogy

Brown reports on an empirical study, involving three Year 6 classes, of the extent
of student engagement with real world tasks. The focus is on whether applica-
tions and mathematical modelling are viewed as being outside of mathematics,
as an add-on, or as an integral part of mathematics, requiring students and teach-
ers to operate in a “culture of mathematising as a practice” (Bauersfeld 1993
cited in Yackel and Cobb 1996, p. 459). Two tasks were designed that required
students to reflect on their mathematics and make their thinking explicit in keep-
ing with Bauersfeld (1992). Although students clearly engaged with a first task
involving the supply of wooden letters for a toy store, for many it was perceived
as a (problematic) division problem without an appropriate exact answer. Few
engaged with the context or gave any indication that the task required Bauersfeld’s
“flexible interpretation” (p. 467) with the majority not making any use of data
although it should have been apparent that data were easily accessible. A second
task about the stock levels of brass numerals in a hardware store resulted in inter-
pretation beyond a “ritualized reading” (Bauersfeld 1992). Students engaged
with the context and for several this was sustained. In this task students were
more likely to see their role as sense making and independent mathematising.
Across the three classes, students were not experienced in interpreting mathe-
matical problem situations nor believing this was a normal part of school math-
ematics. This lack of experience of shared mathematising and negotiation of
understanding and meanings contributed to lack of student belief that they had
personal experience and knowledge to bring to the solution of the task. Brown
concludes that using tasks requiring students to reflect on their mathematics and
make their thinking explicit can contribute to Year 6 students perceiving them-
selves as playing an important role in interpreting real world problem situations
and relating mathematics to the real world.

In 2001, Niss, in noting missing and wanted research in applications and model-
ling education commented, that “only relatively little attention has been paid to
tasks which are complex, extensive, authentic or realistic, and time consuming” (p. 81).
Authentic tasks have been an on-going theme in more recent work by Kaiser and
colleagues. Kaiser and Stender explore student interest in, and opinion about, the
realism of several authentic modelling problems from evaluations of several modelling
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weeks. Such problems (e.g., the optimal design of location of bus stops along a bus
route) are authentic in the eyes of educational researchers and mathematicians but
Kaiser and Stender investigated whether these were seen in the same light by aver-
age students not especially interested in mathematics as would be encountered in
most classrooms not streamed for student ability. Thus, even though the authenticity of
real-world problems often creates difficulties (Busse 2011; Stillman and Galbraith
2003), teacher intervention should focus only on supporting students in the case of
lacking mathematical techniques or when they are in a dead-end situation. Students
who struggle with comprehension or lack of reference to the real world in their
mathematics classroom lessons can experience the utility of mathematics in solving
such tasks when using mathematics to answer questions that arise from reality.

Buchholtz and Mesrogli also investigate the issue of experiencing solving of
complex authentic modelling problems such as chlorination of a swimming pool
through the use of ‘modelling weeks’ for upper secondary school students. They
were interested in whether the modelling problems tackled in these events were
feasible for students at this level of schooling, what attitudes the students had
towards mathematics and whether the event influenced student mathematical interest.
Buchholtz and Mesrogli conclude that, although students’ mathematical knowledge
might not be very high and their modelling competencies differ widely, experiencing
helplessness and insecurity is a central aspect and necessary when dealing with
mathematical modelling problems.

Jennings and Adams, and Leung provide examples of mathematical modelling of
real world cases as exemplars of suitable tasks for teaching modelling. Jennings and
Adams discuss mathematical modelling of the pharmacokinetics of alcohol after
consumption, and in particular, Blood Alcohol Content levels. Leung addresses the
challenge of teaching mathematical modelling skills to students, in non-mathematics
majors, from business schools, who will potentially be employed to tackle business
problems raised in market competition. In the discussion of methods to estimate
customer lifetime value (CLV), the focus is on the dynamical relationship among
variables rather than simply setting up a formula from which the subject can be
readily solved. Such a dynamical system approach exhibits the logistic nature of the
CLV model. The teaching implication of learning this logistic property is that the
technique is applicable in other market scenarios.

Winter argues that by using contextual tasks, we are able to gain insight into the
nature of initial modelling competencies across the modelling cycle with begin-
ning modellers such as pre-service teachers who have not experienced modelling
instruction. There is a strong push globally towards introducing modelling to young
children to ensure development of modelling specific competencies from the early
years (see English 2003). South Africa’s educational policy explicitly emphasises
development of learners’ skills and abilities to model real life contexts which con-
tain mathematical features. Within mathematical literacy, modelling focuses on
the use of basic mathematics from the early years to lower secondary implying that
knowledge of elementary mathematics is sufficient for solving real life situations.
The elementary mathematics base and use of simple word problems provide
links between young children modelling and mathematical literacy modelling.
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In South Africa, the advocacy to have contexts for mathematical literacy drawn from
personal, educational/occupational, or public situations, coupled with its citizenship
perspective provides a rationale for the use of elementary mathematics. The demand
for new ways of structuring classroom teaching in mathematical literacy (Antonius
et al. 2007) so that tasks with real life contexts are starting points, provided a strong
rationale for introducing a university mathematics content course which aimed at
developing the pre-service teachers’ modelling skills in order that they develop an
adequate pedagogy for teaching the modelling expected in mathematical literacy.
One approach to teaching using mathematical modelling and applications is to
take a socio-critical perspective (Kaiser and Sriraman 2006) where the goal is the
development of a critical understanding of the world through modelling physical
and social phenomena. The role of modern textbook resources in providing
sources of problems and tasks for promoting this development and how teachers
could use these resources to mediate such a learning goal in relation to the appli-
cations of mathematics is an under researched area. In their chapter Stillman,
Brown, Faragher, Geiger and Galbraith interrogate curriculum documents and
textbook tasks to assess the potential role of textbooks in developing this under-
standing in students through mathematical modelling. Although the analysis is
carried out in the context of Australian state curricula, there are implications for
educators and researchers in other parts of the world where similar goals are
expressed in curriculum documents. Clearly, regular textbooks will have only
limited impact in broadening teaching horizons for this purpose if teachers have
little knowledge of socio-critical perspectives in a mathematics context and/or little
inclination to take up the challenge of incorporating these into modelling tasks.

4.2 Adequate Teaching Methods and Instructional Modes

Kaiser and Stender also address the issue of the adequacy of teaching methods when
using authentic modelling tasks in an authentic manner, namely as self-directed
modelling activities. As the main goal is to support students in their self-directed
modelling activities, the question arises: How can teachers support the students
without destroying the independency of these modelling activities? They develop the
approach of providing scaffolding as a comprehensive, long-term support combined
with interventions as direct and immediate adaptive actions by the teachers form the
theoretical framework for their work. In contrast to the work of Leifs (2007) who
found that strategic interventions were included infrequently in the intervention-
repertoire of the teachers he observed, Kaiser and Stender observed the usage of
general strategic interventions. They suggest the request to the students given by the
teacher to present the state of their work to the teacher as they enter the group, as
prerequisite for an adequate scaffold by the teacher, enabling diagnosis of the state
of student work, and as a central part of an effective feedback.

Ikeda notes that from a broad perspective, there are two categories of pedagogical
aims of modelling which must be captured in teaching methods that underpin an
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adequate modelling pedagogy. Firstly modelling itself is treated as an objective and
secondly modelling is treated as a means to mathematical knowledge construction.
For the first aim the teacher needs to set an appropriate situation so that students
realise the necessity of solving a real-world problem, assist students’ abstraction
processes and show students the necessity of controlling for various assumptions. For
the second aim, three teaching principles are suggested: (1) expanding and clarifying
real-world situations satisfying a ready-made model, (2) expanding and integrating
mathematical knowledge by setting up a concrete situation so that students can
consider it, and (3) refining and clarifying the developed mathematical methods by
treating instances of the same contexts repeatedly.

Kuntze, Siller and Vogl address the issue of the adequacy of teacher’s profes-
sional knowledge of modelling as a big idea in mathematics and its relevance in the
classroom as an underpinning foundation for developing an adequate modelling
pedagogy. They focus on Austrian teachers’ self-perceptions of their pedagogical
content knowledge (PCK) related to modelling. These self-perceptions were
explored directly from the perspectives of views about PCK relevant for modelling-
specific teacher-student interactions and indirectly from views about teacher
satisfaction with university studies concerning ways of fostering modelling abilities.
‘Direct reference’ scales focused on self-perceptions of diagnostic knowledge related
to the modelling process and on providing modelling-specific help to students.
‘Indirect reference’ items focused on self-perceptions about modelling-specific
PCK learned at university and about PCK relevant for technology use in the model-
ling process. The teachers’ self-perceptions of their PCK related to modelling suggest
that there is a need for professional development not only as far as PCK related to
modelling is concerned, but also related to the aspect of a pedagogical modelling-
specific self-efficacy of teachers. This self-efficacy may be supported by positive
experiences of the teachers with modelling tasks in the classroom. In particular,
professional development support for teachers related to the use of technology in
the modelling process might be helpful. Kuntze, Siller and Vogl conclude that both
pre-service teachers’ and in-service teachers’ professional knowledge concerning
modelling should be developed further. Also, there is a need for further research into
the structure of professional teacher knowledge concerning modelling to provide an
empirical base for the conception of sustainable professional development activities
about adequate modelling pedagogy for teachers.

To develop an adequate modelling pedagogy, especially with respect to diagnostic
competencies, teachers also need access to knowledge of expected demonstration
of modelling competency by students at different grade levels of schooling. Ludwig
and Reit attempt to investigate this through their analysis of student solution
approaches for a modelling task through grades 6—11. Students in younger grades
had more difficulties in solving this modelling task reinforcing the notion that
modelling competencies appear to be enhanced by experience and practice but the
increasing sophistication of mathematical knowledge with grade level might also be
an issue. For all grades there was an obstacle proceeding from the explicit numeric
result to its generalisation and this could be commensurate with similar difficul-
ties in purely mathematical contexts. In contrast to the widespread stereotype of
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mathematically science oriented boys and linguistically gifted girls there was no
statistical evidence of differences in the performance of boys and girls in elaborating
on a modelling task.

Ng addresses the vexed issue of teacher readiness for mathematical modelling.
Both in-service and pre-service teachers with no experience implementing model-
ling tasks with their classes or having engaged in previous modelling tasks as
modellers were the subject of her study. The findings from this study suggest that
the challenges in teacher education for fostering a positive modelling climate in
systems where modelling is new in the curriculum (e.g., Singapore) are many-
fold. Work is needed to help change the mind-set of in-service teachers as to the
use of open-ended tasks situated in real world contexts. They may have to first
learn to accept and then later scaffold tasks with a non-exhaustive list of solutions
which can use various mathematical representations. Although Kuntze (2011)
found in-service teachers were more receptive in his German study to intensive
modelling activities, this was not confirmed for Singapore teachers as there was
qualitative evidence from both samples indicative of blockages to such tasks due
to beliefs about mathematics when the teachers were engaged in modelling them-
selves. Pre-service teachers may also need guidance in anticipating the nature of
mathematics applied during modelling tasks by the students. This may be less
sophisticated, less organised, and less focused than what the pre-service teachers
themselves can produce. In contrast, for in-service teachers the opposite may be true
with expectations needing to be raised in terms of the quality of mathematics applied.
Work is also needed with these teachers on the range of expected mathematical
outcomes for a given task, including the use of more sophisticated mathematical
thinking. Discussion of how to scaffold students towards moving to using more
sophisticated mathematics is also needed if adequate modelling pedagogy is to be
developed in these circumstances.

Redmond, Brown and Sheehy investigate how the discourse of the mathematics
classroom impacts on the practices that students engage when modelling mathematics.
The principles of collective argumentation (Brown and Renshaw 2000) are used by
teachers and students in the educational context studied to guide engagement in the
discourse of their mathematics classrooms. The aim of this discourse is to enable
students to analyse mathematical contexts, to synthesise strategies to mathematise
these tasks, and to communicate solutions and conclusions to others. Redmond,
Brown and Sheehy argue that when students engage with the discourse of their
mathematics classroom in a manner that promotes the communication of ideas, they
employ mathematical modelling practices that reflect the cyclical approaches to
modelling employed by mathematicians. Further, these modelling processes and
ways of operating should be evidenced in the reviewing and editing that students
make public when authoring drafts of assessment reports of their modelling. Such
reviewing and editing processes may not only provide insights into student compe-
tency in mathematical modelling, but also insights into the way students represent
their engagement with the discourse of their mathematics classroom.

According to Tan and Ang, teachers’ knowledge for mathematical modelling instruc-
tion can determine, to a large extent, how they perceive and respond to curriculum
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innovation efforts to inject mathematical modelling activities into the secondary
mathematics classroom in Singapore. To think about knowledge of mathematical
modelling instruction requires going beyond knowing the mathematical modelling
process. It may require understanding the complex interplay among aspects of other
forms of teacher knowledge in the mathematical modelling teaching and learning
environment. Pre-service teachers have expressed concerns about their lack of
understanding in teaching mathematical modelling which is only now being intro-
duced into the curriculum which they must teach. Opportunities in pre-service
courses to explore mathematical modelling learning experiences were welcomed as
none had prior experience with the type of modelling tasks implemented in the
study. The pre-service teachers’ initial mathematical modelling learning experience
was limited to applying particular mathematics topics with rather narrow and known
techniques. Hence they were not used to integrating various concepts and techniques
in their first mathematical modelling task and their modelling process was often
isolated from the real world situation. The tutor’s introspections during the modelling
discussions provided the basis for forming case stories that could have enabled the
pre-service teachers to reflect and pick up nuances about important elements of
modelling activities in the various stages of the modelling process. The coupling of
such case stories with the learning scaffold structured in the mathematical modelling
learning tasks was paramount to the development and transfer of mathematical
modelling competencies to other problem contexts. Tan and Ang argue for the
necessity of novice teachers in teaching mathematical modelling performing
modelling tasks themselves. This is so that the experience and knowledge gained
can help them explicate aspects and nuances of the modelling process with respect
to novel modelling tasks. Explicating such aspects and nuances of the modelling
process is important later when these are needed to be translated into features of
modelling tasks for teaching and learning purposes. Thus an adequate modelling
pedagogy is brought into being by adequate personal modelling experience.

The translation of one’s understanding of a problem situation into a mathematical
model constitutes a key step in the process of mathematical modelling according to
Van Dooren, De Bock, and Verschaffel. The authors show that university students in
their study were very proficient in relating descriptions of realistic situations to models
in cases when the situation was described as linear. When the situation was “almost”
linear, there was a strong tendency to connect the situation also to linear models
(and for inverse linear situations, to some extent, to affine models with a negative
slope). These results parallel those of other studies (Van Dooren et al. 2004) showing
the “default” role of the linear model. Results also indicated that the representational
mode had a strong impact on students’ modelling accuracy and on the tendency to
inappropriately connect non-linear situations to linear models. A particular rep-
resentation may highlight aspects of non-linearity that are easily noticed by students
and therefore facilitate correct reasoning, but be misleading when representing a
situation with another model. An implication for modelling pedagogy is the need for
drawing sufficient attention to representations, to matching representations with
each other and to linking them to realistic situations, and for explicitly discussing
differences between linear and different types of “almost” linear models.
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Chapters by Lee, Chan, Ng and Geiger, as a result of the second symposium at
ICTMA 15, address the perplexing issue of systemic change in pedagogy so as to
adequately incorporate modelling pedagogy in a context where current practices are
quite different from these, namely the Singaporean context where modelling and
applications are a recent addition to the curriculum. Lee’s chapter captured the
readiness of participants in a relevant professional development event in designing
modelling tasks and the value they attached to problem posing as part of the total
student mathematical learning experience. Chan explored the issue of adequacy of
short teacher professional development to facilitate teachers effectively carrying out
modelling activities in classrooms that have been dominated by teacher-centred
pedagogy. Ng presents a preliminary teacher facilitation structure developed for
initial professional development in an outreach programme for mathematical
modelling in Singapore primary and secondary schools. Findings on teacher readiness
in facilitating students’ mathematical thinking, reasoning, and communication during
mathematical modelling are discussed. Feedback from the teachers with respect to
their focuses and concerns about facilitating modelling tasks centred around the need
for a balance of scaffolding during open-ended tasks where the teacher has to be
aware of when to step in and when to draw away to encourage thinking and promote
competencies. Geiger points out that widespread reform in teaching and learning
practice within mathematics education is always challenging especially when the
proposed reforms are of a very different nature to existing modes of practice. Geiger
concludes that supporting teachers to understand, and then to adopt, these new prac-
tices will be at the heart of attempts to progress this reform.

4.3 Adequate Tools for an Adequate Modelling Pedagogy

There is no denying that technological tools are “a powerful tool to aid in modelling”
(Henn 2007, p. 324) but they are not necessarily so as other factors come into account.
The CASI-Project examines the long-term use of digital tools in mathematics teaching
with German Year 9 and 10 secondary students. According to Greefrath and Reif} the
use of digital tools influences each part of the modelling cycle so the technology is
useful in relating to the real world and mathematical world of modelling. The different
representations of functional relationships and the change between the different rep-
resentations and real situation are said to be influenced by digital tool use. Previously,
Weigand and Bichler (2010) observed improved school achievements in translation
between graph and algebraic expression when using digital tools. However, in
the CASI-Project there was little difference between the performance of students
translating from a graph to a real situation or vice versa with or without digital tools.
Students using digital tools were, however, able to employ multiple solution methods
such as availing themselves of computer drawing facilities included in dynamic
drawing software.

Lamb and Visnovska explore the adequacy of students’ explorations of mathe-
matical models using a computer applet tool. In this instance the students were
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secondary school teachers in a professional learning course. The researchers were
attempting to gauge the teachers’ preparedness to facilitate productive mathematical
discussions in their classrooms that compare different models. In the particular
project about a speed trap on which the teachers were working, they had just
commenced learning how to engage in activities where they genuinely analyse data.
The teachers considered a range of computer tool options, and used these in different
ways that could support monitoring their own students’ work during task explora-
tion if using the same project with their students. However, most teachers did not
attempt to compare different solutions or explain how they connect with specific
statistical ideas. Some teachers clearly expected that if there is a real trend in data,
it should be equally evident in all models. Teachers’ discussion of different models
and their difficulty in reconciling conflicting ideas reflected their lack of prior expe-
rience with engaging in mathematical discussions grounded in comparison of such
models. Developing adequate modelling pedagogy will require supporting teachers
to work flexibly with key statistical ideas as well as with the tools through which
student learning can be built no matter how adequate the tools might be for modelling
in the hands of an expert user.

4.4 Adequate Modes of Assessment for an Adequate
Modelling Pedagogy

Wiliam (2007) in the Second Handbook of Research on Mathematics Teaching and
Learning points out the pivotal role classroom assessment plays in keeping learning
on track, in particular formative assessment in the form of feedback. The interdisci-
plinary research project Co’CA (Conditions and Consequences of Classroom
Assessment) aims at investigating the impact of different kinds of feedback in
competency-oriented mathematics teaching on student performance. The project
implements written and oral feedback into teaching through the following principles:
feedback is given individually to students in short intervals; it refers to students’
solution processes; and students’ strengths and difficulties and self-improvement
strategies are pointed out. Project teachers were trained to orally intervene in students’
working only minimally in order to allow student independence as much as possible.
They were informed also about different ways of intervening and supporting, namely
through metacognitive, problem content, affective and classroom organisational
interventions. Besser, Blum and Klimczak report on an experimental study involving
39 Year 9 classes in this project. The classes were assigned randomly to a control
group where no special feedback was given to students, or one of two experimental
groups, the first where students received written feedback three times within a 13
lesson sequence and the second where additional oral feedback supported the written
form. The research investigated whether these special kinds of formative assessment
can help teachers improve students’ learning processes when dealing with technical
and modelling tasks and whether an implementation in every-day teaching can
foster students’ performances. Preliminary results showed there were no significant
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differences between the control group and either experimental group in the post-test
but the control group had performed significantly better in the pre-test than the
second experimental group. Since analyses of covariance showed no influences of
the experimental condition either, the quality of the implementation of the treatment
is being investigated further to explain these effects. A significant challenge is to
control for both the overall quality of teaching (by analysing many hours of video-
taped lessons) and for the quality of written and oral teacher feedback (by develop-
ing adequate coding schemes for both forms of feedback).

Great diversity exists internationally in how, and even if, the teaching and learning
of applications and modelling are implemented. In parallel, there is similar diversity
in summative assessment practices, often politically and culturally influenced.
Greefrath and Reifl show that there were some differences (sometimes quite large
ones) in their German CASI-project using reality based examination tasks between
groups of Year 9 students taught with and without digital tools, but their results were
inconclusive regarding advantages of one group over the other. Questions addressing
the full modelling cycle are often too complex to be treated in an examination but it
is possible to design questions that test certain aspects of reality-based problems
such as filtering important information and structuring the situation. The use of digital
tools made more complex examination questions accessible for lower achieving
students at lower secondary level. These test items were still challenging, but diverse
approaches were able to be verified.

Vos describes a study of modelling characteristics in recent mathematics exami-
nations in the Netherlands where modelling is integrated into the mathematics
curriculum. The test items showed a wide variety of situations, demonstrating mathe-
matics is everywhere, a valid aspect of modelling. On the other hand to increase test
reliability, the complexity of tasks was reduced and students’ creativity was limited.

Tasks that are valid with respect to mathematical modelling simulate the work of
professional modelers requiring students to undertake activities as described in the
modelling cycle. These would be expected to take an extended period of time and
be worked on by collaborative teams. In contrast, when a problem situation is
offered together with a ready-made mathematical model, structuring, simplifying
and mathematising are omitted. An advantage of this mechanistic mathematising
format is that all students start at the same point ensuring that subsequent modelling
activities have the same mathematical demand because of similar complexities of
the models. The presence of a ready-made model raises task reliability but students
cannot demonstrate all competencies. The ready-made mathematical model is
merely a starting point for ‘working mathematically’. In other tasks ready-made
models need to be reproduced from the situation. In this format, modelling activities
are asked in reverse order, what Vos calls reproductive mathematising. The advan-
tage in examinations is that a range of competencies from the beginning of the
modelling cycle are covered raising test validity with respect to modelling. Also, all
students can continue with the correct model in ensuing tasks, even if unable to
reproduce the model. This reduces answer variety, raising test reliability. However,
students often short circuit reaching the ready-made model, by reasoning backwards
using surface features of the model.
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Thus despite the tasks on the examination papers being situated in real life
contexts, students were merely required to perform mathematical activities loosely
related to the situation described. The modelling cycle was broken into separate
steps, reducing the answer range. Modelling activities such as structuring, simplifying
and mathematising were avoided. These three reductions led to tasks that start from
a situation together with a mathematical model (table, graph, diagram). The models
were offered ready-made in the task and students were merely asked for calcula-
tions leading to a numerical answer. The Dutch examination papers thus may meet
reliability criteria, but with respect to modelling they are limited in validity. Vos
recommends that project-based or portfolio assessment which have a high validity
in relation to the creative aspects of modelling not be neglected.

5 Applicability at Different Levels of Schooling,
Vocational Education, and in Tertiary Education

Much energy has been invested by the ICTMA community and others in arguing the
case for, or demonstrating through documented implementation examples, that
applications and modelling deserve a reasonable place in mathematics education
whether that be at different levels of schooling, in vocational education or tertiary
education. “The vertical interconnectedness from primary to tertiary level is indis-
pensable: One cannot start early enough with simple modelling examples” (Henn
2007, p. 323). There is still a space for such advocacy whether it be research based,
theoretical or empirically based argument or demonstration of best practice.

English argues that there is a need to build a stronger foundation in the mathe-
matical sciences, one that will equip students for the challenges of the twenty-first
century. Citing authoritative sources she lists core competencies that are key ele-
ments of productive and innovative workplace practices presumably that would
ensure such a foundation. To achieve this aim, she recommends an increased focus
on interdisciplinary problem solving that engages students in complex modelling
with challenging, life-based scenarios. Unlike many others (e.g., Heilio 2011),
however, she sees such modelling having its applicability at much lower levels of
schooling where the focus is on future-oriented learning experiences, that is, ones
that engage students in the kinds of mathematical and scientific thinking needed for
challenges beyond the classroom. The cases she selects to provide evidence-based
support for her argument are from two design-based studies, a data modelling one
in Year 1 and engineering-based modelling experiences in Year 7.

Downton also sees the necessity of laying an early foundation for modelling
advancing the case for the applicability of problem posing, a critical component
of mathematical modelling, in the primary years of schooling. Problem posing
provides opportunities for young learners to make links between the real world
and mathematics. Stillman (in press) concurs, “finding and posing problems are
essential ingredients in any education program in schools promoting mathemati-
cal modelling”. One of the distinguishing features of mathematical modelling is
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that “modelers find and pose their own problems to solve” (Stillman in press).
Downton conducted teaching experiments in Years 1-2 and 3—4 involving problem
posing. She provides documented evidence that students as young as 6 years of
age are capable of generating questions that can be investigated using mathematical
modelling. She argues that the use of problem posing and real world artefacts in
the early years of schooling could provide the foundation for later modelling and
applications experiences.

In a context where the mathematical modelling has been newly introduced into
the high school curriculum, Kawasaki and Nisawa propose the linking of mathemati-
cal modelling with other new mathematical content to enable authentic modelling to
be conducted. Previously, Kawasaki and Morija (2011) had advocated using model-
ling experiences to develop Japanese senior high school students’ awareness of the
interactions between mathematics and science. In secondary education in Japan as
in many other countries, mathematics treats functions of only one variable. However,
if natural science and social phenomena are formulated as mathematical models,
expressions using functions of one variable have limitations. Functions of two vari-
ables are necessary to express real case scenarios through mathematics. Kawasaki
and Nisawa suggest this content should be introduced into the traditional curriculum.
They support their argument by documenting use of a task with Year 12 students
involving minimising the packaging of a box, where a two variable function is
required. They found that the use of 3D models not only allowed students to deepen
their function knowledge but also to gain an appreciation for the complexity of real
world problems. Kawasaki and Nisawa argue that in a context where mathematical
modelling is new to students its applicability in the classroom cannot be assumed,
rather it must be shown to be authentic and the mathematical content needed for this
should be added to the curriculum.

If we are to move forward in the field in schooling, then real world examples and
modelling need to be valued in mathematics teacher education by the inclusion of
examples and full modelling courses in the programs (Kaiser and Maal3 2007). This
sentiment is shared by Widjaja who considers what are suitable experiences within
the Indonesian teacher education context. She demonstrates the authenticity of the
common carpark design task, in this case to redesign a motorbike parking lot. This
resonated with students engaged with the task whose most common mode of trans-
port was a motorbike. Living in places where the daily practice sees most road users
riding motorbikes is common in many, but not all, places around the world. This
task would not have the same authenticity to pre-service teachers in Australia, for
example. Wadjaja’s message is clear—mathematical modelling is applicable to
teacher education—only by experiencing authentic modelling tasks themselves will
students develop pedagogical content knowledge about modelling for their future
practice. She provides documented evidence of her students developing an aware-
ness of the authenticity of modelling and establishment in the local context that
modelling is a critical part of mathematics and therefore applicable in both teacher
education and the school curriculum.

Also in the field of teacher education, the document analysis by Biembengut
presents a mapping of Brazilian mathematics teacher education courses which
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have as part of their syllabus a specific modelling subject or any subject that deals
with modelling. The guiding research question is: How has mathematical modelling
been conceived in mathematics teacher education courses in Brazil? The possibility
that mathematical modelling becomes regular classroom practice in Brazilian
schools lies in the interest these future teachers have in contributing to a greater
development in Basic Education. Biembengut clearly sees this interest being
developed (or not) during their teacher education experiences or in professional
development programs once they are teaching. As the continental dimensions of
Brazil make it difficult to provide professional learning to continually serve all
mathematics teachers, documenting the contribution made by professors respon-
sible for these subjects in pre-service courses in improving mathematics education
in Brazil is vital.

Three conceptions of modelling were evident in the subjects. Firstly, modelling is a
method of teaching and research. The goal is to learn mathematics content from the
subject and simultaneously learn to do research. The teacher proposes modelling
examples to teach or indicates the mathematical content found in these examples (real-
istic or applied modelling), and subsequently, teaches the modelling process by induc-
ing students to raise questions and data about the subject or topic, to formulate a
hypothesis and then, formulate a mathematical model and solve the issues raised
departing from the model and finally, to evaluate the model (epistemological). The
second conception sees modelling as an alternative way of teaching mathematics,
where the objective is the student learns mathematics. Modelling is proposed as it moti-
vates students to learn mathematics from subjects or topics in their context. Beginning
with student chosen topics, professors raise issues (educational modelling) and solve
them while indicating the presence of mathematical content (contextual). These topics
are authentic and integrated with the development of mathematical theories. This con-
ception was the most prevalent in the documents analysed. In the third conception,
modelling becomes the learning environment, and focuses on social issues. Modelling
in education is able to show mathematics as a tool for decision making on environmen-
tal issues. This conception (socio-critical modelling) is complementary in nature to
ethno-mathematics. The students seek to deal with issues involving situations related to
society, developing a critical positioning regarding the context. This was the least prev-
alent conception in the documents.

The integration of mathematical modelling in the syllabuses of mathematics
teacher education courses reflects support at official levels of education, in almost
all Brazilian states, for the applicability of modelling in school education because of
the possibility of providing modern youth with better knowledge and skills. Despite
insufficient time to develop mathematical modelling fully and its usual placement at
the end of teacher education courses, the merit and importance of mathematical
modelling teaching in these courses cannot be underestimated if the applicability of
modelling in schooling contexts is to be universally realised in Brazil.

Cristobal and Vargas note that if students do not analyse non-mathematical situ-
ations during learning experiences, which demand the use of mathematical knowl-
edge, then they do not think about their knowledge and they do not perform any
adaptation that allows them to use knowledge in other situations. Mathematical
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modelling courses in higher mathematics education such as at university level,
where students have to analyse situations that are different to the problems of text-
books have been shown by Perrenet and Adan (2010), amongst others, as suitable
vehicles for students to develop this awareness of applicability of their mathematics
to other situations. In these situations the students need, in addition to mathematical
knowledge and problem solving skills, to be able to translate the situation to math-
ematically tractable problems, to have a broad view of mathematics, to cultivate
communication skills, and to use their common sense and intuition. In these situa-
tions the students have to use their skills and knowledge, and they have to learn or
discover new techniques or concepts. Cristébal and Vargas explore the applicability
of such principles to students studying linear algebra in university mathematics.

Mouwitz raises issues that might cause us to pause and reconsider how we view
mathematical modelling being applicable in workplace settings. He argues there is
a tacit rationality, with a broader more qualitative mathematical essence, that has
another origin and another character and function than traditional classroom math-
ematics. This kind of rationality is bound to personal acting in complex settings, and
to our bodily interactions with the outside world. It is easily identified as a specific
quality in the work of experienced craftsmen, tradesmen, professionals and sports-
men, but the author argues that it is also to be found everywhere in ordinary working
life if we but have the eyes to see. It is also a necessary interpretation tool when
constructing and concretising abstract and general scientific models. Such a tool is
seen as a bridging process that needs dialogue and mutual respect for informal
knowledge outside the classroom and institutional knowledge. Model thinking and
analogical thinking represent two thinking styles that can come into conflict with
each other. In many cases model thinking wins in such conflicts, and this can lead to
a loss of praxis knowledge in workplace settings. This applies particularly where
there is a generational change and the importance of hidden praxis knowledge
becomes evident. A new group of practitioners, even though highly educated and
with new tools such as computers, may not be able to replace the many years of
praxis knowledge accumulated over time (see Goranzon 1993, for examples). The
importance of mathematical modelling and its effectiveness are pervasive in work-
place settings but as a cautionary tale it is important to point out its boundaries and
its connections to practice, both before and after the model design. Further, Mouwitz
cautions that if this is not recognised and highlighted, the “knowledge society”
could instead initiate a massive societal de-professionalisation.

Moving beyond both school education and in fact beyond mathematics education
per se, Schofield theorises about the applicability of mathematical modelling in
university settings. His particular focus is on the use of modelling eliciting activities
in university classrooms where students in the future will need to “use mathematics
‘in the wild’ ... [for example, as] responders to natural disasters or unfolding terror-
ist scenarios” (Hamilton and Hoyles 2006, p. 4). He argues that to be successful in
the sense that using these tasks is seen as of essential applicability to these students
in their courses, consideration is needed regarding inducting such students into the
ways of modelling, in particular the use of collaboration to solve complex tasks, an
approach to mathematics which may be alien to some students.
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Also with a focus beyond mathematics, Lagereis, Hu and Feijs argue that
competency based learning in a project driven industrial design education environ-
ment results in a different view of mathematical modelling than that held in conven-
tional tertiary education such as classical design engineering education. They argue
that modelling tends to be hidden, however, redesigning tasks can make the useful-
ness and importance of modelling visible and allow students to be more successful
modellers and designers and appreciate the applicability of mathematical modelling
in an industrial design environment where the focus is on the design of intelligent
systems, products and related services. The authors have noted that previously for
industrial design students there is a virtual barrier in the flow of their work when
going from science to the natural need for mathematics. It appears that investing in
a deeper layer of abstraction is not seen as worth the effort by students. In the new
approaches suggested by the authors opportunities for experiencing the competency
descriptive and mathematical modelling can be provided without students being
limited by a lack of technological skills.

6 Conclusion

A comprehensive appraisal of research challenges in the field of applications and
modelling is contained in Niss (2001) and Blum et al. (2007). Recent special issues
of international journals (e.g., Biehler and Leifl 2010; Kaiser et al. 2006; Stillman
etal. 2010) and ICTMA volumes (Kaiser et al. 2011; Lesh et al. 2010) document the
work that has been undertaken to address many of these in the ensuing years. In this
current volume several studies have been shown to be underway that address several
of these challenges as well. The ICTMA community operates from a large variety
of different theories and research paradigms when it comes to both research prac-
tices and teaching practices but paramount to this global community of researchers
is working together to establish a learning culture of mathematical modelling. The
diversity of our global community both illuminates and connects our different per-
spectives on teaching practice and research practices as shown in this volume.
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Chapter 2
From Conference to Community: An ICTMA
Journey—The Ken Houston Inaugural Lecture

Peter Galbraith

Abstract As a community ICTMA draws on its conference tradition as well as
developing new directions in research and practice to enhance its mission of pro-
moting the teaching and learning of mathematical modelling and applications at all
levels of education. This chapter reflects on aspects of its mission with respect to the
integrity of modelling activity, authenticity of its approach to modelling, character-
istics aimed to enhance a supportive and collaborative community, and activity
within representative research foci. It concludes by identifying avenues for advo-
cacy aimed at assuring a productive and vibrant future.

1 Introduction

In his plenary address at the First International Conference on the Teaching of
Mathematical Modelling in 1983, Henry Pollak pointed out that:

society provides the time for mathematics to be taught in schools, colleges and universities,
not because it is beautiful, which it is, or because it provides great training for the mind,
which it does, but because it is so useful. (Pollak 1984, p. xv)

This conviction continues to be reinforced internationally within official docu-
ments that set specific educational goals for the learning of mathematics — as in the
following:

Mathematical literacy is defined in PISA as the capacity to identify, understand and engage
in mathematics, and to make well-founded judgements about the role that mathematics plays
in an individual’s current and future private life, occupational life, social life with peers and
relatives, and life as a constructive, concerned and reflective citizen. (OECD 2001, p. 22)
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Mathematics aims to ensure that students are confident, creative users and communicators
of mathematics, able to investigate, represent and interpret situations in their personal
and work lives and as active citizens. (Australian Curriculum Assessment and Reporting
Authority 2010, p. 1)

So it is that we find ourselves carrying this torch, at times through conference par-
ticipation, but mostly as members of small groups of colleagues, or as individuals.
It is appropriate then, to pause from time to time to reflect that the meaning of the
‘C’ in ICTMA encompasses both Conference and Community, and the progress,
challenges and implications that this metamorphosis implies.

Ken Houston, whose name is associated with this presentation, is a former
ICTMA President, one of the founding members of the ICTMA community, and the
main author of the history of ICTMA: See Houston et al. (2008). This chapter will
first draw selectively from that history to illustrate how successive conferences fash-
ioned the agenda that now characterises the community. It will then proceed to
reflect on priorities, issues and foci, that stand to challenge the ICTMA community
as we move forward.

2 Beginnings

Rumblings in the United Kingdom that led to the forerunner of ICTMA might be
traced to the McLone Report (McLone 1973) which described mathematics gradu-
ates as:

Good at solving problems, not so good at formulating them, having a reasonable knowledge
of mathematical literature and technique; some ingenuity and capable of seeking out further
knowledge. However...not particularly good at planning work, nor at making a critical
evaluation of it when completed; and in any event he has ... apparently little idea of how to
communicate it to others (p. 33)

An early seminal influence was injected by David Burghes, arguably the Father
of ICTMA, and organiser of the first two conferences in 1983 and 1985, who sought
to enliven the school mathematics curriculum by working with teachers to produce
interesting modelling investigations for students at secondary level. In 1978 he
began the Journal of Mathematical Modelling for Teachers, which in 1981 meta-
morphosed into Teaching Mathematics and its Applications under which name it
continues today.

Whilst the tradition of ICTMA conferences may be fairly associated with events
in the UK, it should be emphasised that not all initiatives in modelling related activ-
ity in education emerged from there, with parallel initiatives emerging at ICME
Congresses and elsewhere. At ICME-3 in 1976, Henry Pollak brought applications
and modelling to the fore through his lecture on “The Interaction between
Mathematics and Other School Subjects” (Pollak 1979). In 1968 Hans Freudenthal
began a conference with the theme of “How to teach mathematics so as to be use-
ful?” with an opening address “Why to teach mathematics so as to be useful?”
(Freudenthal 1968). Thus the scene was set in many ways.
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3 The Conferences

It is not intended to elaborate at length on the ‘C” in ICTMA as representing conference,
for the aforementioned comprehensive history is available on the website. Rather it
is significant to observe changing trends and emphases, but also issues from earlier
days which, together with their relatives and descendants, continue to engage the
community. We note the changing emphasis within ICTMA conferences, which
began in 1983 with most presentations addressing issues in higher education as a
consequence of delegates drawn heavily from UK Polytechnics, many of whom had
experience of modelling in industry. A greater emphasis on secondary education,
together with the inclusion of ‘applications’ in the conference title, followed from
the increasing presence of delegates from continental Europe, and later the full
spectrum of educational levels became represented in conference programs. Among
conference themes from the early years that continue to characterise and challenge
the ICTMA community today we find:

* A practice of renewing the energy and authenticity in modelling activity by involving
practising modellers from within and outside education as plenary speakers.

* Descriptions of innovative attempts to change what were seen as conservative
national curricula, and assessment practices, that appeared first at [ICTM2 in 1985.

* Identification of model formulation as a crucial skill that students do not do very
well, and the associated proposing of new ideas in formulating models.

* Using modelling as an agent (e.g., via “Peoples’ mathematics™) for emancipatory
purposes — modelling within mathematics education as not just about mathematical
empowerment but also about political and intellectual empowerment (Julie 1993).

* The emergence of fechnology as a major theme as evidenced by its appearance in
the Proceedings title of ICTMA 8, later to be augmented with consideration of
the rapidly changing mix of fechno-mathematical literacies.

e A widened international participation to embrace every continent except
Antarctica, and in particular connection with colleagues from China, where both
secondary and tertiary institutions are teaching mathematical modelling which is
increasingly featured in secondary and tertiary institutions.

While not a conference publication, a paper reviewing the then situation regarding
the place of applications and modelling in mathematics education was published
following the fourth conference by two ICTMA members who remain active today
(Blum and Niss 1991).

4 ICTMA as Community

So how does ICTMA continue to serve its purpose, as it evolves within and from the
traditions established by its history, including its conference legacy? We may
approach such an analysis usefully from the viewpoint of ICTMA as a community



30 P. Galbraith

of practice (Lave and Wenger 1991). The defining characteristics of a community of
practice are summarised in (Wenger 2006): “Communities of practice are groups of
people who share a concern or a passion for something they do, and learn how to do
it better as they interact regularly.”

In his terms three characteristics are central to a community’s structure and

purpose.

The Domain: Identity is defined by a shared domain of interest, and therefore com-
mitment to a shared competence that is a distinguishing feature of the group.

The Community: To pursue interests in their domain, members engage in joint activ-
ities and discussions, help each other, share information, and build relationships that
enable them to learn from each other.

The Practice: Members of a community of practice are practitioners — they develop
a shared repertoire of resources, experiences, stories, insights, and ways of address-
ing characteristic problems that arise in their domain.

The community is constituted by these components in combination, and is cultivated
by developing them in parallel.

5 The Domain

Identity is defined by a shared domain of interest, and therefore commitment to a
shared competence that is a distinguishing feature of the group. It is too simplistic
to just say that our domain of interest is in the teaching and learning of mathemati-
cal modelling and applications, for that is a broad church that harbours too many
ambiguities if left unqualified. Seven (at least) approaches to the use of mathemat-
ics with connections to the real world can be identified within mathematics educa-
tion literature, that claim links to modelling in some way, and these vary from
changes in emphasis to different genres. Only indicative identifying references can
be afforded here.

1. Using contextualised examples to motivate the study of mathematics (Pierce and
Stacey 2006);

. Emergent Modelling (Doorman and Gravemeijer 2009; Gravemeijer 2007);

. Modelling as curve fitting (Riede 2003);

. Word problems that use practical settings (Verschaffel et al. 2010)

. Modelling as a vehicle for teaching other mathematical material (Zbiek and
Connor 2006);

6. Ethnomathematics and street mathematics (Barbosa 2006; D’ Ambrosio 1985).

[ I SIS I S

All of these, with possibly one exception, are equipped to make significant con-
tributions to the teaching of mathematics, and would be at home in any conference
with the teaching of applications as a focus. For various reasons, if taken alone, they
all lack one, or more, of the aspects necessary for inclusion if the full power of
mathematical modelling as a source of real world problem solving expertise in the
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ICTMA tradition, and individual empowerment is to be realised. This is not per se
a criticism for they set out to do different things. The following additional category
is the one that most uniquely represents the ICTMA domain of practice.

5.1 Modelling as Real World Problem Solving

This approach to modelling has particular relevance when the legacy and continued
work of ICTMA is being represented. It differs in some important respects from
those mentioned so far, notably because its origins lie in substantial part with those
who have used mathematics to model problems in professional fields such as sci-
ence and industry, as well as for addressing problems of community or personal
interest. Some, including Henry Pollak, and a variety of early ICTMA contributors,
took their experience and insights directly across into modelling initiatives in edu-
cation. Others, such as Pedley (2005) through his Presidential address to the Institute
of Mathematics and its Applications, have incidentally provided continuing sup-
port, by promoting this concept of modelling in public forums. The example below
has been distilled from a problem discussed in his address and published in the
given source. It is included here as representative of the approach to modelling that
has characterised the domain of the ICTMA community.

5.1.1 New Mexico Atomic Test

Professor Geoffrey Taylor’s analysis of the 1945 atomic bomb test in New Mexico,
in which he estimated the energy released in the blast, followed the publication in
Life magazine in 1947, of photos of the expanding blast wave (Fig. 2.1), taken over

1=0.0§5 sec 100 metres

Fig. 2.1 Blast wave photo (Source: http://en.wikipedia.org/wiki/Nuclear_weapon_yield)


http://en.wikipedia.org/wiki/Nuclear_weapon_yield
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Understand the real problem situation. <€

Frame an appropriate mathematical question. <

Formulate a model, using simplifying assumptions etc.

Analyse the model. <

Compare mathematical outcomes with reality. «

“«— “— “— <+ <

Modify and repeat until an adequate solution has been found. —p

Fig. 2.2 Modelling process (after Pedley 2005)

a succession of small time intervals. The analysis requires no more than senior
school mathematics, but is founded on an ability to formulate a mathematical prob-
lem from a real life situation.

5.1.2 Reflection on Modelling Issues

As an example of a modelling problem it illustrates the power that modelling com-
petence provides — an empowerment provided by the ability to apply mathematical
knowledge to address real world problems. Characteristic of the approach is a cycli-
cal modelling process, typically shown as a chart — the version in Fig. 2.2 is inferred
from Pedley’s presentation.

The arrows on the right indicate that iterative back tracking may occur between any
phases of the modelling cycle as required. This is a compact version of the modelling
chart that over the years has appeared in various forms in many sources. Modelling
diagrams serve several purposes. In their simplest form (as here) they identify basic
stages in the modelling process and provide mental scaffolding for a solution path. In
more elaborated forms (see later) they also act as research or design tools. Modelling
in this tradition has two purposes: to solve a particular problem at hand, but over time
to develop modelling skills, that individuals can apply to problems in their world. This
focus has typified the ICTMA culture from the earliest conferences and remains a
central interpretation of the modelling process within the community (e.g., Blum and
Leil3 2007; Galbraith and Stillman 2006; Niss et al. 2007).

5.2 Authenticity

Together with a commitment to modelling as real world problem solving,
‘authenticity’ has loomed large as a domain issue. A section in the ICMI Study
14 proceedings (Blum et al. 2007) devoted to the theme of authenticity underlines
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the importance with which it is viewed within the modelling community. It is
suggested here that one of the reasons creating potential confusion, is that the
sense in which authenticity has been considered is too global. Here it is proposed
that authenticity be viewed in terms of four dimensions.

1. Content authenticity
2. Process authenticity
3. Situation authenticity
4. Product authenticity

5.2.1 Content Authenticity

Content authenticity has two aspects. Firstly a problem itself needs to satisfy realistic
criteria (involve genuine real world connections), and secondly the individuals address-
ing it need to possess mathematical knowledge sufficient to support a viable solution
attempt. With respect to the latter (Jablonka 1996) reviewed modelling examples from a
range of teaching materials, and identified models from a variety of fields, with which
students lacked familiarity. She reasonably challenged the value of models if students do
not know the techniques needed for their solution. Jablonka thus identifies two issues of
importance, one to do with the use of models that are ‘black boxes’ for students — the
other implications of models requiring out-of-reach mathematics. Modelling attempted
with attributes like these would certainly fail a test of ‘content authenticity’.

In searching for viable problems, those with genuine real world connections con-
sist broadly of two genres:

Targeted real problems: Problems set with a specific goal. Example — decide the
optimum number and spacing of speed bumps along the new stretch of road in front
of the College.

Life like problems: The context is real, but there is freedom in choosing the precise
problem to be addressed. For example an intention might be to investigate the dif-
ferential effects on families from proposed changes in a taxation system. A number
of possible modelling problems might be developed such as: What are the relative
benefits for families in different income brackets or what will be the effect on fami-
lies with school age children or how will the new provisions impact on couples
versus individuals? Recognition of cultural and social issues and the significance of
personal values are central factors here.

5.2.2 Process Authenticity

Process authenticity refers to the conduct of a modelling process that results in solutions
that are defensible and robust in terms of the outcomes sought. Kaiser et al. (2006, p. 83)
remind us that while variations exist “the important thing is the commonly accepted idea
about a general mathematical modelling process.” Why is this important? Because it
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provides an agreed and tested basis from which to apply the process of modelling, teach
the process of modelling, and analyse and improve the outcomes of modelling. As a
community we need to have confidence in such a process, that can (in a Popperian
sense) survive tests of integrity and power that can be asked of it.

Arlebick (2009), when introducing modelling to upper secondary students, indi-
cated he found no evidence of the cyclic process widely described in modelling
research as central to modelling as real world problem solving. However, earlier in
the paper sub-processes that characterised the students’ work were identified as
follows: reading, making a model (structuring and mathematising), calculating,
validating, and writing. All of these are essential components of the modelling pro-
cess, and validating cannot occur without reviewing a solution in terms of the origi-
nal problem statement (reading). This alone completes a cycle, without considering
further cycles introduced through the checking and reviewing that inevitably takes
a solver back through earlier phases in producing a defensible solution. One possi-
bility is that our use of the term ‘modelling cycle’ may not be as unambiguous as we
have assumed, and there may be confusion at times with student activity on model-
ling problems which is anything but smoothly cyclic. Any such confusion stands to
compromise efforts to make authenticity more transparent.

Other difficulties emerge if we rely on assumptions that are not applicable to
support the range of conclusions drawn (e.g., Jablonka and Gellert 2007, p. 5):

The symbolic technology at hand, as well as measuring devices, and domain specific con-
straints and theorems, all influence the form the real world model will take. So the real
world model is by no means a description of the real world problem.

The first sentence is obviously true, and any consideration of process authenticity
acknowledges this. On the other hand, the second statement is not a logical conse-
quence, and appropriate evaluation procedures, integral to the modelling process,
will provide criteria by which the authenticity of the ensuing models as ‘descrip-
tions’ of the problem will be judged.

A generic but adaptable approach that empowers individuals as problem solvers
stands to benefit users across different areas of content and purpose. This is the posi-
tion that has enabled the teaching of modelling to benefit from contributions from
modellers in many fields of application. It was influential at the birth of the com-
munity, continues to be valued, and provides a strong argument why modelling as
real world problem solving can never be absorbed entirely into systems that value
only prescribed curricular mathematical content.

5.2.3 Situation Authenticity

This critical dimension brings conditions necessary for a valid modelling exercise
into direct contact with the workplace, classroom, or other environment within which
the modelling enterprise is conducted. The importance of ‘situation’ is brought home
by comments such as Sfard (2008) who claimed that, the minute an ‘out of school’
problem is treated in school it is no longer an ‘out of school problem’, and hence the
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search for authentic real world problems is necessarily in vain. What this does is to
make the conception of what it means to be “in school”, or “out of school” the defini-
tive construct, by privileging a particular conception of what school mathematics is
about, and what mathematics teaching and classrooms are allowed to be — then
requiring that modelling fit the stereotype, be subject to associated practices, and
hence compromise its integrity. In a similar vein, Jablonka and Gellert (2007, p. 5)
argue that in classrooms there is no validation, because the result is not put back into
a “real” real situation and that “since within a classroom activity the results are never
put into operation, there is no real problem of validation”. These are generalisations
that ascribe to the field of modelling, weaknesses that may exist in particular imple-
mentations — the latter are important to document, but to imply their universal appli-
cation to classrooms is both inaccurate and unfortunate.

By contrast, what modelling properly conducted can do, is to challenge some of
those norms, assumptions, and stereotypes — mathematical, situational, and pedagogi-
cal. The essential characteristic, for situational authenticity, is that the requirements of
the modelling task drive the problem solving process, and for this purpose carry greater
authority than beliefs or traditional teaching practices should these compromise the
goal. Typically, modelling activity will take place both inside and outside classrooms.
Osawa (2002), for example, describes a project in which the goal was to optimise the
baton changing practice of relay teams. Activity took place alternately in a classroom,
and on the running track which acted as the laboratory within which results were tested.
Neither place alone would have sufficed to carry out the complementary theoretical
and experimental activities that successive improvements demanded. Equally striking
are the actions of individuals who apply their school learning in modelling to address
problems particular to them. Examples include the successful modelling of a 12 year
old girl to convince her parents that she could both care for and provide for a much
wanted pony, and a mature age student who used the cyclic modelling process to
redesign the culture he used for growing tomatoes hydroponically.

A recent paper (Jablonka and Gellert 2011) contains several other assertions that
require qualification; such as modelling in mathematics education aims at creating
a flexible workforce; that modelling conceptions do not see associated competen-
cies as ‘culture bound and value driven’; that contextuality of all knowledge is
(mis)interpreted in a way that leads to the contention that mathematical concepts
can be meaningfully learned only within a ‘real life’ context. As generalisations
the assertions are collectively and specifically refuted within sources such as the
following (Niss et al. 2007; Stillman et al. 2008, 2010). When suitably qualified
such criticisms become productive warnings against extremism in the parts of a
community, but without qualification they suggest a broad fanaticism with which
the membership of ICTMA would not be comfortable.

5.2.4 Product Authenticity

As one of the most superficially obvious ideas, product authenticity is both an
important and an elusive concept. It is elusive, because it is not always clear when
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an appropriate ‘product’ has been achieved. When is a problem solution good
enough to warrant the effort expended given that money, and/or time has run out?
In the classroom, while money may not be a tangible constraint, time most cer-
tainly is. Hence assessing product authenticity involves asking how well an end-
point achieved by modelling informs the question asked. So assessing product
authenticity involves looking at mathematical outcomes in two ways. Firstly to
check that there are no obvious mathematical anomalies which have not been
addressed, and secondly to verify that mathematical outcomes have been appropri-
ately absorbed into implications for the real world problem being addressed. If
modelling has been curtailed, there needs to be an appraisal of the insights gener-
ated, and an indication of what aspects of the problem remain unresolved. This will
apply irrespective of whether a project has been curtailed by cost, time, or other
factors such as loss of key personnel.

In summary continuing to develop the characteristics of mathematical mod-
elling as real world problem solving, and addressing associated matters of
authenticity, continue to occupy a central place in the domain of the ICTMA
community.

6 The Community

To pursue interests in their domain, members engage in joint activities and discus-
sions, help each other, share information, and build relationships that enable them
to learn from each other.

What does it take to be a learning community, which will enable and enhance the
interests and activities of its members who want to do more than ‘just belong’? The
social nature of ‘community’ suggests Vygotskian lines of thought, and in conse-
quence points to possibilities provided by expanded notions of the zone of proximal
development (ZPD).

6.1 The ZPD as Scaffolding

The most widely known definition of the ZPD as the ‘distance’ between what a
learner can achieve alone, and with the assistance of a more advanced teacher or
mentor, places the teacher in a pivotal classroom role in supporting students to
become more self-regulating participants in learning. In modelling courses some
physical embodiment of the modelling process (e.g., a diagram) has been a typical
scaffolding prop, which becomes redundant as students internalise the process,
and become independently proficient through collaborative practice (Galbraith
and Clatworthy 1990).
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6.2 The ZPD in Egalitarian Partnerships — Distributed
Complementary Competence

Deriving originally from observations of collaborative children’s play, this view of
the ZPD involves equal status relationships, developing the learning potential in
peer groups where students have incomplete but relatively equal expertise — each
partner possessing some knowledge but requiring the others’ contribution in order
to make progress. Compared to the expert-novice situation, the co-production of the
task typically involves contest and trial-and-error as the partners begin to appreciate
the perspectives of others and coordinate their incomplete competence (Forman and
McPhail 1993). Such understanding provides theoretical underpinnings for the
enhancement of team problem solving through collaboration — a characteristic of
modelling activity.

6.3 The ZPD - In Practitioner- Researcher Relationships

This view applies the concept of a ZPD to whole groups, where participants with
partially overlapping ZPDs provide a changing mix of levels of expertise, so
enabling many different productive partnerships to be orchestrated (Brown et al.
1993). In professional collaboration, overlapping individual ZPDs can create a com-
bined ZPD which promotes a higher vision of possibilities than either separately
could provide. Here partnerships are located in the community itself, where the
participants are professionally linked, typically as researchers and/or practitioners.
A motivation behind the theorising of this construct has been the experience of the
author stimulated, by contributions within teacher — researcher partnerships.
Increased possibilities for research were generated through equal-status collabora-
tion, using complementary expertise, which neither alone could have achieved.

Within the ICTMA community of practice both practitioners and researchers,
experienced and inexperienced, are represented. How can such a community, use
the diverse expertise of its members, to generate a group ZPD that inspires visions
that none of us alone could produce? This I think is the spirit intended by Wenger in
writing his summary of community.

7 The Practice

Members of a community of practice are practitioners — they develop a shared rep-
ertoire of resources, experiences, stories, insights, and ways of addressing charac-
teristic problems that arise in their domain.

The significance of resources, experiences and stories comes to mind when we
consider the legacy from ICTMA conferences, where initially for example, many of
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the talks were of the war story variety: “This is how we teach modelling” or “This
is our curriculum,” and many were useful descriptions of models that the author(s)
had used in their teaching. As Wenger’s conception emphasises, there is an hon-
oured place for anecdotes and stories, as those in a field, new and experienced, seek
and share ideas, trade experiences, and ask and provide advice from and to each
other. This is a highly legitimate activity, necessarily augmented by others that aim
to deepen insight into the components of the domain of interest of the community,
and how its practice is conducted — more usually called research.

7.1 Research in the Domain of Practice

A comprehensive appraisal of research challenges in the field of applications and
modelling is contained in Niss (2001). In this section we consider some selective
foci that characterise the ICTMA culture, with directions influenced by the author’s
own activities and priorities. Figure 2.3, after Galbraith and Stillman (2006), will
be used to locate some of these directions. The diagram is designed to support
research description, analysis, and discussion, rather than serve a teaching purpose
— although it does contain an embedded version of the traditional simpler model-
ling cycle — the stages A to G (with the transitions 1-7), linked clockwise by the
heavy single headed arrows.

For present purposes Fig. 2.3 serves to define key foci for research with respect to
individuals learning mathematical modelling, and pressure points for those teaching
within the field, for example, the kinds of mental activity that individuals engage in
as modellers attempting to make the transition from one modelling stage to the next,
and which provide key foci for research, are given by the broad descriptors of cogni-
tive activity, (boxed) 1-7 in Fig. 2.3. The light double-headed arrows emphasise that
thinking within the modelling process is far from linear (e.g., Borromeo Ferri 2006),

A. Messy real 1 | B. Real 2 —» C. Mathematical model3_> D. Mathematical
world < » world 4 > <«——p Solution
situation problem
statement
4
7
G Report‘e— F. Revise model or ; E. Real}world meaning
«+——»  Accept solution <—» of solution
1. Understanding, structuring, simplifying, interpreting context
2. Assuming, formulating, mathematising
3. Working mathematically
4. Interpreting mathematical output
5. Comparing, critiquing, validating
6. Communicating, justifying (if model is deemed satisfactory)
7. Revisiting the modelling process (if model is deemed unsatisfactory).

Fig. 2.3 Modelling process (after Galbraith and Stillman 2006)
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Fig. 2.4 Sample mental

. RM
infrastructure (after / \
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Borromeo Ferri 2006)

and indicate the presence of reflective metacognitive activity as articulated by many
researchers (e.g., Maall 2007). Such reflective activity can look both forwards and
backwards with respect to stages in the modelling process. Thus while the stages of
problem solution follow a cyclic path, the route taken by an individual modeller is
usually anything but smoothly cyclic.

7.1.1 Issues in Formulating Mathematical Models
(Modelling in Stages A—C)

As history tells us, challenges in this area have engaged ICTMA participants from
the earliest days. Its presence as a prime focus separates modelling as real world
problem solving, from other educational approaches that use the term ‘modelling’,
and it is both important and exciting that current work is directed within this area.
Some of the most systematic research is being conducted by Rita Borromeo Ferri, as
reported in the article referenced above. This approach adds formal mental infra-
structure (see Fig. 2.4), in terms of a situation model (SM), its real representation
(MRS), and a real model (RM), between the real situation (A in Fig. 2.3), and the
mathematical model (C in Fig. 2.3).

So we have the question whether a ‘real model’ represents a formal stage in the
modelling process that should be shown in its structure, or whether it is a useful
heuristic device that provides substantive help to modellers in moving from a real
world problem statement to a mathematical model. What can be agreed is the impor-
tance of scaffolding this demanding transition in the modelling process, and the
value of researching and applying any means that enhances the ability to achieve
this end, whichever of the positions we currently favour.

7.1.2 The Role of Metacognitive Activity

Galbraith and Stillman (2006) developed an approach in which Fig. 2.3 was used as
a template to assist in the identification and release of blockages encountered by
students in moving between stages of the modelling process. Central to this focus, is
the way in which metacognitive activity can enhance or retard a modelling venture.
Goos (2002) identified three generic types of situation (red flag situations) that
should elicit metacognitive monitoring within any stage of a problem solving process
— labelled respectively (a) lack of progress, (b) error detection, and (c) anomalous
results. She identified three prevalent forms of metacognitive failure. Metacognitive
blindness occurs when no required action is recognised; Metacognitive vandalism
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occurs when drastic and often destructive actions not only fail to address the issue,
but also alter (invalidate) the problem itself. Metacognitive mirage occurs when
unnecessary actions derail a solution, because an ‘imaginary’ difficulty is identified.
From our work we would add Metacognitive misdirection as an inappropriate response
that represents inadequacy rather than vandalism; and Metacognitive impasse that
occurs when no amount of reflective thinking or strategic effort is successful in
releasing a blockage. Much more remains to be done in learning to identify and release
blockages that inhibit the ability of students in becoming effective modellers.

Furthermore, given that metacognitive activity is located heavily at the tran-
sitions indicated in Fig. 2.3, how pedagogy addresses the fostering of metacog-
nitive competencies is crucial to the goal of producing students who are
consistently able modellers. The notion of meta-metacognition, as discussed for
example in Stillman (2011), has come to influence our thinking in this respect.
In considering whether given metacognitive activity on the part of students is
appropriate, or being properly conducted, a teacher is reflecting on metacogni-
tive activity itself — that is undertaking mental activity that is meta—metacogni-
tive in nature. At the macro level how a teacher acts on such reflection will be
crucial to the way mathematical modelling is nurtured or stifled in their class-
room. At the micro level the capacity of students to make transitions between
phases in the modelling cycle, and to release blockages, depends critically upon
how they are facilitated in applying the modelling process, and metacognitive
strategies central to it. “What should this student be asking her/himself at this
point in the modelling process?” is a meta-metacognitive self-prompt, that more
is required than a suggestion about how to progress past a problem-specific
obstacle. It is centrally to do with nurturing effective problem solvers by provid-
ing a modelling culture.

7.1.3 Other Research Themes

Here we briefly note some other contemporary research themes that have character-
ised activity over time within the ICTMA community. Originally assumptions were
largely considered to inhabit the process of setting up a mathematical model in the
first place. While they continue to play a major role in formulation, there is now
realisation that they permeate the whole of the modelling process, and are not some-
thing to be merely ticked off in an early phase. Galbraith and Stillman (2001), for
example, identified three different classes of assumption; those associated with
model formulation; those associated with mathematical processes, and those asso-
ciated with strategic choices in the solution process.

A second area, in which reflection on the modelling process has resulted in a
changing understanding of its role over time, is the use of technology in modelling.
Geiger et al. (2010) point out that technology related activity takes place during all
phases of the modelling cycle, rather than as previously theorised, only at the solv-
ing stage. This is relevant not only within the mathematical dimensions of a model-
ling task, but for the contextual settings within which a problem is addressed, such
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as collaborative teamwork. It is important that we continue to identify and research
aspects once compartmentalised, that represent fluid and dynamic influences across
stages of the modelling process.

Other significant continuing research foci with links to ICTMA values and tradi-
tions include the identification and assessment of modelling competencies (e.g., Haines
and Crouch 2007; Houston and Neill 2003); and the development and researching of
modelling programs at all levels of education — undergraduate, primary, and secondary,
including teacher education (e.g., Alpers 2011; English 2011; Maal3 2007). We would
also acknowledge the parallel work of modelling colleagues in developing and
disseminating theoretical and practical dimensions of modelling programs through the
medium of model eliciting activities (e.g., Lesh and Doerr 2003), and the development
of challenging real word modelling problems through the UMAP and COMAP pro-
grams (Garfunkel 2004).

Finally, the classification of modelling perspectives (Kaiser and Sriraman 2006)
summarises different purposes adopted within educational settings. In identifying
alternative research foci it incidentally draws attention to important distinctions
between different ‘models of modelling’, and alternative perspectives and emphases
that they serve. Perspectives represent the interests of those engaging in the model-
ling activities. For example socio-critical purposes (Barbosa 2006) involve making
certain assumptions (rather than others) regarding which mathematical questions
should emerge from a situational context, and how they are treated. It does not
require a separate modelling genre, as has been exemplified through the work of
Cyril Julie in his work with students and teachers in South African townships (see:
Julie 1993; Julie and Mudaly 2007). Research in all areas identified in the paper
continues to engage members of the ICTMA community.

8 Addressing Issues in the Domain and Community
— Advocacy

As Wenger (2006) reminds us, members of a community of practice need to develop
ways of: “addressing characteristic problems that arise in their domain”. One issue
confronting a community like ICTMA is how best to promote the growth and impact
of the community — what kinds of advocacy should we engage in?

As a community ICTMA is committed to enhancing the impact that applications
and modelling can make in equipping individuals to use mathematical knowledge in
personal, work, and civic contexts. However, in publicly endorsing this goal for math-
ematics learning do education authorities pay more than lip service to the ideal? What
specific provisions ensure that the implemented curriculum contains the time and the
resources to make such goals attainable? It would be of great benefit if [ICTMA, as an
affiliated study group of ICMI, could provide members with support when curriculum
statements and intentions open the door to our field of interest in their particular
region. Statements representing ICTMA’s best advice would be welcome external
support for those trying to engender change at local or national levels.
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A second important forum is afforded by the Affiliated Study Group time slots at
ICME Congresses, where there is opportunity to do two important things. One is to
introduce the community to new contacts, for whom a statement of core values,
variety of perspectives, central purposes, summary achievements, and future vision
is important. The second focus relates to those who already know about ICTMA and
its past work. For them an essential message is that the community is on the move,
new challenges are being set, new insights achieved, and an increasingly techno-
logical and socially challenged world is the context within which problems are
being identified and addressed.

9 Conclusion

In concluding it is appropriate to return to ICTMA’s roots, and reflect again on how this
conference series came to be. We cannot help but note the decline in representation of
the group most instrumental in its creation — tertiary mathematics staff with industry
experience, concerned with helping students learn to solve real problems. We need to
find ways to rejuvenate contact with those, who while primarily involved in solving
mathematical problems, have a vital educational interest in helping students to learn
these abilities. A strong link between the domains of mathematics and mathematics edu-
cation needs to be maintained, in order that each can inform the other, and that together
we can work to ensure that our community does not become absorbed by either purely
mathematical interests, or conservative elements of the education industry.
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Chapter 3
Modelling from the Perspective
of Commognition — An Emerging Framework

Jonas Bergman Arlebiick and Peter Frejd

Abstract This chapter explores an emerging framework on mathematical models
and modelling using the theoretical perspective of commognition to analyse and
discern discursive objects in a dialogue between two students engaged in a modelling
activity. The results, partly presented as realization trees, show a variety of signifiers
from different discourses coming into play during the modelling, and examples are
given of the activity of negotiation, which plays an important role in any modelling
activity. In addition, it is argued that the framework has potential to bridge different
research perspectives on mathematical models and modelling.

1 Introduction

In the research literature in mathematics education, there are many different views
taken on, or theoretical perspectives adapted for, mathematical modelling (Frejd 2010;
Garcia et al. 2006; Jablonka and Gellert 2007; Kaiser et al. 2011; Kaiser and
Sriraman 2006). This plurality is natural considering the different social and cul-
tural realities in which research is being carried out with different objectives and
in different traditions. This diversity of perspectives brings a variety of relevant
aspects of learning and teaching mathematical models and modelling to the fore,
and together they contribute to a rich and many facetted picture of mathematical
models and modelling as well as of mathematics in general. However, it also renders
the obvious, but easily overlooked risk, that unless interlocutors engaged in discussion
about educational aspects of mathematical models and modelling are very explicit
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and clear about their theoretical underpinnings and intentions, misunderstandings or
conversational breakdowns are likely to happen. This happens simply because the
parties are talking about different things.

This latter point, considered more generally and in a broader context, is one of
the incentives of Sfard (2008) for developing the framework of commognition, and
it seems a promising and rewarding task to try to formulate a commognitive per-
spective of mathematical models and modelling in at least two respects. Firstly, and
related to the issue just mentioned, commognition presents a meta-perspective
bridging, contrasting and synthesising the different theories about modelling in the
mathematics education community. Secondly, a conceptualisation of mathematical
models and modelling in terms of commognition would provide a framework for
analysing inter- and intrapersonal communication complementary to the present
prevailing perspectives, attending to both the social and cognitive dimensions of
modelling. The aim of this chapter is to start exploring mathematical models and
modelling from a commoginitive perspective with this latter focus.

2 Theoretical Framework

Commognition is a theoretical framework developed by Sfard (2008) that focuses
on both social and individual aspects of thinking and learning; it merges and com-
bines tenets from theories of communication and cognition. The framework uses a
set of principles and notions that discuss thinking as a special type of interpersonal
communication and learning as a change in discourses. One of the basic principles
of commognition is that “discourses permeate and shape all human activities, [and]
the change in discourse goes hand in hand with the change in all other human
doings” (p. 118). In this framework discourse is defined as a “special type of com-
munication made distinct by its repertoire of admissible actions and the way these
actions are paired with re-actions; every discourse defines its own community of
discourse; discourses in language are distinguishable by their vocabularies, visual
mediators, routines, and endorsed narratives” (p. 297). In other words, a discourse
is characterised by the meaning and use of language (in a general sense including
written and spoken words, symbols, figures, graphs, etc.), not only including con-
sensus on the interpretation of language, but also established conventions for com-
munication and interaction between members of the discourse as well as formalised
ways on how to determine what is regarded as ‘true’ within the discourse. Hence, a
discourse functions as delimiter in that it includes or excludes persons from a given
discourse. Commonly figuring discourses when a commognitive approach is
employed are colloquial discourses (or everyday discourses) permeated by personal
experiences; the complementary literate discourses in which communication often
is characterised by the use of specialised symbolic artefacts; and, classroom dis-
courses capturing school norms and rules (Sfard 2008).

According to Sfard (2008) discursive objects arise in a recursive manner in a
given discourse to enhance the effectiveness of communication through one or
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a combination of the three processes of saming, encapsulating, and reifying. Briefly,
the act of saming means assigning one name for a collection of different objects
(concrete as well as abstract); encapsulating refers to starting to talk about things in
singular, although these previously have been considered in plural; and reification is
about objectifying so that talk about processes is replaced with talk about objects.
The activity of negotiations, which can be seen as a recursive pattern of conjecture-
test-evaluation carried out by the discourse participants, provides a notion for framing
these processes in more detail. A discursive object is manifested through its signifier
and its realization tree, where the signifier can be, for example, a word or an alge-
braic symbol, and the realization tree is the tree-like structure (in the sense of graph
theory) of successive meaningful realizations of the signifier. A realization tree can
also productively be thought of as a connected graph, possibly containing loops, to
stress the “symmetric nature of many signifier-realization relations” (Sfard 2012).
Due to the recursive nature inherent in the production of discursive objects, there is
often a dual relation between a signifier and its realization making the two notions
in different contexts interchangeable.

In terms of commognition, one can interpret a mathematical model as a discur-
sive object in a subsumed discourse, which means that in a given situation and
context a particular mathematical model is a signifier with a realization tree where
the successive realizations branch over and connect multiple relevant discourses.
To be engaged in the activity of modelling means to be participating in a modelling
discourse, and thus involves singling out the relevant discourses for the problem by
finding and making meaningful and productive connections between signifiers/real-
izations in realization trees belonging to different discourses, subsuming these into
the new discourse.

3 Methodology and Method

Taking a commognitive approach on mathematical models and modelling means
focusing on the special discourses where mathematical models are used, created,
developed and modified. According to Sfard (2008), discourses are characterised and
distinguishable in different ways (vocabulary, visual mediators, routines, and endorsed
narratives), which suggest a number of complementary approaches could be taken to
investigate a modelling discourse. This first exploratory attempt to use the commogni-
tive framework analyses the collected and transcribed video data of two students
engaged in a modelling activity with a focus on the different discourses evoked, the
vocabulary (signifiers) used and the relationship between different signifiers as these
enfold and connect (successively constituting realization trees) during the activity.
The data analysed comes from work on the second of two modelling tasks
that were given sequentially to three groups of two to three upper secondary students.
The students were taking part in a study aiming to investigate the potential use of
realistic Fermi problems for introducing the notion of mathematical modelling at the
upper secondary level (Arlebick 2009). These types of problems are open and
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discussion promoting with clear real-world connections. The decision to use this
piece of data was partly based on convenience since the data already were available,
and partly on the fact that the chosen group, consisting of two male students, was a
known well functioning, dynamic and highly verbal duo when engaged in joint
collaborative work. In addition, compared to the first of the two modelling tasks, we
also regarded the second task to be more open in terms of relevant contexts coming
into play.

The modelling task, The Snow Clearance Problem, that the students engaged in,
is about snow clearance of a soccer field, a problem motivated in connection to the
2010 opening soccer game in Sweden, when a local soccer club had to ask their
supporters for help to clear away all the snow from the soccer field in order for the
opening game to take place. The actual task from which the data in this chapter
comes was formulated as follows:

The Snow Clearance Problem

A firm gets the job to clear a soccer field from a 2 dm thick layer of snow
fallen during the night. If the snow is shovelled into two piles on the two
respective shorter sides of the field, how big will the piles be? What would
each pile weigh?

In terms of commognition, the specific research question investigated in this
chapter is: What discursive objects can be discerned in the modelling activity of the
students working on The Snow Clearance Problem?

4 Analysis and Results

To illustrate how the data have been analysed, two excerpts from the 30 min conver-
sation between the students are presented in Tables 3.1 and 3.2 respectively. Both
excerpts were analysed with focus on identifying the discourses in terms of what
signifiers the students use as well as trying to map the students’ realization trees
created during the conversation. To set the scene, the two students, Markus and
Viktor, started the modelling activity by making assumptions about the size of the
soccer field. Their estimates are based on Viktor’s personal experience having vis-
ited a soccer field that was longer than the 100 m racetrack situated next to the field.
They calculated the total snow volume as 1,200 m* (600 m? at each end of the soccer
field) and expressed surprise that it was not a large amount. A discussion followed
about what happens to snow when it is shovelled together and arguments were put
forward that the snow volume becomes compacted to 200 m?* at each end. In the
excerpt in Table 3.1, the students are engaged in a conversation about what the
actual question in the problem formulation means.



Table 3.1 Excerpt 1 from the transcripts

Student Utterance

Markus  [39:10]  What is asked is how big they [the snow piles] will be, then you are searching
for the height aren’t you?

Viktor [39:14]  Well, is it? I don’t know?

Viktor [39:19]  If he [the teacher] wanted to know the height, he would have written ‘the
height’ [in the problem formulation].

Markus  [39:22]  Hmm, he probably wants to have the height and the width and maybe the length.

Viktor [39:25]  Yeah.

Markus  [39:25]  They [he refers to the imaginary people that do the shovelling] are stupid
if they don’t spread out the snow evenly.

Viktor [39:27]  If we give the height, the width and the length, then we give the volume...
so that the height will be given. We can draw it here too [points at a sheet
of paper where the students are writing their solution], that we can do.

Markus  [39:39]  We can say, well say that it will be one and a half metres high.

Viktor [39:43] Hmm, I will do it here [writes and draws on the paper] one point five.

Markus  [39:50] [calculating on his pocket calculator] It will be two point six metres wide
if it is square-shaped, so like three metres. However, it will not be
square-shaped [cuboid], it will be more rounded.

Viktor [39:58]  Yeah... That’s right if it is rounded, then we have a half circle.

Note: Original in Swedish, translated by the authors

Table 3.2 Excerpt 2 from the transcripts

Student Utterance

Markus  [46:34]  When someone melts snow then it will be quite little left.

Viktor [46:36] It gets VERY little water left.

Markus  [46:38]  One third [of the snow volume remains], because the snow is compacted
together. A third!

Viktor [46:40]  If you bring a snowball inside and let the snowball melt in a glass it will
not be this much left [Viktor shows with his hands]. Be serious!

Markus  [46:48] How about a fifth?

Viktor [46:50] Ican go with a fifth, but I think it is just a good approximation.

Markus  [46:53] A fourth?

Viktor [46:54]  No.

Markus  [46:55]  Istill think it is quite, it gets damn compacted when you shovel with a
machine. It is not that you shovel little and snow compacts on snow.

Viktor [47:02]  However, the snow is still frozen. Were you not in the chemistry class and
saw that water that turns to ice expands four times. Isn’t that so?

Markus  [47:18]  Yes, maybe so, divide it by four then.

Viktor [47:22]  Hey, we do not have ice, it is far from ice. We have snow and snow is crystals
and crystals are much more,... there is much air between [the crystals].

Markus  [47:32]  Ice does not expand four times, I know that.

Viktor [47:34]  Ok.

Markus  [47:34] It does not.

Viktor [47:36]  No, it cannot, because when you put it in the freezer...

Markus  [47:38] I think snow can expand four times, four-five times if the snow is
compacted together.

Viktor [47:41]  Well, say that snow expands four times.

Markus  [47:43]  Yes, then it is 50 tons on each side that, that is not little. Damn that’s lots

of snow.

Note: Original in Swedish, translated by the authors
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Fig. 3.1 A realization tree
from excerpt 1 Big

Height Volume
I 1
| 1

L] a

In the beginning of this excerpt, Viktor and Markus try to interpret the word big,
which here is analysed as the root signifier in the corresponding realization tree.
Any given signifier, for instance a specific word, may mean different things in
different discourses. In excerpt 1, the signifier big can have several meanings in col-
loquial discourses such as referring to size, height or weight. Depending on what the
signifier means or signifies, it is associated with different realizations. The students
try to make the signifier operational by shifting from a colloquial discourse to a lit-
erate mathematical discourse by trying to employ a classroom discourse by specu-
lating on what is required from them by their teacher. They assume that the teacher
wants the signifier to be realized as a volume, but they are not totally sure so, just in
case, they also explicitly include the height to please the teacher.

Markus [Table 3.1, 39:25] puts himself in a position of a snow shoveler and uses
a colloquial discourse to describe how he assumes a snow shoveler would shovel.
Markus assumes the shovelers would make even piles behind each goal and this
idea is picked up by Viktor. Using another colloquial discourse argument, Markus
emphasises height as the relevant realization of big, probably based on his own
experience of snow piles. Markus’s introduction of the new signifier height meets
no complaints or counter-arguments from Viktor. Finally, the shape of the pile or
how the signifier volume should be realized is discussed. Markus now uses a collo-
quial discourse and realizes the signifier volume as square-shaped piles with rounded
edges. Viktor takes this idea into a more literate mathematical discourse and con-
cludes that the cross sections of the piles are half circles.

The realization tree in Fig. 3.1 summarises and illustrates the identified signifiers
together with their realizations. The root signifier big was realized as height and
volume, realizations which as signifiers were unpacked even further; the height real-
ized as 1.5 m; and, the volume (the mathematical model), the wanted signifier, was
realized first as a cuboid and finally described in terms of a half cylinder.

The second excerpt, see Table 3.2, illustrates the frequently occurring activity of
negotiation in the transcript. The episode depicts a negotiation about how to realize
the relationship between a given volume of snow and the corresponding volume of
melted water. This relationship is the key component of the model that describes the
change in volume due to phase transition. This model (signifier) is then used to
calculate the weight of the snow in the piles.

In the beginning of excerpt 2, Viktor and Markus are engaged in a colloquial
discourse on snow and water resulting in their agreement on the volume of a snowball
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Fig. 3.2 A realization tree from excerpt 2

being bigger than the volume of the liquid water constituting it. However, they do
not agree on how big this difference is; how much the decrease in volume is, which
here is what is analysed as a root signifier. Markus [46:38] gives a conjecture, an
idea how the signifier might be realized, presumably drawing on a classroom dis-
course, that the volume decreases three times. This conjecture is tested by Viktor,
based on his own experience of melting snowballs in glasses (a common experiment
in Swedish pre-school). Viktor’s evaluation results in his dismissing of the conjec-
ture, which is manifested in his utterance to Markus to “be serious”. The negotiation
continues by conjectures from Markus that the volume first decreases five times and
then four times. Viktor tests these conjectures implicitly and evaluates that the vol-
ume might decrease five times but not four. However, Markus is persistent and con-
tinues to use arguments about the realization of the root signifier from a colloquial
discourse and claims that the snowplough compacts the snow together so much that
the volume should not decrease as much as five times. Viktor then turns to the liter-
ate chemistry discourse in order to convince Markus to agree with his new sug-
gested realization. His argument is that ice expands four times (which is an estimate
way above the correct value). This indicates that he is considering ice rather than
compacted snow to be the relevant realization to consider. This transfer from a col-
loquial discourse to a more literate discourse convinces Markus. Viktor, who is still
in the more literate chemistry (or physics) discourse, continues questioning Markus’s
estimate, and realizes that snow and ice are not the same thing based on reasoning
about properties of crystals. Markus makes a new conjecture and claims that he is
sure that the ice does not expand four times. Viktor realizes, based on personal expe-
rience in the colloquial discourse of putting water into the freezer, that he must have
made a mistake trying to invoke the chemistry discourse. Finally, they settle that the
snow’s volume decreases four times when turned into water. Markus moves to the
mathematical discourse and divides the total amount of snow measured in water by
four. He obtains 50 tons and is surprised that the result became that much.

Figure 3.2 summarises the activity of negotiation in the realization of the root
signifier decrease in volume as this enfolded in excerpt 2. Note how the realizations
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1/3, 1/4 and 1/5 arise reclusively by conjecture-test-evaluation processes drawing
on different discourses in the ‘search’ for relevant discourses to be subsumed so that
a usable realization can be made for the desirable signifier (the model). The dis-
courses that are discussed for potential subsumption in constructing the model are
discerned by the talk of water, snow, ice, melting, shovelling/packing, and ice
expansion respectively.

To summarise, the analysis of the two excerpts shows that the students in this
study use and combine a variety of discourses. The students mainly use several col-
loquial discourses to realize the signifiers and often with explicit references to their
personal experiences. There are also literate discourses visible in the data arising
from mathematics, physics and chemistry. Classroom discourses are manifested in
the values and norms on how to cooperate in school settings as well as assumptions
about what is expected by the teacher. The realization trees presented in Figs. 3.1
and 3.2 illustrate what type of signifiers the students used in working on the problem
within the particular context and how those signifiers have been realized. Overall,
the discerned discursive objects in this study are manifested by a variety of different
signifiers that come into play and were used during the modelling process. The links
between these signifiers constructed during the modelling activity, the realization
tree, is a result of the interplay between what the two students brought with them
cognitively, the communication between the two, and, the social setting in which the
modelling activity took place. A commognitive perspective allows all these aspects
to be addressed using one framework.

5 Discussion and Conclusion

The students’ frequent use of colloquial discourses to identify and realise signifiers
may have several different explanations. Firstly, The Snow Clearance Problem was
part of Markus’s and Viktor’s first experience of modelling activities. According to
Sfard (2008), ‘newcomers’ need help from ‘oldtimers’ to make the transition from
colloquial discourses to be able to more fully participate in literate discourses.
Secondly, realistic Fermi problems in themselves have inherent characteristics invit-
ing the use of colloquial discourses, especially when only a pocket calculator was
allowed and not, for instance, the Internet or library resources. Therefore, it was not
a surprise that the students use personal experiences as a base for their assumptions.
This was found also by Arlebick (2009). Using Fermi problems for an introduction
to modelling activities suggests the need for follow up lessons with more advanced
modelling problems where students have access to more powerful tools and are
offered opportunities to validate their work in order for the students to gain more
knowledge in mathematical modelling.

The students’ use of classroom discourses may also be an effect of the students’
lack of modelling experiences; they did not know what was expected and required
from them. However, the students seem to be somewhat constrained by the classroom
discourses when it comes to validation of their mathematical models. For instance,
in excerpt 1, there are hardly any reflections made about whether the shape of the
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snow piles as symmetric half cylinders is ‘realistic’ or not. In a classroom or tutoring
situation, the lack of validation in the students’ conversation suggests a natural point
for the teacher to discuss the important role and function of validation in a model-
ling activity.

The realization trees presented in the chapter depicting signifiers and realiza-
tions, also indicate transitions between different discourses as well as how signifiers
from different discourses become associated and connected. An example of such a
transition is the realization of the signifier decrease in volume. The move is made
from colloquial discourses towards literate discourses in chemistry or physics and
finally realized in a mathematical discourse as a mathematical relationship. These
results are similar to findings by Carreira et al. (2002).

An interesting detail in the data is how the signifier volume (of snow) initially was
realized as ‘not much’ snow in the beginning of the conversation in excerpt 1, but
later, while arguing about the signifier weight, it was realized as ‘lots of snow’. This
example emphasises that specific signifiers play an important role for how students
experience potential realizations depending on measuring unit (m? and ton). In addi-
tion, it is notable what realistic assumptions the students make when they realize
their model of the situation. For example, they implicitly make the assumption to
shovel only the inside of the soccer field without thinking about the consequences of
this decision. This, again, might be a consequence of the classroom discourse.

From a researcher’s perspective, this first attempt to use the commognitive per-
spective on mathematical models and modelling is challenging since we are all
‘newcomers’ to this particular research discourse. Exploiting the potential benefits
and pitfalls of this framework is in its infancy. Much work remains to be done.
Commognition may also bridge and enhance understanding of different research
perspectives on mathematical models and modelling by making differences and
commonalities explicit and simultaneously providing a framework to relate these.
In addition, commognition naturally facilitates conceiving mathematical modelling
as an interdisciplinary subject including a number of different disciplines. For
example, the transcripts of The Snow Clearance Problem facilitate discussions
between the subjects of mathematics, physics and chemistry, respectively. By using
a commognitive perspective on modelling, our analysis highlights how cognitive
and social aspects simultaneously are manifested in modelling activities.
Conceptualising modelling in terms of singling out relevant discourses in order to
construct and develop a subsumed discourse, manifested in related signifiers and
their realizations, provides a operationalisable approach to analysing the complex-
ity involved in mathematical modelling by explicitly addressing these aspects.
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Chapter 4

Should Interpretation Systems
Be Considered to Be Models if They Only
Function Implicitly?

Rita Borromeo Ferri and Richard Lesh

Though unconsciousness is, strictly speaking, a business of
professional psychologist, it is so closely connected with my
main subject that I cannot help dealing scantily with it.
(Hadamard 1945, p. 21)

Abstract The term “mathematical model” or just “model” is interpreted differently
by different people in current international discussions about mathematical modelling.
For many, the term “model” is restricted to interpretation systems which are explicit
objects of thought. In this chapter we ask the question, if interpretation systems
should be considered to be models if they only function implicitly. Furthermore we
describe characteristics of what we mean by “implicit models” — as well as possible
transitions from implicit to explicit models, and what these transitions look like
from a cognitive-psychological perspective.

1 Introduction

There are a variety of reasons why many people have chosen to restrict the term
“model” to interpretation systems which are explicit objects of thought. One reason
is to encourage students to pay explicit attention to mismatches between models and
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Fig. 4.1 Solutions to modelling problems involve multiple modelling cycle (Note: This diagram
is not intended to imply that model development occurs along lockstep paths that always lead from
mathematization, to derivation, to interpretation, to verification — and back again for a second,
third, or ninth modelling cycle)

modelled systems, and to strengths and weaknesses of alternative models. Another
reason is the main goal for many people is to teach modelling using the diagram
(Fig. 4.1) or other cyclic diagram as a model of the processes through which models
are developed.

But, our own research agenda is about concept development at least as much as
it is about modelling for its own sake and the following underlying questions —
listed in order of priority — are of interest in both countries: United States of America
and Germany. (1) What does it mean to “understand” any one of the most important
concepts in the K-16 mathematics curriculum in the United States of America
or in the Educational Standards (Mathematics) in Germany? (2) How do these
understandings develop? (3) How can development be cultivated, documented, and
assessed? Modelling enters into this research agenda because our theoretical
perspective suggests that mathematical “understanding” is likely to depend on
reasoning that is based on some kind of model (or interpretation system).

According to our models and modelling perspective (MMP) on mathematical learn-
ing and problem solving, a model is defined to be a system that is used to interpret (e.g.,
describe, design, or develop) some other system — for some specific purpose. The
main characteristic that distinguishes mathematical models from (for example) physi-
cal, chemical, or historical models is that mathematical models focus on the structural
(or systemic) properties of the system — rather than focusing on the physical, chemical,
or historical properties- of the systems they are used to describe, design, or develop.

Notice that there is nothing in the preceding definition which dictates that models
must be explicit objects of attention — nor that they must function consciously rather
than subconsciously, explicitly rather than implicitly, or formally or analytically
rather than intuitively. In fact, our research has shown that: (a) models often develop
along a variety of dimensions — such as concrete-abstract, particular-general,
situated-decontextualized, simple-complex, intuitive-formal (Lesh and Harel 2003;
Lesh and Yoon 2004), and (b) the models that are most useful in given situations are
not necessarily those that are most abstract, most general, most decontextualized,
most complex, or most formal (Lesh and Caylor 2007). For example, in contexts
ranging from chess to mathematics teaching to business management, highly
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successful decision makers often develop powerful sense-making systems which
function much more rapidly than is possible using formal, analytic, or completely
conscious thinking. In fact, in fields ranging from sports (such as basketball or ten-
nis) to performing arts (such as ballroom dancing), it is well known that too much
conscious analysis often derails outstanding performances.

The unconscious self ‘is not purely automatic; it is capable of discernment; it has tact, deli-
cacy; it knows how to choose, to divine. What do I say? It knows better how to divine than
the conscious self, since it succeeds where that has failed. (Hadamard 1945, p. 40)

It is a common experience to “take a break™ during the solution of a difficult prob-
lem; and, without conscious thought, to return with a solution in hand. Or, people often
find themselves having “day dreamed” while simultaneously carrying out some com-
plex decision-making task — such as driving an automobile or a bicycle. So, it is clear
that complex thinking and decision-making can take place without conscious thought.
On the other hand, one effective technique that often is used to promote the develop-
ment of teachers, basketball players, dancers, or decision makers in other fields, is to
analyse videotapes (or other examinable records) of past performances. However,
when such reflection activities are used, the goal may not be to reduce decision making
to an algorithmic process that involves executing formal rules. Instead, even though
skill development tends to be an important accompaniment to reflections about com-
plex performances, the most important purpose of reflection activities tends to be to
develop increasingly powerful ways of thinking about (or interpreting) the situations.

So, even though increasing formalization and analysis may contribute to the
development of more powerful models (or interpretation systems), the explicitly
functioning aspects of these models tend to be like the visible tips of icebergs; that
is, large parts of the models forever function intuitively and subconsciously.
Furthermore, because MMP research tends to focus on situations that involve math-
ematical models-in-the-making, it has become clear that students’ early interpreta-
tions of problem solving situations often function without being explicit objects of
thought. They are more like windows that students look through (rather than paint-
ings, or diagrams, or written notations that students look at) to make sense of exter-
nal systems. So, for the purposes of this paper:

Intuitively functioning models are defined to be those in which decisions are made without

relying on explicit, formal, and consciously functioning tools associated with relevant
domains of knowledge.

2 Theoretical Reflections About “Implicit or Intuitive
Models”

Starting with the metaphor that “the explicitly functioning aspects of these [implicit]
models tend to be like the visible tips of icebergs”, this section stresses several
aspects related to reflections on implicit models and their importance for the teaching
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and learning of mathematical modelling. In particular, we focus on: (a) the nature of
“implicit models” within the modelling process (cycle), (b) the nature of transitions
from implicit to explicit models, (c) the nature of situations where mature models
might need to function intuitively and (d) the nature of beyond-cognitive aspects of
mathematical models.

2.1 The Nature of “Implicit Models” Within the Modelling
Process (Cycle)

Just as the term “mathematical modelling” is discussed in ways that are significantly
different around the world (Kaiser and Sriraman 2006), notions about the concept
of “model” itself also are often not easy to combine. In our sense, the concept of
“model” is often interpreted or defined as a required (written, explicit, verbalised)
product of an individual while solving a modelling problem. Looking at the several
existing modelling cycles (see e.g., Borromeo Ferri 2006), one can see that there is
a strong consensus using terms like “real model” and “mathematical model”,
because of its embedding in the history of mathematical modelling for educational
purposes. But what, for example, about the term “situation model”? Already in
Germany, there has been a discussion about this term — in particular labelling it with
“model”, because Blum and Leifl (2007) used the term “situation model” in their
descriptions of modelling cycles. So, this term has gained more attention in discus-
sions about modelling in mathematics education. In particular, the term “situation
model” has been used in connection with non-complex modelling problems — to be
precise, with word problems (see Kintsch and Greeno 1985; Nesher 1982;
Verschaffel et al. 2000) and has its origin in linguistics.

A “situation model” can be described as a mental representation of the situation,
which is given in a word problem and that is why the first author did not use “situation
model” but “mental representation” in her modelling cycle (see Borromeo Ferri
2006). One reason for this was that a “mental representation” is a very distinct way of
thinking about a given situation, and is affected by a variety of other personal attri-
butes and experiences and is consequently more difficult to share with others. Whereas
explicit mathematical models in written or verbalised forms can be communicated
much better. Furthermore, it often includes phases of building implicit models
(see later). So, certain aspects of a “situation model” also can function as an implicit
model. For example, decisions often are made without relying on explicit, formal, and
consciously functioning tools associated with relevant domains of knowledge.

We believe that there are many open questions about how the term “model”
should be interpreted in the context of modelling processes. We also think that stud-
ies investigating strengths and weaknesses of alternative perspectives are likely to
provide productive areas of research on modelling. In particular, it may be useful to
investigate similarities and differences between “implicit models” and “mental
models” which have been investigated at a variety of stages of the modelling
process as depicted in Fig. 4.2.
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2.2 The Nature of Transitions from Implicit to Explicit Models

Considerations about transitions from implicit to explicit models raise a variety of
issues that warrant investigation. For example, if we assume implicit models are on
an unconscious level and that explicit models are more conscious and can be better
communicated to others, then, taking a cognitive development perspective (see e.g.,
Vygotsky, Piaget, Aebli), it may be true that implicit models are especially impor-
tant for younger children, or for older students who are at early stages in the devel-
opment of specific models, or for students who are functioning at lower cognitive
levels. For example, for problem solvers and decision makers ranging from primary
school children through economists in business communities, it is clear that early
interpretations of situations often function implicitly. So, how and why do transi-
tions from implicit to explicit models occur? What enables problem solvers to
recognise the need for such transitions? How can students become aware of model-
reality mismatches if the models themselves are not functioning as explicit objects
of thought? Similarly, how can students learn about modelling processes if relevant
models are not explicit objects of thought? Or, can several partial models function
intuitively and at the same time? And, if so, how can model-model mismatches
be detected?

Before discussing such questions, it is useful to reconsider the two quotes from
Hadamard that we cited earlier. Hadamard’s intensive work and observations about
unconsciousness and “fringe-consciousness” in the field of mathematics is informa-
tive. He was asking his mathematics colleagues how they form new “creative ideas”
(see Hadamard 1945, p. 34f). In his thinking about how mathematicians discover
mathematics he was especially interested in how these ideas or thoughts become
conscious — and how they came to be communicated. So he, like us, was interested
in how mathematical concepts are developed for any age group. He was especially
interested in how they begin to emerge at early stages — and at unconscious levels.

We agree with Hadamard when he said that “the very fact that it is unknown to
the usual self gives to it such an appearance of mystery” Hadamard 1945, p. 21.
“Fringe-consciousness” and consciousness, speaking in the sense of Hadamard
(1945, p. 38), “are so close to each other, exchanges between them are so continuous
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and so rapid, that it seems hardly possible to see how they divide their roles” — we
think it could be the same (mental) phenomenon getting from implicit to explicit
models.

In another example, Hadamard refers (1945, pp. 35-36) to a chemist

who, after half an hour, realized that he had been working on a question without being
aware that he was doing so, and in such abstracted state of mind that during that time he
forgot that he had already taken a bath and was taking a second one: a special case of uncon-
scious process, as the thinker was not conscious of his mental work while it was going on,
but perceived it when ended.

This example again illustrates an important way that thought sometimes func-
tions; and, it also is relevant to transition questions that arise when we consider the
stage of the so-called “fringe-consciousness” in model development. As an interpre-
tation system becomes more explicit:

At a first glance ideas are never in a more positively conscious state than when we express
them in speaking. However, when I pronounce one sentence, where is the following one?
Certainly not in the field of my consciousness, which is occupied by sentence number one;
and nevertheless, I do think of it, and it is ready to appear the next instant, which cannot
occur if I do not think of it unconsciously. (Hadamard 1945, p. 24)

Already, that could be the stage when an individual developed a “real model” or
a “mathematical model” — because he or she is aware of his or her actions. From a
cognitive-psychological point of view the mentioned thoughts can be very helpful,
although we do not know how the interpretation systems function implicitly.

2.3 The Nature of Situations Where Mature Models Might
Need to Function Intuitively

In what kind of problem solving situations are intuitively functioning models likely
to be needed? Answers to this question include: (a) situations in which sense-
making systems must function much more rapidly than is possible using formal,
analytic, or completely conscious thinking, or (b) situations in which the amount of
information that needs to be taken into account exceeds the processing power of
available models. These characteristics often occur for problems in which there is
more than a single “agent” or situations that cannot be described adequately using
only a single function (or input-output rule). For example, the problem may involve
feedback loops in which A sends data or information to B, B sends data or informa-
tion to C, and C sends data or information back to A. Or, it may involve even simpler
feedback loops in which A sends data or information to B, and B sends data or
information back to A. Or, it may involve situations in which many “agents” interact —
like cars on streets through a city. (see also Lesh and Doerr 2003; Lesh and
Zawojewski 2007)

One such situation occurs in the “beer game” which is a famous simulation or
“case study” that in often used in graduate schools offering degrees in business
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management. The beer game involves a producer, a distributor, and a seller; and,
one characteristic that makes it interesting in that, if each of the “agents” acts in a
way that is greedy (by maximizing personal profits without regard for others), then
everybody loses. But, if everybody thinks of the system-as-a-whole, then everybody
can win — and the system-as-a-whole can function in a way that is stable (with no
“crashes” in which some key player loses, as in predator-prey situations in which
one extinct species leads to another and another).

Unfortunately, mathematics problems with the preceding kinds of characteristics
almost never occur in school textbooks — where: (a) most of the problems can be
solved using only a single one-way function, and (b) issues involving maximisation,
minimisation, or stabilisation never arise (perhaps because of the obsolete belief
that such problems cannot be solved without the use of calculus). Yet, today, a wide
range of such problems can be solved quite readily using a few basic mathematical
concepts and a modern graphing calculator. Furthermore, many elegant simulations
of such systems can be downloaded from reliable internet sites.

2.4 The Nature of Beyond-Cognitive Aspects
of Mathematical Models

When students develop mathematical interpretations (or models) of problem solv-
ing or decision making situations, they do not simply engage conceptual systems
that are purely logical or mathematical. They also engage feelings, dispositions,
attitudes, beliefs, and a variety of metacognitive functions. Many of these beyond-
cognitive attributes function without conscious thought — but function whenever the
logical-mathematical aspects of the model are functioning. So, what is the instruc-
tional value of treating the development of beyond-cognitive attributes as part of
mathematical model-development?

Like Skemp (1987, p. 35f), we believe in a high instructional value of emphasiz-
ing the development of beyond-cognitive attributes. Due to the fact that there are a
great many beyond-cognitive attributes, we mention here for example (mathemati-
cal) beliefs (see e.g., Opt’ Eynde et al. 2002; Pekhonen and T6rner 1996; Schoenfeld
1992) as an important influencing factor on modelling. Beliefs are, roughly charac-
terised, an affective domain. In the meantime the research on beliefs has changed
from broadly defined attitudes to more specific sub-categories, such as beliefs about
mathematics education (mathematics as a subject, mathematical learning and prob-
lem solving, mathematics teaching in general), beliefs about self or beliefs about the
social context. Maal} (2004; see also Kaiser and Maal} 2007) demonstrated in her
empirical year-long study, that many students of grade seven changed their mathe-
matical beliefs. In particular the usefulness of mathematics was an important aspect
for the students, which they did not recognise before and which caused more motiva-
tion for learning mathematics. Also, a lot of other studies in the last years came to
these results. In this section our hypothesis is that encouraging students in their
beyond-cognitive attributes could enhance the general “willingness for mathematical
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modelling activities” (see Fig. 4.3). In our view the following aspects could be a
strong basis for beyond-cognitive attributes being a part during model development:

If individuals should experience the diversity of mathematics (this also means
different kinds of mathematical problems), then conceptual systems could be
handled more flexibly for building mathematical models.

If individuals have learned to talk and reflect about mathematics and their own
way of understanding mathematics, then the modelling process could be handled
more goal-oriented.

If individuals were aware of the first mentioned points and then trust in their
intuition when they approach a (modelling) problem, then interpretation systems
could function as implicit models with a match to a successfully built mathemati-
cal model.

In such studies, it has become clear that theoretical reflections about “implicit” or

“intuitive” models have a broad spectrum, but have a strong focus on psychological
theories concerning unconsciousness. We pointed out four aspects about the nature
of “implicit models” in order to give some more food for thought in this direction.

3

Summary and Conclusion

In this chapter, our aim has been to sort out a variety of issues related to the general
question of whether interpretation systems should be considered to be models if
they only function implicitly. Like the process of model development in general, we
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believe that there is no single correct answer to our question. There are both strengths
and weaknesses associated with a variety of perspectives. But, when considering
“implicit models”, four issues that appear to be especially significant involve:
(a) the nature of “implicit models” within the modelling process (cycle), (b) the
nature of transitions from implicit to explicit models, (c) the nature of situations
where mature models might need to function intuitively and (d) the nature of
beyond-cognitive aspects of mathematical models.

We illustrate our conclusion in Fig. 4.3:

In the context of model-eliciting activities (MEAs) that we have investigated
in our research, the diagram emphasises parallel and interacting developments
between the “explicit modelling world of an individual” (right side of the figure)
and on the other hand a fuzzy “implicit and intuitive modelling world of an indi-
vidual” (left side of the figure). The first stage when working on a modelling elicit-
ing activity or another complex modelling problem in every kind of area is this
fuzzy “implicit modelling world” including cognitive aspects and beyond-cognitive
attributes which influence each other in several (unconscious) ways. Cognitive
aspects comprise general abilities for modelling, which means in particular mathe-
matical abilities and modelling competencies and thus are necessary for developing
an adequate mathematical model. At the same time these cognitive aspects are influ-
enced by beyond-cognitive attributes such as beliefs and feelings, which in turn
build a basis for general willingness dealing with the MEA at all. It is impossible to
reconstruct these mental actions of an individual. But these interpretation systems
within this fuzzy unconscious world are the bricks for the upcoming mathematical
model in the “explicit modelling world” through the fringe-consciousness and
finally consciousness. The match or the mismatch of the interpretation systems
developed in the implicit world as an implicit model with the mathematical model
in the explicit world cannot be investigated, because it disappeared in the mystery
of the unconsciousness:

The unconscious self ‘is not purely automatic; it is capable of discernment; it has tact, deli-
cacy; it knows how to choose, to divine. What do I say? It knows better how to divine than
the conscious self, since it succeeds where that has failed. (Hadamard 1945, p. 40)
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Chapter 5
Mathematical Modelling, Mathematical
Content and Tensions in Discourses

Andréia Maria Pereira de Oliveira and Jonei Cerqueira Barbosa

Abstract In this chapter, we present part results of an empirical study on tensions
in discourses manifested by teachers when they implemented mathematical model-
ling in the pedagogic practices. The focus is on analysing the tension of students’
mathematical performance. Using Bernstein’s theoretical frame, we followed three
teachers from the lower secondary school level from Brazilian public schools. These
teachers were videotaped during their modelling-based lessons. The nature of the
research analysis is qualitative. The procedures used for collecting data were obser-
vations accomplished through recordings of lessons, interviews after each lesson
and teachers’ narratives on their lessons. The results have shown that the tension of
students’ mathematical performance is related to what and how to teach mathemati-
cal content in the modelling environment, when students do not have a mathemati-
cal performance to solve problems from daily life situations.

1 Introduction

Mathematical modelling has been one of the ways to promote the connections of
everyday life in the classroom. We define mathematical modelling as a learning envi-
ronment where students are invited to solve problems from daily life, professional
areas or situations in scientific disciplines, through mathematics (Barbosa 2006).
By learning environment, we mean the social conditions provided to students for the
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development of some activities (Skovsmose 2001). The problem that students are
asked to formulate and/or solve about daily life, professional areas or situations in
other disciplines is a mathematical modelling task.

Recent studies have discussed how mathematical modelling demands specific
actions from students and teachers to address daily situations in the classroom:
interventions in the students’ modelling process (Leil 2005), the pedagogical
knowledge for teaching modelling (Doerr 2006, 2007; Doerr and English 2006),
classroom activities and type of teaching patterns through modelling (Antonius
et al. 2007) and mathematical thinking styles (Borromeo Ferri and Blum 2010).
Regarding these discussions questions arise: How have teachers engaged their stu-
dents to work on mathematical modelling tasks in mathematics lessons? How have
teachers worked mathematical content while engaging their students in modelling
tasks? Empirical evidence on teachers’ pedagogic practices in mathematical model-
ling is still scarce, especially regarding studies that examine what happens when
using mathematical modelling in school settings.

In this chapter, we will examine fensions in discourses when teachers engaged
learners in mathematical modelling tasks in their classrooms through an analysis of
teachers’ discourses based on Bernstein’s theoretical framework. We define dis-
course as an oral or written text produced by an individual in a specific social con-
text. In particular, we focus on the tension of students’ mathematical performance
when teachers implemented mathematical modelling in the pedagogic practices.

2 Tensions in Discourses

In this study, Bernstein’s theory (1990, 2000) is employed to highlight the tensions in
teachers’ discourses when they engaged learners in mathematical modelling tasks in
the pedagogic practices. Empirical studies have suggested that teachers play a crucial
role in ensuring the implementation of modelling in the pedagogic practices (Doerr
2006, 2007; Doerr and English 2006). Bernstein (1990, 2000) uses the term pedagogic
recontextualising for the movement of a discourse from its original site to a pedagogic
site. To understand the process of pedagogic recontextualising, we will use Jablonka’s
(2007) description of mathematics, as a school subject:

mathematics is a highly specialised activity that consists of a range of practices, some

of which employ sophisticated tools and sign systems. The recontextualisation of parts of

those practices establishes the school subject mathematics as it is defined in curriculum
documents (p. 194).

This recontextualising process involves the selection of those practices and their
relocation into school mathematics that it is operated by a pedagogic discourse.

Bernstein (1990) defined pedagogic discourse as a principle for the selection of
discourses that are relocated according to their own order. It is “a principle for
appropriating other discourses and bringing them into a special relation with each
other for the purpose of their selective transmission and acquisition” (pp. 183—184).
The notion of discourse as text, presented in the introduction, is different from the



5 Mathematical Modelling, Mathematical Content and Tensions in Discourses 69

concept of pedagogic discourse which is a principle, because pedagogic discourse
“cannot be identified with any of the discourses it has recontextualized” (p. 184). In
this sense, once everyday life situations are moved to the classroom by teachers
through pedagogic recontextualising, the pedagogic discourse selectively relocates
and refocuses them in agreement with the rules present in the pedagogic practice. In
addition, pedagogic discourse places them in a special relationship with other dis-
courses to constitute its own order. Thus, the movement of everyday life situations
for classroom practice is regulated by rules that have already been socially estab-
lished and legitimated in this pedagogic context.

Doerr (2006) examined the ways in which teachers identified, interpreted and
responded to students’ work with modelling tasks. The results suggested that teach-
ers develop sophisticated schemas to understand the diversity of students’ ways of
thinking. Teachers’ actions supported students’ engagement in the task and led them
to review and refine their own mathematical thinking. Similarly, the results in Leif3’s
study (2005) pointed out that teachers’ interventions were important in terms of
facilitating student understanding of the problem, finding an appropriate model
for the situation and reflecting on the model. These results mean that promoting
modelling in the classroom has provoked some change in the pedagogical relationship
between teachers and students.

In Brazil and in many countries, teachers have had contact with mathematical
modelling through teacher education programmes (in-service or pre-service), results
from research in the community of mathematics education, conferences, which are
pedagogic recontextualising fields, as named by Bernstein (2000). The discourse on
modelling, that is moved by teachers from a pedagogic recontextualising field to the
classroom (defined as a field of reproduction) is a specialised discourse, named by
Barbosa (2006) as school mathematical modelling.

Bernstein (1990, 2000) uses two concepts to stress relations of power (classification)
and control (framing) in the pedagogic practice. Classification embodies power
relations between different categories, as for example, kinds of discourses. It is
defined by the space between categories that are maintained by power relations.
This space is defined by Bernstein (2000) as insulation. On the other hand, framing
regulates relations within a context. It refers to different forms of legitimating com-
munication in any pedagogic practice. Framing refers to control of communication
(selection, sequencing, pacing and criteria) in pedagogic relations, as for example,
between teachers and students.

According to Bernstein (2000), classification establishes recognition rules that
regulate what meanings are relevant in a context, and framing establishes realisation
rules that regulate how the meanings are to be put together to create the legitimate text
according to this context. Bernstein (2000) defines legitimate text as any realisation
on the part of the acquirer which is evaluated. In short, “classification provides us
with the limits of any discourse, whereas framing provides us with the form of the
realisation of that discourse” (Bernstein 2000, p. 12). Lerman and Zevenbergen (2004)
argue that school mathematics is a specialised discourse with strong classification
and framing, because “it is often taught as a discipline quite distinct from others, and
taught in a way where there is an emphasis on specialised skills” (p. 29).
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Regarding Bernstein’s theoretical frame, what happens when mathematical
modelling is moved to the classroom? How have teachers moved it to the school
context? We used the aforementioned concepts to understand how teachers have
engaged learners in mathematical modelling tasks in the pedagogic practices. Doerr
(2006) and Doerr and English (2006) have argued that understanding teachers’
knowledge means knowing how teachers interpret their pedagogic practices in the
classroom, and how and when those interpretations influence decisions and actions
in the classroom. “It is precisely teacher’s interpretations of a situation that influ-
ence when and why as well as what it is that the teacher does” (Doerr 2006, p. 5).

Empirical studies have discussed teachers’ dilemmas and uncertainties when using
modelling in the classroom (Blomhgj and Kjeldsen 2006; Doerr and English 2006).
Some teachers’ dilemmas pointed out by Blomhgj and Kjeldsen (2006) are: under-
standing of the phases in the modelling process from a holistic point of view or as an
inner part of the modelling process to work the mathematical content; the goal of
modelling as an educational one or as a mean for motivating and supporting the stu-
dents’ learning of mathematics; and how to develop students’ autonomy when work-
ing with projects. Doerr and English (2006) identified teacher uncertainty with how
students can develop mathematically viable solutions. This uncertainty is related to
the teachers’ legitimate action in promoting modelling in the pedagogic practice. It
constituted a kind of tension between how to develop the task and the uncertainty of
which solutions the students might develop to solve the problem. These dilemmas and
uncertainties might be seen as results of trying to place a new discourse in the peda-
gogic practice.

Based on Bernstein’s theory, we use the expression tensions in discourses to
understand how teachers engage learners in mathematical modelling tasks in the
pedagogic practices. Tensions in discourses are manifested by teachers through con-
tradictions, cleavages and dilemmas that are constituted because of the space
between categories (present discourses in the pedagogic practice and a new dis-
course in the pedagogic practice). “The classificatory principle creates order, and
the contradictions, cleavages and dilemmas which necessarily inhere in the princi-
ple of a classification are suppressed by the insulation” (Bernstein 2000, p. 7). In
this sense, discourse on modelling is moved to the classroom through a pedagogic
recontextualising process. As a result, it might change the values of classification
(what can be said) and framing (how it can be said) in a mathematics lesson.

It means that fensions in discourses might be interpreted in terms of a recontextu-
alising process, because taking a new discourse into the classroom involves crossing
the insulation between its original site and a pedagogic site. This new discourse is
positioned by the pedagogic discourse, presenting a discontinuity in relation to the
present discourses in the pedagogic practice. This discontinuity is justified by the
insulation among discourses that are positioned in the pedagogic practice. In this
sense, tensions in discourses can be identified when there are characteristics of dis-
courses that had been consolidated and legitimated in the pedagogic practice and
discourses that have been brought into it. The expression ftensions in discourses has
its origin in the discontinuity among legitimate discourses and a new discourse posi-
tioned by the pedagogic discourse, when teachers decide what can be said in the
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pedagogic practice when using mathematical modelling and how it can be said. This
discontinuity is manifested in the teachers’ discourses through contradictions, cleav-
ages and dilemmas which occur in specific moments in the pedagogic practice and
shows the tensions in discourses that are denominated situations of tension.

3 Context and Methodology

The research context was the first modelling experience of three lower secondary
school level teachers from public schools in the Northeast of Brazil. The teachers
who developed modelling-based lessons were Boli, Maria and Vitoria (pseud-
onyms). Each of them has been teaching for more than 14 years in public schools
with classes of disadvantaged students. The teachers organised the modelling envi-
ronment according to what Barbosa (2003) calls Case 2; in other words, teachers
present a problem and students are required to collect and investigate data. The
teachers elaborated some tasks during the development of the modelling environ-
ment. They then presented some problems with quantitative and qualitative data and
students solved them (framed in Case 1 Barbosa 2003). Each teacher’s lesson was
organised in small student groups, who solved the teacher assigned tasks.

At the time of data collection, the teachers were finishing a training program for
non-certified teachers at the State University of Feira de Santana. The first author of
this chapter was a lecturer for them in two semesters devoted to mathematical mod-
elling. They, and their colleagues, engaged in the approach of using problems from
daily situations and in the development of modelling projects by themselves, as well
as in the implementation of modelling in their classrooms.

The research was framed according to the qualitative perspective (Denzin and
Lincoln 2005), because its purpose was the analysis of the tensions in discourses
when teachers were using modelling in pedagogic practices. Each teacher was vid-
eotaped during the modelling-based lessons. The videotaping focused on the teacher
and the interactions between teacher and students and these videotapes were tran-
scribed. After each lesson, interviews were conducted with each teacher that
described how the modelling task was developed. The interviews were also recorded
and transcribed. The teachers wrote narratives about each lesson and these were
analysed. With the purpose of producing theoretical understandings, based on the
collected data and guided by a research question, the teachers’ pedagogic practices
were analysed in terms of the relationships between agents (teachers and students)
and discourses that were present in the pedagogic practice as well as discourses on
mathematical modelling moved into the pedagogic practice.

The analysis of data had some inspiration in the analytical procedures of grounded
theory (Charmaz 2006), namely, the elaboration of codes and categories of the tran-
scribed data. The analysis of data occured in three phases. In the first phase, the tran-
scripts of the videotapes and interviews, as well as teacher narratives on their lessons
were read. The second phase was identification of extracts. These extracts are pieces
of data from the interviews, class videotapes and teacher narratives. Following this,
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each extract was read, line by line, and we used an open-ended coding of the tensions
in discourses that we identified in the teachers’ pedagogic practice. In the third phase,
we classified the codes into general categories and we were able to understand the
focus of the study by integrating the results from literature and Bernstein’s theory.

4 The Tension of Students’ Mathematical Performance

To investigate the focus of this study, we examined the pedagogic practices of three
teachers (one male and two female) through an analysis of their discourses. The
study focuses on analysis of the tension of students’ mathematical performance
when teachers have implemented mathematical modelling into their classroom
practice. In this section, we will present this tension in discourses that we identified
in teachers’ pedagogic practices.

The teachers introduced real problems' in their lessons and the students had dif-
ficulties in solving them, because they did not understand how the mathematical
content could be used, that is, they were not able to produce a legitimate text to make
the modelling task. The teachers did not expect that their students would show diffi-
culties in using previous mathematical content to solve the problems. As well they
did not expect that the students would not use other content to solve these problems.
In other words, teachers wanted to know what can be done and how it can be done
when the students are not able to solve the modelling task, because they have diffi-
culties in using the mathematical content to solve it. This tension was identified when
the teachers had decided how to approach (previous and new) mathematical content
when modelling was implemented in the pedagogic practices. In this section, we
present three situations of tension to discuss how each teacher understood and dealt
with the fension of students’ mathematical performance during the modelling task.

4.1 Situation of Tension 1: Students Making Mistakes
in Mathematical Procedures

Teacher Boli implemented a modelling task entitled Basic Basket of Goods in two
classes (Year 9) in the lower secondary level (see de Oliveira and Barbosa 2010 for
further detail). He organised modelling in several phases, such as discussing the
theme, introducing a problem, defining the products and quantities of a basic basket,
students working in groups, students getting information to solve the problem,
defining families’ expenses, making calculations and comparisons, and drawing
graphs. He used part of the lessons that were to be dedicated for the modelling task
to deal with student difficulties in relation to previous mathematical content
required to solve the problem. This situation of tension happened in Boli’s class

"We use “real problem” to mean a problem from daily life or situations in scientific disciplines.
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when he asked the students who were organised in groups to present their calculations
of the costs of a family, having as parameter the minimum wage. He asked that
each group write their table on the whiteboard with the expenses and their percent-
ages: “What could you see here for each percentage calculation in relation to the
expenses of a family with these expenses?”” Then, Boli discussed the values found
by the groups and asked students to explain the observed values. At this point, he
noted that some calculations were incorrect. In the interview, he commented on the
incorrect calculations of the students:

Boli: I observed that the calculations were wrong and they remade them again. I was
concerned with the high values that they had found. [...] When students had
errors, I had to stop everything and they did the calculations again. I guided
each group how to do the calculations. Then, I asked that they calculate the
percentage of each item relative to the minimum wage. So, I noticed that
almost all students did not know rule of three and percentage.

Boli was concerned about the incorrect calculations of the students. This situa-
tion indicated that students could not solve the task because they did not know the
mathematical content required in the proposed problem. Boli requested that the
students do the calculations again. After that, he followed the groups doing the cal-
culations and explained the required content in the solution of the problem.

4.2 Situation of Tension 2: Students Unable
to Solve the Problems

Teacher Maria implemented a modelling task entitled Analyzing Water Bills in a
Year 6 class at the lower secondary level. She organised it in some phases, such as
discussing the theme, introducing a problem, students working in groups, students
getting information, analysing tables, making calculations and comparisons. She
noticed that her students had stopped developing the task, because they did not
know how to use the mathematical content to solve the problem. This situation of
tension arose in Maria’s class when her students were solving problems about the
waste of water for household chores: washing clothes, watering the garden, washing
dishes, washing the sidewalk, washing the car. She noted her students were not solv-
ing the problems. She asked: “Why are you not doing something?” A student
answered: “Teacher, we have no idea how to start doing something”. In the inter-
view, Maria commented on students’ difficulties in solving the problems proposed:

Maria: [...] I was worried because most of the students stopped doing the task.
What will [ do now? Can I explain it to them? I was observing the groups
answer the questions and I noticed the big problem they had when making
the calculations. Then, I decided to show them, on the whiteboard, how to
solve one of the problems. After that, I thought they started working more
easily and they made the calculations without great efforts.
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Maria was concerned about how she could intervene to help her students when
they had difficulties in using mathematical content to solve the modelling task. Her
students did not solve the problem, because they did not know which mathematical
content could be used to solve it. As she did not know how to intervene to help her
students, she asked the lecturer for help to work with the students’ difficulties. After
the lecturer explained that she could intervene and help the students, Maria explained
to the students how to solve one of the problems.

4.3 Situation of Tension 3: Students Not Using New
Mathematical Content Taught by Teacher

Vitoria implemented a modelling task entitled The Minimum Wage and a Family’s
Cost of Living in a Year 8 class at the lower secondary level. She organised it as
follows: discussing the theme, introducing a problem, defining families’ expenses,
students getting information, establishing the products and quantities of a basic
basket of goods, collecting data, making calculations and comparisons, and elabo-
rating tables. A tension situation arose in Vitoria’s class when she tried to approach
new mathematical content required in the resolution of the proposed task. She tried
to work with other mathematical content, but her students had difficulties to use
this other content to solve the problem. She explained that they had difficulties,
because they had no contact with the content before the modelling task. Thus, she
wanted to know how to work on new mathematical content in the modelling task.
The following extract shows this:

Vitoria: I don’t know what contents we will work with the modelling task. Students
have many difficulties, as for example, with graphs. They do not know what
a graph is. I wanted to work with graphs and other mathematical contents.
I have worked until this moment with operations and percentage. I have
difficulties to explain other contents with students. I don’t know how to
work them, because students do not know the other contents. I imagine this
problem will request “function” and I think I will be able to work with it.
[...] I'tried to work with graph, but they have no notion of what a graph is.
I tried to make a graph on the expenses but... I explained [to] them how to
make a graph, but they had many difficulties.

We noticed that Vitoria admitted that she did not know how to approach new
content in the modelling task. Nevertheless, she tried to approach new content, but
her students had difficulties to understand it and to use it to solve the problem. Due
to this situation, she argued that the students need to have previous knowledge of the
content that will be used in the modelling task. She was concerned about how to
approach new mathematical content in a modelling task.
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5 Conclusion and Implications

In this study, we present extracts that refer to a tension in teachers’ discourses: the
tension of students’ mathematical performance. We now discuss how this tension
has been constituted while the teachers developed mathematical modelling in
pedagogic practices.

Students making mistakes in mathematical procedures; students unable to solve
the problems and students not using new mathematical content taught were three
situations of tension that represented students’ actions in the modeling environment.
These situations have blocked following the task at the time that teachers accompanied
the students to solve problems. In relation to Boli, the students used incorrect
procedures to solve the problem and he had to explain the content required in the
task and already studied by students in previous lessons. Maria’s students were
unable to mobilise any mathematical content already studied in previous years to
solve the problems. Vitoria’s students were unable to use new mathematical content
worked during the modelling task. They failed to mobilise this new content in solv-
ing the problem. These students’ actions refer to their mathematical performance.
Students’ mathematical performance is related to mathematical procedures and use
of mathematical content to deal with the problem.

The teachers introduced real problems in the pedagogic practices and the students
had difficulties to solve them, because they did not understand how to use the math-
ematical content to solve the problems and they were not able to produce a legitimate
text (Bernstein 2000) for the development of the modelling task. They had encoun-
tered difficulties in solving problems from daily life situations. How do we address
the students’ difficulties to solve these problems? How do we teach (previous and
new) mathematical content? These questions represent discontinuities in relation to
the present discourses and a new discourse (the discourse of mathematical model-
ling) in the pedagogic practice. These discontinuities refer to the tension of students’
mathematical performance. This tension refers to the discontinuity in relation to
what and how to deal with mathematical performance in the modelling environment.
Due to that tension, the teachers wanted to know how to work the mathematical con-
tent, before or during the modelling task; how to work new mathematical content;
how to work the students’ difficulties with mathematical content, in other words,
what to do and how to approach the mathematical content in the modelling environ-
ment. To deal with this tension they had worked the previous and new mathematical
content in the development of the modelling task in their lessons. Antonius et al.
(2007) point out that it is a timing dilemma as to when teachers work on mathemati-
cal content related to the theme of the modelling task, that is, to decide to approach
the mathematical topics before, during or after the task.

Implications of the research are firstly understanding how tensions in discourses
can contribute to the teachers’ professional development when teachers produce
actions and strategies to deal with them; and secondly for practice teaching education
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programmes in mathematical modelling need to discuss tensions in discourses to
support teachers in implementing this learning environment in the classroom.
Thus, tensions in discourses can provide opportunities for teachers to realize actions
and strategies to implement mathematical modelling in the pedagogic practice.
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Chapter 6
Ethnomodelling as a Methodology
for Ethnomathematics

Milton Rosa and Daniel Clark Orey

Abstract The application of ethnomathematical techniques and tools of modelling
allows us to examine systems taken from reality and offers insight into forms of
mathematics done in a holistic way. The pedagogical approach that respects a diver-
sity of cultural forms of mathematics is best represented through ethnomodelling,
which is a process of translation and elaboration of problems and the questions taken
from reality. We would like to broaden the discussion of possibilities for the inclu-
sion of ethnomathematics and associated ethnomodelling perspectives that respect
the social diversity of distinct cultural groups with guarantees for the development of
understanding different ways of doing mathematics through dialogue and respect.

1 Introduction

Culture and society considerably affect the way individuals understand mathemati-
cal ideas and concepts. Research in ethnomathematics has demonstrated how math-
ematics has grown from the many diverse and distinct cultural traditions that
comprise human activity over time. In this regard, all cultural groups have devel-
oped unique ways of incorporating mathematical knowledge and have often come
to represent given cultural systems, especially in ways that cultural groups quantify
and use numbers, incorporate geometric forms and relationships, and measure and
classify objects (D’ Ambrosio 1990).

Each cultural group has developed unique and distinct ways to mathematise their
own realities (Rosa and Orey 2006). Mathematisation is a process in which individu-
als from different cultural groups have developed mathematical tools that can help
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them to organise, analyse, comprehend, understand, model, and solve problems
located in real-life contexts. These tools allow for identification and description of
mathematical ideas, procedures, and practices by schematising, formulating, and
visualising a problem in different ways, discovering relations and regularities, and
translating real world problems to mathematical ideas through mathematisation.

Inclusion of a diversity of ideas brought by students from other cultural groups
can give confidence and dignity to students, while allowing them to see a variety of
perspectives and provide a base for learning academic-Western mathematics
(Bassanezi 2002). Equally important is the search for alternative methodological
approaches. One alternative methodological approach is ethnomodelling (Rosa and
Orey 2010), a practical application of ethnomathematics, and which adds the cul-
tural perspective to modelling concepts.

When justifying the need for a culturally bound view on mathematical model-
ling, our sources are rooted in the theory of ethnomathematics and modelling
(Bassanezi 2002; D’ Ambrosio 1990; Rosa and Orey 2003). Research on culturally
bound modelling ideas seeks to address the problem of mathematics education in
non-Western cultures by bringing the cultural background of students into the tradi-
tional curriculum (Rosa and Orey 2010).

2 Ethnomathematics

Ethnomathematics as a research paradigm is wider than traditional concepts of
mathematics, ethnicity or any current sense of multiculturalism. Ethnomathematics
is described as the arts and techniques (tics) developed by individuals from diverse
cultural and linguistic backgrounds (ethno) to explain, to understand, and to cope
with their own social, cultural, environmental, political, and economic environ-
ments (mathema) (D’ Ambrosio 1990). Ethno refers to distinct groups identified by
cultural traditions, codes, symbols, myths, and specific ways of reasoning and infer-
ring. Detailed studies of mathematical procedures and practices of distinct cultural
groups most certainly allow us to further our understanding of the internal logic and
mathematical ideas of diverse groups of students.

Ethnomathematics is the intersection of cultural anthropology, mathematics, and
mathematical modelling, which is used to help students understand and connect
diverse mathematical ideas and practices found in their communities to traditional-
academic mathematics (Fig. 6.1).

Ethnomathematics, as well, is a program that seeks to study how students have come
to understand, comprehend, articulate, process, and ultimately use mathematical ideas,
procedures, and practices that enable them to solve problems related to their daily activi-
ties. This holistic context helps students to reflect, understand, and comprehend extant
relations among all components of systems under study. In this regard, educators should
be empowered to analyse the role of students’ ethnoknowledge in the mathematics class-
room (Borba 1990), which is acquired by students in the process of pedagogical action
of learning mathematics in culturally relevant educational systems.
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Cultural
Anthropology

Mathematical
Modelling

Ethnomathematics

Fig. 6.1 Ethnomathematics as an intersection of three research fields (Rosa 2000)

3 Ethnomodelling

Ethnomodelling is the process of the elaboration of problems and questions that
grow from real situations, which form an image or sense of an idealised version
of the mathema. According to Rosa and Orey (2006), the focus of this perspective
essentially forms a critical analysis of the generation and production of knowl-
edge (creativity), and forms an intellectual process for its production, the social
mechanisms of institutionalisation of knowledge (academics), and its transmis-
sion (education). D’ Ambrosio (2000) affirmed that “this process is [called] mod-
elling” (p. 142). By analysing reality as a whole, ethnomodelling allows those
engaged in the modelling process to study systems of reality in which there is an
equal effort to create an understanding for all components of the system as well as
the interrelationships among them (D’ Ambrosio 1993).

The use of modelling as pedagogical action for an ethnomathematics program
values students’ previous knowledge and traditions (Rosa and Orey 2007). This
is done by developing student capacity to assess and translate daily phenomena
and by elaborating mathematical models in their different applications. The eth-
nomodelling process starts with the social context, reality, and interests of stu-
dents and not by enforcing a set of external values and decontextualised
curricular activities without meaning for the students. This process is defined as
“the mathematics practiced and elaborated by different cultural groups, which
involves the mathematical practices present in diverse situations in the daily
lives of diverse group members” (Bassanezi 2002, p. 208). In this regard, ethno-
modelling uses mathematics as a language for understanding, simplification,
and resolution of problems.
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3.1 Ethnomodels

We define ethnomodels as cultural artefacts that are pedagogical tools used to facilitate
the understanding and comprehension of systems taken from the reality of cultural
groups (Rosa and Orey 2009). Ethnomodels are considered the external representa-
tions consistent with mathematical knowledge that are socially constructed and
shared by members of specific cultural groups. According to this perspective, the
primary objective for the elaboration of ethnomodels is to translate mathematical
ideas, procedures, and practices developed by distinct and diverse cultural group
members into academic mathematics.

4 Examples of Ethnomodelling

Many interesting models are formulated by using information and data obtained
from studies and research related to ethnomathematics, which proposes the exami-
nation of knowledge systems adopted by distinct cultural groups. When some of
this knowledge consists of mathematical ideas and procedures found via ethnomod-
els, we are better able to reach the origin of mathematical practices.

4.1 Measuring Land

Knijnik (1996) proposed activities related to the demarcation of land with the
participants of the Landless Peoples’ Movement (Movimento dos Sem Terra —
MST) in Southern Brazil. The demarcation activity examined the method of cuba-
cdo of the plots, which is a traditional mathematical practice applied by the
participants of this movement. Flemming et al. (2005) defined cubagdo of the land
as the solution of “problems of the measurement of land using diverse shapes”
(p. 41). The use of the cubagdo land practice as a pedagogical proposal to elabo-
rate activities for teaching and learning mathematics shows the importance of the
contextualisation of problems in the learning environment of ethnomodelling
through the elaboration of ethnomodels.

4.1.1 An Ethnomodel to Calculate the Area of Land

The landless people needed to calculate the area of figures with irregular quadrilat-
eral shapes (Fig. 6.2a). One of these problems states that it is necessary to calculate
the area of land, which has a quadrilateral shape that measures 114 metres x 152
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124 metres b 138 metres

114 metres 90 metres A = 14076 square metres 102 metres

152 metres

Fig. 6.2 (a) A problem to calculate the area of a figure with irregular quadrilateral shape.
(b) Representation of a model that transforms the irregular quadrilateral in a rectangle

metres x 90 metres x 124 metres” (Fleming et al. 2005, p. 42). Thus, the mathematical
knowledge of the landless can be represented by a model that transforms the shape
of the given land into a rectangle of 138 mx 102 m with an area of 14,076 m?
(Fig. 6.2b).

The model of this mathematical practice can be explained by the following
ethnomodel:

» Transform the shape of the irregular quadrilateral into a rectangle whose area can
be easily determined through the application of the formula A = b-h.

* Determine the dimensions of the rectangle by calculating the mean of the two
opposite sides of the irregular quadrilateral.

Base=%=l38m

Height = @ =102 m

e In order to determine the area of this irregular quadrilateral, it is necessary to
determine the area of the rectangle.

A=b-h
A=138+102
A=14,076 m*

Regarding this problem, there is another procedure from the mathematical
knowledge of the landless that can be explained through another ethnomodel.
The irregular shaped quadrilateral parcel presented in this example can also be
transformed into “a square with sides of 120 metres, therefore with an area of
14400 square metres” (Flemming et al. 2005, p. 42). It is possible to observe
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Fig. 6.3 Geometric scheme
used by wine producers in the
construction of wine barrels
(Bassanezi 2002, p. 47)

O

that the value of 120 was calculated by adding the dimensions of the quadrilateral
and then dividing it by four, which is the number of sides of the irregular
quadrilateral.

A model is efficient if we realise that it is only an approximation of reality
(Bassanezi 2002). Thus, both methods present an approximated calculation of the
area of the irregular quadrilateral that satisfies the needs of this specific group
(Flemming et al. 2005).

4.2 The Wine Barrel

D’ Ambrosio (2002) noted an ethnomathematics example that offers us a mathematical
modelling methodology, with a group of Brazilian teachers who studied wine
production. The motivation was to find the volume of wine barrels and to apply the
techniques learned by ancestors of the wine producers who came to Southern Brazil
as Italian immigrants in the early twentieth century.

In order to construct a wooden wine barrel with pre-established volume, it is
necessary for wine producers to cut wooden strips to fit perfectly. This process
drew the attention of the students who were interested in knowing what kind of
inherited mathematics the wine producers were using in their geometric schemes.
In Fig. 6.3, the larger circle (R) represents the base of the barrel while the smaller
circle (r) represents its cover. The wine barrels are shaped like a truncated cone and
are constructed by interlocking wooden strips (Fig. 6.4).
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Fig. 6.4 Wine barrel shaped
like a truncated cone
(Bassanezi, 2002, p. 48)

This process was investigated from an ethnomathematics perspective as the
cultivation of vines and production of wine barrels are linked strongly to the history
and culture of people in that particular region of Brazil. The wine case study is an
excellent example that typifies the connection between ethnomathematics and
mathematical modelling through ethnomodelling (D’ Ambrosio 2002; Rosa and
Orey 2010).

4.3 Modelling the Tipi

The word tipi from the Sioux language refers to a conical dwelling common among
the prairie peoples of North America. Spatial geometry is inherent in the shape of
the tipi which was used to symbolise the universe in which the people lived. The
nomadic prairie people observed that the tripodal foundation appeared to be per-
fectly adapted for the harsh environment in which they lived (Orey 2000). In this
regard, if we look at variations between tripodal and quadripodal tipis, there is some
evidence that they have an understanding of geometry concepts such as triangles
and their geometrical characteristics and properties, which show manifestations of
mathematical knowledge. The majority of Sioux tipis use the tripod foundation or
three-pole foundation because it is stronger and offers a firmer foundation than a
quadripodal or four-pole tip foundation (Orey 2000).
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Fig. 6.5 Tripodal foundation
of the Tipi

4.3.1 Tripodal Versus Quadripodal Foundations of the Tipi

Mathematisation helps us to explain why a tripod is more stable than a quadripodal or
four-legged structure. Imagine three points, A, B, and C, which are not collinear.
There are an infinite number of planes that pass through points A and B that contain
line AB. Only one of these planes also passes through point C. Three points determine
a plane if, and only if, they are non-collinear. In terms of geometry, this can be
explained by using the plane postulate, which states that through three non-collinear
points, there is exactly one plane.

For example, in a four-legged table, there is the possibility of the extremity of
one of the legs not belonging to the same plane. A table that has three legs, however,
is always balanced. Similar to a three-legged table, the tripod foundation of the tipi
(Fig. 6.5) appears to be perfectly adapted for the harsh environment in which it was
used as it provided a stable structure that was lightweight and portable. At the same
time, it withstood the prevailing winds and extremely variable weather of this
region. Let us look at this information mathematically.

The base formed by the tripod is AABC in which the midpoints of each of the
sides are points M, N, and P (Fig. 6.6a). In this regard, it is possible to connect the
midpoint of each opposite side of AABC to each of its vertices, which form line
segments AM, BN, and CP. These line segments form three medians that intersect at
only one point called the centroid, which is the balance point or centre of gravity of
AABC (Fig. 6.6b).
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Fig. 6.6 (a) The tripod base of the Tipi. (b) The three medians of AABC

Fig. 6.7 The circumcentre of
AABC

4.3.2 Determining the Centre of the Circular Base of the Tipi

Tipi dwellers placed the altar and fire at the centroid of the tipi because it “holds
a definite power and holiness” (Orey 2000, p. 246). It is possible to use geomet-
ric concepts to determine how tipi dwellers determine the centre of the circular
base of the Tipi. An ethnomodel can explain how to determine the centre, height
and lateral area of the Tipi cover. By using the triangle formed by the tripod, it
is possible to trace each one of the sides of the triangle by using lines passing
perpendicularly through the midpoints of each of its sides. It can be shown that
these lines are perpendicular bisectors. These bisectors are intercepted at the
same point, which is an equal distance from the vertices of the triangle. This
point is called the circumcentre (Fig. 6.7).

The Tipi scaffolding itself is constructed by placing poles around its tripod
foundation, thus assisting in the calculation of the area of its base. This means that
the poles are placed as if they were points on a circumference. However, it is
important to highlight that the base of the Tipi is slightly oval because it is not a
perfect cone (Fig. 6.8).

The centre of the Tipi holds a definite power and holiness, which is more than
just necessity or aesthetics that went into finding the centre of the Sioux home. The
mathematical ideas implicit in this mathematical knowledge was passed on to the
members of the Sioux people across generations by the women, who were respon-
sible for the construction, and upkeep of these unique conical dwellings. From this,
it is possible to conclude that Sioux understanding of the strength of tripodal con-
struction is valid general and universal knowledge compatible with Western math-
ematical knowledge.
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Fig. 6.8 The circular area
of the base of the Tipi

5 The Methodology of Ethnomodelling

What is most difficult for researchers and educators is to learn how to connect what
they would consider fundamental in academic mathematical ideas and procedures
of the school community to what concepts have become almost universal in their
mathematical practices. Most importantly, it is crucial to understand how to trans-
late this knowledge into formalised aspects of academic mathematics through eth-
nomodelling (Rosa and Orey 2007).

There are three reasons for the application of ethnomodelling as a methodology
for ethnomathematics:

1. Ethnomodelling is an effective path that can be used to reach traditional mathe-
matical concepts.

2. Ethnomodelling can be used to develop intercultural classroom activities.

3. Ethnomodelling is a pedagogical action that can be used to transform the rela-
tionship between mathematics and society.

This paradigm suggests that developing a curricular praxis of ethnomodelling by
investigating the ethnomathematics of a culture in constructing a mathematics cur-
riculum values contributions of other mathematical knowledge traditions. One way
to achieve this goal is for teachers to interpret alternative ethnomathematical
approaches by starting with the outside sociocultural reality of their students.
However, students may refuse to study their reality because it may be oppressive,
and this may mean that students may not be able to identify their reality as contex-
tualised mathematics.

On the other hand, they have a grounded mathematical knowledge based on pre-
vious experiences. In this educational process, perhaps teachers should not start
with the students’ own realities, but start with their own conceptions of mathemat-
ics, even though they might be traditional. Further, teachers should be encouraged
to explore student ethnomathematical knowledge by applying contextualised math-
ematics activities to uncover important mathematical ideas and concepts.

It is beneficial to apply an ethnomathematical ethnographic perspective in order
to come to a good understanding of mathematical aspects of a given cultural group,
and having a clear purpose of this educational activity. For best practices, imple-
menting an ethnomodelling perspective must be preceded by an inventory of
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previous knowledge of the student. Coming to understand student context, simply
put is good pedagogy, and provides for the construction of relevant mathematical
experiences that allow for a deeper appreciation of mathematical beauty and utility.
It is important to understand what mathematical ideas, procedures, and practices are
important to their particular cultural environment and historical contexts.

6 Final Considerations

Any study of ethnomathematics using modelling represents a powerful means for vali-
dating students’ real life experiences and allows students to become familiar with tools
that may enable them to become full participants in society. In this process, the discus-
sion between teachers and students about the efficiency and relevance of mathematics
in different contexts should permeate instructional activities. The role of teachers is to
help students to develop a critical view of the world by using mathematics.

It is necessary that current researchers continue to investigate ethnomodelling in
terms of non-Western cultural contexts and consider implementing new views into old
themes. In this regard, we hope that this discussion broadens the discussion of possi-
bilities and potentialities for the inclusion of ethnomathematics and mathematical
modelling perspectives that respect social and cultural diversity of all students with
guarantees for the understanding of our differences through dialogue and respect.
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Chapter 7
Dual Modelling Cycle Framework
for Responding to the Diversities of Modellers

Akihiko Saeki and Akio Matsuzaki

Abstract The modelling cycle (e.g., Blum and Leifl How do students and teachers
deal with modelling problems? In: Haines C, Galbraith P, Blum W, Khan S (eds)
Mathematical modelling (ICTMA12): education, engineering and economics.
Horwood, Chichester, pp 222-231, 2007) contains the repeated processes that
modellers are asked for in deepening their thinking. When we investigate the modelling
cycle of modellers, we have to consider the diversities of various modellers in their
modelling progress (Blum and Borromeo Ferri J Math Model Appl 1(1):45-58,
2009). In addition, problems or tasks can be changed from the initial real situation
and problem with the aim of meeting the need of modellers. In this chapter, we
make two modelling cycles parallel and focus on interactions between cycles, and
call it the dual modelling cycle. We show three types of modelling cycles based on
the dual modelling cycle framework through the example of one modelling cycle
based on an Oil Tank Task, and another modelling cycle based on a Toilet Paper
Tube Task.

1 Modelling Cycles for Responding to Diversities
of Modellers

We use the Blum and Leif3 (2007, p. 225) modelling cycle (Fig. 7.1) because this
cycle indicates as its first step the “constructing” process from “real situation &
problem” to “situation model” in the “rest of the world”. Especially, progression of
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Fig. 7.1 Modelling cycle (Blum and Leifs 2007)

this process depends on the characteristics of each modeller and is the first cognitive
barrier in tackling modelling tasks (Blum and Borromeo Ferri 2009). Borromeo
Ferri (2007) focused on individual modelling progress and called such modelling
progress a “modelling route” because each modeller’s modelling progress differs.
When we investigate the modelling cycle of modellers, we have to consider the
diversities of various modellers in their modelling progress.

2 Background of Dual Modelling Cycle Framework

Polya (1988) advised problem solvers in the second step “devising a plan (respond-
ing to what is asked for)” of his problem solving model, “If you cannot solve the
proposed problem try to solve first some related problem” (p. 10). Thus, variation
between problems is performed by generalisation, specialisation, an analogy, and
various decompositions and combinations. This idea is useful to understand and
solve a problem, and provides the possibility of making the union which is helpful
to solve the original problem.

2.1 Historical Background

Such variation of a problem is seen also in the history of the field of natural science.
Galileo Galilei, for example, discovered the law of free-fall motion from the results
of research of slope motion. In research of slope motion, he experimented by less-
ening friction on a slope and a ball, air resistance of the ball, and influence of rota-
tion. Thus, when an experiment is directly impossible, experiments on the basis of
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Fig. 7.2 Dual modelling cycle framework

resemblance/approximation conditions are one approach of the scientific method
which measures or observes the result and finds out a rule and a law indirectly. For
solving problems through such scientific methods, we built a framework using the
modelling cycle for variation between problems.

2.2 Framework for Corresponding Changes
in the Modelling Tasks

One of the important characteristics of modelling is deepening of the models con-
structed through repeating progress, and the conventional modelling cycles are also
intended to represent this. Models and connections between variables which con-
struct models change during modelling progression (Matsuzaki 2007, 2011;
Stillman 1996; Stillman and Galbraith 1998), and a modeller might tackle tasks or
problems that are different from the initial modelling task in this process. In this
chapter, we make two modelling cycles parallel and focus on switching between
these cycles, which we call the dual modelling cycle. One of the reasons for creating
a dual modelling cycle is that there might be cases for changing from an initial
modelling task to a similar modelling task through both modelling progressions.
Furthermore, we hope that distinguishing of each modeller’s “modelling route”
becomes clear by making two modelling cycles parallel and focusing on switching
between these cycles as in Fig. 7.2.

3 Three Types of Modelling Cycle from the Perspective
of Dual Modelling Cycles

In this chapter, we use the Oil Tank Task as the initial modelling task and explain
three types of modelling cycles.
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Oil Tank Task

We would like to measure the length of a spiral banister of
a heavy oil tank. However, it is out of bounds except for the
persons concerned with the safety control of the oil tank.
Therefore we cannot measure with a tape measure directly.

We found out the sizes of the diameter (9.766 m) at the
bottom and the height (10.772 m) of the oil tank by speaking
to the persons concerned. Based on these data, we decided to
find the length of the spiral banister of the oil tank.
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Fig. 7.3 Single modelling cycle diagram

Though only two pieces of data (i.e., sizes of a diameter and the height) are available
from the description of this task, we prepared other data (e.g., beginning height of a
spiral banister from the ground 1.050 m) and would present these necessary data to
each modeller only on demand during solving of the task.

3.1 Type 1: Single Modelling Cycle

If a modeller thinks of only the initial modelling task, we can explain the modelling
by a typical single modelling cycle (see Fig. 7.1). In this instance, the second mod-
elling cycle is not necessary for a modeller to solve the initial modelling task. As
prior knowledge or experiences of each modeller are scaffolding the progress of the
modelling cycle (Matsuzaki 2007, 2011), the first modelling becomes a basis for
progression. In other words, we can explain this modelling by a single modelling
cycle from the perspective of dual modelling cycles (see Fig. 7.3). In this case, we
assume that a modeller will tackle the Oil Tank Task based on only an oil tank situ-
ation. For example, a modeller could make a parallelogram or a rectangle as a devel-
oping image model of an oil tank. This model is located in “real model & problem”
stage because this figure is cut and developed along with a spiral banister.
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Fig. 7.4 A toilet paper tube as a similar model for the spiral banister of an oil tank

3.2 Type 2: Double Modelling Cycle

When a modeller cannot forecast solutions of the initial task, he/she will be able to
imagine other models based on personal prior knowledge or experiences (Matsuzaki
2007, 2011); otherwise his/her modelling progress is stopped at this point. In this
case, some modellers might think that an oil tank looks like a toilet paper tube (see
Fig. 7.4). At that time, transition from the modelling cycle for the oil tank to a mod-
elling cycle for a toilet paper tube is implemented. Other modellers might imagine
a signpole which can be seen in the front of some barber shops or a screw from the
shape of the spiral banister of an oil tank. These images could be useful models for
solving the Oil Tank Task. In this chapter we explain use of a toilet paper tube as a
similar model for a spiral banister of the oil tank.

A slit of a toilet tube looks like the shape of a spiral banister. Additionally, it is
impossible to open along the actual spiral banister of an oil tank, but it is easy to
open along the slit of an actual toilet paper tube. So we assume a modelling cycle
for a toilet paper tube as the second modelling cycle (Fig. 7.5) can be used because
a toilet paper tube might be a similar model which we can use instead of an oil tank.

Thus, the initial modelling task is the Oil Tank Task and another modelling
task is located in a second modelling cycle in this double modelling cycle. Some
modellers might tackle the question as the new task located in the modelling
cycle of a toilet paper tube: “How long is a spiral of a toilet paper tube?” They
could imagine parallelograms as a developing model of the toilet paper tube. In
this type of modelling, the two modelling cycles are separate modelling cycles,
even if each modelling task is solved successfully or unsuccessfully. In other
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words, switching between the modelling cycle of the oil tank and modelling
cycle of the toilet paper tube is not implemented.

3.3 Type 3: Dual Modelling Cycle

This type is advanced from type 2. In this type, a modeller can apply the results
obtained through the second modelling cycle to the first modelling cycle (see
Fig. 7.6). The differences between the double modelling cycle and the dual model-
ling cycle are (1) there is switching between two modelling cycles, and (2) progress
in the first modelling cycle based on results or limitations obtained from the second

modelling cycle is deliberate.

In this case, the initial modelling task is the Oil Tank Task and the second model-
ling task is the Toilet Paper Tube Task. One thing that our modelling teachers have
to pay attention to in dual modelling cycles is that it is different for each modeller
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Fig. 7.7 Toilet Paper Tube Task interview

as he/she will apply answers from the second modelling cycle to the Oil Tank Task.
This implies we have to teach bearing in mind the diversities of modellers. In addi-
tion, a modeller is not necessarily able to solve the Oil Tank Task even if he/she can
solve the task located in the second modelling cycle.

4 Example of Problems in the Second Modelling Cycle

During the explanation of three types of modelling cycles, we have set the modelling
cycle of a toilet paper tube as the second modelling cycle of the dual modelling
cycle framework.

4.1 Street Interview regarding the Toilet Paper Tube Task

To gain a sense of the range of likely responses for the Toilet Paper Tube Task we
conducted an interview (see Fig. 7.7) on the street on 2nd and 3rd September 2010.
Collected results of responses (N=41) for each question are shown in Table 7.1.

There were a few responses for (a) rectangle for question (T2) even though the
development of a cylinder is learnt in school mathematics. There was no character-
istic relationship between the responses to questions (T1) and (T2) and experience
opening a toilet paper tube.
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Table 7.1 Responses for questions (T1) and (T2) of the Toilet Paper Tube Task
(T2)  (a) Rectangle (b) Parallelogram (c) Curve-1 (d) Curve-2 (e) Triangle

(T1)  Yes No Yes No Yes No Yes No Yes No
0 2 5 9 4 6 1 0 5 9

Note. No one chose (f) for question (T2)

The length of slit he length of slit

Fig. 7.8 Two cases for the base of parallelogram formed from opened toilet paper tube

5 Designing Lesson Practices

5.1 To Explore the Length of a Spiral Banister
of the Heavy Oil Tank

For solving the Oil Tank Task, an advantage of using a toilet paper tube which is
similar to the oil tank is that we can cut and open it easily. After opening it, mod-
ellers have to measure data for the resulting parallelogram. Thus, the modellers have
to decide on the necessary variables for solving the Oil Tank Task. Variables for
solving the Toilet Paper Tube Task are not necessarily those for solving the Oil Tank
Task. There are two cases to decide between for a base of the parallelogram from the
opened toilet paper tube. At first, we would start to consider the left hand parallelo-
gram in Fig. 7.8.

We can measure the length of slit as 183 mm directly. Angle 0 (see Fig. 7.9) is

needed to explore the following relationship: sinf = % = 0.625. From this value,

angle @ is nearly 38°. Alternatively, we can measure this angle by using a protractor
directly. In addition, the length of the diameter at the bottom of a toilet paper tube is
41 mm and the height of the tube is 112 mm.
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128mm
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Fig. 7.9 Dimensions of a toilet paper tube

The length of slit 1

Po)

Fig. 7.10 Necessary measuring data to lead to the answer for the length of a slit

We can find the length of the slit of the toilet paper tube through measuring
several lengths but necessary measuring data are only angle 8 and the height of the
toilet paper tube (Fig. 7.10). These data are necessary to lead to finding the length
of a spiral banister of an oil tank through exploration based on a toilet paper tube as
a model. Of course, modellers have to transfer the relationship of the data between
the toilet paper tube and the oil tank.
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6 Conclusion and Implications

In this chapter, we introduced the dual modelling cycle framework and explained
three typical types of modelling cycle based on this framework. Relating a current
problem to a similar problem solved previously has long been associated with
approaches to problem solving as was pointed out in Sect. 2. This chapter provides
an analytical instantiation of this principle with respect to modelling problems.
We use the term “dual modelling cycle” as if each problem has its own individual
modelling cycle. An alternative view would be that the outworking of a generic
modelling cycle has characteristics that differ according to the specifics of a given
problem. However, our purpose in using the dual modelling cycle has its basis in its
utility in facilitating teaching when a current modelling task is able to be related to
a similar modelling task in order to solve the initial task through feedback from the
solution of the second.

We have implemented experimental modelling lessons for students at Year 5 pri-
mary level (Kawakami et al. 2012) and plan to design practice lessons for students at
secondary level. It is important for implementing our modelling lessons that we teach
how to feedback from the modelling cycle of a toilet paper tube to the modelling cycle
of an oil tank in a dual modelling cycle. In other words, it is necessary for our research-
ers to develop teaching materials matched for students of each school level to feed-
back from the second modelling cycle to the first modelling cycle. We have already
conducted experimental modelling lessons for undergraduate primary and lower sec-
ondary mathematics pre-service teachers with the intention of supporting this feed-
back process, and analysed their lessons from the perspective of providing empirical
evidence for the dual modelling cycle (see Matsuzaki and Saeki 2013).
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Chapter 8
The Eyes to See: Theoretical Lenses
for Mathematical Modelling Research

Nils Buchholtz

Abstract This chapter will contribute to the discussion in one of the two symposia
held at ICTMA-15, in particular the symposium about the role of theory in the
research about mathematical modelling. First, the necessity to discuss theoretical
approaches in the research about mathematical modelling and the idea of the sym-
posium will be pointed out. Subsequently in the second part of the chapter the role
of theory in research will be described more differentially. Finally, the contributions
to the symposium are classified concerning the role of theory in the theoretical
approach. The chapter closes with open questions still remaining, which may guide
future symposia on the topic.

1 Introduction

In the preface of the first volume of the newly established series “International
Perspectives on the Teaching and Learning of Mathematical Modelling” Kaiser
et al. (2011) point out the diversity that has evolved over the past 30 years in the
discussion of mathematical modelling and applications within the scientific com-
munity. The growing interest has previously culminated in an ICMI study on this
theme (Blum et al. 2007) and is evidence of the increasing importance of the sci-
entific discussion of this particular field of research within mathematical and
mathematics educational research. Increasing diversity, however, in many cases is
accompanied with an increasing complexity of the respective methodological,
theoretical and practical approaches to research. Not least for this reason, the
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diversity in research about mathematical modelling also was one of the basic
points of discussion within the Modelling and Applications Working Group at the
5th Congress of the European Society for Research in Mathematics Education
(CERME 5) in 2007.

A first classification of the variety of research approaches was formulated by
Kaiser and Sriraman previously in 2006, who classified the different approaches
on the basis of their understanding of goals of modelling and distinguished various
perspectives related to the central educational aims in mathematics modelling
(Kaiser and Sriraman 2006). Gabriele Kaiser gave a plenary lecture related to
this classification at ICTMA-15 (see Kaiser and Stender, Chap. 23 this volume).
Although the classification was considered to be very useful in helping and
understanding different approaches, it was also stressed that such a classification
is a strong systematising simplification, which might not reflect all research
approaches appropriately. Nevertheless, the classification is an important working
instrument, but the need to revise this classification was also mentioned. The
CERME 5 Working Group revised the classification considering the main point
of criticism being that the classification of Kaiser and Sriraman did not distinguish
between didactical approaches and research perspectives. “Didactical approaches
are characterized by a normative orientation concerning the overall aims of applica-
tions and modelling in mathematics education in contrast to research perspectives,
which guide studies on special aspects concerning applications and modelling”
(Kaiser et al. 2007, p. 2036).

This distinction clarifies in greater degree the differentiation between practice-
and research-oriented approaches, but always with the proviso of a better mutual
understanding. An essential feature of the diversity 