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Preface

Foundational questions and the status of proof have long been central to philosophy
of mathematics, although mathematicians do a lot more than just prove results.
However, most mathematical practice may still be understood in terms of argument.
Thus philosophy of mathematics needs an account of argument. Argumentation
theory seems like a good place to look. The intersection of the two, although
largely unexplored, has the potential to be hugely fruitful. This book brings together
important pioneering work from a variety of sources with newly commissioned
articles to provide an overview of the topic.

Our first editorial venture on this theme was a special issue of the journal
Foundations of Science published in 2009. We are grateful to Diederik Aerts, the
editor, for his support. Two of the articles from that collection are republished here,
and the authors of two others have contributed new chapters, however we should like
to thank all of the contributors: Jody Azzouni; Edwin Coleman; Bart Van Kerkhove
and Jean Paul Van Bendegem; David Sherry; Zenon Kulpa; Matthew Inglis and Juan
Pablo Mejía-Ramos; Alison Pease, Alan Smaill, Simon Colton and John Lee. We are
grateful to our editors at Springer, Lucy Fleet, Ties Nijssen and Christi Lue.

Edinburgh, Scotland Andrew Aberdein
Las Vegas, Nevada Ian J. Dove
December 2012
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Chapter 1
Introduction

Andrew Aberdein and Ian J. Dove

Our goal in this book is to explore the relationship between argumentation theory
and the philosophy of mathematical practice. By ‘argumentation theory’ we intend
the study of reasoning and argument, and especially those aspects not addressed
(or not addressed well) by formal deduction. Such work goes back at least to
Aristotle, who invented formal logic but wrote more extensively about informal
reasoning. The great success of formal logic in the nineteenth and twentieth
centuries led to an eclipse of informal techniques, but a revival began in the
1950s with the publication of two classic works: (Perelman and Olbrechts-Tyteca,
1969) and (Toulmin, 1958). These pioneers initiated a thriving research tradition
with particular strengths in Canada (e.g. Johnson, 2000; Walton et al., 2008) and
the Netherlands (e.g. Van Eemeren and Grootendorst, 2004). The philosophy of
mathematical practice diverges from mainstream philosophy of mathematics in
the emphasis it places on what the majority of working mathematicians actually
do, rather than on mathematical foundations, an issue most mathematicians ignore
(rightly or wrongly). This leads to a closer relationship with history and sociology of
mathematics, mathematics education, and mathematics itself. Important milestones
include (Pólya, 1954) and (Lakatos, 1976), both of which pay close attention
to mathematical argumentation, although neither work was directly informed by
argumentation theory. (For overviews of each work, see Newell, 1983, and Larvor,
1998, respectively.) In the last decade philosophy of mathematical practice has been
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2 A. Aberdein and I.J. Dove

developed further by many authors, including contributors to (Hersh, 2006) and
(Mancosu, 2008), but the potential argumentation theory holds for this work has
mostly been overlooked. This collection is designed to remedy that oversight.

1.1 What Are Mathematical Arguments?

Conventional wisdom amongst both philosophers of mathematics and argumenta-
tion theorists holds that formal logic, whatever its shortcomings in the analysis of
everyday reasoning, is well-adapted to mathematical reasoning and, therefore, that
there is no role for informal logic in mathematics. The chapters in the first part of
this book directly challenge this assumption.

James Franklin is a mathematician, a philosopher, and the author of numerous
works on a diverse array of subjects. His chapter is a revised version of one
of the earliest philosophical accounts of non-deductive mathematical practice,
originally published in the British Journal for the Philosophy of Science in 1987.
He argues for an experimental approach in mathematics, with illustrations drawn
from the varieties of evidence for (and against) the Riemann Hypothesis, heuristic
arguments for Goldbach’s Conjecture and a cumulative case argument regarding the
classification of finite groups. The variety of non-deductive inferences common in
mathematical practice has unfortunately received little consideration since the first
publication of Franklin’s original paper. (Notable exceptions include, Baker, 2007,
2009.) Franklin concludes by advocating a Bayesian approach to mathematical
reasoning. Independently (of Franklin and each other) such an approach has been
pursued in both philosophy of mathematics (Corfield, 2003) and argumentation
theory (Hahn and Oaksford, 2007).

Erik C. W. Krabbe is a philosopher who has published on an impressive number
of topics. He has conducted influential research in both formal and informal logic;
in the former category, Krabbe’s work is foundational for dialogue logic (see, for
example, Krabbe, 1985). In the first of two chapters included in this volume, Krabbe
argues that some types of mathematical proof are open to analysis and evaluation
by the techniques of argumentation theory. An early version of this chapter was
published in Dutch in 1991, and a revised version appeared in English in 1997.

Jesús Alcolea Banegas was one of the first philosophers to apply Stephen
Toulmin’s work to mathematical proof. Toulmin was a pioneer of argumentation
theory who developed an influential account of the ‘layout’ of an argument. This was
primarily intended as a characterization of informal, non-mathematical reasoning,
although he does include the occasional mathematical example (Toulmin, 1958;
Toulmin et al., 1979). Alcolea’s chapter, which was first published in Catalan in
1998, shows how the Toulmin layout may profitably be applied to mathematical
and metamathematical arguments. This treatment has proved influential, both in
philosophy (see, for example, Aberdein, 2005, 2007) and mathematics education
(for example, Inglis et al., 2007).
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Michel Dufour is a philosopher who mostly researches scientific communication,
including scientific popularization and didactical practices, and combines this topic
with argumentation, including that of mathematics (see, for example, Dufour,
2011). His chapter takes on two highly influential works in argumentation theory,
both of which expressly deny that mathematical proofs are arguments: (Perelman
and Olbrechts-Tyteca, 1969) and (Johnson, 2000). (Somewhat coincidentally, both
editors have also challenged Johnson’s position: (Dove, 2007) and (Aberdein, 2011).
Neither of us tackles Perelman.) Dufour proceeds to discuss the circumstances in
which arguments arise in the vicinity of proofs, whether or not those proofs are
themselves arguments.

1.2 Argumentation as a Methodology for Studying
Mathematical Practice

Once we have established that argumentation theory has something to say about
mathematics, what use can we make of it? The chapters in the second part
offer an impressively diverse set of answers to this question, covering the history
of mathematics, mathematics education and, perhaps surprisingly, formal proof
verification.

Paola Cantù is a philosopher and historian of mathematics who has also
published works on argumentation theory. However, her chapter is the first of her
publications to pursue both interests simultaneously. She makes careful use of the
concept of an ‘argumentation scheme’, a stereotypical pattern of reasoning designed
to capture informal, defeasible arguments in a similar fashion to the way inference
rules capture formal, deductive arguments (Walton et al., 2008, is the most extensive
survey to date). She demonstrates how this methodology, and in particular the
argumentation scheme for Value-Based Practical Reasoning, sheds new light on the
debate over the introduction of ideal elements in nineteenth and early twentieth
century mathematics.

Matthew Inglis and Juan Pablo Mejía-Ramos are educational psychologists who
have made extensive use of the Toulmin layout as the basis for empirical enquiry into
the efficacy of mathematical proofs in securing conviction (Inglis et al., 2007; Inglis
and Mejía-Ramos, 2009a,b). This work builds on earlier applications of the layout
in mathematics education research (beginning with Krummheuer, 1995). In their
chapter, originally published in Research in Mathematics Education in 2008, Inglis
and Mejía-Ramos show how careful use of the layout can bring to light hitherto
concealed ambiguities in the characterization of how persuasive a subject finds a
proof. This work has important implications for the design of empirical research
into the teaching of proof.

Christine Knipping and David Reid are also mathematics education researchers
and their work also reflects the influence of Toulmin’s layout (Knipping, 2003, 2008;
Reid and Knipping, 2010). However, they differ from Inglis and Mejía-Ramos in
their focus on the macro-structure of argumentation. They generalize Toulmin’s
layout from the consideration of individual argument steps (or whole arguments
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considered as single steps) to complex networks of steps. This permits a qualitative
comparison of large-scale argumentation structures: in their chapter they compare
two structure types they characterize as ‘source’ and ‘spiral’ structures. This is
a novel area of research which should have considerable interest to scholars of
argumentation in general, and not just that conducted in mathematics classrooms.

Jesse Alama and Reinhard Kahle are logicians with an interest in the formal
verification of proofs. This may seem to be the least promising territory for the
application of argumentation theory to mathematics. However, as their chapter
demonstrates, topics that might be thought of as essentially informal reappear in
the computer-assisted, formal setting. These include the question of ‘obviousness’:
at what stage of explication has an inference become so detailed that no further
justification is required?

1.3 Mathematics as a Testbed for Argumentation Theory

The previous part explored the usefulness of argumentation theory in the under-
standing of mathematical practice. The chapters of the next part demonstrate that
the relationship is reciprocated: mathematics is a valuable testbed for argumentation
theory. Mathematicians are peculiarly reflective about their own reasoning practice.
This makes mathematics a useful source of well-documented instances of a wide
range of reasoning practices, many of them of much more general application.

Lawrence H. Powers is the originator of a novel and provocative thesis about
fallacies, the ‘One Fallacy Theory’ (Powers, 1995; see also Zuckero, 2003).
Fallacy theorists are traditionally ‘splitters’: from Aristotle’s Sophistical Refutations
onwards, the standard approach has been a catalogue of diverse sources of error.
Powers, by contrast, is a ‘lumper’: he holds that all reputed fallacies are fallacies of
equivocation, or no fallacy at all. Mathematical fallacies might seem an exception
to this approach, but as he explains in his chapter, which first appeared in the
Proceedings of the Fourth Conference of the International Society for the Study
of Argumentation in 1999, his theory can accommodate them too.

Krabbe’s second chapter, which was first published in Argumentation in 2008,
applies the analytic techniques of pragma-dialectics to mathematical proofs.
Pragma-dialectics was pioneered by the communication theorists Frans van
Eemeren and Rob Grootendorst (Van Eemeren and Grootendorst, 2004, is a
consolidation of their views). It is an influential approach to argumentation based
around an idealized concept of a critical discussion. This gives rise to an explicit
code of conduct — a set of rules that discussants must follow, or their arguments will
be fallacious. In later work, Van Eemeren extends pragma-dialectics to recognize
that arguers do not just seek a rational outcome to their disputes, they set out to win
(Van Eemeren and Houtlosser, 2002). He calls the process of balancing these two
objectives strategic maneuvering. Krabbe shows how strategic maneuvering may
be extended to encompass other objectives, and how mathematical fallacies may be
understood as failed attempts to accommodate the tension between them.
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Paul Bartha is a philosopher working mainly in philosophy of science and
decision theory. His recent book on analogical reasoning (Bartha, 2010) is notable
for the attention he pays to mathematical cases. In his chapter, Bartha summarizes
this research, showing how a general account of analogy may be refined to cover
arguments for the plausibility of mathematical conjectures.

Brendan Larvor is a philosopher of mathematics whose work pays particular
attention to mathematical practice. Notably, he is the author of a monograph (Larvor,
1998) on Imre Lakatos, one of the first philosophers of mathematics to attend to the
structure of mathematical arguments (in Lakatos, 1976). More recently, Larvor’s
work has turned more explicitly to argumentation theory (see, for example Larvor,
2012). In his chapter he looks at visual argumentation, a difficult problem for both
philosophy of mathematics and argumentation theory. Each discipline has tackled
the problem largely in ignorance of the efforts of the other; Larvor argues that
argumentation theorists in particular would benefit from closer interaction.

1.4 An Argumentational Turn in the Philosophy
of Mathematics

The last part consists of chapters defending attention to mathematical argumentation
as the basis for new perspectives on the philosophy of mathematics.

Richard L. Epstein is the author of numerous works in both formal logic and
critical thinking (for example, Epstein and Kernberger, 1998; Epstein, 2006). In his
chapter he develops an account of mathematics as grounded in human experience.
The argumentational character of mathematical proof is central to this account. He
includes an appendix contrasting his own views with those of several illustrious
predecessors, ultimately finding a kindred spirit in John Stuart Mill.

Ian Dove’s chapter, which first appeared in Foundations of Science in 2009,
offers a variety of evidence for the utility of argumentation theory not just in
the analysis of mathematical practice but also in the resolution of some of the
philosophical debates to which that practice has given rise. He pays particular
attention to Jody Azzouni’s (2004, 2009) ‘derivation indicator’ view of informal
mathematical practice, arguing that, despite initial appearances, it is compatible
with a central role for argumentation. Dove also surveys further open questions that
remain to be answered by theorists of mathematical argumentation.

Alison Pease, Alan Smaill, Simon Colton and John Lee have backgrounds
in artificial intelligence research, and a specific interest in its implications for
mathematical cognition. This has led them to pay particularly close attention to the
work of Lakatos (for example, in Pease et al., 2005; Pease, 2007). Their chapter,
also first published in Foundations of Science in 2009, explores how resources from
artificial intelligence, and especially the computational modelling of mathematical
reasoning, may be utilized to further develop both argumentation theory and the
philosophy of mathematical practice.
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Patrick Allo, Jean Paul van Bendegem and Bart van Kerkhove are philosophers
working primarily in logic and the philosophy of science. Van Bendegem and
Van Kerkhove in particular have a long-standing interest in mathematical practice
(see, for example, Van Bendegem, 1988; Van Kerkhove, 2005). More recently their
work has begun to integrate themes from the study of argumentation (Van Bendegem
and Van Kerkhove, 2009). In their chapter they develop an account of mathematical
justification from the perspective of computer science and epistemic logic. The
result is a fascinating combination of insights drawing on research in artificial
intelligence, distributed systems theory and new media studies.

Andrew Aberdein is a philosopher of mathematics who also writes on informal
logic. Much of his recent work has focused on the intersection of argumentation
theory and mathematics, especially the use of Toulmin diagrams (2005, 2006),
argumentation schemes (2013) and fallacy theory (2010) to assess mathematical
reasoning. His paper offers an account of mathematical reasoning as comprising
two parallel structures, one inferential and one argumentational. The uniquely
mathematical character of the reasoning proceeds from the rigour of the inferential
structure. However, much actual mathematical practice takes place in the argumen-
tational structure. If this account is correct, the understanding of mathematics can
only properly be addressed when both of the parallel structures are accounted for.
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Part I
What Are Mathematical Arguments?



Chapter 2
Non-deductive Logic in Mathematics:
The Probability of Conjectures

James Franklin

2.1 Introduction

Mathematicians often speak of conjectures as being confirmed by evidence that
falls short of proof. For their own conjectures, evidence justifies further work in
looking for a proof. Those conjectures of mathematics that have long resisted proof,
as Fermat’s Last Theorem did and the Riemann Hypothesis still does, have had
to be considered in terms of the evidence for and against them. It is not adequate
to describe the relation of evidence to hypothesis as “subjective”, “heuristic” or
“pragmatic” there must be an element of what it is objectively rational to believe on
the evidence, that is, of non-deductive logic. Mathematics is therefore (among other
things) an experimental science.

The occurrence of non-deductive logic, or logical probability, or the rational
support for unproved conjectures, in mathematics is however an embarrassment. It
is embarrassing to mathematicians, used to regarding deductive logic as the only
real logic. It is embarrassing for those statisticians who wish to see probability
as solely about random processes or relative frequencies: surely there is nothing
probabilistic about the truths of mathematics? It is a problem for philosophers
who believe that induction is justified not by logic but by natural laws or the
“uniformity of nature”: mathematics is the same no matter how lawless nature may
be. It does not fit well with most philosophies of mathematics. It is awkward even
for proponents of non-deductive logic. If non-deductive logic deals with logical
relations weaker than entailment, how can such relations hold between the necessary
truths of mathematics?

Work on this topic was therefore rare in the mid-twentieth century “classical”
period in the philosophy of science and mathematics. The recent turning of attention
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in philosophy of mathematics towards mathematical practice has produced a number
of examinations of experimental mathematics (Franklin, 1987; Fallis, 1997; Brown,
1999, Ch. 10; Fallis, 2000; Corfield, 2003, Ch. 5; Lehrer Dive, 2003; Van Kerkhove
and Van Bendegem, 2008; Baker, 2009; Dove, 2009; brief earlier remarks in Kolata,
1976) but these have mostly not discussed in depth the theoretical issues raised.
Many of these works were inspired by one important earlier contribution, the pair of
books by the mathematician George Pólya on Mathematics and Plausible Reasoning
(1954). Despite their excellence, these books of Pólya’s had been little noticed by
mathematicians, and even less by philosophers. Undoubtedly that is largely because
of Pólya’s unfortunate choice of the word “plausible” in his title—“plausible” has
a subjective, psychological ring to it, so that the word is almost equivalent to
“convincing” or “rhetorically persuasive”. Arguments that happen to persuade, for
psychological reasons, are rightly regarded as of little interest in mathematics and
philosophy. Pólya made it clear, however, that he was not concerned with subjective
impressions, but with what degree of belief was justified by the evidence (Pólya,
1954, I, 68).

Non-deductive logic deals with the support, short of entailment, that some propo-
sitions give to others. If a proposition has already been proved true, there is of course
no longer any need to consider non-conclusive evidence for it. Consequently, non-
deductive logic will be found in mathematics in those areas where mathematicians
consider propositions which are not yet proved. These are of two kinds. First there
are those that any working mathematician deals with in his preliminary work before
finding the proofs he hopes to publish, or indeed before finding the theorems he
hopes to prove. The second kind are the long-standing conjectures which have been
written about by many mathematicians but which have resisted proof.

It is obvious on reflection that a mathematician must use non-deductive logic
in the first stages of his work on a problem. Mathematics cannot consist just of
conjectures, refutations and proofs. Anyone can generate conjectures, but which
ones are worth investigating? Which ones are relevant to the problem at hand?
Which can be confirmed or refuted in some easy cases, so that there will be some
indication of their truth in a reasonable time? Which might be capable of proof
by a method in the mathematician’s repertoire? Which might follow from someone
else’s theorem? Which are unlikely to yield an answer until after the next review
of tenure? The mathematician must answer these questions to allocate his time and
effort. But not all answers to these questions are equally good. To stay employed as
a mathematician, he must answer a proportion of them well. But to say that some
answers are better than others is to admit that some are, on the evidence he has,
more reasonable than others, that is, are rationally better supported by the evidence.
That is to accept a role for non-deductive logic.

The area where a mathematician must make the finest discriminations of this
kind—and where he might, in theory, be guilty of professional negligence if
he makes the wrong decisions—is as a supervisor advising a prospective Ph.D.
student. It is usual for a student beginning a Ph.D. to choose some general field
of mathematics and then to approach an expert in the field as a supervisor. The
supervisor then selects a problem in that field for the student to investigate. In
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mathematics, more than in any other discipline, the initial choice of problem is the
crucial event in the Ph.D.-gathering process. The problem must be

1. unsolved at present
2. not being worked on by someone who is likely to solve it soon

but most importantly

3. tractable, that is, probably solvable, or at least partially solvable, by 3 years’ work
at the Ph.D. level

It is recognised that of the enormous number of unsolved problems that have
been or could be thought of, the tractable ones form a small proportion, and that
it is difficult to discern which they are. The skill in non-deductive logic required
of a supervisor is high. Hence the advice to Ph.D. students not to worry too
much about what field or problem to choose, but to concentrate on finding a
good supervisor.

It is also clear why it is hard to find Ph.D. problems that are also
4. interesting

It is not possible to dismiss these non-deductive techniques as simply “heuristic” or
“pragmatic” or “subjective”. Although those are correct descriptions as far as they
go, they give no insight into the crucial differences among techniques, namely, that
some are more reasonable and consistently more successful than others. “Success-
ful” can mean “lucky”, but “consistently successful” cannot. “If you have a lot of
lucky breaks, it isn’t just an accident”, as Groucho Marx said (Chandler, 1999, 560).
Many techniques can be heuristic, in the sense of leading to the discovery of a true
result, but we are especially interested in those which give reason to believe the truth
has been arrived at, and justify further research. Allocation of effort on attempted
proofs may be guided by many factors, which can hence be called “pragmatic”, but
those which are likely to lead to a completed proof need to be distinguished from
those, such as sheer stubbornness, which are not. Opinions on which approaches
are likely to be fruitful in solving some problem may differ, and hence be called
“subjective”, but the beginning graduate student is not advised to pit his subjective
opinion against the experts’ without good reason. Damon Runyon’s observation on
horse-racing applies equally to courses of study: “The race is not always to the
swift, nor the battle to the strong, but that’s the way to bet” (Fadiman, 1955, 794).
An example where the experts agreed on their opinion and were eventually proved
right is the classification of finite simple groups, described in Sect. 2.4.

It is true that similar remarks could be made about any attempt to see rational
principles at work in the evaluation of hypotheses, not just those in mathematical
research. In scientific investigations, various inductive principles obviously produce
results, and are not simply dismissed as pragmatic, heuristic or subjective. Yet it
is common to suppose that they are not principles of logic, but work because of
natural laws (or the principle of causality, or the regularity of nature). This option is
not available in the mathematical case. Mathematics is true in all worlds, chaotic or
regular. Any principles governing the relationship between hypothesis and evidence
in mathematics can only be logical.
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2.2 Evidence for (and Against) the Riemann Hypothesis

In modern mathematics, it is usual to cover up the processes leading to the
construction of a proof, when publishing it—naturally enough, since once a result
is proved, any non-conclusive evidence that existed before the proof is no longer of
interest. That was not always the case. Euler, in the eighteenth century, regularly
published conjectures which he could not prove, with his evidence for them.
He used, for example, some daring and obviously far from rigorous methods to
conclude that the infinite sum

1+
1
4
+

1
9
+

1
16

+
1

25
+ . . . (2.1)

(where the numbers on the bottom of the fractions are the successive squares of
whole numbers) is equal to the prima facie unlikely value π2

6 . Finding that the two
expressions agreed to seven decimal places, and that a similar method of argument
led to the already proved result

1− 1
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1
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− 1

7
+

1
9
− 1

11
+ . . .=

π
4

(2.2)

Euler concluded, “For our method, which may appear to some as not reliable
enough, a great confirmation comes here to light. Therefore, we shall not doubt
at all of the other things which are derived by the same method” (Pólya, 1954, I,
18–21). He later proved the result. A translation of another of Euler’s publications
devoted to presenting “such evidence . . . as might be regarded as almost equivalent
to a rigorous demonstration” of a proposition is given as a chapter in Pólya’s books
(1954, I, 91–98).

Even today, mathematicians occasionally mention in print the evidence that led
to a theorem. Since the introduction of computers, and even more since the recent
use of symbolic manipulation software packages, it has become possible to collect
large amounts of evidence for certain kinds of conjectures. (Many examples in
Borwein and Bailey, 2004; Borwein et al., 2004; Müller and Neunhöffer, 1987;
some comments on experimental mathematics of this kind in Epstein et al., 1992;
philosophical examination in Baker, 2008). A few mathematicians argue that in
some cases, it is not worth the excessive cost of achieving certainty by proof when
“semi-rigorous” checking will do (Zeilberger, 1993).

At present, it is usual to delay publication until proofs have been found. This rule
is broken only in work on those long-standing conjectures of mathematics which are
believed to be true but have so far resisted proof. The most notable of these, which
stands since the proof of Fermat’s Last Theorem as the Everest of mathematics, is
the Riemann Hypothesis.

Riemann stated in a celebrated paper of 1859 (Riemann, 1974) that he thought it
“very likely” that

All the roots of the Riemann zeta function (with certain trivial exceptions) have real part
equal to 1

2 .
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Table 2.1 Hand calculations of roots of the Riemann zeta function

Date Worker Number of roots found to have real part 1
2

1903 Gram 15
1914 Bäcklund 79
1925 Hutchinson 138
1935/6 Titchmarsh 1,041

This is the still unproved Riemann Hypothesis. The Riemann zeta function is
defined on positive whole numbers s > 1 by the formula

ζ (s) =
1
1s +

1
2s +

1
3s + . . . (2.3)

(Thus for example ζ (2) = 1 + 1
4 + 1

9 + 1
16 + . . ., which is π2

6 , as mentioned
above.) The definition can be extended to the entire complex plane: ζ (s) is the
unique complex function, analytic except at s = 1, which agrees with the above
formula on the positive integers greater than 1. It is found that ζ (s) has obvious
(“trivial”) zeros at the negative even integers. The Riemann Hypothesis is that all
the (infinitely many) other zeros have real part equal to 1

2 . For the present purpose
an understanding of complex functions is not necessary: it is only important that
this is a simple universal proposition like “all ravens except Texan ones are black”.
It is also true that the infinitely many non-trivial roots of the Riemann zeta function
have a natural order, so that one can speak of “the first million roots”. (Accounts in
Edwards, 1974; Derbyshire, 2003, Ch. 5; Sabbagh, 2002; du Sautoy, 2003.)

Once it became clear that the Riemann Hypothesis would be very hard to prove,
it was natural to look for evidence of its truth (or falsity). The simplest kind of
evidence would be ordinary induction: Calculate as many of the roots as possible
and see if they all have real part 1

2 . This is in principle straightforward (though in
practice computational mathematics is difficult, since one needs to devise subtle
algorithms which save as much calculation as possible, so that the results can go as
far as possible). Such numerical work was begun by Riemann and was carried on
later with the results in Table 2.1.

“Broadly speaking, the computations of Gram, Bäcklund and Hutchinson con-
tributed substantially to the plausibility of the Riemann Hypothesis, but gave no
insight into the question of why it might be true” (Edwards, 1974, 97). The next
investigations were able to use electronic computers; the results are shown in
Table 2.2 (Brent et al., 1982; Gourdon, 2004).

It is one of the largest inductions in the world.
Besides this simple inductive evidence, there are some other reasons for believing

that Riemann’s Hypothesis is true (and some reasons for doubting it). In favour,
there are:

1. Hardy proved in 1914 that infinitely many roots of the Riemann zeta function
have real part 1

2 (Edwards, 1974, 226–9). This is quite a strong consequence
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Table 2.2 Computer calculations of roots of the Riemann zeta function

Date Worker Number of roots found to have real part 1
2

1956 Lehmer 25,000
1958 Meller 35,337
1966 Lehman 250,000
1968 Rosser, Yohe and Schoenfeld 3,500,000
1979 Brent 81,000,001
1986 Te Riele, van de Lune et al. 1,500,000,001
2004 Gourdon 1013

of Riemann’s Hypothesis, but is not sufficient to make the Hypothesis highly
probable, since if the Riemann Hypothesis is false, it would not be surprising if
the exceptions to it were rare.

2. Riemann himself showed that the Hypothesis implied the “prime number
theorem”, then unproved. This theorem was later proved independently. This is
an example of the general non-deductive principle that non-trivial consequences
of a proposition support it.

3. Also in 1914, Bohr and Landau proved a theorem roughly expressible as “Almost
all the roots have real part very close to 1

2 .” More exactly, “For any δ > 0, all
but an infinitesimal proportion of the roots have real part within δ of 1

2 .” This
result “is to this day the strongest theorem on the location of the roots which
substantiates the Riemann hypothesis” (Edwards, 1974, 193).

4. Studies in number theory revealed areas in which it was natural to consider zeta
functions analogous to Riemann’s zeta function. In some famous and difficult
work, André Weil proved that the analogue of Riemann’s Hypothesis is true
for these zeta functions (Weil, 1948), and his related conjectures for an even
more general class of zeta functions were proved to widespread applause in the
1970s. “It seems that they provide some of the best reasons for believing that
the Riemann hypothesis is true—for believing, in other words, that there is a
profound and as yet uncomprehended number-theoretic phenomenon, one facet
of which is that the roots ρ all lie on Re s = 1

2 ” (Edwards, 1974, 298).
5. Finally, there is the remarkable “Denjoy’s probabilistic interpretation of the

Riemann hypothesis” (Edwards, 1974, 268–269). If a coin is tossed n times, then
of course we expect about 1

2 n heads and 1
2 n tails. But we do not expect exactly

half of each. We can ask, then, what the average deviation from equality is. The
answer, as was known by the time of Bernoulli, is

√
n. One exact expression of

this fact is:

For any ε > 0, with probability one the number of heads minus the number of tails in n

tosses grows less rapidly than n
1
2 +ε .

Now we form a sequence of “heads” and “tails” by the following rule: Go along
the sequence of numbers and look at their prime factors. If a number has two
or more prime factors equal (i.e., is divisible by a square), do nothing. If not,
its prime factors must be all different; if it has an even number of prime factors,
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Table 2.3 “Head” and “tail” sequence from the factors of integers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · ·
2 3 22 5 2×3 7 23 32 2×5 11 22 ×3 13 2×7 3×5 24 17 · · ·
T T T H T H T T H H T · · ·

write “heads”. If it has an odd number of prime factors, write “tails”. Table 2.3
shows the beginning of the sequence.

The resulting sequence is of course not “random” in the sense of “probabilis-
tic”, since it is totally determined. But it is “random” in the sense of “patternless”
or “erratic”; such sequences are common in number theory, and are studied
by the branch of the subject called misleadingly “probabilistic number theory”
(Tenenbaum, 1995). From the analogy with coin tossing, it is likely that

For any ε > 0, the number of heads minus the number of tails in the first n “tosses” in
this sequence grows less rapidly than n

1
2 +ε .

This statement is equivalent to Riemann’s Hypothesis. Edwards comments, in his
book on the Riemann zeta function,

One of the things which makes the Riemann Hypothesis so difficult is the fact that
there is no plausibility argument, no hint of a reason, however unrigorous, why it should
be true. This fact gives some importance to Denjoy’s probabilistic interpretation of the
Riemann hypothesis which, though it is quite absurd when considered carefully, gives a
fleeting glimmer of plausibility to the Riemann hypothesis (Edwards, 1974, 268).

Not all of the probabilistic arguments bearing on the Riemann Hypothesis are in its
favour. In the balance against, there are the following arguments:

1. Riemann’s paper is only a summary of his researches, and he gives no reasons
for his belief that the Hypothesis is “very likely”. No reasons have been found
in his unpublished papers. Edwards does give an account, however, of facts
which Riemann knew, which would naturally have seemed to him evidence of
the Hypothesis. But the facts in question are true only of the early roots; there
are some exceptions among the later ones. Edwards concludes:

The discoveries . . . completely vitiate any argument based on the Riemann-Siegel
formula and suggest that, unless some basic cause is operating which has eluded
mathematicians for 110 years, occasional roots ρ off the line [i.e., with real part not 1

2 ]
are altogether possible. In short, although Riemann’s insight was stupendous it was not
supernatural, and what seemed “probable” to him in 1859 might seem less so today
(Edwards, 1974, 166).

This is an example of the non-deductive rule given by Pólya, “Our confidence
in a conjecture can only diminish when a possible ground for the conjecture is
exploded” (Pólya, 1954, II, 20).

2. Although the calculations by computer did not reveal any counterexamples to
the Riemann Hypothesis, Lehmer’s and later work did unexpectedly find values
which it is natural to see as “near counterexamples” (Edwards, 1974, 175–9,
further in Ivić, 2003). An extremely close one appeared near the 13,400,000th
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root. It is partly this that prompted the calculators to persevere in their labours,
since it gave reason to believe that if there were a counterexample it would
probably appear soon. So far it has not, despite the distance to which computation
has proceeded, so the Riemann Hypothesis is not so undermined by this
consideration as appeared at first.

3. Perhaps the most serious reason for doubting the Riemann Hypothesis comes
from its close connections with the prime number theorem The theorem states
that the number of primes less than x is (for large x) approximately equal to the
integral

∫ x

2

dt
logt

(2.4)

If tables are drawn up for the number of primes less than x and the values of this
integral, for x as far as calculations can reach, then it is always found that the
number of primes less than x is actually less than the integral. On this evidence,
it was thought for many years that this was true for all x. Nevertheless Littlewood
proved that this is false. While he did not produce an actual number for which it
is false, it appears that the first such number is extremely large—well beyond the
range of computer calculations. Edwards comments

In the light of these observations, the evidence for the Riemann hypothesis provided by
the computations of Rosser et al. . . . loses all its force.

That seems too strong a conclusion, since the degree of relevance of Littlewood’s
discovery to the Riemann Hypothesis is far from clear. But it does give some
reason to suspect that there may be a very large counterexample to the Hypothesis
even though there are no small ones.

It is plain, then, that there is much more to be said about the Riemann Hypothesis
than, “It is neither proved nor disproved.” Without non-deductive logic, though,
nothing more can be said.

2.3 Goldbach’s Conjecture

The situation with Goldbach’s Conjecture, possibly the easiest to state of the classic
unsolved problems of mathematics, is similar. Based on a letter of 1742 from
Goldbach, Euler conjectured that every even number (except 2) is the sum of two
primes.

The conjecture is still neither proved nor disproved and it is believed that a proof
is not close. There is a simple heuristic argument that the larger the number, the
more ways it can be made up of smaller numbers, so the easier it should be to write
it as the sum of two primes; but there seems to be no way of converting that into a
deductive argument. Computer verification for individual numbers is possible and
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there is a distributed computing project that has checked the Conjecture for even
numbers up to and beyond 1018 (Wang, 2002; discussed from the point of view of
experimental methods in Echeverría, 1996 and Baker, 2007).

Various consequences of it have been proved (Pólya, 1954, II, 210), and,
remarkably, connections have appeared between Goldbach’s Conjecture and the
Riemann Hypothesis. Hardy and Littlewood proved in 1924 that a generalisation
of the Riemann Hypothesis and a certain estimate implied that most even integers
are the sum of two primes. Vinogradov in 1937 showed that every sufficiently large
odd integer is the sum of three primes, and these methods were soon adapted to
show Hardy and Littlewood’s result without any assumptions. In 1948 Renyi found
that every even number is the sum of a prime and an “almost prime” (a number
with few prime factors) (Renyi, 1962). Linnik showed in 1952 that the Riemann
Hypothesis itself implied a proposition relevant to Goldbach’s Conjecture (Linnik,
1952). Results on the problem are still sometimes found, but there do not seem to
have been dramatic advances in the last 50 years.

2.4 The Classification of Finite Groups

A last mathematical example of the central role of non-deductive inference is
provided by the classification of finite simple groups, one of the great co-operative
efforts of modern pure mathematics. As a case study, it has the merit that the
non-deductive character of certain aspects was admitted rather explicitly by the
principals. That was so because of the size of the project. Since so many people
were involved, living in different continents and working over some years, it was
necessary to present partial findings in print and at conferences, with explanations
as to how these bore on the overall results hoped for.

Groups are one of the basic abstract entities of mathematics, having uses in
describing symmetry, in classifying the kinds of curved surfaces and in many other
areas. To read the following it is only necessary to know:

1. A group consists of finitely or infinitely many members; the number of members
of a finite group is called its order.

2. Any group is composed, in a certain sense, of “simple” groups. (“Simple”, like
“group”, is a technical term; “simple” groups are not in any sense uncomplicated
or easy to understand but are so-called because they are not composed of smaller
groups.)

A fundamental question is then: how many different finite simple groups are there?
And what is the order of each? It is these questions that were attacked by the
classification of finite groups project.

The project proper covered the 20 years from 1962 to 1981 inclusive. Groups
had been studied in the nineteenth and early twentieth centuries, and various finite
simple groups were found. It was discovered that most of them fell into a number of
infinite families. These families were quite well described by the mid-1950s, with
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some mopping-up operations later. There were, however, five finite simple groups
left over from this classification, called the Mathieu groups after their discoverer in
the 1860s. Around 1960 it was not known whether any more should be expected,
or, if not, how much work it might take to prove that these were the only possible
simple groups.

The field was opened up by the celebrated theorem of Feit and Thompson in 1963
(“a moment in the evolution of finite group theory analogous to the emergence of
fish onto dry land” Solomon, 2001). The theorem stated:

The order of any finite simple group is an even number.

Though the result is easy to state and understand, their proof required an entire 255-
page issue of the Pacific Journal of Mathematics. This theorem is a consequence of
the full classification result (since if one knew all the finite simple groups, one could
easily check that the order of each of them was even). It thus appeared that if the
full classification could be found at all it would be a vast undertaking.

The final step in the answer was announced as completed in February, 1981.
The full proof is spread over some 300–500 journal papers, taking up somewhere
between 5,000 and 10,000 pages (Gorenstein, 1982, 1; “cleaned-up” version in
Gorenstein et al., 2005). Of interest is the logical situation as the proof developed,
particularly the increasing confidence—justified as it happened—that the workers
in the field had in the answer long before the end was reached.

It turned out that the five Mathieu groups were not the only “sporadic” groups,
as groups outside the infinite families came to be called. The first new one was
discovered by Zvonimir Janko in Canberra (Janko, 1966), and excitement ran
high as researchers applied many methods and discovered more. The final tally of
sporadic groups stands at 26. These “discoveries” had in many cases a strong non-
deductive aspect, as explained by Daniel Gorenstein of Rutgers, who became the
father figure of the project and leading expert on how it was progressing:

Another aspect of sporadic group theory makes the analogy with elementary particle theory
even more apt. In a number of cases (primarily but not exclusively those in which computer
calculations were ultimately required) “discover” did not include the actual construction of
a group—all that was established was strong evidence for the existence of a simple group
G satisfying some specified set of conditions X. The operative metamathematical group
principle is this: if the investigation of an arbitrary group G having property X does not lead
to a contradiction but rather to a “compatible” internal subgroup structure, then there exists
an actual group with property X. In all cases, the principle has been vindicated; however,
the interval between discovery and construction has varied from a few months to several
years (Gorenstein, 1982, 3–4).

Michael Aschbacher, another leader of the field in the 1970s, distinguished three
stages for any new group: discovery, existence and uniqueness.

I understand a sporadic group to be discovered when a sufficient amount of self-consistent
information about the group is available . . . Notice that under this definition the group can
be discovered before it is shown to exist . . . Of course the group is said to exist when there is
a proof that there exists some finite simple group satisfying P . . . (Aschbacher, 1980, 6–7).
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Some groups attracted more suspicion than others; for example that discovered by
Richard Lyons was for some time habitually denoted Ly? and spoken of in such
terms as, “If this group exists, it has the following properties . . .” (Tits, 1971, 204).
Lyons entitled his original paper ‘Evidence for the existence of a new finite simple
group’ (Lyons, 1972). A similar situation arose with another of the later groups,
discovered by O’Nan. His paper, ‘Some evidence for the existence of a new simple
group’, was devoted to finding “some properties of the new simple group G, whose
existence is pointed at by the above theorems” (O’Nan, 1976, 422).

The rate of discovery of new sporadic groups slowed after 1970 and attention
turned to the problem of showing that there were no more possible. At a conference
at the University of Chicago in 1972 Gorenstein laid out a 16-point program for
completing the classification (Gorenstein, 1979). It was thought over-optimistic at
the time but immense strides were soon made by Aschbacher, Glauberman and
others, more or less following Gorenstein’s program.

The turning point undoubtedly occurred at the 1976 summer conference in Duluth,
Minnesota. The theorems presented there were so strong that the audience was unable to
avoid the conclusion that the full classification could not be far off. From that point on, the
practicing finite group theorists became increasingly convinced that the “end was near”—at
first within five years, then within two years, and finally momentarily. Residual skepticism
was confined largely to the general mathematical community, which quite reasonably would
not accept at face value the assertion that the classification theorem was “almost proved”
(Gorenstein, 1982, 5–6).

Notice that “almost proved” indeed does not mean anything in deductive logic. With
hindsight, one can say that a theorem was almost proved when most of the steps in
the proof were found; but before a proof is complete, there can only be good non-
deductive reason to believe that a sequence of existing steps will constitute most of
a future proof.

By the time of the conference at Durham, England in 1978 (described in its
Proceedings as on “the classification of simple groups, a programme which is
now almost complete”) optimism ran even higher. At that stage existence and
uniqueness had been proved for 24 of the sporadic groups, leaving two “for which
considerable evidence exists” (Collins, 1980, 21). One of these was successfully
dealt with in 1980 (“four years after Janko’s initial evidence for such a sporadic
group” Gorenstein, 1982, 110), and attention focussed on the last one, known as the
“Monster” because of its immense size (order about 1054).

That the search for sporadic groups was not totally haphazard can be seen from the
remarkable simultaneous realization by Fischer in West Germany and Griess in the United
States in 1974 that there might be a simple group having a covering group . . . (Gorenstein,
1982, 92).

Consequences of the existence of this group were then studied:

Soon after the initial “discovery”, Griess, Conway and Norton noticed that every nontrivial
irreducible character of a group G of type F, has degree at least 196,883 and very likely such
a group G must have a character of this exact degree. Indeed, on this assumption, Fischer,
Livingstone and Thorne eventually computed the full character table of such a group G
(Gorenstein, 1982, 126–7).
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Aschbacher, lecturing at Yale in 1978, said:

When the Monster was discovered it was observed that, if the group existed, it must contain
two new sporadic groups (the groups denoted by F3 and F5 in Table 2.2) whose existence
had not been suspected up to that time. That is, these groups were discovered as subgroups
of the Monster. Since that time the groups F3 and F5 have been shown to exist. This is
analogous to the situation in the physical sciences where a theory is constructed which
predicts certain physical phenomena that are later verified experimentally. Such verification
is usually interpreted as evidence that the theory is correct. In this case, I take the existence
of F3 and F5 to be very good evidence that the Monster exists . . . My belief is that there are
at most a few groups yet to be discovered. If I were to bet, I would say no more (Aschbacher,
1980, 13–15).

Gorenstein’s survey article of 1978 contains perhaps the experts’ last sop to
deductivism, the thesis that all logic is deductive. He wrote:

At the present time the determination of all finite simple groups is very nearly complete.
Such an assertion is obviously presumptuous, if not meaningless, since one does not speak
of theorems as “almost proved” (Gorenstein, 1979, 50–51).

To the deductivist, the fact that most steps in a proposed proof are completed is no
reason to believe that the rest will be. Undeterred, however, Gorenstein went on to
say:

The complete proof, when it is obtained, will run to well over 5,000 journal pages!
Moreover, it is likely that at the present time more than 80% of those pages exist . . . The
assertion that the classification is nearly complete is really a prediction that the presently
available techniques will be sufficient to deal with the problems still outstanding. In its
support, we cite the fact that, with two exceptions, all open questions are open because no
one has yet examined them and not because they involve some intrinsic difficulty.

A year after the Durham conference, the experts assembled again at Santa Cruz,
California, in a mood of supreme confidence. Gorenstein’s survey opened with the
remark:

My aim here is to present a brief outline of the classification of the finite simple groups,
now rapidly nearing completion (Gorenstein, 1980, 3).

Another contributor to the conference began his talk:

Now that the problem of classifying finite simple groups is probably close to completion . . .
(Hunt, 1980).

What concern remained was less about the completion of the project than about
what to do next; the editor of the conference proceedings began by commenting, “In
the last year or so there have been widespread rumors that group theory is finished,
that there is nothing more to be done” (Mason, 1980, xii). The New York Times Week
in Review (June 22, 1980) headlined an article ‘A School of Theorists Works Itself
Out of a Job.’

The confidence proved justified. Griess was able to show the existence of the
Monster, and finally, in 1981, Simon Norton of Cambridge University completed
the proof of the uniqueness of the Monster (Gorenstein, 1982, 1).
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At least, that was claimed at the time. In the late 1980s it was discovered that
a part of the proof, on “quasithin” groups, was not quite as complete as had been
thought. One gap proved hard to fill in, but was completed by Aschbacher and others
in 2001 (Aschbacher, 2001).

2.5 Probabilistic Relations Between Necessary Truths?

The most natural conceptualization of the non-deductive relations between evidence
and conclusion is that of objective Bayesianism. The (objective) Bayesian theory of
evidence (also known as the logical theory of probability) aims to explain what
the nature of evidence is. It holds that the relation of evidence to conclusion is a
matter of strict logic, like the relation of axioms to theorems in mathematics but less
conclusive—a kind of partial implication. Given a fixed body of evidence—say in
a trial, or in a dispute about a scientific theory—and given a conclusion, there is
a fixed degree to which the evidence supports the conclusion. It was defended in
Keynes’s Treatise on Probability (Keynes, 1921) and more recently by E. T. Jaynes
(Jaynes, 2003; a slightly less objective version in Williamson, 2010; introductions
in Franklin, 2001; Franklin, 2009, Ch. 10). It says, for example, that if we could
establish just what the legal standard of “proof beyond reasonable doubt” is, then, in
a given trial, it is an objective matter of logical fact whether the evidence presented
does or does not meet that standard, and so a jury is either right or wrong in its
verdict on the evidence.

It is not essential to the Bayesian perspective that the relation of evidence to
conclusion should be given a precise number, nor that it be possible to compute the
logical relation between evidence and conclusion in typical cases. It is sufficient for
objective Bayesianism that it is sometimes intuitively evident that some hypotheses,
on some bodies of evidence, are highly likely, or almost certain, or virtually
impossible (Franklin, 2011). Keynes certainly believed that it was not always
possible even in principle to compute an exact number expressing the relation
between an arbitrary body of evidence and a conclusion. Nevertheless, it is usual
as an idealization to suppose that for any body of evidence e and any conclusion h,
there is a number P(h|e), between 0 and 1, expressing the degree to which e supports
h; and that that number satisfies the usual axioms of conditional probability:

P(not-h|e) = 1 − P(h|e)
P(h1 and h2|e) = P(h1|e) × P(h2|h1 and e)

Pólya’s qualitative principles of evidence, such as the confirmation of hypotheses
by their non-trivial consequences, are then easy deductions from those axioms.

The logical nature of the relation makes it particularly suitable for application
to the necessary subject matter of pure mathematics. Conversely, its intuitive
agreement with actual evaluation of conjectures supports it as a possible meaningful
interpretation of probability (not necessarily the only valid one, as stochastic
outcomes or idealized degrees of belief or idealized relative frequencies may also
turn out to satisfy the same axioms.)
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There is one point that needs to be made precise especially in applying the theory
of logical probability or non-deductive logic in mathematics. If evidence e entails
hypothesis h, then P(h|e) is 1. But in mathematics, the typical case is that e does
entail h, though that is perhaps as yet unknown. If, however, P(h|e) is really 1, how
is it possible in the meantime to discuss the (non-deductive) support that e may give
to h, that is, to treat P(h|e) as not equal to 1? In other words, if h and e are necessarily
true or false, how can P(h|e) be other than 0 or 1? How can there be probabilistic
relations between necessary truths?

The answer is that, in both deductive and non-deductive logic, there can be many
logical relations between two propositions. Some may be known and some not. To
take an artificially simple example in deductive logic, consider the argument

If all men are mortal, then this man is mortal
All men are mortal
Therefore, this man is mortal

The premises entail the conclusion, certainly, but there is more to it than that.
They entail the conclusion in two ways: firstly, by modus ponens, and secondly
by instantiation from the second premise alone. That is, there are two logical paths
from the premises to the conclusion.

More complicated and realistic cases are common in the mathematical literature.
Feit and Thompson’s proof that all finite simple groups have even order, occupying
255 pages, was simplified by Bender (1970). That means that Bender found a
different and shorter logical route from the definition of “finite simple group” to
the proposition, “All finite simple groups have even order” than the one known to
Feit and Thompson.

Now just as there can be two deductive paths between premises and conclusion,
so there can be a deductive and non-deductive path, and it may be that only the latter
is known. Before the Greeks’ development of deductive geometry, it was possible
to argue

All equilateral (plane) triangles so far measured have been found to be equiangular
This triangle is equilateral
Therefore, this triangle is equiangular

There is a non-deductive logical relation between the premises and the conclusion;
the premises inductively support the conclusion. But when deductive geometry
appeared, it was found that there was also a deductive relation, since the second
premise alone entails the conclusion. This discovery in no way vitiates the correct-
ness of the previous non-deductive reasoning or casts doubt on the existence of the
non-deductive relation. That relation cannot be affected by discoveries about any
other relation.

So the answer to the question, “How can there be probabilistic relations between
necessary truths?” is simply that those relations are additional to any deductive
relations (and may be known independently of them).
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2.6 The Problem of Induction in Mathematics

That non-deductive logic is used in mathematics is important first of all to
mathematics. But there is also some wider significance for philosophy, in relation to
the problem of induction, or inference from the observed to the unobserved.

It is common to discuss induction using only examples from the natural world,
such as, “All observed flames have been hot, so the next flame observed will be
hot” and “All observed ravens have been black, so all ravens are black”. That has
encouraged the view that the problem of induction should be solved in terms of
natural laws (or causes, or dispositions, or the regularity of nature, or some other
contingent principle) which provide a kind of “cement of the universe” to bind the
observed to the unobserved.

The difficulty for such a view is that it does not apply to mathematics, which
deals in necessary matter. Yet induction works just as well in mathematics as in
natural science.

Examples were given above in the second section in connection with the
calculation of roots for the Riemann Hypothesis, but let us take a particularly
straightforward case:

The first million digits of π are random
Therefore, the second million digits of π are random

(“Random” here means “without pattern”, “passes statistical tests for random-
ness”, not “probabilistically generated”, “stochastic”: Ruhkin, 2001; Franklin, 2009,
162–3.) The number π has the decimal expansion

3.14159265358979323846264338327950288419716939937 . . .

There is no apparent pattern in these numbers. The first million digits have long
been calculated (calculations have reached beyond one trillion). Inspection of these
digits reveals no pattern, and computer calculations can confirm this impression. It
can then be argued inductively that the second million digits will likewise exhibit
no pattern. This induction is a good one (indeed, everyone believes that the digits of
π continue to be random indefinitely, though there is no proof, Marsaglia, 2005).

It is true, as argued by Baker (2007), that there is a special problem with
inductive arguments in mathematics in that all the observed cases are of small
numbers. Any number that can be calculated with is very small, compared to
numbers in general. That bias in the evidence could raise a question as to whether
any induction of the form “All observed numbers have property X, therefore all
numbers have property X” could have high probability. That does not imply,
however, that inductive arguments in mathematics are generally poor. Firstly, a
bias in the evidence towards small numbers does not affect inductive arguments
with more modest conclusions, such as “All observed numbers have property X, so
the next number calculated will have property X.” (The argument above about the
randomness of the digits of π only extrapolated a finite distance, keeping to small
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numbers.) Secondly, many other inductive arguments have a bias in the evidence,
without thereby becoming worthless (though they may become less secure). For
example, extrapolative inductive inference like “All observed European swans are
white, therefore all swans are white” is a worthwhile inductive argument, although
the extrapolation beyond the observed range weakens it.

Now there seems to be no reason to distinguish the logic involved in such
mathematical arguments from that used in inductions about flames or ravens. But
the digits of π are the same in all possible worlds, whatever natural laws may hold
in them or fail to. Any reasoning about π is also rational or otherwise, regardless
of any empirical facts about natural laws. Therefore, induction can be rational
independently of whether there are natural laws (or any other such contingent
principle).

This argument does not show that natural laws have no place in discussing
induction. It may be that mathematical examples of induction are rational because
there are mathematical laws or regularities, and that the aim in natural science is to
find some substitute, such as natural laws, which will take the place of mathematical
laws in accounting for the continuance of regularity. But if this line of reasoning is
pursued, it is clear that simply making the supposition, “There are laws”, is of little
help in making inductive inferences. No doubt mathematics is completely lawlike,
but that does not help at all in deciding whether the digits of π continue to be
random. In the absence of any proofs, induction is needed to support the law (if
it is a law), “The digits of π are random”, rather than the law being able to give
support to the induction. Either “The digits of π are random” or “The digits of π are
not random” is a law, but in the absence of knowledge as to which, we are left only
with the confirmation that the evidence gives to the first of these hypotheses. Thus
consideration of a mathematical example reveals what can be lost sight of in the
search for laws: laws or no laws, non-deductive logic is needed to make inductive
inferences.

It is worth noting that there are also mathematical analogues of Goodman’s
“grue” paradox. Let a number be called “prue” if its decimal expansion is random
for the first million digits and 6 thereafter. The predicate “prue” is like “grue” in not
being projectible. “π is random for the first million digits” is logically equivalent
to “π is prue for the first million digits”, but this proposition supports “π is random
always”, not “π is prue”. Any solutions to the “grue” paradox must allow projectible
or “natural” properties to be found not only in nature but also in mathematics.

These examples illustrate Pólya’s remark that non-deductive logic is better
appreciated in mathematics than in the natural sciences (Pólya, 1954, II, 24). In
mathematics there can be no confusion over natural laws, the regularity of nature,
approximations, propensities, the theory-ladenness of observation, pragmatics,
scientific revolutions, the social relations of science or any other red herrings. There
are only the hypothesis, the evidence and the logical relations between them.
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Chapter 3
Arguments, Proofs, and Dialogues

Erik C.W. Krabbe

To what extent do proofs fall within the scope of a theory of argumentation? In
this chapter I shall try to provide an answer. To this end, several types of proof
need to be distinguished. Proofs of most types will be seen to be arguments, and
therefore amenable to analysis from the point of view of argumentation studies. The
last section presents a dialectical view of proof as an argument in dialogue that meets
certain supplementary conditions. These conditions can, however, be formulated in
dialectical terms.

3.1 Proof and Argument

What is a proof? A set of solid reasons and lucid inferences that clinch the
argument? Or do we need more, before we are prepared to accept the credentials
of a supposed proof? Are proofs within the range of legitimate subjects for a theory
of argumentation? Or must the territory be left to formal logicians?

The Latin word argumentum has ‘proof’ as one of its meanings; argumentatio
means ‘argumentation’ or ‘(the furnishing of) proof;’ the correlative verbs are
argumentor and arguo: I argue, I prove. Does this mean that, fundamentally, arguing
and proving are one and the same? If so, one may be puzzled by the existence of a
branch of logic called ‘proof theory’ (or metamathematics). Obviously, proof theory
and theory of argumentation are quite different disciplines.1

1To see what theory of argumentation is about, one may consult Barth and Martens (1982), and
Van Eemeren et al. (1987, 1996); for proof theory see Prawitz (1981). The word ‘argument,’ in this
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Webster’s Ninth New Collegiate Dictionary renders the relevant meaning of ‘to
prove’ as follows:

3 a: to establish the existence, truth, or validity of (as by evidence or logic)

This covers proofs in mathematics as well as proofs in science and proofs in court.
There is, indeed, no reason to postulate three radically different meanings for these
cases. On the relevant meanings of ‘arguing’ the dictionary instructs us as follows:

vi [. . . ] 1: to give reasons for or against something: REASON [. . . ] vt [. . . ] 2: to consider
the pros and cons of: DISCUSS 3: to prove or try to prove by giving reasons: MAINTAIN
4: to persuade by giving reasons: INDUCE

Thus the domains of application of the terms ‘to prove’ and ‘to argue’ overlap:
whenever someone tries, by giving reasons, to establish the existence, truth, or
validity of something and succeeds in doing so, both terms apply: what she has
been doing was not just arguing a case, but proving her conclusion as well. But if
she only tried to establish the existence, truth, or validity, but without success, she
has been arguing all the same, but she has not been proving anything. Hence it is
quite possible to argue without proving. Can one also prove without arguing?

A proof is to establish the correctness of a proposition, to justify a point of view
or claim. But we are not told that argument is the only way to achieve this end.
Suppose I claim to be capable of singing a song. You want a proof. I could start an
argument about my reputation as a singer, but the easiest way to justify my claim
would be just to burst into song. Similarly, a claim to the effect that it is snowing
could be established by drawing back the curtains. If you utter ‘I can pronounce
an English sentence’ you have laid down your claim and handed us a proof of it
at one and the same time. In all these cases one justifies a claim without offering
an argument. One is proving something, but not arguing for it. Such proofs are
intuitively clear, and they are so immediately. We shall use the term Immediate and
Intuitive Proof for this type of case.

The term ‘proof’ displays a process-product ambiguity (as does the term
‘argument’). Sometimes the process of establishing the correctness of a proposition
is meant, but at other times it is the product (often a text) that is meant. The same
holds for ‘immediate and intuitive proof,’ though, in some cases, it may sound a bit
peculiar when the term ‘proof’ is applied to the product, which could be a song, or
a figure, or a gesture, or whatever.

3.2 Mathematical Proof

Among mathematical proofs the Immediate and Intuitive ones are at one extreme,
whereas the Formal Proofs are at the other. In between one finds informal proofs

paper, is not used in the technical, logical, sense of a premises-conclusion constellation, but refers
to verbal and social means (especially the presentation of reasoning) to convince an addressee that
a certain claim is justified. Cf. Walton (1990, esp. 411).
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Fig. 3.1 The altitudes of
a triangle ABC intersect in
a single point O

in which arguments are brought into play, possibly within the context of an axiom
system. The question is whether these informal proofs would be best regarded as
special cases of arguing and argument, or as specimens of a completely different
type of process (product). The following case study may clarify this issue:

Theorem 1. The altitudes of a triangle intersect in a single point.

As you may remember, each triangle has three altitudes. If A, B, and C are
the vertices of a triangle, then the altitude from A is the line through A that is
perpendicular to the side BC, etc. We take it to be self-evident that any two altitudes
(e.g., the altitude from A and that from B) intersect in a single point (say O). The
problem is to prove that the third altitude (that from C) passes through O as well.

A well-known proof of this theorem presents (or has the student draw) a figure
(Fig. 3.1).

For some this figure, by itself, may constitute an immediate and intuitive proof.
There is no fundamental difference, as far as the method of proof is concerned,
between showing some figure (to prove a geometrical theorem) and drawing back
the curtains in order to prove that it is snowing outside. But many will not be satisfied
by Fig. 3.1 and demand an accompanying argument. Here is one (it is called a
‘proof’):

Proof. Consider an arbitrary triangle ABC. Draw a line through A parallel to BC, one
through B parallel to AC, and one through C parallel to AB. We have constructed a
circumscribing triangle A′B′C′. It is not hard to see that the altitudes of the inner
triangle ABC happen to be the perpendicular bisectors of the sides of the outer
triangle A′B′C′ (this is left as an exercise). But, as we all know, the perpendicular
bisectors of the sides of any triangle will intersect in a single point which is the
center of the circumscribed circle of the triangle. Therefore, the altitudes of ABC
will intersect in a single point, which is the center of the circumscribed circle of
A′B′C′. Since ABC was chosen arbitrarily, the same result holds for any triangle:
its altitudes will intersect in a single point (which may henceforth be called the
orthocenter of the triangle), QED.
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This illustrates what is meant by Informal Proof.2 Among the characteristics of
informal proof are the following: (i) it is an attempt to establish a conclusion by
argument, (ii) which is addressed to an addressee who does not yet subscribe to
the theorem, but who is willing to let himself be convinced of its truth, (iii) this
addressee is assumed to be acquainted with a certain body of knowledge, reference
to which is made in the proof (for instance, in the proof given above, the addressee
was assumed to be familiar with the fact that the perpendicular bisectors of the sides
of a triangle intersect in a single point), (iv) some parts of the proof are left as an
exercise to the addressee, (v) some propositions are supposed to be immediately
and intuitively obvious (for instance that there is a line through A parallel to BC),
and (vi) some procedures of proof are presupposed as well (for instance, how to
handle ‘arbitrary objects’ in order to obtain general conclusions). An informal proof,
therefore, is just an argument of sorts, and hence an appropriate object of study
for the theory of argumentation. If we take a dialectical view of argument in general,
that is, if we look upon all argument as explicit or implicit critical discussion,
then informal proofs are no exceptions: a critical discussion is (usually implicitly)
contained in them.

An argument may or may not hold water. Even if it does not, it is an argument
all the same. But ‘proof’ has another type of grammar. Ordinary usage suggests
that shaky or fallacious arguments do not count as proofs. It is probably wise
to follow ordinary usage in this respect as we are about to recommend some
philosophical terminology. This means that we must differ from other, perhaps
marginal, phenomena of usage, such as talk of proofs being ‘wrong’ or ‘right.’ On
closer analysis, a ‘wrong proof,’ i.e., a ‘proof’ containing a fallacy or error, is no
proof at all, just as a forged Vermeer is not a specific kind of Vermeer.

This does not at all make it easier to apply the term ‘(informal) proof’ correctly.
Suppose we are given an alleged proof. It is an argument for sure, but we cannot
tell whether the argument is a proof without knowing whether the argument holds
water. However, with arguments, this cannot be seen from the text: we have to study
the context. Informal mathematical proof is no exception. What counts as a proof
for one person may not count as proof for someone else. The argument given above
for the existence of an orthocenter with each triangle can only take effect as a proof
for you if you are familiar with certain presupposed facts and methods: you have to
be acquainted with perpendicular bisectors and with the theorem that they intersect
in a single point. Moreover the homework exercises must be within your reach. And
you must be able to understand the use of such phrases as ‘consider an arbitrary
triangle ABC,’ etc.3

2The term Informal Proof is here used in a narrow sense, excluding those informal proofs (in a
broad sense) that can be classified either as immediate and intuitive or as informal axiomatic proofs
(see below). A more explicit, but cumbersome, name for this type of proof would be: Informal
Argumentative Nonaxiomatic Proof.
3 Cf. Corcoran: ‘A linear chain of reasoning that is cogent for one person need not, and normally
will not, be cogent for all other persons.’ (1989, 34).
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Informal proofs are just arguments. Even so, their authors do not usually
announce them as ‘arguments,’ but as ‘proofs.’ Why? One reason could be that
the author is sincerely convinced that his argument is impeccable, that it should
satisfy any member of his intended audience, does not admit of rational objections
or reservations, and perhaps fulfills a number of supplementary conditions (see
Sect. 3.4). By calling his argument a ‘proof,’ the author underlines these matters and
reminds his audience of the supplementary conditions that an informal mathematical
proof should satisfy. In itself there is nothing objectionable to this use of the word
‘proof.’ But, of course, calling an argument ‘sound,’ ‘correct,’ or ‘conclusive’ does
not provide the argument with these meritorious qualities. The self-praise implied
in the announcement of an argument as a ‘proof’ is liable to induce one to overstep
the boundaries of sober argument into the realm of propaganda and intimidation.
Another message is tagged to the announcement: ‘Don’t try to find any objections
to this, for my argument isn’t just an argument, but a proof, meaning a clincher,
and if you don’t agree, that only goes to show that you failed to grasp the whole
thing. . . ’ The use of the term ‘proof’ for these ends is fallacious, it is an argumentum
ad verecundiam.

Van Eemeren and Grootendorst (1987) reserve the term ‘fallacy’ for speech acts
which hinder in any way the process of conflict resolution in a critical discussion
(284). A fallacy violates a rule that has to be observed in a critical discussion. Van
Eemeren and Grootendorst  (1987) present ten such rules and it is not hard to see
which rule is violated by an intimidating use of the term ‘proof’ to describe one’s
own argument. The rule formulates what may be called The Principle of Burden of
Proof :

Rule II: Whoever advances a standpoint is obliged to defend it if asked to do so (285).

This principle applies, not only to the theorem to be proved, but also to the data
adduced in the proof and to the methods of proof. For all of these, there is a burden
of proof as soon as there is a challenge. Primarily, the principle refers to situations
that are explicitly dialogical, for instance, situations in which certain specific parts of
an alleged proof are explicitly criticized. But the challenge can also remain implicit.
In that case there may, nevertheless, be an identifiable burden of proof. Thus, in
a situation where it is reasonable to suppose that a number of addressees will be
unable to follow a published argument as it stands, there is, one may say, an implicit
challenge: the mathematician is asked (implicitly) to back up her argument. Calling
her argument a ‘proof,’ however, she evades the burden. The move owes its efficacy
to the diffidence (verecundia) felt when confronted with ‘proof’ (argumentum ad
probandi verecundiam).

A strong form of the fallacy would even result in a threat, and thus violate the
following dialectical rule formulated by Van Eemeren and Grootendorst (to be called
The Principle of Parrhesia):

Rule I: Parties must not prevent each other from advancing or casting doubt on standpoints
(284).

For instance, our mathematician could claim that she has a full proof to fall back
on, safely stored in her desk, implying that any doubt would be futile, and that those



36 E.C.W. Krabbe

of her critics that persist in casting doubt on parts of the proof risk a severe loss of
prestige in the near future (argumentum ad baculum).4

The efficacy of the high-sounding word ‘proof’ in an argumentum ad
verecundiam is enhanced by the existence of some rather special, but prestigious,
meanings of this term. One of these is the concept of axiomatic proof in
mathematics. Primarily, an axiomatic proof is a proof within an axiom system, such
as (a specified axiomatization of) Euclid’s geometry. Working within the confines
of a specific axiom system, one has no need to prove the axioms. (Nor is one to
prove the system’s definitions.) Dependent upon one’s epistemology, the axioms are
viewed as self-evident, as a matter of choice or convention, or as principles that can
be justified from outside the system. Starting from the axioms (and perhaps some
basic definitions) the mathematician proves, within the system, one theorem after
another. All along, new terms are introduced by definition. In this process, the order
of proofs and definitions is crucial. Each proof may fall back only upon axioms, on
definitions that were introduced before, and on theorems that were proved before.
Definitions may depend upon theorems, but these theorems must precede them.

Proofs within an axiom system often strike one as highly technical, for obviously
they utilize much symbolism and quite subtle methods of deduction. Nevertheless
these proofs remain informal, as long as they are expressed in a language that
was never formalized. We shall call such proofs Informal Axiomatic Proofs. An
informal axiomatic proof is an argument directed at an audience that accepts the
axioms and has ‘gone through’ all the proofs of earlier theorems and the definitions
used in them. Such proofs are arguments and are therefore suitable objects of study
for a theory of argumentation. The special context in which these arguments are
proffered, moreover, makes them especially interesting from an argumentative point
of view. There are fallacies and brands of criticism that are peculiar to this context,
such as certain forms of the circulus vitiosus in probando/in definiendo, the criticism
of (perhaps benign) loops in proofs or definitions, and the criticism of inelegance.

3.3 Formal Proof

Formal Proofs are quite different from any kind of informal proof, however
technical, in that they presuppose a formalized language. Stipulations that define
a formalized language must precede formal proofs formulated within that language.
A formalization of the theorem on altitudes and its proof requires a previous
specification of a formalized language for geometrical thought. If you wonder about

4Another relevant rule would be The Principle of Pertinence: ‘Rule IV: A standpoint may
be defended only by advancing argumentation relating to that standpoint’ (Van Eemeren and
Grootendorst, 1987, 286). But this rule applies to the argumentation stage and therefore assumes
that our mathematician has already acknowledged the existence of critical doubt and agreed to
accept a burden of proof. She could then use another type of ad verecundiam to try to discharge
this burden, e.g. by reference to her expertise in proof construction. This involves more than merely
a claim to have a proof.
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how to conceive of such a language, imagine something similar to a language for
predicate logic with identity in which there are some fixed predicate letters assigned
to the ‘primitive notions of geometry’ (Px: x is a point; Lx: x is a line; Ixy: x is
on y, etc.). Alphabet and syntax of the language must be precisely specified. The
sentences of such a language are often called formulas. Axioms, too, are formulas.
Formal proofs are sequences or tree diagrams of formulas constructed according to
syntactically specified rules of derivation such as the well-known Rule of Modus
Ponens (Rule of Detachment or Arrow-Elimination Rule). Axioms and rules of
derivation taken together define a formal system. A formula is a theorem of a formal
system if and only if there is a formal proof for it within the system. To check
whether an alleged proof really is a proof, one does not need to know anything
about geometry. Nor does one have to be schooled in the theory of argumentation.
A purely syntactical check suffices.

Why have formal proofs? For what purpose? Gottlob Frege (1879) certainly had
a use for them. He needed them in his attempt to establish that all of mathematics
would be derivable from logical principles (logicism). For in order to show this,
he had to derive the (completely evident) principles of arithmetic from (equally
evident) logical principles, without falling back, inadvertently, upon the use of
arithmetic itself. Therefore it was not sufficient to go by intuitively evident steps,
as one would go about it in ordinary informal proofs. Everything, including the
rules of derivation, needed to undergo a complete formalization:

Damit sich hierbei nicht unbemerkt etwas Anschauliches eindrängen könnte, musste Alles
auf die Lückenlosigkeit der Schlusskette ankommen [To see to it that in this process no
intuitive content might without being noticed insert itself, everything had to depend upon
having a chain of deductions without any gaps (transl. EK)] (x).

The German mathematician David Hilbert wanted to provide finitary foundations
for mathematics. He never explained what, precisely, we are to understand by ‘fini-
tary,’ but clearly principles and types of reasoning belonging to a very elementary
part of arithmetic are meant. Traditionally, mathematics surpasses finitary bounds.
For instance, any proof that refers to the set of natural numbers as a completed,
actually infinite, totality (and not merely to the sequence of natural numbers as
potentially infinite, every natural number n being followed by n+1) would count as
nonfinitary. The nonfinitary part of mathematics, however, is not isolated from the
finitary part, for a nonfinitary proof may very well have a finitary conclusion. The
problem is whether such nonfinitary proofs yield reliable results from a finitary point
of view. Hilbert wanted to show (by finitary means) that they do, in other words, he
wanted to show that the traditional nonfinitary proofs never yield a conclusion that
would be incorrect from a finitary point of view.5 For this end he needed to enter
into certain (finitary) mathematical investigations of formal proofs. This started a
discipline called proof theory or metamathematics. Prawitz (1971, 1981) pointed out

5Given certain assumptions, this formulation of Hilbert’s program is equivalent to the better-known
version: to prove arithmetic consistent by finitary means. Cf. Van Dalen (1978, 58 f.) and Prawitz
(1981, 235 f.).
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that proof theory (taken in a broad sense) does not start with Hilbert (or with Frege)
but has been part of logic since Aristotle. His term is general proof theory, whereas
he uses the term reductive proof theory to refer to those studies that are connected
with programs like Hilbert’s. I hope it will be clear from these remarks that though
proof theory is concerned, primarily, with formal proofs, it may, by formalization,
yield insights into proof and possibilties of proof that are highly relevant to the study
of informal (axiomatic or nonaxiomatic) proof. Formal systems of proof can serve
as ‘models’ for certain techniques of reasoning and arguing. In a sense they give us
argumentation-theoretical models (models of argument).

Thus formal proofs can be useful in several respects, but they can never replace
informal proofs. For instance, metamathematical proofs themselves (i.e., proofs
about formal proofs) are usually informal, and if they are formal they impose a
need for a metametamathematics, and so on. In the end, one will find, in each actual
case, a level of informality.

Now that we have surveyed a number of types of proof (Immediate and Intuitive
Proofs, Informal Proofs, Informal Axiomatic Proofs, Formal Proofs) and their uses,
it may have become clear that we should drop the idea of an ‘absolute’ notion
of proof. What happens to be a proof for one audience or within the confines of
one system, need not be one for some other audience or within some other system.
What happens to constitute a proof here and now for a particular audience may not
maintain this status forever.6

With respect to the theory of argumentation, there are two obvious conclusions:

1. With the exception of Immediate and Intuitive Proofs and Formal Proofs, every
mathematical proof is an argument, and therefore a suitable object of study for a
theory of argumentation.7

2. Formal Proof occurs in systems that can be interpreted as models of reasoning
or arguing and of which the theory of argumentation may avail itself.8

3.4 The Surplus Value of a Proof

Not every argument is a proof. Setting aside intentions to impress or intimidate,
whenever the term ‘proof’ is applied to an argument, it must be understood to refer
to one or more supplementary conditions which the argument is supposed to fulfill.

6Dummett, when discussing the philosophical and semantical aspects of intuitionistic views on
implication and proof, points out the possibility that ‘mathematics becomes a subject where results
are fallible and liable to revision’ (1977, 402).
7Presumably, similar observations hold for proofs in science and for proofs in court.
8If formal systems of proof (e.g., systems for natural deduction) provide models of certain aspects
of argument, the same holds a fortiori for formal systems of dialogue rules, such as the dialogue
games introduced by Lorenzen and Lorenz (1978), in which dialectical interaction is explicitly
taken into account. Cf. also Barth and Krabbe (1982), Haas (1984), Krabbe (1985), Stegmüller and
Varga von Kibéd (1984).
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These conditions may be different in different contexts of use. Consequently, one
should take heed if someone utters the word.

Aristotle, for example, requires the premises of a proof (apodeixis) to be (i)
true, (ii) themselves indemonstrable, (iii) better knowable than the conclusion, and
(iv) giving the cause of the conclusion (Anal. post., I.2, 71b17–33; Aristotle, 1976,
31). The conclusion has to be obtained from the premises by deductive argument
(syllogism). Consequently, according to Aristotle, arguments that do not comply
with any or some of these conditions are not proofs, but those that do comply have
several surplus values, such as giving the cause of the conclusion, and can thus yield
knowledge.

A recent proposal can be found in a paper by John Corcoran (1989). According to
Corcoran, the term ‘proof’ makes ‘tacit reference to a participant or to a community
of participants’ for whom the alleged proof would constitute a proof (22). In other
words, what is a proof for one person is not necessarily a proof for some other per-
son.9 Not every argument is a proof for everyone, or even for anyone. In order to be a
proof for someone, an argument should have the right surplus value for that person:

Critical evaluation of an argumentation to determine whether it is a proof for a given
person reduces to two basic issues: are the premises known to be true by the given person?
And does the chain of reasoning deduce the conclusion from the premise-set for the given
person? (25).

For special purposes, very special conditions may come into play. We already
mentioned Frege’s need for proofs starting from purely logical principles that
lead, without any gaps, to arithmetical conclusions. Dummett (1977) distinguishes
‘mere demonstration’ (mathematical proof in a broad sense) from ‘canonical proof’
(mathematical proof in a narrow sense).10 Informal proofs are mere demonstrations,
but in order to define the concept of an informal proof one needs to refer to
the concept of a canonical proof. For canonical proofs, there are supplementary
conditions. For instance, no canonical proof is to contain a statement that is more
complex than the proof’s conclusion (Dummett, 1977, 395). The task of an informal
proof (demonstration) is to show that a canonical proof exists for its conclusion
(392). Hence an informal proof has some surplus value over mere arguments, and a
canonical proof has a surplus value again over a mere demonstration.

According to the philosophy of mathematics in Lakatos (1976), proofs are placed
near the beginning, rather than at the end, of the ‘method of proofs and refutations,’
a heuristic pattern of mathematical discovery. As a stage in this pattern, proof is
preceded only by the formulation of a problem and a conjecture (Lakatos, 1976,
127). Once a proof has been obtained, the process of discovery proceeds by criticism
and analysis of the proof, by correction of the conjecture, and so on. Hence,
according to Lakatos, proof is not primarily a matter of argument: a proof serves to
open possibilities for criticism and thus to advance the inquiry, but not to convince

9Cf. Note 3.
10The distinction is important for an intuitionistic explication of the meaning of logical constants.
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someone else of the correctness of a theorem. From this point of view, proof may
have a surplus value over argument, but so has argument over proof.

These examples may suffice to show that the surplus value of a proof over mere
argument can be specified in radically different ways and that each account of this
surplus value is closely linked to further philosophical positions taken by its author.
Any theorist of argumentation who discusses proof should, therefore, take care to
make clear which concept of proof is intended, i.e., what supplementary conditions
there are for an argument to count as proof.

3.5 Proof and Implicit Dialogue

In a dialectical theory of argumentation, a monological argument is viewed as
an implicit discussion aiming at the resolution of a conflict (explicit or implicit)
concerning the acceptability of a point of view.11 The author defending a point of
view in a letter to the editor, for instance, knows or at least assumes that his point
of view is not automatically shared by all readers. So he assumes that there is or
may be a conflict of opinion about this point of view. To resolve this conflict, the
author needs to have a critical discussion with his opponents. But as long as the
critics do not actually participate in writing up the letter in a dialogical format, this
critical discussion has to remain implicit, whereas the explicit format will be that
of monologue. Underlying this monologue, however, there is an implicit critical
discussion to which the argumentation analyst refers.

If a proof is to be an argument with a certain surplus value, then obviously one
should turn to the underlying discussion to find a good candidate for this surplus
value. If the underlying discussion fulfills certain supplementary conditions (over
and above compliance with rules that hold for any critical discussion), then the
(monological) argument is to be called a (monological) proof, but otherwise it is
not. What supplementary conditions would be appropriate?

Along these lines, one may consider the following definition:

Definition 1. A monological argument is a monological proof for X if (i) the
underlying discussion complies with the rules of a dialectical system that has been
accepted by X whereas (ii) X is commited in the strongest sense to the initial
concessions in that discussion, and (iii) all possible chains of criticism (i.e., chains
of arguments that the Opponent may select) are followed through, and finally (iv)
the discussion is won by the Proponent.12

11Cf. Van Eemeren et al. (1983, 9).
12Cf. Barth and Krabbe (1982, Ch. III, esp. III.6, III.8, and III.13) for the idea of a discussion as
consisting of several chains of arguments and for the concepts of winning or losing a chain of
arguments or the discussion as a whole. The concepts of a chain of arguments and of a chain of
criticism (Dutch: kritieklijn) were introduced by E. M. Barth.
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In this definition, ‘X’ may stand either for a person or for a company or
community. The first condition merely states that an argument, in order to count
as a proof, should be dialectically correct, i.e., not fallacious. It is a necessary, but
not a sufficient condition, which implies that X is committed to the premises of
the argument (the initial concessions of the underlying discussion), at least to the
extent that there is no reason for X to object to them. The second condition adds that
this commitment is to be stronger than a commitment to mere concessions would
require: the premises of the argument are to count as assertions of X’s, implying
that X carries a burden of proof for them, if they happen to be challenged.13 The
third condition stipulates that the argument, in order to count as a proof, must deal
thoroughly with all relevant objections, possible cases, potential counterexamples,
etc. The last condition, together with the third, implies that the underlying discussion
shows how a Proponent of the conclussion of the argument can always win vis-
à-vis an Opponent that grants the premises, no matter how this Opponent selects
her moves in the discussion. In other words: there is a winning strategy for the
Proponent, and this strategy is reconstructible from the explicit (monological)
argument.14

Notice that this definition is thoroughly nonpsychological and nonepistemical.
There is no implication that the rules of the dialectical system in question are
rationally or epistemically justified, or that X knows the premises to be true, or that
X recognizes a proof for X as such. It is possible for another person, Y , to know that
something actually is a proof for X , even though X in all sincerity, denies the fact.

3.6 Proof and Explicit Dialogue

The term ‘argument’ also refers to the argumentation presented by the Proponent
(Protagonist) in the argumentation stage of an explicit dialogue.15 In this case, as
well, we may hunt around for some supplementary conditions that would justify
us in saying that a certain critical discussion provides a proof for the Opponent
(Antagonist). This would give us a concept of proof as a kind of dialogue: a concept
of dialectical proof. The simplest choice of conditions would be to copy them from
Definition 1, with the Opponent as X :

Definition 2. The Proponent in a critical discussion provides a dialectical proof
of his point of view for the Opponent, if (i) the critical discussion complies with
the rules of a dialectical system that has been accepted by the Opponent whereas
(ii) the Opponent is committed in the strongest sense to the initial concessions in

13 For an exposition of different types of commitment in dialogue, see Walton and Krabbe (1995,
esp. Sect. 5.4).
14Winning strategies are studied in Barth and Krabbe (1982, Ch. V).
15For the stages of a discussion, see Van Eemeren et al. (1983, Hstk. 2), Van Eemeren and
Grootendorst (1984, 85ff), and Van Eemeren and Grootendorst (1992, 35).
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that discussion, and (iii) all possible chains of criticism (i.e., chains of arguments
that the Opponent may select) are followed through, and finally (iv) the discussion
is won by the Proponent.

The two kinds of proof, monological and dialectical, are straightforwardly linked:
a monological argument is a monological proof for X , if and only if the discussion
underlying the argument provides a dialectical proof for X , with X in the role of
Opponent.

In practice, it will often be very hard to establish that a certain monological
argument constitutes proof for a given person X . For one thing, one is to provide
a reconstruction of the underlying dialogue. Then, one is to be sure about X’s
commitments, both with respect to the initial concessions and to the rules of
dialogue on which the underlying discussion is based. If too much uncertainty
remains on either of these accounts, it will remain unsettled whether the purported
proof is a proof for X or not.

In the argumentation stage of some kinds of critical discussion, the Proponent
is allowed to present, not only such argumentation as is directly relevant to the
Opponent’s preceding challenge, but also longer stretches of reasoning that in fact
constitute monological arguments, even though they are put forward in a dialogical
context. Such monological arguments, presented within an explicit discussion, can
themselves be analysed by reference to (another) implicit discussion. Suppose that
this implicit discussion happens to provide a dialectical proof for its Opponent.
Then the monological argument will be a monological proof for the Opponent of
the explicit discussion. This may sound complicated, but it really only goes to show
that monological proofs may function also within critical discussions. This is yet
another example of the ways in which proof ties up with dialogue.

3.7 The Genesis of Proof

If there were no proofs, one would have to invent them. Suppose a certain company
of discussants has agreed upon a specific dialectical system S0 for the regulation
of critical discussions among them. Many fruitful and provoking discussions have
taken place among the members of this company, all of them regulated by the
rules of S0. Suppose that, after acquiring a certain body of experience with S0, it
has become clear and obvious for the members of this company that whosoever
concedes both if A then B and if B then C can be forced, in a discussion conforming
to S0, to refrain from opposition to the proposition if A then C. The company has
discovered an important law of dialogical logic that was already implicit in the rules
of their agreed dialectical system S0: whenever the Opponent concedes if A then B
and if B then C, there is a winning strategy for the Proponent of if A then C! This
company would then be well-advised to skip this type of dialogical fragment and in
its stead to adopt a rule of inference:

if A then B, if B then C ⇒ if A then C.
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(The rule is applied by substituting sentences for the variables A, B, and C. To the
left of the arrow one then finds the premises of the application, and to the right of the
arrow its conclusion.) Adoption of this new rule amounts to a change of dialectical
system. S0 is traded for S1. Within S1 it is no longer possible to criticize the steps
that conform to the rule of inference just stated. (That is to say, one is not allowed
to criticize the relative conclusiveness of the premises for the conclusion in this
step, whereas it is of course still possible to criticize the tenability of the premises
themselves.) The company has discovered and adopted the rule of the Hypothetical
Syllogism!

In the same way this company may go on, discovering ever more laws of
dialogical logic relating to the existence of winning strategies in certain situations,
and extending its dialogical system, by adding ever more rules of inference so as
to obtain the systems S2,S3, . . . Finally, the company winds up with a dialectical
system in which a whole system of rules of inference has been incorporated.

Given such a system one may introduce a somewhat special notion of proof:

Definition 3. Let D be a discussion, according to the rules of S between two parties
X and Y . Let A be an argument, advanced by Y in the course of this discussion D, in
order to convince X of a conclusion C. At moment t, argument A counts as a proof
of C in D if and only if the following two conditions hold:

1. Each ultimate premise of A was asserted by X , before t, and not withdrawn by X
before t.16

2. Each separate argumentative step of A is explicitly sanctioned by one of the
inference rules incorporated in S.

Let us suppose that S allows of more ways of arguing than those sanctioned by
the incorporated body of rules of inference. And let us further assume that, although
every assertion in dialogue counts as a concession, not every commitment to a
concession carries a burden of proof which would make it equal to an assertion.17

Then Definition 3 shows how a meaningful distinction can be introduced between,
on the one hand, a merely successful and nonfallacious argument in dialogue, and,
on the other hand, a proof in dialogue. Proof is seen to have a surplus value, both
with respect to its ultimate premises and with respect to the separate steps of which
it consists. Further, it is seen how proof ties up with rules of inference. But the
roots of these rules are again dialectical. This concept of proof is, moreover, fully
externalized and independent of the concepts of ‘knowledge’ and ‘truth’.18

Acknowledgements Previously published in M. Astroh, D. Gerhardus, and G. Heinzmann,
editors, Dialogisches Handeln: Eine Festschrift für Kuno Lorenz, Spektrum Akademischer Verlag,
Heidelberg, 1997, 63–75. An earlier version was published in Dutch: Krabbe (1991).

16As was pointed out in Section 3.5, this implies that X has a burden of proof for these premises
(if challenged, and if X has not discharged this burden before).
17See Note 13.
18On ‘externalization’, see Barth and Krabbe (1982, 32–33, 60).
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Chapter 4
Argumentation in Mathematics

Jesús Alcolea Banegas

In The Uses of Argument, Stephen Toulmin (1958) introduced a model of
argumentation, in which what may be called the ‘layout of arguments’ is
represented. This model has become a classic in argumentation theory and has
been used in the analysis, assessment and construction of arguments. Toulmin’s
main thesis is that, in principle, one can make a claim of rationality for any type of
argument, and that the criterion of validity depends on the nature of the problem in
question. He rejects the idea of universal norms for assessment of argumentation
and that formal logic provides these norms. The scope and function of logic is too
limited for this purpose. There is an essential difference between the norms which
are relevant to the assessment of everyday argumentation or the argumentation of
diverse disciplines, on the one hand, and the criterion of formal validity used by
formal logic, on the other. Toulmin is convinced that formal criteria are irrelevant
for the assessment of the arguments that arise in real life. Logical proof is one thing
and the establishment of conclusions in everyday life is another different matter.

In this chapter, I will begin by reviewing Toulmin’s model of argumentation,
focusing on what is described as the elements of argument; secondly, I will attempt
to apply this model to argumentation in mathematics, and finally, I will pursue the
consequences that connect it to recent ideas in the philosophy of mathematics.

4.1 The Concept of Argumentation

Arguing is a specific act of social interaction, which may take place in any kind of
discussion. If one or more participants in a discussion enunciate something, what
they are in fact doing is declaring the validity of that statement. By their proposal,
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they show their disposition to act in a rational way and to establish their statement
in more detail, if needed. We will describe as argumentation the techniques or
methods used to establish a statement. In the process, a questioned statement leads
to an agreed statement, accepted by all the participants in the discussion. It is not
necessary for the development of an argument to proceed in a harmonious manner.
Discussions may arise at any stage of the argument, leading to corrections and
changes. In this way, the set of those statements of the argument that are agreed
by consensus will take shape step by step, as the controversy is overcome. The
result of this process can be reconstructed, and this we will call argument. By
this reconstruction it is possible to draw attention to the functional aspects of the
argumentation, showing that the statements in which the argumentation consists
have different roles in the internal structure of an argument and in its establishment.

In general, argumentation, is to be understood as a metacommunicative activity,
which results when the presumed validity of an everyday action is in doubt. For
our purposes, it seems more correct to use the concept of argumentation when
describing specific aspects of everyday activities. In the case of mathematics, the
process of solving a problem, and following a comprehensible method of reasoning
to achieve that solution, already has argumentative traits. Sometimes, the solution
of the problem is in itself an argument and there is no need of an additional
and separate metacommunicational procedure. Such is the case, for example, in
a calculation. In this case, the process followed to obtain a conclusion and that
followed to obtain an argument to support it will usually coincide. However, when
discussing the concept of argumentation in mathematics, there is a tendency to
identify it with the concept of proof. There is an erroneous belief that the analysis
of argument is always related to proof. It should be remarked that there is no
need for the concept of argument or that of argumentation to be exclusively linked
with formal logic, as it is presented in some mathematical proofs. There are other
human activities, even in mathematics, which have an argumentative character, but
not in a strictly logical sense. Hence, mathematical certainty does not come from
the formal verification of formal arguments, but, as William Thurston says, from
“mathematicians thinking carefully and critically about mathematical ideas” and
“prov[ing] things in a social context and address[ing] them to a particular audience”
(Thurston, 1994, 170, 175). As Toulmin points out, if logicoformal conclusions
were the only legitimate procedure for argumentation, then the range of rational
communication would be extremely restricted and argumentation, as a possible
form of communication, would be irrelevant. Every logically valid deduction, for
example, contain nothing in its conclusion, which is not already a potential part of
the premises. It explains aspects of the meaning of the premises through deduction.
For Toulmin, this is an analytic argument. It is contrasted with the so-called
substantial argument, which broadens the meaning of the premises by coherently
linking them with a specific case by means of update, modifications or application.
In this way, substantial argumentation is informative in the sense that the meaning
of the premises increases or changes with the application of new cases, while
analytic argumentation is tautological, this is to say, a latent aspect of the premises
is elaborated in a visible form. Cases of substantial argumentation do not usually
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have the logical rigidity of formal deductions, which must not be considered a sign
of weakness, but rather a sign that fields of problems exist which are inaccessible to
formal logic. For Toulmin, “the only arguments we can fairly judge by ‘deductive’
standards are those held out as and intended to be analytic, necessary and formally
valid” (Toulmin, 1958, 154). As he emphasizes, substantial argumentation must not
be subordinated or related to analytic argumentation, as though the latter were the
ideal type of argumentation. Substantial argumentation has its own role. It gives
graduated support to a statement or a decision. This support is not directed towards
a logically necessary, formal conclusion, nor in arbitrariness, but originates in the
need to achieve a credible presentation of contexts, relationships, explanations,
justification, etc. From this perspective, there is a way to understand mathematical
proof as substantial argumentation. The idea rests on the mostly philosophical work
of the mathematician Reuben Hersh, for whom a proof is an explanation, where
the aim is mainly to pass on comprehension, and for whom the practical meaning
of proving is convincing. A mathematician achieves a proof by an argument he
considers to be convincing, involving other factors that are not usually included in
the published proof. For this reason, in practice, any proof is a convincing piece
of argumentation, aimed at the competent expert. Kurt Gödel expressed it in this
manner: in its material meaning, “‘Proof’, does not mean a sequence of expressions
satisfying certain formal conditions, but a sequence of thoughts (or rather forms of
thought) creating conviction in a sound mind” (Gödel, 1995, 197; see Hersh, 1997).

Consequently, the distinction established above is useful for clarifying the
conceptual framework we have selected to analyse mathematical argumentation and
we believe that substantial argumentation is the more suitable for reconstruction,
without implying that this argumentation is poor or weak. At this point, at least two
reasons may be given in support of this decision: (1) Generally, the mathematician
does not work on a formal system. According to recent philosophy of mathematics,
mathematical knowledge has an empirical and theoretical status, and mathematical
statements include the meaning of real experiments on mathematical objects, and
(2) Mathematicians do not always reach conclusions of the analytic type. Heuristic,
plausible and probable argumentation also count as mathematical activities, as is
emphasized in the work of, for example, George Pólya.

4.2 Constituent Elements of Argumentation

We have said that argumentation is a technique used to establish a statement: a
technique of the discourse, not a trait of the reasoning subject. It can be characterized
as an attempt to transform something open to question into something mutually ac-
cepted, in principle, by the participants in a debate. Therefore we must attend to the
kinds of statements and to their functionality in order to capture the argumentation.
Hence Toulmin proposes what he calls the ‘layout of an argument’, this is to say,
a diagram representing the ideal model of substantial argumentation. This layout
may be said to (1) describe a base common to all types of argumentation; (2) serve
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to reconstruct the informal logic of any argumentation and all forms of explanation
convenient for resolution of a debate, and (3) highlight the different roles statements
have in any interaction in which they may provoke a substantial argument. Globally,
argumentation works in such a way that the questionable statement is finally
sustained by being introduced as a conclusion from unquestionable facts. This
implies an inferential step from the facts to the conclusion, which the participants
must accept as indubitable.

The basic idea behind the functionality of argumentation consists precisely in
the support given to a questionable statement when it is deduced from another
statement. The argumentative strength, coming from the latter, lies in the level
of acceptance of this inference. If we call the conclusion, the statement or thesis
we are trying to establish C and the statements supporting it D (for data), then
we can represent this part of the argument as ‘D, therefore C’. The data are the
facts or reasons we use to ground the statement C. All argumentation requires
this starting point upon which the conclusion can be based. Toulmin says that
“[d]ata of some kind must be produced, if there is to be an argument there at
all: a bare conclusion, without any data produced in its support, is no argument”
(Toulmin, 1958, 106). Depending on the sort of thesis in discussion, that data can
include experimental observations, statistical data, personal statements, previously
established theses, or some other factual data. The soundness and reliability of any
thesis is dependent on the data, but no thesis can be stronger than the data. It is
obvious that the data cannot be questioned, and if there were no agreement on their
validity, further argumentation to provide acceptable evidence would be necessary,
involving recursive application of the general layout of argumentation. It might even
be that one accepted the data, without realising that it supported the conclusion. The
acceptance of the data implies a commitment, by a specific step, to the conclusion.
To show that this step is adequate and reliable, it is necessary to produce statements
of a functionally different nature to that of the data, which may act as bridges linking
the particular inferential steps, since they function as inferential licenses. Toulmin
calls them ‘warrants’ (W ) and states that, in a sense, they have an explanatory
character, their “task being simply to register explicitly the legitimacy of the step
involved and to refer it back to the larger class of steps whose legitimacy is being
presupposed” (Toulmin, 1958, 100). For this reason, conclusions may have different
degrees of strength. However, it should be stressed that for Toulmin “provided that
the correct warrant is employed, any argument can be expressed in the form ‘Data;
warrant; so, conclusion’ and so become formally valid” (Toulmin, 1958, 119). It is
clear that the steps from the data to the conclusion are warranted in a different way in
each field of reasoning. The data depend on the choice of warrant. For this reason, it
must be remembered which data is supposed to be reinforcing the grounds on which
the argument has been constructed. By contrast, ‘warrants are general, certifying
the soundness of all arguments of the appropriate type, and have accordingly to be
established in quite a different way from the facts we produce as data’ (Toulmin,
1958, 100). Consequently, it is not at all unusual for the warrants to take the form of
natural laws, formulae, norms, principles, etc.
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The soundness of the step from data to conclusion can be ratified by warrants.
However, someone could still question the acceptance of a warrant as though it
had authority in itself. For Toulmin, behind our warrants there are normally “other
assurances, without which the warrants themselves would possess neither authority
nor currency—these other things we may refer to as the backing (B) of the warrants”
(Toulmin, 1958, 103). The idea of backing invokes convictions and strategies that
can be expressed as categorical statements, linking the data, the warrants and the
conclusion with fundamental suppositions usually accepted by the community.
Furthermore, warrants may require different sorts of backings, so it is necessary
to establish the general informational context in which the backing is situated.
We may then observe that the different backings that are offered for each warrant
depend upon their relevance to the point of view in question. It may also be that the
information given by the conclusion has already appeared in the backing: this is in
Toulmin’s opinion an analytic argument: “an argument from D to C will be called
analytic if and only if the backing for the warrant authorizing it includes, explicitly
or implicitly, the information conveyed in the conclusion itself” (Toulmin, 1958,
125). It is obvious that not all the arguments support their theses or conclusions
with the same degree of certainty. Some lead to probable conclusions, other lead
to apparent conclusions, etc. Consequently, we require an accurate examination of
the different types of modal qualifiers (M), characteristic of the different types of
practical argument, and it must be kept in mind that, because of the difficulty of
preventing rebuttals, all arguments that are not necessary are open to refutation (R).

We have already said that this model of argumentation is designed to focus
on the aspects of argumentation and reasoning that can be found in all types of
rational debate and to be illustrated by any field of practical reasoning. The system
of analysis involves the elements we have just indicated, and may be summarized
as follows: (1) The thesis or conclusion C proposed and criticized in a specific
context; (2) the data or reasons D supporting the thesis; (3) the warrant W connecting
data and thesis, legitimating the inference applied from D to C; (4) the backing B,
available to establish sound and acceptable warrants; and (5) the modal qualifier
M indicating the strength or the conditions of refutation R of the proposed thesis.
The general scheme of argumentation is shown in Fig. 4.1, which should be read
as follows: “Given reasons, D, we may use the warrant, W , which has backing, B,
to justify the thesis C or the presumption, M that C, in the absence of any specific
refutation or impediment, R”. The diagram can change in respect to the specific
exchange and allows for the reconstruction of emergent rationality, this is to say, the
informal logic of the debate in question.

What Toulmin describes as the ‘field dependency’ of arguments is a very
important issue in his work. A field may be identified with a social institution,
a law court, a scientific society, etc, and each one has its own specific canons.
The distinctions Toulmin make between fields “are very broad ones, and a closer
examination could certainly bring to light further more detailed distinctions, which
would improve our understanding of the ways in which arguments in different fields
are related” (Toulmin, 1958, 42). Toulmin and his collaborators undertaken this
closer examination in another work, (Toulmin et al., 1979), in which he deals with
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BFig. 4.1 Toulmin’s general
scheme of argumentation

special fields of argumentation, science among them, without dealing directly with
the field of mathematics. Since, as I pointed out at the beginning, I want to apply
Toulmin’s model of argumentation to this field, I will try to pose my problem in the
right perspective, and it is with this aim that I will make use of some of his ideas.

4.3 The Nature of Mathematical Activity

Quite independently of content, there are three basic general traits that the mathe-
matics of any age exhibits, which to a considerable degree determine the scope of
argumentation and rational criticism:

(1) It has to deal with specific issues about mathematical objects and phenomena,
in the hope that it will explain their nature. What types of object are there?,
what are their characteristic properties, functions and relationships?, etc. These
are some of the sort of questions mathematicians try to answer when devising
their theories.

(2) It must provide a set of ideas leading to the explanation of the source of
mathematical facts, together with acceptable procedures for criticizing and
improving these explanations. Mathematicians develop systematic procedures
to represent the mathematical world and its structure, including theories,
conjectures, axioms, inferential methods, techniques of calculation, computer
software, etc. It can be said that the system of representation accepted at any
specific moment defines the content of the mathematical tradition, this is to say,
the best attempt up until that moment to generate realist conceptions about the
mathematical world.

(3) There must be groups of people in the society undertaking the responsibility
for preserving and transmitting this tradition of criticism. When a mathematical
community opens its ideas to critical debate, the relationship between argu-
mentation and the aims of mathematics becomes clear. Criticism is an effective
way of improving established beliefs about mathematical objects, and, at the
same time, permits the development of new ideas and implications, which will
in turn be opened to assessment, so that the valuable ones may be added to
the established mathematical tradition. Toulmin and his collaborators point
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out that “[t]hose ideas that survive this critical evaluation will be ‘good’ as
scientific ideas. If sufficient grounds and solid enough arguments are produced
to demonstrate their merits clearly, that will mean that their scientific basis is
also ‘sound.’ Where critical evaluation shows both requirements fulfilled, we
can be satisfied that practical argumentation has demonstrated the ‘rational’
basis of those novel ideas” (Toulmin et al., 1979, 232).

The general purpose of mathematics guarantees that the problems, reasoning and
argumentation tend to consensus or rational agreement between the parties involved.
For example, when a mathematician proposes a new idea, a conjecture or an axiom,
there will always be differing opinions among the mathematicians involved with the
topic. They will argue, in groups or individually, about its acceptance or rebuttal, or
whether it should somehow be modified. Although conflicts are usually temporary
and mathematicians have objectives and interests in common, the acceptance of
Cantor’s ideas or the explicit acceptance of the axiom of choice are examples of the
form in which some questions have been received in the field of mathematics.

It is clear that there are many types of mathematical explanations and arguments.
So much so that indicating the general character of the elements involved in
argumentation would appear to be a complicated task. If one assumes, besides, that
the general aim of mathematical activity is to improve the correspondence between
mathematical ideas and theories and experience of the mathematical world, then
suitable questions for research and discussion will be apparent, since it will be
possible to identify gaps in the mathematical concepts, to be filled by the appropriate
activity. By way of example, we may mention two big questions mathematicians
have set out in the last century: the first relates to the possibility of expanding a
mathematical theory to explain hitherto unexplained mathematical facts and the
second concerns the possibility of restructuring a set of mathematical theories in
order to obtain a tidier and better organized overall explanation of the mathematical
world. The expansion of set theory by the addition of new axioms, in answer to the
first question, and the introduction and systematisation of set theory or the creation
of category theory, in answer to the second, are examples of the mathematical
solutions offered by mathematicians which have provided abundant material for a
specific type of mathematical theses, in the sense we may discuss in the framework
of Toulmin’s model.

However, we must not overlook an important distinction, especially relevant
in the case of mathematics. We refer to the distinction between those arguments,
including proofs, that mathematicians make within a specific theory, and those
arguments used by mathematicians to challenge current ideas and attempt to give
alternatives or improvements in their place. There are plenty of examples of this
sort at the heart of mathematics. There is, for example, the geometrical work from
Gauss to Riemann that led to non-Euclidean geometry, or the no less provocative
arguments of Brouwer which led to intuitionist mathematics. Using Toulmin’s
terminology, we will describe the first sort of argument as regular and the second
sort as critical, and we will take both to be substantial arguments in the sense
previously discussed, although most mathematicians, motivated by formal logic,
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would consider regular arguments to be generally analytic. Regular mathematical
arguments take it for granted that the ideas within the framework of argumentation
are coherent relevant, and applicable to the facts under consideration. For this
reason, these elements conform to currently accepted theories and rules, for which
they do not represent any type of challenge. Critical mathematical arguments are
created precisely by challenging those current ideas, which thereby lose their
reliability, relevance or applicability and are opened to critical discussion, rebuttal
or readjustment. The arguments that mathematicians have to give in support of as
yet unproven statements (axioms, postulates, problem hypotheses and conjectures)
are also critical, since either they are grounded in intuition, or the mathematician
must give reasons for or against them. This argument need not necessarily be
limited to a proof that would count as a justification of the truth of the proved
statement. It is obvious that there will be important systematic differences between
both types of mathematical arguments. It can be pointed out, however, that regular
arguments can be interesting and new enough to provoke a critical discussion
when they are presented in public. The proof of the four colour theorem or the
recent proof of Fermat’s last theorem are examples of regular arguments provoking
critical arguments. The first case, for example, initiated a debate as to whether or
not it was legitimate, from the mathematical point of view, to use computers to
obtain proofs that could not have been obtained otherwise and, in general, whether
computers could be used as tools for mathematical exploration: a debate made even
more interesting since it propelled mathematicians and philosophers to discuss the
concept of mathematical proof. In this context, I would like only to point out that,
proof has an important role as part of the critical mathematical interpretation in any
case, because it is a way to produce ideas and relationships between ideas, and also
a way to communicate and critically contrast them.1 It is also necessary to point
out that critical argumentation itself provokes the creation of regular mathematical
arguments. For example, the criticism of the introduction of the axiom of choice into
set theory motivated the proofs of the independence and consistency of the axiom
in relation to the rest of the axioms of the theory. Although it appears as if the
critical arguments of mathematics were ‘less’ mathematical and more discursive
than the regular arguments, whose acceptability they try to adjust, it is clear
that critical and regular argumentation are mutually complementary, and it is not
sustainable to suppose that mathematicians’ work is limited exclusively to elaborate
regular arguments. The exclusive emphasis on this activity of mathematicians has
created the belief that mathematics is an a priori science, which has been sustained
by foundational currents in the philosophy of mathematics. In considering the
capacity mathematicians have for critical argument, we are closer to understanding
the similarity between mathematics and science in general, and consequently, to
considering it as a quasi-empirical science. The history of mathematics favours this
quasi-empirical conception, for which it provides decisive evidence.

1I have developed these ideas in more detail in (Alcolea Banegas, 1997).
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4.4 Regular and Critical Mathematical Arguments

Next we will show the adequacy of Toulmin’s model of argumentation to
mathematics. In regular arguments, the aim is to establish a conclusion by appealing
to generally accepted mathematical ideas. These arguments give support to more
or less simple conclusions, backing them with other reasons or mathematical facts.
Let us consider the four colour conjecture (see Appel and Haken, 1977) as proved
with the help of a computer, stating:

(C) Four colours suffice to colour any planar map.

As the necessary reasons or data we can provide theoretical results or factual reports
giving evidence in support of the thesis. So:

(D1) Any planar map can be coloured with five colours.
(D2) There are some maps for which three colours are insufficient.

These mathematical reasons or data are theorems of graph theory, which have
been justified from the axioms, definitions and other theorems of this theory.
Consequently, they are the conclusions of other mathematical arguments. We also
have available a factual report:

(D3) A computer has analysed every type of planar map and verified that each of them is
4-colourable.

How will a mathematician justify the step from this data or other reasons (D) to the
original thesis or conclusion (C)? He needs a warrant for this step. How can one
be sure, for example, that the computer has done the expected work? The warrant
authorising us to give a rational support to our thesis would be:

(W ) The computer has been properly programmed and its hardware has no defects.

The argumentation proceeds with some confidence because the accumulated previ-
ous experience supports the safety of the given warrant. This is to say, the warrant
is reliable and can be used because it rests on the proper backing:

(B) Technology and computer programming are sufficiently reliable.

It can be remarked at that point that the task of showing in what way particular
warrants are properly backed by theories, observations or scientific experiments
is a scientific rather than a logical task. In our case, the representation of our
argument does not completely warrant the relevance of B for W , but highlights
the specific requirements that our theories must incorporate to make certain that
their warrants are well-based. One of these requirements, for example, is the
verification of the computer software. Even then, the given argument supporting
the four colour conjecture is not the only one, in the sense that, as indeed was the
case, other computers or software can be used to verify the conjecture, obviously
giving other arguments. This reinforces the presumptive character of the conclusion
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of our argument. Furthermore, since no strictly mathematical warrant is available,
the door remains open for a specific counterexample, that is to say, a particular map
that cannot be coloured with four colours might still exist. The importance of this
regular argument lies less in the conclusion it establishes than in the fact that it
highlights, as we have already mentioned, the issue of the computer-assisted proof
of mathematical theorems. Mathematicians find themselves in the uncomfortable
situation of having to accept both the fallibility and the indispensability of the
computer. Meanwhile, some of them are still searching for satisfactory reasons that
would validate the conjecture.

Mathematicians should not only use arguments in this regular manner, but
must also criticize and improve them. For this reason, there is a need for critical
arguments. They represent the way mathematicians argue about the proper form
of their own regular arguments. That is to say, when we move to the level of
criticism the rational procedures of explanation, justification, etc. used in regular
mathematical arguments fall under scrutiny. Consequently, the subject matter of the
critical arguments is constituted not only by objects and facts of the mathematical
world, but also by mathematical theories about these objects and facts. The
immediate questions in judging these arguments have nothing to do with either
the mathematical universe or with the suitability and aptitude of mathematicians’
present ideas about this universe.

As an example of critical mathematical argument, we will try to reconstruct, this
time in more detail, what we may describe as the argument for the indispensability
of the axiom of choice. In simple terms, Zermelo’s work on the axiomatisation
of Cantor’s set theory showed that the latter could be placed in a framework free
from the difficulties posed by the paradoxes. To give some sense to the fundamental
mathematical concepts, the original idea of ‘set’ (which was too wide) had to be
replaced by the Zermelian idea of ‘set’ in axiomatic terms, with all that this implies.
Having reviewed the issue from the point of view adopted in this work, the most
important problem Zermelo confronted was the explicit introduction within his
theoretical framework of the axiom of choice. Since the concept of well-ordered
set was essential to Cantor’s theory of sets of points and he thought that any well-
defined set should be considered to be well-ordered, he soon realized the need to
demonstrate this fact. In 1904, Zermelo demonstrated what would come to be known
as the well-ordering theorem. His argument was based on a new supposition, that
is to say, the axiom of choice. It is not an easy axiom for non-mathematicians to
understand, but Zermelo thought that it could not be reduced to a simpler principle
and that it was self-evident. Furthermore, he pointed out in his own defence, that it
was necessary as an axiom of mathematics, in order to explain and establish many
elementary and fundamental facts, and that it had already been used in an implicit
way to this purpose. However, the reception of the axiom by the mathematical
community was not wholly positive. It is not our purpose here to enter “the great
debate resulting from Zermelo’s note (1904)”, in the words of one of the critics
(René Baire) at the time of its publication. We will say only that, in 1927, Nicolai
Luzin was still expressing the belief that “all the arguments which can be invented
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to support this axiom are psychological in nature...”, maintaining a psychological
perspective adopted, since the axiom’s introduction, by such mathematicians as the
aforementioned Baire, Emile Borel and Henri Lebesgue.2

The problem is one of a class of general scientific questions, that is to say, a
set of mathematical phenomena or problems which cannot be explained, or whose
explanation is very difficult without the axiom, and which could be fitted perfectly
into the greater fabric of mathematics, as a result of the conceptual changes proposed
by Zermelo in his axiomatisation. For this reason, Zermelo’s thesis will take the
following form

(C) The axiom of choice is indispensable (Zermelo, 1908b, 187–188).

What kind of reasons are needed to support this thesis? If we propose to mathe-
maticians that they change their regular form of argument, that is to say, use the
axiom of choice explicitly, they will ask the reason for them to do so, that is to say,
what advantages will the adoption of the proposed changes bring, etc. The kind of
reasons more directly relevant to this sort of critical mathematical thesis include
proofs that Zermelo’s axiomatic theory can be used to deal with phenomena and
problems which cannot be explained without the presence of the thesis. The best
evidence Zermelo could offer for the virtues of his new concepts and of his new
axiomatic presentation of set theory was, for example, to show how the use of these
concepts could, in a much simpler fashion, account for phenomena which Cantor’s
explanation had left unfinished or surrounded by mystery, as is the case with the
theory of transfinite cardinals, the theory of real functions or projective sets, or even
Dedekind’s theory of finite sets. Thus we may codify these reasons:

(D) There are many problems and phenomena that can be treated with the axiom of choice
(Zermelo, 1904, 141; Zermelo, 1908b, 187–188).

Hence these critical mathematical arguments have a pragmatic character. Math-
ematics has a task and a mission to accomplish, and the proposed changes in
the mathematical procedures have to be justified by demonstrating the way they
contribute to this mission. In accordance with this, critical mathematical arguments
have warrants. In our case the warrant could be stated as follows:

(W ) Despite the presence of unproved principles, an axiomatic set theory that makes sense
of mathematical phenomena, deserves to be accepted in view of the facts (Zermelo, 1908b,
187).

In each of our possible examples, the best reasons for modifying our ideas
about the specific issue are based on demonstrating the real results of the proposed
changes, that is to say, demonstrating what else can be explained, or providing a
more elegant and comprehensible explanation in terms of the modified ideas. In this
sense, the introduction of the axiom makes for a better and more effective theory.

2Baire’s words are quoted, and the Luzin citation is discussed, in (Moore, 1982, 313, 288,
respectively).
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Although we will now proceed to search for a backing for the introduced warrant,
it is not very clear that its reliability or coherence needs a backing. In introducing
the reasons these critical arguments require it is enough to show that the suggested
theoretical changes would make a genuine contribution to mathematics. This does
not imply that such a warrant lacks the backing that could correctly be demanded of
it. In fact, in Zermelo’s work we can find more than one backing. For example, he
says that the theory of sets “is an indispensable component of mathematical science”
(Zermelo, 1908a, 200) and that “principles must be judged from the point of view
of science” (Zermelo, 1908b, 189). Perhaps the most suitable backing, the one most
in agreement with Zermelo’s work, and the one we will use here, could be:

(B) Our mathematical theories must explain the biggest possible area of the mathematical
universe.

If the basic mission of mathematics convinces us, in any way, then the warrants
backing Zermelo’s arguments will also be convincing. Beyond this there is nothing
more to say about the backing of this critical mathematical argument. On the other
hand, the strength of the modal qualifiers will weaken the conclusion by indicating
the possibility of exceptions or refutations. For our argument, the most suitable
modal qualifier is, without any doubt,

(M) In the light of the facts.

But, despite the successes of Zermelo’s axiomatic theory, with the later ad-
ditions and modifications made by other mathematicians, nobody has proved its
consistency, nor the existence of a contradiction. For this reason, in giving a
complete analysis of our example, we have to anticipate all possible and conceivable
refutations. So it is necessary, as Zermelo realized, to state:

(R) Unless a contradiction is found as a consequence of the axiom (Zermelo, 1908b, 189).

Consequently, with all the mathematical requisites in place, we have completed
the pattern of argument by which conviction may be leant to Zermelo’s thesis.
The relevant diagram given in Fig. 4.2 should be read as follows: Since there are
numerous problems and phenomena that can be dealt with by the axiom of choice,
and because axiomatic set theory can make sense of mathematical phenomena, since
our mathematical theories explain the largest area of the mathematical universe, in
the light of these facts, the axiom of choice is indispensable, unless a contradiction
is found as a consequence of the axiom.

4.5 Conclusions

Mathematical practice has been the starting and the end point for our application of
Toulmin’s argumentative model. We have attempted to show how it is possible to
set out and analyse the structure of arguments without using the traditional notion
of logical form. Mathematicians are, like all human beings, generally committed
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Fig. 4.2 The pattern of argument by which conviction may be leant to Zermelo’s thesis

to their ideas and opinions, but they share a common interest in establishing
coherent and sound mathematical results, not dependent on the peculiarities of the
mathematicians who suggested them. For this reason, the debate over these ideas and
opinions within the mathematical community is a way to highlight its rational and
scientific character. As long as the content of a mathematical argument is explicit
and exposed to criticism, it is not necessary for the argumentative procedures of
mathematical debate to be rigid and formal. We are not talking about the formal
validity of arguments, but of their relevance, sufficiency and acceptability, which
depend on the strength the warrant has from the data to the thesis that is to be
established, and on their ability to convince those participating in the debate. In
this way, new light is shed on real mathematical argumentation. It is possible
that the interpretation of proofs as argumentation will not serve to generate new
mathematical knowledge, but may instead permit progress in the comprehension of
specific aspects of mathematics and create an alternative route to the knowledge of
already established theses. Furthermore, the explanatory capacity of the proposed
model of argumentation allows those not familiar with mathematics to acquire
mathematical knowledge, where otherwise they would be left in the dark.

Finally, the application of Toulmin’s model to mathematics highlights once more
the parallelism between mathematics and natural science. In the light of the regular
argument that established the four colour conjecture, in which we we saw the
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experimental character of some of the data and of the warrant, or considering that
there is no strong difference between the way Zermelo justifies his axiom of choice
and the way other scientific principles are introduced, it is difficult to maintain
that mathematics is totally different from the rest of the sciences. Mathematical
arguments, especially critical ones, clearly support the quasi-empirical nature of
mathematics. Mathematicians have to search for the reasons supporting a thesis,
reasons that are only clear when examining those reasons’ potential for developing
a theory. In this way, it is possible to imagine scientists and mathematicians fighting
to achieve theories of great explicative and predictive power, which are at the
same time simple and fruitful, and this image can be applied to the scientists and
mathematicians of any period of history. While searching for simplicity, efficiency
and suitability of explanation and prediction, we can detect a rational development
of the ideas of explanation and prediction through critical argumentation. These
methodological ideas are always connected to more general scientific objectives
and to theories yet to be presented, and they arise from reflection upon the most
successful methods of mathematical research, in an effort to pinpoint the secret of
success, and to use it as a pattern for any mathematical activity. It is clear that in
both cases argumentation exercises a fundamental role.
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Chapter 5
Arguing Around Mathematical Proofs

Michel Dufour

In the history of Mathematics, you can notice that during some
epochs no damage is done to the truth of particular
propositions, but their systematic linking has changed because
of the rapprochements allowed by new discoveries.

(Lacroix, 1797, Preface)

Any theory of argumentation will certainly have to pronounce on the status of
mathematical proofs. Formally, a typical proof is a string of regular inferential steps
between statements. So, it can be seen as a string of arguments since each statement,
except the first one, is supported by the reasons offered by previous statements. But
is this enough to claim that argument practically matters to proof or even that proof
is a kind of argument? Some authors have argued that, in spite of this strong family
resemblance, mathematical proofs are not arguments: hence the temptation—and
its methodological consequences for a theory of argumentation—to keep the study
of mathematical proofs away from the study of arguments. But the exclusion of
mathematical proof from the field of argument theory has also been disputed by
philosophers who argued, mostly on practical grounds or by stressing that the border
of mathematics has changed over time and place, that the use of such a proof is not
incompatible with an argumentative practice (Corfield, 2002; Finocchiaro, 2003;
Dove, 2007; Aberdein, 2011). This paper aims at supporting this view, and claims
that a theory of argumentation should encompass at least the proof process and
would benefit from looking beyond the idealized situation of the presentation of the
proof to an audience of expert peers.

We shall begin with a discussion of the views of two authors—Perelman and
Johnson—who claim, on different grounds, that proofs are not arguments. The
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second part of the study asserts that, even when you focus only on proofs, the
practice of mathematics is full of arguments, different in styles and goals but
amenable to a classification based on their temporal relation to the publication of
the proof.

5.1 A Proof Is Not an Argument

Perelman is well known in the folklore of argumentation studies as one of the two
founding fathers of the mid-twentieth century renewal of academic reflection on
argumentation, Toulmin being the other. His very project of a “new rhetoric” (now
50 years old) is based on a radical distinction between proof and argument that
will be discussed first. Then we shall turn to Ralph Johnson, a leading figure in the
informal logic movement. Johnson’s position is also based on a radical distinction
between proof and argument. But his view is less systematic than Perelman’s, for
(mathematical) proof and everyday argument would belong to what Johnson calls
the “spectrum” of applications of the term “argument”.

5.1.1 Argument and Proof, the Two Poles of Perelman’s System

Perelman’s starting point was his dissatisfaction with the principle held by some
philosophers—especially in the context of logical positivism1—that (formal) logic
could provide a general theory of human reasoning and a suitable tool to analyse
human inferences. He did share the positivist idea that logic is convenient for
science, but denied that beyond the area of logic, mathematics and empirical
sciences, human thinking is fuzzy and even irrational since it does not lend itself to
logical analysis. As a jurist, Perelman could not discard value or moral judgments
as irrational since they are an essential part of legal argumentation.

A consequence of this criticism is that he and Lucie Olbrechts-Tyteca, in their
famous New Rhetoric: A Treatise on Argumentation (1958), defined and investigated
a whole domain spreading beyond the field of hard sciences but precluding logic,
mathematics and reasoning used in the empirical sciences. The way of reasoning
specific to that domain is even characterized in contradistinction to the style that
Perelman, like the positivists, held to be typical of science. The Treatise, like many
of Perelman’s other writings, states this point explicitly, its opening pages being
devoted to this principle which justifies the whole enterprise:

Formal logic constituted itself as the study of the means of demonstration used in
mathematics. But a consequence is that its scope is limited, for all that is ignored by the
mathematicians is foreign to formal logic. Logicians have to add a theory of argumentation
to their theory of demonstration (Perelman and Olbrechts-Tyteca, 1958, 13).

1The term “positivism” is used loosely. Deeper philosophical subtleties are not essential for the
point made here.
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It is worth noticing the shift made here from logic to mathematics. The authors
seem to think that mathematicians (rather than logicians?) frame the scope and
program of formal logic. This tendency to take both sciences as very close to each
other and, sometimes, to identify them was not unusual among some philosophers
of Perelman’s era.

But it is in Aristotle that the authors of the Treatise found two important
ideas for their program. First, they explicitly borrowed a distinction between
analytical, dialectical and rhetorical arguments that seemed to confirm their idea of
a sharp contrast between logic and argumentation. They also granted that different
domains of activity require different kinds of reasoning. As the master said in
his Nicomachean Ethics (Aristotle, 2009, I, 1094b 25), do not expect a probable
reasoning from a mathematician and a proof from a rhetorician.

This fundamental dichotomy between logico-mathematical reasoning and
unscientific arguments that the Treatise qualified as rhetorical, after hesitating over
dialectical, is supported by a whole set of other distinctions systematically used in
an exclusive way. Let us mention, for instance, demonstrative/non conclusive,
analytic/dialectical, true/persuasive, certain/probable, or rational/reasonable.
Although Perelman does not explicitly use such an expression, his view of logic and
scientific reasoning is “purely semantic”, in the sense that it lacks any pragmatic
dimension brought about by human interactions. Hence, in science, the only concern
would be the truth of propositions. On the contrary, argumentation “never happens
in a void. For it presupposes a contact between the minds of the orator and of
his audience: a speech must be heard, a book read, otherwise they would not act”
(Perelman, 1977, 28).

For sure, the Treatise and the Realm of Rhetoric are logic free. The most logical
arguments discussed therein are the ones dubbed “quasi-logical”. What makes
them so? They appeal either to “logical structures” (contradiction, total or partial
identity, transitivity) or to “mathematical relations” (whole/part, smaller/bigger,
frequency ratios). Hence, although they are driven by logic or mathematics they keep
being arguments since they are inconclusive, a distinctive feature of perelmanian
arguments (Perelman and Olbrechts-Tyteca, 1958, 261). They look formal but
are not and should not be taken as such. Their misplaced prestige comes from
the prestige of logic or mathematics. The Treatise adds that “explicitly based on
mathematical structures” they were cogent “in the old days, and especially among
the Ancients”, but now “just like formal logic allowed separating demonstration and
argumentation, the development of the sciences certainly helped to limit their use to
the field of calculation and measurement”.

Besides providing an example of the Perelmanian confusion between logic and
mathematics, this quotation confirms that the distinction between demonstration and
argumentation overlaps precisely with those between conclusive and inconclusive
and between scientific and practical reasoning. Although the introduction of the
Treatise announces that examples of arguments will be borrowed from the “human
sciences”, a careful reading shows that no argument or, to be more careful, almost
no example of argument is borrowed from any science.
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Does that mean that the authors held “scientific practical reasoning” or “the logic
of an unscientific discourse” to be inconsistent expressions? It is not that simple.
Although they see argumentation as essentially pragmatic (interactive) and science
as purely semantic since “demonstrative and impersonal” (Perelman, 1977, 28),
they make some general comments about scientific meetings between peers. It is
worth noting that these remarks are closely connected with their discussion of the
“universal audience”, a notion that blurs their numerous dichotomies for “ultimately,
the rhetoric efficient for a universal audience would be the one handling only the
logical proof” (1958, 42).

Perelman’s notion of a universal audience is a bit fuzzy. It reflects his method-
ological hesitation between an empirical approach and a normative one, more or
less inspired by Kant. The universal audience is neither the whole of humanity nor
“any rational being”: in the Treatise it is “at least, adults and normal men” (1958,
39) and in the Realm of Rhetoric “at least, its competent and reasonable members”
(1977, 32). So, let us ask two sets of questions. First, to the Treatise: Why adults?
Isn’t “normal” enough? Wouldn’t normal teenagers or even children make the cut?
Then, to the Realm: Doesn’t competence imply it is used reasonably in the field
concerned? In other words, if someone becomes unreasonable (in her usual field of
competence), isn’t it a good reason to think that her competence has gone astray or
has been cancelled for a moment or a joke?

The fact that the very notion of competence normally implies its reasonable use
certainly explains why competence alone appears in Perelman’s discussion of the
cogency of arguments. According to him it depends only on two factors, usually
held to be independent: the size of the audience and its “quality”, a notion he takes
to be closely related (if not identified) with competence.

Who is entitled to evaluate the cogency of an argument? For Perelman, as far as
argumentation is concerned, it is up to the audience to decide (1958, 32). This is
why an evaluation made by a (the?) universal audience would have the last word
since it is the widest competent audience. But this does not disentangle the problem
of the balance between number and competence, a problem especially important in
science where audiences are often small and competent.

According to Perelman, competence comes first for two kinds of audiences.
One is the elite audience. It is small because it can listen to arguments that do not

convince many people. Hence its tendency to disqualify opponents, claimed to be
stupid or not normal, when it sees itself “endowed with exceptional and infallible
means to get knowledge” (1958, 44). Sometimes, an elite audience is widely praised
by outsiders. Other times it is taken as ridiculous when compared with “the number
and the intellectual value” of the people who have been rejected.

The second is the specialised audience. A paradigmatic example is a peer
audience listening to a scientific talk. It is often assimilated to the universal audience
by the speaker “supposing that all men with the same training, the same competence
and the same information would grant the same conclusions”. But this is just the
opinion of the speaker and the authors of the Treatise do not say if this view
is shared by the members of the audience or what happens if the audience, or
part of it, disagrees with the orator. Here again, Perelman seems to believe that
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scientific proofs cannot be controversial since they are “logical”. Appealing here
to the universal audience is a comfortable way to escape the pragmatic problem
raised by the opposition of competent members of the audience. Finally, even when
Perelman stresses the variety of actual audiences and the fragility of the link between
the orator and her audience, his conception of scientific reasoning precludes the
possibility of an argument among scientists, especially in mathematics.

5.1.2 Johnson: The Autonomy of Experts

Ralph Johnson’s conception of argument is not based on an opposition between
logic and dialectic or rhetoric, nor associated with different fields of knowledge or
specific epistemic attitudes as in Perelman’s system. Rather, in Manifest Rationality
logic and dialectic are federated into a single entity, for Johnson contends that an
argument has two faces. One of them is what he calls the illative core, namely a
discursive structure where reasons support a thesis. But he claims that this logical
aspect cannot account for the pragmatic dimension of an argument. Therefore, it
has to be supplemented with a second face named the dialectical tier. It must be
added that this does not mean that an argument is always put forth in a context
of divergence of opinions. It suffices that “the conclusion is at least potentially
controversial” (Johnson, 2000, 206).

The notion of dialectical tier is closely connected with the practical behaviour
of the arguer. For it is the way she discharges what Johnson calls her “dialectical
obligations”, bound to the illative core of the argument, that makes her rationality
manifest. So, the utterance of an illative core is not enough: it must be accompanied
by a convenient dialectical behaviour to be evidence of rationality (2000, 164).
These dialectical obligations—which have been widely discussed—are not limited
to the critical attitude of examining and anticipating objections and considerations
running against the conclusion of the argument, but also take into account mis-
guided or irrelevant criticisms, because “to ignore such criticisms compromises the
appearance of rationality” (2000, 270).

The main point for us is that the dialectical tier is the extra part which makes
the main difference between a mathematical proof and an argument, for “no
mathematical proof has or needs to have a dialectical tier” (2000, 232).

Is that true? To illustrate the potential of controversy of an argument Johnson
says: “There are those who take a different view; there are adversary views; there are
typically well-known objections. [. . . ] An argument that does not take into account
these dialectical realities is in some important sense incomplete” (2000, 206). I shall
argue below that unless you presume that mathematical proofs are complete they
often have to deal with these kinds of dialectical realities. Some proofs are more
than “potentially controversial” and even if Johnson is right that, sometimes, they
do not need a dialectical tier, they often do urgently need an explicit one. To be fair,
this reading of Johnson should not be exaggerated for in other places he supports
a spectrum theory claiming that the word argument can be applied to scientific
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theories and proofs (2000, 168). But he insists that the core notion, the prototype
of the concept of argument, is outside of the scientific field. And he has a social
epistemic comment about the distance between proof and argument: “The proof that
there is no greatest prime number is conclusive, meaning that anyone who knows
anything about such matters sees that the conclusion must be true for the reasons
given” (2000, 232, my emphasis).

Let us take this remark about mathematics and competence as an opportunity
to make a comparison with Perelman’s position, which relies on a sharp contrast
between his semantic view of science—in short, science is impersonal, essentially
related to the world and only concerned with truth—and a conception of argumen-
tation that is essentially audience relative, hence pragmatic and mostly concerned
with agreement. We know this contrast is crucial for the intellectual and social
independence of Perelman’s vivid rhetorical realm spreading beyond the stark world
of logic and calculus. And we remember that it is only in the context of an exchange
between peers that Perelman and Olbrechts-Tyteca made a timid step toward the
notion of scientific argument. But they finally canceled the possibility of a scientific
argumentative idiosyncrasy by immediately calling upon the normative principle
of the expertise of scientists which led them to assert that such an audience “is
generally considered by the scientist, not as a particular audience, but as the true
universal audience” (Perelman and Olbrechts-Tyteca, 1958, 45).

Johnson does not share Perelman’s principles and introduces a concept of argu-
ment which is less exclusive. But when he is concerned by an audience consisting
of “anyone who knows anything about such matters”, his view becomes somewhat
similar to Perelman’s. First, a necessary condition to make an argument a candidate
to become a proof is to get rid of the idiomatic and epistemic differences giving
rise to the dialectical tier. Johnson’s “anyone knowing anything about such matters”
makes a quite acceptable equivalent to Perelman’s “competent audience”. Then,
Johnson’s quasi-pragmatist statement that a proof is conclusive when “everyone
recognizes the proof as a proof and as a result, there is no longer any debate about
whether the conclusion is true” (Johnson, 2000, 232) reminds us of Perelman’s
statement that “ultimately, the rhetoric efficient for a universal audience would
be the one handling only the logical proof”. A vexing question is: could there
be an ultimate agreement over a proof that would not amount to a logical proof?
Perelman answers no and Johnson answers that a proof is conclusive when any
expert “sees that the conclusion must be true for the reasons given” (2000, 232),
a claim reminiscent of Aristotle’s thesis that scientific syllogisms are not open to
discussion.

5.2 A Mathematical World Besides Proofs

So far, our discussion about the possibility of mathematical arguments has focused
on the status of mathematical proofs and their dialectical potential. We have just
seen that most of Perelman and Johnson’s objections are based on an antagonism
between their concepts of argument and features, for instance necessity, that they
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think typical of mathematical proof. Perelman’s position goes even further since
he uses this opposition as grounds for excluding the whole domain of the logico-
mathematical sciences from the realm of argumentation.

This extreme position, although reliant on considerations about proof, forgets
that proof is not all there is in mathematics. According to ethnomathematics,
for instance, other cultures, especially traditional cultures having no writing,
developed mathematical ideas and skills which are out of touch with the activity
of proof and the focus put on it by Western professional mathematicians. In this
case, mathematics is embedded in activities or general conceptions which are not
traditionaly identified as mathematical, such as religious or metaphysical ideas,
games, administrative tasks, economical activities, kinship relations (Ascher, 1991;
D’Ambrosio, 2001). Accordingly, although proof is important in mathematics, at
least for Western mathematics, it may not be a necessary condition for defining
an activity as mathematical. As we shall see, loose notions of abstraction and
systematicity seem to have been more important as organizing concepts for Ancient
Greek mathematics than necessity and deduction. So, the extension of the field
in which mathematical argumentation could be sought is far from well-defined,
especially when the distinction between pure and applied mathematics is blurred
(as it was for Western mathematics until the mid-nineteenth century). This matters
for the very notion of a mathematical argument.

However, my focus will stay on mathematical proof since it is the core of
Perelman’s and Johnson’s objections to the notion of mathematical argument. And,
as I subscribe to their main insight that argumentation is essentially pragmatic,
I suggest that it is not by looking at proof itself but at its use that its argumentative
dimension can be illuminated. This is why, rather than wondering where arguments
can be found in a mathematical proof, I shall address the question “When are
mathematicians arguing?”. The leading idea is that a proof looks like a totem-pole
and that arguments can be found if you look at people bustling around it, especially
at three typical moments: before, during or after its construction.

5.2.1 Before the Proof

Any beginner in mathematics knows that the trouble with proofs is that they have to
be found out. It suffices that the master says: “Show that p” to infer and believe first
that p is true (but beware of devilish teachers who do not hesitate to ask for the proof
of a false p), second that there is a path to the solution (although there may be none),
third that it can be discovered (although it may be impossible for a human mind).

Expert mathematicians usually have no omniscient master anymore except those
who, like Plato, Leibniz or Cantor, live in the shadow of a mathematician God.
When they try to show that p, they (usually) try to answer an open question
which, sometimes, depends on definitions and methods that they have to frame or
reframe. The search for a proof is an important part of the activity of professional
mathematicians, maybe the essential part.
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Yehuda Rav expressed a similar view by saying that there is a way to escape
foundational problems, including the priority given to axioms. It suffices to “realise
that proofs rather than the statement-form of theorems are the bearers of mathemat-
ical knowledge. Theorems are, in a sense, just tags, labels for proofs, summaries of
information, headlines of news, editorial devices” (Rav, 1999). But the same move
can be applied to proofs. Even if mathematical truths and proofs exist somewhere
in a Platonist heaven, to contemplate them may not be the highest good. You may
feel the compulsive demand to lay your hand on a methodological scale and, finally,
think that the supreme mathematician is the one who finds the scale to the proof.
Mathematical know-how is certainly praised by mathematicians as much as the
theoretical knowledge of theorems and proofs.

Time spent hunting for a proof is a good time for arguments. First, you have to
be convinced that trying to show that p is worthwhile. This granted, methodological
questions matter and arguments for or against such and such an approach come
to the forefront of the mathematician’s activity. In the last century, philosophy of
science labeled as “context of discovery” a notion reminiscent of what ancient
philosophy and rhetoric called “analysis”, understood as the art of invention (ars
inveniendi), that is of discovering convincing arguments or clever starting points
for a proof. This analytical stage offers many opportunities to argue. For instance,
in March 1847, two rival French mathematicians, Cauchy and Lamé, claimed to
have found a proof of Fermat’s famous Last Theorem (Singh, 1997). Each of
them published independently part of his proof after having left a complete proof
in a sealed envelope at the French Academy of Science. Two months later, after
having read their partial proofs, Kummer, a German mathematician, criticized their
approaches. He thought they were not necessarily false but likely on a wrong path.
Lamé granted Kummer’s objection but Cauchy argued that his approach was less
exposed to Kummer’s criticism which he thought was not clearly demonstrated.
Cauchy resisted for a few weeks but finally made up his mind and stopped
publishing on this topic.

Lakatos’s famous book (1976) about Euler’s conjecture provides many other
examples of arguments produced during the gestation of a proof, especially in
Chap. 5 concerning hidden lemmas working as hidden premises and the fallacious
appeal to what “everybody knows” or “any expert in the field knows”. The history
of enduring problems—and this is not unique to mathematics—is often full of
arguments about methods, definitions or provisional solutions. Some of them even
aim to renew the very problem at stake. Famous examples are also provided by the
cantorian “continuum hypothesis” (Hallett, 1984).

Descartes’s confessions about his intellectual formation and the way he came to
look for a mathesis universalis shed some more light on the arguing process prior
to the proof and the mythical status of the analysis, at least since Ramus’s time
(Timmermans, 1995). After stating his fourth “rule for the direction of the mind”
he explains that when he began to study mathematics he read “almost everything of
what is usually taught by the authors dealing with it” (Descartes, 1908). But he felt
unsatisfied because “they did not show clearly enough to the mind why it [the proof]
is done that way and how its invention was made”. Descartes was certainly not very
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interested in the mere checking of the validity of a proof. He even claimed that
after having “tasted” mathematics, most “men of talent and knowledge” are usually
not interested anymore by such a “childish and trivial” activity. Men of talent—
like him—look for something more exciting, the path to a discovery. This tends to
confirm Rav’s idea that theorems are not very important and are just tags, but also
that the search for proofs is more exciting for mathematicians than the proof itself.
Complete and stabilized proofs are themselves milestones, totem-poles, as I said,
which have become “trivial” except when they stimulate new challenges and new
arguments.

Descartes shared with many of his contemporaries a dream about the future of
mathematical arguments: he believed that the legendary analysis of the Ancients
opened the path to what he called a “true mathematics”. This famous mathesis
universalis, whose obviousness and simplicity should convince any rational mind,
would avoid the stumbling process of critical dialectic by opening a direct path to
sound demonstrations.

A new Perelman, while still borrowing from Aristotle’s classification of reason-
ings, could object that in spite of a partial homophony, analysis, understood as
the search for a proof, should not be confused with the analytical proof that may
emerge afterwards. He could claim that arguments preliminary to the proof pertain
to metamathematics, for they are not so much the proof itself as about it. Hence
they should be left in the surroundings of mathematical knowledge rather than
incorporated into it. But aside from the slightly paradoxical fact that Descartes’s
“true mathematics” would then also belong to these surroundings, a reply to our
new Perelman is that a sharp distinction between language and metalanguage or
theory and meta-theory presupposes a clear-cut, if not formalized, language, theory
or discipline. But this is precisely the stance that opponents to the perelmanian
dichotomies between argument and proof or scientific and non scientific reasoning
do not want to take.

5.2.2 During the Proof

When a candidate to the status of proof has been established, the time has come
for its public and critical evaluation by competent experts who may not have
participated in its discovery.

If we assume that a proof is the linguistic expression of a reasoning which is the
achieved and flawless production of an expert mind, as expert as any other expert
mind, the distinction between producer and receiver of the proof is only a contingent
matter. This presumption of equality or equivalence of expertise seems to lie behind
the opinions of Johnson and Perelman when they claim that proofs do not need
dialectical (Johnson) or rhetorical (Perelman) support. An expert needs nobody to
grasp a proof, otherwise she is not an expert.

This view leads to the idea that anything added to a minimal version of a proof
is at most mere decorum, a rhetorical ornament, a “colour” to borrow Frege’s word
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(see Dubucs and Dubucs, 1994). This adjuvant would bring about only side effects
since the proof is supposed to be self-sufficient to be convincing. If the very notion
of argument implies a human interaction—let us say a dialectical tier—a perfect
proof (i.e. a proof raising no critical comment, no request for explanation and so
forth) certainly differs from an argument. This is probably the idea at the core of
Johnson’s view.

But from a practical point of view, if you drop the normative hypothesis of equal
and perfect expertise such a situation seems to be the exception rather than the rule.
It is likely that perfect proofs and equal expertise exist mostly in “the world of
novels” as people said in Descartes’s time.2 So, let us have a look at the conditions
of our starting assumption.

How do you know that a reasoning is flawless? The correction of a mistake of
reasoning is likely to come from someone other than the proponent of the proof.
This offers the opportunity for a refutation. Moreover, the conversion, not to say
the translation, of the reasoning into its linguistic expression may produce specific
defects like confusion or equivocation. Like anybody, a mathematician may fail
to express clearly a correct reasoning and this may be another occasion for an
objection.

The works of Cauchy provide several examples of the case at hand (Belhoste,
1985). Besides his own innovative works, Cauchy criticised and renewed several
aspects of the works of his masters. In his Cours d’Analyse he explains that he tried
to give to his new methods “all the rigour that one can demand in mathematics
so that I never rely on the reasons based on the generality of algebra”. The
trouble that he had with these “algebraic” reasons was that they lacked rigour:
“although commonly granted . . . they can only be considered as inductions which
can sometimes make you feel the truth, but fit badly with the celebrated exactness
of the mathematical sciences” (Cauchy, 1821, Introduction). Among these “new
methods”, there is the introduction of a concept of continuity based on the concept of
limit and breaking with the previous notions, especially Euler’s. Cauchy’s definition
states that “ f (x) will stay continuous for x taken between two given limits, if,
between them, an infinitely small increase of the variable always produces an
infinitely small increase of the function itself” (1821, 43).

Two years later, some of his critics are more explicit in the Résumé of the lectures
on the calculus that he gave at the Ecole Royale Polytechnique. He argued against
the systematic use of Taylor’s formula that was common among mathematicians
because “although the famous author of the Mécanique analytique [Lagrange] based
his theory of derivative functions on this formula . . . most geometers now grant the
uncertainty of the results that can be obtained when using diverging series” (Cauchy,
1823, Avertissement). Cauchy’s point was that Lagrange’s approach was limited,
owing to his ignorance of the notion of interval of convergence.

2“Mostly”, for a friend told me that a celebrated mathematician visiting his university wrote his
lines of proofs on the board without uttering a single word.
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The new concepts introduced by Cauchy, and the demonstrations that they
allowed, have framed part of the mathematical doxa since the beginning of the nine-
teenth century and they still inspire the corresponding notions and demonstrations
taught in our schools. They are real mathematical milestones.

But unfortunately, in spite of its alleged “rigour”, Cauchy’s concept of continuity
was not rigorous enough. It blurred the distinction between continuity and uniform
continuity that our contemporary definitions, using quantifiers, make clear. And this
confusion led Cauchy to a confused demonstration of the mean value theorem which
required an argument to be rectified.

Up to now, we have supposed that the mathematical audience is composed of
experts and that arguments occur because of mistakes, confusions or wrong moves
made by the proponent. But some of them can come from the audience. A sound and
correctly expressed proof can be misunderstood by some members of the audience,
unless you again presume an idealized situation of communication with an audience
as perfectly competent and rational as Perelman’s universal audience. For instance,
a member of the audience may object that the proof has not been achieved because
a formula of the demonstration does not follow from the previous formulae. This
is not an uncommon criticism and Cauchy’s reply to Kummer can be seen as an
example.

Standard logical derivations progress by making moves as short as possible,
that is, in accordance with only one acknowledged rule. But many mathematical
proofs do not comply with these canonical requirements of logic even if most of
them can be rewritten in a format that makes their checking purely mechanical.
Unfortunately, this option was not open for past mathematics and is still often
practically impossible. Accordingly, a gap between two formulas may look hardly
intelligible for the audience although it seems clear for the proponent. According
to Johnson, the proponent will manifest her rationality by supplementing her proof
with answers and replies to questions and objections from failing experts.

On this account, the outstanding romantic mathematician Evariste Galois seems
to have had a hard time making his rationality manifest. But the problem may have
come from his audiences. We know that the reason of his first failure when he tried to
be admitted to the French Ecole Polytechnique was that his answers were too abrupt
and unclear. But things got worse, for a few years later, in 1830, he had the same
problem when, to win the Grand Prix of Mathematics of the Science Academy, he
submitted an already improved version of his seminal Mémoire sur les conditions
de résolubilité des équations par radicaux. In the preface to Galois’s works that
he published in 1846 after having deciphered his last writings, Joseph Liouville
wrote that: “In their report, the Commissioners reproached the young analyst for
the obscurity of his paper, and indeed, this reproach, already made to his previous
communications (as we learnt from Galois himself) was justified. An exaggerated
desire of brevity was the cause of this imperfection that you should avoid, especially
when you deal with the abstract and mysterious topics of pure Algebra.” Liouville
alludes here to Poisson’s comment that Galois’s paper was unclear and insufficiently
developed to be accepted. But more than a century later, in a new preface, another
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celebrated mathematician, Jean Dieudonné, expressed his admiration for Galois’s
conciseness that he praised much more than the “laborious presentations that his
immediate followers felt obliged to make” (Galois, 1997).

5.2.3 After the Proof

Let us suppose now that the proof is professionally settled, that is accepted by
acknowledged competent experts. This is not the end of the story, for mathematics is
not the exclusive property of a handful of industrious shareholders but the common
good of an open society.

For centuries, mathematics has been familiar to pupils from the elementary to,
sometimes, the academic level. From a less institutional point of view, the didactical
use of a proof can be tentatively defined as any situation in which the proponent has
to convince people who stand on a lower epistemic footing, if we grant that the
notion of “lower epistemic footing” is clear. A didactical situation is then similar to
the previous case of an epistemic asymmetry due to failing expertise. In a didactical
context, it would be harsh to qualify a very common inability or failure to take up
the inferential proposal made by a proof as a defect or lack of rationality of the
tutee. Nor is it always the sign of a lack of propositional knowledge, for he may
know that p and grant q but not “see” that q follows from p. Even limited to a field,
logical omniscience is rare and Perelman’s requirement of a universal adult and/or
expert audience is a convenient way to escape any didactical situation coming from
epistemic or rational discrepancies.

Although they are commonly associated with pupils or students, didactical
situations are not uncommon among scientists, especially since last centuries’
history has taught us not to take scientific axioms or principles as obvious. This
marks a shift from scientific to dialectical and even didactical argument, at least if
we go back to Aristotle’s classification of arguments.

In the Sophistical Refutations (1955, II, 165a–b) Aristotle claims there are four
kinds of διαλέγεσθαι λόγων, an expression generally translated as “argument (or
reasoning) involved in a discussion”. But it can also be translated as “dialogue”
or “dialectic”, in the broad sense of “talking together”. Although Aristotle here
uses neither the word “syllogism”, nor “enthymeme”, “argument” seems a good
translation since the Philosopher stresses that these discourses have premises. And
these premises make the main difference between the four kinds of argument. Di-
alectical arguments are rooted in an endoxa, a common opinion. Critical arguments
start from premises accepted by the answerer but also granted by the arguer whose
discourse aims at “showing that he knows”. Eristic arguments reason from premises
that appear to be generally accepted but are not so. And finally, didactical arguments
do not reason from the opinions of the answerer but from “principles appropriate
to each μαθήματος”. This word, μάθημα, is usually translated by “branch of
knowledge” or “discipline” but it also means “lecture” or “lesson”, two notions
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often related to an educational context. It is also close to μαθηματιχος which means
“someone who studies” or “relative to a field of knowledge” and, of course, to
μαθηματιχά, usually translated by “mathematics”.

For Aristotle, what makes something “mathematical” is the way you consider it.
It depends on the properties dropped in the process of abstraction and the principles
finally taken into account, some of them being proper and some others not proper to
the said science (Aristotle, 1976, I, 10, 76a, 35–40). So, a science is mathematical in
the broad sense of “systematic”. And a didactical argument is a deductive argument
based on the principles of a field of knowledge, of a discipline. If we follow the
idea that this kind of argument is based on the principles of the discipline and not
on the opinions of the audience, its premises may not have the typical property
of Aristotelian scientific arguments announced in the Posterior analytics (1976,
I, 2, 71b, 20) namely “true, primary, immediate, better known than, prior to, and
causative of the conclusion”. To put it shortly (perhaps too shortly) the premises of
a didactical argument only have to be granted, they are not necessarily “believed”
(Dufour, 2011).

Granting premises is certainly the most accommodating way to share them, but it
is sometimes a submissive one. Moreover, a pedagogical tragedy is likely to happen
if the tutee is accommodating enough to grant a logical step because of the authority
of the field instead of acknowledging its necessity or its strength. This is the case
with students who learn a proof by heart to pretend they know and understand it, a
situation not uncommon but notoriously fallacious.

Avoiding such cases is probably one of the reasons why there is often a long
distance between the original proof and textbook or oral classroom versions, full
of hints aiming at making it accessible to a wider audience. Although there may
be several demonstrations of a theorem, we usually do not hesitate to qualify
seemingly different proofs as versions of the same one. This allows to modify
or rephrase the initial version to make it more explicit or to make its necessity
more salient for people who are not experts. In my opinion, these strategic
rewordings belong to the field of mathematical argumentation. Some people would
certainly prefer the word “rhetoric”, even if these manoeuvres aim at enhancing
the process of rational persuasion, for instance by paraphrases which are not mere
rhetorical embellishments of the initial proof. Some of these manoeuvres may fall
under Johnson’s notion of dialectical tier but only if you grant, against him, that
mathematical proofs may need one.

The fate of a proof resembles the pragmatist conception of truth for although
a proof is sometimes provisionally satisfactory it will attain perfection only at the
end of the enquiry that is when nobody or, more faithfully to Peirce (1871), when
no member of the community of inquirers will complain about it. Are didactical
efforts to make it intelligible to less expert people a step in this direction? A
pragmatic pragmatist could answer no, because the more you open the community
the more remote perfection becomes. Perelman’s small elite communities seem to
be forerunners of Peirce’s paradise, but unfortunately they are mostly examples of
wishful thinking. A less eager pragmatist would answer that a larger paradise is
a better paradise; therefore, the teaching of mathematics widens the mathematical
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community, the possibility of criticism and the expected paradise. But the history
of mathematics also shows that conceptual distinctions and the proofs that follow
are not always more intelligible for non-experts and so, are open to argument.
This seems to have happened when Cauchy had some trouble with his students
at the Ecole Polytechnique, although political considerations also mattered in this
particular case.

The logicist episode also provides good examples. Frege, like Peirce, complained
that natural languages lacked the rigour and precision required to make them decent
places to harbour arithmetic. Hence, Frege’s investigation in the Begriffsschrift
(1879) of a new and purely logical language which would allow the rewriting
of arithmetical proofs with no logical gaps and no appeal to the benevolence of
intuition. This is the core idea that Frege and his followers perceived as improving
mathematical proofs. But it required a reformulation, if not a revision, of previous
demonstrations.

Unfortunately for the logicist program, not everybody agreed. Numerous
arguments were raised, which were not isolated conflicts but a battle in the
wider debate about the foundations of mathematics. This affair was neither purely
mathematical, i.e. involving only professional mathematicians and field-dependent
concepts, nor “above” mathematics, that is free from mathematical technicalities.
Mathematics, logic, philosophy and their practitioners were all concerned by the
logicist controversy (Heinzmann, 1986). Henri Poincaré was a famous opponent to
the logicist program. Anticipating and denouncing Perelman’s confusion of logic
and mathematics, he contended that mathematics harbours intuitive principles—
notoriously the principle of complete induction—irreducible to the principles of
the new logic. For him, logicism was viciously circular. Either it stealthily called
to mathematical principles to show their reducibility to logical considerations or
it inflated the meaning of the word “logic” by directly incorporating mathematical
principles or knowledge (Poincaré, 1905a, 808). The most interesting point for us
is that one of his criticisms of logicism and formalism was a didactical objection,
for he argued that their claim to improve mathematical proofs failed to make them
more accessible. Poincaré ironically wrote that Peano’s formal definition of “one”
is “eminently apt to give an idea of it to people who would have heard nothing
about it” (Poincaré, 1905b, 823), that he “would not advise it [Hilbert’s mechanical
formalism] to a high school student” who would very soon drop it (Poincaré, 1908,
68) and that logicists had a talent to “define what is clear by what is obscure”.
However, he did not disagree with any program intended to improve mathematical
proofs for he thought that proofs lacking rigour have to be reworked. For him,
a most significant improvement in mathematics, is an inductive move towards a
greater abstraction and a greater generality. And in this case higher accessibility
to beginners is not required. According to him, such an improvement had already
begun around the mid-nineteenth century and he stressed that this move towards a
kind of formalization was not foreign to mathematics since it was not “logicized”
but “arithmeticized” (Poincaré, 1908, 69; 1905a, 32). Right or wrong, this example
shows that there is room for argumentation in mathematics not only before and
during the proof but also after, at least as long as it can be criticized.
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Part II
Argumentation as a Methodology

for Studying Mathematical Practice



Chapter 6
An Argumentative Approach to Ideal Elements
in Mathematics

Paola Cantù

6.1 Introduction

It is quite common in mathematics to speak about ideal, imaginary, or even
impossible elements. One might consider these linguistic practices as a mere matter
of words, arguing that complex numbers are no less real (or ideal) than real numbers,
and that these names are just conventional ways to denote mathematical entities.
One might also consider these practices from a historical point of view, and argue
that ideal, imaginary, and impossible are just names used for newly introduced
entities or theories, revealing the revolutionary impact of recent mathematical
developments. Or one might take the linguistic practices at their face value,
and explain the partition by means of some kind of distinction: metaphysical,
epistemological, psychological, pragmatic, or genetic.

Metaphysically, one might distinguish between two different kinds of existence,
or features of existence. Introducing the distinction between actual things and ideas
in themselves, Bernard Bolzano (1837) considered all mathematical entities as being
in themselves, i.e. non-existent. The Fregean and the Platonic analytic tradition
shared a similar conception of arithmetical entities. Geometry, on the contrary,
was mainly considered in the nineteenth century as a part of physics, following
a tradition that had begun with Carl Friedrich Gauss and that was theorized by
Hermann Grassmann (1844), as he distinguished between formal and real sciences.
Giuseppe Veronese (1891) considered geometry as a mixed science, partly formal
and partly real: for example, he distinguished between a line segment, which is
a representation of something real, and an infinite straight line, which has no
counterpart in the physical world. In Formal and factual science (1935) Rudolf
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Carnap refuted the ontological interpretation of the distinction between ideal and
real, claiming that it does not yet legitimate

the opinion of some philosophers who believe that the ‘real’ objects of the factual sciences
must be contrasted with the ‘formal’, ‘geistig’ or ‘ideal’ objects of the formal sciences.
The formal sciences do not have any objects at all; they are systems of auxiliary statements
without objects and without content (Carnap, 1935, 128).

From an epistemological perspective the distinction might be traced between
two different grades of knowledge: higher or lower certainty, greater or smaller
perspicuity, higher or lower difficulty in the calculus, greater or smaller efficiency
of proofs. For example, one might distinguish between theories that can be proved
to be consistent and theories that cannot, or between finitary and infinitary theories.

From a psychological perspective there is a distinction between elements that
can be intuitively conceived, and elements that cannot be intuited or represented.
For example, several mathematicians, including Hermann von Helmholtz (1876)
and Veronese (1891), and philosophers, such as Bertrand Russell, searched for an
axiomatic nucleus common to Euclidean and non-Euclidean geometries that might
express the main features of the Kantian a priori intuition of space (Torretti, 1978;
Cantù, 2009).

Finally, one might trace a pragmatic distinction between two kinds of elements
that have different functions in mathematics: e.g. one might assume, like Otto
Hölder (1901), that the function of real numbers is measurement, or, like Hans Hahn
(1907), that the introduction of imaginary numbers has the instrumental function of
allowing a better understanding of the properties of real numbers.

I will not enter into this debate here, but I have highlighted it both for its intrinsic
interest, and because the descriptive shortcomings of some of the aforementioned
approaches, especially when taken in isolation, urged me to develop a different
kind of approach to the topic of ideal elements. The method that will be applied
here follows a quite recent but significant thread of investigations in the philosophy
of mathematics that concerns the relations between argumentation theory and
mathematics (Aberdein and Dove, 2009).1 In our case, it will consist in the
application of technical tools from argumentation theory and informal logic to the
study of mathematical discourses about ideal elements.

From the analysis of several passages by mathematicians such as Hilbert, Gauss,
Veronese, Cantor and Dedekind2 I will claim that the use of the terms ‘ideal’,
‘imaginary’, and ‘impossible’ occurs either in the context of a practical argument
aimed at justifying a particular kind of modification of a theory under given
circumstances, or in the context of other kinds of arguments aimed at legitimating
the former. The real-ideal distinction will thus be considered in the light of a
dialectic argumentative practice concerning mathematical methodology.

1The emphasis on mathematics as a rational activity and as a human practice also contributed
to the increased interest in investigations of the relations between mathematical reasoning and
argumentation (Mancosu, 2008b; Mancosu et al., 2005; Hanna et al., 2009).
2Unless otherwise indicated, translations are mine.
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Firstly, I will show that some of the aforementioned passages contain an
argument that can be reconstructed as an instance of the argumentation scheme3

that Douglas Walton (2008, 234) calls Value-Based Practical Reasoning:

(1) I have a goal G
(2) G is supported by my set of values V
(3) Bringing about A is a means for me to bring about G
(4) Therefore, I should (practically ought to) bring about A

In our case, A stands for “the method of introduction of ideal elements”,
and the conclusion of the argument is a prudential statement suggesting that any
mathematician who acts like a rational agent, having a specific goal, a set of values
that support the goal, and the capability of carrying out actions based on those goals,
might be practically committed to introduce ideal elements into a theory, whenever
this allows them to achieve the goal, unless certain further conditions occur. As we
will see, the main goal and the set of values that support it might vary from author
to author, as well as rebuttal conditions.

As for any instance of Value-Based Practical Reasoning, there are some critical
questions that might facilitate an evaluation of the acceptability of the previous
argument:

1. What other goals do I have that might conflict with goal G?
2. How well is goal G supported by the set of values V?
3. Are there any alternative means to A in order to bring about G?
4. Are there any negative consequences of A that might offset the positive value of

the goal G?

Drawing attention to such critical questions and to the answers that one might
find in the works by Hilbert, Gauss, Veronese, Cantor and Dedekind, I will claim
that some further arguments about ideal elements could be interpreted as meta-
arguments. A meta-argument is an argument claiming that some other argument
is or is not legitimate: facing one of the critical questions above might produce a
meta-argument.4 What is at stake here is the justification of a heuristic procedure

3I will not give here an exact definition of argument and argumentation scheme (see other essays
in this volume). Anyway, I will illustrate the meaning by an example, and also by analogy with
the difference between syllogism and form. The Aristotelian syllogism “All humans are mammals.
All mammals are mortal. Therefore, all humans are mortal.” differs from its form which is usually
referred to as ‘Barbara’ (“All S are M. All M are P. Therefore, all S are P”). Analogously, the
argument “I want to eliminate social iniquities, because I believe that all humans are equal.
Redistribution of wealth is a way to eliminate social iniquities. Therefore, I practically ought to
bring about a redistribution of wealth” differs from the argumentation scheme mentioned in the
text. ‘Barbara’ and the argumentation scheme express the form of the syllogism and the form of
the argument, respectively.
4Maurice Finocchiaro (2007) has defined a meta-argument as “an argument about one or more
arguments”, and applied the notion to several examples from the philosophy of science, especially
from authors of the early modern time (Galileo, Newton). I will consider if this notion can be
interestingly applied to nineteenth century mathematicians too.
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by mathematicians themselves. Attention is focused here on the analysis of goals,
values and rebuttal conditions: different levels of freedom are allowed by different
authors.

Finally, I will suggest some reasons of interest and possible developments
of this argumentative approach to the method of introduction of ideal elements,
including new insights on the epistemology of mathematicians such as Hilbert,
Gauss, Veronese, Cantor, and Dedekind, and new questions concerning the nature
of mathematical reasoning. The significance of an argumentative investigation of
the method of introduction of ideal elements concerns the distinction between
arguments and meta-arguments, and thus between instances of practical reasoning
and the discussion about the legitimacy of practical reasoning in mathematics,
as well as between informal arguments and generalization procedures used in
mathematics and in other scientific disciplines.

6.2 A Value-Based Pragmatic Argumentation Scheme
on Ideal Elements

There are several ways to define and to understand what a mathematical practice is,
and what kind of theoretical investigations could be more appropriate to understand-
ing it (see e.g. Mancosu, 2008b; van Kerkove et al., 2010). I will not enter into this
debate here, but I would like to mention some reasons why the following approach
could contribute to the investigations on mathematical practice. My approach is
centered on a linguistic practice and takes as primary objects of investigation the
texts of mathematicians themselves: not the formal presentation of their system, or
some standard proofs, but rather the arguments they formulate in order to defend the
methodology they follow and appreciate. I will thus consider what mathematicians
explicitly said about the reasons for the introduction of ideal elements in mathemat-
ics, and why and in which cases they considered this move as legitimate.

In this section, I analyze and compare several passages by Dedekind and
Hilbert concerning arithmetic and geometry showing that their discourses can be
reconstructed as a practical argument based on three premises and a prudential
conclusion, like the following:

• Any mathematician who acts like a rational agent, having the goal of eliminating
exceptions from mathematical theories, some values such as generality and
simplicity to support this goal, and some method of introduction of ideal elements
that allows the mathematician to achieve that goal, is practically committed to
introducing ideal elements.

Problematic issues will concern the goal, the values, and the understanding of what
the method of introduction of ideal elements amounts to:

1. Why should one aim at eliminating exceptions? What kind of exceptions?
2. What is meant here by generality?
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3. What does the method of introduction of ideal elements consist in?

A passage by Gauss will facilitate the understanding of possible hierarchies of
values, while further passages by Gödel and Veronese will be used to analyze what
is meant by the adjective ‘ideal’.

6.2.1 Premises (1) and (2): Goal and Values

In the 1877 article On the number of ideal-classes in different orders of a finite field
Dedekind writes:

The main and most fruitful step was made by Kummer in 1847 as he introduced ideal
numbers. Even if his researches also concerned at first only the partition of the circle and
some related domains, the ideas they are based on have a much more general meaning.
The extraordinary success obtained by Kummer had in 1856 already induced me to devote
my main efforts to this topic, and I finally managed to build a theory of algebraic integer
numbers that is general [allgemein] and without exceptions [ausnahmslos] (Dedekind,
1877/1930, 110).

Dedekind claims that a theory, such as Kummer’s theory of ideals, is general
if it can be applied without exceptions and has a general meaning. He implicitly
assumes that a general theory is better than a restricted theory that has exceptions.
Dedekind’s goal could thus be formulated as follows:

(G) Goal G. Exceptions should be removed as far as possible.

The goal is legitimized by the fact that generality is considered as a positive value
in mathematics. So, one could formulate Dedekind’s value as follows:

(V) Value V. The generality of a theory, i.e. its being without exceptions, is a
desirable value in mathematics.

In the case of Kummer’s ideals Dedekind had the goal G and supported it by
the value V. Not only did Hilbert agree with the goal and the value accepted by
Dedekind, but while discussing the question of the complex numbers, he added an
argument to support the preference for the value V. In the 1919 lecture On the role
of ideal entities Hilbert remarked:

A good example is here offered by the question of the existence of the algebraic root. If
one takes here into consideration only real numbers as solutions, then one should say that
some equations have no roots. One could also leave it at that, but then the general theory of
equalities would be too difficult. So, one extends the system of real numbers by introduction
of complex numbers, so as to obtain without exception the existence of the root (Hilbert,
1919, 90).

Hilbert claims that whenever there are exceptions (for example some equations
have roots while other equations do not), the theory might become too difficult,
but difficult theories are not preferable to easy and simple theories. So, to support
the value V of generality, Hilbert claims that it is a condition for the simplicity
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of a theory, which is, according to him, an even more fundamental value in
mathematics.

(V′) Value V′ as a warrant for value V. Generality is desirable because it increases
simplicity.

But is simplicity a value in itself or is it in turn necessary to grant some
other properties of mathematical theories? In the second treatise on the Theory of
biquadratic residues (1831/1863) Gauss connected simplicity to the role of being a
true foundation for other theories:

This amounts to extending the field of higher arithmetic, which is usually extended only
to real integer numbers, to imaginary numbers too, as a true foundation of the theory of
biquadratic residues. To the imaginary one should concede the same right of citizenship that
one concedes to the field of the real numbers. As soon as one understands this, the theory
appears in a completely new light, and its results gain a most extraordinary simplicity. But
before the theory of biquadratic residues can itself be developed in this broader domain
of numbers, one should also extend to this domain the preceding doctrines of higher
mathematics. Concerning these present investigations I can only mention here something
in brief (Gauss, 1831/1863, 171).

So, Gauss presents an argument to support the fact that simplicity is a value as he
claims that a simple theory can serve as a true foundation of some other theory. But
he also acknowledges a possible disadvantage: a change in a new theory involves a
change in several preceding theories. Since Gauss is aware that the generalization
introduced to simplify the theory of biquadratic residues will induce changes in all
domains of higher mathematics, he apparently considers the value of invariability of
mathematical theories as less important than simplicity, because the latter can grant
a true foundation. So, imaginary entities have the same right of citizenship as real
ones.

In the formulation given above, propositions (G) and (V) do not contain any
reference to the examples explicitly mentioned by Dedekind, Hilbert and Gauss.
Dedekind had the theory of Kummer’s ideals in mind, while Hilbert and Gauss
referred to the algebraic theory of numbers. One might ask if the same kind
of generality is at stake in the two examples, and what kind of exceptions are
eliminated in each case.

Depending on how one interprets what Dedekind and Hilbert meant by an
‘ausnahmslose’ theory, one could accept or refute the mentioned premises. Are
exceptions generally bad in a theory, or did the authors have some special kind
of exceptions in mind?

I suggest, as a tentative interpretation of passages that are quite vague and
unclear, that exceptions might concern the definition of some inverse operation:
for example, the operation of extracting the root, which is the inverse of the raising
to a power, or the operation of division, which is the inverse of the operation of
multiplication. It is true that in the case of Kummer’s ideals the attention was
actually focused on the elimination of another kind of exception: the theorem of the
unique factorization of numbers, which could be demonstrated for real numbers but
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not for complex numbers in general. Anyway, unique factorization is a divisibility
property, and thus a relevant feature of the inverse operation of division.

(G′) Goal G′. Exceptions should be removed, allowing direct and inverse operations
to satisfy closure properties.

In the 1852 inaugural dissertation On the elements of a theory of Euler’s
integration Dedekind underlines the problematical and at the same time heuristically
advantageous nature of the asymmetry between direct and inverse functions:5

It is well known that the execution of indirect operations in analysis often encounters
more important difficulties than the execution of direct operations. But exactly this
apparent unfortunate circumstance has always exerted the most advantageous influence on
mathematics. On the one hand, the defeat of these difficulties, whenever possible, always
has a peculiar attractiveness for mathematicians. On the other hand, the cases in which it
was not possible to defeat the difficulties by means of the previously introduced concepts
and auxiliary tools always opened up entirely new fields to the further development of math-
ematics. For example, the operations of subtraction, division and root extraction have led to
the concept of negative, fractional and imaginary numbers, by means of which the domain
of mathematics was extraordinarily generalized [erweitert] (Dedekind, 1852/1930, 1).

Proposition (G′) might seem obvious to the contemporary reader, but it is not
obvious at all. In the nineteenth century, for example, Hermann Grassmann, who
is widely acknowledged as the founder of vector theory and as one of the main
contributors to what will afterwards be called universal algebra, did not consider
operations as necessarily defined on a fixed domain, and therefore did not consider
the closure of a domain with respect to a given operation as an increase in generality.
On the contrary, the increase in generality could rather arise when the same
structural properties of an operation (for example commutativity and associativity
with respect to some other operation) could be ascertained in different mathematical
domains: arithmetic, vector theory, physics, and so on (Cantù, 2010).

Up until now, all the examples considered have been taken from arithmetic, but
Hilbert also considered points and lines at infinity as examples of ideal elements.
Are they introduced to eliminate the same kind of exceptions? In the 1926 paper On
the infinite Hilbert writes:

But it is known that through introduction of ideal elements, in particular of points and a
line at infinity, it can be obtained that the proposition that two straight lines always intersect
in one and only one point becomes generally valid (Hilbert, 1926, 166, Engl. transl. by
S. Bauer-Mengelberg).

In the case of projective geometry, the closure of incidence between lines allows
the construction of a dual transformation between the model interpreting incidence
as two points lying on a line and the model interpreting incidence as the intersection

5It should be remarked that Dedekind refers to ‘the’ domain of mathematics being generalized, as
if the generalization consisted in the transformation of the universe of the model. This is just one
possible way to conceive the introduction of ideal elements.
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of two lines in a point. In order to include the case of projective geometry, premise
(G′) could be modified into:

(G′′) Goal G′′. Exceptions should be removed, allowing direct and inverse opera-
tions to satisfy closure properties, and dual transformations between models
to be introduced, whenever possible.6

Hilbert’s reason for allowing duality would then be similar to Dedekind’s
reason for introducing the closure of the inverse operation: it offers an increase in
simplicity.

To summarize, mathematicians who dealt with arithmetic and geometry had the
goal of eliminating certain exceptions, e.g. guaranteeing whenever possible the clo-
sure of direct and inverse operations and the formulation of duality transformations,
because they held generality to be an important value in mathematics, given that
it increases simplicity, which in turn is especially desirable in the foundation of
mathematics. From the aforementioned passages by Gauss, Dedekind and Hilbert
we have thus reconstructed a goal and a value that might occur in the first two
premises of the argumentation scheme mentioned in the introduction:

Premise (1) I, as a mathematician, have the goal (G′′)
Premise (2) The goal (G′′) is supported by the set of values (V), and (V′).

6.2.2 Premise (3): A Way to Bring About the Goal

The method of introduction of ideal elements is presented as a way to bring about
the goal (G′′), i.e. the closure of direct and inverse operations and the formulation of
duality transformations in some specific cases. This goal is achieved by some kind
of ‘Erweiterung’, or generalization.7

In the aforementioned lecture on ideal entities, Hilbert asserts that ideal entities
occur in mathematics

when a system is generalized [erweitert] by the introduction of new elements that then have
the character of ideal elements with respect to the original system. [. . . ] one speaks about
existence only with reference to a determinate given system, which might vary according to
the theory under consideration (Hilbert, 1919, 90–1).

6In category theory the two conditions might be unified, and one might formulate the goal as
follows: (G*) Exceptions should be removed, allowing for any category to construct the opposite
or dual category, whenever possible.
7I translate the term ‘Erweiterung’ as ‘generalization’ not only to follow a linguistic choice adopted
in the English translation of the Foundations of geometry by Townsend (Hilbert, 1902), but also to
make it clear that the expression is non-technical. Any understanding of it as a particular kind of
transformation is a matter of interpretation, and given the problematic and complex nature of this
task, I will not attempt it here.
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The method of introduction of ideal elements is presented as some kind of
procedure that concerns a generalization [Erweiterung] of a system into another
system, which could be interpreted as the transformation of a theory into another
theory by the modification of some axiom, or as the transformation of a model into
another model by modification of the universe and of the relations and functions
defined on it.8

This procedure of introduction of ideal elements is one of the most important mathematical
methods being applied again and again up to the higher parts of mathematics. More
precisely, the procedure consists in the fact that from an original system that is complicated
with respect to some unsolved question one goes over [übergehen] to a new system in which
those relations are granted more easily, and which in addition has the property of containing
a subsystem that is isomorphic to the original system (Hilbert, 1919, 90–1).

The expression ‘ideal’ is again used in the case of the generalization of geometry
by the addition of Hilbert’s axiom of completeness in the first edition of the
Foundations of Geometry.

However, it is always possible to generalize [erweitern] the original system of points,
straight lines, and planes by the addition of ‘ideal’ or ‘irrational’ elements, so that, upon
any straight line of the corresponding geometry, a point corresponds without exception
to every system of three real numbers. By the adoption of suitable conventions, it may
also be seen that, in this generalized [erweitert] geometry, all of the axioms I–V are valid.
This geometry, generalized [erweitert] by the addition of irrational elements, is nothing
else than the ordinary analytic geometry of space (Hilbert, 1902, 35–6, Engl. transl. by
E. J. Townsend).

But in the 1926 paper on the infinite and in the 1919 lecture, Hilbert does not
mention irrational numbers as a typical example of ideal elements.9

What is meant by the adjective ideal? In his reconstruction of Hilbert’s thought,
Michael Detlefsen (1993; 1986) suggested a Kantian interpretation of ideal elements
as statements concerning symbols that do not constitute genuine contentful state-
ments. Other mathematicians have used the expression ‘ideal’ or ‘fictive’ to denote
entities that cannot be perceived or that have no possible counterpart in the empirical
world. Gödel, for example, wrote in the 1944 paper on Russell’s Mathematical
Logic:

When [Russell] started on a concrete problem, the objects to be analyzed (e.g., the classes
or propositions) soon for the most part turned into ‘logical fictions’. Though perhaps this
need not necessarily mean (according to the sense in which Russell uses this term) that these
things do not exist, but only that we have no direct perception of them (Gödel, 1944/1990,
121).

8This is the topic of a research project that I started in 2008 thanks to a generous grant by
the Université de Nancy and the ANR Research Project on Ideals of Proof directed by Michael
Detlefsen. The research is still in progress, but partial results have been presented at the Paris-
Nancy PhilMath Workshop in 2009 and at the Seventh European Congress of Analytic Philosophy
in 2011.
9Interestingly enough, the term ‘ideal’ used in the quoted passage from the first German edition
published in 1899 (Hilbert, 1899, 39), was eliminated in following editions of the Grundlagen.
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Similarly, Veronese called ‘ideal’ all mathematical entities that lack an external
representation:

If someone wants to call me rationalist or idealist because of the idea discussed here,
I will accept this denomination to distinguish myself from authors who unjustifiably
want to negate the biggest possible logical freedom to the mathematical and geometrical
mind, and who ask, for any new result or hypothesis, whether it has or not a pure
external representation. But we accept the denomination only on condition that no properly
philosophical meaning be associated to it. (Veronese, 1891, xiv).

According to Hilbert, ideal elements can be introduced axiomatically, or by
construction from older elements of the system:

The way of speaking concerning ideal elements has its justification only from the point of
view of the initial system. In the newly obtained system one cannot any more distinguish
between real and ideal elements. The transition to the broader [weiterem] system might
happen either in a constructive way, if the new elements are derived from the old elements
through mathematical construction, or axiomatically, if the new system is characterized by
relational properties. In the second case one also needs a proof that the assumption of the
required properties does not contain a contradiction in itself (Hilbert, 1919, 90–91).

A possible explanation of the reasons why Hilbert expresses himself as if the
elements were the entities belonging to the domain of a model of the theory, could
be the fact that he has in mind Dedekind’s way of eliminating exceptions by the
introduction of closure properties for the inverse operation. The previous passage
concerning an isomorphism between the old system and a part of the new system
(see above page 87) could also be understood in the same way. Setting aside here the
effort to find an adequate interpretation of what Hilbert describes as a ‘system gener-
alization’, I will only recall that, however exactly it might be spelled out, the method
of introduction of ideal elements is some kind of procedure that allows the closure
of operations and dual transformations between relevant models. So, I can now
instantiate premise (3) of the argumentation scheme mentioned in the introduction:

Premise (3) The method of introduction of ideal elements is a means for mathe-
maticians to bring about the goal (G′′).

6.2.3 Conclusion (4): A Prudential Claim

According to my reconstruction, if one accepts the premises (1–3), then one should
also accept a claim that is an instantiation of the conclusion of the argumentation
scheme presented in the introduction:

Premise (1) I, as a mathematician, have the goal (G′′).
Premise (2) The goal (G′′) is supported by the set of values (V) and (V′).
Premise (3) The method of introduction of ideal elements is a means for me, as a

mathematician, to bring about (G′′).
Conclusion (4) Therefore, I should (practically ought to) introduce ideal

elements.
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In other words, if I, as a mathematician, have the goal of eliminating certain
exceptions in the sense described above, which is a valuable goal in mathematics
because it helps generality, simplicity, and better foundation, and if introducing ideal
elements is a means to eliminate exceptions, then I should (practically ought to)
introduce ideal elements. The argument is based on a means-end relation and has a
normative conclusion, suggesting what a rational agent would be expected to do in
the given circumstance.

My claim is that Gauss, Dedekind and Hilbert all advanced this kind of
argument. I am not claiming that there are no differences concerning (1) the relevant
application cases, (2) the role of simplicity, (3) the specific kind of exceptions that
need to be eliminated, and (4) rebuttal conditions.

1. Application cases differed. Gauss considered the case of complex numbers
extending real numbers, while Dedekind considered both complex numbers and
Kummer’s ideals as a simplification of the theory of polynomials. Hilbert added
points and line at infinity in projective geometry.

2. Concerning the role of simplicity, it is sometimes foundational and sometimes
epistemological. Gauss claimed that an increase in generality would allow a true
foundation of the theory, Dedekind believed one could reduce the less general
theory to the more general one (see Sect. 6.3.2), while Hilbert remarked that ideal
elements would increase the perspicuity and the fecundity of the theory.

3. As for the kind of exceptions that need to be eliminated, I already mentioned
operations that are not closed under a domain, inverse operations that lack
a definition, modifications that allow the construction of a dual relation and,
more generally, of interesting conceptual transformations, as in the case of the
construction of the opposite or dual of a category in category theory.

4. As in any practical argument, there are relevant rebuttal conditions: one should
(practically ought to) introduce ideal elements (a) unless contradictions arise
(a rebuttal condition assumed by all authors), (b) unless no new results can
be obtained (see Dedekind’s, Veronese’s and Hilbert’s remarks on fruitfulness),
(c) unless relevant properties of the original theory get lost (compare Veronese’s
requirement that projective and non-Archimedean theories conservatively extend
a finite part of Euclidean geometry: Cantù, 1999). The discussion of rebuttal
conditions often involves a meta-analysis of the validity of the argument (1)–(4),
as we will see in Sect. 6.3.

Notwithstanding all these differences, I claim that the arguments by Dedekind,
Gauss and Hilbert can be reconstructed as instantiations of the same argumentation
scheme, because they are all value-based practical arguments. This kind of argument
is usually advanced in a deliberation dialogue, when one of the participants tries to
convince the others of the opportunity to take some decision. As such, the argument
does not pretend to legitimate the theoretical necessity of the method of introduction
of ideal elements, nor to legitimate their existence. It is rather an example of the kind
of rhetoric arguments advanced by mathematicians trying to defend and put forward



90 P. Cantù

a methodological move.10 Like any practical argument, it is defeasible and a set of
critical questions can be used to test how strong the argument is. For example, one
could ask:

1. What other goals do I have that might conflict with the goal of eliminating
exceptions?

2. How well is the goal supported by the values of generality, simplicity and
foundational role?

3. Are there any alternative means to the introduction of ideal elements in order to
eliminate the same exceptions?

4. Are there any negative consequences of the introduction of ideal elements that
might offset the positive value of the goal?

If the argument above recommends the use of the method of introduction of
ideal elements in certain cases, are ideal elements thereby legitimated? Is the newly
obtained theory as legitimate, as consistent, as fruitful, or as intuitive as the former?
Concerning consistency, I already mentioned Hilbert’s point of view. Concerning
legitimacy, we have seen Gauss’s claim that imaginary elements have the same right
of citizenship as real elements. But the latter belief, which would be sufficient to
ground conclusion (4), was not generally shared either by contemporaries or by later
mathematicians.11 This is the reason why Hilbert, Dedekind, Veronese and Cantor
advanced further arguments to support the method of introduction of ideal elements.

6.3 Further Arguments on Ideal Elements

In the following, I will consider other arguments concerning ideal elements, and
classify them according to the argumentation scheme they instantiate. I will further
investigate whether they answer the aforementioned critical questions, and what
role they play with respect to the previous argument. Are they independent reasons
in support of claim (4) asserting that ideal elements should be introduced in
mathematics, or are they meta-arguments, i.e. claims about the legitimacy of ideal
elements as a successful heuristic strategy?

10For this reason, the argument differs radically from the application of the indispensability
argument to mathematics itself. Although the argument discussed by Paolo Mancosu (2008a, 139)
with reference to Solomon Feferman (1964) is a practical argument too, its conclusion claims that
we must not only postulate abstract entities, but also believe in their existence, given that they are
needed in certain parts of mathematics itself. Here on the contrary the conclusion (4) is a prudential
statement claiming that under certain circumstances I, as a mathematician, should make use of the
method of introduction of ideal elements. No commitment to the existence of such elements is
required.
11Actually Gauss gave other arguments too, for example he showed that complex numbers could
be geometrically represented in a plane, but I will not discuss them here.
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6.3.1 Answering Critical Question No. 4
by Means of a Meta-Argument

While discussing the method of introduction of ideal elements in the 1919 lecture,
Hilbert mentions complex numbers, points and lines at infinity, and Kummer’s
ideals, but remarks that there are many more applications:

Of the many diverse applications of the method of ideal elements in mathematics I will
discuss two more (Hilbert, 1919, 91).12

Notwithstanding the “many diverse applications of the method”, in his 1926
paper on the infinite Hilbert cites the same three successful examples mentioned
in 1919:

The ideal elements ‘at infinity’ have the advantage of making the system of the laws of
connection as simple and perspicuous as is at all possible. As is well known, the symmetry
between point and straight line then yields the duality principle of geometry, which is so
fecund.

The ordinary complex magnitudes of algebra likewise are an instance of the use of ideal
elements; they serve to simplify the theorems on the existence and number of the roots of
an equation.

Just as in geometry infinitely many straight lines, namely, those that are parallel to
one another, are used to define an ideal point, so in higher arithmetic certain systems of
infinitely many numbers are combined into a number ideal, and indeed probably no use of
the principle of ideal elements is a greater stroke of genius than this. When this procedure
has been carried out generally within an algebraic field, we find in it again the simple and
well-known laws of divisibility, just as they hold for the ordinary integers 1, 2, 3, 4. . . Here
we have already entered the domain of higher arithmetic (Hilbert, 1926, 373–74, Engl.
transl. by S. Bauer-Mengelberg).

Hilbert’s statement concerns the legitimacy of the practical argument recon-
structed in Sect. 6.2.3: if the heuristic strategy expressed by the argument applies
successfully in three cases (complex numbers, points at infinity in geometry, and
Kummer’s ideals), one might apply it in other cases too. Of course, the success in
previous cases does not allow us to expect that the move will always be successful,
but it is enough to assume it as a good heuristic strategy. This argument plays the
role of a meta-argument. It does not furnish further support to the premises (1–3),
and does not therefore make conclusion (4) stronger, but claims that the argument

12Another example of ideal elements is suggested by Gödel, who, criticizing Russell’s ‘no-class
theory’ remarked that Russell’s argument could at most prove that the null class and the unit class
should be considered as ideal elements as well as points at infinity in geometry: “Russell adduces
two reasons against the extensional view of classes, namely, the existence of (1) the null class,
which cannot very well be a collection, and (2) the unit classes, which would have to be identical
with their single elements. But it seems to me that these arguments could, if anything, at most prove
that the null class and the unit classes (as distinct from their only element) are fictions (introduced
to simplify the calculus like the points at infinity in geometry), not that all classes are fictions.”
(Gödel, 1944/1990, 131).
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(1–4) is on the whole acceptable in mathematical reasoning. Hilbert also makes a
more general claim about the legitimacy of practical strategies in mathematics:

We shall carefully investigate those ways of forming notions and those modes of inference
that are fruitful; we shall nurse them, support them, and make them usable, wherever there
is the slightest promise of success. No one shall be able to drive us from the paradise that
Cantor created for us (Hilbert, 1926, 375–76, Engl. transl. by S. Bauer-Mengelberg).

Hilbert is aware of possible negative consequences of the strategy (e.g. incon-
sistent results) and does not ignore the objection suggested by the fourth critical
question—there might be undesirable effects of this strategy—but, provided they
do not offset the positive value (the fruitfulness) of the move, and provided one
applies a rigorous inferential method, there is no reason to abandon the strategy as
illegitimate:

But there is a completely satisfactory way of escaping the paradoxes without committing
treason against our science. [. . .] It is necessary to make inferences everywhere as reliable
as they are in ordinary elementary number theory, which no one questions and in which
contradictions and paradoxes arise only through our carelessness (Hilbert, 1926, 375–76,
Engl. transl. by S. Bauer-Mengelberg).

Giuseppe Veronese was not as confident as Hilbert in the possibility of a general
application of the strategy to any case where exceptions need to be eliminated. He
remarked that this heuristic strategy might be more effective and fruitful in certain
kinds of investigations than others. Yet he did not give a counterexample. On the
contrary, he suggested further cases of application of the method of introduction
of ideal elements, such as non-Archimedean numbers and hyperspaces, following
a line of reasoning that is very similar to the value-based practical argument
reconstructed above. On the one hand, the transformation from lower to higher
spaces and vice-versa is justified inasmuch as it is useful to prove certain theorems
more easily, or to order theorems in a different way, which is also a part of the
investigations on foundations. On the other hand, different aims might require
different strategies.

The advantage of this method with respect to the usual space consists exactly in the fact
that from general or special things one can derive classes of things in the plane and in
the space of three dimensions, or in a space of lower dimension, and vice-versa, and in
the fact that new or already known properties or things are thereby proved more easily,
and can be ordered according to a general point of view. [. . .] Besides, the geometry of n
dimensions is also in some other respect advantageous: many things about the plane and the
usual space can be represented by means of more simple things, for example through points
of a higher space, and their properties can thus be investigated more easily. Certainly, it
cannot be affirmed that a similar method could be applied to any geometrical investigation.
For example, it can be used more successfully in projective rather than in metric geometry.
Any method has its advantages and defects. Especially, one should dominate the method
completely in order to obtain from it the utility it is in a position to offer. It is already enough
if the method is truly fruitful at least in one class of significant investigations (Veronese,
1891, xxxii–iii).
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6.3.2 Answering Critical Question No. 2: A Side-Argument
by Hierarchical Reduction

The argument by hierarchical reduction, first advanced in an ontological version by
Augustine of Hippo in his book on The Teacher (1995, Ch. 9.27, 129), claims that
anything that is subordinated to some other thing is less worthy than the thing it is
subordinated to. Notwithstanding the religious origin, or maybe just for this reason,
mathematicians often use the argument in the discussions on the foundations of
mathematics. For example, Dedekind claimed that a general law is preferable to a
special case of the same law:

Since here the divisibility of numbers only forms a special case of the divisibility of ideals,
one has in the end only to establish the laws of ideals, which are in effect more simple
(Dedekind, 1877/1930, 116).

The possibility of expressing the content of the original theory inside the
framework of a more general theory not only aims at increasing simplicity, but also
at reducing one theory to the other. As in many arguments based on a hierarchy of
things, the higher in the hierarchy the better: the higher theory can be used to express
and better understand the lower theory in the hierarchy. The difference in generality
and the hierarchical relation between the two theories is explicitly acknowledged by
Dedekind:

One obtains this important generalization if one substitutes the field of rational numbers
with any field that is contained as a divisor in [the fundamental ideal] Ω [of the field],
where besides the usual norms, discriminants, and partial or relative traces, one should also
introduce norms, discriminants, etc. that refer to that field, and substitute certain rational
numbers with ideals of this field (Dedekind, 1882/1930, 352).

The argument by hierarchical reduction could be interpreted as an answer to
the second critical question, because it discusses the relations between the goal of
eliminating exceptions and the values that support it: generality is here intended as
a reduction to the superior theory that simplifies mathematical treatment.

6.3.3 Veronese and Cantor: A Meta-Argument of Direction

Finally, I will consider several passages by Cantor and Veronese who also made
a meta-argument, i.e. an argument about the practical argument reconstructed in
Sect. 6.2. Both claim that the heuristic strategy expressed by the argument (1–4) is
legitimate not only because of its fruitfulness, but also because of the possibility of
its being applicable again and again with a continuous increase in value. Yet Cantor
believes that there is just one ‘natural’ way to introduce ideal elements to generalize
the notion of number, whereas Veronese, like Hilbert, remarks that there might be
different ways of introducing ideal elements: given a plurality of strategies, the best
strategy to follow could be determined only on a case by case basis taking into
account the aims of the researcher.
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In traditional rhetoric an argument that claims that one can always go further in a
determinate direction, without a limit being reached, and with a continuous increase
in value is called an argument of direction (Perelman and Olbrechts-Tyteca, 1969,
287 ff.). While defending the right of mathematicians to introduce new hypotheses,
Veronese writes:

When a determinate thing A is given (each thing considered in its concept [. . .]) and when
it cannot be derived that A is the group of all possible things that we want to consider, then
we can imagine another thing that is not contained in A and that is independent from A
(Veronese, 1891, 16, Sect. 9.37).

According to Cantor, the direction to be followed in the assumption that there
is something beyond a set of things that we are considering (for example natural
numbers N), is unique:

The concept of an ‘order type’ [Ordnungstypus] that we have developed here includes, once
extended [übertragen] to multiple ordered sets, not only the ‘cardinal number or power’
[. . .], but also anything that is at all conceivable ‘as a number’. In this sense it allows no
further generalization [. . .]. It does not contain anything arbitrary, but it is the ‘natural’
generalization [Erweiterung] of the concept of number. In particular, it should be underlined
that the identity criterion follows with absolute necessity from the concept of ‘order type’,
and thus allows no variation. In the misunderstanding of this state of affairs one can see the
main reason for the serious mistakes to be found in the work by G. Veronese, Foundations
of Geometry (Cantor, 1895–97/32, 300).

This is of course also a strategy to refute alternative introductions of transfinite
numbers.13 As a matter of fact, Veronese did consider an alternative generalization,
based on the introduction of infinitely great but also infinitely small numbers.
Quoting Crelle, he expressed his anti-foundationalism in a clear and at the time
not so widely shared form: indeterminacy can be found both in the foundations and
in the development of a theory.

Crelle says that the establishment of principles of geometry offers no less difficulty than the
development of the most complicated theories: “The former are turned towards the heights
and the latter towards the depths, but both heights and depths are equally unlimited and
obscure.” It is certain that the difficulties one encounters in the former case ask for much
more time and perseverance than the investigations of higher kind, where a new and fruitful
idea might quickly lead to very important results. On the contrary, it has little or no value
to bring forward ideas on the foundations, if one does not show that they can be effectively
realized (Veronese, 1891, 632).

Unlike Cantor’s transfinite numbers, which are characterized by the fact that
there is a first transfinite ordinal corresponding to the class of finite numbers,

13I am assuming here that Cantor’s transfinite numbers could be considered as an example of
ideal elements. This opinion is clearly shared by Veronese, but need not be ascribed to Cantor
as such. While the distinction real–ideal that I have suggested concerns a relation to the domain
of the original theory, Cantor introduced a quite different distinction between an intrasubjective
(immanent) and a transsubjective (transient) notion of reality (Cantor, 1895–97/32, 182, 106).
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Veronese’s system of numbers is so construed as to have no first infinitely great
number and no first infinitely small number.14

In particular, Veronese criticized the refusals to take new hypotheses into
account, because this would unnecessarily limit the domain of mathematics and
the freedom of mathematicians, and also prevent the proof of independent results.

It is certainly possible to get along without a determinate hypothesis or stipulation, for
example without the imaginary numbers. But this would result in an absolutely unjustified
limitation of the mathematical domain, and besides, it would not prove, independently from
the hypothesis itself, anything against the hypothesis and its consequences in that domain
(Veronese, 1891, 647).

The possibility of introducing ideal elements in different ways is also admitted
by Hilbert, who mentions the case of plane geometry:

Plane geometry also offers us a good example of the fact that from the given system
taken as starting point there is not just one possibility of generalization [Erweiterung] but
rather the way one generalizes the system could vary depending on the aim one has. For
example, in the complex function theory we find a different generalization of elementary
plane geometry. Here one adds just one ideal point to the points of the plane represented
by complex numbers (the number u+ iv represents the point with coordinates u,v) (Hilbert,
1919, 94).

If one accepts the possibility of various alternative ways of introducing ideal
elements, then the heuristic strategy reconstructed in Sect. 6.2 becomes even more
undetermined. Yet, in the case of infinitely great numbers, there is an evident differ-
ence between Cantor’s transfinite numbers which require a change in the features of
the operation (e.g. addition is not commutative) and Veronese’s non-Archimedean
numbers, which constitute a non-standard model of the theory of real numbers.

6.4 The Interest of an Argumentative Investigation
of the Method of Ideal Elements

The analysis of meta-arguments is philosophically interesting because it reveals
significant differences in the epistemological approaches of Dedekind, Hilbert,
Cantor and Veronese to the method of introduction of ideal elements. Dedekind
had a tendency to conceive generality as the achievement of a theory that might
include the original theory as a special case, sharing a cumulative conception

14Veronese himself had rightly acknowledged that his own generalization was different from the
one by Cantor: “We do not make any use of G. Cantor’s numbers in the Foundations of geometry,
and we mention them in this Introduction only to compare them with our infinitely great numbers”
(Veronese, 1905, 349). Nonetheless, misunderstanding on this point remained, especially because
Poincaré wrote that Veronese had developed “a true non-Archimedean arithmetic and a true
non-Archimedean geometry where the transfinite numbers of Cantor play a predominant role.”
(Poincaré, 1904, 14).
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of mathematical knowledge and a preference for hierarchically ordered theories.
Hilbert aimed at justifying practical arguments in heuristic mathematical reasoning.
Cantor considered his generalization of numbers as ‘the’ natural one, and therefore
unique, while Veronese considered that different alternative generalizations were
not only possible but also equally legitimate with respect to different aims.

Besides, the above analysis of what mathematicians said about ideal elements has
shown that the method of introduction of ideal elements can be interestingly investi-
gated not only with respect to the ontological status of mathematical objects, but also
with respect to the normative value of certain heuristic strategies. In particular, the
reconstruction of the specific arguments has shown that the discourses on the method
of introduction of ideal elements contain distinct lines of reasoning that might be
roughly divided in two groups. The arguments discussed in Sect. 6.2 have been
reconstructed as instances of a value-based practical argumentation scheme that
can be used to convince the mathematical community of the opportunity to choose
a given heuristic strategy under certain circumstances. The arguments discussed
in Sect. 6.3 have on the contrary the function of answering some possible critical
objections to the arguments presented in Sect. 6.2, and therefore play the role of
meta-arguments, i.e. arguments concerning the legitimacy of an argument. While the
argument reconstructed in Sect. 6.2 has a normative conclusion recommending the
introduction of ideal elements to eliminate certain exceptions of a theory, the meta-
arguments in Sect. 6.3 aim at evaluating the legitimacy of that heuristic strategy, and
thus offer interesting insights on the epistemological conception of their proponents.

The method of introduction of ideal elements is here investigated as a procedure
that is typical of mathematics: it focuses our attention not only on the investigation
of the mathematical reasoning displayed in the axiomatic formulation of a theory or
in the development of a proof, but also on the mathematical reasoning displayed in
mathematical argumentation about mathematical reasoning itself. The philosophical
interest and the possible fruitful developments of this approach might concern
several aspects of the investigation of mathematical reasoning.

Firstly, the method of introduction of ideal elements is investigated here as a
complex phenomenon, that includes ontological, epistemological, historical, and
especially methodological features that are not always taken into due account in
the literature. Attention is not focused on what makes real numbers ‘real’ (some
kind of relation to the world or to material signs), but on the rationality of an agent
that takes a theory as a starting point, transforms it in a legitimate way, and obtains
an extended theory whose domain can be compared to the domain of the initial
theory, thereby gaining some further knowledge. The notion of ideality concerns the
use of mathematical theories inside mathematics, and the meta-theoretical relations
between such theories. The regulative value of ideal elements can be accounted for
as an increase of knowledge on the elements of the first theory obtained by meta-
theoretical means.

Secondly, the argumentative approach takes mathematical practice into account,
provided of course that under mathematical practice one considers not only the
discovery and proof activity of mathematicians, but also the broader sphere of their
investigations of the legitimacy of mathematical heuristic strategies and efforts to
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produce adequate support for normative claims about preferable strategies under
given circumstances. Hintikka (2004) remarked that logic (or philosophy of logic)
should concern successful strategies rather than only correct strategies of reasoning;
I am suggesting that the investigation of ideal elements might shed some light on
successful strategies of reasoning about mathematical theories. Moreover, when
mathematical discourse is reconstructed in the light of arguments over heuristic
moves, attention is focused on another important feature of mathematical practice:
the relations between the discovery of a new theory and the presence of specific
difficulties or unsolved problems (the exceptions discussed by Dedekind and
Hilbert).

Thirdly, a detailed analysis of texts from nineteenth century mathematicians
might not only be historically interesting, but also theoretically fruitful, because
it helps to discover relevant changes in the general mathematical framework.
For example, the innovative role played in the second half of the century by
closure properties of operations and dual transformations might go unobserved in
contemporary practices, because it is often taken for granted in the symbolism used
to formalize the models of a theory.

Fourthly, a precise and detailed reconstruction of the arguments involved helps
to point out problems of interpretation, and to underline the vague formulation
of certain concepts (e.g. generalization, exceptions, . . . ), whose detailed analysis
constitutes a preliminary condition for subsequent investigations on the possible
strategies to generalize a theory and on the kind of generality to be thus achieved.

From a foundational perspective, the approach turns the attention from the
ontological privilege of certain entities to the methodological relevance of heuristic
moves, showing the need for a more detailed investigation into the mechanisms
of theory-change in mathematics and into the question of cumulative growth of
knowledge: what is preserved and what is lost in the transformation of the original
theory into a new theory? What is the role of models in theory-change?

Finally, this approach might focus the attention on the question of the specificity
of mathematical reasoning with respect to other argumentative and scientific
practices. If the discourse on ideal elements can be reconstructed as a value-based
practical argument often accompanied by further arguments that aim at justifying
the former, would it be possible to reconstruct the discourse on ideal elements in
physics in the same way? Hilbert had already raised the question in his 1919 lecture
on ideal entities: is the method of reasoning by appeal to ideal elements typical
of mathematics or is it common to other disciplines? Hilbert claimed that ‘ideal’
in physics usually means something different, because it concerns an operation of
abstraction from some properties that are considered as irrelevant in the construction
of a model, but he also suggested that the notion of a ‘juridical person’ in legal
theory might have interesting analogies with the discourse on ideal elements in
mathematics.15 The answer to this question may be relevant for philosophical

15A ‘juridical person’ (persona ficta) is a non-human entity that is regarded in law as having the
same status (name, rights, responsibilities, . . . ) as a human person.
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discussion on mathematical reasoning and explanation: are there several field-
dependent notions of explanation or rather a unique notion of explanation for all
scientific disciplines?
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Chapter 7
How Persuaded Are You? A Typology
of Responses

Matthew Inglis and Juan Pablo Mejía-Ramos

Several recent studies have suggested that there are two different ways in which a
person can proceed when assessing the persuasiveness of a mathematical argument:
by evaluating whether it is personally convincing, or by evaluating whether or not
it is publicly acceptable. In this chapter, using Toulmin’s (1958) argumentation
scheme, we produce a more detailed theoretical classification of the ways in which
participants can interpret a request to assess the persuasiveness of an argument. We
suggest that there are (at least) five ways in which such a question can be interpreted.
The classification is illustrated with data from a study that asked undergraduate
students and research-active mathematicians to rate how persuasive they found a
given argument. We conclude by arguing that researchers interested in mathematical
conviction and proof validation need to be aware of the different ways in which
participants can interpret questions about the persuasiveness of arguments, and that
they must carefully control for these variations during their studies.

The issue of what types of arguments students find persuasive and convincing
has been a recurring theme in the mathematics education literature. Mason et al.
(1982) placed conviction at the heart of mathematical practice by proposing that
learners first need to convince themselves, then a friend, and finally an enemy.
Harel and Sowder (1998) analysed the notion of conviction in depth, by publishing
a taxonomy of ‘proof schemes’: the types of arguments that students use both to
ascertain for themselves (to remove their own doubts) and to persuade others (to
remove others’ doubts) about the truth of a statement. Other authors have suggested
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that these two processes may be disassociated: that the types of arguments that
students find personally persuasive may not necessarily be the same types that they
would use to persuade third parties such as their mathematics teachers or lecturers
(Healy and Hoyles, 2000; Mejía-Ramos and Tall, 2005; Segal, 1999; Raman, 2002).
In this paper we suggest that the notion of persuasion and conviction is yet more
complicated than this two-way categorisation suggests. Here, we argue that there
are (at least) five different interpretations that a participant may reasonably make
when asked how persuasive they find a mathematical argument.

7.1 Toulmin’s Argumentation Scheme

To situate our proposed taxonomy of the ways in which participants may respond
to questioning about how ‘persuaded’ or ‘convinced’ they are by a mathematical
argument, we first introduce Toulmin’s (1958) argumentation scheme. Toulmin
advocated an approach to analysing arguments that departed dramatically from
traditional approaches to formal logic. He was less concerned with the logical
validity of an argument, and more interested in the semantic content and structure
in which it fits. This manner of analysing argumentation has become known as
‘informal logic’ in order to emphasise its differences from formal logic.

Toulmin’s scheme has six basic types of statement, each of which plays a
different role in an argument. The conclusion (C) is the statement of which the
arguer wishes to convince their audience. The data (D) are the foundations on which
the argument is based, the relevant evidence for the claim. The warrant (W) justifies
the connection between data and conclusion by, for example, appealing to a rule,
a definition, or by making an analogy.1 The warrant is supported by the backing
(B), which presents further evidence. The modal qualifier (Q, henceforth qualifier)
qualifies the conclusion by expressing degrees of confidence; and the rebuttal (R)
potentially refutes the conclusion by stating the conditions under which it would not
hold. Importantly, in any given argument, not all of these statements will necessarily
be explicitly verbalised. These six components of an argument are linked together
in the structure shown in Fig. 7.1.

In the field of mathematics education, many researchers have applied Toulmin’s
scheme to analyse arguments constructed by students. However, it has become
commonplace to use a reduced version of the scheme by omitting the qualifier and
rebuttal. Krummheuer, for example, adopted this reduced version of the scheme
to analyse pupil behaviour throughout his long programme of research on the
development of collective argumentation practices in primary school classrooms

1Toulmin’s (1958) use of the word ‘warrant’ is not identical to the way in which the term has been
used by some mathematics education researchers. Rodd (2000), for example, saw a warrant as
removing uncertainty, whereas Toulmin was more flexible, accepting that a warrant can be qualified
so as to merely reduce uncertainty.
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R

CQD

W

B

Fig. 7.1 The layout of
Toulmin’s (1958)
argumentation scheme,
showing data (D), warrant
(W), backing (B), qualifier
(Q), rebuttal (R) and
conclusion (C)

(e.g. Krummheuer 1995). A similar stance has been adopted by researchers
studying classroom interaction at the university level (Stephan and Rasmussen,
2002), basic number skills (Evens and Houssart, 2004), logical deduction (Hoyles
and Küchemann, 2002; Weber and Alcock, 2005), geometry (Cabassut, 2005;
Pedemonte, 2005), and general proof (Yackel, 2001). Inglis et al. (2007) argued that
without using Toulmin’s full scheme it may be difficult to model accurately the full
range of mathematical argumentation. They gave research-active mathematicians
a series of conjectures, and asked them to decide whether or not the conjectures
were true, and to provide proofs. It was found that these mathematicians regularly
constructed arguments with non-deductive warrants in order to reduce rather than
remove their doubts about a conjecture’s truth value. Inglis et al. pointed out that
it would be impossible to model such arguments accurately without incorporating
the qualifier component of Toulmin’s scheme. They concluded that (i) using the
restricted version of Toulmin’s scheme in the manner adopted by earlier researchers
reduces the range of mathematical arguments that can be successfully modelled;
and (ii) rather than concentrating on the appropriateness of the warrants deployed
by students, researchers should instead study the appropriateness of the warrant-
qualifier pairings constructed in student argumentation.

In this chapter, we use Toulmin’s full scheme to derive a classification of the ways
in which the question “how persuaded are you by this argument?” can be interpreted.
We note that, as in the case of argument construction, a comprehensive study of
argument evaluation cannot be conducted using a reduced version of the scheme.

7.2 How Persuaded Are You?

Some previous researchers have studied the types and levels of conviction and
persuasion students place in an argument simply by asking them (e.g. Mejía-Ramos
and Tall 2005; Segal 1999; Raman 2002). But what do students understand by such
a question? We suggest that there are (at least) five distinct and reasonable ways of
answering the question how persuaded are you by this argument? To demonstrate
our typology in a general context, we introduce the following fictional day-to-day
argument about train times:
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the last three times I have 
gone anywhere by train I 

have arrived late
so, certainly

when I go to the 
airport tomorrow 

the train will be late

if the train arrives late three 
times consecutively, it will 

be late on the fourth

events in the past are a good 
guide to events in the future

no rebuttal

Fig. 7.2 Late-train argument modelled using Toulmin’s (1958) scheme, with inferred warrant,
backing and rebuttal components (the inferred components are italicised)

The last three times I have gone anywhere by train, I have arrived several hours late. So, it
is certain that, when I go to the airport tomorrow, the train will be late.

Using Toulmin’s (1958) layout we can model this argument by identifying its
different types of statements (see Fig. 7.2). We claim that a person evaluating how
persuaded he or she is by this argument may focus on different parts and aspects of
the argument. He or she may focus on: (0) the data of the given argument, and how
significant/trustworthy it is; (1) the likelihood of its conclusion; (2) the strength of
the warrant (and its associated backing); (3) the given qualifier (and its associated
rebuttal), and the extent to which this qualifier is appropriate considering the rest of
the argument; and (4) the particular context in which the given argument may take
place. We now focus on each of these evaluation types in turn.

7.2.1 Type 0

One possible evaluation occurs when the participant focuses on the data of the given
argument and evaluates the whole argument in terms of how strongly he or she trusts
these data.

One possibility is that the participant distrusts the data and projects these doubts
onto his/her evaluation of the whole argument. For instance, in the train example
someone may suspect that the arguer is lying about the irregularities of the three
train trips mentioned. For that person, this argument could be rated as unpersuasive
mainly because he or she considers its data unreliable.
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On the other hand, it is possible that someone’s feeling of affinity for the data
would be so strong that he or she would feel persuaded by the argument without
taking into account how these data fit in the whole argument. For example, someone
who has herself arrived several hours late in her last few train trips may find the
argument persuasive mainly because of her empathy for its data.2 Such an evaluation
may involve what is known in the psychology literature as myside bias, a tendency
to evaluate data from one’s own perspective, having difficulty in decoupling one’s
prior beliefs and opinions from the evaluation of evidence and arguments (Stanovich
and West, 2006). In this particular case, the evaluator could focus on the data and
evaluate them in a manner biased towards his or her own opinions. These opinions
and beliefs could then be projected on to the evaluation of the whole argument.

7.2.2 Type 1

Another way of evaluating this argument is by focusing on the likelihood of
its conclusion alone. In the train example, someone focusing on the argument’s
conclusion (i.e. “the train to the airport will be late tomorrow”) may report being
highly persuaded by the argument, since he or she knows that scheduled track repairs
in the vicinity of the airport will indeed delay trains that day. Alternatively, some
people may not feel persuaded by the argument as, knowing that the train to the
airport is the most reliable journey in the local train network, they expect this train
to be on time.

In these two cases, evaluators would have reported the qualifier component of
an entirely separate, and self-constructed, argument to that which they were asked
to evaluate; the only similarities with the original argument being that they shared
conclusions . In other words, in these cases the evaluators have their own evidence
and reasons for trusting/distrusting the conclusion, and this information is projected
onto the evaluation of the whole argument. However, as in Type 0 evaluations, it
may also be the case that evaluators’ uninformed intuition regarding the argument’s
conclusion, and not explicit information external to the argument, influence their
reported level of persuasion.

7.2.3 Type 2

Another possible evaluation occurs when participants focus their attention on
the warrant of the argument (with its associated backing). Unlike the data and the
conclusion, the warrant of the argument is inextricably linked to other parts of the

2Elena Nardi has pointed out to us that this may be the type of persuasion enlisted by propagandists
who use sensationalist data in the hope that the affinity of the audience for these data will sway
them to support whatever conclusion he or she wishes to draw.
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argument: it is a statement linking the data and the conclusion. Furthermore, any
question regarding the trustworthiness of the warrant would lead to an evaluator
querying its (explicit or implicit) backing and to consider possible rebuttals : if
the warrant is appropriately backed and accepts no rebuttals (or only extraordinary
ones), then one would say that the argument strongly supports the conclusion; but
if the warrant is not satisfactorily backed and one can think of critical rebuttals, one
would say that the warrant weakly supports the conclusion. Therefore, focusing on
the warrant of an argument, a person may evaluate the strength with which it links
the data with the conclusion, taking into account its backing and possible rebuttals.
In this case, a participant’s evaluation of the whole argument essentially consists of
completing this core part of the given argument (data-warrant-conclusion) with what
he or she believes is the appropriate qualifier for the argument, and then reporting
this qualifier as his or her level of persuasion in the whole argument.

In the train example, a person might reply to the request of stating his or her level
of persuasion in the whole argument by saying that (given the data, implicit warrant
and the possible rebuttals associated with it) it is reasonable to reach the conclusion
with a plausible qualifier. It is important to note that in this case the person is paying
little or no attention to the absolute qualifier that was actually given in the train
argument; he or she would be reporting what they believed to be the appropriate
qualifier. It is also important to note that this way of evaluating the argument differs
from Type 1 evaluations: a Type 2 evaluation focuses on the given warrant and
takes into account certain information from the argument that is associated with that
warrant, whereas a Type 1 evaluation focuses on its conclusion and may involve the
(possibly implicit) construction of an entirely new argument.

7.2.4 Type 3

In contrast to the previous types of evaluation, a participant’s attention may be
drawn to the qualifier given in the argument (and its associated rebuttal). A Type
3 evaluation occurs when the evaluator decides to what extent he or she believes
that the given qualifier is appropriate, considering the rest of the argument.

In the train example, someone may state that he or she is not at all persuaded by
the argument as, although it might be reasonable to be worried about the possible
lateness of the train based on prior experience, it is completely inappropriate to
pair such a warrant with an absolute qualifier as the arguer appears to have done.
Unlike a Type 2 evaluation, where the evaluator decides what type of qualifier would
be appropriate given the rest of the argument, in a Type 3 evaluation the issue is
whether the given qualifier is appropriate on account of the rest of the argument. It
is clear that one could simultaneously consider an argument to be Type 2 persuasive
but Type 3 unpersuasive. Indeed, believing (based on the prior experience cited in
the argument) that the train would plausibly—but not certainly—be late could lead
someone to such a judgement: they would assess the appropriate qualifier to be
relatively high (i.e. Type 2 persuasive), but the qualifier as given in the argument to
be inappropriate (i.e. Type 3 unpersuasive).
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7.2.5 Type 4

Finally, instead of focusing on a particular part of the argument, the participant may
attend to the context in which the argument is situated, and the kinds of arguments
that are admissible in such contexts. In this case, when asked how persuaded they
are by a given argument, participants may answer by considering how acceptable
the argument would be in a particular context. It is well known in the context of
jurisprudence that some arguments, no matter how persuasive, are not admissible in
court. In England and Wales, for example, a prosecuting lawyer may not refer to a
defendant’s criminal record during the case. An argument based on such data may
well carry an extremely high qualifier, but in the given context it is inadmissible.
Naturally what constitutes an admissible argument will depend on the particular
context: what is admissible in a criminal court is different from what is admissible in
a civil court which, in turn, is different from what is admissible during an argument
in a pub.

The example of the train argument may well be admissible when talking
informally, but if one were attempting to convince one’s departmental finance officer
to issue an advance to pay for a taxi fare to the airport, it could be considered
inadmissible. Such matters are governed by a set of rules which state what kinds
of data, warrants, backings, qualifiers and rebuttals can be used in an admissible
argument; and a hunch about the possible lateness of the train is unlikely to meet
these rules.

The five types of persuasion we have discussed are summarised in Fig. 7.3.

7.3 Illustrating the Typology in Mathematics

Our primary aim in the second half of the paper is to illustrate the applicability
of this typology to the evaluation of mathematical arguments. A second aim is to
provide ‘existence proofs’ of each of the types: to show that the different types of
evaluations can be, and are, made by mathematicians and students when evaluating
mathematical arguments (or, at least, that mathematicians and students claim to be
making evaluations of each type). To accomplish these aims, we draw on evaluations
of a heuristic argument collected as part of a study on the role of authority in
mathematical argumentation (Inglis and Mejia-Ramos, 2009). The argument used
in the study was given by Gowers (2006) and supports the conjecture that there are
one million consecutive sevens somewhere in the decimal expansion of π :

All the evidence is that there is nothing very systematic about the sequence of digits of π .
Indeed, they seem to behave much as they would if you just chose a sequence of random
digits between 0 and 9. This hunch sounds vague, but it can be made precise as follows:
there are various tests that statisticians perform on sequences to see whether they are likely
to have been generated randomly, and it looks very much as though the sequences of digits
of π would pass these tests. Certainly the first few million do. One obvious test is to see
whether any short sequence of digits, such as 137, occurs with about the right frequency in



108 M. Inglis and J.P. Mejía-Ramos

Type
Foci of attention (in bold)

in the given argument
Question answered 

in terms of the focus of attention

0. Data
How strongly do you

trust the Data?

1. Conclusion
How strongly do you

believe the Conclusion?

4. WarrantData Conclusion

Backing

Rebuttal

Qualifier

Context
How admissible is the argument

in a given Context?

2.
WarrantData Conclusion

Backing

How strongly does the given Warrant
(and its associated backing) support the 
conclusion? (i.e. what is the appropriate 

qualifier for the argument?)

3.

Backing

Rebuttal

WarrantData ConclusionQualifier
How appropriate is the Qualifier

(and its associated rebuttal) 
given the rest of the argument?

Fig. 7.3 A summary of the types of persuasiveness identified in this paper, expressed using
Toulmin’s (1958) scheme

the long term. In the case of the string 137 one would expect it to crop up about 1/1000th
of the time in the decimal expansion of π .

Experience strongly suggests that short sequences in the decimal expansion of the irrational
numbers that crop up in nature, such as π , e or

√
2, do occur with the correct frequencies.

And if that is so, then we would expect a million sevens in the decimal expansion of π about
10−1000000 of the time—and it is of course, no surprise, that we will not actually be able to
check that directly. And yet, the argument that it does eventually occur, while not a proof,
is pretty convincing (p. 194).

The two stages of this argument are shown graphically, using Toulmin’s (1958)
scheme, in Fig. 7.4.

Our sample consisted of two groups, undergraduate students and research-active
mathematicians. Participants completed the task online (for a discussion on the
reliability of internet studies see, for example, Krantz and Dalal 2000). The under-
graduate students were studying at one of four highly-regarded UK universities, and
were asked to participate by means of an email from their departmental secretary.
The email explained the task and asked them to click through to the experimental
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the first few million digits 
of π pass many statistical 

tests for normality

so, it is very 
probable that

π is normal

possibility that π fails the tests if 
sufficient digits are considered

if a large sample of an infinite 
string of digits passes many 

tests for normality, the string of 
digits is likely to be normal

properties of statistical tests

stage 1

π is normal so, therefore

no rebuttal

π has a sequence of one 
million 7s somewhere 

in its decimal expansion

7 occurs a milllion times in 
a row in a normal sequence 

with probability 10−1000000

properties of normality

stage 2

Fig. 7.4 Two stages of Gowers’s (2006) argument modelled using Toulmin’s (1958) scheme,
with inferred components italicised (A number is said to be normal if its digits show a random
distribution)

website should they wish to participate. The research-active mathematicians were
recruited in two different ways. Some were recruited in a similar manner as
the undergraduates, via emails from their departmental secretaries; others were
recruited through an advertisement posted on a mathematics research newsgroup.
In the study, participants were presented with Gowers’s (2006) argument, and were
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asked to state to what extent they were persuaded by it, using either a five point
Likert scale or a continuous 0–100 scale (depending on whether participants took
part in the pilot or main study). In addition, participants were invited to leave
explanatory comments on their reported level of persuasion. It is these comments
that we use in the following sections to illustrate our theoretical classification.

Our focus in the analysis of the extracts is on the aspects of the argument which
participants focus upon when explaining their evaluations. While we accept that
the full complexity of participants’ judgements may not be fully reflected by such
short explanations (especially given factors such as myside bias, Stanovich and
West 2006), we nevertheless believe that focusing on these reported comments will
allow us to illustrate the utility of the typology for researchers interested in how
mathematicians and students become persuaded by mathematical arguments.

We should emphasise that the classification we introduce in this paper is derived
from a theoretical analysis of Toulmin’s (1958) argumentation scheme; an analysis
that considers the type of statement upon which participants may focus their atten-
tion when asked to evaluate their degree of persuasion in an argument. The extracts
reported in the following sections, therefore, should be viewed as existence proofs of
each of the categories, not as a data set from which we are attempting to generalise.

7.3.1 Type 0

When asked to evaluate and explain their level of persuasion in Gowers’s argument
regarding the decimal expansion of π , one research-active mathematician wrote:

This is not an argument. To be more precise, in the statement no concrete evidence is
presented. He only explains how the statistical evidence could look like, but does not specify
the empirical results of the tests (Researcher).

In this case, the evaluator’s explanation of his or her rating clearly focused on the
data of the first stage of the argument. This researcher’s comment concentrated on
the “statistical evidence” of the argument, reporting dissatisfaction with the lack of
concreteness of its presentation. Although this factor may be related to concerns that
the researcher may have had with the warrant and backing of the argument, it is clear
that their focus was on the data: to persuade this participant, at a minimum the data
of the argument would need to be presented in a considerably more formal fashion.

7.3.2 Type 1

Type 1 evaluations were not uncommon among participants’ comments. For
example, one research-active mathematician wrote:

Normalcy of (the digits) of pi is not unreasonable given almost all reals are normal
(Researcher).
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This researcher’s comment focused on the conclusion of the first stage of the
argument (i.e. “π is normal”), and reported the qualifier component (i.e. “not
unreasonable”) of an entirely separate, and self-constructed, argument to that
which participants were asked to evaluate. He or she did not mention the data,
warrant, backing or rebuttal given in Gowers’s argument, and instead appears
to have constructed a separate argument that merely shares a conclusion with
the given argument. The data (“almost all reals are normal”), implicit warrant,
and implicit backing in this new argument are entirely distinct, and the eval-
uator reported the new argument’s qualifier by stating that the conclusion is
“not unreasonable”.

Another example of a Type 1 evaluation came from the following student:

I am mainly not persuaded because I have seen a formula which can calculate the n-th digit
of pi, suggesting that is not a random series of numbers (Undergraduate Student).

Again, the student’s comment focused on the conclusion of the first stage of
Gowers’s argument, and evaluated the qualifier of an entirely new argument; the
data, warrant and backing of the given argument are not taken into account. Of
course, the construction of an entirely new argument—necessary for a Type 1
evaluation—would only be possible if the participant had a strong background
knowledge of the domain in which the argument is situated.

7.3.3 Type 2

The following response typifies a Type 2 evaluation of Gowers’s argument:

The evidence lends decent weight to the conjecture; but naturally as proof is impossible it
is unrealistic to assume certainty (Undergraduate Student).

Here the student seemed to be suggesting that the evidence presented—the data,
warrant and backing—indicates that the conclusion may be true, but that any
stronger qualifier would be inappropriate (possibly considering the existence of
rebuttals). This student has considered the warrant of the argument (with its
associated data, backing, and possible rebuttals) and has decided that he or she
would be willing to pair a qualifier with it that “lends decent weight” to the
conclusion. Characteristically for Type 2 evaluators, this student does not seem to
be addressing the argument’s given qualifier; this comment only refers to the new
qualifiers that he or she considers appropriate given the rest of the argument.

7.3.4 Type 3

When participants were asked to evaluate Gowers’s argument there were many
examples of Type 3 evaluations:
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Despite the statistical evidence that pi is a ‘normal number’ (only testing short sequences)
there could still be some subtle numerical invariant that prevents this particular very long
sequence from occurring (Researcher).

In this comment, the researcher first evaluated the link between the data of the
first stage of the argument and its conclusion, and then centred on an unmentioned
rebuttal (the possibility of a “subtle numerical invariant”), suggesting that Gowers’s
given qualifier was inappropriate. A similar evaluation was reported in the following
comment by an undergraduate student:

The reasoning is flawed in moving from talking of experience strongly suggesting ‘short
sequences’ occur in naturally occurring irrational numbers to saying that ‘a million sevens’
is likely to occur. Of course, their definition of a ‘short sequence’ isn’t given, but I dare
guess it is much fewer numbers than a million (Undergraduate Student).

Again, in this case the student criticised the strength with which the data is claimed
to support the argument’s conclusion, focusing on what he or she considered to be
an inappropriate qualifier. In this comment, the student did not report the extent to
which he or she believed that the given evidence supports the conclusion; instead
they seemed to be more concerned about the relatively high qualifier given in the
original argument.

In both these extracts the evaluators exhibited the hallmarks of a Type 3
evaluation; they explained that they were not persuaded by the argument as a whole
because they did not accept that the given warrant (and associated backing) justifies
the given qualifier (and associated rebuttal).

7.3.5 Type 4

A Type 4 evaluation can clearly be seen in this researcher’s response:

The argument hinges on a precise notion of randomness in the digits of pi, which may
be plausible, but hasn’t been proven. If a manuscript that made an analogous argument
came to me for refereeing, I’d recommend it be rejected for lack of mathematical rigour.
However, if someone wanted to generate ‘good pseudorandom’ bits from the digits of pi for
a casual computer program (i.e., not one on which lives or property crucially depend), I’d
say Gowers’s argument would justify the strategy (Researcher).

Here the evaluator suggested that in the context of an academic mathematics journal
he or she would deem the argument to be inadmissible, but that in a different
context, where one merely needed to generate some random numbers, it would be
admissible. This position was clarified still further by noting that in yet another
context—where the random numbers were a matter of life or death—then perhaps
the argument would again struggle to meet the requirements of admissibility.

Within educational contexts Type 4 evaluations are very important, and an ability
to understand successfully the different rules of admissibility for different contexts
may be a hard skill for students to develop. These rules undoubtedly vary between
educational levels—the type of justification required at school level mathematics is
typically very different from that required at university level—but may also vary
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between courses at a single level. For example, the types of argument which are
admissible to justify the rules of integration may be very different if the notion of
integral is studied during a real analysis course compared with during an applied
fluid dynamics course. In the former a formal derivation from the definition of, for
example, the Riemann integral, may be necessary, whereas in the latter a statement
of the result might be sufficient.

7.3.6 Mixing the Types

Sometimes participants in empirical research studies may give evaluations of
different types in the same response: multiple interpretations of the question may
lead to answers with multiple layers. This, for example, is how one mathematics
researcher responded when asked to evaluate Gowers’s argument:

Purely logically on the basis of the evidence presented, I am not persuaded at all. However,
I am aware that there is a substantial body of research (rather more formal than the waffle
above) specifically addressing equidistribution of digit sequences of pi. So I moved from
the most sceptical to the next category by way of combining that knowledge with the
information above (Researcher).

Here the evaluator explicitly noted that he or she was not persuaded by the data,
warrant and backing of the argument: they were completely Type 2 unpersuaded.
However, the researcher claimed that they were somewhat Type 1 persuaded on
account of his or her background knowledge about the digit sequences of π .
Understandably, these differing interpretations gave this participant some difficulty
when asked to rate his or her level of persuasion on a Likert scale. However, the
proposed typology can help us to make sense of this participant’s multi-layered
written comment.

7.4 One Question, Five Ways of Answering

Earlier researchers have studied two different ways of evaluating a given argument
and the two corresponding levels of persuasiveness reported by their participants.
This led them to establish a distinction between a private and a public, or internal
and external, sense of conviction. Raman (2003, p. 320), for example, differentiated
between private and public arguments and their corresponding senses of conviction
(see also Raman 2002):

By ‘private argument’ I mean, ‘an argument which engenders understanding’, and
by ‘public’ I mean ‘an argument with sufficient rigor for a particular mathematical
community’.

In our terms, Raman was noting the differences between Type 4 persuasion
and persuasion of Types 0–3. The usefulness of this two-way distinction in
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mathematics education lies in the importance of Type 4 evaluations in mathemat-
ical argumentation.3 Mathematical proof seems to set argument admissibility in
mathematical practice aside from admissibility standards in other contexts, making
students’ beliefs of what constitutes a valid mathematical proof, and the ways in
which these beliefs influence their reported level of persuasion in a given argument,
an interesting topic of study among mathematics educators.

However, we suggest that a finer typology of persuasiveness may be helpful:
whereas earlier researchers have spoken only of a ‘private’ sense of conviction, we
have demonstrated that, in the case of argument validation, there are (at least) four
different ways in which such an evaluation may be conducted in a ‘private’ fashion.
Similarly, there is not simply one variety of ‘public’, or Type 4, persuasion. Each
particular context brings with it its own particular rules of admissibility, and these
rules vary greatly between contexts. Even in the particular context of mathematics,
requirements for rigour alter greatly according to educational level, mathematical
subject and other particular circumstances of each evaluation.

Segal (1999) used two different questions to study this distinction between a
private and public sense of conviction. Following Mason et al. (1982), she asked
her participants whether or not a given argument convinced them personally, and
whether or not the argument would persuade “one’s enemies (as opposed to one’s
friends, or oneself)” (Segal, 1999, p. 199). It is unclear whether a participant’s
response to the first question involves an evaluation of Type 0, 1, 2 or 3. Further-
more, a participant’s response to the second question (arguably related to Type 4
evaluations) is, of course, dependant upon in which context the participant situates
their enemy, and what type of evaluation is expected from that enemy.

Therefore, this finer typology may be used by both teachers and researchers not
only to better assess students’ and participants’ reported levels of persuasion in
a given mathematical argument, but also to design specific questioning strategies
to incline students and participants towards making the teacher’s or researcher’s
desired type of evaluation.

7.5 Using the Typology: An Example from the Literature

In this section we give a specific example of a piece of analysis from the
mathematics education literature to illustrate the utility of the typology proposed
here. During their study of the proof conceptions of school children, Coe and
Ruthven (1994) looked at students’ investigative and problem solving strategies.

3Indeed, it has recently been demonstrated that even minor linguistic changes to task instructions
can influence whether a Type 4 evaluation is conducted. Mejía-Ramos and Inglis (2011) found that
responses to a convincing (but informal) visual argument differed between two groups who were re-
spectively asked “does the argument prove the claim?” and “is the argument a proof of the claim?”
The latter question seemed to privilege Type 4 evaluations and the former evaluations of Type 2.
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Here we concentrate on one particular extract from an interview transcript reported
by Coe and Ruthven. Whilst working on a problem regarding the sums of diagonals
in a number square, Bill, a 17 year old student, checked that a statement he
was investigating was true for six cases, and then said that it was “safe to make
a conjecture”. The interviewer pressed him by asking “what sort of percentage
certainty would you put behind that, say, if I forced you on that?” Bill replied by
estimating he had a “percentage certainty” in the “high nineties”.

What has happened here? Bill and the interviewer were discussing the persua-
siveness of an argument with an inductive warrant (which consisted of the numerical
evaluation of six examples). The interviewer pressed Bill with an ambiguous
question, by asking the “percentage certainty” he would be willing to “put behind
that”. One interpretation is that, when pressed, Bill conducted a Type 2 evaluation.
He evaluated what sort of qualifier he was willing to pair with the data, warrant and
conclusion of the given (self-constructed) argument, and made the decision that
he was willing to deploy a high (but non-absolute) qualifier (Seen in this light,
Bill’s behaviour closely matches that of the highly successful research students
interviewed by Inglis et al. 2007). Coe and Ruthven (1994), however, appear to have
interpreted Bill’s response in a different way, as a Type 4 evaluation. They wrote that
Bill’s “certainty appears to be gained just by checking a relatively small number of
cases” (p. 50), and used the episode as evidence for the claim that “students’ proof
strategies were primarily and predominantly empirical” (p. 52, our emphasis). Of
course, it may well be that Bill was conducting a Type 4 evaluation of his self-
constructed argument: there are certainly many studies which corroborate Coe and
Ruthven’s claim that students often think empirical evidence can form admissible
proofs (e.g. Balacheff 1987; Harel and Sowder 1998; but see Weber 2010). However,
when seen within the typology set out in this paper, Coe and Ruthven’s interpretation
of this interview evidence is, at best, arguable.

We suggest that an awareness of the typology presented in this paper could
help researchers conducting studies on mathematical conviction to deploy careful
questioning strategies to increase the likelihood of accurately interpreting their
interviewee’s behaviour.

7.6 Concluding Remarks

Researchers interested in assessment have, for some time, been aware that there
may be a gap between test designers’ interpretation of a given question and the
interpretation of those who respond to the question. In their study of 11 and 12 year
old children’s responses to national test items, Cooper and Harries (2002) found
that students interpretations of how much realism to use in their answers when
answering ‘realistic’ mathematical questions differ from those of the questions’
designers. We suggest that teachers and researchers who are interested in what types
of mathematical argument students find persuasive need to have awareness of the
differing ways in which their questions may be interpreted. Similarly, the many
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researchers who have studied the manner in which students and mathematicians
validate proofs (e.g. Selden and Selden 2003; Weber 2008) also need to be aware
that requests to ‘evaluate’ a purported proof may lead to differing interpretations
from different participants.

In this chapter we have proposed that there are (at least) five different ways in
which participants in research studies can reasonably interpret a request to evaluate
their level of conviction or persuasion in an argument. The first two types that
we have described revolve around a participant evaluating a particular part of the
argument (data or conclusion ) and paying little or no attention to the other parts; two
other types involve the participant evaluating the core part of the argument and either
completing it with what they believe is an appropriate qualifier, or assessing whether
or not the given qualifier is appropriate; a fifth type is related to one particular
context in which the argument may take place and the participant’s evaluation
of whether or not the given argument would be admissible in such context. By
using Toulmin’s full scheme, it is possible to distinguish clearly between these
different types of argument evaluation. Given these different ways, we suggest that
the empirical researcher must design their methodological instruments carefully to
determine which question participants are responding to, and take into account these
different types of evaluations in their theorisation of students’ reported levels of
persuasion.
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Chapter 8
Revealing Structures of Argumentations
in Classroom Proving Processes

Christine Knipping and David Reid

8.1 Introduction

This paper seeks to describe a method for revealing the rationality of arguments
that are produced during proving processes in the mathematics classroom. As
proving processes in the classroom follow their own peculiar rationale, the problem
is to reconstruct and analyze the complex argumentative structure in classroom
conversations. The rationale of these conversations is of interest here.

Formal mathematical logic alone cannot capture this rationale, as will be obvious
from the examples discussed in this paper. We have to find other ways to reveal these
structures and the specific types of arguments that occur in classrooms. Understand-
ing their rationale and the contextual constraints that shape these argumentations
can help us to improve our efforts in teaching proof.

The importance of alternatives to formal logic in argumentation analysis in
everyday contexts has been recognized, beginning with Toulmin’s (1958) work
and continuing through, for example, Walton’s (1989, 1998) dialectic approach,
van Eemeren and Grootendorst’s (2004) pragma-dialectical approach and Snoeck-
Henkemans’s (1992) work on complex argumentation. Argumentation analysis in
mathematical contexts has a shorter history, arguably beginning with the work of
Alcolea (1998).
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This paper suggests a method by which complex argumentations in proving
processes can be reconstructed and analyzed. A three stage process is proposed:
reconstructing the sequencing and meaning of classroom talk; analyzing arguments
and argumentation structures; and finally comparing these argumentation structures
and revealing their rationale. In this paper the emphasis is on the second stage,
arguments and argumentation structures. This involves two moves, first analyzing
local arguments on the basis of Toulmin’s functional model of argumentation,
and second analyzing the global argumentation structure of the proving process.
To illustrate patterns in the global analysis of the classroom talk a schematic
representation of the overall argumentative structure is used.

The paper is organized as follows. We first discuss not only why an alternative
conception of ‘rational argument’ (see Toulmin, 1958), distinct from the one in
formal logic, is important for understanding proving processes in the mathematical
classroom, but also how such a conception leads to a different reconstruction
of arguments found in classroom proving processes. This provides an alternate
perspective on arguments in the context of classroom proof and proving. We
then describe the theoretical and methodological grounds of Knipping’s (2008)
method of reconstructing and analyzing argumentation structures, before presenting
the method itself. Examples of how we apply the argumentation analyses to real
data will illustrate each individual stage of the method. We then compare global
argumentation structures reconstructed from a German and a Canadian classroom
to show how this method can reveal differences in the rationale of proving processes.

8.2 The Importance of Understanding Proving Practices
in the Classroom

Teaching proof is considered to be challenging. Numerous empirical studies have
documented that students up to university level have difficulties in recognizing
different types of reasoning and producing mathematical proofs (e.g., Harel and
Sowder, 1998; Healy and Hoyles, 1998; Reiss et al., 2001).1 Students find proof
difficult and often do not understand why so much emphasis is put on mathematical
proof (Moore, 1994). Some research has investigated these difficulties (Chazan,
1993; Reid, 1995; Pedemonte, 2002a,b, 2007) and has explained aspects of the
problem from an individual student’s point of view. Researchers have offered
alternative ways of teaching proof (e.g., Garuti et al., 1998; Mariotti et al., 1997;
Jahnke, 1978), but only a few have documented students’ proving processes in
alternative teaching environments (Balacheff, 1988, 1991).

Very little research so far has looked at these difficulties with a focus on proving
practices in the classroom (Sekiguchi, 1991; Herbst, 1998, 2002a; Knipping, 2003).
Such a focus is important for two reasons:

1For an overview of these studies see as well Harel and Sowder (1998) and Hanna (2000).
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Fig. 8.1 Written proof of the Pythagorean Theorem in a grade 9 class in Germany, 1998. “4rwD”
means 4 rechtwinklige Dreiecke, i.e., 4 right angled triangles)

• Teachers’ approaches to proof are not guided solely by logical considerations;
pedagogical and practical considerations are also important.

• Written proofs, whether produced in classrooms or presented in texts, do not
reflect the process of their creation, which is itself worthy of study.

Sekiguchi (1991) explores the social nature of proof in the mathematics classroom
using ethnographic methods. He confirms that proof practice in the classroom
does not follow “the patterns of formal mathematics”, but that pedagogical and
practical motivations shape practices in the classroom. He finds various forms
of practices called “proof” by the participants, but his research focuses on the
standard form for writing proofs in US classrooms, the two-column proof format
(Sekiguchi, 1991). Herbst (2002b) describes how this proving custom developed at
the end of the nineteenth-century, in a historical context where the demand arose
that every student should be able to do proofs. Herbst helps us to understand that
the practice of producing two-column proofs was a reaction to this demand and
the difficulty “to organize classrooms where students can be expected to produce
arguments and proofs” (Herbst, 2002b, 284). Thus a way of writing proofs that is
peculiar to the school context evolved, not out of logical requirements, but out of a
specific historical context, students’ difficulties, and teachers’ efforts to address the
difficulties and challenges of engaging students in proofs.

The two-column proof format is not the only format that can be found in
mathematics classrooms. In France and Germany (Knipping, 2002, 2003, 2004),
other formats for written proofs have evolved. Whatever format is used in presenting
a proof, in the classroom context writing proofs is only part of, and more a means to
engage students in, proving (or the illusion of doing proofs), as Sekiguchi and Herbst
demonstrate. In classrooms the process itself, embedded in the constraints of teach-
ing, seems to be of major importance, but arguments produced in these processes are
far different from the written forms that are produced. For example, Fig. 8.1 shows a
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photograph of a blackboard at the end of a lesson on the Pythagorean Theorem, in a
German grade 9 upper stream secondary school (“Gymnasium”) class. The teacher
and probably the students considered this a proof of the Pythagorean Theorem.
The proof was the product of processes during an entire lesson. Diagrams like that
presented on the left side of the board are classic illustrations of the Pythagorean
Theorem and its proof. They are recognized by many people, and can be found
throughout the history of mathematics in many cultures. However, our focus in this
chapter is on the proof written on the right side of the blackboard and the argument
that led to it. The algebraic equations written there are a very condensed form of
argument, which leaves out many steps that have been developed in the oral part of
the classroom proving process we will discuss later.

Because classroom proving processes are guided by more than logical consider-
ations and because the written proofs that result from classroom proving processes
are incomplete as records of those processes, reconstructing classroom proving
processes and their overall structure requires a model that acknowledges their
context dependence. Research within and outside of mathematics education has
addressed this concern that there is no universal way to describe and formulate
context dependent arguments. We will discuss this next.

8.3 Approaches to Describing Arguments

The arguments that occur in classroom proving processes cannot be analysed using
formal logic. Instead approaches are needed that allow for the context and the nature
of students’ rationality. Toulmin’s functional model of argument can be extended to
describe both local arguments and global argumentation structures. The need for
such an approach and the basics of it are the topic of this section.

8.3.1 The Inadequacy of Logical Analysis for Reconstructing
Proving Processes in Classrooms

In mathematics considerable attention has been paid to the nature of proofs.
As proofs can be seen as the end product of the work of mathematicians, i.e.,
as explanations which are accepted by the mathematical community as proofs
(Balacheff, 1987) one might expect that the process by which proofs come to be
can be analyzed on the basis of what proofs are. Further, the final goal of teaching
proof is to bring students to an understanding of the logic behind mathematical
proofs and to accept the same kinds of explanations as proofs as are accepted by
mathematicians. Therefore, the misunderstanding can arise that the analysis of proof
teaching in the classroom can be based on logical analysis of classroom arguments.
This is not true for several reasons.
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First, as discussed earlier, Sekiguchi (1991) and Herbst (1998, 2002a) illus-
trate that when teachers teach proof they do not follow “the patterns of formal
mathematics”, but pedagogical and practical motivations shape their practices
in the classroom. Their practices in the classroom are a complex response to
the challenge of teaching proofs and of engaging students in proving. In these
multi-faceted processes classroom conversations with complex argumentation struc-
tures occur that might appear “illogical” to a mathematician. Revealing these
complex structures is necessary to better understand the complexity of teaching
proof and proving, but this cannot be undertaken by means of formal logic
alone.

Second, students are in the process of developing logical thinking patterns, and so
the thinking they express in classrooms will include many elements which a logical
analysis would simply describe as “illogical” but which are nevertheless important
to the future development of their thinking. As learning necessarily depends on the
students’ thinking at the time, a method of analysis that cannot go beyond dismissing
it as “illogical” is not helpful. What is needed is a conception of ‘rational argument’
that does not cut off students’ rationality.

Third, logical rationality, which has historically decontextualized intellectual
and practical rationality, is widely questioned by philosophers and historians of
science. Toulmin (1990), for example, deconstructs the logical ideal of reason
as a historical project of Modernity that we have to appreciate, but that has
been overcome by the facts of twentieth-century science. He argues that “the
decontextualizing of problems so typical of High Modernity is no longer a serious
option” (Toulmin, 1990, 201). Instead science came to a “renewed acceptance
of practice” (1990, 192) and to a reconceptualization of rationality that does
not cut “the subject off from practical considerations” (1990, 201) in the way
that formal logic does. In his earlier work Toulmin (1958) had enquired into
different fields of argument and addressed the question of “What things about
the forms and merits of our arguments are field-invariant and what things about
them are field-dependent?” (1958, 15, emphasis in original). Contrasting arguments
in jurisprudence to formal logic he suggests that there is a layout of arguments
that is field invariant, but that allows the characterization of arguments related
to their context of use. This layout or functional model is the topic of the
next section.

8.3.2 Toulmin’s Functional Model of Argument

The model that Toulmin developed to reconstruct arguments in different fields has
become popular across disciplines. As noted above, logical analysis is inadequate
for argumentations in mathematics classrooms, which perhaps bear more resem-
blance to argumentations in other domains such as law, where public discussion
of facts and the relationships between them are important. Toulmin’s model is
intended to be applicable to arguments in any field. For this reason the work of
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Conclusion (C)Datum (D)

Warrant (W)

Backing (B)

Fig. 8.2 Toulmin model

Toulmin has provided researchers in mathematics education with a useful tool for
research, including formal and informal arguments in classrooms (Krummheuer,
1995; Knipping, 2002) and individual students’ proving processes (Pedemonte,
2002a,b).

Rejecting a mathematical logical model Toulmin (1958) investigates the func-
tional structure of rational arguments in general. Therefore he asks “What, then, is
involved in establishing conclusions by the production of arguments?” (1958, 97).
Toulmin’s first answer is that facts (data) might be cited to support the conclusion.
He illustrates this by the following example. If we assert that ‘Harry’s hair is not
black’, we might ground this on “our personal knowledge that it is in fact red”
(1958, 97). We produce a datum that we consider as an evident fact to justify our
assertion (conclusion). If this is accepted, this very simple step, datum–conclusion,
can represent a rational argument.

But this step, its nature and justification, can be challenged, actually or poten-
tially, and therefore it is often explicitly justified. Instead of additional information,
an explanation of a more general style, by rules, principles or inference-licenses
has to be formulated (1958, 98). Toulmin’s second answer addresses this type of
challenge. A ‘warrant’ might be given to establish the “bearing on the conclusion
of the data already produced” (1958, 98). These warrants “act as bridges, and
authorize the sort of step to which our particular argument commits us” (1958,
98). In the example above the implicit warrant of the argument is ‘If anything is
red, it will not also be black.” (1958, 98). While Toulmin acknowledges that the
distinction between data and warrants may not always be clear, their functions
are distinct, “in one situation to convey a piece of information, in another to
authorise a step in an argument” (1958, 99). In fact, the same statement might
serve as either datum or warrant or both at once, depending on context (1958,
99), but according to Toulmin the distinction between datum, warrant, and the
conclusion or claim provides the elements for the “skeleton of a pattern for
analyzing arguments” (1958, 99); see Fig. 8.2. In the following we will use “claim”
in cases where data and warrants have not yet been provided, and “conclusion” when
they have been.

Toulmin adds several other elements to this skeleton, only one of which will be
discussed here. Both the datum and the warrant of an argument can be questioned.
If a datum requires support, a new argument in which it is the conclusion can be
developed. If a warrant is in doubt, a statement Toulmin calls a “backing” can be
offered to support it.
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C: c2 = a2 + b2D: c2 = b2 − 2ab + a2 + 2ab

W: Addition is commutative and associative. The
sum of any term and its additive inverse is zero.

Fig. 8.3 Datum, warrant and conclusion for the final step in the written proof

Looking back at the proof in Fig. 8.1, we can analyze the last step in the
argument in terms of Toulmin’s model (see Fig. 8.3). In it we can see an important
characteristic of many arguments: warrants are often left implicit. In this case our
awareness that the warrant is not included in the written proof helps us to ask the
question “Was the warrant ever stated as the proof was developed, or was it always
implicit?”, showing once more the importance of analyzing the classroom proving
process.

Toulmin states, “The data we cite if a claim is challenged depend on the warrants
we are prepared to operate with in that field, and the warrants to which we commit
ourselves are implicit in the particular steps from data to claims we are prepared to
take and to admit.” (1958, 100). Therefore careful analyses of the types of warrants
(and backings) that are employed explicitly or implicitly in concrete classroom
situations allow us to reconstruct the kinds of mathematical justifications students
and teacher together operate on. In particular, the comparison of warrants and
backings in different arguments can reveal what sort of argument types are used
in proving processes in mathematics classrooms.

For example in Fig. 8.3, we have supplied an implicit warrant based on mathe-
matical properties of addition. In a different context the warrant for this argument
might have been geometrical, interpreting 2ab as the area of a rectangle (or two
triangles), or syntactical, not interpreting the symbols at all, but operating on them
purely formally. Any of these types of warrants (and backings) could occur in a
classroom and indicate the field of justifications in which the students and teacher
operate.

Other researchers (e.g., Inglis et al., 2007) have made use of other elements in
Toulmin’s model, including “modal qualifiers” and “rebuttal”. Many arguments do
not establish their conclusions with complete certainty, and in such arguments we
find qualifiers like “probably” and “possibly” as well as rebuttals that identify cases
where the conclusion does not hold. Inglis, Mejía-Ramos and Simpson consider the
arguments of postgraduate university students in mathematics and find that modal
qualifiers play an important role in their mathematical argumentations. In our work
in schools, however, we have found that the mathematical argumentations produced
are quite different from what advanced mathematics students produce, and we have
not found it necessary to make use of any elements in the Toulmin model beyond
data, conclusions, warrants and backings. We have added one element, however,
which we call “refutation”. A refutation differs from a rebuttal in that a rebuttal is



126 C. Knipping and D. Reid

W: Associativity,
commutativity and

additive inverse

W: Multiplying
out

W: Diagram, area of right
triangle

C: c2 = a2 + b2C/D: c2 = b2 − 2ab + a2 + 2abC/D: c2 = (b − a)2 + 2abD: c2 = (b − a)2 + 4rwD 

Fig. 8.4 Functional reconstruction of the written proof presented in Fig. 8.1

local to a step in an argument and specifies exceptions to the conclusion. A refutation
completely negates some part of the argument. In a finished argumentation refuted
conclusions would have no place, but as we are concerned with representing the
entire argumentation that occurred, it is important for us to include refutations
and the arguments they refute, as part of the context of the remainder of the
argumentation, even if there is no direct link to be made between the refuted
argument and other parts of the argumentation. Aberdein (2006) proposes extending
Toulmin’s rebuttal element to encompass refutations, but for our purposes we prefer
to limit rebuttals to Toulmin’s original role, of specifying circumstances where the
conclusion does not hold.

An important way in which we have used the Toulmin model, that extends it
significantly, is our application of it not only to single steps in argumentations, but
also as a tool to explore the global structure of an argumentation. In the next section
we will describe this distinction in more detail.

8.3.3 Local and Global Arguments

Toulmin (1958) notes “an argument is like an organism. It has both a gross,
anatomical structure and a finer, as-it-were physiological one” (94). Toulmin’s
aim is to explore the fine structure, but in considering classroom argumentations
both argumentative forms must be reconstructed. Toulmin’s model is useful for
reconstructing a step of an argument, which allows us to single out distinct
arguments in the proving process (for example as in Fig. 8.3). We will call these
“argumentation steps” or local arguments. But it is also necessary to lay out the
structure of the argument as a whole (the anatomical structure), which we will call
global argument or the argumentation “structure” of the proving process.

Global arguments in classrooms can be quite complex (as will be shown later).
The written proof in the right hand side of Fig. 8.1 provides a simple example.
As we noted earlier, a single step of that proof is shown in Fig. 8.3. The global
argument presented on the blackboard, reconstructed as a chain of argumentation
steps is shown in Fig. 8.4. The final conclusion (C: c2 = a2 + b2), a formulation
of the Pythagorean Theorem, is the target conclusion of the global argument. The
argument can be reconstructed as a simple chain of conclusions beginning with
a datum “c2 = (b − a)2 + 4rwD” that has been taken from the drawing on the
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blackboard. This datum leads to a conclusion: c2 = (b−a)2+2ab, but no warrant is
explicitly given to support this inference. The information in the diagram (adjacent
sides of the right triangle are a and b) and implicit calculations of the area of the
four right triangles implicitly support this claim. The next two steps are also based
on implicit warrants. In Fig. 8.4 we have reconstructed possible implicit warrants
for each step; they are marked by a box with a dashed line. Note that the statement
“c2 = (b− a)2 + 2ab” is not only the conclusion of one step but also the datum of
another. Finally the target conclusion: c2 = a2 + b2 is established.

This type of argument can be characterized as a chain of statements, each one
deduced from the preceding one on logical and mathematical grounds. This has
been described by Duval as “Recyclage” (Duval, 1995, 246–248). Once a statement
has been established as a conclusion it functions as a datum, an established true
fact, in the next step. Aberdein (2006) calls this way of combining single steps
“Sequential” and he describes four other ways steps could be combined. As we will
see in the following, our empirical research on classroom argumentation provides
examples of Aberdein’s ways of combining steps, as well as other ways.

8.4 A Method for Reconstructing Arguments in Classrooms

As mentioned above, for reconstructing arguments in classrooms a three stage
process is followed:

• reconstructing the sequencing and meaning of classroom talk (including identi-
fying episodes and interpreting the transcripts);

• analyzing arguments and argumentation structures (reconstructing steps of local
arguments and short sequences of steps that form “streams”; reconstructing the
global structure); and

• comparing local argumentations and comparing global argumentation structures,
and revealing their rationale.

Each of these stages is illustrated in the following, but the emphasis is on the second
stage. We will do so by discussing episodes of the proving process that lead to
the written proof of the Pythagorean Theorem that we have presented above (see
Fig. 8.1). The teacher (T) in this class will be referred to as Mrs Nissen, references
(e.g. 〈6–21〉) indicate lines of the transcript of this lesson. “N5” indicates this is
taken from the fifth lesson observed in Mrs Nissen’s class. Additional data and
analysis can be found in (Knipping, 2003).

The choice of what part of the lesson to analyze was based on the participants’
own identification of what classroom conversations were seen as being proving,
through explicit labeling of them as such. The protocols and transcripts show that it
is generally the teacher who labels a proving phase.



128 C. Knipping and D. Reid

8.4.1 Reconstructing the Sequencing and Meaning
of Classroom Talk

In the following we will first describe how we reconstructed sequencing and
meaning of classroom talk in proof and proving.

8.4.1.1 Layout of Episodes

The first step is dividing the proving process into episodes. This means that the
general topics emerging in the classroom talk are identified and their sequencing
is reconstructed. This allows one to get an overview of the different steps in the
argumentation. Proving process in classrooms can occur over long periods of time,
from 20 to 40 min or longer. Laying out different episodes of the process helps to
make the argumentations in these episodes more accessible to analysis. Once the
flow and sequencing of the emerging topics is made visible the reconstruction of the
arguments can start. For example, the following topic episodes could be identified
in lesson N5:

1. Sketch of the proof diagram 〈6–21〉
2. Goal of the proof 〈21–28〉
3. Meanings of a2, b2, c2 〈28–69〉
4. Calculating sub-areas of c2 〈69–100〉
5. Sascha’s Conjecture 〈101–129〉
6. The area of the right triangles 〈129–155〉
7. A mistake on the board 〈156–175〉
8. Transforming the equations found 〈175–200〉
Mrs Nissen starts the lesson by sketching a drawing on the blackboard (episode 1,
see also Fig. 8.1). The class then determines the goal of the proof of the Pythagorean
Theorem (episode 2) and discusses the meanings of a2, b2, c2, expressions that
are used to state the Pythagorean Theorem and that are related to the drawing
(episode 3). In episode 4 the teacher asks the students to calculate the sub-areas
of the big square c2. Sascha supposes (episode 5) that any two triangles form a
square, but his conjecture is refuted by his peers and the teacher. Instead the class
calculates the area of two right triangles in a general way (episode 6). By accident
the teacher writes in the second line (b− a2) on the board, but a student points out
the mistake which the teacher gratefully corrects into (b−a)2 (episode 7). Together,
the teacher and the students transform the equations found and deduce c2 = a2 +b2

(episode 8).
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8.4.1.2 Turn by Turn Analyses

Argumentations in classroom processes are mostly expressed orally and by a group
of participants. Generally arguments are produced by several students together,
guided by the teacher. As Herbst showed (2002a), it is the teacher who mostly takes
responsibility for the structure and correctness of the argument, but students con-
tribute to the argument, so there is a division of labour in the class. Argumentations
are co-produced; the teacher and the students together produce the overall argument.
Their turns are mutually dependant on each other; their public meanings evolve in
response to each other. The argument forms in relation to these emerging meanings.
So, in order to reconstruct the structure of an argument first the meanings of each
individual turn put forward in class have to be reconstructed. As Krummheuer and
Brandt state:

Expressions do not a priori have a meaning that is shared by all participants, rather they only
get this meaning through interaction. In concrete situations of negotiation the participants
search for a shared semantic platform (Krummheuer and Brandt, 2001, 14, our translation).2

Because meanings emerge through interaction, reconstructing meanings neces-
sarily involves some reconstruction of the process by which they emerge. Generally
statements of classroom talk are incomplete, ambiguous and marked by deictic3

terms. Deictic terms are replaced as much as possible in the reconstruction of the
argumentation. For example, in Excerpt 1 the term “das” (“that”) can be replaced
with ‘(b− a)’ because its meaning is apparent from earlier utterances.

89
Jens: Das ist also die eine Seitenlänge von
diesem mittleren Quadrat da. Aber trotz #

Jens: So that is the side length of that middle
square there. But, #

Excerpt 1. Example of an ambiguous utterance marked by a deictic term

Because the focus of the analysis is the argumentative structure of the classroom
talk the reconstruction of the meanings of statements in the turn by turn analysis
must consider the argumentative function of the statements: datum, conclusion,
warrant, etc. These functions will be identified in the next step of analysis. Utter-
ances are primarily reconstructed according to their function within the collectively
emerging argumentation, not with respect to subjective intentions and meanings as
in interaction analyses.

2Äußerungen besitzen “a priori keine von allen Beteiligten geteilte gemeinsame Bedeutung,
sondern erhalten diese erst in der Interaktion. In konkreten Situationen des Verhandelns bzw.
Aushandelns wird nach einer solchen gemeinsamen semantischen Bedeutungsplattform gesucht”.
3In linguistics, a deictic term is an expression, for example a pronoun, that gets its meaning from its
context. The meaning of “this” depends on what is being pointed to. The meaning of “I” depends
on who is speaking. In philosophy the word “indexical” is used to express the same idea.
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8.4.2 Analyzing Arguments and Argumentation Structures

In the following we will describe in detail the moves in the reconstruction of
local arguments, then of intermediate argumentation streams, and then of global
argumentation structures. This method for reconstructing arguments, argumentation
streams and argumentation structures was developed by Knipping (2003, 2008).

8.4.2.1 Functional Reconstruction of the Argumentation

Recall that arguments have in Toulmin’s model a general structure of data leading
to conclusions, supported by warrants, which in turn can be supported by backings.
Statements are characterized as having different functions within an argumentation,
and functional analysis can help to reveal the structure of the argumentation.

Analyzing students’ and teachers’ utterances in the class according to this func-
tional model allows us to reconstruct argumentations evolving in the classroom talk.
In our analyses only utterances that are publicly (in the class) accepted or constituted
as a statement are taken into account. The teacher’s attention to some utterances
and deferment of others can play a major role in this. This is not surprising given
Herbst’s findings that in general only the teacher takes responsibility for the truth
of statements (Herbst, 2002a). Where alternative argumentations or attempts at an
argument are publicly acknowledged, they are also considered in our analyses,
although the focus is on the main stream of the argumentation. The issue of
alternative argumentations will be discussed in more detail in Sect. 8.4.3, where
types of argumentation structures are compared.

In Knipping’s (2003, 2004) analyses of classroom processes, focusing first on
conclusions turned out to be an effective step in reconstructing argumentations. It is
helpful to begin by identifying what statement the participants are trying to justify,
the claim that will gain the status of a conclusion by their argument. So, before
actually analyzing the complete argument we look for conclusions and claims. The
following example illustrates such a functional reconstruction of a conclusion, or in
fact two conclusions.

The following excerpt marks the beginning of the proving process in class. The
teacher has sketched the drawing presented in Fig. 8.1 on the blackboard and seeks
to develop a proof of the Pythagorean Theorem together with the class. As yet,
no written proof has been developed. The teacher asks the students to interpret the
given drawing. Jens starts.
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89
Jens: Das ist also die eine Seitenlänge von
diesem mittleren Quadrat da. Aber trotz #

Jens: So this is the side length of that middle
square there. But, #

90
L: # Also, Adam sagt, hier soll ich immer
b minus a dran schreiben, oder soetwas ähn-
liches.

T: # So, Adam says, I should write b minus
a on here, or something like that.

91
L: Er sagt diese vier Seiten sind alle b minus
a lang. Wie kommt er denn darauf? b minus a
lang.

T: He says that these four sides are all b
minus a long. So, how did he get that? b
minus a long.

92 L.: Srike. T: Srike.

93
Srike: Wir haben ja die eine Seitenlänge vom
Dreieck b, eh die Kathete. Und dann ist die,
also

Srike: Well, we know the length b of one
side of the triangle, in fact the adjacent side.
And then this is therefore

94
vom anderen Dreieck die andere Kathete a,
die wird ja davon abgezogen und dann ist das,

the other adjacent side a of the other trian-
gle, which of course gets taken away from it
and then that is

95 was übrig bleibt dieses b minus a. what is left, this b minus a.

96
L: Einverstanden? Immer wird von der grünen
Strecke 'ne gelbe abgeschnitten und es bleibt

T: Agreed? A yellow segment is always cut
off the green, and only the remainder

97
von b nur noch der Rest über. b minus a.
Minus a heißt das gelbe weg. So b minus a,
ha.

of b is still left. b minus a. Minus a means
remove the yellow. Thus b minus a, ha.

Excerpt 2. Transcript of the argumentation in episode 4 of lesson N5

Previously Adam has offered (b − a)2 as a label for the inner square in the
figure that is on the board (see Fig. 8.1). Jens, after first being confused about this
expression, makes a connection with the side length of the middle square (89). Given
this context we interpret the “das/that” as “(b− a)”. The teacher reinforces Jens’s
interpretation and endorses Adam’s earlier claim (90–91). Jens does not provide any
data or warrant for his claim, on the basis of the drawing on the blackboard he seems
to consider this as a “matter of fact”, a datum. The teacher asks for an explanation,
“How did he get that? b minus a long.” (91), and reinterprets this “matter of fact” as
a claim that needs justification. Srike provides a justification by relating (b− a) to
the difference of the lengths of the two legs of the right triangle in the drawing and
explains why b− a is the difference in length.

Although Jens proposed his statement as a datum, its status depends on its role in
the public argumentation, not on the intention of its proposer. The teacher expects an
explanation and Srike provides one, but for a different conclusion. However Srike’s
explanation is accepted as justifying both her conclusion and Jens’s original claim.
In this situation a single argumentation has two conclusions (see Fig. 8.5).
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C: (b – a) is the side length
of the middle square.

〈Jens, T 89–91〉

C: (b − a) is the difference of
the lengths of the legs.

〈Srike, T 95–97〉

D: b is the length of one leg
of the triangle.

〈Srike, 93〉

D: b and a are the legs of the
triangle.

〈Srike, 93/94〉 W: a is cut off b.
〈Srike, T 94–97〉 

B: Minus means to
cut off.
〈T 97〉

Fig. 8.5 Functional reconstruction of the argumentation in episode 4 of lesson N5, example of a
step of an argumentation (D datum, C conclusion, W warrant, B backing)

Srike’s argument is based on the data that “b and a are the legs of the triangle”
(93/94) and that “b is the length of one leg” (93). She argues that because “a is
cut off b” (94–97), “(b− a) is the difference of the lengths of the legs” (95–97).
The teacher reinforces Srike’s attempt at an explanation, confirms her conclusion
(94–97) and supports her warrant by the backing “Minus means to cut off” (97).
In the given episode the teacher and the students together construct an argument
that, with the help of the Toulmin pattern, may be reconstructed as in Fig. 8.5. Our
representation is somewhat different, but this argument can been seen as combining
what Aberdein (2006, 214) calls a “linked” layout, where two or more data are
included, with a variant of his “divergent” layout in which one datum supports two
conclusions. We see our empirical approach as offering a useful complement to
theoretical approaches like Aberdein’s, in that our work reveals which of Aberdein’s
layouts occur in classroom argumentations, and in what combinations.

It is interesting that in this case the warrant and the backing are given explic-
itly. Typically, reconstructed arguments in classroom proving processes are often
incomplete, as was the case with the written proof analyzed above. The warrant
and backing are often not mentioned explicitly. In most cases the warrant can
be assumed or taken as implicit, as an inference can only be constituted with a
warrant. The transition from datum to conclusion must be justified somehow. In our
argumentation analyses we usually do not add implicit warrants (W(i)), but leave
them implicit in the reconstruction. This is meant to illustrate the implicitness of
both the argumentation and warrant. This allows the comparison of the degree of
explicitness in different argumentation structures. In cases where we do want to talk
about an implicit warrant we place it in a dotted box (as in Fig. 8.6).

We have occasionally come across arguments where the datum has been left
implicit. In such cases the warrant is present, however, so in the reconstruction the
datum is left implicit, and the argument consists of the warrant and the conclusion.
As for the conclusions of arguments we have found that these are often formulated as
questions. In the reconstruction of the argument these are represented by statements,
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W(i): The length of the difference in
distance is the difference in the

lengths of the distances

Fig. 8.6 Example of the representation of an implicit warrant, episode 4 of lesson N5

W: Equal terms on both sides of
an equation cancel out.

〈S,T 197/198〉

C/D: The outer square consists of
the square (b − a)2 and four right

triangles.
〈S 70, T 72–82, BB〉

C/D: The area of the rectangles is
2ab.

〈T, S 148–154, BB〉

C/D: The outer square is c2.
〈S 50, T/S 58–62, T 66/67〉

C: a2 + b2 = c2.
〈S,T 27/28, 178–183,

199–200〉
C/D: c2 = b2 − 2ab + a2 + 2ab

〈S,T 190–193〉

W: (b − a)2 = b2 − 2ab + a2

〈S,T 186–192, T 154/155〉

Fig. 8.7 Example of the second half of the argumentation in lesson N5. “BB” means black board.
Transcript line numbers refer to (Knipping, 2003)

so that their grammatical form is no longer visible, but their function in the argument
is clearer. In the descriptions and comments on the argument this is noted and
discussed.

In cases where statements are questioned or doubted they are often justified
in more than one argumentation step. To deal with such situations Knipping
introduced another term. She called a chain of argumentation steps by which a target
conclusion is justified an “argumentation stream” (AS). The target conclusion (the
final conclusion of the argumentation) is often marked by the teacher as a goal of
one stage within the global argumentation. The example in Fig. 8.7 illustrates the last
argumentation stream of the proving process in lesson N5. It involves both “linked”
and “sequential” ways to combine steps.

8.4.2.2 Reconstructing the Argumentation Structure of Proving Processes
in Class

As discussed earlier in this paper, the functional model of Toulmin, which is helpful
for reconstructing argumentation steps and streams, is not adequate for more com-
plex argumentation structures. Analyzing proving processes in classrooms requires
a different model for capturing the global structure of the argumentations developed
there. Knipping developed a schematic representation in order to illustrate the
complex argumentation structures of this type of classroom talk, which we will
present in the following.
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Fig. 8.8 The method of reconstructing a global argumentation

Statements: Data (D)
or conclusions (C)

Target-conclusion (C) Refutation

Warrant (W) or
Backing (B)

Intermediate conclusions that are
data for other arguments (D/C)

Fig. 8.9 Symbols used in argumentation structure diagrams

The argumentation structure of a classroom proving process is generally com-
plex. Argumentation streams can be parallel, as well as nested into each other. For
example, if the argumentation builds on certain statements more than on others,
these will be justified and explained in more detail, leading to multiple arguments in
support of them embedded within the larger argument to which they are important.

To address this complexity Knipping developed a schematic representation
that allows the description of argumentations at different levels of detail. This
approach differs from Aberdein’s (2006) as he reduces the complexity of the
argumentation by a process of folding that results in a single step that includes
all the assumptions (initial data and warrants) of the full argumentation, but which
hides the relationships between these assumptions. Knipping’s approach also differs
from that taken by Van Eemeren et al. (1987) who developed two different ways of
representing the structures of everyday written argumentations, in that she makes
the role of warrants more visible. We will illustrate below how Knipping’s method
makes the global argumentation visible while preserving the relationships in the
local steps.

In the schematic representation shown in Fig. 8.8 all statements in the overall
argumentation are represented by rectangles, circles and diamonds (see Fig. 8.9).
The different symbols not only represent the different functions of the statements
(datum, conclusion, warrant), which are also indicated by the letters D, C, W, B in
front of the statements, but also the status that the statements have within the global
structure of the argumentation. For example, the target conclusion is represented
by a black rectangle. White rectangles represent target conclusions of intermediate
stages within the global argumentation; they indicate end points of stages. These can
become starting points, therefore data (D), in the next stage of the argumentation.
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Three statements (the three white rectangles in Fig. 8.8) have the status of data in
the argumentation stream shown, but they are at the same time conclusions (C) of
earlier argumentation streams. Once their truth was established they became data for
a subsequent argumentation stream, the one being presented in Fig. 8.8. Conclusions
or data which do not have the status of an intermediate target are represented by
circles. Warrants (W) and backings (B) are symbolized by diamonds.

In Knipping (2003) the overall structures of argumentations were analyzed by
means of such schemes. She compared argumentation structures in different proving
processes on the basis of the schematic representations and attempted to reconstruct
their peculiar rationale. In the next section we will use some results of our research
to illustrate the utility of this method for describing complex argumentations and
their rationale. The processes that we have studied occurred in junior high school
contexts where proof was an explicit goal of the lessons observed (see Knipping,
2003; Reid and Knipping, 2010).

8.4.3 Comparing Global Argumentation Structures

There is no established theoretical framework for investigating classroom proving
processes. Therefore no model for the explanation of these processes can be
formulated before researching the empirical field, but still a sound methodology
of discovery is necessary. Analyzing argumentation in the primary mathematics
classroom, Krummheuer considers comparison as a methodological principle that
provides a reliable method of this sort and that can give “direction to a novel
theoretical construction” (Krummheuer, 2007, 71). This methodological principle
underlies the comparisons that we undertake in our research on proving processes
in classrooms (Knipping, 2003, 2008; Reid and Knipping, 2010).

As with Glaser and Strauss (1967), for Krummheuer comparative analysis
represents a central activity that allows empirical control of the heuristic generation
of theory. In this approach comparisons occur continuously, “the comparison of
interpretations of different observed parts of reality represents a main activity on
nearly every level of analysis: from the first interpreting approach to the later
more theoretical reflection” (Krummheuer, 2007, 71, describing Strauss and Corbin,
1990). The aim of these comparisons is “conceptual representativeness” (see Strauss
and Corbin, 1990), that is, to ground theoretical concepts within the data. This
concept differs from the one in quantitative research, where representativeness on
the level of the sampling is the goal.

Knipping (2003) compares argumentations at two levels. Local argumentations
are compared by analyzing and classifying the warrants (and backings) used
according to the field of justification they belong to. Global argumentations are
compared according to their overall structures. Here we will focus on comparing
global argumentation structures, to show how they reveal elements of the rationale
underlying the proving process. Two types of structures from our research will be
described here as examples. We call them source-structure and spiral-structure.
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(See Knipping, 2003 and Reid and Knipping, 2010, for descriptions of two other
structures: the gathering-structure and the reservoir-structure. The four structures
identified so far in our work only begin to describe the variety possible in classroom
proving processes.) While the structures themselves are grounded in the data, the
metaphors we use to describe them reflect our later interpretations.

8.4.3.1 Source-Structure

In proving discourses with a source-like argumentation structure, arguments and
ideas arise from a variety of origins, like water welling up from many springs.
The teacher encourages the students to formulate conjectures that are examined
together in class. In some cases this means that students propose conjectures that
are unconnected to the overall structure. More than one justification of a statement
is appreciated and encouraged by the teacher. This diversity of justifications results
in an argumentation structure with parallel streams in which intermediate statements
are justified in various ways. False conjectures are eventually refuted, but they are
valued as fruitful in the meantime. In argumentations with a source-structure a
funneling effect becomes apparent. Towards the end of the argumentation only one
chain of statements is developed in contrast to the beginning where many parallel
arguments are considered.

This is illustrated by Fig. 8.10a, which is the global argumentation structure
for lesson N5 from Mrs Nissen’s class (Knipping, 2003). The structure has the
following characteristic features:

• Parallel arguments for the same conclusion (AS-1 and AS-2).
• Argumentation steps that have more than one datum, each of which is the

conclusion of an argumentation stream (AS-8).
• The presence of refutations in the argumentation structure (AS-3, AS-6).

In Knipping’s analyses of proving processes she found that a single target conclu-
sion might be legitimized by several parallel argumentation streams, as occurs here
in AS-1 and AS-2. By a parallel argumentation we mean argumentation streams in
a proving process in which different arguments can be found supporting the same
conclusion. This happens, for example, if substantially different arguments are pro-
duced for the same conclusion. Aberdein (2006) describes parallel argumentation
steps as “convergent”. Both AS-1 and AS-2 support the conclusion that the side of
the outer square is c (see Fig. 8.1). In AS-1 the argument is based on the conclusion
that the inner quadrilateral is a square, with the drawing of the proof figure as a
warrant. In AS-2 it is argued that the triangles make up the outer shape, again based
on the drawing.

Several argumentation streams can support a single conclusion without being
parallel. The conclusion of each one can act as a datum for a subsequent step that
requires the data from all of them. Aberdein (2006) describes argumentation steps
with more than one datum as “linked” and we are especially interested in noting
cases where the data in a linked argumentation step are conclusions from a number
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Fig. 8.10a Source-structure

Fig. 8.10b Spiral-structure

of argumentation streams. For example, the conclusions of AS-4, AS-5 and AS-7 act
as data for AS-8. Details of these three conclusions and AS-8 are shown in Figs. 8.7
and 8.8. In a sense, AS-4, AS-5 and AS-7 prove lemmas that make the proof of the
final conclusion straightforward. Once it is known that the area of the outer square is
c2, that it is made up of the inner square (with area (b−a)2) and four right triangles,
and that the area of the two rectangles formed by the four right triangles is 2ab, then
the conclusion a2 + b2 = c2 follows by a simple algebraic manipulation.
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There are two interesting refutations within this argumentation structure. In AS-3
Maren, in the process of describing the area of the outer square c2, assumes that
the area of the inner square is b2. The teacher contradicts her, refuting Maren’s
suggestion visually. The teacher then develops together with the class an argument
that the side length of the inner square is b − a (AS-5) and therefore the inner
square’s area must be (b−a)2. AS-5 and also Maren’s suggestion (and its refutation)
are the source of a justification that c2 consists of a square with side b − a and
four congruent right triangles, which is noted on the blackboard as follows: c2 =
(b− a)2+ 4rwD (see Fig. 8.1).

Sascha’s conjecture (AS-6) is the other example of a refutation. Sascha claims
that two of the triangles form a square which the teacher refutes by having the class
put together the cut-out triangles. However, she says “I really like your idea, I think
ideas that lead to the right result in detours are wonderful” giving value to Sascha’s
conjecture even though she refuted it.

In Knipping’s (2003) other examples of the source structure, there are
argumentation streams that are completely disconnected from the main structure.
AS-6 in Fig. 8.10a is an imperfect example of this. The refutation of Sascha’s
conjecture is connected to the main argument only in the loose sense that its
negation, the area of each triangle is neither a2/2 nor b2/2, is part of the context for
AS-7 in which it is concluded that the area of the two rectangles formed by the four
right triangles is 2ab.

The source-structure is also characterized by argumentation steps that lack
explicit warrants. Argumentation steps without explicit warrants are evident in
AS-2, AS-3, AS-4 and AS-5. While this also occurs in other types of argumentation
structures it is more frequent in the source-structure. We speculate that this is
because of the encouraging in the source structure of conjectures, which may be
offered with some supporting data, but which are not further developed. A similar
phenomenon occurs in another structure we have identified, the gathering-structure
(Reid and Knipping, 2010). That structure involves the gathering of a large amount
of data to support several related conclusions. Again the emphasis is on collecting
information (data and conclusions) rather than on the connections between them. In
the other structures we have studied (see below) there is much more emphasis on
the transitions, and so there are more explicit warrants.

We noted above that the source-structure has four characteristic features, which
we have described in the argumentation structure of Mrs Nissen’s lesson 5. In
another classroom we have observed lessons that have another structure, the spiral-
structure, which shares the same four characteristic features, but differs in the way
they occur in the global argument.

8.4.3.2 Spiral-Structure

In a proving process with a spiral argumentation structure the final conclusion is
proven in many ways. First one approach is taken, then another and another. Each
approach can stand on its own, independent of the others. Students suggest some
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Fig. 8.11 Diagram from Mrs
James’s classroom
(reconstruction)

approaches and the teacher proposes others. Students’ contributions that do not lead
to the conclusion result in disconnected argumentation streams and refutations.

The global argumentation structure depicted in Fig. 8.10b shows a spiral ar-
gumentation structure from Mrs James’s grade 9 (age 14–15 years) classroom
in Canada (see Reid and Knipping, 2010). The class was trying to explain why
two diagonals that are perpendicular and bisect each other define a rhombus
(see Fig. 8.11). The students had discovered and verified empirically that the
quadrilateral produced is a rhombus using dynamic geometry software and the
proving process led by the teacher was framed as an attempt to explain this finding
using triangle congruence properties.

Several features characteristic of the spiral argumentation structure are evident
in Fig. 8.10b:

• Parallel arguments for the same conclusion (AS-B, AS-D, AS-E).
• Argumentation steps that have more than one datum, each of which is the

conclusion of an argumentation stream (the final conclusions of AS-B and AS-E).
• The presence of refutations in the argumentation structure (AS-D).
• Argumentation streams that do not connect to the main structure (AS-C).

In the argumentation structure there are three parallel arguments AS-B, AS-D, and
AS-E. They all lead to one conclusion, that the four sides are congruent, which acts
as the datum for the final conclusion that the quadrilateral is a rhombus. In AS-B the
congruency of the sides is shown by showing that the four triangles formed by the
diagonals are congruent. In AS-D a student offers an alternative argument, based
on the idea that the quadrilateral cannot be shown to be a square (see below). This
argument is listened to attentively by the teacher, who eventually refutes it. Finally,
in AS-E the teacher offers an alternative argument implicitly based on using the
Pythagorean Theorem instead of triangle congruency to establish that the four sides
are equal.

In the argumentation structure from Mrs James’s classroom there are two
argumentation streams that involve steps that have more than one datum, which
are in turn conclusions of argumentation streams. They are AS-E and AS-B.

In AS-E four data combine to establish that the sides are congruent. First, two
arbitrary numbers are assigned to the legs of triangle AEB (see Fig. 8.11). EB is
assigned a length of 10 and AE a length of 3. The teacher then asks how one
could find the length of the hypotenuse AB, and the students suggest squaring and
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adding. Mrs James supplies the final step of taking the square root. It is clear that
the Pythagorean theorem is being used, but no one ever names it. It is the implicit
warrant for most of the arguments in AS-E. The first argument concludes with the
first datum that will be used later: that the length of AB is

√
102 + 32. The same

procedure is then used to find the length of BC, and to conclude that AB=BC
on that basis. The third argument consists of the datum that the same procedure
could be used for CED and the conclusion that CD is

√
102 + 32. The final datum is

the fact that all the triangles are right triangles. These four data are taken together
to conclude that the four sides AB, BC, CD, and DA are congruent, without any
explicit warrant.

In AS-B two data are used to establish the conclusion that the sides are congruent.
The first is the culmination of a chain of data/conclusions leading to the conclusion
that the four triangles AEB, BEC, CED, and DEA are congruent. The second is
the conclusion of a shorter argument, establishing that the sides of the rhombus are
corresponding sides of the congruent triangles. Once these two data are concluded,
they are combined to conclude that the four sides are congruent based on the explicit
warrant that corresponding sides of congruent triangles are congruent.

Simple arguments involving more than one datum also occur in AS-A, in which
the known information, that the diagonals meet at right angles and bisect each other,
is represented on the diagram. For example, that segment EB should be marked with
two dashes rather than one depends on two data: that it is the same length as another
segment (and so needs to be marked) but not the same length as segments AE and
EC that have already been marked with single dashes (see Fig. 8.11). However, these
data are not themselves conclusions of argumentation streams, but rather simple
facts read off the diagram or from the given conditions.

The single refutation in this argumentation structure occurs in AS-D. Unlike the
refutation we have discussed in the source-structure, above, what is refuted is not
a datum or a warrant, but rather the applicability of the warrant to the argument
(see Reid et al., 2008, for details; Verheij, 2006, discusses analogous types of
rebuttals). A student, Kaylee, asserts that the diagonals must define a rhombus
because in order to define a square the diagonals would have to be the same length.
Mrs James does not refute the fact that if the diagonals were the same length, as
well as being perpendicular and bisecting each other, they would define a square.
Instead she points out that other quadrilaterals might also be possible that have
not been considered and excluded. She mentions rectangles and kites as examples
of quadrilaterals that share some of the same diagonal properties that the class is
considering, though she also notes that they do not share all the properties. She
uses these examples to back up her refutation, which is based on the fact that other
quadrilaterals, other than squares and rhombuses, exist. Hence, excluding squares
is not sufficient to guarantee the shape must be a rhombus. Here the refutation is
directed at the warrant, but does not refute it (as it is correct). Instead it suggests that
the warrant is insufficient in the logic the teacher expects mathematical arguments to
follow. Although she refutes Kaylee’s argument, Mrs James values it, commenting,
“You’re on the start, but I’m not sure that you’ve clinched it. I’m not sure you’ve got
that final part, but . . . you’re three quarters of the way there my dear.”
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Finally, this argumentation structure includes two disconnected arguments, in
AS-C. Both are focused on labeling. One concerns whether the segment DE should
be labeled DE or ED. The other concerns the difference between the Angle-
Side-Angle congruency property (abbreviated ASA) and the Angle-Angle-Side
congruency property (abbreviated AAS). While these points are important to clarify
in the context of Mrs James’s mathematics lesson, they do not result in conclusions
that are used later.

While representing the argumentation structures of proving processes is useful
as a way of identifying and structuring the important elements in it, we gain more
from comparisons of argumentation structures. For example, Knipping (2002, 2003,
2004) found that in the six classrooms she observed, the proving processes either
had argumentations with the source-structure, or another structure that she calls
the reservoir-structure. The reservoir-structure differs from the source-structure in
many ways. Most notably, in the reservoir-structure the reasoning sometimes moves
backwards in the logical structure and then forward again. Initial deductions lead
to desired conclusions that then demand further support by data. This need is made
explicit by identifying possible data that, if they could be established, would lead to
the desired conclusion. Also, because transitions are a focus in the proving process,
the reservoir-structure has more explicit warrants.

The different structures in the lessons Knipping observed revealed interesting
differences in the nature of proof teaching in the two contexts in which they were
found. In the next section we will compare the source-structure with the spiral
structure.

8.4.3.3 Comparing Source and Spiral Argumentation Structures

Both the source-structure and the spiral-structure were observed in proving pro-
cesses in which the teacher took a prominent role in guiding the process. Arguments
were co-produced by teachers and students, but the teacher was in control of the
emerging overall structure. Therefore it is not surprising that these argumentation
structures have several similar characteristic features including parallel arguments,
argumentation steps that have more than one datum, the presence of refutations,
and argumentation streams that do not connect to the main structure. However, they
differ in how these features play out in the global structure.

One of the main distinctions between the spiral-structure and the source-structure
is the location of the parallel arguments. In the source-structure the parallel
arguments occur at the start of the proving process (AS-1 and AS-2 in Fig. 8.10a).
The teacher invites input at this stage, but once the basis for the proof is established,
the teacher guides the class to the conclusion through an argumentation that no
longer has parallel arguments. In the spiral-structure, however, the conclusions of
the parallel arguments are almost the final conclusion in the entire structure. In fact,
two of the three parallel arguments in Fig. 8.10b (AS-B and AS-E) could stand alone
as proofs of the conclusion. Having proven the result in one way, the teacher goes
back and proves it again in a different way. And she values students’ attempts to
prove the conclusion using other approaches.
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The source-structure and the spiral-structure differ also in the kinds of refutations
they involve and in the inclusion or omission of warrants. Recall that in the source
type argumentation structure shown in Fig. 8.10a, the refutations are refutations of
data. When interpreting the figure on the blackboard students propose statements
that the teacher refutes. In contrast, the refutation in the spiral type argumentation
structure shown in Fig. 8.10b is a refutation of an argument. The data and warrant
are accepted but their adequacy to justify the conclusion is refuted. In the source
structure we see also many steps that omit warrants, while most steps in the spiral
structure include warrants. The notable exceptions are in AS-A and AS-E. We will
discuss some possible reasons for this later.

Although the source and spiral argumentation structures have the same four
characteristic features, they differ in the placement of the parallel arguments and in
the nature of the refutations they include. These differences result in fundamentally
different argumentation structures. It is through comparisons of structures that such
differences become apparent. While reconstructing argumentation structures and
comparing them allows us to identify important features and differences, it does
not explain why they occur. To try to explain these differences, we need to return
to the data and consider the nature of the local arguments that make up the global
structure.

In the proving process in Mrs Nissen’s classroom, the figure on the blackboard
is the starting point. Almost all the steps in the argument consist of establishing
data that is depicted in the figure. For example, the part of AS-5 shown in Fig. 8.5
establishes that the side of the inner square is b− a. The three sub-conclusions of
AS-4, AS-5 and AS-7 are all present implicitly in the figure, and unpacking that
data is the main focus of the proving process. This explains the focus on data,
which we see in the lack of warrants and in the refutation of inaccurate data.
Once all the necessary data has been unpacked, the final steps of the argument are
straightforward and algebraic. They are what is written on the blackboard at the
end, as the written proof, and notably, the warrants that are expressed verbally in
the class are not included when the proof is written down. Again the focus is on
the data, rather than on the arguments and their warrants. When we consider the
nature of the omitted warrants this makes sense, as they are either visual (based
on features of the figure on the blackboard) or algebraic procedures well known to
everyone in the classroom. In the first case it is hard to imagine how the warrants
could be formulated in words or symbols, and in the second case the teacher is
simply modeling the standard mathematical practice of omitting from proofs any
warrants that the reader can be expected to provide.

In Mrs James’s lesson, the argumentation begins with the given data: the
diagonals are perpendicular and meet at their midpoints. From this data the figure
is constructed. There are not many explicit warrants in this argumentation stream
(AS-A). As in Mrs Nissen’s lesson, if the warrants were made explicit they would
either be visual or refer to conventions well known to the students. In the other
streams, however, there is a focus on the arguments themselves and warrants become
more explicit. Duval’s “recyclage” is evident in AS-B where almost all the data
are recycled conclusions of previous steps, and in which most steps have explicit
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warrants. In AS-D we see the focus on the argument in the refutation of it, as
opposed to the refutation of data in the source structure. Even in AS-E, where
there are many omitted warrants and a configuration similar to the source structure
overall, with the final conclusion depending on more than one datum, the fact
that the teacher offers this alternative approach to establishing the final conclusion
indicates a focus on arguments rather than data and conclusions.

Examining the argumentation structures in these two classrooms allows us to
describe their characteristic features, and by comparing them we can understand
the different ways these features occur. We see the parallel arguments, refutations
and omitted warrants in both, but we see these features occurring differently.
Looking more closely at the features of the local arguments helps to explain these
differences, and reveals an importance distinction between the rationales of the
proving processes taking place. In Mrs Nissen’s class we find in the local arguments
a focus on interpreting the given figure. The activity is essentially one of unpacking
the data in the figure and expressing it verbally. It is not clear how this could
be transferred to proving another theorem, unless a similar complex figure were
provided. We suspect this is inevitable in a class focussing on the Pythagorean
Theorem. Historically, mathematics educators have struggled with the problem of
using mathematically significant theorems as a context for learning proving. The
proofs of such theorems are usually sufficiently complex that it is unreasonable to
expect students in schools to discover them, unless the teacher provides so much
guidance that the students’ contributions are limited to activities such as unpacking
a diagram, as in Mrs Nissen’s class. Herbst (2002b) describes how this struggle
affected the evolution of proof teaching in the US.

In contrast, in Mrs James’s class the focus is more on proving. The result itself
is relatively uninteresting, but the recycling of conclusions as data, the provision
of warrants, the fact that the same result can be proven in different ways, and
bringing different prior knowledge to bear, are all important. Student contributions
are valued, even when flawed, and the argumentation, especially in AS-B, served as
a model for the students when proving similar claims in subsequent lessons.

The source structure and the spiral structure are interesting to compare because
they have many characteristic features in common, including parallel arguments,
argumentation steps that have more than one datum, refutations, and unconnected
argumentation streams. There are differences in how these features play out in the
global structures, however, and to explain these we focus again on local arguments.

8.5 Conclusion

Toulmin’s functional model of argument allows us to reconstruct arguments in math-
ematics classrooms at the local level, and also to assemble local arguments together
into a global structure. By examining argumentation structures (the metaphoric
anatomies of proving processes) we can describe their characteristic features, and
by comparing structures we can understand the different ways these features occur
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in an argumentation structure. To better understand the differences we observe,
and to shed light on the rationales of the proving processes we return to the local
arguments, to physiology in our metaphor. Attention to both the local and the
global levels are essential to understanding proving processes in the classroom.
While we are still, as Hoyles (1997) noted, “a long way from understanding
how students acquire proof”, examining argumentation structures provides a tool
to better understand the different ways in which teachers teach proof in actual
classrooms and how students in those classrooms come to an understanding of proof
and proving.
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Chapter 9
Checking Proofs

Jesse Alama and Reinhard Kahle

9.1 Introduction

Argumentative practice in mathematics evidently takes a number of shapes. An
important part of understanding mathematical argumentation, putting aside its
special subject matters (numbers, shapes, spaces, sets, functions, etc.), is that
mathematical argument often tends toward formality, and it often has superlative
epistemic goals: often the aim of a piece of mathematical argumentation is to prove
that such-and-such a statement is logically true or a logically valid consequence
of some assumptions; a proved statement thus seems to be indubitable, certain,
or irrefutable. These aims generally do not depend on the subject matter of what
is being argued about; whether one discusses functions, numbers, spaces, shapes,
sets, arrangements, flows, figures, or fields, mathematical argumentation, in its final,
published, form (and even in ordinary mathematical conversation) tends to be formal
and self-consciously explicit about its own argumentative structure. The problem,
then, is to better understand the notion of mathematical proof. We are interested in
this chapter in the phenomenon of mathematical proof considered as a species of
argumentative practice in mathematics.

For us in this chapter the central feature of mathematical argumentation—
specifically, mathematical arguments that are put forward with the intention of
showing that a certain proposition is true or validly derived—is its in-principle
formalizability. By the in-principle formalizability of an argument we understand
that there exists a formal derivation in some conventionally accepted formalism
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suited for mathematical reasoning of the proposition that commences from some
conventional set of foundational axioms in a gap-free way all the way to the
(formalized version of the) proposition.

Even a modest exposure to the practice of producing formal proofs common
in introductory courses in logic, mathematics, computer science, law, linguistics,
etc., quickly makes clear that the conventional formalisms for reconstructing an
argument formally tend to be practically unsuited to the task for which they were
designed. Without claiming to offer a complete list, we have

• the method of truth tables,
• Aristotle’s syllogisms and variants thereof,
• analytic and semantic tableaux (e.g., Smullyan-style or Jeffrey-style),
• statement-justification tables (as one often sees in elementary courses of

geometry),
• Euler/Venn diagrams (for expressing relationships of inclusion and exclusion),
• natural deduction (in various forms: Gentzen, Fitch, Jáskowski, Suppes, . . . ),
• Hilbert-style calculi (a linear format preceding from axioms and generally using

a handful of rules, e.g., modus ponens),
• Toulmin diagrams (in which the various roles of statements are represented, so

that not all statements are simply bald “premises”),
• sequent calculi (à la Gentzen).

The list is quite incomplete; the reader is invited to recall other formats for
representing argumentation formally. The point of our list is to suggest to the reader
that there are numerous formalisms available for representing or reconstructing
arguments, especially mathematical ones.

It is one thing to formalize a piece of syllogistic reasoning or to use a truth table
or tableau method for showing that a short propositional statement such as p∧q→ p
is a tautology. But for arguments of any complexity, one sees that reconstructing the
argument formally quickly becomes tedious: the formalized argument is often much
longer, in an everyday sense, than the argument that it is intended to formalize. One
loses the thread of the formalized argument, since most formalisms mandate that
one spell out all steps, significant or insignificant. The formal reconstruction takes
too long, and the reward at the end (if one has enough patience!) pales in comparison
to the cost of the formalization.

If one insists on writing mathematical arguments entirely in accordance with
the demands of, say, a standard Hilbert-style calculus (where modus ponens is
the only rule of inference),1 then checking a formalized mathematical argument
is indeed exceedingly routine, but also exceedingly time-consuming. One wonders

1It is not always the case that modus ponens is the only rule of inference available in a Hilbert-style
system. In certain systems of modal logic, for example, one typically finds a rule of necessitation
as part of a Hilbert-style formalism. But for classical propositional and predicate logic, as well as
for others, it is standard to assume that in a Hilbert-style calculus modus ponens is the only rule
of inference. The main feature of Hilbert-style calculi is that they have very few rules, placing the
deductive burden of the formalism on its axioms, which are formulas, rather than rules of inference.
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what payoff might be had if one were to formalize one’s arguments. Lakatos, asking
what one can discover in a formalized mathematical theory gives one answer: “One
can discover the solution to problems which a suitably programmed Turing machine
could solve in a finite time (such as: is a certain alleged proof a proof or not?).
No mathematician is interested in following out the dreary mechanical ‘method’
prescribed by such decision procedures” (Lakatos, 1976, 4). It seems that these
formalisms in general and the formalisms in which one can reconstruct “informal”
arguments, whatever virtues they have (e.g., the soundness and completeness of
various systems for expressing derivations), are simply not a practical tool. Those
who stress formalisms for writing proofs seem to be overpromising what those
formalisms can deliver. It seems that, even if we are interested in the formal side of
mathematical reasoning, we need to rest content with its in-principle formalizability.
Those who are not so interested in formalization might even suspect that the
impracticality of formalizing interesting mathematical arguments constitutes a
reductio of the notion of the in-principle formalizability of mathematical proof. If
the “in-principle” part of “in-principle formalizability” is so essential, perhaps there
is something wrong with the notion of formalizability in the first place.

We do not disagree with the view that formalizing interesting arguments (let
alone mathematical proofs) is often tedious. We would like to defend, though, the
in-principle formalizability of mathematical proofs as one of their important features
by explaining their in-practice formalizability. We are interested, specifically, in
the problem of checking a proof, because the ordinary discussion of in-principle
formalizability does not take full account of an important capability that can be
brought to bear when formalizing arguments. Instead of formalizing mathematical
arguments in our heads or with pencil-and-paper, why not use computers to assist
us in the task? Computers are obviously capable of doing symbolic computation at
a faster rate, and with less regard for tedium, than humans have when working only
in their heads or with pencil and paper. We are now in the possession of a wealth of
tools that help us to practically reconstruct an informal argument in a formal setting,
check whether the formalization is a valid argument and, if not, what defects it has.

In our view these technological developments are important for argumentation
theory because, on the one hand, they shed new light on classical topics such as
reconstructing and appraising arguments (especially mathematical ones), and, on
the other hand, the developments suggest formal treatment of topics that might be
thought to be essentially informal.

Our view is closely related to Azzouni’s (2004) so-called derivation-indicator
view about mathematical proofs (briefly, that ordinary “informal” mathematical
proofs serve as indicators of corresponding formal derivations). The success of
computer-assisted (formal) theorem proving projects as discussed here bears on
Azzouni’s view by showing how formal derivations in his sense do occur ‘in
the wild’ and are indicated by informal proofs. Derivations for many mainstream
mathematical theorems are now available; the days when one could only dream
of live derivations for any substantial mathematical theorem are long over. Of
course, the empirical success of computer-assisted formal theorem proving projects
does not show that Azzouni is right. Our view is also compatible with that of
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his critics, such as Rav (2007). We do not offer formal proof construction and
checking as a replacement for ordinary mathematical proof practices, nor are we
implicitly suggesting that formal proofs ought to be a central object of interest
in argumentation theory of mathematics. Nor, finally, can we recommend formal
proofs for everyone; it requires, certainly, a friendly (or at least patient) attitude
toward formalization, which not everyone has.

This chapter stands out from several of the others in this volume by its focus
on mathematical proof and its connection with formal logic. A fair amount of
argumentation theory can be seen as trying to escape from the musty chains
of formal reasoning by asking questions about argumentation that are ignored,
spurned, or untreatable by the old tools of deductive, valid, formal logic. From
this perspective, our contribution might appear to be an unwelcome throwback.
Although we focus on such “traditional” matters, we are by no means claiming
that in-principle formalizability exhausts the interests of an argumentation theorist
looking at mathematics. Further, we do not claim that the subject of proof exhausts
the study of mathematical argumentation. Proof is clearly but one aspect of a
multifarious phenomenon, as other contributors to this volume can testify. (See, for
example, van Bendegem, 1988.) And although our interests are clearly “traditional”
or “foundational”, our focus on formalizability stems from the same desire among
argumentation theorists looking at mathematics to find out what formal logic does
not account for. Our modest suggestion is that, thanks to developments in automated
reasoning systems (Portoraro, 2008, is a useful survey), new light is shed on the
notion of in-principle formalizability and new problems suggested that, we believe,
will be of interest to argumentation theorists.

Our focus in the present chapter is on evaluating formalized mathematical
arguments, or, rather, checking proofs. We illustrate how this apparently “dreary
mechanical method” that Lakatos referred to can in fact offer insight into a
formalized mathematical argument. Our discussion is based on modern computer
implementations of the process of checking formalized proofs, in the guise of so-
called interactive theorem provers (also known as proof assistants). We will focus on
the MIZAR interactive theorem prover,2 which is based on classical first-order logic,
set theory, and natural deduction. There are many actively maintained interactive
theorem provers now available:

• COQ3

• ISABELLE4

• HOL5 and some variants, such as HOL LIGHT6 and HOL ZERO7

2http://mizar.org
3http://coq.inria.fr
4http://www.cl.cam.ac.uk/research/hvg/isabelle/
5http://hol.sourceforge.net/
6http://www.cl.cam.ac.uk/~jrh13/hol-light/
7http://proof-technologies.com/holzero.html

http://mizar.org
http://coq.inria.fr
http://www.cl.cam.ac.uk/research/hvg/isabelle/
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://proof-technologies.com/holzero.html
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From among these we chose MIZAR for its relatively straightforward proof syntax,
which is most likely to be immediately accessible to an unfamiliar reader. We are
not interested in defending a claim about which of the great variety of interactive
theorems provers now available is “best”. For lack of space, we cannot provide a
comprehensive introduction to MIZAR; we refer the reader to (Grabowski et al.,
2010). We will explain the relevant parts of MIZAR’s language for representing
mathematical proofs as necessary.

9.2 Computer-Assisted Proof Construction

The problem of formalizing mathematical arguments is rather old. The roots of
formalization arguably go back to Euclid, if not earlier (Netz, 2003). For lack of
space, we have to ignore a rich history, doing much injustice to many intellectual
forbears, and skip ahead, past the invention of the modern computer in the 1930s.
Some of the earliest research in what we now call artificial intelligence was on the
formalization of mathematical arguments, specifically, the task of using computers
to search autonomously for formal proofs of mathematical claims (e.g. Wang,
1960). Wang’s groundbreaking research led to automatically found proofs of many
theorems of Principia Mathematica. His remarks, made in 1960, have proved to be
rather prescient:

The time is ripe for a new branch of applied logic which may be called “inferential”
analysis, which treats proofs as numerical analysis does calculations. This discipline seems
capable, in the not too remote future, of leading to machine proofs of difficult new theorems.
An easier preparatory task is to use machines to formalize proofs of known theorems
(Wang, 1960, 2).

Wang distinguishes the automated search for genuinely new mathematical results
from the formalization of known theorems. We are interested in this second
practice. Such work, we urge, provides a fascinating glimpse into the practice of
mathematical argumentation.

Early research in the field of theorem proving—the search for proofs (or
disproofs) of mathematical claims—has led to rather sophisticated techniques and
impressive milestones. It is standard to divide automated theorem proving (in which
computers search more or less autonomously for proofs, models, refutations, etc.)
from interactive theorem proving (in which the emphasis is on the construction of
proofs, assisted by a machine). Although there are some precursors of interactive
theorem proving going back to the earliest days of modern computers, the field
began to pick up steam mainly in the 1960s and 1970s: early important projects
include AUTOMATH by N. G. de Bruijn in Eindhoven, the Netherlands (de Bruijn,
1980), SAD (System for Automated Deduction) in Kiev, Ukraine (Verchinine et al.,
2007), and MIZAR in Białystok, Poland (Matuszewski and Rudnicki, 2005). (Our
account of the early history of interactive theorem proving must, for lack of space,
be cut short.) The products of these systems that are most interesting to us are
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their formal languages for reconstructing the mathematical vernacular, that is, the
informal though highly stylized, even slightly rigid, parole used by mathematicians
when communicating mathematical proofs. In the end, these reconstructions of
mathematical vernacular are themselves formal languages, but they are far from
simply being “raw” formalisms such as natural deduction or sequent calculus.

For a more thorough account of the state of the art, one can consult the excellent
survey articles by Wiedijk (2008), Hales (2008), and Harrison (2008). Here we
focus on the aspects of formal mathematical proofs that may be of interest to those
working in argumentation theory and mathematics.

The use of computers in mathematical theorem proving is becoming increasingly
important. One can distinguish two directions: proof search and proof checking.
Proof search suffers from well-known complexity problems and has so far had only
limited success solving general mathematical problems. On the other hand, while it
might be very hard to find a proof, to check a proof for correctness is, in general, of
lower complexity (although the process can be rather technical and long).

Wiedijk (2006) surveys a corner of the state of the art. He presents 17 theorem
provers and evaluates them in a uniform way: to prove that

√
2 is irrational.

Wiedijk’s survey gives interesting insight into the state of the art of theorem proving,
strongly emphasizing proof check (and less strongly proof search). Wiedijk presents
a six line proof of the famous theorem, taken from the classical textbook of Hardy
and Wright (1960, 39 f.):

The traditional proof ascribed to Pythagoras runs as follows. If
√

2 is rational, then the
equation

a2 = 2b2

is soluble in integers a, b with (a,b) = 1. Hence a2 is even, and therefore a is even. If a= 2c,
then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary to the hypothesis that (a,b) = 1.

This proof should be understandable by anyone with basic mathematical knowledge.
Emphasizing proof checking, Wiedijk writes (2006, 3): “Ideally, a computer should
be able to take this text as input and check it for its correctness.” Insofar as
Wiedijk means that Hardy and Wright’s proof needs to be checked for correctness,
we consider this perspective misleading. Of course, the correctness of a proof
is essential, but that doesn’t mean that the correctness of a proof is always in
doubt, or that mathematical proofs require (repeated) verification. In fact, the proof
above, as a textbook proof, has surely another objective besides simply displaying
the logical correctness of its conclusion. On the one hand, it should convince the
reader of the truth of the proven theorem; on the other hand it should provide text
which is memorable, that can be reproduced whenever needed. For the moment,
let us follow the line of proof checking, as this might be an important task when
we are in doubt about the truth of a theorem or about a particular proof of a
theorem. When Wiedijk presents the results which computer-aided theorem provers
provide for the irrationality of

√
2, these results might very well be checkable,
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but the proofs themselves are far from acceptable for a human reader.8 In fact, to
guarantee correctness, they have to take into account too many details, details which
a mathematician does not like to see exposed in the proof. This was formulated by
Scott as follows:

For verification (. . . ) checkable proofs have to be generated and archived. Computers are so
fast now that hundreds of pages of steps of simplifications can be recorded even for simple
problems. Hence, we are faced with the questions, ‘What really is a proof?’ and ‘How much
detail is needed?’ (Scott, 2006, ix f.)

That formalized proofs are not a good answer to the former question is argued
by several authors. For instance, Avigad, working from historical case studies of
proofs in elementary number theory, concludes that “Standard models of deduction
currently used in mathematical logic cannot easily support the type of analysis [of
proofs] we are after” (Avigad, 2006, 131).9

We agree with Scott that formalized or computer-checked proofs challenge our
notion of proof with respect to proof representation. How do we represent proofs in
such a way that a computer could understand them, while still being practical and
useful for humans? And can we trust formal proofs in the same way that we can
trust “human proofs”? (See Rehmeyer, 2008, for a further discussion.) And when is
a proof really a proof, anyway?

This already holds “in the small” for the proofs of the irrationality of
√

2
presented in (Wiedijk, 2006). It surely also holds “in the large” when we come to
the controversial case of the computer-aided proof of the four color theorem, which
suffers from a huge number of case distinctions checked by computer, but which
were not (and most likely could never) be checked by a human mathematician. And
it also holds for the case of the alleged proof of the Kepler conjecture (Hales, 2005).
But, while we said that the verification of Hardy and Wright’s proof above is not
an issue, the verification of these proofs is at issue, and is valuable. For Appel and
Haken’s original 1976 proof of the four color theorem (Appel and Haken, 1977) this
is mentioned by Thomas, who writes in an informal explanation of the second proof:

We have in fact tried to verify the Appel–Haken proof, but soon gave up. Checking
the computer part would not only require a lot of programming, but also inputting the
descriptions of 1476 graphs, and that was not even the most controversial part of the proof
(Thomas, 2007).

So, Robertson, Sanders, Seymour, and Thomas came up with a new
proof (Robertson et al., 1997). It is still performed by computer aid, but it reduces
the cases from 1476 to 633. While this is still a number which cannot be checked
“by hand”, no one would deny that it is an improvement, i.e., that this proof is

8“We can also see clearly from the examples in this collection that the notations for input
and output have to be made more human readable” (Scott, 2006, viii f., in the foreword of
Wiedijk, 2006).
9Avigad actually proposes methods—which correspond, for instance, to tactics in the ISABELLE

theorem prover—as alternatives (cf. Avigad, 2006).
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clearly better than the original one. But with respect to the verification, now we
have the possibility to verify—by computer aid—the programs involved (as has
now been done: Gonthier, 2008).

The question of verification of large or otherwise controversial proofs was
reignited recently by Hales when he launched a program to verify “formally”,
i.e., by computer aid, his proof of the Kepler conjecture. Hales is engaged in his
project because the initial verification attempt by mathematicians of his solution
to the Kepler conjecture led only to “99% certainty” about the correctness of his
proof (Hales, 2005). While the situation seems to be in principle similar to the proofs
of the four color theorem, the new aspect is that the author should try to convince
the mathematical community of the correctness of his proof entirely by formal and
computer verified means.

What is the difference between proving and checking a proof? When is a proof
a proof, anyway? Is there a social aspect to whether a proof is a proof? (We refer
the reader to Heintz, 2003, and to Löwe et al., 2010, for a discussion of further
epistemological issues in formal proof.)

As a consequence of the philosophical discussion of Appel and Haken’s original
proof of the four color theorem (there are many sources: Tymoczko, 1979; Detlefsen
and Luker, 1980; Teller, 1980; MacKenzie, 1999; Arkoudas and Bringsjord, 2007;
Bassler, 2006), Prawitz stresses—with reference to Teller—the importance of
distinguishing proof from its verification:

That one has verified that a proof is a proof [. . . ] is therefore not a part of the proof. That
is not to say, of course, that it is not wise to check one’s proof; as Hume rightly remarks,
the confidence in a proof increases when one runs over it. But the checking does not add
anything to the proof itself (Prawitz, 2008, 89).

From this perspective, it is clear that Hales’s verification project should concern only
the confidence one might have in his proof, not the proof itself. But what will be the
status of the proof even after it is verified on the lines that Hales proposes?

In fact, this situation is not as new as it might look; it didn’t just emerge from the
use of computers. There is actually one other instance in which a modularization
in numerous cases was carried out by just a large number of mathematicians: the
classification of finite groups. In fact, its “proof” (which was, in part, also done
by computer aid) has an interesting history with respect to its correctness and its
acceptance (Aschbacher, 2004).10 What distinguishes it most from the computer
proofs mentioned above, is the fact that the different cases might be considered as
interesting in their own right, i.e., for the study of a particular group (or class of
groups). A study of the single cases in the proofs of the four color theorem does not
provide any such mathematical surplus value.

10“I have described the Classification as a theorem, and at this time I believe that to be true. Twenty
years ago I would also have described the Classification as a theorem. On the other hand, 10 years
ago, while I often referred to the Classification as a theorem, I knew formally that that was not
the case, since experts had by then become aware that a significant part of the proof had not been
completely worked out and written down” (Aschbacher, 2004, 737 f.).
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The lesson to take away from the reception of the proof of the four color
theorem and the reception of the classification of finite simple groups is that
mathematicians still seem to prefer proofs checked by other (human) mathe-
maticians. Even if the proof is so complex that no single mathematician can
check it, it is preferred that the mathematical community as a whole cooperates
in carrying out the verification. (See also Buss, 1998, who divides proofs into
formal and social.) In the application of computers to proving properties of
computer programs, one can also find controversy; De Millo, Lipton, and Perlis’s
paper (1979) on the social nature of proof is a famous gauntlet thrown down in
the discussion about these matters. MacKenzie (2004) provides a comprehensive
discussion.

9.3 Checking a (Formal) Proof

The problem of checking a mathematical proof can sometimes be surprisingly
complex. It seems that for many ordinary mathematical proofs the process of
checking the proof occurs simultaneously with a reconstruction of the proof.
Lakatos expresses this thus: “Often the checking of an ordinary proof is a very
delicate enterprise, and to hit on a ‘mistake’ requires as much insight and luck as to
hit on a proof” (Lakatos, 1976, 4). But checking proofs even in a formal setting can
also be a delicate enterprise, as well. How?

One can view an argument for a claim as a structure that specifies how claims
of the argument are justified by various moves. We begin with an initial thesis, and
then make inferential moves from it, making in turn additional claims. Each step we
make transforms the thesis to be proved (and possibly introduces new theses) into a
different claim. We discharge some obligations and possibly introduce others along
the way. The argument can be said to be successful if all our steps are the result of
sound applications of rules of inference and the thesis to be proved at the end of the
argument is acceptable.

Lest we slip into an infinite regress à la Carroll (1895), we need to agree to our
rules of inference. Thus, if the thesis is B and we have established A and A → B,
we need to agree that:

• An application of modus ponens to the two claims already established (A and
A → B) yields B,

• Modus ponens is an acceptable rule of inference, and
• The occurrence/utterance of B that is obtained by applying modus ponens is “the

same” as the B that we set out to establish.

The first item pins down the premises of an application of modus ponens. The
second item is meant to rule out the possibility that the acceptability of modus
ponens becomes itself a disputable issue in the argument. The third item, like the
first, is meant to pin down the issue under discussion; it won’t do if, establishing A
and A →B, we nonetheless reject the conclusion of the application of modus ponens
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to these two premises because the conclusion B now differs from the B that we set
out to establish.11

To some extent, one could say that there is little at issue when it comes to
the problem of checking a formal mathematical proof. We simply choose some
target formalism in which to reconstruct the proofs, such as a standard Hilbert-style
calculus or a Fitch-style natural deduction calculus. We might prefer calculi that are
complete for the notion of logical consequence in which we are interested (often,
but not always, classical first-order logic).12 We then “formalize” the argument in
the chosen formalism, producing some kind of figure d (graph, tree) representing
the initial argument. The initial argument is then checked if and only if d is a legal
figure according to the rules of the proof formalism that we started with. Showing
that d is legal is, generally, an entirely mechanical matter.

For example, in a Hilbert-style calculus, d is a finite sequence 〈A1,A2, . . . ,An〉
of logical formulas. The question of whether d is a legal derivation of a formula φ
from assumptions Γ consists of showing that d terminates with φ and that for each
term Ai of the sequence, that either

• Ai is a member of Γ
• Ai is an axiom (which amounts to simple pattern matching: does Ai have the form

φ ∨¬φ? Does Ai have the form φ → (ψ → φ)?)
• There exist earlier terms Ai1 and Ai2 of the sequence such that Ai2 is Ai1 → Ai.

This is just another way of saying that Ai is obtained from Ai1 and Ai2 by modus
ponens.

For other formalisms, e.g., Fitch-style natural deduction or Gentzen-style sequent
calculus, checking whether some figure d is legal according to the formalism is
likewise quite straightforward.

Yet it often happens that among proof formalisms, there is a balance between
the complexity of verifying that a figure purporting to be a legal derivation really
is legal, and the length of the proofs. Thus, in a Hilbert-style calculus, it is
trivial indeed to check that a given sequence of formulas is a legal Hilbert-style
derivation; but the length of the legal sequences, as one considers derivations of
increasingly non-trivial mathematical results, grows quite rapidly. (For a thorough
systematic discussion of this and related issues of proof complexity, see Orevkov,
1993.) It seems, moreover, that such proofs are unsatisfactory because they diverge
significantly from mathematical practice. What is wanted is a formalism that tries

11This is not to say that such phenomena are not worth studying. One way of coming to grasp the
meaning of a statement is by arguing with it; we may find, for example, that if we have reached an
unacceptable conclusion through sound reasoning from premises that we accept, we find ourselves
having reached a better understanding of the conclusion. Thus the B we reach at the end is, in some
sense, different from the B (in A → B) from which the argument commenced. Such a phenomenon
might be understood as argument-based discovery of meaning. Such argumentation—which might
be seen as fallacious—is present in mathematics, but we shall not consider it here.
12“Classical” means that the law of excluded middle is assumed to be valid: the disjunction φ ∨¬φ
is assumed to hold for any formula φ .
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to be more faithful to the practice of mathematical argumentation, while still being
sufficiently delimited that one can compute with the formalizations.

There are, we submit, such formalisms, balancing ease of use with the practical
need that checking whether a figure is a legal derivation is fast. Later we shall see
some example proofs written in one of them.

One kind of argument appraisal that is available in the formal setting that is not
easily available in the informal setting is the question of what an argument depends
on. Essentially any contentful argument takes something for granted. It appeals
explicitly to some background knowledge, or perhaps makes certain assumptions
implicitly or carries out parts of the argument without any justification. Even
certain mathematical definitions might take something for granted. For example,
the definition of the real number π as the ratio of a circumference of a circle to its
radius, on the surface, simply defines a function from particular circles to the set
of real numbers. No one doubts that the notions “circumference of a circle” and
“diameter of a circle” vary from circle to circle (that is, distinct circles can have
distinct circumferences and radii), so without any further analysis all the definition
of π gives us is yet another quantity that varies from circle to circle:

∀γ(circle(γ)→ (π(γ) = (circumference(γ)/diameter(γ)))).

But in fact in standard Euclidean geometry the quantity π(γ) does not vary with γ .
Thus, in a fully formal treatment of Euclidean geometry, one would have to establish
the theorem

∀γ,γ ′[π(γ) = π(γ ′)].

Thus, in a fully formal development of Euclidean geometry, one would expose this
implicit dependency of a definition on some of the axioms of Euclidean geometry.

Nonetheless, modern interactive theorem provers generally provide some kind of
support for omitted inferences. Which inferences are omitted? We see an interesting
formal analogue of the subject taken up by Fallis, concerning intentional gaps
in mathematical proofs (Fallis, 2003). In what sense are there gaps in a formal,
computer-checked proof?

At the end of formalization, one typically has, at least in principle, an ut-
terly formal proof of a theorem, logically correct down to all details, down to
the axioms of whatever background theory one is working with. However, a
completely formal proof, for a theorem of any mathematical substance, would
be unmanageable. Let us be clear that when working with interactive theorem
provers, one does not typically work with “totally” formal proofs that, say, proceed
only by introduction and elimination rules for quantifiers and connectives. (This
is in accordance with the usual notion of analytic proof , which proceeds by
an analysis of the structure of the claim to be proved and the structures of the
assumptions used to prove it. By contrast, a synthetic proof brings in some new
ingredients that are not formally contained in the statement to be proved.) It is
well know that these are simply too big. One uses the computer not to assist
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in the drudgery of simply storing a large derivation figure in its memory and
manipulating it with somewhat greater facility than would be the case were one
to just use pencil and paper. Instead, the standard practice is that one works with
a formal language that sits above a “totally” formal language. One writes proofs
in the intermediate formal language that, in some sense, can be compiled into a
totally formal proof. Thus, modern interactive theorem provers typically provide
mechanisms for suppressing some inferences. One sees here a computable version
of Azzouni’s derivation-indicator view. An “informal” or ordinary mathematical
proof is said to be an indicator of a formal derivation. Likewise, proofs conducted
with modern interactive theorem provers, even though they are rather more for-
mal than informal proofs, can likewise be seen as indicators of totally formal
derivations.

This does not mean that a proof constructed with an interactive theorem prover
is, in some interesting sense, informal. Rather, it is formal, but with some gaps that
can be, as it were, computably traversed. That is, gaps generally represent proof
search problems; the traversability of a gap means that there is a solution to the
proof search problem. Consider, for example, a proof in the MIZAR system for the
following elementary set-theoretic fact13:

for x, X, Y being set holds
x in X \+\ Y iff not (x in X iff x in Y)

proof
let x, X, Y be set;
x in X \+\ Y iff x in X \ Y or x in Y \ X

by DefDisjointUnion;
hence thesis

by DefRelativeComplement;
end;

Here the claim is that a set x is in the disjoint union of two sets X and Y (x in
X \+\ Y) iff it is not the case that x is in X iff x is in Y (not(x in X iff x
in Y)). The proof uses the definition of disjoint union (DefDisjointUnion),

definition
let X, Y be set ;
func

X \/ Y -> set
means :DefDisjointUnion:
for x being set holds x in it iff (x in X or x in Y);

which is defined in terms of relative complement (X\Y), defined as

definition
let X, Y be set ;
func X \+\ Y -> set

equals
(X \ Y) \/ (Y \ X);

13http://mizar.org/version/current/html/xboole_0.html#T1

http://mizar.org/version/current/html/xboole_0.html#T1
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The disjoint union of X and Y is the union (X \ Y ) ∪ (Y \ X) of the relative
complement of X from Y and Y from X), and the definition of relative complement
itself, which is

definition
let X, Y be set ;
func X \+\ Y -> set

equals
(X \ Y) \/ (Y \ X);

The proof is three steps long: the initial “let” statement, the inference from the
definition of disjoint union, and the final inference (thesis) from the definition
of relative complement. One might wonder what the trouble is all about; see
the discussion of what counts as an “obvious” inference in Sect. 9.4 for an
explanation of why it’s necessary, at least for the case of MIZAR, to spell out
an argument. Taking for granted the need to articulate these steps in the proof,
one might wonder whether this is really a formal proof. Indeed, it may fail
to adhere to, say, the requirements of a Fitch-style natural deduction system.
The “let” of the first three steps introduces three variables (x, X, and Y) all at
once, in one step, rather than one at a time. Another way in which the MIZAR

proof could fail to strictly adhere to the requirements of a totally formal proof
is that it fails to start with the definition of disjoint union, considered as the
universal claim

∀X∀Y [X ⊕Y = (X \Y )∪ (Y \X)],

and instantiate it for the terms of interest, and then apply a rule of equal-
ity to transform the given claim in terms of \+\ into one involving union
and relative complement. A complete Fitch-style natural deduction proof of the
claim would proceed as in Fig. 9.1. This Fitch-style deduction takes dozens
of steps. We cannot claim that there is no shorter proof. Still, it is implausi-
ble to us that there is a Fitch-style deduction of the same theorem from the
same premises that is much shorter than this one. The Fitch proof even econ-
omizes in some ways: we took as an axiom an instance of the propositional
tautology

¬(p ↔ q)→ [(p∧¬q)∨ (¬p∧q)]

in step 1 and an instance of

(p∧q)→ (q∧ p)

in step 2 as premises. The principle assumptions are of course 3, 4, and 5, which
are definitions of three mathematical concepts. In a Fitch-style natural deduction
formalism in which (instances of) this formula are axioms, then no further work
is needed. If this formula is not an axiom, then of course a proof of it must be
given, so the proof would need to be even longer. We have also economized by
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1 ¬(x ∈ X ↔ x ∈ Y )→ [(x ∈ X ∧ x �∈ Y )∨ (x �∈ X ∧ x ∈ Y )] Tautology

2 (x �∈ X ∧ x ∈ Y ) → (x ∈ Y ∧ x �∈ X ) Tautology

3 ∀X∀Y∀x[x ∈ X ∪Y ↔ x ∈ X ∨ x ∈ Y ] Definition of union (∪)

4 ∀X∀Y∀x[x ∈ X \ Y ↔ (x ∈ X ∧ x �∈ Y )] Definition of relative complement (\)

5 ∀X∀Y[X ⊕ Y =( X \ Y) ∪(Y \ X )] Definition of disjoint union (⊕)

6 X ⊕ Y =( X \ Y) ∪(Y \ X) ∀E, 5

7 x ∈ X \ Y

X \ Y

X \ Y

X \ Y

↔ (x ∈ X ∧ x �∈ Y) ∀E, 4

8 x ∈ Y \ X

Y \ X

Y \ X

Y \ X

Y \ X

↔ (x ∈ Y ∧ x �∈ X) ∀E, 4

9 x ∈ X ∪Y ↔ x ∈ X ∨ x ∈ Y ∀E, 3

10 x ∈ (X \ Y ) (X \ Y )

(X \ Y )

(X \ Y )

∪(Y \ X ) (Y \ X )

(Y \ X )

(Y \ X )

↔ x ∈ ∨ x ∈ ∀E, 3

11 x X Y x ∈ X ⊕ Y

12 x ∈ X ↔ x ∈ Y

13 x ∈ ∪ =-E, 11, 6

14 x ∈ ∨ x ∈ ↔-E, 13, 10

15 x ∈

16 x ∈ X ∧ x �∈ Y ↔-E, 15, 13

17 x ∈ X ∧E, 16

18 x ∈ Y ↔-E, 16, 12

19 x �∈ Y ∧E, 16

20 ⊥⊥ -I, 18, 19

21 x ∈

22 x ∈ Y ∧ x �∈ X ↔-E, 21, 8

23 x ∈ Y ∧E, 22

24 x ∈ X ↔-E, 23, 16

25 x �∈ X ∧E, 24

26 ⊥⊥ -I, 24, 25

27 ∨⊥ E, 14, 15–20, 21–26

28 ¬(x ∈ X ↔ x ∈ Y) ¬I, 12–27

29 x ∈ X ⊕ Y →¬ (x ∈ X ↔ x ∈ Y) ⇒I, 11–28

30 ¬(x ∈ X ↔ x ∈ Y)

31 (x ∈ X ∧ x �∈ Y) ∨ (x �∈ X ∧ x ∈ Y) ⇒E, 1, 30

32 x ∈ X ∧ x �∈ Y

33 x ∈ ↔-E, 32, 7

34 x ∈ X \ Y ∨ x ∈ Y \ X ∨I, 33

35 x ∈ X ⊕ Y =-E, 34, 6

36 x �∈ X ∧ x ∈ Y

37 x ∈ Y ∧ x �∈ X ⇒E, 2, 36

38 x ∈ ↔-E, 37, 8

39 x ∈ ∨ x ∈ ∨I, 38

40 x ∈ X ⊕ Y =-E, 39, 6

41 x ∈ X ⊕ Y ∨E, 31, 32–35, 36–40

42 ¬(x ∈ X ↔ x ∈ Y) → x ∈ X ⊕ Y ⇒I, 30, 41

43 x ∈ X ⊕ Y ↔¬ (x ∈ X ↔ x ∈ Y) ↔-I, 29, 42

44 ∀x∀X∀Y[x ∈ X ⊕ Y ∨ x ∈ ↔¬ (x ∈ X ↔ x ∈ Y)] ∀I, 11–43

Fig. 9.1 Fitch-style deduction of ∀x∀X∀Y [x ∈ X ⊕Y ∨ x ∈Y \X ↔¬(x ∈ X ↔ x ∈ Y )]
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allowing multiple-variable instantiations for universal formulas, that is, permitting
the inference of

φ [x1,x2, . . . ,xn := t1, t2, . . . , tn]

from

∀x1∀x2 · · ·∀xnφ ,

where n ≥ 1, in a single step (where φ [x1, . . . ,xn := t1, . . . , tn] denotes the
simultaneous substitution of the term tk for the variable xk, 1 ≤ k ≤ n). Thus,
depending on precisely how restricted the natural deduction system is, the deduction
easily approaches 50 steps.

Contrast the 3-step formal proof earlier, from which the Fitch-style derivation
came, with the totally formal Fitch-style derivation. The point is that there is no
need to write down all those 40+ steps of the Fitch-style derivation, because most
of them can be computed. The above MIZAR proof might even be just what we
want, since, apart from the first step of instantiating the variables, the two steps are,
essentially:

1. Apply the definition of disjoint union, then
2. Apply the definition of relative complement.

This seems to be the heart of the matter, and the proof does not diverge from
that. By contrast, it is not apparent what the “heart” of the corresponding Fitch-style
proof is, since we had to carry out various instantiations of universal premises and
even take a detour through a propositional logic.

9.4 What Inferences Are “Obvious”?

When giving a mathematical proof, one has to decide what to say and what can
go without saying. Learning the norms for communicating proofs is an important
part of acquiring knowledge of mathematics. (One might even see mathematics
as an instance of Toulmin’s fields: Toulmin, 2003.) It is a recurring question that
teachers of mathematics face: “Which steps should be included? What steps can
I omit?” Rarely (if ever) do we see all steps of a mathematical proof, if by “step”
we understand a single application of a rule of inference in some conventionally
accepted formalism akin to the Fitch-style derivation given in the previous section.
Indeed, if a student were to give a totally formal derivation as a solution to a
mathematical problem, we would rightly feel that the student has, in some sense,
failed, despite the inarguable validity of his solution. In the opposite extreme,
teachers of mathematics can surely recount occasions where a student simply asserts
a complicated statement that, by reasonable lights, cannot be simply asserted, since
it needs justification, at least in the context of instruction.
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At issue is the problem of distinguishing, in a context, which mathematical
claims need to be justified and which can be simply granted. (A related topic is the
problem of characterizing persuasiveness of certain mathematical moves. For more
on the subject, see the contribution by Inglis and Mejía-Ramos in this volume.)
A full answer evidently requires a classification of the various contexts in which
mathematical claims are made. A mathematics teacher might reject a student’s
unjustified claim of an equation, while accepting, only 5 min later, the very same
equation put forward by a colleague in the mathematics department. The teacher is
not being duplicitous because the contexts of mathematical acceptability in the two
situations are different.

What about in the formal context? The choice of formalism determines which
claims count as justified and which require justification. The result is extreme:
anything that is not an axiom requires justification. It is not so bad that non-trivial
propositions require proof. What is worse is that it often happens that even “trivial”
statements, so long as they are not axioms, require proof. And sometimes trivial
statements turn out to be not so trivial after all, in that they apparently require
unexpectedly long formal proofs. Moreover, the definition of formal derivation
requires that every step in the proof that is not an axiom be the result of an
application of a rule of inference.

If we are working cooperatively with a computer, though, the answer to the
question of which inferences need justification can be deferred somewhat to the
computer. The strength of the mechanisms for doing automated reasoning will have
a powerful influence on the proofs. Rudnicki presents the situation thus:

The core of an automatic proof-checking system is a decision procedure for accepting/
rejecting presented inferences. A rejection does not mean that an inference is logically
invalid, it simply mirrors the fact that the proof-checker was unable to certify the inference’s
correctness. Certainly, an invalid inference has to be rejected. Using a proof-checker is
similar to a discussion between humans. One admits that one does not see why a conclusion
follows from premises (even if it does in fact), but one agrees quickly that the adversary
is right after being given additional explanation. The criterion for acceptance/rejection of
valid logical inferences in a proof-checking system is said to define a class of ‘obvious’
inferences in the system (Rudnicki, 1987, 383).

We shall now follow the terminology used by Rudnicki (who is reusing a term
introduced by Davis) and discuss the problem of what inferences are obvious? The
problem is to try to give a formal or computable account of an informal notion. We
will, of course, not succeed in full, but we believe that we can learn about the notion
of obviousness and attendant features of mathematical argumentation by studying it
through a formal lens.

As Rudnicki suggests, we are interested in sound obvious inference. (To precisely
specify what we mean by “sound”, we should specify a logic, and there seems to
be room for non-classical logics. For our purposes, let us stick to classical first-
order logic.) Just because something is judged to be non-obvious does not mean
that it is false or invalid. Moreover, we are all too aware of claims put forward
as “obvious” but which turn out to be false or otherwise unacceptable. Calling
something “obvious” can sometimes run the risk of being nothing more than a
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thinly-veiled appeal to authority, argument by intellectual boasting or belittlement
(it’s obvious to me—why isn’t it obvious to you?), or premature abandonment (“it’s
obvious” might just amount to saying that we don’t have time to argue or that the
arguer isn’t willing to argue).

The extreme solution of stipulating that all (valid) inferences are obvious seems
unacceptable. With this understanding of obviousness, any mathematical inference
whatsoever would be acceptable without justification. This extreme solution might
not even be well-defined. After all, what notion of validity should we use? Should
we use classical logic or non-classical logic? What is the characterization of
validity? Should the notion of validity be syntactic or semantic? If we were worried
about consistency (is it possible that incompatible claims are both obvious?), we
might try to restrict obviousness so that only true conclusions are accepted—but
what claims are true? Evidently not all true claims are obvious and at least some
require proof; indeed, often we don’t even know that a mathematical claim is false
until we try to prove it, tentatively accepting it as true, and realize only in our failure
to prove it that it is not even true.

We have already discussed the other extreme, in which nothing is obvious except
what is formally an axiom. The result here is likewise unacceptable, because we
then have that only the most brutally obvious claims are accepted, and we would
give up quickly. One could take as axioms an extremely large set of principles; but
then we collapse to the other extreme in which essentially everything is obvious.

What is wanted is a notion of obvious inference that allows us to omit some
(valid) reasoning, but not too much. The notion should also be practical: if we
are interested in doing much mathematical reasoning formally, checking whether
a step in the proof is an obvious inference should be done quickly. The notion of
obviousness should therefore have a low computational complexity.

Davis has taken on the problem of characterizing, proof-theoretically, the notion
of an “obvious” inference (Davis, 1981). The context from which Davis devised his
characterization of obvious inference was a project of natural deduction at Stanford.
Natural deduction arguments à la Gentzen, Fitch, or Suppes (as with any serious
proof formalism) can be rather tedious. The heart of an informal argument is often
obscured or diffused if one adheres strictly to the requirements of the formalism. In
formal contexts one wants a rule of inference that would allow one to dispense with
certain tedious details.

Here is a precise reformulation of Davis’s proof-theoretic definition of “obvious
inference” in first-order classical logic:

Definition 1. A logical formula φ is an obvious logical consequence of assump-
tions Γ if there is a Herbrand proof of φ from Γ in which each quantified formula
of Γ is instantiated at most once.

The precise definition of Herbrand proof will not be given here; see Davis (1981)
or Harrison (2009). The idea is that in drawing an obvious logical inference, it is
ruled out to use multiple instances of quantified formulas in Γ . Once one has chosen,
for each quantified formula α in Γ , an instance α∗ (one may elect not to instantiate
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α at all), then one has to formally derive φ from Γ and the instances α∗
n , . . . using

only a “light” form of first-order reasoning and propositional calculus.
The notion of obvious logical inference, as defined by Davis, clearly does not

characterize how we use the term “obvious” in the context of ordinary reasoning.
A consequence of the proposal is that quite a lot of propositional inferences get
classified as “obvious”. This seems to accord with our intuitions in cases such as

q because p and p → q

but fail for cases such as

((p → q)→ p)→ p

(a famous classical validity known as Peirce’s formula), or

p because X is unsatisfiable,

where X is a large, complex unsatisfiable set of propositional formulas. Davis’s
proposal also fails to account for such first-order inferences as:

φ( f ( f (a)) because φ(a) and ∀x[φ(x)→ φ( f (x))],

because we need to instantiate the universal premise ∀x[φ(x) → φ( f (x))] twice
(once with a, and again with f (a)).14

Still, it is a valuable proposal because of its conceptual simplicity and practical
efficiency. In general, if we have some quantified formulas Γ and a conclusion φ ,
deciding which instances of formulas in Γ to choose can quickly lead to a vast
number of possibilities. Davis’s proposal limits the search for instances: choose
at most one instance each time. When a conclusion φ is not an obvious logical
consequence of background assumptions Γ , then the inference is “too complicated”
to be checked by a machine, and the human formalizer needs to supply more
information.

Following on from Davis’s work, Rudnicki (1987) has outlined some problems
with Davis’s proposal and has offered a second mathematical characterization of the
notion of obvious inference.

As mentioned earlier, the problem faced by the designer of an interactive theorem
proving system is to sail between an extremely dense but extremely fast notion of
acceptable inference, as opposed to trying to make as much as possible obvious
by devoting arbitrary computational resources to determining whether an inference
is obvious. The effect of this decision is that the class of proofs will tend to be
extremely long on the one hand, and maximally concise on the other.

One might say that the preference here is clear: one should go for the most
concise proofs possible! The problem is that computer proof search for interesting

14This example appears in Rudnicki (1987).
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logics is a rather difficult computational task. The search spaces for theorem proving
problems tend to be extremely large, even intractable, so that devoting increasing
amounts of computational power often has surprisingly little effect. It often happens,
because of the sheer size of the search spaces involved, that if a theorem proving
problem cannot be solved in 5 min, then it cannot be solved in 1 h either.15 We are
thus forced by complexity to keep our aims modest.

If we vary the strength of the checker for obvious inferences, can we detect a
dividing line between what is obvious, in the everyday sense of the term, from what
is not obvious? Surely there must come some point (though we concede that it
seems likely that there could be Sorites-type paradoxes here). For at the extreme
end we could have complicated theorems of mathematics that are known to be
valid consequences of some recursively enumerable set of axioms, such as those of
Zermelo-Fraenkel set theory (ZF); given arbitrary computational resources to check
whether an inference is “obvious”, we would find that, say, the fundamental theorem
of calculus gets deemed as an obvious inference from some finite set of axioms of
ZF, though we would surely balk at judgment.16

The result is that varying the strength of the mechanism that certifies obviousness
has an effect on the intuitive explanatory value of the proofs. (For a further
discussion of explanation in mathematics, see Mancosu, 2000.) This is intuitively
clear. Earlier we presented “φ(a) and ∀x[φ(x) → φ( f (x))] therefore φ( f ( f (a)))”
as a case where Davis’s notion of obvious inference fails. This case would be
counted as obvious if we strengthened Davis’s notion and permitted two instances
of universal premises to be selected.

Here is a slightly more mathematical example of the same phenomenon, showing
the effect that such a strengthening has on live mathematical proofs coming from
the MIZAR Mathematical Library, the curated body of formalized mathematical
knowledge that has been reconstructed in the MIZAR interactive theorem prover.17

The proofs in the MIZAR Mathematical Library are governed by a notion of
obviousness similar to Davis’s notion. (A precise definition of the class of MIZAR-
obvious inferences is not needed.)

Consider the following formal theorem:

reserve X, Y, Z for set;

Lemma1: X c= Y & Y c= Z implies X c= Z;

Lemma2: X c= X \/ Y;

Lemma3: X c= Y implies X \/ Z c= Y \/ Z;

15There are many counterexamples to this general outlook. The solution, by an automated
theorem prover, of the long-outstanding Robbins problem required 8 days of continuous com-
putation (McCune, 1997).
16If one is not satisfied with this example, we could replace the fundamental theorem of calculus
by some other significant mathematical fact, perhaps even one that has not yet been discovered.
17We thank Artur Korniłowicz for this example.
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X c= Y implies X c= Z \/ Y
proof
assume X c= Y;
then A1: Z \/ X c= Z \/ Y by Lemma3;
X c= Z \/ X by Lemma2;
hence X c= Z \/ Y by A1,Lemma1;

end;

The first line says that in what follows, the variables X, Y, and Z are sets (more
precisely, they are assigned the type set). The next three statements are background
lemmas (assigned the labels Lemma1, Lemma2, and Lemma3).

Lemma 1 (Lemma1) expresses the transitivity of the subset relation: if X ⊆ Y
(X c= Y) and Y ⊆ Z (Y c= Z), then X ⊆ Z (X c= Z).

Lemma 2 (Lemma2) expresses the fact that X is always a subset c= of the union
of X with any other set Y (X \/ Y).

Lemma 3 (Lemma3) expresses the fact that if X is a subset of Y (X c= Y), then
the union X ∪Z is a subset of the union Y ∪Z (X \/ Z c= Y \/ Z).

Lemmas 1, 2 and 3 will be taken for granted, for the sake of discussion. That is,
the text above is not acceptable to MIZAR as written, because all three lemmas are
not MIZAR-obvious and therefore require MIZAR-proof. Our interest is the final
result (the theorem) of the MIZAR text fragment, which expresses the simple
result that if X is a subset of Y (X c= Y), then X is a subset of the union Z ∪Y
for any set Z (X c= Z \/ Y). Unlike the case for the three lemmas, a proof of this
fact is provided. Let us proceed through it.

We are carrying out a natural deduction-style proof of an implication
(X c= Y implies X c= Z \/ Y); the first step, naturally, is to assume the
antecedent (assume X c= Y). From this assumption we get, using Lemma 3, the
inclusion Z \/ X c= Z \/ Y. (MIZAR is also implicitly using the commutativity of
the binary union operation—note that Lemma 3 puts Z on the right-hand side of the
union, but in the conclusion just drawn, it appears on the left-hand side of the union.)
The notation A1: is simply assigning a label to the statement just concluded; we
will use the formula later in the argument by appealing to its label. The third step in
the argument simply applies Lemma 2; we have from it that X ⊆ Y ∪X . We do not
use the hypothesis of the theorem nor the previously concluded statement (whose
label is A1) to infer the result; this follows immediately from Lemma 2 alone. The
final step of the proof (followed by hence) is the desired conclusion: we have that
X ⊆ Z ∪Y because of

• X ⊆ Z ∪X (from the previous line)
• the formula labeled A1, i.e., Z ∪X ⊆ Z ∪Y
• the formula labeled Lemma1, i.e., X ⊆ Y ∧Y ⊆ Z → X ⊆ Z.

This argument is optimal in the sense that no step can be removed. The MIZAR

proof checker rejects all possible compressions of the argument. In the maximal
compression, one justifies the final theorem by simply declaring, without proof, that
it follows from the lemmas, i.e.,

X c= Y implies X c= Z \/ Y by Lemma1, Lemma2, Lemma3;
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one finds that the MIZAR proof checker rejects the inference. Other kinds of
attempted compression, such as removing the intermediate statement A1, viz.

X c= Y implies X c= Z \/ Y
proof
assume X c= Y;
hence X c= Z \/ Y by Lemma1, Lemma2, Lemma3;

end;

or dropping the application of Lemma 2, viz.

X c= Y implies X c= Z \/ Y
proof
assume X c= Y;
then A1: Z \/ X c= Z \/ Y by Lemma3;
hence X c= Z \/ Y by A1, Lemma1, Lemma2;

end;

are all rejected by the MIZAR proof checker. They are rejected because they require
that multiple instances of background universal premises be taken, and this is
precisely what is ruled out by the definition of obvious inference.

The preceding MIZAR proof is constructed according to the MIZAR notion of
“obvious inference”: to verify any purported inference, at most an instance of any
universal premise is used. Moreover, no inference in the proof can be compressed
or omitted while preserving this property.

To illustrate how the strength of the notion of obvious inference has an effect on
the proofs one writes, let us consider a strengthening of the MIZAR-obviousness by
permitting not one but two instances of universal premises to be used. We might
call this notion “2-obviousness”. (The old notion of obvious would be understood
as “1-obviousness”.) The result is that the above proof can indeed be compressed:

X c= Y implies X c= Z \/ Y by Lemma1, Lemma2;

This is a fascinating compression. We don’t even need to articulate a proof any
longer; for the MIZAR proof checker, our claim is a 2-obvious consequence of
Lemmas 1 and 2 alone. We don’t even need the help of Lemma 3, which was
essential before when we were operating under the constraint that all inferences
must be 1-obvious.

To sum up, we argue that mathematical proofs should be evaluated with respect to
their ability to provide answers—answers in a “digestible” form. Computer proofs
are often just “indigestible”, not only due to excessive information, but also because
they can’t be addressed by our questions.

9.5 Appraising and Improving Formal Proofs

After completing a formal proof, one can return to it and improve it in various ways.
We again see some advantages of the formal approach to mathematical proof and
its implementation in an interactive theorem prover: we can evaluate an argument in
ways that might be more difficult were we to insist on working with informal proofs.
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For example, when constructing a formal argument, it can happen that parts of
the argument play no role in the final conclusion. This can be automatically detected,
thus providing a kind of mechanical detection of irrelevant reasoning.

It can also happen that in the inferences appearing in a proof, some can be safely
omitted. One might say that this is an appraisal of redundant information. That
is, a proof is valid, but it also remains valid if one takes away parts of some of the
justifications. Moreover, a formal mathematical proof can also be more verbose than
necessary for a proof checker. Consider:

Step1: A by Lemma1;
MiddleStep: B by Theorem1, Step1;
Step2: C by Lemma2, Theorem2, MiddleStep;

It can happen that we can eliminate the middle step and combine the justifications:

Step1: A by Lemma1;
Step2: C by Theorem1, Lemma2, Theorem2, Step1;

The first step (Step1) is unchanged. We moved justification of the middle step
(MiddleStep) to the second step (Step2). The proof is now compressed by
one step.

Interestingly, even when such compressions are possible, we may not always
wish to carry them out, because intermediate steps might be important for our
understanding of the proof; deleting such intermediate steps may decrease the
comprehensibility of the proof.

9.6 Conclusion

We intended to explain how the formal view of mathematical proof, far from
being a stale, old subject, gets new life breathed into it thanks to technological
progress coming from automated reasoning. The problem of what inferences count
as acceptable without any further justification—which we have called “obvious
inferences”—might be thought to be inherently informal, but appears quite naturally
in the setting of automated reasoning. Those interested in mathematical practice and
argumentation can, we hope, see that a formal approach to mathematical proof is not
at odds with their analyses but complements them.
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Chapter 10
Dividing by Zero—and Other Mathematical
Fallacies

Lawrence H. Powers

In this paper I shall discuss a fallacy involving dividing by zero. And then I shall
more briefly discuss fallacies involving misdrawn diagrams and a fallacy involving
mathematical induction.

I discuss these particular fallacies because each of them seems at first—and
seemed to me myself at one time—to be a counterexample to a theory of mine.
The One Fallacy Theory says that every real fallacy is a fallacy of equivocation,
of playing on some sort of ambiguity. But these particular fallacies do not seem to
involve ambiguity, and yet they do seem to be real fallacies.1

Let me begin with the dividing-by-zero fallacy.
It goes as follows:

1. Let a = b
2. So a2 = ab (multiply each side by a)
3. So a2 − b2 = ab− b2 (subtract b2 from each side)
4. So (a+ b)(a− b)= b(a− b) (factoring)
5. So a+ b = b (cancelling (a− b) on each side)
6. So 2b = b (since a = b)
7. So 2 = 1 (cancelling b on each side).

Now this argument appears to be a counterexample to my theory. Each step is
stated in unambiguous algebraic terminology. The invalid move takes us from an
unambiguously true equation at line 4 to an unambiguously false equation at line 5
by a move of cancelling a − b which is unambiguously though not obviously a
division by zero. There seems to be no ambiguity.

1 My thanks to R. De Souza, who chided me about holding a theory to which I seemed to know
counterexamples. His comments led me to explore these examples more thoroughly.
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My theory then seems to imply that there is no real fallacy; we do not have an
invalid step which appears, by virtue of a covering ambiguity, to be valid, but rather
a naked mistake with no appearance of goodness. A naked mistake is not a true
fallacy.

But surely, the argument is a real fallacy. For it passes the phenomenological
test. The first time I myself saw this argument in a book, I went through it carefully
looking for the wrong step. And I could not find it, at least not just by going through
the argument step by step. It looked like a proof to me, and at a time when I knew
there had to be something wrong and was, in an intellectually serious way, looking
for the mistake!

So clearly the argument is a real fallacy. It therefore seems a counterexample to
my theory.

Now in trying to defend my theory, I think as follows. If a serious person is taken
in by an invalid argument A/ ∴ B and ‘A’ and ‘B’ are not ambiguous, perhaps there
is some other reasoning in the person’s mind. Perhaps he thinks that A implies C and
C implies B, and it is the interpolated term C which is ambiguous. Another person
who accepts A/∴ B may accept it for a different reason, using a different confusion,
say A/ ∴ D/ ∴ B.

I therefore ask: Why did I myself think the argument dividing by zero was valid
step by step?

It is often said that people divide by zero, as in our example, because you can
usually divide and people just forget about the special case of zero. I have never
liked this kind of explanation. How can one just forget about special cases? If the
rule is that you can always divide unless the would-be divisor is zero, how can one
apply this rule without determining whether the would-be divisor is zero?

At any event, the explanation about forgetting the special case did not apply
to me. I didn’t forget the special case. I had never heard of any such special case. I
learned from studying this very fallacy that one can’t divide by zero. I was astounded
to find that one couldn’t always divide! I thought that you could always divide and
that I knew you could always divide.

Now here too there is a popular explanation about why people think they can
always divide. The explanation is that people overgeneralize: since you can almost
always divide, we overgeneralize and think we can divide in the case of zero also.
I do not like this explanation. Such inductive reasoning could easily lead a rational
person to think that one can always divide, probably. However, mathematical
knowledge is not about what is probably true but about what is proven. I thought
I knew that one can always divide, that I had seen a proof of this.

Now after examining the argument and not finding the mistaken step, I substi-
tuted the concrete number 5 for a and b. The equations then became: Let 5 = 5. So
25 = 25. So 25− 25 = 25− 25. Upon factoring, 10 · 0 = 5 · 0. Cancelling, 10 = 5.
So 10 = 5. So 2 = 1. And here it is obvious where the mistake is. The equation
10 ·0 = 5 ·0 balances, but 10 = 5 doesn’t.

And reflecting on this wrong move, we see that its general form is x ·0 = y ·0/∴
x = y. So if we can divide by zero, then all numbers are equal. This proves that we
cannot divide by zero. Of course, when I saw this, I distrusted my reasoning and
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went and looked in a math book to assure myself that it was really true that you
can’t divide by zero.

Having thus decided that you can’t divide by zero, I started to consider my
reasons for thinking you can divide by zero.

How can it be that we can’t divide by zero? After all, I first thought, multiplica-
tion is always well-defined. But division is defined as the inverse of multiplication.
Doesn’t it follow that division is always well-defined as well?

I knew immediately that there was something wrong with this reasoning. In the
natural numbers, it is always possible to add but one cannot always subtract, say, 7
from 3. Yet subtraction is defined as the inverse of addition. How then can it be that
one can’t always subtract?

To understand this fallacy more clearly, let me state my argument in more
sophisticated terminology. In modern logic, definite descriptions are well-formed
expressions whether they refer or not. Thus, in a Russellian sense, ‘the king of
France’ is a well-defined expression. And so, for any x, is ‘( �z)(x = z · 0)’. But the
latter is the definition of ‘x/0’, which is thus well-defined, in a Russellian sense. For
Frege, however, a referring expression is not well-defined unless it is proven that
it actually succeeds in referring to something. Mathematicians speak of functions
as being ‘well-defined’ in Frege’s, not Russell’s sense. If x/0 were well-defined in
Frege’s sense, then division by zero would be possible. So my argument involved
an equivocation, on two different meanings of ‘well-defined’.

When, years ago, I fell into the dividing-by-zero fallacy, I found that one can’t
divide by zero, and asked myself ‘how can that be?’ I then went through the
‘well-defined’ problem as just rehearsed. However, when l saw that there were two
different concepts of ‘well-defined’ involved, I did not feel that this point really
addressed my perplexity, for I thought I had somewhere seen a proof that division
always was well-defined, even in Frege’s sense. Hadn’t I seen a proof that you can
always divide?

Before looking at the proof I had in mind at that time, it is convenient here to
consider another possible supposed proof.

In a book, Lapses in Mathematical Reasoning, the authors, Russian mathemati-
cians, mention fallacies in which a true mathematical law is applied but in the wrong
field of numbers (Bradis et al., 1959, 14). It is interesting that fallacies involving
dividing by zero can be thought of as a subclass of those applying a true law in the
wrong field of numbers, and these in turn are a subclass of fallacies of ambiguity.

When we learn about numbers in our school years, we learn to use the word
‘number’ ambiguously. At first the teacher says that numbers are those things you
count with: 1, 2, 3, 4, etc. So we learn to use ‘number’ to mean a natural or whole
number, a positive integer. In this sense of ‘number,’ we learn that we can always add
and always multiply, but we cannot always subtract or always divide. For instance,
we cannot subtract 7 from 3 or divide 3 into 7. But then later the teacher told us that,
after all, we could always divide as well as always add or multiply, though we still
could not always subtract. We could now always divide because, the teacher said,
‘there are more numbers than you yet know about.’
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Even as a youngster, I was rather hyper about ambiguity, and I said—though to
myself, not out loud—‘Come on, teacher, there aren’t more numbers than we know
about. The truth is: you’re going to change the meaning of the word ‘number’. And
so it happened. Now ‘number’ meant positive rational, the fractions were numbers,
and we could always add, multiply, and divide. With ‘number’ in this meaning,
any number whatsoever could be divided by any number whatsoever, without any
exception whatsoever.

Later the term ‘number’ will be extended again, from the positive rationals to the
rationals generally. Now subtraction will always be possible, as well as addition and
multiplication but division by zero will not be possible.

And so one fallacious way of dividing by zero would be to apply the true law
that division is always possible—true in the positive rationals, but to apply this
law wrongly to rationals generally. This way of dividing by zero would involve
equivocation on the term ‘number’ and so would be in accord with the One
Fallacy Theory.

Still, when I myself divided by zero, I did not do it in this way, I believe. I
knew that ‘number’ was ambiguous. I knew that when you extend the number
system, as from positive rationals to rationals generally, in order to make a new
operation, as subtraction, always possible, you have to recheck the previously
always possible operations—addition, multiplication, and division—to make sure
they are still always possible. But l thought I had seen in my readings just such
a rechecking, a proof that these operations were always possible in the rationals
generally.

So I recalled the argument in question. Take addition. Addition was always
possible in the positive rationals and subtraction is now always possible. So let a and
b be positive. Then a+b always exists. But a+(−b) is a−b and also always exists.
And (−a)+(+b) is b−a and always exists. And, finally, (−a)+(−b) =−(a+b),
a negative, and always exists. So addition is always possible, it seems.

But the exact same argument can be given for multiplication and division. So
they are all always possible.

Of course, the mistake in this argument becomes clear when we look at the
version concerning division. But it is already there in the argument for addition.
By considering a and b and −a and −b, I consider the positive numbers and the
negative numbers but I forget to consider zero What about zero!?

But this seems rather embarrassing, I said at the outset that I didn’t like the
explanation that people divide by zero because they simply forget the special case
of zero. Yet here I seem to have done precisely that! I just forgot about zero. How
could I just forget about zero??

If there are three kinds of numbers, the positive, the negative, and zero, then in
order to prove something about all numbers, you have to prove it about all three
kinds, and not just about two. If there are three people, Arthur, Barbara, and Carl, in
a room and I argue that all the people in the room are tall because Arthur is tall and
Barbara is tall and I just forget about Carl, who is short, then that argument is not a
fallacy; it is just a stupidity, Surely I couldn’t have just forgotten about zero!
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Actually, I don’t think I just forgot about zero in the above reasoning, rather I
vaguely thought I had covered zero twice over, though in fact my reasoning was
not valid for zero. For I tend to use the terms ‘positive’ and ‘negative’ both strictly,
excluding zero, and loosely, including it. So by proving something for all positives
and negatives, I vaguely felt I had proven it for zero.

First zero seems positive in some ways. It is a square equal to 02. It is its own
absolute value. It is the end point of the positive half of the real line. By the familiar
end point ambiguity an end point seems both to be and not to be a point of the
line segment whose end point it is. Also the positive and negative segments are two
halves of the real line, and two halves seem to complete the whole. And if zero
seems to be positive, then −0, which is also 0, seems also to be negative.

Given that 0 seems in some ways to be positive and negative, the basic reason
I tend to use these two terms ambiguously is because it is convenient. We wish to
prove results about an infinite class of things, the numbers. We cannot prove results
about numbers one by one, so we divide them into large classes, the positives and
the negatives. If it happens that there are cases, such as zero, which do not exactly
fit into these large classes, we tend to include or exclude the special cases into the
large classes. For the purpose of one proof, we think of zero as positive, for another,
as negative, for another as both or neither.

We have a tendency to stretch and contract the more general class terms to include
and exclude the special cases, as convenience dictates. This, I think, is why the
argument that we could always divide in the rationals generally sounded correct to
me. As I said, when I proved the result for all positives and all negatives, I vaguely
thought I had covered zero twice over. This general sort of fallacy, shuffling the
special case in and out of the general classes, I shall call the ‘special case fallacy.’

It turns out that a variant of this fallacy is used in the remaining two fallacies I
wish to discuss.

Misdrawn diagram fallacies in geometry seem at first to be counterexamples to
my theory. The problem is in the misdrawn diagram, not in any ambiguity in the
language used in discussing the diagram. Yet I clearly remember being shown an
argument involving a misdrawn diagram and being unable to see the error in it.

However I shall argue that the diagram itself is a representation and therefore
can be ambiguous. In other words, the diagrams are not really misdrawn so much as
misinterpreted.

In looking over various examples of this sort of fallacy in the Lapses book, I did
not find one simple enough to present here in detail. However the ones I looked at
generally had a common form. In the givens we are told that there is a point with
property P. Call this point A. We are told also that there is a point with property Q.
Call this point B. We represent this by drawing two representing points, labelled ‘A’
and ‘B’. In the reasoning which follows, we are asked to consider the line from point
A to point B. We show that this line has property X . Then we show it has property
not-X . We seem to have proven a contradiction.

The solution is that point A and point B are the same point. So there is no line
from A to B (Bradis et al., 1959, 22).
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n horses

1st of n n + 1 horse

Fig. 10.1

The fallacy can be thought of as an example of the special case fallacy. When
we originally draw the representing points ‘A’ and ‘B’, these are floating points
which may or may not coalesce. They represent that there is an A and a B, which
may or may not be identical. Given A, then B may be the same as A, the special
case, or anywhere else, the more general subcase. So the representation assimilates
the special case to the general case; the two points, so to speak, may be one. But
then, when we agree to draw a line from A to B, we misinterpret the representation
as representing that A and B are different, two strictly, the more general subcase
excluding the special case.

Therefore it is a fallacy of ambiguity, after all: the ambiguity of the representing
diagram.

A very similar analysis can be given for the last fallacy I want to look at. Here
we set out to prove that all horses are the same color.2 We ‘prove’ this by ‘proving’
by mathematical induction that, for any n, any n-membered set of horses has the
same-color property, namely the property that all its members are the same color.
The ‘theorem’ is obvious for n = 1, for any set of only one horse has all its members
the same color. So we need to prove the inductive step: if every n membered set has
the same-color property, so does any n+1 membered set. We illustrate the argument
for n = 5, n+ 1 = 6, but this case is to stand in for general n and n+ 1. We have a
set of 5 horses and a sixth horse. All the 5 horses are the same color. Remove the
first of the 5 and consider all the remaining horses. These again are 5 horses and all
have the same color. Therefore all 6 horses are the same color. QED. So all horses
are the same color.

Now the mistake in this ‘proof’ is that the argument for the inductive step works
for any n and n+ 1 with n more than 1, but does not work when n is 1 and n+ 1 is
2. We do not notice this because, I think, we abstract from the 5 and 6 case a mental
picture which plays the role of a misleading diagram.

This picture looks like Fig. 10.1, then Fig. 10.2.
Here the first big dot is the first horse. The second is the n+ 1 horse. The three

dots represent whatever is left of the n horses, the first excluded.
The ambiguity in this representation is in the meaning of the three dots. It

originally represents all but the first of the initial n members, if there are any but the

2I believe my colleague Bob Titiev first suggested this fallacy as a possible counterexample to my
theory.
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removed

n new horses

Fig. 10.2

first. It is then misinterpreted as meaning that there are such remaining members.
Initially the special case of there being no remaining members is included, but then
it is excluded. So here again we have a special case fallacy, and we also have a
misdrawn—or really misinterpreted—diagram fallacy, although now the diagram is
not actually drawn, but is a mental picture.

In this paper, I have considered three mathematical fallacies which at one time
I thought were counterexamples to my One Fallacy Theory. In each case, I have
argued that these fallacies can be analyzed as fallacies of ambiguity after all.
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Chapter 11
Strategic Maneuvering in Mathematical Proofs

Erik C.W. Krabbe

11.1 Introduction

The purport of this chapter is to show that concepts from argumentation theory can
be fruitfully applied to contexts of mathematical proof. As a source for concepts
to be tested I turn to pragma-dialectics: both to the Standard Theory and to the
Extended Theory.

The Standard Theory has been around for a long time and achieved its final for-
mulation in 2004 (Van Eemeren and Grootendorst, 1984, 1992, 2004). According
to the Standard Theory argumentation is a communication process aiming at the
resolution of a difference of opinion (which could consist of an opinion held by one
party, but not by the other, though the other does not adhere to the opposite point
of view either). Argumentative communication takes place in explicit dialogical
interaction or in monological texts or speeches, which are however regarded as
containing an implicit dialogue between author and addressee. Thus the primary
model for argumentation, used both for analysis and evaluation, is a dialogical
model: the model of critical discussion. Ideally, a discussion should contain four
stages (which may be repeated in subdiscussions). In the confrontation stage the
difference of opinion is defined and clarified. In the opening stage it is determined
what common ground is available to start the argumentation stage, which consists
of an exchange of arguments and criticisms. In the concluding stage the result of the
discussion is determined. The procedure is further regulated by a number of rather
technical rules (Van Eemeren and Grootendorst, 1984, 2004) the effect of which
can be summarized in a practical code of conduct consisting of ten commandments
(Van Eemeren and Grootendorst, 1992, 2004). Violations of these rules are fallacies;
they threaten the resolution process. Among the fallacies thus defined, one finds
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not only logical fallacies (infringements of the Validity Rule: “Reasoning that in an
argumentation is presented as formally conclusive may not be invalid in a logical
sense,” 2004, 193), but also many other disruptions of the resolution process, such
as failing to take on one’s burden of proof, or arguing for something different than
the point of view one is supposed to argue for (ignoratio elenchi), or substituting
one’s authority for argument (argumentum ad verecundiam). In order to apply the
Standard Theory to mathematical proofs, it must first be established that, at least in
some contexts, proofs can be regarded as arguments; a matter that will be briefly
discussed in Sect. 11.2.

The Extended Theory (Van Eemeren and Houtlosser, 1999a,b, 2002, 2004, 2005)
starts from the observation that, usually, people argue not only with the objective
of resolving a difference of opinion, but also with that of resolving it in their own
favor: they pursue the rhetorical1 objective of having their point of view accepted
by the other (1999a, 164) . When arguers attempt to pursue both objectives at the
same time, this leads to strategic maneuvering. To get a better grasp of the analysis
of argumentative discourse, the Extended Theory extends the Standard Theory
by rhetorical considerations, all the same maintaining the norms of the Standard
Theory where evaluation is concerned. When strategic maneuvering oversteps these
bounds, it is said to have been derailed, and a fallacy has been committed (2002,
141–143). Strategic maneuvering that remains within the bounds of the Standard
Theory can still be suboptimal with respect to the second objective. In that case,
no fallacies are committed, but one is confronted by flaws or blunders (2002, 142;
Walton and Krabbe, 1995, 25).

The point of view of the Extended Theory can be further extended by introducing
yet other objectives that an arguer may simultaneously pursue. For mathematical
proofs (presuming them to be arguments) one may think of epistemic and didactic
objectives that figure in various contexts of proof and might interfere with the two
objectives mentioned above. This will be explored in Sect. 11.3.

After having thus obtained a rough notion of what various arguers try to achieve
when they set out to prove a theorem, one will find in Sect. 11.4 a number of
examples of strategies, derailments, and blunders, grouped according to the four
stages mentioned above. Derailments will be shown to occur both within and beyond
the bounds of what may be called a “mathematical argument.” Sect. 11.5 contains
some conclusions and adds some remarks on the concept of proof.

11.2 Proofs and Arguments

Is there any strategic maneuvering in mathematical proofs? If, on the one hand,
we use the term ‘strategic maneuvering’ in the way it is used in the Extended
Theory and, on the other hand, stick to the notion of mathematical proof as a

1Elsewhere I argued that this objective can be seen as a (secondary) dialectical objective (Krabbe,
2004).
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conclusive establishment of a theorem, flawless and unassailable for all ages—
what I shall call ‘the austere concept of proof’—then the two seem miles apart.
The habitat of strategic maneuvering is a context of controversy and critical testing
where one party tries to steer the resolution process so as to serve his personal
aims. According to the austere notion of proof, there are no personal aims, and
establishing the truth is the only goal in sight. Johnson (2000, 232) claims that
mathematical proofs are no arguments. If that is so, there would be in them no
place for strategic maneuvering in the sense of the Extended Theory either. But of
course, all depends on how one defines these notions of argument and proof. Dove
(2007) points out that the characteristics of proof assumed by Johnson do not concur
with mathematical practice as shown in Imre Lakatos’s famous example about the
polyhedra (Lakatos, 1976). Lakatos’s conception of proof is argumentative and
admits, even requires, a dialectical tier. So there are conceptions of proof, connected
with mathematical practice, that place proofs within the scope of argumentation
theory and therefore, potentially, within the scope of strategic maneuvering. In an
earlier paper (1991; 1997, reprinted in this volume) I also maintained that ordinary
informal mathematical proofs are arguments. It should be noted that mathematical
proofs, even the axiomatic ones, are normally informal. Formal proofs (written in
a formal language and constructed according to formalized derivation rules, as in
formal natural deduction) are a logician’s gadget.

Let it be granted that mathematical proofs are (normally2) arguments. But
mathematical proofs, being mathematical arguments, also display some special
features in that they are situated in a specific semi-institutionalized scientific context
in which arguments are supposedly subject to requirements that are additional
to those applying to arguments in general. Not every argument, not even every
argument about mathematical propositions, is a mathematical argument, let alone a
mathematical proof. One may cite Fermat’s Last Theorem and invoke the authority
of mathematicians to argue that it is true. This may be a good argument, but it is not
a mathematical argument, and not a mathematical proof. It is not a mathematical
argument because it is not using the mathematical way of reasoning. Aristotle would
say that it is not according to the art (kata tên technên). In each discipline there
are certain conventions to which an argument must conform to be an argument
within the discipline. For instance, in medicine you cannot reason as in philosophy.
Aristotle’s example is well-known: “if someone were to deny that it is better to
take a walk after dinner because of Zeno’s argument,3 it would not be a medical
argument” (SE 11, 172a8–9; Aristotle, 1965, 65). But even those arguments that are
really mathematical can fail to count as proofs. They can fail for two reasons. First,
they may contain a fallacy, and therefore be no more than a false (or invalid) proof,
and not a real proof.4 According to Aristotle “the man who draws a false figure”

2Proofs that are not arguments include: immediate proofs (where there is no reasoning), formal
proofs, and proofs in a context where there is no difference of opinion (see Sect. 11.3).
3A philosophical argument that motion is impossible.
4On this point the grammar of the term “proof” differs from that of the term “argument,” for an
invalid argument is still an argument.
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(pseudographôn) does not prove anything, and “his process of reasoning is based
on assumptions which are peculiar to the science but not true” (Top. I.1, 101a10,
13–15; Aristotle, 1979, 275). Thus his argument may be counted as a mathematical
argument, but not as a proof. The second way in which a mathematical argument can
fail to be a proof is that it fails to comply with some further additional requirements.
But people differ on what these additional requirements are. Aristotle tells us that
by proof or demonstration (apodeixis) he means deductive reasoning (‘syllogism’)
which gives us scientific knowledge. Such demonstrative knowledge, however, can
only be obtained if one proceeds by deductive reasoning “from premises which
are true, primary, immediate, better known than, prior to, and causative of the
conclusion” (Anal. post. I.2, 71b17–22; Aristotle, 1979, 31). Thus Aristotle places
proof within a foundationalist philosophy of science. There are other options, some
of which make the notion of proof a relative notion: a proof is a proof for a given
person and perhaps not for someone else. According to John Corcoran there are
“two basic issues: are the premises known to be true by the given person? And
does the chain of reasoning deduce the conclusion from the premise-set for the
given person?” (Corcoran, 1989, 25). In my proposal (1991, 1997, reprinted in this
volume), in order that an argument be a proof for a given person, the starting points
of the (underlying) critical discussion must be assertions and not merely concessions
of that person, and all the possible dialectic options for that person must be followed
through, not merely those that happen to occur to that person; of course there must
be no fallacies, and the proponent of the theorem proved (the protagonist) must be
the winner of the discussion.

For the purposes of this chapter, it will not be necessary to make a choice
between the different sets of additional requirement that are meant to distinguish
mathematical proofs from mere mathematical arguments. But any set of additional
requirements making the notion of proof relative to the addressee seems to bring
proofs even more clearly within the scope of argumentation theory, and in particular
within the scope of the theory of strategic maneuvering (the Extended Theory).

11.3 Contexts of Proof

Supposing that mathematical proofs are normally arguments, we may (1) regard
them as (implicit) critical discussions, and (2) investigate whether certain modes of
strategic maneuvering are characteristic for such proofs and (3) how these modes
may lead to blunders and derailments (fallacies). In this, one should keep in mind
that mathematical proofs come in kinds as to their objectives and the audiences they
are aimed at. They also occur in different types of dialogue (Walton and Krabbe,
1995), here seen as activity types (Van Eemeren and Houtlosser, 2005), and display
different functions of reasoning (Krabbe and Van Laar, 2007). As a first list of
contexts of proof, I propose the following:

1. thinking up a proof to convince oneself of the truth of some theorem;
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2. thinking up a proof in dialogue with other people (inquiry dialogue; probative
functions of reasoning);

3. presenting a proof to one’s fellow discussants in an inquiry dialogue (persuasion
dialogue embedded in inquiry dialogue; persuasive and probative functions of
reasoning);

4. presenting a proof to other mathematicians, e.g. by publishing it in a journal
(persuasion dialogue; persuasive and probative functions of reasoning)

5. presenting a proof when teaching (information-seeking and persuasion dialogue;
explanatory, persuasive, and probative functions of reasoning).

These contexts of proof are all very different and a proof that succeeds in one con-
text may well fail in some others. Persuasive functions aim at convincing the other.
These functions are argumentative in the sense that, given some difference or con-
flict, they serve to overcome doubt of an interlocutor (Krabbe and Van Laar, 2007,
31).5 So, whenever in a proof the reasoning displays persuasive functions, the proof
can be regarded as an argument. Probative functions aim at extending the knowledge
of some company or community; they are not argumentative. Explanatory functions,
which are not argumentative either, aim at enhancing understanding. In all contexts
listed, except the first, the reasoning in proofs has a probative function: extending
available knowledge. In the first context it has not this function, but only that of
extending one’s personal knowledge. In all contexts, except the first two, it also has
persuasive functions, mostly that of convincing others of the truth of some theorem.
In the first context, however, there is no other, whereas in the second context the
others participate in making the proof. Thus in these two contexts the reasoning
is not argumentative, and one should say that the proofs (as speech or thought
events) are not arguments, though the proofs as products could of course be used
argumentatively in another context, and then be arguments. That proofs in teaching
are presented in a context of information-seeking dialogue and have explanatory
functions will not be surprising. But it should be stressed that in teaching there is
also persuasion dialogue with persuasive and even probative functions in play.

The last point, that mathematical instruction involves persuasion dialogue, and
is therefore argumentative, can be illustrated by the famous passage in Plato’s
Meno (82b–85b; Plato, 1997) where Socrates teaches a slave how, for a given
square, to find the length of the side of a square with twice the area of the given
square. Socrates proposes to do so without passing on any information to the
slave (without information-seeking dialogue), instead he will just ask questions.
Socrates’s ultimate, philosophical intention is to demonstrate that so-called learning
is a kind of recollection of what one knew in a life before this one. The given square
(ABCD) has a side (AB) with a length of 2 ft (Fig. 11.1).

The slave is at first quite sure that in order to double the area one needs to double
the length of the side (extend AB to get AE). After some leading questions by
Socrates, he realizes that 4 ft is too much. Since 2 ft is too little, he opts for 3 ft

5Other argumentative functions of reasoning mentioned by Krabbe and Van Laar are the polemic
functions (in eristic dialogue) and the directive functions (in negotiation).
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Fig. 11.1 Doubling the
square

(AP). More questioning makes him realize that a square with a 3 ft side would have
an area of 9 ft2 (APQR), one too many. Then Socrates induces the slave to draw
a figure of a square of 16 ft2 (AEFG) divided in four parts of 4 ft2 each (ABCD,
BEHC, CHFI, DCIG) and asks whether the diagonals of the smaller squares (DB,
etc.) do not divide these squares in two equal parts. Some more questioning elicits
the answer: the side of the square with an area of 8 ft2 must have the length of
this diagonal (square DBHI). Though I do not think this demonstration is very
successful in demonstrating a life before this life (the questions actually pass on
lots of information), it does show how in teaching mathematics presenting a proof is
something more than passing on the information. The student is to think through the
proof for him- or herself and to become convinced of its cogency as well as of the
truth of the conclusion. Each step in the proof needs to be checked by the student,
something Socrates achieves by his questioning.

So proof in a didactic context has not just explanatory functions, but also
persuasive ones. The persuasive strategy used is that of letting the student give
wrong answers first and letting him (with some help) discover that these answers are
wrong, thus strengthening his commitment to the right answer in the future. Notice
that going through the rejection of wrong answers first is in itself not necessary for
a valid proof, but it is permissible, and here contributes to the specific aims of the
teacher. So we may say it is a case of nonfallacious strategic maneuvering which
combines the objective of valid argument with that of making a student master a
particular piece of mathematics.

11.4 Proofs in Stages

Assuming again that mathematical proofs are arguments, and that pragma-
dialectical theory enriched by the theory of strategic maneuvering applies to all
kinds of arguments, we should be able to identify in proofs the four stages of critical
discussion, and to investigate for each stage what kind of strategic maneuvering
would be typical for that stage of the proof and to what blunders and derailments
these kinds of maneuvering are typically prone.
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11.4.1 The Confrontation Stage

In the confrontation stage, authors of proofs must formulate what they set out to
prove. According to the rules of critical discussion they must do so in a clear and
unambiguous way. In order to attract attention and to convince as many of their
colleagues (or students) of the truth of the theorem it is also important for them
to formulate the theorems in simple and attractive terms. To achieve this a well-
known strategic maneuver is to state the theorem in terms that appear to be simple
and familiar but actually refer to concepts that are quite complex. The complexities
behind these terms are then covered by definitions that accompany the theorem. For
instance, the completeness theorem is simply formulated as: Every valid formula is
provable. A formulation that calls for extensive explanations of what is meant by
‘formula,’ ‘valid,’ and ‘provable.’

This strategy is certainly commendable. It would be a strategic blunder (a
forgoing of a legitimate advantage) if one did not use it. Yet, it could be a derailment
if an author framed his terms and definitions so as to let his theorems appear
to be relevant beyond mathematics, suggesting applications in the real world that
are not really feasible. For instance mathematical concepts of space, probability,
preference, and validity may suggest corresponding concepts from daily life (which
may, however, diverge among themselves), and the mathematics using these terms
may yield nice theorems which disclose interesting parallels between mathematical
and common conceptions of space, etc., but to presume that the mathematics applies
to these concepts as commonly understood would be premature. In the hands of
mathematicians such concepts may also change into something quite different. As
Goethe said: Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so
übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anders6

(Goethe, 1949, 660, nr. 1279). Whether such tactics are fallacious depends, however,
on further circumstances, such as the kind of audience. It would be fallacious to hide
the changes in the concepts and to try to make the audience believe there are not any.

11.4.2 The Opening Stage

In the opening stage, the author should, in a context of axiomatic proof, state or
indicate her axioms, or, if the context is nonaxiomatic, the general frame that is
presupposed in the proof. Is the Axiom of Choice accepted? Does the theorem
pertain to the real numbers or to complex numbers? Of course it would be wise to
choose a frame or axiomatic setting in which the proof can be completed, but which
is also attractive to the audience. The author may blunder by indicating a frame
in which the theorem later appears not to hold, or commit a fallacy by sticking

6Mathematicians are a kind of Frenchmen: If one speaks to them, they will translate it into their
language and then it is in no time something totally different.
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to the theorem in such a frame. In a context of teaching that uses nonaxiomatic
proofs, strategic maneuvering should yield starting points that are close enough to
the theorem to prove it by a reasonably short proof, but distant enough to avoid
triviality. Also, the starting points should be comprehensible to the students. It
would, of course, be a derailment of such maneuvering to start from false principles
in order to facilitate the proof.

11.4.3 The Argumentation Stage

In the argumentation stage, the author should try to make her proof neither too
sketchy nor too fine-meshed. The degree of detail in the proof must be adapted to
the audience. Is the proof meant to convince an expert or a student? And if a student,
is it a mathematically mature student, or not? This makes a great difference: what
constitutes a proof for the one does not necessarily constitute a proof for the other.
Failure to adapt the proof to the audience in this respect would constitute a blunder,
and in more serious cases it could be a derailment. The fallacy would then be one
of evading the burden of proof, because when the steps in the reasoning are too
big or too complicated for the audience to grasp no argument has been given that
constitutes a proof for that audience, and the audience’s implicit critical questions
remain unanswered.

The author should also attempt to construct an attractive division of work
between the proofs of lemmas and the proof of the theorem itself (based on
the lemmas). Elements of surprise may be introduced to make the proofs more
attractive, and the greatest surprise should be left for the proof of the main theorem,
if possible. This part of the rhetoric of proofs reminds one of a general tactic of
argumentation, recommended by Aristotle (Top. VIII.1), known as krupsis or the
hiding of one’s intentions about the argument’s set-up. Generally, an elegant proof
will be preferred over a messy one. Missing opportunities to make the proof more
attractive amounts to blundering, whereas substituting elegance for validity would
constitute a derailment. A serious fallacy would be committed, were one to use
a theorem to establish a lemma needed for the theorem’s own proof (begging the
question), whereas loops in a proof that are merely superfluous, would constitute
mere blunders.

Leaving routine parts of the proof to the audience constitutes a recommendable
tactic since it will include the audience in the enterprise of establishing the theorem,
and thus strengthen their conviction in the end. But it would be a blunder to leave
tasks to the audience that are so demanding as to upset them, rather than to make
them participants in proof construction. (It is a blunder relative to the objective of
convincing the audience by rational means, not relative to the objective of giving
the audience some training.) If a task cannot be performed at all, to ask the audience
to perform this task would be a derailment of the strategy of leaving tasks to the
audience. But also, if the task can in principle be performed, but arguably not by
the intended audience (at least not by means of a reasonable effort and within
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a reasonable period of time), the strategy gets derailed. This would once more
constitute a fallacy of evading the burden of proof.7

The well-known strategy of proof called reductio ad absurdum can lead to a
derailment when one is too eager to disprove an hypothesis. A vulgar type of
this derailment would consist in annoying one’s audience by an endless chain of
derivations from the hypothesis (to be refuted) leading nowhere, making them grant
the absurdity of the hypothesis rather than listen any longer. This tactic, known as
reductio ad nauseam, would not be “according to the art.” Another vulgar tactic
would consist in claiming to have reached an absurdity when there is none.

However, a claim of having reached an absurdity where there is none could also
occur in a proof according to the art, though it uses a false assumption about what
constitutes an absurdity. A serious case of this can be found in the purported proof
of Euclid’s fifth postulate by (Giovanni) Girolamo8 Saccheri (1667–1733). As many
before him, Saccheri wanted to show that this postulate is superfluous by proving
it from the other Euclidean axioms (Saccheri, 1733). To achieve this he chose a
strategy of reductio ad absurdum. More specifically he purported to use that of the
consequentia mirabilis (to prove P, derive P from the supposition that not-P) of
which he had been a champion for years (Kneale and Kneale, 1962, 345–347, 380).
Thus he added the denial of the fifth postulate to the other axioms and sought to
derive the fifth postulate from that.

Now the fifth postulate is, granted the other postulates and some traditional
features of geometrical reasoning, equivalent to the Axiom of Parallels: given a line
l and a point P not on l, there is exactly one line through P that is parallel to l (i.e.
in the same plane and having no point in common with l). The denial of the Axiom
of Parallels, for a given l and P not on l, leaves two possible suppositions: (1) No
line through P runs parallel to l. (2) More than one line does.9 Saccheri managed to
derive the fifth postulate from (an equivalent of) the first supposition (his Proposition
XIII; Beth, 1929, 21), thus reducing this supposition to absurdity; however, in
the part of the proof that starts from (an equivalent of) the second supposition he
derived a number of consequences that are absurd merely from a Euclidean point
of view, but became later known as theorems of hyperbolic geometry (discovered
by Bolyai, Lobachevsky, and Gauss). When reaching the consequence that there
were two different straight lines approaching one another asymptotically and thus
having a common perpendicular at a common point in the infinite, Saccheri decided
that this contradicted the nature of straight lines and falsely inferred the absurdity
of (2), thus completing the “proof” of the fifth postulate (Proposition XXXIII;
Beth, 1929, 25–26). This was a mistake, but it doesn’t make Saccheri’s work

7It is a common experience of math students that authors of textbooks sometimes exasperate their
readers by leaving not the routine parts but the more difficult parts of a proof to them.
8Often: Gerolamo.
9Clearly, for a given P and l, there are precisely three possible suppositions: no parallel, exactly
one, or more than one. It should be remarked that when one of these suppositions holds, the same
can be shown to hold for all other points Q and lines m (Q not on m) of the plane.
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nonmathematical. His work is still conforming, I would say, to the art (in contrast
to the vulgar reductions, discussed above). It was a sad mistake, for strange enough
Saccheri, having actually worked in non-Euclidean geometry, failed to discover it.
According to Evert Beth (1965, 12) this was “one of the most tragic occurrences in
the history of science—one can without hesitation say: in the whole history of the
world; tragedy does not necessarily presuppose that blood is spilt—that Saccheri let
himself be carried along by his desire to prove the axiom of parallels.”

Thus derailment of strategies may occur both in purported proofs that are not
according to the art and in those that are so in principle, but display some flaw or
other. Another example of the first kind is constituted by so-called “proofs by lack
of space on the blackboard.” Here the teacher scribbles all over the blackboard, until
he arrives at the bottom right corner, and then skips the last and most essential part
of the proof by lack of space. Nowadays, these tactics have become obsolete by lack
of blackboards. Another fallacious tactic would be not to present a proof at all, but
to claim that one has one at home (stored in one’s desk). Of course this may, in some
contexts, be a good argument for the truth of the theorem, but it does not constitute
mathematical proof, since it is not a mathematical argument.10

Examples of the second kind (according to the art, but displaying some flaw)
include cases of flaws discovered in mathematical work, among them cases of
notorious errors by famous mathematicians such as Leonhard Euler’s (1707–1783)
elegant but incomplete proof that Fermat’s Last Theorem11 holds for exponent n= 3
(1770), which contained a serious gap, even though it may be that Euler actually
had a proof (Edwards, 1977, 39–40, 45); or the general “proof” of Fermat’s Last
Theorem that Gabriel Lamé (1795–1870) presented to the Paris Academy in 1847, in
which he unwarrantedly presumed the Fundamental Theorem of Arithmetic (unique
factorization into primes) to hold for certain complex numbers (Edwards, 1977,
76–77)12; or Andrew Wiles’s presentation of an alleged proof for Fermat’s Last
Theorem in 1993, which contained a subtle error (corrected the following year).
These examples illustrate how the tension between, on the one hand, the objective of
presenting proofs conforming to the norms of critical discussion (including logical
requirements) as well as to the special requirements of the art of mathematics
and, on the other hand, such objectives as being successful in proving a particular
theorem, presenting an elegant proof, or simply presenting it before others do, can
lead to derailments of strategic maneuvering.

A curious case of derailment, related by Haskell Curry (1900–1982; 1963, 88),
is that of Alfred Tarski (1901–1983) who formulated in an unfamiliar notation
what he thought were E. V. Huntington’s axioms of Boolean algebra (Tarski, 1956,
corrected version 1983). In fact the published postulates did form an axiom set,

10Moreover, even as a nonmathematical argument it could be a fallacy (argumentum ad verecun-
diam).
11Fermat’s Last Theorem: There are no positive integers x, y, z, n (n > 2) such that xn + yn = zn.
12The story that Ernst Kummer (1810–1893) succumbed to a similar illusion before discovering
the ideal complex numbers (Bell, 1965, 522) is probably apocryphal (Edwards, 1977, 80).
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Fig. 11.2 More tangents

not of Boolean algebra, but of something else. This error then went unnoticed from
the original Polish version into German and English translations, but was finally
discovered by accident in 1956. According to Curry such a situation would have
been inconceivable had the axioms been expressed in a more familiar notation.
Now Tarski was very surprised that no one had made the discovery before: “It
seems strange that so far I nor anybody else has noticed the mistake (though the
paper has probably been read by a number of people)” (quoted by Curry, 1963,
88). The moral of the story is that one should not suppose that people read one’s
paper. Moreover, the paper was 127 pages long and the error consisted of just three
misprinted subscripts. If this is a case of derailment, we should dub it a micro-
derailment.

Among the examples presented thus far, those that reason according to the art
(though making a mistake) seem to take mathematics seriously, whereas those that
do not conform to the art don’t. But one could be very serious in proposing a proof
that is completely out of bounds. Thus I remember a student contesting the theorem
that through one point P on the circumference of a circle there can be drawn only
one tangent line to the circle. To show that more tangents can be drawn, he drew a
very fat point on the circumference and let a line wobble on this fat point (Fig. 11.2).
The student may have been serious, but his proof was not according to the art.

The same holds for some so-called false proofs (or invalid proofs) of false or
nonsensical propositions, for instance the proof in Wikipedia that ∞ = 1/4, can in
some contexts be understood as a serious attempt to do mathematics and not just as
a kind of joke. But then, by taking ∞ for a number, the alleged proof gets completely
derailed and fails to be mathematical (see Appendix).

On the contrary, the proof in Wikipedia that 4 = 5 and the one that any angle is
zero (see Appendix) can hardly be understood as serious, but strangely enough these
proofs do conform to the art (just making a mistake at some point; see Appendix).
The same holds for the notorious proof by mathematical induction that all horses
have the same color:
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Proof. In a group consisting of only one horse all horses have the same color, there
being only one horse. Suppose that in any group of n horses all horses have the same
color. Take an arbitrary group of n+1 horses. Take away one horse h. What is left is
a group of n horses. According to the supposition they must all have the same color
C. It only remains to prove that horse h also has color C. Now put h back into the
group and take away another horse. Again we have a group of n horses. According
to the supposition they must have the same color. Since the others have color C, h
must have color C as well. So all horses in the group of n+1 horses have the same
color (color C). Since this group was arbitrarily chosen, any group of n+1 horses
consists of horses of the same color. By mathematical induction, for each n, in any
group of n horses all horses have the same color. Let the number of horses in the
world be m, then all horses together form a group of m horses and must all have the
same color, QED.

This proof uses mathematical induction, which in itself is conforming to the art,
but in its present application contains a flaw. The puzzle only works with those
acquainted with mathematical induction, but not too experienced in its application.
In fact most people, being unfamiliar with this method, attack parts of the proof
that are impeccable, inexperienced students may be really puzzled for some time,
whereas experienced mathematicians may not be challenged. This nicely illustrates
how the usability of a particular strategy depends on the audience

11.4.4 The Concluding Stage

In the concluding stage, it is advisable to clearly indicate that the proof has ended.
Traditionally, this was effected by repeating the theorem, letting it be followed by
‘QED’, but at some point this went out of fashion. It is however crucial to indicate
the end of proof, otherwise people may continue to look for a proof when the proof
is actually finished, thus being likely to miss it. Nowadays, various typographical
devices, such as a bold dot or a crossed square, are in use. At the same time, such a
symbol stands for the proponent’s claim to have resolved the difference of opinion
in his favor. The proponent can derive side-benefits from this happy conclusion
by adding reflections about the method of proof and the ways difficulties were
dealt with, and also by stressing further results that may be derived from either
the theorem (its corollaries) or the method of proof (which could be used in other
cases). It would be a blunder to overdo this, and it would be a serious derailment if
the proponent started bragging about his proof prematurely, without having proved
what had to be proved, though perhaps having proved something else (ignoratio
elenchi).
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11.5 Conclusion

The dialectical and rhetorical view of proofs presented here contrasts with the
austere concept of proof: the view of proofs as flawless and unassailable entities
that are either there (success) or not (failure). According to the present view, proofs
may be more or less successful, depending upon context and audience. We saw that
what counts as a proof for some does not count as a proof for others. Some proofs
are rather sketchy, leaving much room for questioning (or work for the reader, if
the author is not there to answer questions), whereas others, by answering these
questions, are developed to great dialectical depth.

But is a formalized proof not the natural limit of dialectical depth? It is true
that the notion of a formalized proof is based on the idea of a proof without gaps
(Gottlob Frege, 1848–1925, 1879), i.e., a proof where no questions remain, since no
intermediate steps are left out. Also, formalized proofs are flawless and unassailable.
But by themselves they prove nothing: for this they need to be interpreted. The
proofs of mathematical logic that carry conviction are not these formal objects, but
informal proofs about these objects, and normally these proofs are arguments.

Moreover, it is not true that a proof of greater dialectical depth is always the
better proof. One can overdo the amount of detail, given a certain audience. This,
as we saw, would constitute a blunder rather than a fallacy. But what if the details
make it impossible to understand the proof?

Finally, the austere concept of proof cannot be saved by saying that the true
proofs are the proofs for the experts. In contemporary mathematics the unity of the
conceptual world has broken down. There is of course classical and intuitionistic
mathematics, but also within classical mathematics there is a wealth of options
for building an underlying set-theoretical universe (with or without the axiom of
choice, with or without the continuum hypothesis, etc.). Nowadays mathematicians
live in different mathematical universes (Van Dalen, 2006). So, even among experts,
it is true that what constitutes a proof in someone’s universe is no proof for some
colleagues living in a different mathematical universe.

In constructing a proof, then, there is room for strategic maneuvering to combine
one’s allegiance to norms of critical discussion and to the special requirements and
conventions of mathematics with other propensities, such as one’s desire to complete
the proof of a nice theorem and to convince the audience. Derailments correspond to
dialectical fallacies, which include, but are not confined to, mathematical errors (and
some types of which may be specific for attempts to present a mathematical proof),
whereas blunders correspond to a suboptimal maneuvering within the bounds set by
critical discussion and the art of mathematics.

Acknowledgements The chapter was first presented at the NWO-conference on “Strategic
Manoeuvring in Institutionalised Contexts,” University of Amsterdam, 26 October 2007 and has
been previously published in Argumentation (2008) 22:453–468.



194 E.C.W. Krabbe

Appendix: False Proofs

Three false proofs that were mentioned in this chapter appeared in Wikipedia (2007).
Paraphrases of these false proofs are given below.

Proof that ∞ = 1/4

To find the distance between, say −4 and 3 (the points (−4,0) and (3,0) on the
x-axis) one calculates 3− (−4), which gives 7. Generally, for points (−a,0) and
(b,0) the distance is equal to b− (−a). The whole x-axis runs from −∞ to ∞, its
length is therefore equal to ∞−(−∞). The same is true for the y-axis. The area of the
plane must be equal to the product of the lengths of the two axes, i.e. (∞− (−∞))2.
Since the plane is infinite, we get: ∞ = (∞− (−∞))2, which can be simplified into
∞= (2∞)2. This yields to ∞= 4∞2, from which we get 1= 4∞2/∞, which simplifies
into 1= 4∞, and finally yields the value of the infinite: ∞= 1/4 (this can be checked
by substituting 1/4 for ∞ in the equation ∞ = (∞− (−∞))2), QED.

Proof that 4 = 5

Nobody doubts the law of identity: −20 = −20. Differently expressed: 25− 45 =
16−36. Introducing factors one obtains the equivalent expression: 52−5×9 = 42−
4×9. Adding 81/4 to both sides gives: 52 − 5×9+ 81/4 = 42 − 4×9+ 81/4. This
can also be written as: 52 − 2×5×9/2+(9/2)2 = 42 − 2×4×9/2+(9/2)2. Now
applying the algebraic formula a2 − 2ab+ b2 = (a− b)2 twice (on the left, take
a = 5 and b = 9/2, on the right take a = 4 and b = 9/2), you will get: (5−9/2)2 =
(4− 9/2)2. Take the square root of both sides and you obtain: 5− 9/2 = 4− 9/2.
Adding 9/2 on both sides gives: 5 = 4. The law of symmetry of identities then gives
4 = 5, QED.

Proof That Any Angle Is Zero

Let ∠BAB′ be any nonzero angle, where B and B′ are chosen so that they satisfy
AB = AB′ (Fig. 11.3). We shall show that, contrary to what is assumed, it must be
the case that ∠BAB′ = 0. Construct a rectangle ABCD with side AB, such that the
points C and D lie outside ∠BAB′. Draw the perpendicular bisector of CB, which
intersects CB at E (CE = EB). Draw CB′ and the perpendicular bisector of CB′,
which intersects CB′ at F (CF = FB′).
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Fig. 11.3 The vanishing
angle

These two perpendicular bisectors cannot be parallel (check). Let them intersect
at G. Now, BE = CE , ∠BEG = ∠CEG, and EG = EG, so triangle BEG and
triangle CEG are congruent. Consequently BG=CG. Similarly, since EG is also the
perpendicular bisector of DA, AG = DG. Since AB = DC, it follows that triangles
ABG and DCG are congruent. Using triangles B′FG and CFG, one proves, in a
similar way, consecutively that B′G = CG and that (because AG = DG and DC =
AB = AB′) triangles DCG and AB′G are congruent. From these two congruencies
we derive that triangles ABG and AB′G are also congruent. Hence∠GAB =∠GAB′.
But then ∠BAB′ = ∠GAB′ −∠GAB = 0. Thus the initial supposition that ∠BAB′ be
a nonzero angle leads to a contradiction and we must conclude that nonzero angles
do not exist.
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Chapter 12
Analogical Arguments in Mathematics

Paul Bartha

12.1 Introduction

Many years ago, Pólya observed that mathematicians have to be good at both
deductive and inductive reasoning. A “serious student of mathematics,” he sug-
gested, “must learn plausible reasoning; this is the kind of reasoning on which . . .
creative work will depend” (Pólya, 1954). Analogy was at the top of Pólya’s list of
plausible reasoning strategies.

Analogical reasoning is important in many arenas: the law, the sciences, phi-
losophy, and certainly mathematics. Analogy has a widely recognized role as a
fallible but highly useful heuristic tool.1 Striking breakthroughs have emerged from
analogies between such diverse fields as number theory and complex function
theory. Less spectacular, but far more common, is the use of humble analogies to
guide everyday problem-solving, as when a student solving a problem in multi-
variable calculus draws upon what happens in the one-variable case. The term
‘heuristic’ actually embraces two functions of analogies: their role in discovery,
and their role in assessing the plausibility of conjectures that have been formulated
but not yet proved or disproved.

Analogies also play a systematizing or unifying role in mathematics. Descartes’
(1637) correlation between geometry and algebra, for example, made it possible to
reduce a whole class of geometric problems to finding the roots of a polynomial
equation. Descartes provided a method for systematically handling geometrical

1Pólya (1954), Poincaré (1952) and Hadamard (1949) have all stressed the importance of analogies
in mathematical discovery.
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problems that had long been recognized as analogous, since they corresponded to
equations of the same degree. In the nineteenth century, the similarities between
“substitution groups” (today’s permutation or symmetric groups) and isomet-
ric linear transformations on crystal structures led to the concept of a group
(Kline, 1972).

The heuristic and systematizing roles of analogy are related through the idea of
generalization. The goal of finding a generalization drives analogical reasoning in
the early stages of an investigation. By contrast, after a general result (or general
framework) has been elucidated, the analogy sheds light on the fruitful connections
between two previously unrelated areas. Along the way, individual analogical
arguments help to guide the mathematical constructions.

In this chapter, I shall mostly be concerned with the heuristic role of analogies
in mathematics. Specifically, my objective is to provide an analysis of individual
analogical arguments used to show that a conjecture is plausible. I will focus on
three questions:

1. What does it mean for an analogical argument to show that a conjecture is
plausible?

2. What are the criteria for a good analogical argument?
3. What philosophical justification can be given for analogical reasoning?

I shall propose a model for representing and evaluating analogical arguments that
gives partial answers to these questions.

The chapter proceeds as follows. Section 12.2 reviews some basic general
ideas and concepts about analogical arguments. Section 12.3 answers question (1):
individual analogical arguments typically aim to establish that their conclusions are
worthy of further investigation (rather than to assign a probability). The bulk of the
chapter is directed at question (2). Section 12.4 articulates a basic test for plausible
analogical arguments in mathematics; Sect. 12.5 raises three important challenges
to this simple test; Sects. 12.6–12.8 offer responses. Section 12.9 addresses ques-
tion (3) by explaining how analogical arguments in mathematics that pass the
test described in Sects. 12.4–12.8 genuinely do make their conclusions plausible.
Finally, the conclusion (Sect. 12.10) suggests some ways in which our treatment of
individual analogical arguments can be expanded to illuminate the ‘systematizing’
role of analogies in mathematical research.

12.2 Analogical Arguments: Basic Notions

In general, an analogy is a comparison of similarities between two domains, or
systems of objects. This comparison is typically represented as a kind of mapping
between the objects, properties and relations of the two domains, commonly referred
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to as the source domain and the target domain.2 If the domains are similar in
known ways, then it appears reasonable to infer that some further characteristic
of the source domain, or an appropriate analog of such a characteristic, may
hold in the target. An analogical argument is an explicit representation of this
sort of reasoning, citing accepted similarities between two systems in support of
the conclusion that some further similarity is plausible. Sometimes (as in legal
reasoning) we rely upon multiple analogies; at other times (as in most mathematical
examples) we have an individual analogy involving a single source domain. Of
course, analogical reasoning is seldom represented neatly as an explicit argument. I
shall assume, however, that such reasoning is capable of representation in argument
form. That assumption is implicit in Pólya’s popular discussion of mathematical
analogies Pólya (1954); it is appropriate if we are interested in justifications that are
communicable and public.

In order to fix some terminology and notation, let’s begin with two simple
examples.

Example 1 (Rectangles and Boxes). Suppose that you have proved the following
result: if you consider all rectangles with the same fixed perimeter, then the one with
maximum area is a square. Here is an analogous conjecture in three dimensions:
of all rectangular boxes with a constant fixed perimeter, the cube has maximum
volume. We argue by analogy that this conjecture is, to some degree, plausible.

Example 2 (Triangles and Tetrahedra). Suppose you have proved that the three
medians of any triangle have a common intersection point. By analogy, you
conjecture that the four medians of any tetrahedron—the lines joining each vertex
with the center of the opposite face—have a common intersection point.

In Example 1, the source domain is the set of rectangles, the target is the set of
three-dimensional boxes, and the feature being transferred is that area is maximal for
a square. In Example 2, the source domain is triangles, the target is tetrahedra, and
the feature being transferred to the target is that the medians are concurrent—that
is, they intersect in a common point.

It is sometimes helpful to represent an analogical argument in tabular form,
listing first the known similarities that constitute the basis of the argument and then
the conjectured further similarity. We can illustrate with Example 1. Here, x and y
stand for edge lengths in two dimensions, while x∗, y∗ and z∗ represent edge lengths
for a three-dimensional box. PER and PER∗ stand for two- and three-dimensional
perimeter, AREA for area and AREA∗ for volume. (Starred symbols are used for
items of the target domain that correspond to the source domain.) Q is the known
result that is analogous to the conjecture, Q∗. The information is summarized in
Table 12.1.

2Chapters 2 and 3 of my book (Bartha, 2010) provide a selective survey of the extensive literature
on analogies and analogical reasoning. A recent and fairly representative collection of papers on
analogy, mainly from the perspective of cognitive science, is Kokinov et al. (2009).
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Table 12.1 Rectangles and boxes

Two-dimensional rectangles Three-dimensional boxes

PER = 2(x+ y) PER∗ = 4(x∗+ y∗+ z∗)
AREA = x · y AREA∗ = x∗ · y∗ · z∗
Q: for maximum AREA, x = y Q∗: for maximum AREA∗, x∗ = y∗ = z∗

Table 12.2 Schema for analogical arguments (AA)

Source domain (S) Target domain (T )

P P∗ Positive analogy

A ∼A∗

B∗

}
Negative analogy∼B

C C∗? Neutral analogy
Q

Q∗ (plausibly)

In general: let S be the source domain and T the target domain. We can represent
an analogical argument in tabular form by listing known similarities, which we refer
to as the positive analogy, followed by the known differences or negative analogy,
and then the conjectured further similarity. The neutral analogy consists of features
of the source domain about whose target analogs we lack knowledge. This gives us
the representation in Table 12.2.

In short: it is plausible that Q∗ holds in the target domain because of certain
known or accepted similarities between the domains, despite certain known or
accepted differences. The analogy, if successful, persuades us to look for a rigorous
proof. This representation is a little unusual in that it identifies known differences
(the negative analogy) that may weaken the argument. In practice, such differences
are often conveniently omitted or even suppressed.

12.3 Two Conceptions of Plausibility

Let’s focus first on the conclusion in the above argument scheme. What is the
meaning of “Q∗ (plausibly)”? The basic idea, of course, is that we have some reason
to believe the conclusion, Q∗. When we try to make this idea more precise, however,
we encounter two distinct conceptions of plausibility.

First, there is a probabilistic conception, on which plausibility is identified with
degree of belief, or more broadly with some degree of strength that is naturally
represented as a probability. To say that a hypothesis is highly plausible is to say
that it has high probability. To say that a hypothesis is somewhat plausible is to say
that it has a low but appreciable probability. In general, the probability is thought to
depend upon the degree of similarity between the two domains.



12 Analogical Arguments in Mathematics 203

The probabilistic conception of plausibility has long been prominent in analyses
of analogy. Hume, in his Dialogues Concerning Natural Religion, sees analogical
arguments as possessing a degree of strength that varies with the similarity of the
domains:

Wherever you depart, in the least, from the similarity of the cases, you diminish propor-
tionably the evidence; and may at last bring it to a very weak analogy, which is confessedly
liable to error and uncertainty (Hume, 1779, 144).

Mill, in A System of Logic, also appears to endorse a probabilistic interpretation.
Mill paints a vivid picture of analogical reasoning as a “competition between the
known points of agreement and the known points of difference,” which boost or
lower the probability of the conclusion. He writes:

There can be no doubt that every resemblance [not known to be irrelevant] affords some
degree of probability, beyond what would otherwise exist, in favour of the conclusion [and]
every dissimilarity which can be proved between them, furnishes a counter-probability of
the same nature on the other side (Mill, 1843, 333).

The probabilistic conception persists in recent work on analogy and inductive
logic in the Carnapian tradition. Even those writing on analogical reasoning in
mathematics tend to adopt a probabilistic model. Pólya, for example, states that
the probability calculus is the most perspicuous way “to render more precise our
views on plausible reasoning” (Pólya, 1954, 116).

Second, and less familiar, is what I call the modal conception of plausibility. To
assert that a hypothesis is plausible in the (non-probabilistic) modal sense is just to
assert that it is a serious possibility, something that we have reason to investigate
further and that we might be brought to believe. Typically, there is no assertion of
degree. The point of calling the hypothesis plausible is to single it out from a mass
of bare possibilities. This view is implicit in remarks made by the physicist Norman
Campbell about Fourier’s use of analogy in support of his theory of heat conduction:

Some analogy is essential to it; for it is only this analogy which distinguishes the theory
from the multitude of others . . . which might also be proposed to explain the same laws
(Campbell, 1957, 142).

A good analogy with a known theory establishes Fourier’s theory as a serious
possibility, or (as I shall say) as prima facie plausible.

The modal interpretation of plausibility also has nineteenth century antecedents.
Herschel, whose philosophy of science rivalled that of Mill, insists that for a
proposed hypothesis to merit serious attention, it must postulate a vera causa (true
cause). For Herschel, this means that the hypothesis must be “analogous to causes
that are already known to have produced similar effects in other cases” (see Snyder,
2006, 201)—that is, to causes known to exist in nature.3 Like Campbell, Herschel
uses the requirement of analogy to screen out frivolous hypotheses. Herschel and

3Of course, Herschel is speaking of empirical hypotheses. The vera causa requirement cannot be
applied literally to mathematical conjectures.
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Mill thus agree that analogical arguments play an important part in inductive
reasoning, but they appear to disagree as to whether the assertion of plausibility
is modal or probabilistic.

For mathematical analogies, I suggest that the modal conception of plausibility
is the primary one. Of course, there are familiar philosophical difficulties with the
assignment of any probability other than 0 or 1 to a mathematical proposition,
but that is not the basis for my suggestion.4 The suggestion derives instead
from pervasive features of analogical arguments in mathematics, as illustrated by
Examples 1 (Rectangles and Boxes) and 2 (Triangles and Tetrahedra).

In the first place, there is a practical point: a probabilistic interpretation of
plausibility would serve no purpose in these analogical arguments. A numerical
probability value would be a needless distraction, since the point of each analogy is
simply to persuade us to take a conjecture seriously. Secondly, most mathematical
analogies are not comparative. They are useful even when we can’t make, or don’t
care to make, comparative plausibility judgments. Our two examples are typical:
they offer individual analogical arguments without any rival conjectures. But even
if there are rival conjectures, supported by rival analogical arguments, we are often
not concerned about making comparisons. It is enough to know that we have to take
all of these conjectures seriously. Finally, in thinking about inductive reasoning in
mathematics, there is no need for belief updating. We don’t need rules for updating
our degree of inductive support for mathematical propositions.

In light of these observations, we may conclude that there is little practical point
in modelling analogical arguments in mathematics with probabilities. After all, the
main motivations for using numerical probabilities to represent our beliefs are to
allow for comparisons (and hence decision-making) and for belief updating.

The major reason for interpreting plausibility as a modal notion, however, is
that this interpretation is faithful to how analogical arguments in mathematics are
actually assessed. Analogical arguments in mathematics do not proceed in the way
suggested by Mill, on which the degree of strength of the argument is an increasing
function of the degree of overall similarity between domains. On that view, every
similarity confers some probability on the conclusion. That is not what happens with
mathematical analogies. They are accepted or rejected not on the basis of overall
similarity, but rather based on a pointed assessment of whether or not the proof
employed in the source domain is “fit for imitation” (Pólya, 1954, 46) in the target
domain.

The next section turns this remark of Pólya’s into a simple test for plausibility,
but the preliminary idea can be made clear by considering Example 1, Rectangles
and Boxes. To see whether we have a good analogy, we need to start with a proof of
the result about rectangles. Here is a simple proof.

4Indeed, the probabilistic conception of plausibility is important, and can be useful if we wish
to model the strength of an analogical argument (in mathematics or elsewhere). My contention
here is simply that the modal conception of plausibility is both ubiquitous and fundamental in
mathematics.
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Assumption: Perimeter is constant, i.e., 2x+ 2y = c for some constant c.
Step 1: Area xy is maximized when x(c/2 − x) is maximized (From the

assumption).
Step 2: By the First Derivative Test, this occurs when x = c/4.
Step 3: From the preceding steps, y = c/4 as well. We have proved that the

rectangle with maximum area is a square.

Is this proof “fit for imitation” in the target domain (boxes)? Yes: there are
obvious analogs of perimeter and area, and an analog of the First Derivative Test
for multi-variable calculus. So we have a plausible argument.

For analogical arguments in mathematics, the determination of plausibility
requires checking that the proof in the source domain is “fit for imitation” in the
target domain (short of actually constructing the target proof). There must be no
obvious disanalogy that would prevent us from adapting the proof. If there is such
a critical disanalogy, then the analogical argument fails to establish the plausibility
of its conclusion, regardless of the overall similarity between the two domains. This
observation supports a modal (and not probabilistic) reading of plausibility.

12.4 Test for Plausibility of Mathematical Analogies

Mathematical analogies pose a significant challenge to the community of schol-
ars that is trying to understand analogical reasoning. Most current theories of
analogical reasoning—purely philosophical approaches, such as Hesse (1966), as
well as computational theories that take their cue from Gentner (1983) and her
“structure-mapping” approach—are based on some version of the idea that analog-
ical arguments should be assessed on the basis of overall similarity between source
and target domains. Such approaches mesh nicely with a probabilistic conception
of plausibility and with Mill’s idea that each similarity in an analogical argument
contributes a measure of plausibility to the conclusion. Already, we have seen that
ordinary strategies for assessing analogical arguments in mathematics are at odds
with these ideas.5 Those strategies are not based on overall similarity, and they fit
naturally with a modal (rather than probabilistic) interpretation of plausibility. This
section offers a quasi-formal test for plausible analogical arguments in mathematics,
based upon the informal observations of the preceding section.

The test rests upon two fundamental principles.6 First, for any good analogical
argument, we require a clearly stated prior association: a logical, causal or
explanatory relationship, in the source domain, between certain features and the
feature Q that is projected to hold in the target domain. Second, there must be a

5For a very different set of tensions between the structure-mapping approach and mathematical
analogies, see (Schlimm, 2008).
6In chapter 4 of Bartha (2010), I apply these principles widely to a variety of analogical arguments.
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potential for generalization of this association from the source domain to the target,
which would support the conclusion of the analogical argument.

In the case of mathematical analogies, the prior association consists of an explicit
proof. Schematically, we represent this in the following form:

Definition 1 (Prior Association). ϕ � Q

Here, Q is the proposition whose analog is projected to hold in the target domain,
and ϕ is a set of explicit assumptions used in the proof (as unstated background
assumptions are not part of the prior association). The prior association is that Q
follows from ϕ via a mathematical derivation. The analogical argument suggests
that a similar entailment relationship implies an analogous proposition (Q∗) in the
target domain.

The prior association must be mathematically acceptable; the proof should satisfy
a competent mathematician. Of course, many proofs will meet this standard. The
key idea here is that once a proof is given, some definite set of explicit assumptions
ϕ = {ϕ1, . . . ,ϕn} becomes the set of critical factors for assessing the analogical
argument. It is perfectly in order to acknowledge an element of judgment in
identifying what these factors are.

In Example 1 (Rectangles and Boxes), the critical factors include the formulas
for area and perimeter, the assumption that perimeter is constant, and the First
Derivative Test. In Example 2 (Triangles and Tetrahedra), it turns out that there are
quite distinct ways of proving that the medians of a triangle intersect in a common
point. If we use analytic geometry, we can reason as follows. Represent the vertices
A, B, C as ordered pairs in the Cartesian coordinate system. Then the mid-points are

X =
A+B

2
, Y =

B+C
2

, and Z =
A+C

2
,

while the medians are the sets of points {(1− t)C + tX : 0≤t≤1} and so on. The
point (A+B+C)/3 lies on each median, as can be seen by taking t = 2/3. This
proves that the medians are concurrent. The critical factors are the following:

1. X , Y , and Z are mid-points (given by the specified formulas).
2. The medians join vertices to mid-points.
3. The 1-parameter algebraic representations for the medians.

Now we turn to the other component of the test for plausibility, assessment
of the potential for generalization of the proof to cover the target domain. The
important idea here is that good analogies in mathematics generally are a precursor
to generalization. Here it is sufficient to think of generalization as the formulation
and proof of a result in a setting that comprehends both the source and target
domains. To treat analogies as the first step in such a process seems entirely
reasonable, since most (perhaps all) successful mathematical analogies do lead to
such generalizations. Of course, when we argue by analogy, we cannot appeal to
(and are often unaware of) the generalization. But we can apply Pólya’s criterion by
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considering whether the source proof is “fit for imitation” in the target domain. This
gives us a simple test for plausibility7:

Definition 2 (PfP: Prima facie Plausibility for Mathematical Analogies).

1. Overlap. Some fact used in the source proof must belong to the positive
analogy, P.

2. No-critical-difference. Nothing used in the source proof can correspond to
something known to be false in the target domain. That is, no critical assumption
belongs to the negative analogy.

If a general theorem holds in an abstract setting that includes the source and target
domains as special cases, then the general proof could be adapted, step-by-step,
to yield proofs in our two domains. So if, for any fact used in the proof of Q,
either there is no meaningful analog in the target T or the analog is false, then
the No-critical-difference condition fails. There is then no good reason to expect a
generalization, and the analogical argument is not plausible.

Let us apply these criteria to Example 2, relative to the proof just sketched.
The concepts analogous to ‘triangle’, ‘midpoint’ and ‘median’ are ‘tetrahedron’,
‘centroid’, and ‘median’. So facts 1 and 2 identified above as relevant have true
analogs in solid geometry by the set-up of the problem. Furthermore, the algebraic
representation for the centroids and medians of a tetrahedron is similar to that used
for a triangle. For instance, if the vertices of the tetrahedron are A, B, C and D,
then the centroids are (A+B+C)/3, (A+B+D)/3, and so on, exhibiting a form
and symmetry like the two-dimensional case.8 Fact 3 thus has an analog, and our
analogical argument passes the test. On our model, the conclusion is shown to be
prima facie plausible. Note that the test might fail (and indeed does fail) if we
employ an alternative proof of the same conclusion, but this is consistent with
the view that the particular proof employed is an integral part of the analogical
argument.

In summary, for a mathematical analogy to satisfy the test of plausibility,
everything used in the source proof must correspond to something not known to
be false in the target domain. Otherwise, we have no reason to hope that there is a
more general result of which the source and target theorems are special cases.

Note that if the Overlap and No-critical-difference conditions are satisfied, then
there is scope for strengthening an analogical argument in two ways. First, we can
make the argument better by moving more of the relevant properties from the neutral
to the positive analogy. Second, we can make the nature of the correspondence
sharper (as will be done in subsequent sections).

There is a natural worry here about how to handle proofs that are not parsi-
monious, i.e., proofs that introduce assumptions not strictly needed to derive the

7The test makes use of the terminology introduced in Sect. 12.2.
8Lacking an account of similarity at this point, I simply assert that there is a natural correspondence
here. Shortly, we shall describe this as a case of geometric similarity.
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conclusion. It might turn out that an analogical argument is defeated by (PfP) when
one of these idle assumptions has no analog (or a false analog) in the target. We
could have ‘saved’ the analogy (and the plausibility of the conclusion) by moving to
a parsimonious proof. This leads to the objection that my account of plausibility is
too strict. An alternative approach would define the set ϕ of critical factors as those
that appear in a parsimonious proof.

My first response is to repeat that distinct proofs lead to distinct analogical argu-
ments. If an analogical argument, as presented, is not amenable to generalization,
then it ought to be defeated. The burden rests with the advocate proposing the
analogy, who has every incentive to formulate as parsimonious a proof as possible.
It is perfectly in order for a critic to single out any feature of the proof as given that
does not seem to carry over to the target. But there is a more interesting response.
The art of analogical reasoning is to ‘see’ a common pattern in two domains. Often,
this means reformulating a proof in a way that removes disanalogies. To this end,
it is fruitful to define the critical factors relative to the actual proof, rather than
relative to an ideal, parsimonious proof. The approach we have adopted provides
clear guidelines about what to do when an analogy fails: either abandon it or refine
the proof to eliminate the disanalogy.

A more significant objection is that, so far, we have not placed any constraints
on the similarity relationships between domains. We have relied upon intuitive
judgment in assuming that correspondences between rectangles and boxes, or
between triangles and tetrahedra, are genuine similarities.

It is helpful at this point to introduce terminology developed by Hesse (1966).
The terminology makes reference to a tabular representation scheme for analogical
arguments such as the one proposed as schema (AA) of Sect. 12.2. The horizontal
relations in an analogy are relations of similarity (and difference) in the mapping
between domains, while the vertical relations are those between the objects,
relations, and properties within each domain. These notions can be illustrated using
Example 1 (Rectangles and Boxes). The correspondence between area and volume
is a horizontal relation. The proof that the square has maximum area indicates
vertical relations among the concepts of the source domain.

The objection that we are now considering is that the test for plausibility
(PfP) places no restrictions upon how we identify the horizontal relations, i.e.,
corresponding features in the source and target domains. Yet it is obvious that
without restrictions on what counts as legitimate similarity, any theory of analogy
will run into trouble. The next section presents nontrivial examples that illustrate
this problem, and subsequent sections develop models for three important types
of similarity, in effect giving us three special varieties of mathematical analogy.
These models enrich our basic test and enable us to address the challenges, to which
I turn next.



12 Analogical Arguments in Mathematics 209

12.5 Three Challenges

This section raises three difficulties for the account of plausible mathematical
analogies just proposed. All of them signal the need to supplement that account by
incorporating an analysis of the similarities between the source and target domains
into our plausibility criteria.

So far, the proposal is that we evaluate each analogical argument, relative to
a given proof in the source domain, by assessing the potential for generalizing that
proof to cover the target domain. No explicit assumption in the proof can correspond
to something known to be false in the target (which would constitute a critical
disanalogy), and at least one explicit assumption in the proof must correspond to
something known to be true in the target (the Overlap condition). If these two condi-
tions are met, then the analogical argument counts as prima facie plausible, i.e., there
is a solid case for investigating the conjecture. This test is vague as to what counts
as an acceptable proof, but the lack of precision is tolerable: it reflects genuine
ambiguity in what counts as a good analogical argument. Mathematicians can and do
disagree about questions of plausibility, and the disagreements can often be traced
to choices about representation. Our theory of analogical reasoning intentionally
leaves such matters open by relativizing to the given proof in the source domain.

As stated at the end of Sect. 12.4, however, we cannot be equally sanguine about
identifying legitimate correspondences between features of the source and target
domains. Without some restrictions, the theory is vulnerable to easy counterex-
amples. The remedy, to be developed in Sects. 12.6–12.8, is to supply constraints
on correspondence, i.e., standards for acceptable—or, as I shall say, admissible—
similarity between our two domains. My criteria for admissibility will not be geared
towards blocking all possible counterexamples. I shall be concerned mainly with
three problems that I take to be of particular importance and interest.

12.5.1 Specious Resemblance

The first problem is that an analogical argument may satisfy (PfP) yet be quite
implausible because the resemblances between the two domains derive from
contrived manipulations. In order to see that this is an interesting problem, let us
begin by considering Example 1 once again, which I take to be a good analogical
argument. Our first step in evaluating this analogical argument is to supply a proof
of Q, which we did in Sect. 12.3. The critical facts in that proof are the formulas
for area and perimeter, the assumption that perimeter is constant, and the First
Derivative Test. Looking at the target domain, we see that there are analogous
formulas for volume and perimeter, and an analogous theorem about maxima for
functions of two variables. This information is summarized in Table 12.3.

From (PfP), it follows that we have a plausible analogical argument. Indeed, the
conclusion Q∗ is true.
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Table 12.3 Rectangles and boxes

Source (two-dimensional rectangles) Target (three-dimensional boxes)

Area = x·y Volume = x·y·z
Perimeter = 2(x+ y) Perimeter = 4(x+ y+ z)
First derivative test (one-variable): First derivative test (two-variables):
at a maximum, D f (x) = 0 at a maximum, D f (x,y) = 0
Q: for fixed perimeter, Q∗: for fixed perimeter,
area is maximal if x = y volume is maximal if x = y = z

Our test for plausibility seems to work well. Yet the analysis takes for granted
that volume is the natural analog to area. There are other possibilities.

Example 1A (Variant on Rectangles and Boxes). Let’s re-write the formula for the
area of a rectangle with sides x and y as

AREA(x,y) = 3x2−2 + x2−1y2−1 − 3sin2−2 y,

which is, of course, equal to xy. Now we obtain a new three-dimensional analog:

VOLUME(x,y,z) = 3x3−2 + x3−1y3−1z3−1 − 3sin3−2 z.

The ‘resemblance’ here is that both AREA and VOLUME are instances of the
formula

3xn−2
1 + xn−1

1 · . . . ·xn−1
n − 3sinn−2 xn,

putting n = 2 and n = 3, respectively. That gives us an analogical argument that
of all boxes with a fixed perimeter, the one that maximizes VOLUME is a cube.
What is more, the argument appears to satisfy the criteria of (PfP), although it is
manifestly implausible.

This is a clear case of specious resemblance, resting on a technical trick. Nobody
would take the argument seriously. But how can we rule out such tricks in a
principled way when we have stressed the importance of allowing flexibility in
representing an analogical argument? If the example seems far-fetched, consider
the following case.

Example 3 (Euler Characteristic Formula). Euler’s formula states that if the
number of faces, edges and vertices of a (convex) polyhedron are F , E , and V
respectively, then F +V = E + 2. For example, the equation holds good for a cube,
which has 6 faces, 8 vertices and 12 edges. It also works for tetrahedra, dodecahedra
and other solids.9 There is an even simpler formula for the two-dimensional case:
V = E . Any polygon has the same number of edges and vertices.

9See Lakatos (1976) for the history and limitations of this formula.
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Pólya (1954, 43) rewrites the two formulas in an ingenious way to exhibit an
analogy:

V −E +F = 1 (polygons—2 dimensions)

V −E +F − S = 1 (polyhedra—3 dimensions)

The left-hand side of each equation is an alternating sum beginning with the number
of vertices (0-dimensional elements), and proceeding through the number of edges
(1-dimensional), faces (2-dimensional) and solids (3-dimensional elements).10

This looks like a case of specious resemblance. New terms are introduced
and old ones manipulated in order to ‘create’ an analogy. Yet it turns out to be
an illuminating way to re-write the two formulas. Indeed, it suggests analogous
Euler formulas for higher dimensions, and these analogous formulas happen to
be correct.11 A ‘manufactured’ resemblance thus leads to an insightful analogy.
If we insist upon a ‘standard’ representation, we might never find this innovative
reformulation of the Euler formula. How are we to distinguish, when evaluating an
analogical argument, whether similarities emerge from legitimate reformulation or
from specious manipulations?

12.5.2 Separated Domains

Our second problem is how to deal with analogical arguments based on similarity
between ‘widely separated’ domains. An analogical inference between two neigh-
boring dimensions is prima facie stronger than one between dimensions one and
three, one and four, and so on. Perhaps ‘gappy’ analogical arguments don’t reveal
anything about plausibility, as in the following (slightly artificial) example.

Example 4 (Punctured Balls). A punctured set is a set with one point removed,
such as the interval (−1,1) without the point 0 (pictured in Fig. 12.1a). A set is
disconnected if it can be written as the union of two disjoint non-empty open sets.
Roughly, this means it has two or more separate, non-touching pieces. Lastly, the
unit ball in R

n is the set of points whose distance to the origin is less than 1 unit.
It is easy to show that in one dimension, the punctured unit ball (−1,0)∪ (0,1) is
disconnected into two components.

What should we say about arguing, by analogy, that the punctured unit ball in R
3

(pictured in Fig. 12.1b) is disconnected? It seems that we should reject the argument:
for one thing, one should look first at the two-dimensional case (where the punctured
unit ball is not disconnected). Yet (PfP) provides no restrictions that require looking
first at ‘closer’ cases.

10For a polygon, F (the number of faces) is 1; for a polyhedron, S (the number of solid elements)
is 1.
11The full generalization involves concepts of algebraic topology; see Munkres (1984).
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Fig. 12.1 (a) Punctured interval. (b) Punctured sphere

Our test seems to fail us. This argument appears to satisfy (PfP), yet it is intuitively
implausible.

Once again, there is no quick way to fix the problem. Suppose we rule out any
analogy between domains that are not ‘neighbours’ (although as yet, we have no
precise concept of neighbouring domains). That will imply something much too
strong: analogical arguments that depend upon parity are a priori implausible. But
we know that some mathematical properties do depend upon parity. For example,
polynomial equations of odd degree with real coefficients always have at least one
real root, and that is not so if the degree is even. The Hairy Ball Theorem asserts
that only in real vector spaces of even dimension is it possible to define a continuous
tangent vector field on the surface of the unit ball. More picturesquely, in even
dimensions we can comb a hairy ball flat without parting the hair in any way, but
we can’t do this if the dimension is odd. Sometimes, in thinking about a problem
in three dimensions, the one-dimensional case might be a better guide than the two-
dimensional case.

12.5.3 Limits

Similarities involving limits play a central part in many interesting mathematical
analogies. The problem is that our theory seems to reject most of them because of
the No-critical-difference requirement. Unlike the previous two problems, in which
our theory gives intuitively implausible arguments a passing grade, the difficulty
here is that our theory appears to be too strict.

An excellent illustration of this type of analogy—and the challenge it poses for
our theory—is Euler’s beautiful exploitation of similarities between polynomials
and power series. My presentation is based on (Pólya, 1954).

Example 5 (Polynomials and Power Series). A polynomial of degree n is a function
of the form f (x) = a0 +a1x+ · · ·+anxn. A power series is a function defined by an
infinite sum of the form f (x) = ∑∞

n=0 anxn; for each x, the value f (x) is defined if the
partial sums f (x) = ∑M

n=0 anxn converge to some limit. Each of these partial sums is
a polynomial function, so that a power series is the limit of a sequence of polynomial
functions. The concept of a limit is essential for the precise characterization of
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the correspondence between polynomials and power series. Euler uses the analogy
between polynomials (the source domain) and power series (the target domain) to
support two conjectures and to obtain a striking result, namely, the infinite sum
1+ 1/4+ 1/9+1/16+ · · ·= π2/6, or in concise notation:

∞

∑
n=1

1
n2 =

π2

6
.

Euler’s first conjecture equates an infinite sum and an infinite product. In the source
domain (polynomials), it is not difficult to prove the following result:

a0 + a1x+ · · ·+ anxn = a0(1− x
α1

) . . . (1− x
αn

).

Here, the polynomial f (x) = a0 +a1x+ · · ·+anxn has the n roots α1, . . . ,αn (count-
ing multiplicities). So we can equate a finite sum (left side) with a finite product
(right side). By analogy, if f is defined by a power series and has roots αi (counting
multiplicities), Euler conjectures that f is expressible as the infinite product

a0

∞

∏
n=1

(1− x
αi

).

Since sinx/x has the power series

sinx
x

= 1− x2

3!
+

x4

5!
− . . .

and has roots ±kπ for k �=0, Euler’s conjecture yields:

sinx
x

= (1− x
π
)(1+

x
π
)(1− x

2π
)(1+

x
2π

). . .

= (1− x2

π2 )(1−
x2

4π2 ). . .

Euler’s second conjecture is to derive an identity from this first step. In the source
domain, begin with the equation just discussed:

f (x) = a0 + a1x+ · · ·+ anxn

= a0(1− x
α1

) . . . (1− x
αn

)

The coefficient of x in these two expressions must be the same, which gives us the
relation:

a1 =−a0(
1

α1
+ . . .+

1
αn

).
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The expression in parentheses is the sum of the reciprocals of all roots of f . Euler
conjectures that the same relationship between the coefficients a0 and a1 holds for
the infinite case, i.e., for power series. Applying it to sinx/x, he obtains

− 1
3!

= (−1)(
1

π2 +
1

4π2 + . . .),

which, after simplification, gives the desired series for π2/6.

Euler’s argument poses a challenge to our theory for the following reason. In
proving the equality of the two representations of a polynomial, as finite sum and
finite product, we use facts about the degree of the polynomial. But there is no
analog for degree, and hence nothing corresponding to these results, for an infinite
power series. According to (PfP), this counts as a critical difference. Thus, on our
theory, it looks as if Euler’s argument is blocked, and consequently establishes
nothing about plausibility. Other analogical arguments based on taking limits are
blocked in similar ways. That looks bad for our theory, since Euler’s argument
appears prima facie plausible.

Again, there is no simple way to fix our theory. The No-critical-difference
condition leads to trouble here, but it is at the heart of our account of plausible
analogical arguments and is not easily modified.

To meet all three of the challenges raised in this section, we need to incorporate
constraints on similarity into our evaluation criteria. As a first step, let’s make the
following simple adjustment.

Definition 3 (PfP*).

1. Overlap. Some explicit assumption in the proof must correspond admissibly to a
fact known to be true in the target domain. (The positive analogy is non-trivial.)

2. No-critical-difference. No explicit assumption in the proof can correspond
admissibly to something known to be false in the target domain. (No critical
assumption belongs to the negative analogy.)

The only change from (PfP) is that the correspondences have to be admissible, i.e.,
an acceptable basis for an analogical argument. In Sect. 12.6–12.8, I shall propose
models that help us to decide when the similarities in an analogical argument are
admissible. These models will permit us to amend our basic test for plausibility and
to deal with the three challenges just raised.

12.6 Algebraic Similarity

An algebraic similarity is a mathematical property shared by a cluster of relations,
functions and objects in the two domains. For example, addition and multiplication
(of real numbers) are similar in that both operations are commutative (x+ y = y+ x
and x ·y = y ·x) and associative ((x+y)+z = x+(y+z) and (x ·y) ·z = x ·(y ·z)). We
characterize such similarities as second-order identities, in the following manner.
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Definition 4 (Algebraic Similarity: AS). An algebraic similarity between rela-
tions R1, . . . ,Rm, functions F1, . . . ,Fn, and constants c1, . . . ,cp of S, and correspond-
ing R∗

1, . . . ,R
∗
m, functions F∗

1 , . . . ,F
∗
n , and constants c∗1, . . . ,c

∗
p of T is expressed by a

(second-order) propositional function

Ψ(R1, . . . ,Rm;F1, . . . ,Fn;c1, . . . ,cp),

such that the two sentences

Ψ(R1, . . . ,Rm;F1, . . . ,Fn;c1, . . . ,cp),

and

Ψ (R∗
1, . . . ,R

∗
m;F∗

1 , . . . ,F
∗
n ;c∗1, . . . ,c

∗
p),

that result from substituting the respective relations, functions, and constants for the
variables are true in the respective domains S and T .12

For example: commutativity of both addition (x+ y = y+ x) and multiplication
(x · y = y · x) is an algebraic similarity expressed by the function

Ψ : (x)(y)(Fxy = Fyx).

Here, F is a two-place function variable. Ψ is true when either operation (+ or ·) is
substituted for F.

As a second example: distributivity of addition and multiplication, x(y + z) =
xy+ xz, is expressed by

Ψ : (x)(y)(z)(F1(x,F2(y,z))) = F2(F1(x,y),F1(x,z)).

That the distributive property holds in two domains, such as the real numbers and the
complex numbers, counts as an algebraic similarity. If we substitute multiplication
for F1 and addition for F2 we obtain a proposition that holds in both domains.

In practice, there is no need to identify algebraic similarities at this level of
abstraction. Instead, we simply rely on the obvious resemblance between the
corresponding first-order propositions. The following example illustrates how al-
gebraic similarity, in conjunction with (PfP*), can be used to evaluate an analogical
argument.

Example 6 (Trigonometric and Hyperbolic Functions). The eighteenth century
mathematician John Playfair (1778), in an attempt to justify arithmetical operations

12The fraktur variables—representing relations, functions and constants—are free in Ψ . The other
relation, function and constant symbols denote entities in the source and target domains.
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Table 12.4 Unit hyperbola and unit circle

Unit hyperbola Unit circle

Sectors, area 1/2a Arcs, length a (or sectors, area 1/2a)
cosh a = (ea + e−a)/2 cosa = (eia + e−ia)/2
sinha = (ea − e−a)/2 sina = (eia − e−ia)/2
1 (constant) i (constant)

x

y

length asin a

cos a 1

x2 − y2 = 1

x

y

1
sinh a

cosh a

sector
area 1

2
a

sector
area 1

2
a

a b

Fig. 12.2 (a) Unit circle. (b) Unit hyperbola

on imaginary numbers, developed an interesting analogy between the unit hyperbola
and the unit circle, and in particular between the hyperbolic and trigonometric func-
tions. He began by noting a number of interesting correspondences, summarized in
Table 12.4.

Playfair’s geometric interpretation of the analogy is illustrated by Fig. 12.2a, b.
It was well known that propositions about real numbers could be “proven”

by formal manipulations involving complex numbers, but there was considerable
debate about the merits of such proofs in light of philosophical misgivings about the
status of imaginary numbers. For example, the double angle formula for cosines can
be derived from the above equations as follows:

cos(2a)+ 1 =
e2ia + e−2ia + 2

2

=
(eia + e−ia)2

2

= 2cos2 a

Playfair provided an interesting defense for this type of derivation. He acknowl-
edged that any such deduction is “unintelligible” per se, but “points out a perfectly
precise” valid deduction for the hyperbolic functions, making no use of imaginaries.
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This valid deduction can be obtained by direct substitution of 1 for i in the original
derivation. For example, the above derivation is readily transformed into a proof of
an expansion formula for hyperbolic cosine:

cosh(2a)+ 1 =
e2a + e−2a+ 2

2

=
(ea + e−a)2

2

= 2cosh2 a

In Playfair’s view, this identity for hyperbolic functions provides analogical support
for the original theorem (and a justification for the formal manipulations with
imaginary numbers). The same sort of relationship holds for other trigonometric
identities, such as

sinacosb =
1
2
[sin(a+ b)+ sin(a− b)].

and

sinhacoshb =
1
2
[sinh(a+ b)+ sinh(a− b)].

Now as Playfair noted, the procedure sometimes fails. For instance,

sinasinb =
1
2
[cos(a− b)− cos(a+ b)]

is true, but

sinhasinhb =
1
2
[cosh(a− b)− cosh(a+ b)]

is false. Similarly,

sin2 a+ cos2 a = 1

is true, while

cosh2 a+ sinh2 a = 1

is false. What goes wrong in these cases is that the derivations of the true identities
make use of the assumption i2 = −1. Since 12 �= −1, Playfair’s substitution
procedure fails to yield valid derivations for the two ‘identities’ that fail.
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Let me now connect this example to my theory. I am interested in the analogy
that runs from the trigonometric functions to the hyperbolic functions (opposite
to the direction on which Playfair focuses). This analogy concerns whether a
formally correct derivation of a trigonometric identity can be transformed, line by
line, into a derivation for the analogous hyperbolic identity. Our theory correctly
indicates that the first two hyperbolic identities above are plausible, because every
critical assumption belongs to the positive analogy. By contrast, the analogical
arguments for the final two (failed) identities are blocked by the No-critical-
difference condition. They require the critical assumption i2 = −1, which belongs
to the negative analogy.

The example provides a good illustration for our amended theory of plausibility,
(PfP*). Playfair’s analogy rests entirely upon algebraic similarities, reflected in the
parallel structure of the relevant functions and assumptions. In this case, our test
for plausibility works well, correctly sorting out which identities can be transferred
from the trigonometric to the hyperbolic case. That is as much as we can hope for
in a theory of analogical arguments.

Algebraic similarity can be integrated into the model in a relatively straightfor-
ward manner. That might seem surprising, since the definition of algebraic similarity
appears to allow for trivial or specious resemblances. For instance, the operations of
adding two numbers and taking the minimum of two numbers are both commutative.
This similarity appears slight, yet according to our definition it counts as a legitimate
algebraic similarity. We might worry that this leads to a theory that finds specious
analogical arguments to be plausible.

Our theory takes care of this worry by offering an independent basis for
determining which assumptions are critical, namely, those that occur explicitly in
the proof. Thus, if we are extrapolating a result proved using only the commutativity
of addition, then x + y and minimum(x,y) are appropriately similar. Otherwise,
this similarity is either irrelevant or insufficient to secure the plausibility of the
analogical argument.

Every algebraic similarity is admissible. This type of similarity is quite un-
problematic. In order to come to grips with the difficulties noted in Sect. 12.5
and to represent more interesting analogical arguments, we turn to other kinds of
mathematical similarity.

12.7 Geometric Similarity

Two functional or relational expressions (henceforth just expressions) are geometri-
cally similar if they look the same up to a change in the value of some parameter or
parameters. In characterizing them, I limit my attention to cases involving a single
parameter.

It helps to begin with a few examples of expressions that exhibit geometric
similarity:
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• Area(x,y) = x · y and Volume(x,y,z) = x · y · z (from Example 1)
• Length(x,y) = (x2 + y2)1/2 and Length(x,y,z) = (x2 + y2 + z2)1/2 (two and three

dimensions)
• f (x) = x2 and g(x) = x4

• f (x) = xn/4 and g(x) = xn/2

In these examples, the parameter can be a positive integer or a real number.
Furthermore, the parameter may indicate the number of arguments, as in the first
two examples, or it may function as an individual constant, as in the last two. That
gives us three types of geometric similarity (since number of arguments must be an
integer).

Definition 5 (Geometric Similarity: GS). Two expressions F and F∗ are geomet-
rically similar if one of the following three cases obtains:

(a) F = F(m) and F∗ = F(n), where F(k) is an expression parameterized by a
positive integer k in some range including m and n.

(b) F = F(α) and F∗ = F(β ), where F(t) is an expression parameterized by a real
number t in some range including α and β .

(c) F = F(x1, . . .,xm) and F∗ = F(x1, . . .,xn), where F(x1, . . .,xk) is an expression
with k arguments, defined for a range of values of k including m and n.

Each definition involves a one-parameter family of relational or functional ex-
pressions. The similarity is captured by the common form, F. The two similar
expressions are obtained by supplying distinct values for the parameter. The
parameter space may be a set of integers, as in cases (a) and (c), or a set of real
numbers, as in case (b). As examples of each case, we have the following pairs:

(a) f (x) = x2 and f ∗(x) = x4 (both instances of F(k) = xk);
(b) f (x) = xn/4 and f ∗(x) = xn/4 (both instances of F(t) = xtn);
(c) Area(x,y) = x · y and Volume(x,y,z) = x · y · z (both instances of F(x1, . . .,xk) =

x1 · . . . · xk).

Geometric similarity is highly sensitive to form. It is not preserved under
mathematical and logical equivalence. For instance,

F(x1,x2) = x1 · x2

and

F∗(x1,x2,x3) = x1 · sin(x2 · x3)

are mathematically equivalent to the instances n = 2 and n = 3 of

F(x1, . . .,xn) = x1 · . . . · xn +(n− 2)[x1 · sin(x2 · . . . · xn)− x1 · . . . · xn].
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But F and F∗ are not themselves instances of F, so they are not geometrically simi-
lar. Without this restriction, any two expressions could be shown to be geometrically
similar and the relation would be trivial.

Let’s look at how geometric similarity functions in analogical arguments. It will
quickly become clear that the purely syntactic definition (GS) is inadequate—and
for the very reasons that emerged in the challenges of Sect. 12.5. We begin with a
set of examples, of which the first few have already been introduced.

Example 1 (Rectangles and Boxes). This analogy rests on geometric similarities.
Two- and three-dimensional perimeter are related as instances of Perimeter(n) =
2n−1(x1 + . . .+ xn), with n = 2 and n = 3. Similarly, area and volume are instances
of generalized volume, Volume(n)= x1 · . . . ·xn. Assuming the geometric similarities
are admissible, the analogical argument is plausible. So far, so good.

But trouble arises right away. In Sect. 12.5, we presented a superficially similar
but intuitively implausible analogical argument, Example 1A. That example was
constructed so that all of the relevant functions satisfy our purely syntactic definition
of geometric similarity. This is the problem of specious resemblance.

Example 3 (Euler Formula). The similarities between the different formulas for
polygons, polyhedra and so forth can be fully represented in terms of a single
parameter (dimension), and again they satisfy our definition of geometric similarity.

Example 4 (Punctured Balls). The analogy between punctured intervals in one
dimension and punctured spheres in three dimensions once again satisfies our
definition of geometric similarity, yet is not obviously plausible. This is the problem
of separated domains.

These examples make it clear that geometric similarity must meet substantive
criteria to count as admissible, in order to be an acceptable basis for a plausible
analogical argument. But precisely what these criteria should be is a difficult
question, and one that I shall not entirely resolve. Before taking on this task, I offer
one final example. The example is important, in part because it is an analogical
argument that fails even though it is (according to my theory) plausible.

Example 7 (Abelian Groups). This example relies on elementary group theory,
so I start with some mathematical background. A group is a set closed under an
operation—multiplication—that satisfies some basic properties: associativity, the
existence of an identity, and the existence of inverses. For example, the set of
rotations in the plane around the origin is a group. To multiply two rotations is
to follow one with another. This operation satisfies all of the group properties: it is
associative, the identity element is rotation through 0 °, and the inverse of a rotation
of k ° is a rotation of −k °. A group G is said to be abelian or commutative if ab= ba
for any two elements a,b of G. For example, the group of two-dimensional rotations
is abelian: the net effect of two rotations is the same regardless of which is performed
first. Finally, if x is a member of a group G and m is a positive integer, then xm

signifies x multiplied by itself m times. For example, if x is a rotation through 20 °,
then x3 is 3 rotations through 20 °, which is equivalent to rotation through 60 °.
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Table 12.5 Abelian groups Source (S) Target (T )

For all a, b, (ab)2 = a2b2 For all a, b, (ab)3 = a3b3

Associative Associative
Cancellation laws Cancellation laws
Q: Abelian ⇒ Q∗: Abelian

Now to the analogical argument, which is based on the following elementary
problem in group theory (Herstein, 1975): if G is a group such that (ab)3 = a3b3

for all a, b in G, must G be abelian? Analogical reasoning seems to make a positive
answer plausible. For we can prove the analogous result that if (ab)2 = a2b2 for all
a, b in G, then G is abelian. Here is the proof. If a,b ∈ G, then:

abab = aabb (by assumption and associativity)
⇒ bab = abb (using the left cancellation law, (ax = ay)⇒ (x = y))
⇒ ba = ab (using the right cancellation law, (xb = yb)⇒ (x = y)).

The proof uses only the definition of exponentiation, associativity, and the two
cancellation laws. According to my theory, these are the critical facts.

My theory suggests that we have a good analogical argument. The source and
target domains are groups satisfying analogous conditions, as shown in Table 12.5.
Q is the statement that S is abelian, which (by the above proof) is true. Q∗ is the
conjecture that T is abelian. There are both algebraic and geometric similarities
between S and T . The general properties of groups, associativity and the cancellation
laws, count as algebraic similarities. The two identities at the head of each column
exhibit geometric similarity. Assuming that all of these similarities are admissible,
and noting that everything that is critically relevant in our proof of Q has a true
analog in T , our theory tells us that Q∗ is plausible. In fact, Q∗ is false.13

This example is important for three reasons. In the first place, we have an
analogical argument that is both putatively plausible and a failure. That establishes
the non-triviality of our theory, for plausibility should not always line up with
success. Secondly, as a closely related point, the example reminds us that we need to
characterize plausibility in a way that makes it at least partly independent of success.
Our theory suggests that, short of attempting a proof, this analogical argument
counts as plausible because there are no obvious critical disanalogies between the
source and target domains. Third and finally, this example reinforces the lesson we
have already drawn from Example 1 and its variant Example 1A: we need an account
of admissible geometric similarity that supplements the purely syntactical definition
(GS) given above. Towards that end, I begin by proposing solutions to the first two
challenges of Sect. 12.5.

13A modified result is true: if (ab)3 = a3b3 for all a, b in T , and the number of elements in T is not
divisible by 3, then T is abelian.
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Table 12.6 Specious resemblance: summary of results

Legitimate Plausible Successful
Example Satisfies (GS)? manipulation? analogy? analogy?

Example 1 Yes Yes Yes Yes
(boxes)
Example 1A Yes No No No
(boxes: variant)
Example 3 Yes Maybe Maybe Yes
(Euler formula)
Example 7 Yes Yes Yes No
(Abelian groups)

Table 12.7 Contrived version of area/volume analogy

Two dimensions Three dimensions

Area = x·y Volume = x·y·z
AREA = 3x2−2 + x2−1y2−1 −3sin2−2 y VOLUME = 3x3−2 + x3−1y3−1z3−1 −3sin3−2 z

12.7.1 Specious Resemblance

The problem of specious resemblance is that two expressions with no meaningful
similarity can be re-written so as to satisfy the purely syntactic criterion (GS). Yet
creative forms of representation are an important part of analogical reasoning in
mathematics. We seek a balance that allows us to distinguish between legitimate
and specious manipulations. Table 12.6 summarizes facts (columns 1 and 4) and
intuitions (columns 2 and 3) about the examples that bear on this problem.

To ‘solve’ the problem of specious resemblance, we need to account for the facts
and intuitions in Table 12.6. We must explain why, for instance, the manipulations of
the Euler formula may be legitimate while those in the highly contrived Example 1A
are not. My proposed solution is roughly as follows. An admissible geometric
similarity must both satisfy the syntactic conditions of definition (GS) and be
motivated by the proof that serves as the prior association on which the analogy
is based. Thus, in Example 1A, AREA (which is mathematically equivalent to Area)
and VOLUME meet criteria (GS) for geometric similarity, as Table 12.7 shows. Yet
if we consider the proof (in Sect. 12.3) for the theorem that of all rectangles with
fixed perimeter, the square has maximum Area, we find no motivation for re-writing
Area as AREA.

I suggest, then, that the way to deal with specious resemblance is with the
following requirement of internal coherence:

Definition 6 (Internal Coherence: IC). For a geometric similarity to count as
admissible, the relevant relations and functions should be expressed using standard
representation, unless some justification internal to the domain can be given for
a non-standard representation. More specifically, any novel representation should
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be justified in terms of the proof that is the prior association for the analogical
argument.

The real problem lies not with representations that are complex or novel, but
rather with those that have no independent motivation. The proposal is that any
novel way of representing features of the source or target domain must have a
motivation that is independent of the analogy and its purposes, a rationale internal
to the domain. More specifically, the novel representation should be linked to the
proof that is the basis of the analogical argument. In Example 1A, the only way to
motivate the artificial formula AREA is to point to the function VOLUME and say,
“I want the formula for area to look like that (so as to provide analogical support for
my conjecture).” The motivation is external to the source domain, which makes the
reformulation illegitimate.

There is another way to argue for internal coherence. The problem that it is meant
to solve can be viewed as a problem about hidden assumptions. The expressions
for AREA and VOLUME lack an important property possessed by the original
expressions for Area and Volume: symmetry between x and y. The formulas for
Area and Volume remain the same if we interchange x and y, but that does not hold
for AREA and VOLUME . Symmetry is exploited in the proof on which the analogy
in Example 1A is based, but the manipulations destroy the symmetry. That raises
an important general problem: in evaluating an analogical argument, how do we
know whether or not there are relevant assumptions that are not explicit? Features
such as symmetry may be important in a mathematical proof, and highly relevant
to the correct assessment of an analogical argument, even though they are not made
explicit. The problem is that our theory seems to make no provision for identifying
these tacit yet critical disanalogies.

The problem is interesting because we might well think that demanding infer-
ential explicitness in a proof is all that we could possibly want when it comes to
mathematical clarity. A proof is inferentially explicit if each step is (or can be)
justified as following from earlier steps by the application of an elementary rule
or principle. This type of explicitness, familiar to logicians, is adequate so long as
we are only interested in assessing the validity of a mathematical argument. When
we turn to the inductive side of mathematics, however, and specifically to analogy,
we have to acknowledge the importance of tacit features. We may not have noticed
them, yet they can be critical to an analogical argument.

We might conjecture that there is an ideal of pragmatic explicitness, important
for inductive arguments in mathematics, that complements the traditional ideal of
inferential explicitness in representing deductive arguments. A proof is pragmati-
cally explicit if it spells out all important hidden assumptions (such as symmetry).
It should be clear, however, that this idea is a non-starter. The ideal of pragmatic
explicitness is unattainable, or at least something that we can never be sure of having
attained. We can agree that a proof is sufficiently explicit to count as valid, but we
can never be sure that we have attained pragmatic explicitness.

Accordingly, our theory defines critical relevance using the standard of inferential
explicitness. It would be a mistake to resolve the problem of specious resemblance
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(or hidden assumptions) by insisting that all proofs be pragmatically explicit, even if
we could be clear about what that meant. In the first place, any proof will almost al-
ways have interesting hidden features. In the second place, the success of an analogi-
cal argument often hinges on the fact that some or all of those tacit features are irrele-
vant, i.e., no obstacle to generalization. To require that we identify every tacit feature
about a proof in the source domain would hobble analogical reasoning. It is enough
to require that all assumptions used in an inferentially explicit proof be capable of
imitation in the target. When an analogical argument meets this standard yet sup-
ports a conjecture that happens to be false, that failure brings out the importance of
the hidden features but it does not show that the original conjecture was implausible.

Our best hope, then, is the somewhat vague criterion of internal coherence.
We have seen that this requirement lets us deal effectively with both Example 1
and Example 1A. In my view, it also succeeds with Example 7 (Abelian Groups).
There is no specious resemblance, so the similarity is admissible and the analogical
argument counts as plausible, in spite of the fact that it fails.

What about Example 3, the Euler formula? Pólya’s manipulations (described
in Sect. 12.5) are certainly motivated by the desire to display an analogy between
two and three dimensions, but that is acceptable only if they also have a natural
motivation independent of the analogical argument. Let us see what our theory
says about this example. In the first place, what is the analogical argument? Let
us focus on the argument from the two- and three-dimensional Euler formulas to the
analogous formula in four dimensions:

V (vertices)−E (edges)+F (faces)− S (solids)+K (4-dimensional objects) = 1

If we have no more to go on than the formulas for two and three dimensions
(see Sect. 12.5), with inductive support but no formal proof, then there is no
prior association and, according to our theory, the analogical argument establishes
nothing at all about plausibility.

The first person to prove the three-dimensional Euler formula in a rigorous man-
ner was Cauchy. Cauchy’s proof, restricted to convex solids, involves first collapsing
the solid to a two-dimensional structure of vertices, edges and regions, then adding
edges until all regions in the complex are triangular, and finally deleting edges and
vertices down to a single triangle, all the while ensuring that each transformation
makes no difference to the sum of V −E +F. I submit that relative to such a proof,
Pólya’s way of writing the Euler formula is sufficiently motivated, so that the simi-
larity between the three and four dimensional cases may be considered admissible.
Our theory does a fair job of explaining our intuitions about the Euler example.

Of course, we can find plenty of objections to the requirement of internal coher-
ence. With a little ingenuity, one could probably produce an ‘internal’ justification
even for a case as artificial as Example 1A. I acknowledge the problem, but still
maintain that the requirement imposes the right kind of constraint on representation.

A second objection is that requiring internal coherence is too conservative.
Too many geometric similarities become inadmissible because they depend upon
unusual representations. Recall, however, that the person formulating an analogy
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has considerable latitude in drawing up the proof, and can probably motivate any
reasonable change in representation.

In the end, it must be conceded that I have not completely resolved the problem.
The requirement of internal coherence is not a precise condition, but only a general
guideline about representation. Disagreement about the plausibility of a mathemat-
ical analogy may well turn on whether some novel representation can be made to
appear legitimate, and the theory I have put forward does not settle all such disputes.

12.7.2 Separated Domains

Our second problem is to deal with geometric similarity between ‘widely separated’
domains. In Example 4 (punctured balls), the analogical inference that proceeds
from the one-dimensional case to the three-dimensional case appears to be im-
plausible, because the natural thing to do is to look first at the two-dimensional
case. Yet the argument seems to qualify as plausible according to our theory,
which so far provides no restrictions along these lines. Furthermore, as noted in
Sect. 12.5, complications arise because there can be legitimate analogies that skip
over intermediate domains.

I believe that the best way to deal with this problem is to extend the basic model
of Sect. 12.4, which applies only to individual analogical arguments, to handle
multiple analogies. Any case of geometric similarity with separated domains is
a situation where multiple analogical arguments are available, corresponding to
different possible parameter values. In Example 4, for instance, we are considering
an analogy between one and three dimensions, but there is clearly a two-dimensional
alternative source domain to consider as well. The extension to multiple analo-
gies is developed in detail in (Bartha, 2010)14; here, it suffices to present an
abbreviated version.

Suppose that we have a set of analogical arguments A1,A2, . . . with a common
target domain, but possibly supporting different conjectures about the target.
Suppose further that each of these individual arguments already meets the criteria
of (PfP); in particular, no critical factors belong to the negative analogy for any
of these arguments. We want to define a ranking or partial ordering denoted by
≺ on this set: A1 ≺ A2 if A2 is superior to A1. There is one natural choice that
we may call the standard ranking: argument A2 is superior to argument A1 if the
positive analogy of A2 includes all critical factors in the positive analogy of A1.
Everything important that A1 shares with the target domain is also present in A2.
In cases involving geometric similarity, however, there is additional information to
take into account, because the domains are indexed by parameters from a set (real
numbers or integers) that already has its own ordering. In Example 4, for instance,
it is natural to think that if we want an analogy for a conjecture about R3, then R

2

14In Section 4.10.
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is a better guide than R because (looking at the dimensional parameter) 1≤2≤3.
I propose to refine the standard ranking by making use of the natural ordering on
the parameters.

Definition 7 (Ranking Proposal). Suppose A1 and A2 are possible analogical
arguments for some conjecture about a target domain T . Suppose that the geo-
metrically similar expressions in the three relevant domains are characterized by
parameters α1 for A1, α2 for A2, and α for T . Then A1 ≺A2 (A2 is strictly superior
to A1) if and only if:

(a) A2 is strictly superior to A1 on the standard ranking (based on critical factors);
or

(b) A2 and A1 are equally good on the standard ranking, but the parameter value
α2 lies between α1 and α .

On this proposal, parameter-based considerations never override the standard
ordering, but they can break ties.15 Thus, in Example 4, the two-dimensional
punctured disk is strictly superior to the punctured interval as an analog for the
three-dimensional case.

A second important consideration when thinking about multiple analogies is
Independence.16 The condition of Independence asserts that while the plausibility of
optimal arguments (with respect to the ranking ≺) should be assessed independently
of competing analogies, sub-optimal arguments may be ignored. Applying this
result to Example 4, we reject the analogy between the punctured interval and
punctured sphere. It is not that the relevant geometric similarities don’t exist; rather,
we reject the analogy because of the existence of a competitor that is manifestly
superior.

The Ranking Proposal can also handle cases where it seems appropriate to skip
over certain intermediate parameter values, as in parity-based analogies (discussed
in Sect. 12.5). In such cases, there is a critical factor that is present in two separated
domains (e.g., n = 2 and n = 4) but not present in the intermediate domain (n = 3).
Since (on the Ranking Proposal) proximity in parameter value is secondary to
overlap in critical factors, our proposal allows for cases where the best analog is
not a neighbour but a separated domain.

A complication arises if we recognize the existence of intermediate analogs,
but lack relevant knowledge about them. Suppose that we are contemplating a
conjecture about three-dimensional geometry. We have a proven result for one
dimension, and it meets all of our criteria to support an individually plausible
analogical argument about the three-dimensional case, yet we are ignorant about
whether the analogous result holds in two dimensions. In this situation, according
to the above proposal, ignorance does not block the one-dimensional analogy. We

15The proposal can be generalized to cases where geometric similarity is defined using more than
one parameter, although this requires the introduction of a metric.
16Again, see Bartha (2010) , section 4.10, for a full discussion.
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still have a plausible analogical argument, at least until such time as we know more
about the two-dimensional case.

To conclude this discussion, let us compare geometric and algebraic similarity.
Whereas algebraic similarity is a purely syntactic notion, geometric similarity
between two domains combines common syntactic structure with substitution of
distinct parameters. The result is a more complex form of similarity, as reflected in
the examples and our two challenges: the problem of specious resemblance and the
problem of separated domains. We had to introduce an additional (and somewhat
imprecise) requirement for a geometric similarity to count as admissible: internal
coherence. Furthermore, we have seen that a satisfactory discussion of geometric
similarity sometimes requires consideration of multiple, rather than just individual,
analogies. Our discussion of the two forms of similarity shows that we can find
alternative ways of modeling similarity—alternatives that let us raise, and partially
answer, interesting questions. The next section introduces a third and even more
complex form of similarity.

12.8 Asymptotic Similarity

Similarities between the finite and the infinite, between discrete and continuous
systems, and other similarities involving limits are at the heart of some of the most
interesting mathematical analogies. These asymptotic similarities build on the two
previous types, but the use of limits introduces a new level of complexity. As noted
in Sect. 12.5, arguments of this type pose a special challenge for our theory. My
principal objective in this section is to show how the model can be refined so as to
handle this type of analogical argument.

I shall discuss only two examples. The first is Example 5, Euler’s ingenious
analogy between polynomials and power series. A polynomial of degree n has the
form f (x) = a0 + a1x+ · · ·+ anxn; a power series has the form f (x) = ∑∞

n=0 anxn,
and is defined at x if the partial sums f (x) = ∑M

n=0 anxn converge to some limit.
So a power series is the pointwise limit of a sequence of polynomial functions
(in fact, the sequence converges uniformly inside some interval). Euler’s argument
depends on the idea that mathematical operations behave similarly for polynomials
and power series.

The second example, to be presented shortly, is an analogy between finite and
infinite matrices. A finite matrix with m rows and n columns has m ·n elements. We
refer to the element in row i and column j as ai j. An infinite matrix is a matrix A of
the form

a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .
...

...
...

. . .
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which has an element ai j for each pair of positive integers i and j. The similarity
between infinite and finite matrices is once again best described in terms of limits.
An infinite matrix may be conceived as the limit of a sequence of finite matrices.
The above infinite matrix A is the ‘limit’ of the sequence whose nth member is the
square matrix An consisting of the elements belonging both to the first n rows and
to the first n columns. A2 is the 2×2 matrix in the upper left corner of the figure.

Because limits and convergence are topological notions, we need to introduce
some topological ideas in order to define asymptotic similarity. A topology τ on a
set X is a family of subsets (called open sets) that must include X , the empty set, all
unions of members of τ , and all finite intersections of members of τ . Specifying
a topology is equivalent to specifying which sequences converge: the sequence
x1,x2,x3, . . . converges to the limit x if and only if every open set containing x also
contains all but finitely many xn.

For example, if X is the set of real numbers, the sequence 1
2 ,

1
4 ,

1
8 , . . . converges to

0 because the terms of that sequence eventually become as close to 0 as one wishes,
provided we go far enough along. More generally, a sequence of real numbers xn

converges to a limit x if for any non-empty open interval (x− ε,x+ ε) around x, all
but finitely many terms of the sequence belong to that interval. This definition of
convergence is equivalent to specifying that the open sets (i.e., the topology) for the
real numbers consist of all open intervals or unions of open intervals.

We need one final topological notion. Given a topology on X , a subset D is dense
in X if for every element x in X , there is a sequence 〈dn〉 of elements of D that
converges to x. This means that every element in X can be closely approximated
by a nearby object in D. For example, the rational numbers are a dense subset of
the real numbers. For any real number x, any open interval containing x, no matter
how small, contains rational numbers. Equivalently: for any x, there is a sequence
d1,d2, . . . of rational numbers that converges to x.

We really need these mathematical notions to have a realistic hope of defining
asymptotic similarity. Let me explain, informally, the definition that I shall propose,
referring to Example 5. In the first place, when we talk about similarities between
polynomials and power series, we don’t primarily mean that a particular polynomial
is similar to a particular power series. Rather, we mean that the two classes share
similar properties: operations such as addition and factorization (if Euler is right)
behave similarly for polynomials and power series. That is the notion of asymptotic
similarity that we want to capture.

The next thing to notice is that the set of polynomials can be regarded as a dense
subset of the set of power series that converges on some closed interval [−a,a]. A
polynomial of degree n is simply a power series, f (x) = ∑∞

n=0 anxn, with coefficients
an+1 = an+2 = . . . = 0. The appropriate topology here is uniform convergence.
A power series f converges on [−a,a] if and only if there is a sequence 〈Pn〉 of
polynomials, with Pn of degree n, such that for each ε > 0 there is an N such that
n≥N implies |Pn(x)− f (x)| < ε for all x∈[−a,a]. The polynomials thus constitute a
dense subset.

My suggestion is that asymptotic similarity combines limit operations with the
two elementary types of similarity already discussed. An asymptotic similarity
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S D

T

algebraic and
geometric similarities

asymptotic
similarity limit

operations

Fig. 12.3
Asymptotic similarity

between a source domain S and a target domain T is founded upon algebraic or
geometric similarities between S and an appropriate dense subset D of the target, as
represented in Fig. 12.3, the diagram above. (In the power series example, S and D
are the same, but that need not be the case in general.)

The full analogy (dotted double arrow) is obtained by “lifting” these similarities
to T . Frequently, it turns out that conjectures based on such an analogy can be
rigorously proven using the limit construction and the ‘leading special case’ where
the conjecture is restricted to D. This pattern of reasoning is familiar to every
mathematician.

Using these ideas, we are finally in a position to define asymptotic similarity of
relations and functions defined on S and T . The definition is relative to the choice of
(appropriate) topology on the target domain, and it makes use of the concept of the
restriction of a function or relation to D. If R∗ is a relation on the objects of T , then
R∗|D is R∗ restricted to objects in D; similarly, if F∗ is a function on T , then F∗|D is
F∗ restricted to D. These notions let us characterize the relations illustrated by the
figure above in precise terms.

Definition 8 (Asymptotic Similarity). Relations R and R∗ (or functions F and
F∗) defined on S and T , respectively, are asymptotically similar if there is an
(appropriate) dense subset D of T such that R and R∗|D (or F and F∗|D) are
algebraically or geometrically similar.

There is no special requirement for an asymptotic similarity to count as admissible,
other than that the constituent geometric similarities (if any) must be admissible,
and that the choice of topology must be appropriate.

Let us see how these ideas apply to Example 5 (polynomials and power series).
As already noted, the class of polynomials, D = S, is a dense subset of the class
of convergent power series. Any relation or function on S is (trivially) identical to
one defined on D, which counts as a trivial case of either algebraic or geometric
similarity. In keeping with our theory, Euler’s elaborate analogical argument (as
outlined in Sect. 12.5) should count as plausible.

In order to reach that conclusion, however, we need to make one final change to
our test for plausibility. The No-critical-difference condition in (PfP*) characterizes
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plausibility in terms of correspondences between the source and target domains.
For analogies involving limits, we must substitute correspondence between S and a
dense subset D of T . Here is the final version of our test for plausible mathematical
analogies.

Definition 9 (PfP**: Plausibility Test for Analogical Arguments in Mathemat-
ics).

1. Overlap. Some explicit assumption in the proof must correspond admissibly to a
fact known to be true in the target domain (or an appropriate dense subset, in the
case of asymptotic similarity). (The positive analogy is non-trivial.)

2. No-critical-difference. No explicit assumption in the proof can correspond
admissibly to something known to be false in the target domain (or an appropriate
dense subset, in the case of asymptotic similarity). (No critical assumption
belongs to the negative analogy.)

The modified clauses capture the familiar heuristic principle, “what holds up to the
limit is also true at the limit” (Pólya, 1954, 205). To apply this principle, it suffices
that any element of T can be approximated by a sequence of elements in D, each
of which exhibits no known critical difference from elements in the source domain.
What is true for polynomials of arbitrarily high degree is true for power series. With
this final revision, Euler’s analogical argument counts as plausible.

It might be objected here that mathematics is full of examples where Pólya’s
maxim fails. We can rearrange the order of terms in any finite series and get
the same sum, but that is not generally true for infinite series. A function that
is the pointwise limit of a sequence of continuous functions need not itself be
continuous. And so on. In spite of the many exceptions, however, the maxim is
still an excellent guide to plausible conjectures—occasional failure is not a decisive
obstacle. Furthermore, our definition of asymptotic similarity and its incorporation
into the test for plausibility leads to an approach that is actually more refined than
Pólya’s maxim. By combining ordinary analogies with limit operations, we are able
to avoid many obvious counterexamples.

We illustrate this point by returning to the analogy between finite and infinite
matrices introduced at the start of this section. Here, Pólya’s maxim fails, but our
test leads to a correct result.

Example 8 (Finite and Infinite Matrices). As noted earlier, there is an analogy
between the set S of finite matrices and the class T of infinite matrices, with real
number entries. For both domains, let ai j represent the element in row i and column
j. Consider the following analogical argument. When we sum up the elements of
a finite matrix (i.e., a matrix in S), the order of addition is unimportant. The result
is the same whether we first compute the sum for each row, or whether we first
compute the sum for each column:

m

∑
i=1

n

∑
j=1

ai j =
n

∑
j=1

m

∑
i=1

ai j
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By analogy, we might conjecture that a similar result holds for T :

∞

∑
i=1

∞

∑
j=1

ai j =
∞

∑
j=1

∞

∑
i=1

ai j

What does our theory tell us about this conjecture? Is it plausible?
That equality holds in the finite case is trivial to prove. In fact, it follows from

the commutativity and associativity of addition. If we can put S into appropriate
correspondence with a dense subset D of T , then by our theory, the conjecture will
be plausible. A natural choice for D might be the set of infinite matrices whose
entries all become 0 beyond some row and beyond some column (that is, there exist
integers M and N such that ai j = 0 if i≥M or j≥N). Plainly S (finite matrices) and
D (infinite matrices whose rows/columns are eventually 0) are isomorphic, so that
the relevant algebraic similarities obtain. The difficulty, however, is to specify an
appropriate topology on T for which D is a dense subset.

We might try to define the distance between two matrices with entries {ai j} and
{bi j} as

∞

∑
i=1

∞

∑
j=1

| ai j − bi j |

with the intention of defining convergence (and hence a topology) relative to this
distance function.17 But there is no guarantee that this series will converge, and in
general it does not converge. If we can find no plausible definition of convergence
with respect to which D is a dense set, then the analogy fails to provide support for
its conclusion. In fact, the conclusion is false. Let A be the following infinite matrix:

−1 0 0 0 . . .
1
2 −1 0 0 . . .
1
4

1
2 −1 0 . . .

1
8

1
4

1
2 −1 . . .

...
...

...
...

. . .

Then

∞

∑
i=1

∞

∑
j=1

ai j =−2, but
∞

∑
j=1

∞

∑
i=1

ai j = 0,

so that the order of summation affects the result.

17If this sum of positive terms converges to a finite limit, then it is absolutely convergent and so
the order of summation is unimportant.
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At this point, our theory suggests an interesting strategy. Let T consist not of all
infinite matrices, but only of those for which the sum

∞

∑
i=1

∞

∑
j=1

| ai j |

is finite. The distance function proposed above is well-defined and induces a
topology on T , and further, D is a dense subset of T . So according to our theory, the
conjecture about the order of summation becomes plausible for this restricted target
domain. Indeed, it is true.

Example 8 is interesting for a number of reasons. Most importantly, it shows that
our theory can avoid problematic analogical inferences from the finite to the infinite
by forcing us to define precisely how objects in the target domain are obtained
as limits from objects in the source domain. If we are unable to articulate this
connection, then we should reject the argument.

The example also points to an important limitation of our account: we say nothing
about what counts as an ‘appropriate’ topology. If we adopt the so-called trivial
topology on T , according to which the only open sets are the empty set and T itself,
then any non-empty subset of T will be dense. But the trivial topology is manifestly
not appropriate in most settings. Since I offer no account of what constitutes an
appropriate topology, I concede that I have only the beginnings of a theory of
asymptotic similarity and limit-based analogical reasoning. Still, the analysis of the
two examples in this section suggests that the theory has some promise.

This concludes our discussion of similarity in mathematical analogies, and also
wraps up the discussion of criteria for good analogical arguments.

12.9 Plausibility and Analogy in Mathematics

Why should we think that the “plausibility test” developed in the last few sections is
justified? Why does an analogical argument that satisfies the conditions of that test
(Overlap and No-critical-difference) actually make its conclusion plausible? After
briefly reviewing our understanding of plausibility, I outline what I take to be a
promising approach to justification.18

In Sect. 12.3, I drew a distinction between modal and probabilistic conceptions
of plausibility. This essay has focused on the modal conception, according to which
a mathematical conjecture is plausible if there is reason for further investigation. A
successful analogical argument, then, is one that yields a practical conclusion: an
‘epistemic license’ to proceed. The task of this section is to show why passing our

18In chapter 8 of (Bartha, 2010), I provide a more general (and detailed) argument.
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plausibility test justifies such a conclusion. For simplicity, I shall focus on (PfP), the
simplest form of the plausibility test.

My justification begins with two broad principles that characterize symmetry-
based reasoning19:

1. Positive symmetry principle.
Structurally similar problems must receive correspondingly similar solutions.

2. Negative symmetry principle.
An asymmetry can only come from a preceding asymmetry.

These principles have theoretical applications (e.g., in drawing conclusions about
asymmetric molecular structure based on asymmetries in experimental results).
They also constrain our practical reasoning, as the following (non-mathematical)
example shows.

Example 9 (Used Car Purchase20). Suppose that two used cars are indistinguish-
able in make, model, age, general condition, odometer reading and color—in short,
in every parameter that you deem relevant to establishing a price. In such a case,
it is irrational to value one car at $10,000 and the other at $12,000. The two cars
are perfectly analogous, and this symmetry should be reflected when you assign
values, or ranges of possible values, to the two cars. You can be imprecise or declare
yourself unable to assign a value, but both cars must be treated in the same way.

More generally, if V = F(X1, . . . ,Xn) describes an evaluation function that
depends solely on parameters X1, . . . ,Xn, and if for 1 ≤ i ≤ n we have Xi(a) = Xi(b)
for two objects a and b, then a and b are perfectly symmetrical with respect to
the parameters relevant to V . In such a case, we must have V (a) = V (b). The two
objects agree in all respects relevant to your evaluation, so you should assign them
the same value (or range of values). This is meant to be an unproblematic symmetry
constraint, derived from the two broad symmetry principles. Remarkably, from this
simple principle and the used car example, a series of modifications brings us to a
justification for our plausibility test.

The first step is to move to a situation of partial information. Suppose you know
only that the two cars are indistinguishable in most of the relevant respects: make,
model, age, general condition and odometer reading. You have not yet learned the
color, which is the only other determinant of value. Symmetry still constrains you
to assign the same range of possible values to the two cars. Suppose now that you
learn that one of the cars is blue, and you assign a value of $12,000. A generalized
symmetry constraint implies that the range of possible values assigned to the second
car must include $12,000, as the second car would have this value if it turned out to
be blue.

19 Versions of these principles are identified by van Fraassen (1989).
20This example is a modified version of one proposed by Russell (1986) and by Davies and Russell
(1987) in their discussions of analogical reasoning.
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The second step is to modify the goal. Instead of wanting to assign a dollar value
to used cars, your objective now is simply to decide whether any car merits a closer
look. Let C denote the set of cars that you take to be serious candidates (or live
options) for an eventual purchase. The members of C are cars that have been deemed
either worth purchasing or worth further investigation. Suppose that car a already
belongs to C, and that you learn that car b is indistinguishable from car a in make,
model, age and general condition; you know nothing about the odometer reading
or color of car b. You recognize that, due to symmetry, you would have to regard
b as a serious candidate if it turned out to match a on these final two parameters.
But you have to make a decision about b right now! I suggest that in this situation,
symmetry (in the form of partial analogy) justifies a decision to place b in the set
C of serious candidates. Roughly speaking: if you were to judge now that b is not
a serious candidate, you would fail to respect the requirement that ‘belonging to C’
must lie in the range of possible values for b. To reject b now is (for all intents and
purposes) to rule out obtaining any further information about it.

More generally: suppose V = F(X1, . . . ,Xn) is your evaluation function over
some set of possibilities (for purchase or acceptance or some other type of
endorsement) and your concern is to identify a set C or serious candidates. Suppose
that a belongs to C, that Xi(a) = Xi(b) for some of the Xi, and that you do not
believe that Xk(a)�=Xk(b) for any k (because you have no information about the
values Xk(b)). Then b should belong to C as well. I call this the modal symmetry
constraint because “belonging to C” is a modal notion.21

The link between this principle and the test (PfP) for a prima facie plausible
analogical argument is not difficult to appreciate. Let the objects a and b be domain-
specific conjectures, rather than used cars. Let the parameters X1, . . . ,Xn be the
relevant critical factors. “Belonging to C” becomes “being a serious candidate
for further investigation.” The requirement that Xi(a) = Xi(b) for some of the Xi

is just the Overlap condition: there must be a nontrivial positive analogy. The
condition that we not believe Xk(a)�=Xk(b) for any k is precisely the No-critical-
difference condition: no critical factor can belong to the negative analogy. To a
first-order approximation (i.e., neglecting everything that is not a critical factor and
neglecting concerns about the nature of the similarity relations), we have shown that
an analogical argument that passes the test for prima facie plausibility establishes
that it is rational to treat a conjecture as a serious candidate for further investigation.
Furthermore, it should be clear that the conclusion does not follow for an analogical
argument that fails the test.

Note, finally, that our test is fallible. Analogical arguments can satisfy (PfP) and
still fail. Example 7 (Abelian Groups) provides us with a case of a perfectly good
analogical argument whose conclusion turns out to be false. Obviously there are
relevant differences between the source and target, since the theorem is true in one
case but false in the other. Indeed, the proof in the source domain makes only one
use of the cancellation laws, and that is what leads to the failure of the analogy. That

21For a detailed defense of this principle, see section 8.2 of Bartha (2010).
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does not count as a relevant difference on the present account, and I think that is
right. The inference is plausible, even though it fails.

12.10 Conclusion: A Larger Role for Mathematical
Analogies

This chapter began by noting that, in addition to its role in discovery and in
plausibility arguments, analogy plays a systematizing role in mathematics. An
analogy can function as a guide in an ongoing research program. Some research may
indeed be characterized as a prolonged effort to understand and extend a relationship
of analogy between two structures. For instance, in the mid-twentieth century, the
analogy between logic and topology was refined by Mostowski, Kleene, Addison
and others, culminating in the theory of the arithmetical and analytical hierarchies.
A second example is the attempt to develop systematically the analogy between the
p-adic numbers and real-closed fields (Macintyre, 1986).

We might speculate that an analogy closely identified with such a research
project has a kind of life history. Initially, it rests on a few points of similarity.
It guides researchers in formulating new concepts and theorems, and developing
more complex similarities. An analogy that is successfully developed in this way
culminates in a deductive theory; a failed analogy, weakened by too many points of
difference, will not lead to any such breakthrough. This large role appears to contrast
with the humble analogies (and analogical arguments) that help mathematicians to
solve a particular problem. Alternatively, within this large and dynamic conception
of analogical reasoning, individual analogical arguments, such as those that have
been our focus in this chapter, may appear as temporal cross-sections, snapshots in
an evolving drama.

That leads to two interesting questions. First: should the systematic or unifying
function of analogy somehow be taken into account in our model for evaluating
individual arguments, and perhaps even lead to rejection or at least to substantial
alteration of that model? Second (and more optimistically): might our model
for evaluating individual analogical arguments shed any light on the problem of
understanding the dynamic evolution of analogical reasoning?

As regards the first question, the simple answer is that we need a ‘static’ theory of
individual analogical arguments that works independently of the big picture. When
we consider analogies in terms of their systematic or unifying function, certainly the
best possible ‘justification’ for an analogy is ultimately the successful construction
of a comprehensive deductive theory. But in its heuristic role, analogy is an aid
to inductive reasoning. A heuristic model of analogical reasoning must recognize
this practical orientation. We need guidelines that help us decide what to do next:
to decide which conjectures are likely to be worth investigating, and which proof
strategies might turn out to be fruitful. Criteria used to evaluate the plausibility
of analogical arguments must not depend upon the final mathematical theory—
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otherwise they would be, practically speaking, useless. Furthermore, realistic
criteria should be fallible: they should pronounce some conjectures plausible even
though they turn out to be false, and other conjectures implausible although they turn
out to be true. All of these remarks suggest that a model for evaluating individual
analogical arguments should be independent of an account that explains their role
in a broader research context.

Certainly, we can find reasons in favour of the opposite position, that our heuristic
model must take the big picture into account. We can point to examples of analogical
arguments that appear plausible not because they conform nicely to the models
presented in this chapter (they don’t), but rather because they are located within
an evolving program of research. We have already seen such an example in the
Euler characteristic formula, Example 3. As explained in Sects. 12.5 and 12.7, a
creative mathematician can manipulate that formula to find an analogy between
three and higher dimensions, and may find such an analogy plausible even though
the most basic criterion of our theory (that we start from a rigorous proof in the
source domain) is not met.

In order to respond to this argument, let me turn things around by suggesting
that the heuristic model proposed here can make a genuine contribution to our
understanding of the larger, dynamic role of analogies. Our model (PfP) proposes
that an individual analogical argument is plausible if it has a reasonable potential
for generalization, and it offers an interpretation of this potential in terms of two
basic criteria. If an analogy that looks likely to be fruitful in light of experience
somehow fails to meet those criteria, our model does not mandate total rejection
of the argument; it leaves open the option of modification. It is at this point that
historical considerations exert their influence. We may have a vague sense that the
analogy can be refined. We may have found this sort of analogy to be so reliable
that we are confident that some version will succeed. In the case of the Euler
characteristic formula, experience may suggest to us that a rigorous proof for the
three-dimensional case will almost certainly involve removing and adding vertices,
edges and faces. In all such cases, broadly speaking, we retain the basic intuition
that the analogy exhibits reasonable potential for generalization. If we decide to
persist with the analogy, then our model provides clear guidance about how it may
be restricted or reformulated in order to meet our criteria of plausibility.

Actual practice illustrates some of the most basic ways in which this can happen.
When mathematicians discover a critical difference, they respond in one of three
ways: they reformulate the proof (in the source domain) to avoid the critical
assumption that has no target analog; they restrict the target domain so that the
disanalogy disappears; or they give up on the analogy. The first two responses
are natural strategies for restoring the potential for generalization. Several of our
examples (Examples 6– 8) illustrate how our theory provides this sort of guidance.

Just as deductive logic and the probability calculus constrain individual ar-
guments in science, we need a basic model for assessing individual analogical
arguments. And just as deductive logic and the probability calculus have important
roles to play within a dynamic model of mathematical (or scientific) evolution, so
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too a basic model for assessing individual analogical arguments contributes to a
larger understanding of analogical reasoning.
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Chapter 13
What Philosophy of Mathematical Practice Can
Teach Argumentation Theory About Diagrams
and Pictures

Brendan Larvor

There has been a rising tide of interest among argumentation theorists in visual
reasoning, most notably in the form of special editions of Argumentation and
Advocacy in 1996 and 2007. In the hands of the leaders of this development, and
particularly Birdsell and Groarke (1996, 2007), the effort has been to assimilate
visual reasoning to verbal argumentation. At the same time, there is a more mature
but still advancing literature on the use of diagrams in mathematical reasoning (e.g.
Dove, 2002; Manders, 1995; Netz, 2003). There have been efforts to bring the two
together (see in particular Kulpa, 2009; Sherry, 2009; Inglis and Mejía-Ramos,
2009). In this paper, I wish to use the philosophy of mathematical practice to identify
a severe limitation in the attempt to assimilate visual reasoning to verbal reasoning,
and by extension to criticise the approach to reasoning that treats all reasoning as if
it were verbal reasoning.

13.1 Introduction

The commitment to treating all argumentation as verbal is most firmly and clearly
expressed in the summary documents of the pragma-dialectical school led by van
Eemeren and (until his death) Grootendorst. This approach to argumentation treats
argument as composed of speech acts.1 This treatment has manifold advantages.

1“Functionalisation of the research object in pragma-dialectics is achieved by regarding the verbal
expressions used in argumentative discourse and texts as speech acts. . . ” (Van Eemeren and
Grootendorst, 2004, 54).
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If the paradigmatic case of argumentation is someone making a speech, it is easy
and natural to ask who is speaking, to whom, to what end, on what occasion and
to consider the cultural, political and historical context in which this takes place.
In particular, it is a natural step to consider the nature of the relation between
speaker and audience on the point at issue. Thus, this approach is attractive to
anyone who wishes to construe the exchange of reasons as an activity that passes
between embodied human beings who meet to decide matters of human interest
on spatio-temporally specific occasions (in contrast to the abstractions of formal
logic). However, this speech-act approach has a significant implication for anyone
who aspires to consider the full range of argumentative devices available to humans.
We are not restricted to spoken words. We can make gestures, carry out physical
demonstrations of natural phenomena and build models (either physical or virtual).
We can sometimes make a point by wearing (or not wearing) a significant garment.2

In order to cope with this teeming variety of argumentative vehicles, the pragma-
dialectical approach has to assimilate all these alternatives to its paradigmatic case
of speech. Van Eemeren and Grootendorst make this clear in their summative work,
“In principle, argumentation is a verbal activity, which takes place by means of
language use. . . ” (2004, 54, italics in original). They add in a footnote, “In practice,
argumentation can also be partly, or even wholly, non-verbal. . . this is not adverse
to our pragma-dialectical approach as long as the (constellation of propositions
constituting the) argumentation is externalizable.” (2004, 2, n. 2). That is to say,
arguments are made up of propositions, so if a gesture or the wearing (or absence) of
a garment plays a significant role in a piece of argumentation, it can only be because
it expresses a proposition that might as well (from a logical point of view) have been
expressed verbally. Therefore, a theorist who wishes to bring this approach to bear
on visual argument has two tasks. The first is to show that visual elements (pictures,
graphs, cartoons, etc.) can express propositional content. The second is to explain
why, this being the case, arguers choose to express some of their propositional
content visually.

The assumption at issue is this: the analysis of an argument that explains how it
works (or why it does not work) as argument must decompose it into propositions
and identify operations on those propositions that lead from premises to conclusion.
This assumption dates back at least as far as Aristotle, but what is remarkable is the
breadth of the consensus. Even a self-conscious radical such as John Dewey held
that, “The conceptions that represent possibilities of solutions must. . . if inquiry is
controlled, be propositionally formulated;. . . ” (Dewey, 1938, 394–5). A minimal
version of this claim is unarguable: the output of an argument must be either a
proposition about what is the case or a proposal about what to do. However, most
approaches to argumentation (including the pragma-dialectical approach and the
argument-schemes system developed by Walton et al.) go further than this. They
assume that the body of an argument must decompose into propositions, that the
process of argument must exhibit a general logic (that is, a logic that might analyse

2See Lunsford and Ruszkiewicz (2001) and Gilbert (1997) for attempts to do justice to this variety.
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argumentation on any and every subject matter) and that the inferential power of
the argument is best explained by reference to this decomposition and general logic.
Thus, if there is such a thing as visual argumentation, the pictures and diagrams
must present propositions, as spoken language does, but do so in a way that offers
some advantage over speech. The contribution of the philosophy of mathematical
practice here lies in the challenge it issues to this consensus.

In a series of papers (some in collaboration with David Birdsell), Leo Groarke
sets about the two tasks that this consensus places before anyone who believes
that there are visual arguments. In his 2007 paper with Birdsell, he attempts to
counter criticisms of the very idea of visual argumentation (offered by, among
others, Fleming (1996), Johnson (2005), and subsequently by Patterson (2010)). It is
clear from this debate that Groarke and his critics share the consensus that arguments
are best understood as sequences of (possibly implicit or indirectly expressed)
propositions. To take one of many expressions of this commitment, in his paper
on music in arguments Groarke concludes that, “concatenations of music, visuals
and texts can often be understood as argument in a straightforward way that uses
the principles of communication to distil the implicitly propositional content they
contain” (2003, 421). The principles of communication he has in mind are drawn
from, “an account of argumentative communication along pragma-dialectical lines”
(2003, 421). Note the emphasis on communication; Groarke’s strategy is to show
that images (and perhaps also music) can convey propositions. If he achieves that,
then (given the consensus about the nature of arguments) he has completed the task
of showing that there can be visual (and perhaps also musical) arguments. The claim
of the present paper is that his emphasis on communication in this strategy obscures
the particular advantages of pictures and diagrams for making arguments. Groarke
is the principal critical target, but the aim is to urge him to march more boldly along
a road on which he is already travelling.

Groarke’s 2007 paper with Birdsell is the editorial introduction to the special
edition of Argumentation and Advocacy on visual argumentation. The articles
in that issue deal with: Aristotle’s classical enthymeme and the visual (Smith,
2007); visual argumentation in Scandinavian political advertising (Kjeldsen, 2007);
prison tattooing (McNaughton, 2007); UNICEF Belgium’s Smurf public service
announcement (Hatfield et al., 2007); folk/traditional art (Roberts, 2007); flag
waving (Pineda and Sowards, 2007); and functional brain imaging (Gibbons, 2007).
This list is indicative of the sorts of images that theorists of visual argumentation
have most often cited as examples and case-studies. In Groarke’s own work, the
examples that he analyses are often political cartoons and advertisements. Critics
of the idea of visual argumentation charge that pictures alone cannot function
as arguments because they cannot express propositions precisely, except with the
support of very detailed contextualisation and often with supporting text (as is
the case with many of the cartoons and advertisements). In reply, Birdsell and
Groarke insist that some images convey propositional content better than speech.
They divide argumentative images into five types: flags (that attract attention to
an argument), demonstrations (that communicate propositional content directly),
metaphors, symbols and archetypes. (Confusingly, the flags of nations are not,
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usually, argument-flags in Birdsell and Groarke’s sense.) They then step through
these five types, arguing in each case that images of this sort can contribute to
arguments because they can express or invoke propositional content.

According to Birdsell and Groarke, the images that they call ‘visual demonstra-
tion’ are inherently propositional:

An image is a visual demonstration when it is used to convey information which can best
be presented visually. Demonstrations of this sort are the most effective way to explain
or describe the irregular shape of a piece of land; the strategy of a hunting wolf pack;
the appearance of Victorian houses in Pacific Heights, San Francisco; or the differences in
contour of the skulls of different peoples. . . Visual demonstrations also can present abstract
information that is not conveyed easily in words. A graph or chart, for example, may present
a whole catalogue of relationships, such as correlations between GNP and military spending
in various countries over the past century, that cannot be captured easily (or precisely) in a
verbal description (Birdsell and Groarke, 2007, 105, emphasis added).

Since we are preparing a contrast with the treatment of images in the philosophy
of mathematical practice, this is the most relevant of Birdsell and Groarke’s five
categories of image (which is not to say that argument flags, metaphors, symbols and
archetypes have no place in mathematics). Notice that the role they give to images
is to convey information. The point of the contrast with mathematical practice is
this: Birdsell and Groarke’s broadly pragma-dialectical analysis of these examples
does not reveal them to be examples of visual reasoning. Rather, it construes them
as examples of the visual presentation of information. What we can learn from
mathematics is that making an argument requires other activities in addition to the
presentation of information. To see this contrast, let us turn to its other side.

13.2 Mathematics

One of the most important events in the history of mathematics was the emergence
of the symbolic notation that is now familiar to everyone who studies mathematics
in school. This change took place in the first quarter of the seventeenth century. Late
in the sixteenth century, mathematicians were still writing algebraic procedures out
in ordinary prose. This mathematical prose had ready abbreviations for ‘the thing
sought’, ‘square’ and so on, and these were eventually replaced by symbols. The
crucial breakthrough, however, was the introduction of (notation that does the work
of) brackets.3 Then, the same quantity could be written in two ways (that is to say,
brackets can be multiplied out, or conversely terms can be gathered). At first, the
manipulation of these new symbols was regarded as a useful calculating aid, but
such manipulations quickly (that is, in a couple of decades) gained the status of

3The earliest algebraic notations did not use brackets quite as we have them now but this does not
affect the present point.
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proof-procedures.Mathematicians had invented syntactic argumentation.4 The point
to note is that, while a proof consisting of a sequence of equations is (ipso facto)
a sequence of propositions, recognising this order does not give us the argument.
Moreover, the actions that constitute the process of argument are not actions that
one could perform on just any content, nor even on the same content differently
represented. To see this, consider the following procedure from a proof by Pólya:

Define the real numbers c1,c2,c3, . . . ,cn, . . . by

c1c2c3 . . .cn = (n+ 1)n

Then trivially:

∞

∑
1
(a1a2 . . .an)

1/n =
∞

∑
1

(a1c1a2c2a3c3 . . .ancn)
1/n

n+ 1

This is the first step in a proof that consists entirely of re-arrangements and
replacements of terms (Pólya, 1954, II, 147). Given the definition of the ci, this
first step is trivial—provided we have the algebraic notation available to us, for
this is a mathematical operation made evident and compelling by the notation. We
could write this out in mathematical prose, but it would only be comprehensible
to someone who had the skill of mentally converting prose into algebraic notation.
One way to see the importance of the notation is to consider why Pólya used the
recursive definition of the ci. Formally, he might just as well have defined cn as
(n+ 1)n/nn−1, but then our ‘trivial’ step would not have been as obvious. Even
setting up the left hand side would baffle many people who can easily understand
the operation as given (“Think of an infinite set of real numbers, and put them in
some order. No, it doesn’t matter what order. Now consider the sequence of initial
segments of that order. Got that? Then form the sum of the geometric means of
those initial segments. Now hold that thought while we define another infinite set
of real numbers. . . ”). Suppose, per impossibile, we have thus concocted the prose
equivalent to the expression on the left hand side and defined the ci without making
any use of algebraic notation. Making the step to the whole equation verbally would
make yet greater demands on the same skill. Evidently, arguments of this sort are not
‘an in-principle verbal activity’ that can in practice take other vehicles than speech.
Rather, arguments like this are in-principle inscribed. Syntactic reasoning of this
sort is normally and naturally written precisely because it exploits the notation,
though it can be spoken aloud among expert practitioners. So, either this kind of
reasoning is not argumentation, or the pragma-dialectical approach is mistaken in
thinking that argument is always and everywhere best construed as composed of
speech-acts. Since the first option is contrary to the spirit of this volume, we should
choose the second.

4For a brief account of this development, see Larvor (2005). For exhaustive detail, see Serfati
(2005).
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What are the consequences of this decision? It is clear from their discussion
that Van Eemeren and Grootendorst were driven to stipulate that argument is in-
principle verbal by a worry that non-verbal arguments (such as gestures or absences
of garments) would not be ‘externalisable’, that is, would be so embedded and
embodied that they would escape logical analysis. This may not be a problem
with mathematical syntactic argumentation, which is by nature external to the
body. This is generally the case with mathematics (which, when not inscribed, uses
pebbles, pieces of string, fingers or some other easily manipulated representation).
However, mathematical argument is not wholly external to the human body. As we
shall see, the argumentative use of mathematical representations can depend on
understanding, on aspect-dawning, on seeing-as. The consequences of this for
the philosophy of argumentation depend on whether this appeal to seeing-as is a
unique feature of mathematical argument or whether it is also a feature of the legal
and political argumentation that the pragma-dialectical movement tends to take as
paradigmatic. This paper will not deal with that question, except to note that most
argumentation theorists retain Aristotle’s division of the subject into logos, ethos
and pathos, and insist on the relevance of all three.

So far, we may not seem to have said anything to trouble Groarke. His claim
is that some pictures can convey their information more clearly and effectively
than speech. The fact that algebraic notation can do this too may even be grist
to his mill. It is the next point that illustrates the limitations of his approach.
For, though the proof from which this procedure comes is a series of propositions
(and definitions), the progress from one line to the next is not a series of logical
operations. Of course, these operations must conform to general logic, but they
achieve that indirectly by conforming to local, domain-specific rules (in this case:
maintain the value of a quotient by multiplying numerator and denominator by the
same factor). Consequently, the exhibition of the proof as a series of propositions
does not give us the argument. To see this, imagine the proof written out in
mathematical prose but without any symbols. We would have the decomposition
into a sequence of propositions (supposing that the propositional content is fully
expressed by the prose version) but we would have neither the argument nor its
rigour, because the argument proceeds by manipulating, gathering and replacing
algebraic terms, in conformity with domain-specific rules. The objects of our
activity are not propositions but rather the algebraic expressions that express them.
Returning to Groarke and Birdsell’s notion of a ‘visual demonstration’, it is true that
algebraic notation can “present abstract information that is not conveyed easily in
words”. However, the real power of the notation lies not in the clarity with which
it presents information. Rather, an algebraic expression represents information in a
way that invites manipulations that other representations of the same information
do not provide for. We can do things to algebraic expressions that we cannot do
to other modes of representation of the same content. These manipulations can be
steps in the process of an argument. To anticipate the discussion to come: Groarke
and Birdsell restrict themselves to analysing the things we can say with pictures.
They do not consider the things we can do with and to diagrams.
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13.3 Diagrams

Algebraic notation is quasi-pictorial. In limited ways, it mirrors diagrammatically
the structures it expresses (think of matrices, for example, or the way in which an
equation evokes weighing scales in balance). There are plenty of intermediate cases
between algebraic notation and the diagrams of classical Euclidean geometry (such
as Beth trees, Frege’s two dimensional logic notation, Feynman diagrams and the
arrow-diagrams of category theory). The case of ordinary school algebra suffices
to make some orienting points about the limits of the pragma-dialectical approach
when brought to bear on mathematics. Now it is time to consider visual reasoning
proper.

Take, for example, the familiar proof of the inner angle theorem. This proceeds
by constructing an angle which is both equal to the sum of the inner angles of our
triangle, and evidently equal to two right angles.

It starts with a triangle:

Notice that this triangle does not assert anything. Like the left-hand expression
at the start of Pólya’s proof, it expresses no proposition (nor is it a definition or
a rule of inference). Its linguistic equivalent would be “Consider any triangle”. In
fact, this image does not express this instruction particularly well, because it is not
any triangle, it is a specific triangle (insofar as it is really triangular). In particular, it
is a poor representation of triangles with obtuse angles on their baselines. Its merit
does not lie in the clarity or vividness with which it expresses some propositional
(or imperative) content. Rather, its virtue is that we can do things to it. In this proof,
we first extend the baseline:

It will be important that we think of this as extending the baseline, rather than
as adding a new line that meets the triangle at one of its corners. When explaining
this proof to someone else, it is best to draw the new line in just this way, placing
the chalk or pen somewhere on the baseline and dramatically drawing over it to the
right, through the corner of the triangle. It will not matter how long this line is, and
in a live performance of the proof, one might mark this by allowing the line to taper
off or fade into dots. Next we add another new line, through the same corner of the
triangle and parallel to the side opposite that corner:
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In a live performance, we would not have three separate figures as here; rather we
would have one diagram, of a triangle, to which we have added new elements (our
two lines and the marks to indicate parallels). This is the significant difference be-
tween these diagrams and (most of) Groarke and Birdsell’s ‘visual demonstrations’.
These diagrams do not merely convey information; like algebraic expressions, they
are objects of manipulation. There are essential steps in this proof that do not consist
of producing a new proposition from a stock of axioms and theorems using a general
logic, but rather work by adding to the diagram. Note that, so far, we have not
encountered an explicit proposition in this proof (though we will shortly).

Now we complete the proof by using selective attention. First, we ignore one of
the triangle’s sides and think of the extended baseline as a line lying across a pair of
parallel lines. An instructor might convey this by rubbing out the line that we need to
ignore, or by using colour, or most likely with gestures, re-drawing (either literally
or in the air) the two parallel lines simultaneously and then indicating the extended
baseline with a sweeping gesture.5 The proof works only for someone who can see
this, who can shift their gestalt of the diagram so that the irrelevant line disappears
and the remaining lines appear as a line across a pair of parallels. To help beginners,
an instructor might make gestures that extend the baseline to the left and the parallel
lines below the baseline. A previously proved theorem shows us that the angles it
creates with the parallels are equal:

Now we perform a similar act of selective attention. This time, we ignore the
baseline (and as before, one might indicate this to observers by erasing it, or by
dramatically re-drawing the other lines, going to some trouble because the proof
depends on this gestalt shift). This time, we want to see the remaining side as a line
lying across two parallels. This may require some extra gestures because the lines
in view do not look like one line crossing two parallels. They look like a zigzag.
An instructor might bring this zigzag closer to the relevant visual stereotype by
redrawing it in the air (or perhaps even literally re-drawing it) so that the lines extend
either side of their intersections. As before, a prior theorem shows us that two angles
are equal:

5The emphasis on gesture in this section takes inspiration from (Marghetis and Núñez, 2010) and
(Hacking, 2010).
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Now all we have to do is gather our information and remind ourselves of the
triangle that we started with:

Now we see why the extended baseline has to be a single line rather than two
lines pivoting at the right-hand foot of the triangle. We know that the ‘angle’ formed
by the original baseline and its extension is 180°, that is, two right angles, because
it is an angle on a straight line. This ‘angle’ is split up into three angles, which we
now know to be equal to the inner angles of the triangle. (Helpfully, it is easier to
see the angle formed above the right-hand foot of the triangle as an angle precisely
because it is split into three angles; the angle formed below the same foot by the
baseline and its extension is also 180°, but somehow seems less like an angle.)

As in the case of algebra, we could render this proof into prose and deliver it as
speech, but it would be pretty well impossible to follow. Anyone who could follow
it would do so by creating and manipulating mental images, that is, by re-creating
and acting on the diagram in imagination. Some of the actions in the proof, such as
quoting previously established theorems, are inferential steps licensed and governed
by general logic. Other inferential actions in this proof (such as drawing lines and
gestalt-shifting) are only possible with images. Here, we have visual reasoning
properly so called. Or, if we wish to emphasise the social, intersubjective aspect of
proving, we can imagine a viewer or student who interjects with questions. Then, we
might rather call it visual argumentation. Visual argumentation need not be wholly
visual. Visual arguments typically come with a (spoken or written) commentary
to explain the process of argument and guide the visual gestalt-shifts that do the
persuasive work. (The ‘proofs’ in Roger Nelsen’s Proofs without Words (1993,
2000) are in fact diagrams that challenge the reader to supply the proofs in which
they figure.) What qualifies an argument as a piece of visual reasoning is that it
includes actions on or in something visual that would not be possible in another
medium. The proofs of classical geometry are visual in this sense; they include
actions for which no speech-acts could substitute, because they are actions on visual
objects. Thus, this emphasis on inferential action supplies an answer to the critics
who objected (against Birdsell and Groarke) that pictures cannot be arguments
because they usually come with text. We now see that this is what one would expect,
because a picture or diagram is not an argument; it is rather something on or with
which an argument might be performed. It is the essentially visual character of
(some of) the actions in the performance that makes the argument a visual argument.
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13.4 Icons

These observations about mathematical practice are not original (though the use of
them to criticise the pragma-dialectical view is). The role of notation in shaping
and facilitating mathematical thought has been evident to mathematicians since
early modernity and was of particular interest to Leibniz (see Larvor, 2010b). The
emphasis on inferential action in ancient Greek geometry is a particular feature of
Manders’s (1995) analyses of Euclidean argument. More broadly, the philosophy of
mathematical practice makes a point of treating mathematics as an activity rather
than as a body of knowledge (see Mancosu, 2008; Larvor, 2010a). As yet, this field
is relatively under-theorised, but there is one book-length treatment that suggests
a means to give philosophical articulation to the thought that some arguments are
essentially visual. Emily Grosholz, in her (2007) Representation and Productive
Ambiguity in Mathematics and the Sciences, employs a distinction between ‘iconic’
and ‘symbolic’ signs that originates in C.S. Peirce. In fact, Peirce distinguishes
tokens (general terms), indices (proper names, pronouns and indexicals) and icons.
These last he characterises thus:

I call a sign which stands for something merely because it resembles it, an icon. Icons are
so completely substituted for their objects as hardly to be distinguished from them (Peirce,
1885, §362).

Whether a sign functions as an icon depends on whether the reader (or hearer)
takes it as referring to a particular or a general condition, and this has a bearing on
our case:

A diagram, indeed, so far as it has a general signification, is not a pure icon; but in the
middle part of our reasonings we forget that abstractness in great measure, and the diagram
is for us the very thing. . . At that moment we are contemplating an icon. (Peirce, 1885,
§362).

Peirce’s qualification is essential. In the course of using a diagram, ‘in the middle
part of our reasonings’, we may forget its generality ‘in great measure’, but if we
forgot it altogether, we would fail to make case distinctions and check that our proof
works for everything in its scope. (For example, does the proof given above work
for triangles with obtuse angles on their baselines?) However, with this qualification,
Peirce’s observation captures something right about the experience of reasoning in
a diagram. In the middle of the proof, and especially while performing the gestalt
shifts, the fact that this is a general triangle, a token standing for all triangles, falls
away, to be recollected later in the course of proof-checking.

Peirce claims that all three kinds of sign are necessary. Tokens are indispensible
even to rudimentary predication because they are the only general signs, and without
indices, we could never say anything about any particular item. He continues:

With these two kinds of signs [tokens and indices] alone any proposition can be expressed;
but it cannot be reasoned upon, for reasoning consists in the observation that where certain
relations subsist certain others are found, and it accordingly requires the exhibition of the
relations reasoned within an icon. . . . all deductive reasoning. . . involves an element of
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observation; namely, deduction consists in constructing an icon or diagram the relations
of whose parts shall present a complete analogy with those of the parts of the object of
reasoning, of experimenting upon this image in the imagination, and of observing the result
so as to discover unnoticed and hidden relations among the parts (Peirce, 1885, §363).

For the present purpose, we need not endorse Peirce’s strong claim that all
deductive reasoning is diagrammatic.6 Rather, our interest is in his characterisation
of diagrammatic reasoning. An icon or diagram must be structurally similar to its
object (in Peirce’s words, it must ‘present a complete analogy’). This structural
similarity allows us to ‘experiment’ and thereby discover previously unknown
relations among the parts of the object. Peirce speaks of experimenting ‘in the
imagination’ but this need not preclude the physical manipulations of a diagram
produced on a screen, drawn on a chalkboard or traced in the sand. The gestalt-
shifting phases of our sample proof remind us that the imagination can play on
images present to sight as well as those inwardly present to the mind.

This is, at most, the beginning of an account of diagrammatic reasoning. In any
given case, we want to know which ‘experiments’ on the image are permitted.
Which ‘analogies’ are reliable? If, in the midst of reasoning on a diagram, we
must treat it as an icon, that is, see it as ‘the thing itself’, how do we guard against
the errors that arise from conflating the sign with its object? The answers to such
questions typically lie in the detail of particular diagrammatic practices. In the case
of Euclidean geometry, we have detailed answers in the works of philosophically-
minded historians such as Manders and Netz. Manders is developing a theory of
mathematical proving as a ‘domesticated action’, that is, action subject to socially
embedded norms. Dove argues for the possibility of giving satisfactory answers to
these questions in mathematics generally, including the case of calculus.

If we return to Birdsell and Groarke’s examples of ‘visual demonstration’, we see
that the usefulness of these images for argument depends on the ‘completeness’ of
the structural similarity with their objects and the range of ‘experiments’ permitted.
We might use a picture of an irregularly shaped piece of land to argue that dividing
farmland into large rectangular fields inevitably leaves some areas uncultivated (we
might experiment by drawing rectangles on it). Or, we could use the same image
to make a point about the efficiency of an image-compression algorithm (using a
rather different set of permitted manipulations). Graphs and charts purport to present
the structure of their objects, and Peirce’s claim that in the midst of diagrammatic
reasoning we take the icon for the thing itself suggests a diagnosis of the ease
with which statistical graphs can mislead. The structural similarity is obvious in
the case of a diagram showing the strategy of a hunting wolf pack; the permitted
manipulations will depend on the intended conclusion (for example, a point about

6Clearly, the hard case for this claim is the spoken argument in ordinary language that the
pragma-dialectical school takes as paradigmatic of argument generally. On the other hand, note
that the analysis of ordinary prose arguments by argumentation theorists (from Toulmin onwards)
often results in a diagram with labelled parts (‘warrant’, ‘backing’, etc.). In connection with the
diagrammatic quality of algebraic notation, taking the sign for the thing itself is a feature of
syntactic reasoning.
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the effect of diminishing habitats might require that manipulations of the diagram
preserve scale). In the case of the appearance of Victorian houses in Pacific Heights,
San Francisco, the relevant structural similarity and the permitted manipulations will
depend on the point at issue. A point about the proportions and sculptural decoration
of these houses might become vivid in black-and-white versions of the images.

While Peirce’s remarks about our use of icons do not amount to a comprehensive
account of deductive reasoning, they do facilitate more penetrating analyses of the
sort of cases that Birdsell and Groarke cite than the pragma-dialectical approach.
Peirce achieves this because he takes diagrammatic reasoning to be sui generis
rather than trying to assimilate it to the case of verbal reasoning. I introduced Peirce
through Emily Grosholz, and I now wish to mention the use that she makes of
Peirce’s icons. Grosholz argues that mathematics and science can break through
conceptual blocks because mathematicians and scientists are able to use the same
sign in two different ways in the course of a single argument. This systematic
ambiguity does not degenerate into equivocation because the scientists and math-
ematicians are able to control it, and this control is possible because the ambiguities
are between token-use and iconic-use. Earlier, I argued that syntactic (algebraic) and
diagrammatic (geometric) inferential actions cannot be understood if we treat them
as speech acts. Such actions exploit features of mathematical representation that
are not present in ordinary speech. This claim might be thought vulnerable to the
objection that, in principle, an ideal mathematician (that is, a cognitive agent with
no ‘merely medical’ limitations) could understand prose versions of syntactic and
diagrammatic proofs without resort to syntactic and diagrammatic means. The short
answer to this objection is to give it short shrift. In both philosophy of mathematical
practice and argumentation theory the object is to understand the arguments made
by finite, fleshy human beings. Grosholz’s readings of mathematics and science
supply a slightly longer and less bellicose answer. If she is right, then the arguments
that she analyses would be incomprehensible if we tried to treat them as speech acts
because they depend on a movement between token-use and iconic-use of signs that
is invisible if the signs are treated as proxies for spoken words.

13.5 Conclusion

Birdsell and Groarke say that, “. . . the different modes of visual meaning allow us
to assert that something or other is the case.” (Birdsell and Groarke, 2007, 106).
This is true; we sometimes use images to make assertions. But an assertion is not
an argument and if we wish to understand visual argumentation, we have to pay
attention to the special cognitive advantages that pictures and diagrams offer. As we
saw in the case of geometry, we can manipulate diagrams in ways that allow us to
employ our capacity for visual-spatial understanding. Since we are descended from
tree-swingers, these are among our most powerful natural endowments. Beyond
mathematics, other pictures invite us to perform experiments in imagination. A good
example from Birdsell and Groarke is the use of photographs in arguments about
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whether a plane really did strike the Pentagon on September 11 2001 (Birdsell and
Groarke, 2007, 109–110). The text that accompanies these photographs attempts to
guide the play of imagination, just as the instructor’s words and gestures guide the
gestalt shifts necessary to understand the geometric proof.

Peirce’s notion of the iconic use of diagrams supplies some materials for a theory
of visual argumentation. Iconic use requires a resemblance, and in particular a
structural similarity, between the icon and its object. In the moment of iconic use,
we act on the icon as if it were the thing itself. This suggests three critical questions
to put to cases of visual argumentation:

1. What is the structural resemblance between the icon and its object?
2. What manipulations of the icon and imaginative experiments on it are permitted?
3. What protection do we have against the error of taking the icon for the thing

itself permanently (rather than just in the midst of reasoning when this conflation
is essential to iconic use)?

In a given case of visual argumentation, we should seek answers to questions 2
and 3 (and a good part of the answer to 1) not in the images but rather in the practices
in which they figure. The proofs in Euclidean geometry are reliable because the
practice of geometry has suitable answers to these three questions implicit in it.
That is how we are able to perform good reasoning on bad drawings. Other kinds
of visual argumentation are rigorous only insofar as they too figure in practices
that specify structural analogies, control the actions performed on icons and include
timely reminders that the icon is not its object.
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An Argumentational Turn in the

Philosophy of Mathematics



Chapter 14
Mathematics as the Art of Abstraction

Richard L. Epstein

14.1 Introduction

I’d like to tell you a story, a story of how I understand mathematics.
There are so many stories already: the platonist’s, the formalist’s, the construc-

tivist’s, the structuralist’s, the humanist’s, . . . . But each of these fail to answer
satisfactorily at least one of the following questions:

• How do we create and know mathematics?
• How does mathematics compare to our other intellectual activities, particu-

larly science?
• What is mathematical intuition?
• What is a proof in mathematics?
• Is a good proof in mathematics also a good explanation?
• What is mathematical truth, and are mathematical truths necessary?
• How is it that mathematics is useful in our daily lives and in science?

Any story of mathematics should answer all of these. But a good story should also:

• Be consistent with how we actually do mathematics.
• Be useful to mathematicians, leading to new and interesting work in mathe-

matics.

I hope my story is a good one.
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14.2 Analogies and Abstraction in Science

One of the fundamental ways of reasoning about what passes in our lives is
reasoning by analogy.

A comparison becomes reasoning by analogy when a claim is being argued for:
on one side of the comparison we draw a conclusion, so on the other side we can
draw a similar one.

This situation or thing is just like that; since we can draw this conclusion about
the first, we are justified in drawing a similar conclusion about the second.

Such reasoning is not good until we can say in each particular case what we
mean by ‘is just like’and ‘similar’. No two things, no two situations, no two
experiences are exactly the same. We pay attention to some similarities and ignore
the differences. If the differences don’t matter, or rather, if they don’t matter too
much, then we are justified in drawing similar conclusions. The point of an analogy
is to force us to be explicit about that justification, setting out, if we can, some
general claim under which the two sides fall and from which the conclusions follow.
Such reasoning is pervasive in our daily lives.

Science sometimes proceeds by analogy. But scientists always proceed by
abstracting: choosing some aspect(s) of experience to pay attention to and claiming,
perhaps implicitly, that all other aspects of experience in these kinds of situations
don’t matter. What we pay attention to gives us the constraints for saying whether a
claim is true or false.

A scientific theory is true in the context of what we pay attention to, but is false
in that it does not take into account all of the world. The hypotheses of scientific
theories act as conditions for where the theory can be applied. When we ‘falsify’
a scientific theory we do not show that it is false. What we show is that it is not
applicable to the exper ience described in the falsifying experiment. Then we try to
describe carefully what kind of experience that may be, adding more conditions to
our theory in the form of further premises. Thus, we can continue to use Newton’s
theory of kinetics even though, it is said, it is false; we use it so long as the objects
we are investigating are not too large nor too small and are not going too fast; we
use it where it is applicable.

The abstractions that comprise science are not false, nor are they true. They are
schematic claims until we say what we are paying attention to.

14.3 Mathematics as the Art of Abstraction

Mathematics abstracts from experience, too, only much more than any science.
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14.3.1 Counting and Addition

We first have numbers as adjectives: one dog, two cats, eighteen drops of water,
fourteen sonatas, forty-seven ideas about mathematics. Numbers are labels.

With practice, repeating and learning the rules for naming and writing new
numerals, the counting numbers become a measuring stick we carry in our head.
We count off objects to find how many, as we use a tape to measure off lengths of
objects. There is a definite length we cannot go beyond in measuring with our tape,
but there is no definite limit we perceive in how far we can go with counting.

Counting to find how many, however, is not learned independently of using
counting for addition. Consider how we learn 3+ 5 = 8. We take something like
pebbles, or pieces of candy, or dots on a paper and count:

1 2 3 3 4 5

1 2 3

1 2

4 5 6 7 8

We show that when we put the two sequences of counting together into one
sequence we get the result that the last item in the new sequence is assigned ‘8.’
Then, after a lot of practice, it seems to us that the same results of counting would
apply to any other objects like these; the two ways of counting aren’t idiosyncratic
to just these dots or pieces of candy. We learn to ignore what doesn’t matter—we
abstract—and get a theory of addition.

We’ve been doing this so long, we learn it so early, it is so much a part of our
culture that we don’t see this as a model. Surely ‘1+ 2 = 3’ is true.

But 1 drop of water + 2 drops of water �= 3 drops of water. ‘1+ 2 = 3’ is not a
truth about the world; it is one of the claims that is needed to apply in a situation
in order for arithmetic to be applicable there. We can’t use arithmetic for drops of
water when we put those together.

Our abstraction from counting is applicable or not. Our ‘truths’ of arithmetic say
what follows from our abstraction and hence when our model is applicable, as in any
reasoning by analogy or abstraction. Arithmetic is an application of measuring, and
we must measure correctly. We have to learn (as children) how to apply the model.1

It seems to us, once we get the hang of it, that counting-addition is univocal. But
that only says we have made it very clear how to apply it. There is no reason to think
ahead of time that we will never encounter another situation in which it seems by
all we have done so far that our counting-addition is wrong. If we do, we will surely
restrict counting-addition not to apply to such a case, saying that what we thought
were objects are not things, for only things can be counted.2 That is, ‘1+ 2 = 3’
cannot be falsified not because it is a necessary truth, but because we preserve it to
be true by applying it only in cases in which it is true.

1See Appendix 1 for a further discussion of this.
2We recognize this in English with the distinction between count and non-count (mass) terms. See
(Epstein, 1994) for a discussion of the concept of ‘thing’ in our reasoning.
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Then we take numbers as nouns. We reify our abstracting: the end of the process
of abstraction—paying attention to only some of our experience—begins to be
treated as a thing, an abstract thing. We abstract from counting and addition to get
the natural numbers: 1,2,3, . . . .

To say that ‘1+ 2 = 3’ is true is to say that numbers—not as adjectives or as
arising from counting, or as abstracted from those uses—are actual things about
which we reason. That is not incompatible with what I’ve said, but it gives us no
insight into how we create and do mathematics and why mathematics is applicable.3

14.3.2 The Integers

When we learn how to count and add we also learn how to subtract. We abstract
from the process of taking away objects (‘Hey, when you took six pieces of candy
that left me with only five’) to get a theory of subtraction. It may sound odd to
call addition and subtraction ‘theories’ when they are just part of what we do every
day. But they are theories just as much as Newton’s in that they abstract from our
experience.

When we do subtraction along with addition, we find that our calculations—that
is, the working out of claims without reference to the things to which they might
apply—go a lot more clearly and smoothly if we have some ‘things’ called zero and
negative numbers. That’s how and why those were first introduced. They flesh out
our abstractions. They make the calculations easier. They don’t seem to apply to
anything.

And hence we feel uneasy about them. If they aren’t abstractions from our
experience, how can we trust that the calculations in which we use them give results
that are applicable? When negative numbers were first introduced in the sixteenth
century they were suspect. How can we understand the equality of ratios? How can
1 : −5 = −4 : 20 when in the first ratio 1 is ‘larger’ than −5, while in the second
−4 is ‘smaller’ than 20? Objections and questions about the legitimacy of their
use continued until the nineteenth century, when they were given a visual/physical
interpretation (see Mancosu, 1996).

3Benjamin Lee Whorf says:

Our tongue makes no distinction between numbers counted on discrete entities and numbers
that are simply ‘counting itself.’ Habitual thought then assumes that in the latter the numbers
are just as much counted on ‘something’ as in the former. This is objectification. (Whorf,
1941, 140)

In a similar vein, Aristotle says:

Whether if soul did not exist time would exist or not, is a question that may fairly be asked;
for if there cannot be some one to count there cannot be anything that can be counted, so
that evidently there cannot be number; for number is either what has been, or what can be,
counted. (Aristotle, 1930, Book IV, 223a)
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As in any scientific theory, if we introduce new ‘entities’ that do not arise by
abstraction, there will be, and should be, objections about their use in the theory.
When we can see a path of abstraction to them, we begin to have confidence in our
theory.

14.3.3 Irrationals

Irrationals were not introduced like negative integers. Irrationals were always part
of the abstraction of space we call geometry. Or rather, points on a line were always
part of that abstraction, and some of those, it was discovered, couldn’t be measured
by ratios of integers. The measuring of those points then became viewed as things:
irrational numbers.

14.3.4 Complex Numbers

The square root of −1 was introduced into algebraic calculations because it
facilitated calculations and gave new results that could be checked by older methods.
Such calculations were challenged by many mathematicians as being fantasy, as
having no physical counterpart, as not reliable. Yet mathematicians continued to
make those calculations in their work because no contradictions arose when they
were used correctly, that is, according to the rules that were eventually determined
for them.

Eventually complex numbers became accepted because they were given a
visual/physical representation as points on a plane. That clear path of abstraction
made us feel confident that their use was legitimate.

14.3.5 Plane Geometry

Euclidean plane geometry speaks of points and lines: a point is location without
dimension, a line is extension without breadth. No such objects exist in our expe-
rience. But Euclidean geometry is remarkably useful in measuring and calculating
distances and positions in our daily lives.

Points are abstractions of very small dots made by a pencil or other implement.
Lines are abstractions of physical lines, either drawn or sighted. So long as the
differences don’t matter, that is, so long as the size of the points and the lines are very
small relative to what is being measured or plotted, whatever conclusions drawn
will be true. Defining a line as extension without breadth is an instruction to use the
theory only when we can ignore the breadth of the line.
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No one asks (anymore) whether the axioms of Euclidean geometry are true.
Rather, when the differences don’t matter, we can calculate and predict using
Euclidean geometry. When the differences do matter, as in calculating paths of
airplanes circling the globe, Euclidean plane geometry does not apply, and another
model, geometry for spherical surfaces, is invoked.

Euclidean geometry is a mathematical theory, which, taken as mathematics,
would appear to have no application since the objects of which it speaks do not
exist in our experience. But taken as a model it has applications in the usual sense,
arguing by analogy where the differences don’t matter.

14.3.6 Group Theory

Consider a square.

�
If we rotate it any multiple of 90° in either direction it lands exactly on the place

where it was before. If we flip it over its horizontal or vertical or diagonal axis,
it ends up where it was before. Any one of these operations followed by another
leaves the square in the same place, and so is the same result as one of the original
operations.

To better visualize what we’re doing, imagine the square to have labels at the
vertices and track which vertex goes to which vertex in these operations.

a

c� b

d

There is one operation that leaves the square exactly as it is: do nothing. For each of
these operations there is one that undoes it. For example: the diagonal flip that takes
vertex d to vertex a is undone by doing that same flip again; rotating the square 90°
takes vertex a to vertex b, and then rotating 270° in the same direction returns the
square to the original configuration.

Already we have a substantial abstraction. No rotation or flip leaves the square
drawn above in the same place because we can’t draw a square with such exact
precision (nor can a machine), and were we (or a machine) to cut it out and move
it, it wouldn’t be exactly where it was before. We are imagining that the square is
so perfectly drawn, abstracting from what we have in hand, choosing to ignore the
imperfections in the drawing and the movement. If we like, we can then talk about
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abstract, ‘perfect’ objects, platonic squares, of which the picture above is only a
suggestion, but that seems to be only a reification of our process of abstracting.

Now consider several objects lined up in a row. We permute, that is exchange,
places of some of them, again leaving them lined up in a row. Any permutation
followed by another is a permutation, a way to get the objects lined up in a row
again. There is one permutation that leaves everything unchanged: do nothing. For
any permutation we can undo it by reversing the replacements.

Consider, too, the integers and addition. There is exactly one integer which, when
we add it to anything, leaves that thing unchanged, namely, 0. And given any integer
there is another which when added to it yields back 0, namely the negative of that
integer.

Mathematicians noted similarities among these and many more examples.
Abstracting from them, in the sense of paying attention to only some aspects of
the examples and ignoring all others, they arrived at the definition of ‘group.’ A
typical definition is:

A group is a non-empty set G with a binary operation ◦ such that:

i. For all a,b ∈ G, a ◦ b ∈ G.
ii. There is an e∈ G, called the identity, such that for every a ∈ G, a◦e= e◦a=

a.
iii. For every a ∈ G, there is an a−1 ∈ G, called the inverse of a, such that a ◦

a−1 = a−1 ◦ a = e.
iv. The operation is associative, that is, for every a,b,c ∈ G, (a◦b)◦c = a◦ (b◦

c).

We can prove claims about groups, such as that there can be only one identity in
a group. Such a proof does not show that ‘There is only one identity in a group’ is
true—not, that is, unless we reify our abstraction into abstract things called groups.
But such a proof does give us a true claim:

‘There is only one identity’ follows from the assumptions of group theory.

If the assumptions of group theory apply to some thing/situation/part of our
experience/process, then the claim about the identity of the group must apply, too.
If that claim fails to apply, then we know that group theory is not applicable in that
case, not that group theory is false.

14.3.7 Ring Theory

We have the integers with addition and multiplication. We have the real numbers
with addition and multiplication. We have the rationals with addition and multipli-
cation. These and many more examples led to the notion of a ring in mathematics.
We can abstract from our abstractions.

But don’t we mean by ‘abstract’ to ignore and pay attention to certain aspects of
our experience?
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The practice of doing mathematics is part of our experience, too. Mathematical
abstractions are part of our intersubjective mental life, like laws and sonatas.
Our intersubjective mental activities are also suitable subjects for abstraction.
Mathematics is a human activity.

We can abstract from our abstractions, going further and further in ignoring
aspects of the ordinary experience of our daily lives. Some of us have great pleasure
in considering and reasoning in such highly abstract subjects. But the pleasure is
merely aesthetic until applications of the abstractions are found, relating abstract
subjects such as algebra and plane geometry as René Descartes did.

Perhaps you’ve heard the phrase ‘the unreasonable effectiveness of mathematics’
used as shorthand for saying that it is very odd that highly abstract theories of math-
ematics developed solely within the context of other abstractions can so often be
applicable (see Wigner, 1960). Such a view is mistaken. As mathematicians know,
it is rare for a mathematical theory of abstractions of abstractions of abstractions
to be applicable to our daily experience, as opposed to just the experience of doing
mathematics of a few mathematicians. And when such applications can be found,
why should it be so shocking? Yes, the theory was derived from abstracting from
abstracting, perhaps many levels. An application is the result of going back along
that path of abstraction. And that can only be if what the theory pays attention to and
what it ignores is aptly chosen. We can make a theory that ignores almost everything
and pays attention to bizarre or abstruse or little-used parts of our experience.
Sometimes, by chance, those aspects that are considered turn out to be important
in other parts of our experience. In those few cases, the ‘pure’ mathematics is
applicable to more of our ordinary lives. We have hit upon a good analogy.4

The great mathematicians, those who have some insight into what claims follow
in some mathematical theory or who create a theory joining parts of mathematics
never before considered similar, who make abstractions of abstractions well, are
said to have great intuition, mathematical intuition. That intuition is no different
from the intuition that leads a wise person to draw an analogy between dogs and
humans in arguing for the humane treatment of animals, or the intuition of the wise
person who first ‘sees’ that light can be understood as waves. In my own experience
I find that the intuition I had in seeing the general outlines of this paper before I
began writing it, and the intuition I had in proving a new theorem about degrees of
unsolvability, and the intuition I had in writing one of my plays are the same mental
activity, differentiated only by the subject matter. I see a general picture, I see a few
of the details, I begin with that ‘vision’ or ‘insight’ ahead of me, and I fill in the
details, often arriving at something quite different from what I first imagined.

We do not understand how such intuition works. But mathematical intuition is
not something different in kind; it is only different in its subject matter.

4Reuben Hersh (2006) discusses this issue from a similar perspective.
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14.3.8 Transfinite Ordinals

We have our theory of counting with the natural numbers. We can count forever and
never reach the end.

But we can imagine that there is an end, even if we are not ‘able’ to reach it, just
as there is an end to every counting we do in our lives. By analogy we postulate
an end to the sequence of natural numbers and call it ω (omega). Then we can
continue our counting: ω +1,ω +2,ω +3, . . . . And since we’ve done it once, we’ll
do it again: assume an end to that counting, ω +ω . And then we can continue such
counting forever.

This sounds like pure fantasy. What’s to tell us that this will ‘work’ in the sense
of never leading to contradictions? And why bother? What’s the use?

We can describe such ways of counting in a constructive manner as arrays of
natural numbers: one sequence is ω ; two sequences, with every number in the first
coming before every number in the second is ω +ω ; . . . . When we see a picture of
this, we can see a path of abstraction. Moreover, such ways of counting can be seen
to correspond to more and more complicated forms of proof by induction.5

But when someone considers extending the counting beyond what we can
constructively describe, indeed into an infinite that is beyond what could be
‘counted’ in any sense, we have more serious doubts. Why is this acceptable? Why
is this theory based on analogy and postulating new kinds of doings consistent?

14.4 Mathematical Proof

As I mentioned in the discussion of group theory and will make clearer now:

A mathematical theorem does not show that a claim is true.
It shows that the claim follows from the assumptions of the theory.

When we give a proof in Euclidean plane geometry of the claim that there cannot
be two distinct lines through a point parallel to another line not through that point
we are not showing that claim is true. We’ve seen that it doesn’t even make sense
to say it is true, but only true of something, in the sense of applicable. Our proof is
good if it is a good argument to establish that the claim about parallel lines follows
from the axioms of Euclidean plane geometry.6

5See the presentation by Carnielli and me in (Epstein and Carnielli, 1989)
6Compare the presentation of Euclidean geometry in (Epstein, 2006). Albert Einstein says:

Geometry sets out from certain conceptions such as ‘plane,’ ‘point,’ and ‘straight line,’
with which we are able to associate more or less definite ideas, and from certain simple
propositions (axioms) which, in virtue of these ideas, we are inclined to accept as ‘true.’
Then, on the basis of a logical process, the justification of which we feel ourselves
compelled to admit, all remaining propositions are shown to follow from those axioms,



266 R.L. Epstein

Mathematicians do not say, ‘There cannot be two distinct lines through a point
parallel to another line not through that point.’ They say, ‘In Euclidean geometry,
there cannot be two distinct lines through a point parallel to another line not through
that point.’ Mathematicians do not say ‘There is a unique identity.’ They say, ‘In
any group the identity is unique,’ invoking and establishing thereby that the claim is
‘true’ in the theory of groups.

The truths of mathematics are truths about inferences.
Mathematics is about what follows from what in our abstractions.

Yet many mathematicians and philosophers say not only that mathematical
claims are true, they are necessarily true: there is no possible way such a claim
could be false.

There is indeed a necessity in our mathematics, but it is not the necessity of a
claim such as ‘2+ 2 = 4.’ The necessity is that the claim must follow from the
assumptions of the theory. There is no way that the axioms of Euclidean geometry
could be true and the claim about parallel lines false. There is no way that the
assumptions of group theory could be true and the claim that the identity of a group
is unique be false. We demand of a mathematical proof that it establish that the
inference from the assumptions of the theory to the claim to be proved is a valid
inference: it is impossible for the premises to be true and the conclusion false (at the
same time and in the same way).

This requirement on mathematical proofs goes back to before Euclid. It does not
rely on any analysis of the forms of claims. It invokes only the notions of possibility
and truth. What the notion of validity requires, and what it guarantees when it holds
of an inference, is that if the mathematical claims that are the premises are true in any
application, then the conclusion will be true in that application, too. The following
picture summarizes this schematically:

i.e., they are proven. A proposition is then correct (‘true’) when it has been derived in
the recognised manner from the axioms. The question of the ‘truth’ of the individual
geometrical propositions is thus reduced to one of the ‘truth’ of the axioms. Now it has long
been known that the last question is not only unanswerable by the methods of geometry,
but that it is in itself entirely without meaning. We cannot ask whether it is true that
only one straight line goes through two points. We can only say that Euclidean geometry
deals with things called ‘straight lines,’ to each of which is ascribed the property of being
uniquely determined by two points situated on it. The concept ‘true’ does not tally with
the assertions of pure geometry, because by the word ‘true’ we are eventually in the habit
of designating always the correspondence with a ‘real’ object; geometry, however, is not
concerned with the relation of ideas involved in it to objects of experience, but only with
the logical connection of these ideas among themselves.

It is not difficult to understand why, in spite of this, we feel constrained to call the
propositions of geometry ‘true.’ Geometrical ideas correspond to more or less exact objects
in nature, and these last are undoubtedly the exclusive cause of the genesis of these ideas.
(Einstein, 1915, 1–2).
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A Mathematical Proof
Assumptions about how to reason and communicate.

argument

A Mathematical Inference
Premises

necessity

Conclusion

The mathematical inference is valid.

A mathematical inference is a statement of a theorem, for example:

The axioms of Euclidean plane geometry.
Therefore the parallel lines postulate.

The conclusion of a mathematical proof is that the mathematical inference is valid,
though mathematicians are rarely so careful as to say that explicitly. Rather, they
just show the inference is valid. The mathematical proof as a whole must be a good
argument for that.

14.5 Mathematical Proofs Are Arguments

Reuben Hersh, a mathematician reflecting on his and others’ work, characterizes
mathematical proofs:

Mathematical discovery rests on a validation called ‘proof,’ the analogue of experiment in
physical science. A proof is a conclusive argument that a proposed result follows from ac-
cepted theory. ‘Follows’ means the argument convinces qualified, skeptical mathematicians.
Here I am giving an overtly social definition of ‘proof’ (Hersh, 1997, 6).7

Hersh, as many others, has conflated the two arrows in the picture above. The
mathematical proof must be a good argument, and that can be loosely described as
one that convinces qualified, skeptical mathematicians. But the ‘follows from’ that
must be established is that the mathematical inference is valid.

We can say a great deal about what constitutes a good argument. To begin:

An argument is an attempt to convince someone, possibly yourself, that a
particular claim, called ‘the conclusion’ is true. The rest of the argument is
a collection of claims called ‘premises,’ which are given as the reason for
believing the conclusion is true.

7Though I criticize Hersh here, there is much good in his book, and reading it stimulated me to
write this paper.
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The following are necessary conditions for an argument to be good:

• The premises are plausible.
• The premises are more plausible than the conclusion.
• The conclusion follows from the premises.

Plausibility is a measure of how much reason we have to believe that a claim is
true. In mathematical proofs it is not the assumptions of the mathematical inference
that must be plausible. After all, how can we say that the axioms of Euclidean plane
geometry are plausible when they aren’t even true or false? Some of them aren’t
even simpler than the claim about parallel lines.8

The plausibility conditions apply to the mathematical proof as a whole: the as-
sumptions about the nature of reasoning and abstractions and how we communicate
must be plausible and more plausible than the conclusion that the mathematical
claim follows from the assumptions of the theory.

Many times in the history of mathematics the assumptions of mathematical
proofs—the part labeled ‘argument’—have been questioned. At one time it seemed
(or still seems) very dubious that we could reason using negative numbers, or the
square root of −1, or that we could invoke infinities, or use the method of proof
by contradiction, or use the law of double negation, or invoke the axiom of choice.
In these cases, though no one doubted that the mathematical inference was indeed
valid if given those assumptions, they doubted that the proof, the argument using
those assumptions, really established that the inference was valid. They found the
premises of the argument—not of the inference—dubious.

The premises of mathematical proofs, the claims about reasoning and commu-
nication, the assumptions about mathematics that we use in our everyday work
in mathematics are usually left unsaid; they are treated briefly in undergraduate
texts and even more briefly in undergraduate mathematics courses. They become
of interest to mathematicians only when paradoxes or wrong proofs arise in some
area of mathematics. Uncovering and making those assumptions explicit so that we
can debate them is what logicians and philosophers of mathematics do. Logicians
and philosophers then join in the debates with working mathematicians, for it is the
working mathematicians who will finally decide if some method or assumption is
acceptable in the canon of mathematics.

Two examples about what assumptions are currently acceptable in mathematical
proofs illustrate these points.

Some mathematicians have given proofs that certain very large numbers are
prime by setting out probabilistic analyses. They show that within a very small
possibility of being wrong, a particular number is prime. But they then want to
say more: this suffices to show that the number is prime. After all, they say, if it is
certainty we want from our proofs, many mathematical proofs that are very long and
have many steps left to the reader are less certain than the small probability of error
of their straightforward probabilistic proofs.

8See the axiomatization due to Lesław Szczerba of Euclidean plane geometry in (Epstein, 2006).
Szczerba assures me that no one has a simpler independent axiomatization.
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But it is not certainty that is at issue. The issue is whether the inference
in a mathematical proof must be shown to be valid, not whether the argument,
the mathematical proof, is convincing. If we accept probabilistic inferences in
mathematics, then mathematics is no different from any science, for all sciences
use strong arguments and not just valid ones to show that a claim follows from the
assumptions of their theories. At present there is little division in the mathematical
community about this issue: almost everyone agrees that a mathematical proof must
show that the inference is valid.

The other new method of proof utilizes computers to evaluate many complicated
cases that could not be done by hand, eliminating each as a possible counterexample,
and concluding a claim such as the four-color theorem. Mathematicians are hesitant
to accept such proofs because they rely on our trusting that the computer software
is right and that the computer itself is functioning correctly. How can that be part
of mathematics? In response, it is again said that very long proofs that leave many
steps to the reader and are accepted on the word of one or two referees are much
more dubitable than such computer proofs.

Here the issue is not whether a mathematical proof should establish that an
inference is valid, for the computer proof is claimed to do just that. The issue is
about what counts as a good argument in mathematics.

Mathematical arguments, just like arguments in our daily lives, leave much
unsaid. And of what is said, much is only hints or sketches, with lots explicitly left
to the reader. We accept such arguments because they are a form of communication.
We can see how to understand and evaluate an argument made by a person, filling in
the gaps when needed. When we cannot fill in the gaps, when questions cannot be
answered, we reject the argument as a mathematical proof. In contrast, a proof by
computer can only be followed step by step in the hopes that we can see how each
step is used in the proof, and that is impossible when there are so many steps that the
prover had to have recourse to a computer. We cannot imagine the intention of the
computer as a guide for how to repair a proof, for computers do not have intentions.

We can, however, try to verify that the program run by the computer does what it
is intended to do. We can perform tests on a few inputs where the outputs are already
known, we can examine how the program is written, and declare that the program
is correct. It is possible that the program might not be, but the chances of that,
it is believed, are small enough considering the cost of more extensive checking.
But that, still, leaves us only with accepting or rejecting a proof by a computer,
not understanding it as one would a human communication. The debate on the
acceptability of computer programs in mathematical proofs continues to divide the
mathematical community.9

9See (Davies, 2005) for fuller discussions of these and more examples of methods of proof that are
currently in debate in the mathematical community.
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14.6 A Comparison of Two Proofs of a Simple Claim
in Arithmetic

Claim. 1+ 2+ . . . + n = 1
2 n× (n+ 1)

Proof. 1 = 1
2 1 × (1 + 1). This is called the basis of the induction. Suppose that

1+ 2+ . . . + n = 1
2 n× (n+ 1). This is called the induction hypothesis. Then:

1+ 2+ . . . + n+(n+ 1) = [
1
2

n× (n+ 1)]+ (n+1).

So 1+ 2+ . . . + n+(n+ 1) =
1
2
(n2 + n)+

1
2
(2n+ 2),

so 1+ 2+ . . . + n+(n+ 1) =
1
2
(n2 + 3n+ 2),

so 1+ 2+ . . . + n+(n+ 1) =
1
2
(n+ 1)× (n+ 2).

That is, 1+ 2+ . . . + n+(n+ 1) =
1
2
(n+ 1)× ((n+ 1)+1). Q.E.D.

Some proof like this is what all mathematicians have encountered in learning
mathematics. We are told that anything less rigorous than this doesn’t count as a
proof. We are told it establishes that ‘1+ 2+ . . . + n = 1

2 n× (n+ 1)’ is true.
But the proof does not establish that ‘1+2+ . . . +n= 1

2 n×(n+1)’ is true. What
it shows is that the claim follows if we accept the method of proof by induction.
But isn’t that true? True of what—our abstraction? No. The method of proof by
induction is a condition of our theory: it is part of what establishes the subject of
arithmetic. That method is not obvious to students until they have been drilled on it;
it is very hard to use. Any claim that follows from the method of proof by induction
on the natural numbers must be applicable to any instantiation of the theory. If such
a claim fails, then that’s not what we are talking about.

This is what the ultra-constructivists who deny induction miss (see, for example,
Van Dantzig, 1956). Their program is not about what the natural numbers are, nor
the right way to reason about them, nor disproofs of induction. They are going back
to counting and deciding not to make the abstraction from our abilities to say that
we can ‘count’ forever.10 They propose a more ‘realistic’ theory of counting and
arithmetic, where a theory can be said to be more realistic than another if it abstracts
less from the same experience(s).

10Or in the case of David Isles (1981, 2004) that arithmetical functions such as multiplication or
exponentiation do not obviously lead to places on the list of numbers we can count to by 1’s.
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Claim. 1 + 2 + . . . + n = 1
2 n × (n+1)

Proof. • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦
• • • • • ◦ ◦
• • • • • • ◦ Q.E.D.

Is this a proof? When I saw it I felt for the first time that I understood and could
believe ‘1+2+ . . . +n= 1

2 n×(n+1).’ Before, I only knew from memory that there
is a proof using a manipulation of symbols that I could reconstruct fairly easily. Each
time I did that algebraic proof I saw indeed that the claim followed by induction.
But here I could see that it was true, really true.11

True? The picture convinced me, without any recourse to induction, that the
equality will apply to any things to which our basic model of counting and arithmetic
apply. I see from the picture that any things I can count up to some number, call it
n, can be put, along with other such things, in an array that justifies the equality by
counting again. And a 6 by 7 array was enough to convince me.12

But how do we know that we’ll always get the same result, regardless of how
large we expand the diagram? We know in the same way that we know ‘3+ 5 = 8’
will be true for any selection of objects to which we wish to apply our methods of
counting and addition. We can give a proof of ‘3+5= 8’ from axioms for arithmetic,
but that is less convincing and assumes a great deal more as a theory of addition.

The first proof shows that the equality follows from the assumptions of our
more general theory of counting and arithmetic in which we also accept proof
by induction; the assumptions about reasoning, though not about the nature of
our abstractions, are relatively explicit. This second proof by picture leads us to

11The picture comes from (Nelsen, 1993, 69). Martin Gardner, in (Gardner, 1973) from which
Nelsen takes this example, says:

The first n consecutive positive integers can be depicted by dots in triangular formation. Two
such triangles fit together to form a rectangular array containing n(n+1) dots. Because each
triangle is half of the rectangle, we see at once that the formula for the number of dots in
each triangle is n(n+ 1)/2. This simple proof goes back to the ancient Greeks (Gardner,
1973, 114).

12A colleague said that the picture is convincing for n = 6 but not for any larger numbers. But then
why not say it is good only for circles colored and laid out in this manner? See (Sherry, 2009) for
a fuller discussion of this point.
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believe that the equality applies to anything to which our more basic theory of
counting and arithmetic apply without invoking induction; the assumptions about
the modeling are relatively clear, but the methods of proof are not. In neither case
are we showing that a claim is true; we are showing that it follows, that it is part of
our theory. The truths of mathematics are truths about inferences and applications
of theories.

14.7 A Proof of Pythagoras’ Theorem, and Progress
in Mathematics

Consider another proof by diagram, this time of Pythagoras’ theorem.
First, we can represent the product of two numbers a and b by a rectangle with

sides of length a and b. Then we have the identity:

(a + b)2 = a2 + b2 + 2ab

a b

a

b

Now we note the area of a right triangle with sides a and b is 1
2 ab:

b

a

Then we can get Pythagoras’ theorem: the square of the length of the hypotenuse in
a right triangle is the sum of the squares of the lengths of the legs. All we need do
is calculate the area of the large square below by the two different methods:

a2 + b2 = c2

a b

cb

a

It is clear to me once I have understood the diagrams that it is impossible to come
up with a triangle that would not satisfy the identity.13

13We can easily see that the method does not depend on these specific triangles and rectangles.
Indeed, in ancient times often just one example, such as using ‘5’ and ‘8’ here (which is the ratio
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Yet some say that these diagrams do not constitute a proof. Rather, it is only
in Euclid that we find a real proof of Pythagoras’ theorem. That view, I believe,
is a reflection of the desire to make our implicit assumptions explicit. Geometric
assumptions necessary for proving Pythagoras’ theorem are explicitly set out in
Euclid. Or at least they seemed to be for over two millennia. But now the same
criticism of Euclid can be given as is given of the diagrams: too much was left as
unstated assumptions. The first time we had a real proof of Pythagoras’ theorem, it
is said, was when Hilbert formalized Euclidean geometry.

What is a proof depends on what we tolerate as implicit assumptions. If progress
in mathematics means (at least in part) making more explicit the assumptions by
which we prove results, then it is not clear that Hilbert’s system is progress over the
diagrams because the assumptions he has made explicit seem to go far beyond what
was in our use of the diagrams. What progress there is in mathematics depends
more on the assumptions that are being made explicit having greater generality
and applicability. That is, progress in mathematics in this sense depends on greater
generality through abstraction.14

This is not, however, the exclusive kind of progress in mathematics. Solving
a difficult and long-known problem counts as progress, too. But universally it is
acknowledged that such a solution is not of much interest, that is, is not really
considered progress, if it does not employ new methods that allow for the solution of
other problems or a generalization of the original problem. That is what is frustrating
about evaluating the use of computers in the proof of the four-color theorem: nothing
new is used in the proof, no new generalities or ideas, just the brute force of the
computer working through many, many cases.

14.8 Formal Proofs

Some mathematicians think an objective standard can be given for what counts as
a proof in mathematics. They say an argument counts as a mathematical proof only
if it could be formalized, by which they mean within a system of formal logic (see
Fallis, 1998).

as close as the printer or computer monitor can manage), was given and the reader was expected
to see that the method of proof or calculation was quite general. See (Bashmakova and Smirnova,
2000).

The issue of when we are justified in understanding specific parts of a diagram as variable is
examined in (Kulpa, 2009). The counterpart in reasoning with formulas is given a precise answer
in classical predicate logic by the theorem on constants: if a name appears in a theorem but does
not appear in the axioms, then it can be replaced by a variable that is quantified universally
(Epstein, 2006, Lemma 10.b). Kulpa’s paper also surveys recent work on formalizing reasoning
with diagrams.
14See (Breger, 2000) for a discussion of this point and more on the nature of abstraction in
mathematics.
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In (Epstein, 2006) I provide a derivation in first-order logic of the claim ‘The
identity is unique’ from the axioms of group theory. But that is not a mathematical
proof. I give the mathematical proof first, and then argue that the formalization
is apt.

A proof in a fully formal system of logic that a claim follows from some axioms
is not a proof in mathematics. It is evidence that can be used in a mathematical
proof: Why should I believe that this claim follows from these others? Because—
and we point to the formal proof. It is the pointing that is crucial. It relies on many
assumptions, most particularly that the formal system chosen for the formalization
is an apt model of reasoning and a good one for this mathematical proof, and that
the steps that have been added—for there are always steps that have to be filled
in—are appropriate.15 We cannot fully formalize the argument that constitutes the
mathematical proof without leading to an infinite regress.

We cannot replace proofs in mathematics with formal proofs, though we can use
formal proofs as evidence in mathematical proofs. Formalizing mathematical proofs
can lead to uncovering or clarifying assumptions behind such informal proofs and
seeing how or whether such assumptions are needed.

14.9 Mathematics as Pure Intuition

At the other extreme, some say that mathematics is entirely subjective. The noted
mathematician R. L. Wilder says,

What is the role of proof? It seems to be only a testing process that we apply to these
suggestions of our intuition.

Obviously, we don’t possess, and probably will never possess, any standard of proof that
is independent of time, the thing to be proved, or the person or school of thought using it
(Wilder, 1944).

The celebrated mathematician G. H. Hardy seems to concur:

There is strictly speaking no such thing as a mathematical proof; we can, in the last analysis,
do nothing but point; . . . proofs are what Littlewood and I call gas, rhetorical flourishes
designed to affect psychology, pictures on the board in the lecture, devices to stimulate the
imagination of pupils (Hardy, 1928, 18).

And the mathematician and philosopher L. E. J. Brouwer says,

In the construction of [all mathematical sets of units which are entitled to that name] neither
the ordinary language nor any symbolic language can have any other rôle than that of

15As I show with examples in (Epstein, 2006), first-order logic is rarely appropriate because much
mathematics requires second-order assumptions. Second-order logic and set-theory give no unique
standard because there are many systems of those that differ too much. Further, all those systems
are based on a metaphysics that denies a mathematics of process as distinct from things (see
Epstein, 2010). Moreover, it is quite common to establish a theorem in a formalized theory by
semantic means rather than with a syntactic proof, as can be seen in (Epstein, 2006).
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serving as a nonmathematical auxiliary, to assist the mathematical memory or to enable
different individuals to build up the same set (Brouwer, 1912, 81).

To do mathematics we must use our intuition. But that does not mean that
mathematics is subjective. It is intersubjective, like law, like drama, like etiquette.
To appeal to each individual mathematician’s intuition leaves us no criteria at all
for judging whether we have a proof, just as appealing to only a judge’s intuition
gives no standard for what is legal. And we know at least one clear standard for
mathematical proofs: they must establish that an inference is valid.

The view of mathematics as subjective introspection leaves it difficult for us to
explain how we learn mathematics, how we judge whether what we have is a proof,
what mathematical truth is, . . . . All the questions we began this paper with remain
unanswered. Though intuitionists who followed Brouwer have created a full and
rich mathematical theory, they did so by denying his quote above: they use and
work with proofs just as all other mathematicians do.

14.10 Set Theory and the Existence of Infinities

Given any few small objects we can collect them together. Given any things we can
describe, we can make up a description of all of them at once. So proceeding by
analogy, mathematicians in the nineteenth century assumed that we can ‘collect’
any things whatsoever into a new entity called the ‘set’ of those things.

We can describe a beautiful theory that way that has many applications. But it
leads to contradictions, such as the set of all sets that are not elements of themselves.
Not every beautiful way of postulating new things in analogy with old ones is good.

But the utility of such a theory is so desirable that mathematicians worked to
rescue it, modifying the analogy to say that only certain ways of collecting are
acceptable. And thus we have modern set theory. And we hope that it is consistent,
for it is a very useful high-level abstraction in which we can codify and apply to
many areas of mathematics.

The assumptions of our new set theory countenance ‘collecting’ all natural
numbers into one set. We can also ‘collect’ all points on the line into one set—
as if a line that is finite but forever extendible were actually extended and completed
as an infinite thing.

That makes a lot of mathematicians uneasy, from the ancients, through the
seventeenth century, and continuing today. Intuitionists and constructivists deny that
such abstractions are legitimate in mathematics. They can see no path of abstraction
that leads to such a fantastical analogy. Those who use set theory say it should be
accepted because it is fruitful and (so far, it seems) consistent.

The utility and consistency of a mathematical theory, some argue, are sufficient
for us to investigate it. Indeed, not even utility but just a sense that the theory is
beautiful has been enough in the past century for mathematicians to publish papers
on new theories.
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But, as we’ve learned from Kurt Gödel, it is rare that we can prove a theory
to be consistent (see Epstein and Carnielli, 1989). So we try to relate it to other
theories we know arise from a path of abstraction and for which we have inductive
evidence of consistency: no contradiction has arisen in the many years that many
mathematicians have worked in that theory.

Some go farther. They say that consistency of a mathematical theory is all that is
needed for us to conclude that the things of which it speaks exist.

In particular, in introducing new numbers, mathematics is only obliged to give definitions
of them, by which such a definiteness and, circumstances permitting, such a relation to
the older numbers are conferred upon them that in given cases they can definitely be
distinguished from one another. As soon as a number satisfies all these conditions, it can
and must be regarded as existent and real in mathematics. (Georg Cantor 1883, 182).16

A mathematical entity exists, provided its definition implies no contradiction. (Henri
Poincaré 1921, 61).

If the arbitrarily given axioms do not contradict one another with all their consequences,
then they are true and the things defined by the axioms exist. This is for me the criterion of
truth and existence. (David Hilbert, Letter to Frege of December 29, 1899).17

The infinities beyond infinities of set theory exist, they say. And they often say
so without the qualifier ‘if our set theory is consistent.’ They have gotten used to
working in the theory and thinking of these objects, so how could they not exist? If
the theory is contradictory, they feel that they can modify it once again to retain their
world of abstract objects. They do not consider that if they modify their theory, the
objects of which it speaks might not be the ones they had been thinking of earlier.

But we do not need that mathematical objects postulated by our theories exist
in order for our theories to be used and to be useful. We only need that the theory
is consistent, for then we can act as if they exist: it is not logically impossible for
them to exist. And possibilities are all we need in order to reason about mathematical
inferences in our mathematical proofs: an inference is valid if there is no possible
way for the premises to be true and conclusion false.

Some find it remarkable that our theories are consistent and cite that as evidence
that mathematical claims are indeed true or false (Putnam, 1975, 73). But the process
of abstraction, ignoring some of our experience and focusing on just part of it,
is not likely to lead to an inconsistency. It is only when we postulate something
in addition to our experience that we risk inconsistency. The great difficulty in
analyzing processes of abstraction is distinguishing between those cases where we
only ignore certain aspects of our experience, as with addition and multiplication
of counting numbers, and those cases where we postulate some additional ability
or capacity of ourselves or some extension of our experience, as in set theories that
allow for infinite collections.18

16The translation here comes from (Dauben, 1979, 128–129).
17Frege (1980, 39–40). Frege strongly disputes Hilbert’s view (op. cit., 43–47).
18This issue in historical context is discussed in (Detlefsen, 2005).



14 Mathematics as the Art of Abstraction 277

14.11 Mathematical Proofs as Explanations

It is often said that a good mathematical proof does more than just show that a
mathematical claim is true, it provides a good explanation of why the claim is true.
We want to know not just that ‘1+ 2+ . . . + n = 1

2 n× (n+ 1)’ is true, but why it is
true (see, for example, Mancosu, 1996, 2000).

An explanation in this sense is characterized as follows.

An inferential explanation is a collection of claims that can be understood as
‘E because of A,B,C, . . . ’. The claims A,B,C, . . . are called the explanation
and E is the claim being explained. The explanation is meant to answer the
question ‘Why is E true?’

For an inferential explanation to be good, the inference from A,B,C, . . . to E
must be valid or strong. And the claim being explained must be highly plausible: we
do not explain anything we do not already believe.

To view a proof of a mathematical claim as an explanation raises the same
problems as viewing a mathematical proof as an argument for that claim: we must
accept that mathematical claims are true or false, not just true or false in application,
and we have to come up with a way to understand how one mathematical claim is
more or less plausible than another. It is this latter that has particularly stymied
attempts at analyzing mathematical proofs as explanations (see Mancosu, 2000).

Further, for an explanation to be good, at least one of the claims doing the
explaining must be no more plausible than the claim being explained. Otherwise,
we would have an argument for the conclusion. Thus we would have to have that
some inferences to ‘1+ 2+ . . . + n = 1

2 n× (n+ 1)’ are to be judged as arguments
for that claim, establishing the truth of it, and some are to be judged as explanations,
telling us why the claim is true. There would not be a uniform standard by which to
judge mathematical proofs.

None of these problems arise if we go back to the schematic diagram of
mathematical proofs presented above (Sect. 14.4). The mathematical inference to
the mathematical claim is neither an argument nor is it an explanation; it is a pure
inference, to be judged solely as to whether it is valid or not. The mathematical
proof is an argument that the inference is valid. Part of the feeling that some proofs
are better at showing ‘why a claim is true’ has to do with what criteria we have for
such an argument to be good.

We have seen necessary conditions for an argument to be good (Sect. 14.5).
We can also say that one argument is better than another if its premises are more
plausible and it is more clearly valid or strong. For some kinds of arguments, such
as generalizations and analogies, more can be said about what constitutes a good or
better argument. But consideration of what conditions are needed for one argument
to be better than another in mathematics has been obscured by seeing it in terms of
explanations. For example, Mark Steiner says,

Now I see no reason, except dogmatism, not to accept this story at face value: The
embedding of the reals in the complex plane yields explanatory proofs of otherwise
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unexplained facts about the real numbers. The explanatory power of such proofs depends
on our investing the complex numbers with properties they were never perceived as having
before: length and direction (Steiner, 2000, 137).

There is more than dogmatism as a motive to reject Steiner’s story, for it depends
on our assuming that mathematical claims have truth-values. Yet if mathematical
claims have truth-values, we cannot ‘invest’ the complex numbers with properties.
Either they have those properties or they don’t. In any case, mathematicians don’t
claim that the complex numbers have those properties: we represent them using
those quantities.

To see better what Steiner might be getting at, consider the following quotation
from Philip Kitcher:

And as in other sciences, explanation can be extended by absorbing one theory within
another. It is customary to praise scientific theories for their explanatory power when they
forge connections between phenomena which were previously regarded as unrelated. Within
mathematics the same is true and it has become usual to defend the ‘abstract’ approach
to mathematics by appealing to the connections which are revealed by studying familiar
disciplines as instantiations of general algebraic structures (Kitcher, 1975, 259–260).

It is not clear what Kitcher means by ‘explanation’ and ‘explanatory power,’ for
we are not explaining anything in his examples. Rather, we are setting out further
analogies, connecting our abstractions to show that they have instantiations we
didn’t previously see, and showing that some of our abstractions can be abstracted
further to relate them by analogy to other abstractions. As always, good analogies
help us ‘see’ the relationships in the sides of the analogy. It’s not different from
marijuana compared to alcohol, or humans compared to dogs: we don’t explain
anything with such an analogy, but we do see common aspects and reason to similar
claims based on those aspects when the differences don’t matter.

We need such further analogies or instantiations of our abstractions because our
abstractions have become too abstract to reason about well, or because they are so
abstract we are not sure they are related to anything in experience beyond what they
have been abstracted from, or because we are postulating new entities that need to
be shown to have an instantiation in something less abstract, or because we have run
out of ways to conceive of further progress in the area and have need of some other
way to visualize the subject. All these help us understand our abstractions better.
But they are not explanations.

Consider what Ernest Nagel says about a particular mathematical claim that
needs explaining:

Why is the sum of any number of consecutive odd integers beginning with 1 always a perfect
square (for example, 1+ 3+ 5+ 7 = 16 = 42)? Here the ‘fact’ to be explained (called the
explicandum) will be assumed to be a claimant for the familiar though not transparently
clear label of ‘necessary truth,’ in the sense that its denial is self-contradictory. A relevant
answer to the question is therefore a demonstration which establishes not only the universal
truth but also the necessity of the explicandum. The explanation will accomplish this if
the steps of the demonstration conform to the formal requirements of logical proof and if,
furthermore, the premises of the demonstration are themselves in some sense necessary.
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The premises will presumably be the postulates of arithmetic; and their necessary character
will be assured if, for example, they can be construed as true in virtue of the meanings
associated with the expressions occurring in their formulation (Nagel, 1961, 16).

The fact to be explained cannot be ‘the sum of any number of consecutive odd
integers beginning with 1 is always a perfect square’ because that is not obviously
true. It doesn’t need to be explained but demonstrated. The following proof of that
claim does all one could hope for in making clear why the claim is ‘true.’

Claim. 1 + 3 + 5 + ...  + (( 2n ) + 1) = ( n + 1)2

Proof.
1 3 5 7 9 11

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

→

↓ Q.E.D.

As Martin Gardner says,

Think of the pattern as extending any desired distance to the right and down. Each reversed
L-shaped strip contains the odd number of circles indicated at the top. It is obvious that
each additional strip, that is, each new odd number in the series 1+3+5+ . . . , enlarges the
square by one unit on a side, and that the total number of dots in each square bounded by
the nth odd number is n2 (Gardner, 1973, 114, from which this diagram is taken).

The picture convinces us that the claim is true in any application of the
assumptions of our theory of addition and multiplication. To say that it is thus true
by virtue of the meaning of the expressions requires us to pack a very great deal
into what is understood by ‘meaning.’ When a mathematical theory can be shown
not to apply to some situation/experience/thing/process, such as addition to drops
of water, we do not say the theory is false, but that this is a bad application. Has the
meaning of the expressions changed? Or are we only clarifying what we implicitly
assumed were the meanings? The appropriateness of an application seems hard to
assimilate to implicit meanings of expressions in a theory.

Finally, consider what Michael Resnik and David Kushner say about proofs as
explanations:

We can account for what is probably the most basic intuition behind the idea that there
must be explanatory proofs as such, namely that all proofs convince us that the theorem
proved is true but only some leave us wondering why it is true. We have this intuition,
we submit, because we have observed that many proofs are perfectly satisfactory as proofs
but present so little information concerning the underlying structure treated by the theorem
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that they leave many of our why questions unanswered. In reflecting on this, we tend to
conflate these unanswered why questions under the one form of words ‘why is this true?’
and thus derive the mistaken idea that there is an objective distinction between explanatory
and non-explanatory proofs (Resnik and Kushner, 1987, 154).

The distinction between explanatory proofs and non-explanatory ones is no different
for arguments in daily life, such as newspaper editorials. Sometimes we can follow
the steps of the argument very well but remain unconvinced. We are not being
irrational: we just don’t ‘see’ the connections that make the argument valid or strong.
Similarly, we sometimes need to ‘see’ the connections in mathematics. It requires
us not only to see the deductive connection but the relation to what we already know
or to something familiar, perhaps through a higher-level abstraction that creates an
analogy. Asking ‘Why is this true?’ leads to the mistaken idea of looking for the
grounds of the truth of a mathematical claim. Often what is explanatory replaces
symbolic manipulation (e.g., an induction proof) with something more concrete in
our experience (e.g., a picture).

14.12 The Utility of This Story

A good story of mathematics should lead to new and interesting work in
mathematics.

By considering the path of abstracting in a mathematical subject rather than
focusing only on the final abstraction, we can see where we have chosen to ignore
certain aspects of our experience. Then, when the development of the subject
becomes stuck, when we cannot adapt our abstractions to accommodate problems
that resist solution, we can look to what we have ignored and see if it is possible to
take more into account. This is the usual method of scientists; it works equally well
for mathematicians.19

19This is how I developed the general framework for semantics in (Epstein, 1990). Rather than
viewing propositional logics as about abstract things called ‘propositions,’ I saw them as ways
to reason using ordinary language and abstractions of that. Rather than looking for the ‘right’
logic that captures exactly the properties of such abstract things, I saw that what we pay attention
to in our abstracting, what aspects of ordinary language claims we deem important, determines
the appropriateness of the logic we choose. As we vary the aspect we deem important, we vary
the logic. That variation, I saw, can be described by devising an abstraction of our propositional
logics—an abstraction of our abstractions. The general structures that arise are then worth
investigating, not only for their own interest but for the relations among logics they illuminate
and for the assumptions about how to reason well they uncover. I did not deny the abstract, for
how could I show that there are no such things as abstract propositions? Rather, I focused on the
process of abstracting, and that gave rise to new mathematics that is grounded in experience. See
(Epstein, 1988) for a summary.

This is also what I do in (Epstein, 2006). I present formal logic as an abstraction of reasoning.
By considering propositions as actual utterances or inscriptions rather than making the abstraction
to treat different utterances as the same thing, I give a formal logic that resolves the liar paradox.
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By considering how we develop and use mathematics, we are no longer left
grasping at abstractions hoping they will somehow reveal to our intellects new
solutions, abstractions, or analogies through their ineffable nature. By remembering
that mathematics is a human activity, we can solve more.

We can encourage this view with our teaching. By introducing the process of
abstracting rather than focusing only on the final abstraction we can help students
grasp new concepts and make use of them, not only as a subject to be learned but as
a tool for modeling further.20

14.13 Grounding Our Stories of Mathematics

The view of mathematics that I present is grounded in mathematics as a human
activity. Any story of mathematics has to account for that. The assumptions about
the world that I invoke, such as that there are people who do mathematics who
communicate and who have intuitions, are not controversial. In that sense, I have
offered a story that has minimal metaphysics.

I model what I see mathematicians doing. I do not try to account for all. Abstract
things arise—or come to our attention if you are a platonist—via our abstracting. All
mathematics is applied mathematics; we’ve just forgotten that it’s applied because
of its familiarity. Mathematics is abstraction, proofs, and applications, repeated over
and over, limited only by our experience and imagination.

But the question can still arise: Why these abstractions?
We can ask for ultimate explanations. Perhaps we have intersubjective work in

mathematics because there are platonic objects that ground our insights; or because
mental constructions and subjective thoughts are somehow shared by all thinking
creatures; or because . . . . These ultimate explanations are the basis of other views of
mathematics. They are beyond testing, except for whether they answer the questions
that a good story of mathematics should answer.

We can view various philosophies of mathematics with their accompanying
metaphysics as providing us with some ultimate account of why we do mathematics
as I have described. Or we can see such stories of abstract objects and mental
constructions as psychological props that allow us to reason better about our
abstractions. No matter; such stories are compatible with what I have said here.

As for me, I am content to do mathematics and to reflect on how we communicate
when we do that. Come, let us reason together.

By considering how we assign truth-values to atomic propositions rather than assuming that they
come with truth-values, I develop a simple modification of classical mathematical logic that deals
with names that do not refer.
20Walter Carnielli and I (Epstein and Carnielli, 1989) use the historical development of the theory
of computable functions to recapitulate the path of abstraction in that subject. This is the ‘genetic’
method of teaching, long favored by George Pólya, as discussed in (Pólya, 1963).
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Appendix 1: Mathematics as an Innate Ability

The discussion of counting and arithmetic above reflects my understanding of exper-
iments done by Jean Piaget with children as described in The Child’s Conception
of Number. There he shows how hard it is for children to learn to count and how
counting and addition and subtraction are learned together.

George Lakoff and Rafael E. Núñez dispute that children have to learn mathe-
matics:

The very idea that babies have mathematical capacities is startling. Mathematics is usually
thought of as something inherently difficult that has to be taught with homework and
exercises. Yet we come into life prepared to do at least some rudimentary form of arithmetic.
Recent research has shown that babies have the following numerical abilities:

1. At three to four days, a baby can discriminate between collections of two and three items
[reference supplied]. Under certain conditions, infants can even distinguish three items
from four [reference supplied].

2. By four and a half months a baby ‘can tell’ that one plus one is two and that two minus
one is one [reference supplied].

3. A little later, infants ‘can tell’ that two plus one is three and that three minus one is two
[reference supplied]. [Experiments are described in which babies stare at slides showing
various numbers of objects, the length of the stare indicating to the researcher that the
baby is discriminating between different configurations.]

The ability to do the simplest arithmetic was established using similar habituation
techniques (Lakoff and Núñez, 2000, 15–16).

Lakoff and Núñez describe it correctly in (1): Babies can discriminate between
collections of objects. When they say that babies can discriminate between numbers
and do simple arithmetic, consider that most any mammal and many birds can
distinguish between collections of two versus three objects. That does not indicate
any ability to do mathematics. That does not show that such creatures or that babies
have any concept of number. Abstracting the notion of a number as distinct from a
number of objects is the first crucial step in mathematics, and there is no evidence
that other mammals, birds, or babies can make that step. The familiarity of working
with number notations apart from things that are numbered has become so familiar
to the authors that they cannot even see they have begged the question in their
description of what the experiments showed. See (Bryant and Nuñes, 2002) for a
review of Lakoff and Núñez’s view. For a survey and critique of work on the idea of
mathematics as innate knowledge, see (De Cruz and Smedt, 2010).
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Appendix 2: Comparisons to Other Views of Mathematics

One of the virtues of the story I have told is its seeming familiarity. But it is new.
In this appendix I’ll compare it to two well-known views of mathematics that seem
similar.21

Deductivism

It is not a new idea that any substantive claim of mathematics is really an inference
with the assumptions of the theory as premises and that claim as conclusion, or is a
conditional with the assumptions conjoined as antecedent and the substantive claim
the consequent. Long ago Gottfried Wilhelm Leibniz said:

As for ‘eternal truths:’, it must be understood fundamentally they are all conditional; they
say, in effect: given so and so, such and such is the case. For instance, when I say: Any figure
which has three sides will also have three angles, I am saying nothing more than that given
that there is a figure with three sides, that same figure will have three angles (Leibniz, 1765,
Bk IV, Ch. xi, §14).

P. H. Nidditch says:

[I]t has become more and more widely accepted during the past hundred years, with the
result that it is now the orthodox doctrine, that to say of a mathematical proposition p
that it is true is merely to say that p is true in some mathematical system S, and that
this in turn is merely to say that p is a theorem in S. . . . This view of the nature of
mathematical truth . . . was first put forward with full explicitness and clarity by the Scottish
philosopher Dugald Stewart. ‘Whereas in all other sciences,’ he says, ‘the propositions
which we attempt to establish express fact, real or supposed—in mathematics, the propo-
sitions which we demonstrate only assert a connection between certain suppositions and
certain consequences. Our reasonings, therefore, in mathematics, are directed to an object
essentially different from what we have in view, in any other employment of our intellectual
faculties—not to ascertain truths with respect to actual existence, but to trace the logical
filiation of consequences from our assumed hypotheses.’ (Nidditch, 1960, 287).

Charles Sanders Peirce says,

The most abstract of all the sciences is mathematics. That this is so, has been made manifest
in our day; because all mathematicians now see clearly that mathematics is only busied
about purely hypothetical questions. . . . Mathematics does not undertake to ascertain any
matter of fact whatever, but merely posits hypotheses, and traces out their consequences
(Peirce, 1931, 23; 109).

And Bertrand Russell says:

Pure mathematics consists entirely of assertions to the effect that, if such and such a
proposition is true of anything, then such and such another proposition is true of that thing.

21For a comprehensive discussion of current views of mathematics see the excellent survey in the
introduction to (Ferreirós and Gray, 2006).
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It is essential not to discuss whether the first proposition is really true, and not to mention
what the anything is, of which it is supposed to be true. Both these points would belong to
applied mathematics (Russell, 1986, 75).

Maxime Bôcher says:

The nominalism of the present day mathematician consists in treating the objects of
his investigation and the relations between them as mere symbols. He then states his
propositions, in effect, in the following form: If there exists any objects in the physical
or mental world with relations among themselves which satisfy the conditions which I
have laid down for my symbols, then such and such facts will be true concerning them
(Bôcher, 1904).

This sounds very much like what I said above:

The truths of mathematics are truths about inferences.
Mathematics is about what follows from what in our abstractions.

But there are major differences.
First, deductivists nowadays typically understand the inferences of mathematics

to be either in or justified by formal logic. Here is what Hilary Putnam says:

There is another way of doing mathematics, however, or at any rate, of viewing it. This
way, which is probably much older than the modern way, has suffered from never being
explicitly described and defended. It is to take the standpoint that mathematics has no
objects of its own at all. You can prove theorems about anything you want—rainy days,
or marks on paper, or graphs, or lines or spheres—but the mathematician, on this view,
makes no existence assertions at all. What he asserts is that certain things are possible and
certain things are impossible—in a strong and uniquely mathematical sense of ‘possible’
and ‘impossible’. In short, mathematics is essentially modal rather than existential, on this
view, which I have elsewhere termed ‘mathematics as modal logic’.

Let me say a few things about this standpoint here.
(1) This standpoint is not intended to satisfy the nominalist. The nominalist, good man

that he is, cannot accept modal notions any more than he can accept the existence of sets.
We leave the nominalist to satisfy himself (Putnam, 1975, 70).

Putnam understands the modal nature of mathematics as justified, legitimated, or
somehow essentially explicated by formal modal logic.22 But there is nothing in our
experience that can count as a possible way the world could be in which Euclidean
plane geometry is true. What counts as a possibility, and what justifies our use of
inferences with claims that are neither true nor false, is an application of the theory
where what we count as true or false is constrained by our agreements, explicit or
not, as to what we will pay attention to in our reasoning.

Putnam’s comments about the nominalist show that his conception is based on
some more ample metaphysics than mine, for there is nothing in the view I present

22In (Putnam, 1967) he says that his view of mathematics as modal logic is equivalent to taking
mathematics as based on set theory. In (Putnam, 1975, 72) he says:

The main question we must speak to is simply, what is the point? Given that one can either
take modal notions as primitive and regard talk of mathematical existence as derived, or the
other way around, what is the advantage to taking the modal notions as the basic ones?
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here that prevents a nominalist from accepting it—at least in those cases where the
abstraction is from sufficiently clear experience. Reasoning commits us to some
notion of possibility, but that notion need not be unacceptable to a nominalist (see
Epstein, 1999, 2012).

By not seeing the nature of possibility in terms of abstractions based on the same
methodology as used in the sciences, deductivists are led to a kind of mystery about
how mathematics can be applied. As Alan Musgrave says:

Russell sought a way to bring geometry into the sphere of logic. And he found it in what I
shall call the If-thenist manoeuvre: the axioms of the various geometries do not follow from
the logical axioms (how could they, for they are mutually inconsistent?), nor do geometrical
theorems; but the conditional statements linking axioms to theorems do follow from logical
axioms. Hence, geometry, viewed as a body of conditional statements, is derivable from
logic after all. . . . Russell argued that the discovery of non-Euclidean geometries forced
us to distinguish pure geometry, a branch of pure mathematics whose assertions are
all conditional, from applied geometry, a branch of empirical science (Musgrave, 1977,
109–110).

If-thenism has nothing to say about un-axiomatised or pre- axiomatised mathematics,
in which creative mathematicians work. Therefore, even if its account of axiomatised
mathematics is acceptable, as an account of mathematics as a whole it is seriously defective
(Musgrave, 1977, 119).

David Hilbert tried to deal with this problem:

It is surely obvious that every theory is only a scaffolding or schema of concepts together
with their necessary relations to one another, and that the basic elements can be thought
of in any way one likes. If in speaking of my points I think of some system of things,
e.g. the system: love, law, chimney-sweep . . . and then assume all my axioms as relations
between these things, then my propositions, e.g. Pythagoras’ theorem, are also valid for
these things. In other words: any theory can always be applied to infinitely many systems
of basic elements.

[T]he application of a theory to the world of appearances always requires a certain
measure of good will and tactfulness; e.g., that we substitute the smallest possible bodies
for points and the longest possible ones, e.g., light rays, for lines. We also must not be too
exact in testing the propositions, for these are only theoretical propositions (Letter to Frege,
December 29, 1899 in Frege, 1980, 40–41).

But it isn’t good will and tact. The issue is the nature of abstraction and application.
A version of deductivism described by Alan Musgrave seems closer to what I

have presented:

I think, for example, that the sophisticated evolutionary Platonism of Popper need not
trouble an If-thenist. Popper tries to combine a Platonistic view of the objectivity of human
knowledge with the Darwinian view that human knowledge is an evolutionary product. Thus
he insists that the natural numbers are a human creation (part and parcel of the creation of
descriptive languages with devices for counting things), but that once created they become
autonomous so that objective discoveries can be made about them and their properties are
not at the mercy of human whim (Popper, 1972, 158–161). An If-thenist could agree with
much of this. We create, first of all, languages in which to express certain empirical claims:
‘Two apples placed in the same bowl as two other apples give you four apples’; ‘Two drops
of water placed together give you one bigger drop of water’; etc. Then we come to treat
numbers and their addition in a more abstract way (so that the second statement just given
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does not count as an empirical refutation of ‘1+ 1 = 2’). This is, at bottom, to create a
more or less explicit collection of ‘axioms’ for the natural number sequence. And then we
find that, once these are granted, we must also grant other statements about numbers like
‘There are infinitely many prime numbers’. We discover, in other words, that our axioms
have certain unintended logical consequences. The objectivity of mathematics is guaranteed
by the fact that what follows from what is an objective question, and we need not postulate
a realm of ‘abstract mathematical entities’ to ensure it (Musgrave, 1977, 123, footnote).

The objectivity of mathematics comes from the objectivity of the inference relation
relative to our assumed metaphysics. In any case, neither Popper nor Musgrave
developed these ideas into an analysis of mathematical proof and applications of
mathematics, nor did they relate this to the methodology of the sciences.

Mathematics as an Empirical Science

After writing the body of this text I discovered (Sawyer, 1943) in which Sawyer
shows more clearly and thoroughly than I the development of mathematical theories
by a process of abstraction. That part of my views, at least, has been commonplace
among mathematicians for a long time. David Sherry (2009) presents an analysis of
the use of diagrams in mathematics on that basis that is not only compatible with
but supports the view I have presented.

John Stuart Mill is supposed by many to claim that mathematics is an induction
from experience. But when he uses the words ‘induction’ and ‘generalization’ in
discussions of mathematics he seems to mean what I mean by ‘abstraction.’ Read
that way his views are very similar to mine:

We can reason about a line as if it had no breadth; because we have a power, which is the
foundation of all the control we can exercise over the operations of our mind; the power,
when a perception is present to the senses, or a conception to our intellects, of attending to
a part only of that perception or conception, instead of the whole.

Since, then, neither in nature, nor in the human mind, do there exist any objects exactly
corresponding to the definitions of geometry, while yet that science can not be supposed
to be conversant about nonentities; nothing remains but to consider geometry as conversant
with such lines, angles, and figures, as really exist; and the definitions, as they are called,
must be regarded as some of our first and most obvious generalizations concerning these
natural objects. The correctness of these generalizations, as generalizations, is without a
flaw: the equality of all the radii of a circle is true of all circles, so far as it is true of any
one; but it is not exactly true of any circle; it is only nearly true; so nearly that no error
of any importance in practice will be incurred by feigning it to be exactly true. When we
have occasion to extend these inductions, or their consequences, to cases in which the error
would be appreciable—to lines of perceptible breadth or thickness, parallels which deviate
sensibly from equidistance, and the like—we correct our conclusions, by combining them
with a fresh set of propositions relating to the aberration; just as we also take in propositions
relating to the physical or chemical properties of the material, if those properties happen to
introduce any modification into the result.
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When, therefore, it is affirmed that the conclusions of geometry are necessary truths, the
necessity consists only in this, that they correctly follow from the suppositions from which
they are deduced (Mill, 1874, Bk II, Chp. V, §1).

Whether Mill’s views really are similar to or even compatible with mine will have
to await further study.23
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Chapter 15
Towards a Theory of Mathematical Argument

Ian J. Dove

15.1 Introduction

In this paper, I assume, perhaps controversially, that translation into a language
of formal logic is not the method by which mathematicians assess mathematical
reasoning. Instead, I argue that the actual practice of analyzing, evaluating and
critiquing mathematical reasoning resembles, and perhaps equates with, the practice
of informal logic or argumentation theory. It doesn’t matter whether the reasoning
is a full-fledged mathematical proof or merely some non-deductive mathematical
justification: in either case, the methodology of assessment overlaps to a large extent
with argument assessment in non-mathematical contexts through informal logical
techniques.

One cannot hope to recapitulate all of informal logic in a single paper. Still, to
claim that there is a role for informal logic in mathematics requires some stage
setting. As a gloss on the practice, consider Maurice Finocchiaro’s definition of
informal logic.

[Define] informal logic as the formulation, testing, systematization, and application of
concepts and principles for the interpretation, evaluation, and practice of argumentation
or reasoning (Finocchiaro, 1996, 93).1

1Page numbers are to the anthologized version (Finocchiaro, 2005).
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For present purposes, focus on the application of concepts and principles for the
interpretation2 and evaluation of argumentation and reasoning. There was, perhaps,
a time when one may have thought that the only principle needed for the analysis
of arguments was (formal) logical paraphrase and that the only concept needed
for argument evaluation was (deductive) validity. But it is against this mythical
hegemony of (formal) logic as the tool of argument appraisal that informal logic
becomes theoretically (and pedagogically) important. The early history of informal
logic3 should be traced at least to Stephen Toulmin’s The Uses of Argument (1958).
In the preface to the updated edition (Toulmin, 2003), Toulmin clearly targets
formal logic.

When I wrote it, my aim was strictly philosophical: to criticize the assumption, made by
most Anglo-American academic philosophers, that any significant argument can be put in
formal terms (Toulmin, 2003, vii).

What is important to take away from this early history isn’t a particular set of
techniques; instead, informal logic is best understood as a reaction against formal
logic4 as the theory of argument assessment. Much of the work that comprises the
first part of Finocchiaro’s definition—formulation, testing and systematization of
concepts and principles of argument appraisal—is an ongoing theoretical enterprise,
in which Finnochiaro and others are actively engaged.

Regarding the application of the concepts and principles of this enterprise to
arguments or reasoning in the wild, there is only a small literature regarding informal
approaches to reasoning in mathematics.5 However, in the next two sections I make
room for informal logic in two mathematical settings. Before turning to those, I
must briefly consider the competing conceptions of argument within informal logic.

It may be surprising to anyone outside of informal logic that there is any debate
about the proper definition of argument. Those of us weaned on formal logic may
think this debate is a non-starter because there is a perfectly acceptable definition
of argument which is synonymous with the definition of derivation available
in any textbook on formal logic: an argument is a sequence of statements/sen-
tences/propositions/formulas such that each is either a premise or the consequence

2What Finocchiaro calls ‘interpretation’ is often called ‘analysis’. I prefer the latter term and
generally use it instead.
3I unceremoniously identify informal logic and argumentation theory and argumentation studies
as a single entity—really a single kind of response to practical difficulties in theorizing about and
teaching principles of argument appraisal/assessment. That the phrase informal logic is more often
used by philosophers or that the phrase argumentation theory is more often used by researchers in
communication studies is beside the point. The goal is the same: to produce a workable theory of
argument appraisal.
4Where ‘formal logic’ is understood as a theory of entailment which may include both formal
semantics and formal proof theory.
5This literature includes: (Aberdein, 2007, 2005; Finocchiaro, 2003b; Krabbe, 1997), for example.
Poincaré may be an interesting forerunner to this approach, cf. (Detlefsen, 1992, 1993).
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of (some set of) previous lines, and the last of which is the conclusion.6 Such a
definition is required by and antecedent to the techniques of formal paraphrase that
constitute the analytic enterprise. However, a close look at arguments as they occur
in philosophy journals, say, reveals that there may be more to the argumentative
estate. For example, in most good papers, an author considers possible objections
to his/her arguments as part of the usual manner of defense. It may be possible
to recast objections and replies within the strict premise/conclusion structure—one
may grant this provisionally. Yet, whether an argument, properly so-called, ought
to contain dialectical elements could be a matter of definition. Even granting the
strict premise/conclusion conception, there is room for debate about what counts as
a premise.

Besides questions of whether all arguments must contain dialectical elements,
other considerations include: whether purpose defines arguments; whether rhetorical
elements must be considered in the definition of argument; whether an argument
ought to be defined in terms of its structure; etc. The following list provides a sample
of attempts to include/exclude these elements.

An argument, in the logician’s sense, is any group of propositions of which one is claimed
to follow from the others, which are regarded as providing support or grounds for the truth
of that one (Copi and Cohen, 1994, 5, quoted in Finocchiaro, 2003a, 295).

The simplest possible argument consists of a single premise, which is asserted as true, and
a single conclusion, which is asserted as following from the premises, and hence also to be
true. The function of the argument is to persuade you that since the premise is true, you
must also accept the conclusion (Scriven, 1976, 55–6, quoted in Finocchiaro, 2003a, 297).

An argument is a type of discourse or text—the distillate of the practice of argumentation—
in which the arguer seeks to persuade the Other(s) of the truth of a thesis by producing
reasons that support it. In addition to this illative core, an argument possesses a dialectical
tier in which the arguer discharges his dialectical obligations (Johnson, 2000, 168, quoted
in Finocchiaro, 2003a, 297).

Argumentation is a verbal, social and rational activity aimed at convincing a reason-
able critic of the acceptability of a standpoint [read: conclusion] by putting forward
a constellation of propositions justifying or refuting the proposition expressed in the
standpoint (Van Eemeren and Grootendorst, 2003, 1).

Now arguments are produced for a variety of purposes. Not every argument is set out in
formal defense of an outright assertion. But this particular function of arguments will claim
most of our attention [. . . ]: we shall be interested in justificatory arguments brought forward
in support of assertions, in the structures they may be expected to have, the merits they can
claim and the ways in which we set about grading assessing and criticizing them. It could,
I think, be argued that this was in fact the primary function of arguments, and that the other
uses, the other functions which arguments have for us, are in a sense secondary and parasitic
upon this primary justificatory use (Toulmin, 2003, 12).

6Some such definition is often prefatory to formal logic textbooks. The openness of ‘state-
ments/sentences/. . . ’ is simply to cover the expected variations in such definitions. See for example,
(Mates, 1972, 5) versus (Allen and Hand, 2001, 1).
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As I am here interested in making room for informal logic in mathematical
justification I will let the last conception do most of the work. This paper will be
interested in ‘justifactory arguments brought forward in support of assertions.’ I will
construe support broadly to include both deductive and non-deductive justifications.

15.2 The Role of (Informal) Logic in Assessing Proofs

Ralph Johnson (2000) has a widely read and rightly respected theory of argument
appraisal. Against its many virtues, however, there is one vice: he unnecessarily
eschews, except in one case as a negative illustration, mathematical examples. This
decision, I think, can be traced to the conception of proof he accepts.

If we are looking for conclusive arguments, we can do no better than take the paradigm of
mathematical proofs; for example, the proof that there is no greatest prime number. Here, a
proof is a sequence of steps, each of which is either an axiom (or an otherwise incontestable
step) or a valid derivation from previously accepted lines (Johnson, 2000, 231).

Suppose Johnson is correct that a proof really is a (finite) sequence of statements
such that each statement is either an axiom (or accepted claim) or the logical
consequence of an earlier statement. Would this preclude the use of informal logic in
mathematics?7 One difficulty with this notion of proof is that it contains an unstated
qualifier—any proof on this account is a successful proof. There is a treasure trove of
failed proofs in mathematics. And, I assert, the methods by which these failures were
discovered employed the techniques of informal logic.8 This is not to say that the
techniques of informal logical appraisal are only applicable in finding errors. It is a
general technique of appraising reasoning. Consider the following proof (Maxwell,
1959, 10–12) that any given triangle, ABC, is isosceles.

Proof. It is required to prove that AB is necessarily equal to AC.

A

B CD

7Johnson nowhere, as far as I can tell, dismisses the use of informal logic in mathematics. Instead,
his concern is to distinguish proof from argument-proper.
8If this assertion is too strong or too hasty, qualify it to read: The methods for assessing
mathematical proofs resemble the methods for assessing non-mathematical arguments.
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If the internal bisector of angle A9 meets BC in D, then by the angle bisection theorem,

DB
AB

=
DC
AC

Now, ∠ADB = ∠ACD + ∠CAD = C + 1
2 A, so that, by the sine rule applied to the

triangle ADB,

DB
AB

=
sinBAD
sinADB

=
sin 1

2 A

sin(C+ 1
2 A)

Further, ∠ADC = ∠ABD+∠BAD = B+ 1
2 A so that

DC
AC

=
sin 1

2 A

sin(B+ 1
2 A)

Hence,

sin 1
2 A

sin(C+ 1
2 A)

=
sin 1

2 A

sin(B+ 1
2 A)

Moreover, sin 1
2 A is not zero, since the angle A is not zero, and so

sin(C+
1
2

A) = sin(B+
1
2

A),

which is the same as

C+
1
2

A = B+
1
2

A

which means C = B. The triangle is therefore isosceles. ��
The conclusion of this reasoning is absurd for the given triangle. But what has
gone wrong? Leave aside any problems one thinks accrue when reasoning contains
diagrams, for, in this case, the problem isn’t the diagram at all. Instead, suppose
this proof occurs as an example in a paper on mathematical method, as it does
here. There is, of course, no imperative to find the mistake. One could, I suppose,
continue living as if nothing terrible had happened. But I would hope that a rational
being confronted by this proof would want to discover the error—even if that being
weren’t mathematically inclined. Moreover, I like to think that if one attempts to
discover the error in the proof and fails, this would cause some tension in one’s web
of belief. Leaving these hopes and wishes to one side: the important aspect of this
thought experiment is to speculate about how someone would go about appraising
this argument.

9The angles in the original triangle, ABC, are labeled simply A, B or C respectively. The other
angles are labeled more fully, e.g. ∠ADC, to avoid ambiguity.
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On the one hand, if you know that the conclusion is false, then there is a sense
in which you know there must be a mistake before you begin your investigation
of the reasoning. On the other hand, perhaps, you don’t know where the reasoning
fails, or, if the conclusion weren’t obviously absurd, you might feel less compelled
to critique the reasoning. However, believing that a conclusion is false isn’t
usually enough to warrant rejection. There are many odd results, both inside and
outside of mathematics. Anecdotal evidence, gathered by the author, suggests that
mathematically inclined critics initially point to the diagram as the faulty source.
One explanation for this may be that there is a well known faulty argument for
the same conclusion that is often claimed to rest on a mistaken construction. In the
present case, however, the problem isn’t with the diagram or the associated auxiliary
constructions. Those critics without (recent) mathematical inclinations suppose that
the fault lies with either the appeal to the angle bisection theorem or the sine rule
applied to the triangle. Again, neither of these is a mistake here. The error, as
Maxwell points out (Maxwell, 1959, 12) is that equality of sine does not mean
equality of angle. For example, sinπ = sin2π but π �= 2π . So one cannot/shouldn’t
infer from sin (C+ 1

2 A) = sin (B+ 1
2 A) that (C+ 1

2 A) = (B+ 1
2 A).

The mistake in this case is, in some respects, uninteresting. One treats a function
symbol as if it were manipulable in the same way as variables or constants.10 Still,
the identification of the mistake, I trust, is interesting insofar as the process one
uses to discover the mistake is analogous to the process one might use to criticize
an unpalatable argument in non-mathematical settings. Thus, even for cases of
proofs, there could be a role for the informal logician—notice that the mistake
wasn’t discovered by appealing to some formalization of the statements in a suitable
language. Rather, this appraisal takes place in natural language.

15.3 Assessing Mathematical Evidence

Mathematicians regularly use evidentiary or non-deductive methods such as
computer-assisted proofs, probabilistic sieves, partial proofs and abduction.11

And mathematicians seem to be pretty good at assessing these uses. Although
some mathematical mistakes may remain temporarily unnoticed, claims that are
supported by less than deductive means are often ripe for reconsideration—
they may even receive closer scrutiny than their deductively justified cousins.
In this section I consider how some of these means of support are assessed by

10One way to understand the mistake is that the argument treats the ‘ f ’ of f (x) to be capable of
manipulation. Suppose f (x) = x2. Then for any n, f (n) = f (−n). Then, dividing both sides by f ,
one gets n =−n. Since sin is a function symbol, it isn’t itself manipulable. Instead, the function is
manipulable only when it is given with an attending argument.
11James Franklin (1987, revised version reprinted in this collection) gives a brief sample of some
of the acceptable non-deductive methods.
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mathematicians. I compare the mathematical method with techniques from informal
logic to show they are similar if not identical. This leads me to conclude that the
logic of assessment underwriting this practice is informal logic.

15.3.1 Computers and Probabilistic DNA Evidence

In a series of papers, Don Fallis (1996, 1997, 2003) argues that probabilistic
evidence ought to be given more credence in mathematics. A surprising use of
probabilistic evidence in graph theory concerns the discovery of Hamiltonian Paths
among sets of points by encoding the points with unique DNA addresses such that
a Hamiltonian Path exists only if the sequences of DNA addresses, when mixed
in an appropriate solution, combine to form a double helix. The method is reliable
and repeatable. That is, the method could result in false-rejections—cases where
no double helix is found though there does exist a Hamiltonian Path—though not
false positives (Fallis, 1996, 1997). Moreover, even if there were a false positive,
there is an ancillary method by which these results can be checked to determine
whether the DNA constitutes a real Hamiltonian Path. Fallis argues that there aren’t
good epistemological reasons to reject such evidence as proofs. As that argument
is outside the scope of this paper, bracket it. Instead, I’m interested in how a
mathematician would appraise this evidence.

Informal logic, as a theory of argument appraisal, distinguishes two endeavors:
analyzing and evaluating arguments. To see this process at work in a non-
mathematical, evidentiary case, consider the following.

During excavations of the Bronze Age levels at El Mirador Cave, a hole containing
human remains was found. Tapaphonic analysis revealed the existence of cutmarks, human
toothmarks, cooking damage, and deliberate breakage in most of the remains recovered,
suggesting a clear case of gastronomic cannibalism (Cáceres et al., 2007, 899).12

There are many different informal techniques one could use to analyze this bit
of reasoning: as a Toulmin Diagram (Toulmin, 2003, 87ff.), as a numbered step
argument or as an argumentation scheme. Let’s use a scheme. Schemes present a
standard format or template for argument types. To assess an argument’s structure
one reconstructs the argument using the structure of the chosen scheme. This makes
it easier to identify the explicit argumentative elements as well as any material
that is left tacit in the reasoning. Along with the canonical form, the scheme also
provides evaluative critical questions. In this case, the scheme known as Argument
from Sign13 seems appropriate. It has two kinds of premises. One is called the
specific premise: Some finding, A, is true in this situation. Next there is a general

12In what follows I’ve left out the qualifier ‘gastronomic’ because, for the purposes of providing an
example, it is unnecessary. Gastronomic Cannibalism is distinguished by physical anthropologists
from Ritualistic Cannibalism solely in terms of purpose (Cáceres et al., 2007, 899).
13For a textbook treatment of this scheme, see (Walton, 2006, 112–4).
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premise: Such a finding is indicative of some object, event or action, B. This leads
to a conclusion: B obtains, occurs or happens (in this situation). Reconstructing the
above argument as an Argument from Sign, one gets as a specific premise: ‘[Most
of the human remains recovered at El Mirador Cave contained] cutmarks, human
toothmarks, cooking damage and deliberate breakage.14 The general premise is:
‘[the existence of cutmarks, toothmarks, cooking damage and deliberate breakage]
suggests cannibalism.’ The conclusion, then, is, ‘[The Bronze Age inhabitants of
El Mirador Cave practiced (in at least one instance) cannibalism.]’15

To evaluate an argument using a scheme, one answers the critical questions
associated with the scheme. The critical questions typically fall under two broad
categories: (a) acceptability of the premises, and (b) amount of support the premises,
if true, would confer upon the conclusion. In the case of Argument from Sign, the
two critical questions are: (1) How strongly is the sign correlated with the result?
and (2) Are there counter-signs that indicate a different result or which undermine
the acceptability of the sign in this case? The answers to these questions are not
always readily available. However, in this case, later in the article the authors answer
question (1) affirmatively (Cáceres et al., 2007, 905) and question (2) in the negative
(Cáceres et al., 2007, 912–3). This means that the argument, though defeasible,
strongly supports its conclusion.

I’ll apply this same appraisal technique to the DNA arguments considered (Fallis,
1996, 1997). Take a graph, G, with directed edges and for which the starting node,
vin, and ending node, vout , are specified. A Hamiltonian Path starts from vin, ends at
vout , and travels across each edge of G exactly once. The Hamiltonian Path Problem
is to determine for an arbitrary directed graph whether there exists a Hamiltonian
Path through the graph. This problem has been proven to be NP-complete (Karp,
1972, 85ff.), which means that non-deterministic algorithms are likely to be the only
kinds of solutions available. Leonard Adleman provides such an algorithm whose
implementation involves the use of DNA.

Step 1: Generate random paths through the graph.
Step 2: Keep only those paths that begin with vin and end with vout .
Step 3: If the graph has n vertices, then keep only those paths that enter exactly n vertices.
Step 4: Keep only those paths that enter all of the vertices of the graph at least once.
Step 5: If any paths remain, say ‘Yes’; otherwise say ‘No.’ (Adleman, 1994, 1021–2).

Adleman implemented this algorithm by encoding a graph’s vertices as DNA
addresses. Then, given DNA ligation, the process by which single strands attach
to form double strands, mixing a sufficient quantity of the addresses will produce
random paths through the graph (Step 1). Moreover, given accepted techniques for
distinguishing DNA sequences, Adleman could complete steps 2–4. Step 5 depends
upon whether there are any double helices in the mix.

14The use of square brackets, ‘[’ and ‘]’, indicates that this material is either paraphrased from the
original material or added to the material.
15The conclusion is clearly indicated by the phrase ‘suggests a clear case of gastronomic
cannibalism’.
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Fallis, recall, wants to argue that from the standpoint of epistemology, the DNA
implementation of this algorithm, with its explicit error measure, entails as much
certainty as that of any sufficiently long mathematical proof (Fallis, 1996, 166). The
details of this fascinating argument are tangential to the present project. Instead,
consider a particular (hypothetical) case of Adleman’s DNA implementation of the
algorithm analyzed and evaluated as an Argument from Sign. That is, suppose that
Adelman implements the algorithm for a particular graph G such that the result
in step 5 was ‘No.’ In such a case the specific premise would be: ‘The DNA
implementation of the algorithm gave ‘No’ as the answer regarding graph G.’ The
general premise would be: ‘A ‘No’ answer for graph G is a sign/indication that there
does not exist a Hamiltonian Path for G.’ And the conclusion would be: ‘Graph
G doesn’t have a Hamiltonian Path.’ The evaluation would follow precisely the
evaluation of the argument regarding cannibalism at El Mirador Cave above.

A related mathematical method involves the use of computers in proofs. The
most famous and oft discussed example was the use of a computer in proving
the Four-Color Theorem.16 Again, whether the appeal to computers ought to be
considered a legitimate case of proving is tangential to this discussion. Instead, I’m
interested in how mathematicians would assess any particular case of appealing to
computers. In the case of the Four-Color Theorem, the proof is simple to explain.
For the most part, it is a proof by mathematical induction. There are three cases, one
of which contains thousands of subcases. To handle the sheer number of subcases
would be outside of the ability of any human. But, a computer could check each of
these subcases. Moreover, the structure of the argument would resemble the DNA
implementation algorithm in its gross structure. That is, the mathematician would
prepare the computer in some way; then, by running the program, the mathematician
would get an answer. If the answer were ‘yes,’ that would be a sign that subcase is
four-colorable. If the answer were ‘no,’ that would be a sign that the subcase is not
four-colorable. The program was executed and the answer was ‘yes.’ Hence, four
colors suffice.

At least in these two cases,17 the methodology of appraisal or assessment
cannot be formal in the sense of formal logic—mathematicians didn’t try to recast
these arguments as formulas in a first-order language to determine whether the
consequences follow as a matter of derivation or formal semantics. As I have
shown, one can assess the reasoning using principles and techniques from informal
logic.18 Moreover, the techniques actually used by mathematicians to assess these
arguments are precisely these informal logical techniques. One caveat is that no

16For an illuminating philosophical discussion of the use of computers in the proof of the Four-
Color Theorem see (Detlefsen and Luker, 1980).
17Whereas DNA proofs will remain defeasible, computer proofs can have formal verifications.
18For a different assessment using the tools of Toulmin diagrams, see (Aberdein, 2007). There,
Aberdein reconstructs (a part of) the proof of the four-color theorem as an explicit Toulmin
diagram. The use of Argumentation Schemes vs. Toulmin Diagrams shouldn’t be thought of as
necessarily opposed. One may be able to capture all of the elements of a scheme in a diagram and
vice versa.
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mathematicians seems to have used an argumentation scheme like Argument from
Sign explicitly.19 One should focus on whether the reconstruction of mathematical
reasoning using explicit argumentation schemes would shed any light on the
practice. I think it will and does. That is, by reconstructing the DNA proofs as
explicit Arguments from Sign, one simplifies the gross structure of the argument—
the analysis—and one has recourse to general critical questions to guide the
evaluation of the arguments.

15.3.2 Abduction in Mathematics

The previous subsection takes as its point of departure those mathematical practices
under the purview of no axioms. Hence, those practices may be judged atypical.
Yet, turning to axiomatic systems—the very heart of what some may call the formal
approach—there is, even there, room for informal logic. Penelope Maddy argues
that the acceptability of axioms is itself a matter of reason though not of direct or
deductive proof (Maddy, 1988). She takes the development of set theory as a case
study in this practice. For simplicity’s sake, consider some arbitrary mathematical
claim, C. Maddy distinguishes two ways of coming to believe C. On the one hand, C
may be the consequence of some well established first principles, A, such that A �C.
This is usually the way mathematical claims are thought to garner acceptance. On
the other hand, C may garner acceptability in terms of its ‘fruitfulness.’ Suppose
C � P where P is some widely accepted mathematical claim. Does this implication
make C any more acceptable? Maddy, quoting Gödel, thinks so.

. . . besides mathematical intuition, there exists another (though only probable) criterion of
the truth of mathematical axioms, namely their fruitfulness in mathematics and, one may
add, possibly also in physics (Gödel, 1947, 485, quoted in Maddy, 1992, 77).

Maddy runs through a considerable number of examples of what she terms extrinsic
support. The important features of this practice, for my purposes, are that they are
widespread and not themselves reducible to deductive inferences. The most widely
discussed examples involve the acceptance of the axiom of choice.

But the question that can be objectively decided, whether the principle is necessary for
science, I should now like to submit to judgment by presenting a number of elementary
and fundamental theorems and problems that, in my opinion, could not be dealt with at all
without the principle of choice (Zermelo, 1908, 198–90, quoted in Maddy, 1988, 488).

19Below I suggest that proofs by Mathematical Induction have much in common with Argumen-
tation Schemes. Perhaps, Mathematical Induction is, simply put, a mathematical argumentation
scheme. Again, Poincaré’s views on mathematical induction could importantly prefigure this idea,
see (Detlefsen, 1992, 1993).
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The point, obviously, is that the utility of the axiom of choice in dealing with open
problems in mathematics provides reason to accept it, even if only hypothetically.

Let us now distinguish two questions about this practice. First, does the existence
of fruitful consequences provide any support for a mathematical claim? Second,
if so, how much? I take it that the widespread use of this practice suggests that
practitioners would answer the first question affirmatively. Regarding the second
question, I am much less sure what the correct answer is. But, I’m sure what it is
not. Abduction provides some measure of support, I just don’t know how much. This
means that, at best, the conclusion of an abductive inference ought to be accepted
with reservation. As I am not here arguing that abductive inferences are proofs, the
(perhaps vague) reservations attached to conclusions supported abductively do not
thereby undermine the use of informal logic.

Finally, to see that this practice both is even more widespread and has a
long history, consider the oft discussed application of summation techniques by
Leonhard Euler to divergent series, see (Pólya, 1968; Putnam, 1975; Sandifer,
2007). Put roughly, Euler applies techniques to divergent series that are only
categorically valid for convergent series. In this way, Euler finds a value for the
series A = 1− 1+ 2− 6+24−120+720−5040+ · · ·

This is the key result of this paper, but Euler understands that some readers might not
be convinced that he hasn’t made any mistakes. So, he solves the same problem several
other ways. For example, he finds diverging series for 1/A and logA, and finds that similar
methods also lead to a value of A near 0.59. He finds a way to write A and 1/A as continued
fractions and evaluates those continued fractions to get still more estimates consistent with
the ones before (Sandifer, 2007, 182).

Sandifer finds neither Euler’s conclusion nor his method irrational. Still, Euler was
obviously aware of the shaky footing of both result and method. So, to buoy the
method, he shows that it is consistent with other results and accepted techniques.

By the end of the article, Euler has estimated A at least six different ways, and every time he
gets the same estimate. When such different analyses all lead to the same conclusion, it is
easy to understand why mathematicians of Euler’s time believed in the utility of [divergent
series] (Sandifer, 2007, 183, emphasis added).

Sandifer’s assessment of Euler’s reasoning is simply an application of the techniques
and principles of informal logic (though perhaps tacitly). Indeed, Sandifer’s claims
in the above quote suggest that one understand Euler’s justification of the method
abductively; and at the same time to understand the justification of the result as an
accumulation of evidence. In both cases, there are argument schemes that accord
with (or predict) Sandifer’s assessment. This suggests a rather strong conclusion.
Informal logic is the logic of mathematical reasoning. In a later section I consider
this claim in the light of a debate between Jody Azzouni and Yehuda Rav concerning
derivations and their relation to mathematical proofs.
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15.3.3 A Preliminary Conclusion

Mathematicians already, though perhaps tacitly, use the techniques of informal
logic. They use them when they appraise proofs, and they use them when they
assess mathematical reasoning that isn’t proof. This is not to say that mathematicians
ought to pay more attention to informal logic or argumentation theory. Rather, this
suggests that an accurate philosophy of mathematics ought to recognize this use.
Hence, inasmuch as informal logic is already a part of mathematical practice, it
makes sense to make the use explicit as part of a larger project to construct a
philosophy of mathematics that takes practice seriously.

15.4 Proofs, Derivations and Algorithmic Systems

In this section, I turn to an account of mathematical proofs that has some affinities
with the informal logical account I suggested above. However, whereas I’ve
argued that mathematicians tacitly use informal logic as a theory of appraisal
for mathematical reasoning, this account would seem to make much more use of
formal technique. I argue that the appeal to formal techniques is unnecessary or
illusory.

Jody Azzouni defends an account of proofs he calls the ‘derivation indicator’
view (Azzouni, 2004, 2006). Put roughly, this means that a mathematical ‘proof’ is
a promissory note or an advertisement: either it promises that one can find a strict
derivation of the result of the proof from first principles, or it advertises the existence
of such a derivation. The proof is, in Azzouni’s words, ‘in the vernacular,’ whereas
the associated or promised derivation needn’t be.

This account could make room for informal logic within mathematical practice.
For, if proofs take place ‘in the vernacular,’ then, perhaps they ought to be assessed
in the vernacular as well. But this doesn’t seem to be what Azzouni intends.

[A]lthough it’s true (on [Azzouni’s] view) that proofs in Rav’s sense are indispensable to
mathematical practice, this is compatible with the claim (which is also true on [Azzouni’s]
view) that it’s derivations, derivations in one or another algorithmic system, which underlie
what’s characteristic of mathematical practice: in particular, the social conformity of
mathematicians with respect to whether one or another proof is or isn’t (should be, or
shouldn’t be) convincing (Azzouni, 2004, 83).

Azzouni defines algorithmic system as: ‘one where the recognition procedure for
proofs is mechanically implementable’ (op. cit.). He allows for quite a broad
understanding of what would count as such a system. For example, he thinks
that Euclidean geometry would count on this view. But this complicates rather
than clarifies the connection between proofs and derivations. Consider the proof
of Euclidean Proposition I.19.
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Proposition 19: In any triangle the greater angle is subtended by the greater side.

Proof. Let ABC be a triangle having angle ABC greater than angle BCA.; I say that the side
AC is also greater than the side AB.

A

B C

For, if not, AC is either equal to AB or less.
Now AC is not equal to AB; for then the angle ABC would also have been equal to angle
BCA [Prop. I.5]; but it is not [by stipulation]; therefore AC is not equal to AB.
Neither is AC less than AB, for then the angle ABC would also have been less than angle
BCA [by Prop. I.18], but it is not [by stipulation]; therefore AC is not less than AB.
And it was proved that it was not equal either.
Therefore AC is greater than AB.
Therefore [in any triangle the greater angle subtends the greater side.] (Euclid, 1956, 284).

The reason to choose this proposition and its proof is that it could be derived without
recourse to any geometrical reasoning at all. Instead, it is a logical consequence of
prior propositions by application of Aristotelian immediate inferences.20 What is the
proof and what is the derivation? Perhaps Azzouni would have the two identified in
this case. He doesn’t rule out this possibility, so it is open to him to take this option.
Still, this would mean that all of Euclid’s proofs are also derivations.21 To identify
these as such would, I think, take away some of the rhetorical force of Azzouni’s
otherwise tempting view.

What about proofs from other mathematical fields? Consider another example
from graph theory (Aigner and Ziegler, 2002, 47)—this one from The Book!

Theorem 1. In any configuration of n points in the plane, not all on a line, there is a line
which contains exactly two of the points.

Proof. Let P be the given set of points and consider the set L of all lines which pass
through at least two points of P . Among all pairs (P, l) with P not on l, choose a pair
(P0 , l0) such that P0 has the smallest distance to l0, with Q being the point on l0 closest to P0
(that is, on the line through P0 vertical to l0.

Claim. The line l0 does it!
If not, then l0 contains at least three points of P , and thus two of them, say P1 and P2,
lie on the same side of Q. Let us assume that P1 lies between Q and P2, where P1 possibly

20Heath’s footnote at (Euclid, 1956, 284–5).
21A distressing caveat: Euclid abbreviates his proofs, especially in the last step where the reasoning
from a particular figure is generalized. This means that, strictly speaking, each of Euclid’s proofs
is a proof sketch. This is different from the usual complaint about the incompleteness of Euclidean
proofs. The usual complaint is that the diagram fills in tacit assumptions, like continuity, that should
be made explicit, as in Pasch’s Axiom. I discuss proof sketches in more detail below.
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coincides with Q. It follows that the distance of P1 to the line l1 determined by P0 and P2 is
smaller than the distance of P0 to l0, and this contradicts our choice for l0 and P0. ��

Is this a proof or a derivation? It seems a prototypical proof. Yet, if Azzouni is
correct, then one way to critique a proof is to undermine the underlying derivation.
So, it matters whether this example is a proof, a derivation, or both. He asserts that
proofs take place in natural language, but in what language do derivations occur?
Here’s a conjecture: (At least some) derivations occur in natural language too. There
isn’t a formal language in which proofs are recast as derivations. Instead, if the
conjecture is correct, then the only proofs that aren’t also derivations are proofs
with gaps—intentional or not. Intentional gaps occur in ‘proof sketches.’ This raises
two related questions, why isn’t Azzouni’s distinction simply between proofs and
incomplete proofs? What gaps are sufficient to keep a proof sketch or an incomplete
proof from being a proof-proper or a derivation?

To answer these questions, one must get a better sense for the prerequisites of
Azzouni’s algorithmic systems. Notice that they aren’t called logical systems or
deductive systems. Instead of being deductively or logically perfect, an algorithmic
system’s implementation must be ‘mechanically recognizable.’ This is one instance
where Azzouni’s account directly competes with Yehuda Rav’s account (Rav, 1999).
Rav asserts that proofs contain irreducibly semantic or intensional content that isn’t
captured by derivations. To see a non-mathematical example of what I think is at
issue, consider the reasoning: Andrew is a bachelor; therefore he’s unmarried. One
might think that the ‘therefore’ indicates that the arguer has a (logical) derivation
although the reasoning is, as stated, incomplete. On the other hand, one might
think that the reasoning is complete—that it is complete because the meanings of
‘bachelor’ and ‘unmarried’ overlap in a way that allows one to infer unmarried-ness
immediately from bachelorhood. On this view there is no intermediate step that
connects bachelorhood and unmarried-ness. Compare with what Rav says about
moves in proofs.

[typical moves in a proof] bring to light the intensional components in a proof: they have
no independent logical justification other than serving the purpose of constructing bridges
between the initially given data, or between some intermediate steps, and subsequent
parts of the argument. But the bridges are conceptual, not deductive in the sense of logic
(Rav, 1999, 13), quoted in Azzouni, 2004, 101.

My guess is that Azzouni’s profligate view on algorithmic systems would simply
expand to countenance any ‘proof’ that Rav thinks is irreducibly intensional. That is,
any proof that Rav would classify as containing intensional components would most
likely be classified as algorithmically acceptable on Azzouni’s account. Moreover,
the assessments of either proofs for Rav or derivations for Azzouni will take place
within informal logic. Again, this suggests a rather strong conclusion about which
logic is the logic of appraisal in mathematics: it’s informal logic.22

22There is nothing in the conception of informal logic I accept that would preclude the informal
logician from partaking in the fruits of the formal logician’s labor. The informal logician simply
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15.5 Mathematical Discourse: Problems, Questions
and Conclusions

When one applies informal logic to non-mathematical arguments in real contexts,
there are many practical problems that don’t occur in the mathematical cases.
For example, it is quite difficult in practice to determine whether some (non-
mathematical) discourse contains an argument. Indeed, in teaching the techniques
of argument assessment, argument identification, although it is glossed in most
textbook treatments, is where students have great difficulties.23 Contrast this
difficulty with one context in which proofs occur: mathematics texts including
journals. In these contexts, mathematicians offer their proofs in a highly stylized
manner. This includes clearly indicating the conclusion of the reasoning. Also, the
starting point of the reasoning is, more often than not, indicated by the word, ‘Proof.’
Teaching argument assessment would be greatly simplified if authors generally
indicated their conclusions and the start of their reasoning explicitly.

There are, of course, contexts in which even mathematicians are less explicit
about indicating conclusions and reasons. But this serves to connect mathematical
discourse more closely with other contexts rather than separating them. Even in the
contexts in which both the conclusion and the reasoning are clearly indicated, this
doesn’t preclude the use of informal logical techniques and principles. Rather, it
looks as if mathematicians use precisely the tools of informal logic, whether they
realize and recognize this or not.

Insofar as the forgoing claim is correct and mathematicians are already informal
logicians, is there anything to be gained by making this explicit—that is, are there
mathematically important results that will accrue from making the practice explicit?
I think not. Naming the practice of mathematicians ‘informal logic’ won’t change
the practice. But this isn’t as negative a result as one might first imagine. Instead, if
the focus is on philosophy of mathematics rather than mathematics proper, one can
see that giving an accurate account of mathematics as it is practiced, as opposed to
its mythic formal practice, is a gain over previous philosophies of mathematics.

This also means that there are a number of open research questions. For example,
are there any paradigmatically mathematical argumentation schemes, fallacies, etc.?
Above, I used the scheme Argument from Sign to assess a mathematical argument.
But this scheme isn’t mathematical, it is general. Perhaps mathematical induction
is a quintessentially mathematical scheme.24 As a scheme it is no more formal than
Argument from Sign. Moreover, it is taught in much the same way that argument
schemes are taught: the neophyte is presented with simple examples for illustration

denies that the method by which mathematical (or really any) reasoning gets appraised is
translation into formal language and comparison with accepted formal results.
23See Michael Malone’s argument that this is a theoretical as well as practical problem
(Malone, 2003).
24Other possible mathematical argumentation schemes include: mathematical symmetry
arguments and mathematical analogies, e.g., (Steiner, 1998, 48ff.).
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purposes. The format of the argument is presented, though the actual format for any
particular proof by mathematical induction may only approximate the canonical
form—for example, how many cases, if any, to consider. Next, one tries out the
technique on more complicated cases. Finally, after long practice, one learns when
the base case is trivial, when there are multiple cases, when cases are treated
symmetrically, etc. Mathematicians may make the analytic element of argument
assessment much easier by labeling their reasoning explicitly. Indeed, one could
take the practice of using mathematical induction to be one in which the arguer does
all of the steps of argument analysis for the audience. An argument critic’s only job
is to assess the quality of the argument as presented.

Another open question regards whether, or to what extent, mathematics is
dialectical. Imre Lakatos explicitly raised this issue (Lakatos, 1976). But there are
hints at dialectical considerations much earlier in the history of mathematics.

Let us first inquire why [Euclid] even includes in the theorem the equality of the angles
under the base. He is never going to use this result for the construction or demonstration of
any other problem or theorem. Since it will not be used later, why was it necessary to bring
it into this theorem. To this question we must reply that, even if he was never intending to
use ‘and the angles under the base of an isosceles triangle are equal,’ nevertheless it will be
useful in meeting objections to them and refuting their adversaries. It is a mark of scientific
and technical skill to arrange in advance for the undoing of those who attack what is going
to be said and to prepare the positions from which one can reply, so that these previously
demonstrated matters may later serve not only for establishing the truth, but also for refuting
error (Proclus, 1992, 102–3).

The idea that Euclid presents the propositions in an order that allows for better
strategic, rhetorical or dialectical positioning suggests that dialectics have long been
essential in mathematics—perhaps going all the way to the very beginnings of
mathematics. The question for informal logicians is how best to account for the
dialectic elements of mathematics. For example, Erik Krabbe argues that proofs
can be or ought to be recast as dialogues (Krabbe, 1991, 1997). The strategy of
recasting these arguments as dialogue, i.e. of considering proofs to be implicit
dialogues, falls out of a general theory of reasoning championed by Krabbe, see
(Walton and Krabbe, 1995). The implicit dialogue strategy would account for the
dialectical elements of proofs.

Whatever the answers to these questions are, it should be clear that mathematical
reasoning is already in accord with principles and techniques from informal logic—
even if this is unnoticed by the practitioners. Thus, it will be important, if one
wants one’s philosophy of mathematics to have an accurate account of mathematical
practice, to include informal logic in the methodology of mathematics.
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Chapter 16
Bridging the Gap Between Argumentation
Theory and the Philosophy of Mathematics

Alison Pease, Alan Smaill, Simon Colton, and John Lee

16.1 Introduction

Mathematicians have traditionally attributed great importance to proofs, since
Euclid’s attempts to deduce principles in geometry from a small set of axioms
(despite insufficiencies in certain proofs in Euclid’s Elements, in terms of reliance on
diagrams and physical constructions which were not formally defined). Experience
of the fallibility of proofs led many mathematicians to change their view of the
principal role that proof plays from a guarantee of truth; to new ideas such as an
aid to understanding a theorem (Hardy, 1928), a way of evaluating a theorem by
appealing to intuition (Wilder, 1944), or a memory aid (Pólya, 1945). Lakatos,
via the voice of the teacher in (Lakatos, 1976), suggested that we see a proof
as a thought-experiment which “suggests the decomposition of a conjecture into
subconjectures or lemmas, thus embedding it in a quite possibly distant body of
knowledge” (Lakatos, 1976, 9). This change in the perception of the role of proof
in mathematics, from its lofty pedestal of infallible knowledge to the more familiar
level of flawed and informal thought, suggests that work in argumentation theory,
commonly inspired by practical argument such as legal reasoning, may be relevant
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to the philosophy of mathematics. Conversely, the fertile domain of mathematical
reasoning can be used to evaluate and extend general argumentation structures.

The relationship between the philosophy of mathematics and argumentation
theory has already borne fruit. In Toulmin’s well-known model of argumentation
(Toulmin, 1958), written as a critique of formal logic, he argued that practical
arguments focus on justification rather than inference. His layout comprises six
interrelated components: a claim (the conclusion of the argument), data (facts we
appeal to as the foundation of the claim), warrant (the statement authorising the
move from the data to the claim), backing (further reason to believe the warrant),
rebuttal (any restrictions placed on the claim), and a qualifier (such as “probably”,
“certainly” or “necessarily”, which expresses the force of the claim). While Toulmin
did consider mathematical arguments, for example, (Toulmin, 1958, 135–136), he
initially developed his layout to describe non-mathematical argument.1 However,
he later applied the layout to Theaetetus’s proof that there are exactly five platonic
solids (Toulmin et al., 1979). Aberdein has shown that Toulmin’s argumentation
structure can represent more complex mathematical proofs; such as the proof
that there are irrational numbers α and β such that αβ is rational (Aberdein,
2005), and the classical proof of the Intermediate Value Theorem (Aberdein, 2006).
Alcolea Banegas (1998) has shown that Toulmin’s argumentation structure can
also be used to represent meta-level mathematical argument, modelling Zermelo’s
argument for adopting the axiom of choice in set theory (described in Aberdein,
2005). Alcolea Banegas also presents a case study of Appel and Haken’s computer
assisted (object level) proof of the four colour theorem (Aberdein suggests, in 2005,
an alternative representation of this theorem, which also uses Toulmin’s layout). In
his (2006), Aberdein describes different ways of combining Toulmin’s layout, and
uses his embedded layout to represent the proof that every natural number greater
than one has a prime factorisation.

Lakatos (1976) championed the informal nature of mathematics, presenting a fal-
libilist approach to mathematics, in which proofs, conjectures and concepts are fluid
and open to negotiation. He saw mathematics as an adventure in which, via patterns
of analysis, conjectures and proofs can be gradually refined. Lakatos demonstrated
his argument by presenting rational reconstructions of the development of Euler’s
conjecture that for any polyhedron, the number of vertices (V) minus the number
of edges (E) plus the number of faces (F) is equal to two, and Cauchy’s proof
of the conjecture that the limit of any convergent series of continuous functions
is itself continuous. He also presented a rational reconstruction of the history
of ideas in the philosophy of mathematics. Lakatos’s work in the philosophy of
mathematics had three major sources of influence: firstly, Hegel’s dialectic, in which

1For instance, Toulmin argues that “mathematical arguments alone seem entirely safe” from time
and the flux of change, adding that “this unique character of mathematics is significant. Pure
mathematics is possibly the only intellectual activity whose problems and solutions are ‘above
time’. A mathematical problem is not a quandary; its solution has no time-limit; it involves no
steps of substance. As a model argument for formal logicians to analyse, it may be seducingly
elegant, but it could hardly be less representative” (Toulmin, 1958, 127).
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the thesis corresponds to a naïve mathematical conjecture and proof; the antithesis
to a mathematical counterexample; and the synthesis to a refined theorem and proof
(described in these terms in Lakatos, 1976, 144–145); secondly, Popper’s ideas on
the impossibility of certainty in science and the importance of finding anomalies
(Lakatos argued that Hegel and Popper “represent the only fallibilist traditions in
modern philosophy, but even they both made the mistake of preserving a privileged
infallible status for mathematics”, Lakatos, 1976, 139); and thirdly, Pólya’s (1954)
work on mathematical heuristic and study of rules of discovery and invention, in
particular defining an initial problem and finding a conjecture to develop (Lakatos
claimed that the discussion in his (1976) starts where Pólya’s stops (Lakatos, 1976,
7, footnote 1)). Lakatos held an essentially optimistic view of mathematics, seeing
the process of mathematical discovery in a rationalist light. He challenged Popper’s
view that philosophers can form theories about how to evaluate conjectures, but
not how to generate them2 in two ways: (i) he argued that there is a logic of
discovery, the process of generating conjectures and proof ideas or sketches is
subject to rational laws; and (ii) he argued that the distinction between discovery
and justification is misleading as each affects the other; i.e., the way in which we
discover a conjecture affects our proof (justification) of it, and proof ideas affect
what it is that we are trying to prove (see Larvor, 1998). This happens to such an
extent that the boundaries of each are blurred.3

There are a few explicit and implicit overlaps between Lakatos’s work and
argumentation theories. Aberdein (2006) uses Toulmin’s layout to describe and
extend Lakatos’s method of lemma-incorporation, where a rebuttal (R) to a claim
(C) is a global counterexample, and the argument is repaired by adding a lemma (L),

2Popper (1959) argued that the question of generation should be left to psychologists and
sociologists: “The question of how it happens that a new idea occurs to man. . . may be of great
interest to empirical psychology; but it is irrelevant to the logical analysis of scientific knowledge”
(ibid., 31), and shortly after emphasised again, that: “there is no such thing as a logical method of
having new ideas” (ibid., 32).
3The question of whether mathematical claims and proofs are socially constructed is clearly
pertinent to our own thesis that argumentation theory is relevant in a mathematical context.
Whether Lakatos held a social-constructivist philosophy of mathematics is controversial (but
perhaps irrelevant for our current thesis). However, there are certainly social aspects in Lakatos’s
theory: in particular his emphasis on the influence that Hegel’s dialectic had on his thinking, and
his presentation of mathematical development as a social process of concept, conjecture and
proof refinement, presented in dialogue form. Ernest (1997) develops Lakatos’s fallibilism
and ideas on negotiation and acceptance of mathematical concepts, conjectures and proofs
(together with Wittgenstein’s socially situated linguistic practices, rules and conventions) into a
social-constructivist philosophy of mathematics. Goguen also presents a defence of the social-
constructivist position, arguing that although mathematicians talk of proofs as real things, “all
we can ever actually find in the real world of actual experience are proof events, or “provings”,
each of which is a social interaction occurring at a particular time and place, involving particular
people, who have particular skills as members of an appropriate mathematical social community.”
(Goguen, 1999, 288). He continues in a very Lakatosian vein to criticise the way mathematicians
often hide obstacles and difficulties when presenting their proofs, advocating that the drama be
reintroduced.
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which the counterexample refutes, as a new item of data (R→¬L) and incorporating
the lemma into the claim as a precondition (L → C). Pedemonte (2001) discusses
the relationship between the production of a mathematical conjecture and the
construction of its proof-object, referred to as cognitive unity. This can be compared
to Lakatos’s logic of discovery and justification. While Lakatos viewed the two
processes as circular, with changes in the proof suggesting changes to the conjecture
and vice versa, as opposed to Pedemonte’s assumption of a chronological order,
the two theories can be seen as cognitive and philosophical counterparts. Naess’s
(1953) work on argumentation can also be compared to Lakatos’s theory: he argues
that discussion can be about interpretation of terms, during which a process of
precization takes place. If this fails to lead to agreement then evidence is weighed
up to see which of two interpretations is more acceptable. There are very strong
parallels between this and Lakatos’s method of monster-barring in particular, but
also his other methods of conjecture and proof refinement. Another similarity is
the degree of precization required: both Lakatos and Naess argued that we should
make our expressions sufficiently precise for the purposes at hand, rather than aim
to resolve all ambiguity (Naess, 1947).4

The rest of this paper is structured as follows: in Sect. 16.2 we describe our com-
putational model of Lakatos’s theory, HRL, which has suggested new connections
between argumentation theory and the philosophy of mathematics. In Sect. 16.3
we discuss how we have represented Cauchy’s proof of Euler’s conjecture by
using work by Haggith on argumentation representation and structures. Section 16.4
contains a discussion of aspects of Lakatos’s method of lemma-incorporation and
how they have affected our algorithmic realisation: we also describe our algorithms
for each type of lemma-incorporation and for determining which type to perform.
In Sect. 16.5 we outline some connections between Haggith’s argumentation
structures and Lakatos’s methods and show how other mathematical examples can
be described in this way. We conclude in Sect. 16.6.

16.2 A Computational Model of Lakatos’s Theory

Lakatos outlined various methods by which mathematical discovery and
justification can occur. These methods suggest ways in which concepts, conjectures
and proofs gradually evolve via interaction between mathematicians, and
include surrender, monster-barring, exception-barring, monster-adjusting, lemma-
incorporation, and proofs and refutations. Of these, the three main methods of

4We thank one of our reviewers for pointing out the relevance of precization. U is more precise than
T if any interpretations of U are also interpretations of T , but there are interpretations of T which
are not interpretations of U . Both Naess and Lakatos see agreeing on meaning of terms as a stage
of a discussion (as opposed to a pre-requisite to it as, for example, Crawshay-Williams, 1957).
Naess also shares with Lakatos an approach to philosophy which is mainly based on descriptive,
rather than normative aspects.
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theorem formation are monster-barring, exception-barring, and the method of proofs
and refutations (Lakatos, 1976, 83). Crudely speaking, monster-barring is concerned
with concept development, exception-barring with conjecture development, and the
method of proofs and refutations with proof development. However, these are not
independent processes; much of Lakatos’s work stressed the interdependence of
these three aspects of theory formation. We hypothesise that (i) it is possible to
provide a computational reading of Lakatos’s theory, and (ii) it is useful to do so. To
test these two hypotheses we have developed a computational model of Lakatos’s
theory, HRL.5 Running the model has provided a means of testing hypotheses about
the methods; for instance that they generalise to scientific thinking, or that one
method is more useful than another. Additionally, the process of having to write an
algorithm for the methods has forced us to interpret, clarify and extend Lakatos’s
theory, for instance identifying areas in which he was vague, or omitted details.6

In keeping with the dialectical aspect of (Lakatos, 1976), our model is a multi-
agent dialogue system, consisting of a number of student agents and a teacher agent.
Each agent has a copy of the theory formation system, HR (Colton, 2002), which
starts with objects of interest (e.g., integers) and initial concepts (e.g., division,
multiplication and addition) and uses production rules to transform either one or
two existing concepts into new ones. HR also makes conjectures which empirically
hold for the objects of interest supplied. Distributing the objects of interest between
agents means that they form different theories, which they communicate to each
other. Agents then find counterexamples and use methods identified by Lakatos to
suggest modifications to conjectures, concept definitions and proofs.

In this paper we are concerned with our algorithmic realisation of the method of
proofs and refutations, and its mutually beneficial association with work from argu-
mentation theory. Other aspects of the project are described in (Pease et al., 2004).

16.3 A Computational Representation of Cauchy’s Proof

The method of lemma-incorporation, developed via the dialectic into the method
of proofs and refutations, is considered by Lakatos to be the most sophisticated
in his (Lakatos, 1976). Commentators and critics, for instance (Corfield, 1997) or
(Feferman, 1978), usually share this view, often seeing the rest of the book as a

5The name incorporates HR (Colton, 2002), which is a system named after mathematicians
Godfrey Harold Hardy and Srinivasa Aiyangar Ramanujan and forms a key part of our model,
and the letter “L”, which reflects the deep influence of Lakatos’s work on our model.
6Since Lakatos’s work (1976) was the first attempt to characterise informal mathematics (see
Corfield, 1997; Feferman, 1978), it is likely to be incomplete, and hence be open to criticism and
extension. Lakatos himself neither considered the methods complete nor definitive, arguing only
that they provide a more realistic and helpful portrayal of mathematical discovery than Euclidean
(deductive) methodology.
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part 1 part 2

part 3

a b

Fig. 16.1 Given the cube,
after removing a face and
stretching it flat, we are left
with the network in part 1.
After triangulating, we get
part 2. When removing a
triangle, we either remove
one edge and one face, or two
edges, one vertex and a
face—shown in parts 3 (a)
and (b) respectively

prelude to this method.7 The method works on a putative proof of a conjecture: the
main example in (Lakatos, 1976) is Cauchy’s (1813) proof of Euler’s conjecture that
for all polyhedra, V −E+F is 2. Therefore, in order to model lemma-incorporation
in HRL, we need a way of representing an informal mathematical proof.

16.3.1 Cauchy’s Proof

Lakatos argued that nineteenth century mathematicians viewed Cauchy’s proof of
Euler’s conjecture in (Cauchy, 1813) as establishing the truth of the ‘theorem’
beyond doubt (Lakatos, 1976, 8, cites Crelle, 1827, Jonquières, 1890 and
Matthiessen, 1863 as examples). For a diagrammatic representation of these steps,
carried out on the cube, see Fig. 16.1, taken from (Lakatos, 1976, 8).

Step 1: Let us imagine the polyhedron to be hollow, with a surface made of thin rubber.
If we cut one of the faces, we can stretch the remaining surfaces flat on the blackboard,
without tearing it. The faces and edges will be deformed, the edges may become curved,
and V and E will not alter, so that if and only if V −E +F = 2 for the original polyhedron,
V −E +F = 1 for this flat network - remember that we have removed one face. Step 2:
Now we triangulate our map - it does indeed look like a geographical map. We draw
(possibly curvilinear) diagonals in those (possibly curvilinear) polygons which are not
already (possibly curvilinear) triangles. By drawing each diagonal we increase both E and
F by one, so that the total V −E +F will not be altered. Step 3: From the triangulated map
we now remove the triangles one by one. To remove a triangle we either remove an edge -
upon which one face and one edge disappear, or we remove two edges and a vertex - upon
which one face, two edges and one vertex disappear. Thus, if we had V −E+F = 1 before a
triangle is removed, it remains so after the triangle is removed. At the end of this procedure
we get a single triangle. For this V −E +F = 1 holds true. (Lakatos, 1976, 7–8)

7This is possibly because, despite different perspectives on the role of proof in mathematics, the
idea that it is an important one is generally accepted, and these are the only methods to consider
the ‘proof’ of a conjecture.
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Fig. 16.2 A representation of Cauchy’s proof of Euler’s conjecture, using Toulmin’s layout, where
steps 1–3 are as described above, taking into consideration the first counterexample. The data are
the facts which initially inspire the conjecture in Lakatos’s (1976)

16.3.2 Representing Informal Mathematical Proofs

Cauchy’s proof can be represented in a variety of ways using Toulmin’s layout.
We show one of the simplest ways in Fig. 16.2; more sophisticated versions
might include multiple-linked, or nested layouts (as in Aberdein, 2005, 2006)
where individual proof steps each form a claim in one argument, which then
(possibly combined with other premises) forms the data in a subsequent argument.8

However, while Toulmin picked apart argumentation structures and showed how
the traditional “Minor Premise, Major Premise, so Conclusion” was too crude to
represent the way in which people actually argue, he mainly identified different
types of statement which in some way support a claim. There is only one type
of statement in Toulmin’s layout which opposes a claim: a rebuttal. This can be
interpreted in different ways: as a rebuttal to the claim, a rebuttal to the warrant,
a rebuttal to an implicit premise, or as a statement which supports a refutation of
the claim, and its function is still under debate (see Reed and Rowe, 2005, 15–19).
Pollock (1995) defines a rebutting defeater R as a reason for denying a claim P
which is supported by prima facie reason Q. He claims (ibid., 41) to have been the
first to explicitly point out defeaters other than a rebuttal, in (Pollock, 1970), and
identifies the undercutting defeater. This defeater attacks the connection between

8It would be interesting to investigate how many of the arguments described in (Lakatos, 1976)
can be represented in this layout.
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a prima facie reason and the conclusion, rather than attacking the conclusion
directly. For the purposes of our computational model we have adopted a meta-level
argumentation framework (Haggith, 1996), consisting of a catalogue of argument
structures which give a very fine-grained representation of arguments, in which
both arguments and counter-arguments can be represented. While this framework
may lack Toulmin’s analysis of statements which support a claim (and has no
way of representing a qualifier), it is clear which part of an argument a rebutter
rebuts. Given Lakatos’s emphasis on both the importance and the different types of
counterexample, we deemed this framework appropriate for our needs.

16.3.3 Haggith’s Argumentation Structures

Haggith (1996) starts from the viewpoint that if a domain is controversial, then
there may be more than one answer to a question and therefore disagreements may
be useful, rather than an obstacle to be overcome. The primary goal of the system
described in Haggith’s (1996), therefore, is to explore rather than resolve conflicts.
In order to incorporate a high degree of flexibility, Haggith represents arguments at
the meta-level which is independent of logic or any specific representation language
or domain.

Haggith’s representation language describes three categories of meta-level ob-
ject: proposition names, arguments and sets. The symbols used in the alphabet are:
A1, A2, . . . to denote proposition names, “⇐” the argument constructor, the standard
set and logical symbols, some relation names (such as disagree) and brackets and
commas. An argument A in which C is the conclusion, derived from premises P1
and P2, where P2 is itself derived from premise P3, is represented as:

A = {C ⇐ {P1,P2 ⇐ {P3}}}

There are two destructor relations for looking inside argument and set terms: set
membership, ∈, which is a two-place, infix relation where P ∈ S if, for some S1,
S = S1∪{P}; and argument which is a three-place relation, where argument(A,P,S)
if A is the argument P ⇐ S and P is called the conclusion and S is called the
premise set. A further destructor, the support relation can be defined from the
other two. This holds between two propositions, the second of which occurs in
an argument for the first: supports(P,Q) holds if there exists A, argument(A,P,S)
and, either Q is a member of S, or there exists A1, a member of S, such
that argument(A1,P1,S1) and supports(P1,Q). Haggith has defined four primitive
relations at the meta-level which express links and contrasts between object level
propositions: equivalent(P,Q), where P and Q are names of propositions which
mean the same; disagreement(P,Q), where P and Q are names of propositions
which disagree or express a conflict; elaboration(P,S), where P is a proposition
name and S is a set of names of propositions which elaborate or embellish upon
P; and justi f ication(P,S), where P is a proposition name and S is a set of names
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of propositions which are a justification of P. Haggith provides some properties of
these relations which restrain their possible applicability, for instance:

• disagreement(P,Q)→ disagreement(Q,P);
• disagreement(P,Q)→ not(equivalent(P,Q)); and
• (equivalent(P,Q) & elaboration(P,S))→ elaboration(Q,S).

Haggith then constructs higher order, meta-level relations defined in terms of
the four primitive relations. It is Haggith’s development of these argumentation
structures that distinguishes her work from standard box-arrow systems. We give
two of the structures in detail here and sketch the rest below. We use the letters “X”
and “Y” to represent anonymous variables. Rebuttal, inspired by (Elvang-Goransson
et al., 1993), is a relation between arguments whose conclusions disagree. The meta-
level definition is:

• rebuttal(P) is the set of arguments, A, such that
disagreement(P,Q) & argument(A,Q,X).

• rebuts(A,B) if argument(A,P,X) & member(B,rebuttal(P)).

That is, the rebuttal of a proposition P is the set of arguments for any propositions
which disagree with P. Two arguments rebut each other if one is a member of
the rebuttal of the conclusion of the other. Haggith’s notion of rebuttal fits with
an interpretation of the Toulminian rebutter as one which rebuts the claim. It also
coincides with Pollock’s definition of rebuttal.

Undercutting is inspired by (Toulmin, 1958) and defined as follows: an argument
A, with conclusion Q, undercuts an argument B if for some premise P of B,
P disagrees with Q. That is, an argument undercuts another, if the first rebuts a
premise of the second. The meta-level definition is:

• undercutting(P) is the set of arguments, A, such that argument(X ,P,S)
& member(P1,S) & disagreement(P1,Q) & argument(A,Q,Y).9

• undercuts(A,B) if argument(A,P,X) & member(B,undercutting(P)).

Haggith’s notion of undercutting fits with an interpretation of the Toulminian
rebutter as one which rebuts the warrant, and with Pollock’s definition of
undercutting. The only difference is that both the interpretation of Toulmin and
Pollock specify the type of supporting premise which a statement must rebut
(the warrant and the prima facie, respectively), while Haggith does not make that
distinction.

Given a proposition P and an argument A for P, possible argument moves which
provide support for P include:

• corroboration: an argument for a proposition which is equivalent to (or is) P;
• enlargement: an argument for an elaboration of P, and
• consequence: an argument in which P is a premise.

9Another way of saying this is argument(X ,P,S) & member(P1,S) & member(A, rebuttal(P1)).
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Fig. 16.3 The original proof of Euler’s conjecture, represented in Haggith’s terms. The arrows
represent the justification relation, where the set of premises taken together on any line supports the
proposition directly above it. Propositions without any arrows leading into them are unsupported
assumptions (thus particularly open to counter-argument)

Argument moves which oppose A include:

• rebuttal: an argument for a proposition which disagrees with P;
• undermining: an argument for a proposition which disagrees with a proposition

which is an elaboration of, or is equivalent to, P;
• undercutting: an argument for a proposition which disagrees with a premise of P;
• target: an argument which contains a premise which disagrees with P, and
• counter-consequence: an argument which contains a premise which disagrees

with the conclusion of another argument in which P is a premise (inspired by
Sartor, 1993).

16.3.4 Using Haggith’s Argumentation Structures
to Represent Mathematical Proofs

We have expressed Cauchy’s proof in Haggith’s terms by writing it as a series
of propositions and showing the relationships between them. This is shown in
Fig. 16.3, where the proof looks as follows:
A = {C ⇐{P0,P1 ⇐ {P2 ⇐{P7},P3,P4 ⇐{P8},P5,P6}}}.



16 Bridging the Gap 319

disagree
P0

P6P5P4P3P2

P7 P8

P1

C

−P

Fig. 16.4 The first counter-argument, represented in Haggith’s terms. Unmarked arrows represent
the justification relation

The four initial counter-arguments (all questioning unsupported assumptions),
suggested by the ingenious students, to the three steps of Cauchy’s proof on
(Lakatos, 1976, 7) are all examples of Haggith’s target arguments, disagreeing
with a premise of C. We represent them below,10 and show the diagrammatic
representation of the first in Fig. 16.4:

1. −P0: Some polyhedra, after having a face removed, cannot be stretched flat on a
board (questioning the first step). This is shown diagrammatically below.

2. −P8: In triangulating the map, we will not always get a face for every new edge
(questioning the second step).

3. −P7: There are more than two alternatives, when we remove the triangles one by
one, that either one edge and a face; or two edges, a face and a vertex disappear
(questioning the third step).

4. −P3: If we remove triangles one by one from a triangulated map, then we may
not be left with a single triangle (also questioning the third step).

16.4 Lakatos’s Method of Lemma-Incorporation

Lakatos’s method of lemma-incorporation distinguishes global and local counterex-
amples, which refute the main conjecture or one of the proof steps (or lemmas),
respectively. When a counterexample is found, lemma-incorporation is performed
by determining which type of counterexample it is: if it is local but not global
(the conclusion may still be correct but the reasons for believing it are flawed)
then he proposes modifying the problematic proof step but leaving the conjec-
ture unchanged; if it is both global and local (there is a problem both with
the argument and the conclusion) then Lakatos proposes modifying the conjec-
ture by incorporating the problematic proof step as a condition; and if it is

10We state the counter-arguments as propositions, whereas in (Lakatos, 1976) they are questions,
i.e., “are you sure that. . . ” rather than “it is not possible. . . ”.
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part 3 (c)

Fig. 16.5 Given the network
which results from taking the
cube, removing a face and
stretching it flat, and
triangulating, we can remove
a triangle (shown in black)
which results in removing one
face, no edges and no vertices

global but not local (there is a problem with the conclusion but no obvious
flaw in the reasoning which led to the conclusion) then he proposes looking
for a hidden assumption in the proof step, then modifying the proof and the
conjecture by making the assumption an explicit condition. The method of proofs
and refutations consists of setting out to prove and refute a conjecture, looking
for counterexamples both to the conjecture and the lemmas, determining which
type of counterexample it is, and then performing lemma-incorporation. In the
discussion below, we follow Lakatos’s convention of using students with names
from the Greek alphabet to present different mathematical and philosophical
viewpoints.

16.4.1 Three Types of Counterexample

The cube is a local but not global counterexample since it violates the third lemma
in Cauchy’s proof, but not the conjecture. That is, it is possible to remove a triangle
without causing the disappearance of one edge or else of two edges and a vertex,
by removing one of the inner triangles (see Fig. 16.5); in this case, we remove a
face but no edges or vertices. In this case we want to modify the proof but leave the
conjecture unchanged. We do this by generalising from a single counterexample to
a class of counterexamples, and modifying the problem lemma to exclude that class.
In this example, lemma three becomes “when one drops the boundary triangles one
by one, there are only two alternatives – the disappearance of one edge or else of
two edges and a vertex”. The corresponding method is local, but not global lemma-
incorporation.

The hollow cube (a cube with a cube shaped hole in it), is a both a global
counterexample, since V − E + F = 16− 24+ 12 = 4, and local, since it cannot
be stretched flat on the blackboard having had a face removed. In this case
we need to identify the faulty lemma, lemma one, and then make that step a
condition of the conjecture. The proof is left unchanged. Given the hollow cube,
we should incorporate the first lemma into the conjecture; this then becomes
“for any polyhedron which, by removing one face can be stretched flat onto a
blackboard, V −E +F = 2”. The corresponding method is global and local lemma-
incorporation.
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case 1

case 2

Fig. 16.6 If we remove a face from the cylinder and stretch it flat, then we either get case 1 if we
remove an end face, or case 2 if we remove the jacket. Either way, we have satisfied the first lemma

The cylinder is a global counterexample, as V −E +F = 0− 2+ 3 = 1 but not
local, since it does not violate any of the proof steps. We can remove a face and
stretch it flat, resulting in two circles which are either disjoint or concentric (see
Fig. 16.6). In order to falsify the second lemma, we would have to draw an edge
which joins two non-adjacent vertices, but does not create a new face. Clearly we
cannot do this as there are no vertices on the map. Similarly, in order to falsify
the third lemma, we would have to be able to remove a triangle and not remove
either one edge and one face, or two edges, a vertex and a face, and since there
are no triangles on the map, we cannot fail at this stage either. Thus it suggests
that the conjecture is flawed and yet the proof of it is upheld. Lakatos argues
that this strange situation occurs because of ‘hidden assumptions’ in the proof,
which the counterexample does violate. Faced with such a counterexample, he
suggests that we retrace our progress through the proof, until we come to a step
which is in some way surprising, i.e., one which violates some hidden assumption
in the mathematician’s mind. Once this has been identified, we should make it
explicit in the proof. The counterexample then becomes one of the second type. For
instance, one hidden assumption is that having performed lemma one, we are left
with a connected network. Therefore we should add this into the proof explicitly,
and modify lemma one to ‘any polyhedron, after having a face removed, can be
stretched flat on the blackboard, and the result is a connected network’. The cylinder
clearly violates this, so we incorporate the new, explicit lemma, into the conjecture
statement, which then becomes “for any polyhedron which, after having a face
removed, can be stretched flat on the blackboard leaving a connected network,
V − E + F = 2”. The principle of turning a counterexample which is global but
not local into one which is both is called the principle of retransmission of falsity in
(Lakatos, 1976). This requires that falsehood should be retransmitted from a global
conjecture to the local lemmas. Thus, any entity which is a counterexample to the
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conjecture must also be a counterexample to one of the lemmas. Lakatos called this
hidden lemma-incorporation.11

16.4.2 Discussion of Lemma-Incorporation

In this section, we discuss various aspects of lemma-incorporation and how they
have affected our algorithmic realisation.

16.4.2.1 Combining the Methods

Exception-barring can be used in lemma-incorporation to get a ‘very fine delineation
of the prohibited area’ (Lakatos, 1976, 37). This means that we were able to reuse
our exception-barring algorithms within our computational representation of the
method of lemma-incorporation.

16.4.2.2 The Type of Entity in Hidden Lemma-Incorporation

The type of entity that we are discussing is important for computational purposes.
This may change as we step through a proof. For instance, Cauchy’s proof begins
by referring to polyhedra and, once a face has been removed and a polyhedron
stretched onto a board, then discusses graphs. Since a polyhedron can only be a
counterexample to conjectures about polyhedra, not to conjectures about graphs,
it may appear that we have a counterexample which is global and not local. It is
necessary to look for the corresponding graph and determine whether this entity is
a counterexample to those conjectures about graphs. In this case, the disconnected
circles in lemma two correspond to the cylinder. This is glossed over in (Lakatos,
1976), as the following quote shows:

11Note that even if we disregard the different interpretations of the second lemma, and hence
disagreement about whether the cylinder is a local as well as global counterexample, Gamma’s
argument that it is only global is not convincing. In the initial proof given (see Sect. 16.3.1) it does
say explicitly that at the end of the process there is a single triangle: if we drop the triangles one
by one from a triangulated map, we will end up with a single triangle. This lemma is violated by
the cylinder, making it both a global and local counterexample. This would allow for the usual
modification of making the lemma a precondition, i.e., the conjecture would become:

‘for any polyhedra which, after having a face removed, and then stretched flat, triangulated and
the triangles removed one by one, leaves a single remaining triangle, V −E +F = 2’.

Gamma is able to make his argument because the students get distracted by his claim that the
cylinder can be triangulated. The discussion then turns to the meaning of statements which are
vacuously true. If they had not disputed this point, Gamma would not have been able to uphold
his argument. However, the cylinder is still an important example, in that it highlights hidden
assumptions in the proof, which should be explicit.
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Gamma: The cylinder can be pumped into a ball—so according to your interpretation it
does comply with the first lemma.

Alpha: Well. . . But you have to agree that it does not satisfy the second lemma, namely
that ‘any face dissected by a diagonal fall into two pieces’. How will you triangulate the
circle or the jacket? Are these faces simply connected? (Lakatos, 1976, 44).

When Alpha uses the word ‘it’, he refers to the cylinder. However, he then
moves on to talking about the associated graph. While for humans this leap may
be acceptable, when implementing this in a program we need to be explicit about
the types of entity to which we are referring.

16.4.2.3 Identifying a Problem Lemma in Hidden Lemma-Incorporation

In a proof where the lemmas chain together as a sequence of implications, the
problem of identifying lemmas involving hidden assumptions, as presented by
Lakatos, is not difficult for humans. This is because of the element of surprise
which people feel when an entity does not “behave” in the expected way, where the
‘expected way’ has been learned from previous examples. Modelling this feeling
of surprise, however, is a difficult task. To help us, we considered what caused
the surprise and produced a simple model of that.12 In Lakatos’s example, hidden
assumptions are found in two lemmas and cause surprise in different ways. In what
follows, proof-schemes are a series of subconjectures constructed by the user, which
fit together in a way determined by the user. These are input to an agent, who can
identify counterexamples and use them to revise the proof. These revised proofs are
then output and the proof is not currently incorporated into an agent’s theory.

1. Surprise caused by unexpected behaviour
Lemma one states that any polyhedron, after having a face removed, can be
stretched flat onto a blackboard. Although the cylinder is a supporting example
of this conjecture, it is surprising: when we remove the jacket from the cylinder,
it falls into two parts, leaving two disconnected circles. This is surprising since
all previous examples resulted in connected networks. Therefore, we needed to
capture the idea of an entity being surprising with respect to a given conjecture.
We have defined this as follows:

• surprisingness (type 1): an entity m is surprising with respect to a conjecture C,
∀xP(x) → Q(x), if there exists another conjecture C′ of the form ∀xP(x) → (Q(x)∧
R(x)), for some concept R, where m is the only known counterexample to C′.

Given a proof-scheme and an entity which is a global but not local coun-
terexample, our algorithm for surprise caused by unexpected behaviour is to
go through each lemma in the proof-scheme and, if possible, generate a further

12Note that we would not claim that our model itself is surprised, simply that the model can identify
those lemmas which cause surprise to humans, and the hidden assumptions within the lemmas.
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conjecture C′ of the form above. In order to identify the ‘hidden assumption’ in
a conjecture, we have to break down the concepts in it, in particular the concept
Q in the conjecture P → Q. This is made easy for our purposes since for each of
its concepts, HR records the construction path, and in particular the concepts to
which production rules were applied to get a current concept. This ancestor list
allows HRL to gradually dissect a concept until a suitable further concept, R, is
found. This R is the hidden condition.

2. Surprise caused by non-meaningful terms
The discussion of the second lemma, that any face dissected by a diagonal falls
into two pieces, with respect to the two disconnected circles, is related to work
on meaning and denotation, for instance (Russell, 1971, 496–504). The problem
is that although there are no diagonals on a circle, we are making a claim about
the properties that they have. Lakatos’s character Gamma argues that it is correct
to say that ‘every new diagonal we draw on two disconnected circles results in
a new face’ (P), since the negation, that ‘there is a diagonal of the two circles
which does not create a new face’ (¬P), is false. This argument uses the law of
excluded middle in classical logic, P∨¬P, i.e., ¬(¬P) → P. According to this
argument, the cylinder is a global but not local counterexample. Alpha disagrees,
arguing that if we say that P is true then we must be able to construct at least
one instance of it, i.e., there must be an existential clause in the lemma. The
statement ‘a face is simply connected’ means ‘for all x, if x is diagonal then x
cuts the face into two; and there is at least one x that is a diagonal’ (Lakatos,
1976, 45). Under Alpha’s interpretation, the cylinder is a counterexample to this
lemma, as there are no diagonals on the circle. Therefore the cylinder is a local
as well as global counterexample, and the problem is no longer a case of hidden
lemma-incorporation.

Although it would be difficult to model the surprise that a human feels when
they attempt to triangulate a circle, the emphasis on vacuously true statements
gave us an insight into how to automate this method. We defined the second type
of surprise as follows:

• surprisingness (type 2): an entity m is surprising with respect to a conjecture C,
∀xP(x)→ Q(x), if ¬P(m).

Given a proof-scheme and an entity m which is a global but not local
counterexample, our algorithm goes through each lemma Ci in the proof-scheme.
If Ci is of the form ∀xP(x) → Q(x), and ¬P(m), then HRL performs two steps:
(i) it generates the conjecture C′

i = ∀x(P(x)→ Q(x))∧P(m) (the entity m is now
a counterexample to C′

i), and (ii) it returns Ci as the hidden faulty lemma, and
C′

i as the explicit lemma.

16.4.2.4 Multiple Applications of Lemma-Incorporation

In the discussion of lemma-incorporation in (Lakatos, 1976), the method is applied
to the same conjecture (and proof) at least three times (thus enabling the description
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of different types of lemma-incorporation). This is like previous methods; one coun-
terexample is found and dealt with and then more counterexamples to the modified
conjecture and proof are sought. In HRL, proof-schemes and conjectures are passed
around and modified and different students may consider them, or the same student
may consider different versions of a proof and conjecture at different times.

16.4.3 Algorithms for Lemma-Incorporation

We have interpreted Lakatos’s method of lemma-incorporation as the series of
algorithms shown below. We define P � Q to mean that it is nearly true that
P → Q, i.e., there are lots of supporting examples and few counterexamples. We
implemented these algorithms as a computer program: the teacher in HRL is given
a proof-scheme and conjecture P → Q by the user, and asks the students to use
Lakatos’s methods to analyse both proof-scheme and conjecture. Further technical
details are given in (Pease, 2007).

1. Determine which type of lemma-incorporation to perform. If there are
any counterexamples to the global conjecture, then if either: (i) these are
also counterexamples to any of the lemmas in the proof, or (ii) there is a
counterexample to a local lemma, and there is a concept which links the local
counterexample to the global counterexample and this concept appears in one of
the local lemmas, then perform global and local lemma-incorporation. If there is
a global counterexample but neither (i) nor (ii) hold then perform hidden lemma-
incorporation. Otherwise, if there are counterexamples to any of the lemmas in
the proof, then perform local-only lemma-incorporation.

2. Perform local-only lemma-incorporation. Given a conjecture to which there
are no known counterexamples, and a proof tree which contains a faulty lemma,
P� Q, to which there is at least one counterexample, then if there is a concept
C in the theory which exactly covers the counterexamples (or such a concept can
be formed), then make the concept P∧¬C, replace the faulty lemma with the
conjecture P∧¬C → Q, and return the improved proof-scheme.

3. Perform global and local lemma-incorporation. Given a proof-scheme where
there are counterexamples to the global conjecture, P � Q, and these coun-
terexamples are also counterexamples to a lemma in the proof, R� S; form the
concept C ‘objects which satisfy the faulty lemma’, by merging the two concepts
R and S (this is done by using a production rule to compose R and S), modify
the global conjecture by making the new conjecture C → Q, and replace the old
global conjecture in the proof-scheme with the modified version.

4. Perform global-only lemma-incorporation. Given a proof-scheme where there
are counterexamples to the global conjecture, but these counterexamples are not
counterexamples to any of the lemmas in the proof, and none of the lemmas have
counterexamples which are related to the global counterexamples; let the global
conjecture be a near-implication P� Q. Then go through the proof-scheme and
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take each lemma in turn, testing each to see whether the global counterexample
is surprising in the first sense (type 1) with respect to the lemma. If it is, then
return this lemma as the hidden faulty lemma and generate another conjecture, to
which the global counterexample is a counterexample, as the explicit lemma. If
not, then go through the proof-scheme and take each lemma in turn, testing each
to see whether the global counterexample is surprising in the second sense (type
2) with respect to the lemma. If so, then return this lemma as the hidden faulty
lemma, and generate another conjecture, to which the global counterexample is
a counterexample, as the explicit lemma. If an explicit lemma has been found,
then generate an intermediate proof-scheme in which the hidden faulty lemma is
replaced by the explicit lemma, perform global and local lemma incorporation on
the intermediate proof-scheme, and return the result. If no lemma is surprising in
either sense, then return the proof-scheme unchanged.

Working in the polyhedra domain, and given the proof tree, conjecture and
counterexample as input, HRL has replicated all three of Lakatos’s types of lemma-
incorporation (Pease, 2007).

16.5 Connections Between Haggith and Lakatos

We outline some connections between Haggith’s argumentation structures and
Lakatos’s methods below, which have been suggested by our work in producing
a computational reading of Lakatos’s theory. In each example, P stands for the
proposition “∀x, poly(x) → euler(x,2)”, i.e., for all polyhedra, the number of
vertices (V) minus the number of edges (E) plus the number of faces (F) is
equal to two. Polyhedra for which V − E + F is 2 are called Eulerian. Unless
otherwise specified, page references refer to (Lakatos, 1976). In some examples
we give alternative propositions for Q, which we express as Q′. We provide a
diagram for each pattern where, again, unmarked arrows represent the justification
relation between a proposition and a set of propositions. Given that Lakatos is
commonly criticised (for example, Feferman, 1978) for claiming that his methods
have general application despite only considering two case studies, we suggest how
each argument pattern might describe other mathematical examples.

Corroboration: (Fig. 16.7)

Q: All polyhedra in which circuits and bounding circuits coincide, are Eulerian
(Lakatos, 1976, 114). This is reformulated again to:

Q′: If the circuit spaces and bounding circuit spaces coincide, the number of
dimensions of the 0-chain space minus the number of dimensions of the 1-
chain space plus the number of dimensions of the 2-chain space equals 2
(Lakatos, 1976, 116).

This is a reformulation of a problem, where a proposition P is reformulated as
proposition Q, which is easier to prove. If a convincing proof of Q can be found
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P Q
equivFig. 16.7 Corroboration

and it can be shown that Q is equivalent to P, then P has been proved. This is a
common mathematical technique. Lakatos called this “the problem of translation”
and devotes the second chapter of (Lakatos, 1976) to its description, discussion and
accompanying problems. The roots of this method lie in Pólya’s advice: “Could
you restate the problem? Could you restate it again?” (Pólya, 1945). Analysis of
the argument for Q and the premises it contains suggests insights into the original
proposition P, i.e., ways in which P, the concepts in P or the argument for P should
be modified.

The trivial case, in which P is equivalent to itself, and multiple proofs are given
for the same theorem, is common in mathematics. For instance, Pythagoras’ theorem
is proved using similar triangles, parallelograms (by Euclid), a trapezoid, similarity,
by rearrangement, algebraically, with differential equations and using rational
trigonometry. Examples of mathematical statements which are equivalent include:
(i) Pythagoras’ theorem and the parallel postulate; and (ii) Zorn’s lemma, the well-
ordering theorem and the axiom of choice. The second example is interesting since
the equivalent statement to P, i.e., Q, might also be a premise in the argument for
P. For instance, the proof of the well-ordering theorem uses the axiom of choice.
Although this satisfies Haggith’s corroboration pattern it would clearly be circular
to argue that the argument for the well-ordering theorem corroborates the axiom
of choice.

There are many examples in mathematics where the relationship between P and
Q is not equivalence, but the argument pattern is still relevant: for instance, where
P is analogous to, similar to, weaker or more general than, or implies Q. Proving
special cases of a theorem can be seen as corroborating the theorem: historically
we see many examples, such as proving Fermat’s Last Theorem for specific values
of n (3,5,7), or for classes of number (all regular primes). This can also work the
other way around, where a proof of a more general result is easier to find than the
proof of the more specific version. For instance, Lagrange’s Theorem, that for any
finite group G the order (number of elements) of every subgroup H of G divides the
order of G, is true under a suitable reformulation even for infinite groups G and H.
In this case the proof of the more general statement is simpler than a proof that uses
induction over finite structures (some historical details are in Roth, 2001).

Enlargement: (Fig. 16.8)

Q: A polyhedron is a solid whose surface consists of polygonal faces.
Q′: A polyhedron is a surface consisting of a system of polygons.
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elaborationFig. 16.8 Enlargement
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Fig. 16.9 Monster-barring and enlargement

Lakatos described both monster-barring, in which a narrow definition of a con-
cept in a conjecture or proposition is proposed in order to exclude a counterexample
and thus defend the conjecture, and concept-stretching, in which a wider definition
of a concept which covers a counterexample and thus poses problems for the con-
jecture is proposed. Both methods, in which a concept definition that was previously
vague or controversial is made more explicit, can be seen as examples of Haggith’s
enlargement structure. Arguments then given for why a particular concept definition
should be accepted constitute the argument for Q. Lakatos demonstrated the intrigu-
ing situation in which we have two enlargement arguments for P, with conclusions
Q1 and Q2, where Q1 and Q2 disagree. Thus, we might question whether the rela-
tionship between P and Q is really an elaboration or not. We show this in Fig. 16.9.

In emphasising the role of the argument for Q, Haggith stresses the need for
showing, rather than stating that Q elaborates P. This aspect is not always made
clear by Lakatos, who did not always clarify how one should select between
competing definitions (relying on the literary device of a teacher to state a given
definition as fact). This argumentation structure is similar to Walton’s argumentation
scheme for argument from verbal classification (Walton, 2006, 128–132). This is a
scheme which takes the form: “F(a), ∀x,(F(x) → G(x)), therefore G(a)”, where
the classifications F and G may be vague or highly subjective.

Other examples of monster-barring or concept-stretching in mathematics include
expanding the concept ‘number’ from natural numbers to include zero, negatives,
irrationals, imaginary numbers, transfinite numbers and quaternions; narrowing the
concept of ‘set’ (by limiting the types of sets which can be constructed), Cantor’s
expansion of our notion of ‘size’ and changing the definition of ‘prime number’ from
‘a natural number which is only divisible by itself and 1’ to ‘a natural number with
exactly two divisors’, thus enabling many theorems about primes, where 1 would
have been a counterexample (such as the Fundamental Theorem of Arithmetic), to
be neatly stated.
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QFig. 16.10 Consequence

P Q
disagreeFig. 16.11 Rebuttal

Consequence: (Fig. 16.10)

Q: A star polyhedron is Eulerian (Lakatos, 1976, 16).

The proposition P, which states that for all polyhedra V −E+F is 2, is a premise
(the sole premise) in any argument for Q where Q is the proposition that V −E +F
is 2 for a particular type of polyhedron. Lakatos used this argumentation structure
to great advantage, showing that analysing propositions which are implied by a
conjecture is a fruitful way of analysing the conjecture itself. This pattern is similar
to corroboration, where there is an implication relation between P and Q.

Wiles’s proof (with Taylor) for the statement that all rational semistable elliptic
curves are modular (P) provides another example: this is famous because it implies
Fermat’s Last Theorem (Q). The implication relation was proved in the more general
form (the Taniyama-Shimura-Weil conjecture) earlier on by Ribet. Clearly, proving
a given relationship between two mathematical statements is just as important as the
argument for one of them. Any examples of lemmas or corollaries in mathematics
fit this pattern.

Rebuttal: (Fig. 16.11)

Q: ∃x(poly(x)∧¬euler(x,2)), or there is an x such that x is a polyhedron and it
is not the case that the Euler characteristic of x is 2.

An example is the cylinder (Lakatos, 1976, 22), for which V − E + F is 1.
This is a case of simple rebuttal, i.e. rebuttal without undercutting, which Lakatos
addressed in his method of hidden lemma-incorporation. This method demonstrates
that it is possible in mathematics to rebut without a known undercutter. This view
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is discussed (and supported) by Aberdein (2005, 298), who argues that the presence
of a rebuttal is an existence proof, rather than a construction, for an undercutter.

Lakatos also describes how the method of hidden lemma-incorporation was
used to fix Cauchy’s faulty conjecture that ‘the limit of any convergent series
of continuous functions is itself continuous’ (Lakatos, 1976, Appendix 1). The
counterexample, found by Fourier, is:

cosx− 1
3

cos3x+
1
5

cos5x− . . .

which converges to the step function. The most interesting aspect of this example is
the timing of various discoveries. Fourier discovered the above series (see Fourier,
1808), and it was after this that Cauchy discovered the conjecture and proof (see
Cauchy, 1821). One solution to this awkward situation was that the limit function
was actually continuous, and therefore it was not a counterexample (Fourier held
that it was continuous). However, Cauchy had provided a new interpretation of
continuity, according to which the limit was not continuous (the existence of
Fourier’s example was considered by some to be evidence that the new interpretation
should be rejected). Another possible solution was the argument that the series
was not (pointwise) convergent, although this view was not accepted by most
mathematicians, including Cauchy, who later proved that it did converge. There was
then a long gap until 1847 when Seidel found the hidden assumption of uniform
convergence in the proof. Indeed, it was Seidel who invented the method of proofs
and refutations. Lakatos thought that the main reason for such a long gap, and
the willingness of mathematicians to ignore the contradiction, was a commitment
on the part of mathematicians to Euclidean methodology. Deductive argument was
considered infallible and therefore there was no place for proof analysis.

A further example can be found in Hilbert’s Grundlagen der Geometrie:13

Theorem 1. For two points A and C there always exists at least one point D on the
line AC that lies between A and C.

Proof. (paraphrased from (Hilbert, 1902, 6) as a procedural proof)

lemma 1: draw a line AC between the two points
lemma 2: mark a point E outside the line AC (axiom (I,3))
lemma 3: mark another point F such that F lies on AE and E is a point of the

segment AF (axiom (II,2))
lemma 4: mark on FC a point G, that does not lie on the segment FC (axiom (II,2)

and axiom (II,3))
lemma 5: the line EG must then intersect the segment AC at a point D (axiom (II,4))

13Since Lakatos described his method in terms of a procedural proof, we paraphrase Hilbert’s proof
as a procedural proof, from the deductive proof which Hilbert gave. However, it is worth noting
that the method of lemma-incorporation also applies to declarative proofs, which we demonstrate
with respect to the first step of Hilbert’s proof.
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This proof is accompanied by a diagram containing the hidden assumption that
the two points are different (as becomes obvious to humans when they try to draw
the line which joins A and C). The counterexample comprises any two points which
are identical, i.e., (a,a). With the proof phrased as above, (a,a) is a global, but not
local counterexample (note again that the type of counterexample changes as we
step through a proof: in the global theorem the counterexample is a point, whereas
in lemma one the counterexample is a line). This example is interesting, since, in
Hilbert’s original German edition of the Grundlagen in 1899, reprinted in (Hilbert,
2004), he does not exclude this example: there is nothing in the axioms to say that a
line must join two different points (the relevant axiom is (I,1), which states that for
every two points, A,B there exists a line that contains each of the points. The axiom
does not specify that the points must be different), nor that a line which intersects
a segment AC must be strictly between the points A and C, etc. However, in later
editions, Hilbert has amended this: for instance, at the beginning of (Hilbert, 1902),
which is a later, English translation, Hilbert states that in all of the theorems, he
assumes that where he says two points, they will be considered to be two distinct
points (the relevant omission in his first work is Hilbert, 2004, 437–438, Chap. 5).
This example was highlighted by Meikle and Fleuriot’s formalisation of (Hilbert,
1902), described in (Meikle and Fleuriot, 2003).

Just as mathematical concepts, conjectures and proofs do not emerge fully
formed and perfect, neither does axiomatisation of mathematical domains. We
believe that Lakatos’s methods can be used to describe axiomatisation development
in the same way as they describe other mathematical development. Hilbert’s
axiomatisation of geometry shown here (which itself built on previous work: see
Pieri’s 1895, 1897–1898) is one example. Another is the development of the axioms
in set theory, where Frege’s comprehension principle is modified to the axiom of
subsets, in response to Burali-Forti, Cantor’s and Russell’s paradoxes.

Note that the teacher and students in (Lakatos, 1976) consider the possibility of
an entity being a local only, global only, or a both local and global counterexample.
They do not consider that a problem entity might be neither global nor local,
assuming that such entities are positive examples of the theorem and proof, and
therefore support rather than attack it. However, the admission that lemmas in
the proof may contain hidden assumptions which mean that an entity satisfies the
lemma, albeit it in a surprising way, raises the question of whether there could be
an entity which satisfies the global conjecture in the same way, thus uncovering a
hidden assumption in the global conjecture itself (one of us discusses this case in
Pease and Aberdein, 2011, 38–39).

Undermining: (Fig. 16.12)

Q: A polyhedron is a solid whose surface consists of polygonal faces.
R: A polyhedron is a surface consisting of a system of polygons.

An example argument of this type is the dialectic over rival definitions in
Lakatos’s monster-barring method (for further mathematical examples, see the
section on enlargement.)



332 A. Pease et al.

disagree
RQP

equiv/elaborateFig. 16.12 Undermining

Q

P

Po

disagree

Fig. 16.13 Undercutting

Undercutting: (Fig. 16.13)

P0: any polyhedron, after having a face removed, can be stretched flat on the
blackboard.

Q: after removing a face from the hollow cube we cannot stretch it flat on the
blackboard.

Alternatively, let

P0: dropping a triangle from a triangulated map always results in either the
disappearance of one edge or else of two edges and a vertex.

Q: we can drop a triangle from the triangulated map which results from removing
a face from the cube and stretching it flat on the blackboard, without it resulting
in either the disappearance of one edge or else of two edges and a vertex.

This is the earliest argumentation structure to be found in (Lakatos, 1976), where
the three steps (or premises) of Cauchy’s proof are all questioned on page 8. The
questions are later supported by counterexamples. Note that Lakatos’s method of
global and local lemma-incorporation is a combination of rebuttal and undercutting,
and his local-only lemma-incorporation is just undercutting. Global only, or hidden
lemma-incorporation is just rebuttal (as discussed above).

Set theory provides further examples of local-only lemma-incorporation. For
instance, Cantor’s initial proof that the segment and the square are equivalent sets of
points contained the premise that there is a one-to-one onto mapping: f : {(x,y) : x∈
(0,1],y∈ (0,1]}→ (0,1]. Cantor identifies such a mapping: let (x,y) be co-ordinates
of an arbitrary point in the unit square, where x = 0.x1x2x3 . . ., and y = 0.y1y2y3 . . ..
Then they uniquely determine the point or the unit segment z = 0x1y1x2y2x3y3 . . ..
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Conversely, every point in the unit segment can be expressed as an infinite decimal.
Let z be an arbitrary point in the unit segment, where z = z1z2z3z4z5z6 . . . Then
this point uniquely determines two co-ordinates x = z1z3z5 . . . and y = z2z4z6 . . .
which determines the points (x,y) of the unit square. Note that Cantor specified
that where a number has two decimal expansions, for example 0.2299999999. . . or
0.230000000, the expansions ending in an infinite set of zeros should be ruled out
(so the real number 23/100 is identified as 0.2299999999. . . ). Dedekind (at Cantor’s
request) checked this proof and found local (but not global) counterexamples. While
to each (x,y) there corresponds a single z, there exist values of z that arise from no
(x,y) in the above procedure. One such counterexample is z = 0.13050706080 . . .
which yields x = 0.1; another counterexample is z = 0.513020109090 . . . which
yields y = 0.1. In these cases neither x nor y is written in admissible decimal form,
and if the trailing zeros are replaced by nines then the infinite decimal form does not
correspond to the specified number z. The proof was then patched so that, instead
of considering single digits, groups of digits are considered such that only the last
digit of a group differs from 0; so for example z =0.1 2 05 0004 2 01 8. . . would
yield x = 0.10528 . . . and y = 0.2000401 . . . (Burton, 1985, 607-608).

Target: (Fig. 16.14)

Q: ∃x(poly(x)∧¬euler(x,2)); in particular, the hollow cube has this property, since
V −E +F is 4.

R For all polyhedra that have no cavities, V −E +F is 2.

or,

R′: V − E + F = 2− 2(n− 1) + ΣF
k=1ek, for n-spheroid—or n-tuply connected—

polyhedra with ek edges deleted without reduction in the number of faces
(Lakatos, 1976, 79).

Lakatos’s exception-barring methods fit this pattern, where a counterexample is
found and used, along with other premises, to modify P, just producing R1. Another,
later example is R2 (Lakatos, 1976, 79), where many counterexamples have been
found and a general repair, R2 has been found which explains all of the positive
and negative examples. Lakatos called this the problem of content, which deals
with the problem that with every repair, the domain of application of the conjecture
(originally all polyhedra, and then all polyhedra of an increasingly narrow type) has
narrowed to the stage where the conjecture is no longer very interesting. Thus, math-
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ematicians were “striving for truth at the expense of content” (Lakatos, 1976, 66).
In this case, Lakatos suggested (again building on Pólya, 1945) distinguishing an
initial problem in which a question is raised, from an initial conjecture which poses
a first answer to the initial problem. If this answer is refined almost to the point of
a tautology (approaching the ‘conjecture’ that any Eulerian polyhedron is Eulerian)
then it may be preferable to return to the initial problem and pose another answer.

Historical conjectures about perfect numbers provide an example in number
theory. For instance, using the (scientific) inductive argument that because the first
four perfect numbers, 6, 28, 496 and 8128 each contain n digits, it was conjectured
that the nth perfect number Pn contains exactly n digits (P). The fifth perfect number,
33,550,336 provides a counterexample (Q), the discovery of which led to the new
conjecture that perfect numbers end alternately in 6 and 8 (R). Again, the argument
pattern repeated itself with the discovery of the sixth perfect number, 8,589,869,056,
which is a counterexample to R. This led to further statements and arguments,
including the theorem that the last digit of any even perfect number must be 6 or
8 and the (open) conjecture that all perfect numbers are even.

Counter-consequence: (Fig. 16.15)

Q: ¬∃x(poly(x)∧¬euler(x,2)).
R: ∃x(poly(x)∧¬euler(x,2)); in particular, the twin tetrahedra polyhedron has this

property, since it has an Euler characteristic of 3 (Lakatos, 1976, 15).
S: for any polyhedron that has no ‘multiple structure’, V −E +F = 2.

This is very similar to the target structure described above. Again, Lakatos’s
exception-barring methods present an example of this type of structure. The perfect
number examples described above also fit this pattern. Other examples of monster-
adjusting seem rare in mathematics. However, we can see monster-adjusting as
a type of monster-barring, where the concept in question may be the right hand
concept in an implication or equivalence conjecture, rather than the domain. Let
us formalise monster-barring as follows: from conjecture ∀x,P(x) → Q(x), and
(known) counterexample m such that P(m) and ¬Q(m), (re)define either P or Q
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so that for the m in question, either ¬P(m) or Q(m) is true. Monster-adjusting can
now be seen as a case of this formalisation, where the concept under debate is Q
rather than P.

It is interesting that the structures which Haggith has identified can be used to
express most of Lakatos’s methods. A method which has so far been neglected is
monster-adjusting. As with monster-barring, this method also exploits ambiguity
in concepts, but reinterprets an object in such a way that it is no longer a
counterexample. The example in (Lakatos, 1976) concerns the star polyhedron. This
entity is raised as a counterexample since, it is claimed, it has 12 faces, 12 vertices
and 30 edges (where a single face is seen as a star polygon), and thus V −E +F is
−6. This is contested, and it is argued that it has 60 faces, 32 vertices and 90 edges
(where a single face is seen as a triangle), and thus V −E +F is 2. The argument
then turns to the definition of ‘face’. A new structure which corresponds to this
method might look like the one shown in Fig. 16.16, where:

Q: ∃x(poly(x)∧¬euler(x,2)); in particular, the star polyhedron has this property,
since V −E +F is −6 (Lakatos, 1976, 16).

R: The star polyhedron has 12 (pentagonal) faces. (Other premises in the argument
for Q are that the star polyhedron has 12 vertices and 30 edges.)

S: The star polyhedron has 60 (triangular) faces (Lakatos, 1976, 31).

16.5.1 Mutually Beneficial Associations Between Lakatos
and Haggith

16.5.1.1 Using Haggith’s Work to Extend Lakatos’s Theory

One shortcoming of Lakatos’s representation of an initial proof, as a list of lemmas,
or conjectures, is that it fails to show how the conjectures in the proof fit together.
In both of his case studies, the proof is represented by Lakatos as a series of
local conjectures which, taken together, imply the global conjecture. In Haggith’s
notation, this would be simply written as A= {C ⇐{P1,P2,P3}}. This prevents the
expression of any dependencies between the conjectures and thus would be an ex-
treme oversimplification of most mathematical proofs, even at an initial stage. Using
Haggith’s notation makes explicit, rather than hides, the structure of a proof. Seeing
how a proof fits together may make it easier to identify flaws and their solution.
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16.5.1.2 Using Lakatos’s Work to Extend Haggith’s Theory

Using Lakatos’s case studies, we have shown that Haggith’s argumentation
structures, which were inspired by the need to represent different perspectives
in natural resource management, can be usefully applied to mathematical examples.
This is a new domain for Haggith, and thus supports her claim that the structures
are of general use.

Combining Lakatos’s conjecture-based and Haggith’s proposition-based repre-
sentations has the advantage of highlighting weak areas in a proof. This might be
in the relationships between sets of conjectures, such as justification or elaboration,
or in the claims asserted by the conjectures. Propositions are no longer black boxes,
thus enabling new areas for flaws to be found and repaired. Lakatos’s methods, for
example his “problem of content”, also consider the interestingness of a proposition.

Lakatos’s methods suggest new structures for Haggith. Although she made no
claim to have identified all structures, adding new examples to the catalogue is a
valuable contribution to Haggith’s work.

16.6 Conclusion

Many argumentation theorists have assumed, either implicitly or explicitly, that
mathematics is about formal reasoning and is therefore not a suitable domain for
argumentation. We hope that the ideas in this paper, in addition to other work
such as (Aberdein, 2005), will show that this assumption is not justified and that
mathematics is a rich and fertile domain for informal reasoning techniques. In accor-
dance with the computational philosophy paradigm, we believe that implementing
Lakatos’s theory has provided a new perspective on it. One insight is discovering
the utility of argumentation structures for proof-schemes, which has allowed us to
represent them, as well as suggesting ways in which Lakatos’s methods for repairing
faulty conjectures and proofs can be implemented within our model. Thus, the
process of producing computational models of theories can both suggest and exploit
new connections.

Just as Lakatos suggested that embedding a conjecture in a different body of
knowledge can lead to further insights into the conjecture, so we can see the value
of embedding philosophy of mathematics in argumentation theory and vice versa.
These two normally unconnected domains have much to offer each other. The
computational modelling domain adds a further dimension of interest and will play
an essential role in making these intriguing connections richly detailed and explicit.
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Chapter 17
Mathematical Arguments and Distributed
Knowledge

Patrick Allo, Jean Paul Van Bendegem, and Bart Van Kerkhove

Because the conclusion of a correct proof follows by necessity from its premises,
and is thus independent of the mathematician’s beliefs about that conclusion,
understanding how different pieces of mathematical knowledge can be distributed
within a larger community is rarely considered an issue in the epistemology of
mathematical proofs. In the present chapter, we set out to question the received
view expressed by the previous sentence. To that end, we study a prime example
of collaborative mathematics, namely the Polymath Project, and propose a simple
formal model based on epistemic logics to bring out some of the core features of
this case-study.

17.1 Introduction

In his Objective Knowledge, Karl Popper famously claimed that the beliefs of
the individual are irrelevant for epistemological purposes; especially when that
individual is understood as the individual scientist, and the field of epistemology
is restricted to scientific knowledge (Popper, 1968, 1972). Even if, in view of the
present state of the philosophy of science, this account has become untenable in
general,1 one might still be tempted to believe that, at least when it comes to mathe-
matical knowledge, Popper’s conception of objective knowledge remains a sensible

1Especially in the light of work carried out at the intersection of social epistemology and
philosophy of science. See, e.g., (Kitcher, 1990) for a general defence, or (Zollman, 2007) for
a specific study.
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position. This, one could argue, follows from the fact that mathematical knowledge
is obtained through proof. For when truth is exclusively arrived at via proof, we only
need to be concerned with the correctness of that proof, and this does not depend on
what any individual mathematician believes. Certainly there are many deep issues
in the epistemology of mathematical proofs.2 Yet, because the conclusion of a
correct proof follows by necessity from its premises and is thus independent of the
mathematician’s beliefs about that conclusion, understanding how different pieces
of mathematical knowledge can be distributed within a larger community is rarely
considered an issue in the epistemology of mathematical proofs.

The above description is particularly compelling if one thinks that mathematics
is just about correct proofs. By contrast, if we accept that mathematics is also about
proofs that are recognised to be correct, or that are deemed to be acceptable, or
widely thought to be convincing, knowledge and acceptance in different mathemat-
ical communities becomes relevant. This is particularly so when proofs are seen as
arguments. On that conception, correctness is plainly insufficient. What arguments
aim at is to be convincing, and this is something that depends on the audience
that needs to be convinced of the truth (or provability) of a given theorem. This,
for sure, depends on what the members of that audience know, but even that isn’t
enough. In addition, one would also like to know (or at least believe) that a certain
argument will be convincing, which requires one to know what the members of
one’s audience know. These considerations not only show that what the individual
mathematician knows matters for the epistemology of proofs-as-arguments, but also
that an individual mathematician’s beliefs about the knowledge of his audience
(sometimes his peers, but equally often members of other communities or lay-
people) is equally relevant. In sum: Not only do beliefs of the individual matter,
but also beliefs about beliefs of others matter.

When we look at the received view about how proofs are conceived (discovered,
found, designed, . . . ), we find the same individualistic bias that is also present in
mainstream epistemology. Proofs are the work of the individual mathematician, or
at most the work of a small number of individuals. Again, one might be tempted to
believe that traditional arguments for a social or interactive conception of knowledge
need not apply to mathematics. Because individuals can come up with new results,
and as the whole enterprise of mathematics is traditionally seen as cumulative, no
real interaction is needed beyond the obvious reliance on prior results. Yet, this
description no longer covers the totality of mathematical inquiry. Some proofs don’t
just happen to be the result of massive collaboration, but are actually results that are
well beyond the reach of individuals and even smaller communities. This means that
proofs cannot only be seen as arguments once they are completed (and indeed need
to be used to convince the broader community), but that the process of looking for a
proof can equally well be studied from an argumentation-theoretic perspective, and
more generally from the perspective of social and interactive epistemology.

2What is the formal nature of proofs? Are proofs out there (in “The Book”) or constructed by us?
What is a surveyable proof and what not? How does one grasp (the content of) a proof? Are there
more and less beautiful proofs? (etc.)
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Formal models of scientific knowledge are often based on Bayesian Models
(Bovens and Hartmann, 2003), or on Signalling Games (Zollman, 2007). Here,
we pursue a different path and propose to use the epistemic logics that have been
developed by computer scientists to reason about knowledge in multi-agent systems
(Fagin et al., 1995). The not so obvious choice of a logical model is deliberate: We
believe logic is equally relevant to the study how information flows in epistemic
communities—our present aim—as it is to the study of validity—the traditional
focus of mathematical proofs. This motivates the choice for a logical, as opposed to
another formal framework.

Within the broader landscape of logical approaches, the choice for epistemic
logics still needs further motivation. One element has already been advanced: We
want to be able to reason about what different agents know and believe. But,
as mentioned above, we also want to reason about knowledge in groups, and
crucially also about higher order epistemic states (knowledge and belief about
other knowledge or belief). This is a task that we think is best carried out within
the framework of epistemic logics. Given the focus on a conception of proofs as
arguments, formal models that directly deal with arguments like the logics for
defeasible argumentation described in (Prakken and Vreeswijk, 2002) might be
thought to be more obvious candidates. One issue with the latter type of formalism
is that it primarily provides a formal model of defeasible inference, and this is a
type of reasoning we do not readily associate with proofs in mathematics (Aberdein,
2005, 289–90). Still, as shown by Aberdein (2005) via the contrast between classical
and constructive validity, Toulmin’s model of argumentation (itself a model for
defeasible argumentation or inference) can be used to model mathematical proofs,
and the result of doing so can be informative (see also Aberdein, 2007). The main
argument in favour of the doxastic/epistemic approach then, is that it allows one to
reason explicitly about how agents and communities of agents interact; a perspective
that is not available to more abstract approaches to argumentation.

No one will doubt that argumentation theory has a long and respectable
history within philosophy, starting with Aristotle, who, at the same time, initiated
the distinction, if not opposition, between the predominantly informal realm of
argumentation (to convince an audience) and the more formally oriented field of
logic (to establish necessary truths). In the twentieth century this situation of course
drastically changed, as new developments were initiated that aimed at a formal
argumentation theory. Among the major contributions, we find dialogue logic, as
designed by Lorenzen and Lorenz (1978), the core idea of which is that a logical
system, axiomatically and/or deductively presented, can be reformulated in terms of
rules for a discussion between two parties, thus showing that the distinction between
logic and argumentation is partially fictitious. A similar attempt, in terms of game
theory, was made by Hintikka (1985), and related models were developed by Barth
and Krabbe (1982).

Of major importance in the field of informal argumentation theory is the work of
Grootendorst and Van Eemeren (see e.g. Van Eemeren et al., 2004). The Amsterdam
school, which has been the driving force behind the International Society for the
Study of Argumentation (ISSA), is mainly interested in specific case studies, with
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an eye on determining how participants in actual dialogues or discussions deal with
arguments and their evaluation. There is moreover a direct connection with the
Canadian school, with well known contributions like (Walton, 1998) and (Woods,
2003). Here too there is a strong focus on concrete situations and, above all, a careful
investigation of whether fallacies are always to be rejected in a discussion or can
sometimes be acceptable forms of reasoning. For example, classically, the argument
ad auctoritatem is considered to be a fallacy, while expertise in a court of law is
clearly acceptable.

The third development to be noted is that within the field of Artificial Intelligence
(AI). Indeed there has been a strong interest for some time now in the modelling
of argumentations (see e.g. Toulmin, 1958; Pollock, 1994; Vreeswijk, 1997). The
main purpose of this research is to develop applications in decision-guided systems
and intelligent agents (Reed, 1998). Recently, argumentation networks have been
proposed as simple but very powerful models to represent static structures of
arguments in competition with one another (Dung, 1995). However, the models
remain rather abstract: arguments are viewed solely in relation to others, the basic
scheme being one argument “attacking” another. Several semantics have been
proposed for such networks, all taking a declarative and monological approach as a
starting point (Bondarenko et al., 1997; Dung, 1995; Jakobovits and Vermeir, 1996,
1999b). In a further stage so-called dialectical semantics have been investigated
(Jakobovits and Vermeir, 1999a; Prakken and Sartor, 1996), e.g. searching for
applications in judicial reasoning (Verheij, 1995). Connections have already been
shown between some of these semantics and the “well-founded”, “stable” ones
of logic programs (see e.g. Kakas et al., 1994). More generally speaking, such
argumentation networks can be applied in areas where it is important to have a
motivation for a result or a decision, e.g., in medicine (Atkinson et al., 2005) or
in bioinformatics (Jeffreys et al., 2006). As far as we are aware, applications to
mathematical contexts are absent and, as stated, it is our main purpose to start filling
in this gap.

As mentioned, the abstract approach to argumentation lacks a notion of players
or agents; it is solely concerned with the arguments themselves. While the main
logical approach to agency is to be found in the field of modal epistemic logics,
further connections with argumentation remain under-explored.3 Because agency
and interaction are central to our present enterprise, we privilege the framework
of epistemic logics, and try to emphasise throughout this chapter to what extent
it is relevant to the study of arguments in and about proofs. The upshot of the
present article is to illustrate how epistemic logics that allow us to reason about the
knowledge of individuals and the knowledge available within communities can be
used to model proofs-as-arguments from a perspective that emphasises interaction
and collaboration. This approach expands on a proposal described in Van Bendegem
(1985b), but does so in a more flexible manner by modelling the structure of
communities in terms of group and sub-group membership rather than with the

3For a first connection between abstract argumentation and modal logic, see (Grossi, 2010).
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accessibility relation of a Kripke-model. In the following sections, we first present
and analyse the Polymath Project as a potentially interesting case-study (Sect. 17.2),
then on the basis of previous work by the second author (Van Bendegem, 1982,
1985a) and a number of other, more recent results develop a formalism (Sect. 17.3),
and then also make it fit to capture cases plucked from contemporary mathematical
practice, like the previously mentioned Polymath Project (Sect. 17.4).

17.2 Mathematics in the Cloud: The Polymath Project

In Gowers and Nielsen (2009), a mathematician and a science writer/former
physicist report their endeavours in online collective problem solving. The Polymath
Project, as it has been called, has drawn quite some attention lately. Some claim that
it is an example of a new method or procedure of proof search in mathematics,
whereas others merely see it as old methods implemented through new media, such
as the internet. It is our hypothesis that the formal considerations presented here, in
this chapter, can help us to clarify the matter. As it happens, we do believe that there
are a sufficient number of distinctive characteristics that allow one to consider this
development as indeed new and philosophically relevant.

The clue to the story is provided by the mathematician who initiated the whole
process, Timothy Gowers, who wrote on his blog: “I’m interested in the question of
whether it is possible for lots of people to solve one single problem rather than lots
of people to solve one problem each” (Gowers, 2009a). Justin Cranshaw and Aniket
Kittur made a similar comment: “In the case of finite simple group classification,4

the larger task being solved had hundreds if not thousands of natural and predefined
subtasks whose solutions were largely independent of the solutions of the other
subtasks. Gowers was instead proposing to collaboratively solve a single problem
that does not naturally split up into a vast number of subtasks” (Cranshaw and Kittur,
2011). In terms of a problem-solving community, this means that a quite different
structure is required and that is one of the focal points of this chapter.

Some historical background.5 In January 2009, Timothy Gowers opened a
website, accessible to everyone, mathematicians and non-mathematicians alike,
announcing that he was searching for a proof of a particular mathematical statement,
and inviting them to join him in that search. Anyone could post a message about
almost everything, on the obvious condition that it was somehow related to the proof
search. In fact, a set of ground rules was announced to avoid the whole enterprise
becoming all too chaotic. The hope was to find a proof and, if that were to occur,
to publish the proof through the usual, existing channels, namely mathematical
journals. Presented thus, this in fact does not really sound novel, except perhaps
for the fact that a large number of people could (and did) participate. But that

4See, e.g., (Van Bendegem and Van Kerkhove, 2009, Sect. 4).
5A more complete and highly accessible version of events can be found in (Nielsen, 2011).
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only seems to be a matter of scale and, although changing the scale of a process
can induce important changes, it does not therefore affect the underlying standard
picture of proof search. However, closer inspection does reveal some interesting
elements. But let us first have a look at the problem itself.

The problem Gowers launched on the website is known as the Density Hales-
Jewett Theorem (DHJ henceforth), for k = 3 at first, but later generalised to arbitrary
k. This problem comes under the heading of Ramsey Theory, that is to say it involves
combinatorics and so-called colouring problems, where “unavoidable” properties
appear. The typical format of such problems is that, given a structure of sufficiently
large size, there will always be substructures that have a particular property, the
unavoidable property. More specifically, DHJ for k = 3 states the following. Let
there be:

– a set K = {1,2,3}, with #K = k
– a set N = Kn, i.e., the set of all words of length n, on the basis of K.

Next we need two definitions:

– A combinatorial line is a subset of N such that, for at least one x, the elements
are of the form: k1k2 . . .kixki+2 . . .kn for x = 1,2, . . . ,k.

Example Take n = 6, then: the subset {122132, 122232, 122332} is a
combinatorial line, as is the subset {112132, 212232, 312332}.

– Define the density d of a subset M of N by d = #M/#N.

DHJ for k = 3 says that, for every d, there exists an n such that every subset M of
N with density at least d contains a combinatorial line. The “unavoidable” property
here is the presence of a combinatorial line. So the theorem says that no matter how
low the density of a particular subset, if the words made on the basis of the alphabet
can be sufficiently long, there will always appear a combinatorial line.6,7

What happened after the opening of the website? First, after Gowers, Terence
Tao joined the enterprise (see below). After 6 weeks, during which 39 contributors
had posted 1,228 comments (after every 100 of these, Gowers made summaries
to keep an overview), not only was a proof found, but it became immediately
clear how it could be generalized for arbitrary k. The proof has meanwhile been
published under the pseudonym D. H. J. Polymath (2010), with a second paper
(Polymath, 2012) being under review, reminiscent of other fictitious names covering
a collective in the history of mathematics, the most famous one no doubt that

6This highly compact formulation of the DHJ can be complemented by, especially for the
non-mathematician, “The gentle introduction to the Polymath project” to be found at: http://
numberwarrior.wordpress.com/2009/03/25/a-gentle-introduction-to-the-polymath-project/.
7Actually, a proof already existed. It was formulated in (Furstenberg and Katznelson, 1991).
However, this original proof relied on methods and techniques from domains far away from
combinatorics, such as ergodic theory. So, as often happens in mathematical research, although
one has a proof of the theorem, nevertheless this does not prevent mathematicians from searching
for an alternative and, more importantly, an elementary proof, i.e., a proof using the concepts, proof
methods and techniques of the domain itself. For more on this topic, see, e.g., (Rav, 1999).

http://numberwarrior.wordpress.com/2009/03/25/a-gentle-introduction-to-the-polymath-project/
http://numberwarrior.wordpress.com/2009/03/25/a-gentle-introduction-to-the-polymath-project/
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of Nicolas Bourbaki. What can be concluded from this episode? Surely the most
striking feature of the whole process is that “amateurs” could and did participate,
although whether we should be as enthusiastic about this as Jacob Aron, claiming
that this will “democratize the process of mathematical discovery” (see Aron,
2011), is another matter. A good reason for a restricted enthusiasm has to do with
the history of amateur mathematics, probably known to all of us. Refutations of
accepted results (see Hodges, 1998, for a rather depressing discussion of refutations
of Cantor’s diagonal argument or Dudley, 1992, for alleged proofs of almost
everything, including the parallel postulate) and easy to understand, short proofs
of famous conjectures such as Fermat’s Last Theorem (even after Andrew Wiles
settled the matter) or Goldbach’s conjecture are by far the most common. However,
in this case the situation is different. The amateur contributions are most of the
time not in the form of proofs, but in the form of suggestions, ideas, outlines of
possible proofs, and so forth (see Sect. 17.2.3 below). Perhaps more importantly, the
“classic” amateur is an isolated individual who sends material to mathematicians or
editors of journals,8 preferably on a 1-1 basis, whereas here they contribute bits and
pieces in an open social environment, where everything is noted and listed, for all
to see. In short, your Polymath amateur is not your average “crank” amateur. Apart
from that, are there any other, special features? We think there are at least three.

17.2.1 Feature 1

Combinatorial problems are rather specific mathematical problems that have two
important properties: (i) the problem is usually quantified over the natural numbers,
so, instead of having a direct go at the full proof, case-by-case proof search can
be very revealing as to the general proof (as in the case of, e.g., Fermat’s Last
Theorem), and (ii) the search for counterexamples lends itself, at least for small
numbers, to an exhaustive search9 and, for larger numbers, to clever methods for
reducing the cases to be examined. As it happened in the DHJ case, both research
lines were pursued: next to the Gowers project, corresponding to (i), Terence Tao set
up a project, complementary to the Gowers project and corresponding to (ii). More
specifically, Tao asked the negative question: What is the size of the largest subset
C of N that does not contain a combinatorial line as a function of k and n?

The question now becomes: given k and n, what is the lower limit of d? The
reader can check for him- or herself that for k = 3 and n = 2, the size is 6. As k and
n are finite, the set N will also be finite, so, in principle, all elements can be listed,

8One of the authors of this chapter is himself the editor of a logic journal, Logique et Analyse, and
has a nice collection of, e.g., disproofs of Gödel’s theorems.
9This type of research, much loved by some of the aforementioned amateurs can indeed be seen as
“outsourcing drudge work, comparable to Amazon’s Mechanical Turk” (https://www.mturk.com/
mturk/welcome), as remarked by one of the referees.

https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
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all subsets can be listed and a step-by-step control of each subset can be checked
for combinatorial lines, such that the size of C can be calculated. However, as one
might expect, the concept of combinatorial explosion is definitely applicable here,
as even for small k and n, the number of subsets grows exponentially and so one has
to search, as mentioned, for clever tricks, techniques and methods to get sufficient
insight in order to calculate the size of C.

This leads to the following interesting open question: are Polymath problems
restricted to combinatorial problems (or to problems satisfying conditions (i) and
(ii))? One might be tempted to answer positively, especially given the further
development of the project after the success of the DHJ theorem (see below at
the end of this section), but matters are not that simple. Note first of all that
not all combinatorial (or similar) problems are good candidates. Take Fermat’s
Last Theorem as an example. The problem satisfies both conditions and similar
to the DHJ theorem one could suggest the search for an elementary proof. There
is however the commonly shared belief that such an elementary proof is highly
unlikely, hence the risk is too high to meet failure and hence no such project
will ever be launched (and the search for such a proof is definitely left to the
“crank” amateurs). And it is true of course that Riemann’s Hypothesis is a very
unlikely candidate to be taken up as a project—in Tao’s words on his blog: “I would
imagine that a polymath to solve the Riemann Hypothesis will be a spectacular and
frustrating fiasco; we should focus on problems that look like some progress can be
made”10—but on the very same blog an important suggestion is made by Gowers,
that can be seen as a generalisation of conditions (i) and (ii): “A lesson from the DHJ
experience was that there were very different ways that people could contribute.” So
that seems to be the key: in a Polymath environment a methodological plurality is
essential.

17.2.2 Feature 2

This feature can be described in sloganesque terms as “Lakatos visualised”, in
honour of Imre Lakatos, who has introduced historical and social elements in
mathematics itself in his seminal study on Euler’s Conjecture, entitled Proofs and
Refutations (see Lakatos, 1976). What we mean by the “visualisation” is that, with
Polymath, a register is made of all such social exchanges. Of course, we still do
not know what happens in the individual minds of the participating mathematicians
but, as soon as an item of information is exchanged, it is recorded. We thus obtain
an extremely detailed record of the proceedings. This is obviously not only of
interest for historians of mathematics, but more importantly so for the participating
mathematicians. Surely this must lead to a different problem-solving practice in
terms of shared knowledge in the community.

10See http://polymathprojects.org/2009/07/27/selecting-the-next-polymath-project/.

http://polymathprojects.org/2009/07/27/selecting-the-next-polymath-project/
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A first dimension is the role of authority in a problem-solving community.
Anyone who had a glance at the Polymath blog will realise very quickly that
Gowers and Tao are the authorities guiding the process. Not merely because both
are internationally reputed mathematicians, but also because they formulated the
minimal rules that any participant should respect, implying that any transgression
of these rules could, in principle, lead to exclusion (although, as far as we know,
this has never happened). In short they set up the framework wherein the game will
be played. Their being in charge is also reflected in the number of contributions
by Gowers and Tao, in comparison with other participants. Additionally, they
continually made comments about the progress of the project, what suggestions and
ideas were interesting and/or important to pursue, in short they both acted as filters.
Another way to describe this situation is that we have here a network with two
strongly connected “attractors” and no high density subnetworks, all nodes being
mainly directed towards the two central ones.

A second dimension concerns the meta-level. For a similarly detailed recording
of events and exchanges during the search process itself creates a “conscious” and
shared meta-level, by which we mean all arguments, thoughts, ideas, etc., about the
process itself, not so much as about the actual problem they are trying to solve.
These comments are grouped together on a special blog.11

17.2.3 Feature 3

What kind of contributions were made during the process? One might expect that,
since the overall aim was to find a proof, everyone would have directly contributed
to it. In terms of the ideal picture of a proof—a labelled list of statements, justified at
each step, starting with the premisses and ending with the statement to be proved as
conclusion—one could imagine Gowers writing down the first few lines, someone
else contributing the next line, until it is realised that the road chosen is a dead-end,
hence some backtracking is done and someone else proposes a new line to explore
a different road, eventually arriving at the last line. Needless to say, that is not what
happened. Actually, a stronger statement can be made: many contributions were
of a quite different nature. What follows is not to be seen as an overview but as a
selection of some elements that deviate from the picture sketched above:

– Looking at other domains: Very often analogies with other problems were
proposed, both on the level of statements (“This problem looks very much like
. . . ”), where the analogical problem often comes from a different domain than
combinatorics, and on the level of proof procedures (“Could you make use of
this or that technique that turned out to be useful for this or that problem?”), that
were successful in other domains.

11See http://polymathprojects.org/category/discussion/, for more specific comments and on a
related blog, http://polymathprojects.org/general-discussion/, for more general comments.

http://polymathprojects.org/category/discussion/
http://polymathprojects.org/general-discussion/
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– The same problem in different words: Equally often, concepts were proposed to
reformulate the problem so that other problems could be related but also to get
a better understanding of the problem. This is a technique that is well-known in
mathematical practice: find equivalent forms of the statement you are trying to
prove, hoping that the reformulation will be easier to prove. Think, e.g., about the
four-colour theorem. Replace a region by a dot and, if two regions are neighbours,
connect them with an edge. Now you obtain a graph and the theorem translates
equivalently into: using four colours, colour the dots so that two connected dots
do not get the same colour.

– Keep it simple(r): Not so much parts of possible proofs were proposed, but rather
suggestions and quite vague ideas about possible routes to find the proof itself
and what the proof could look like. Sometimes proofs of simpler problems,
directly related to the original problem, were presented as a source of inspiration,
reminding us of one of the strategies discussed in Pólya (1945, 75–85), namely,
if the solution of a problem must satisfy a number of conditions, drop one of the
conditions and see whether a solution can then be found, a special case of the
general heuristic strategy, labeled “Decomposing and recombining”.

Consequences of this high diversity in the contributions are, at least the following:

– The community, both in terms of members and in terms of the exchanges they
make, is definitely not homogeneous. Different members play quite different
parts.

– Different members will come up with different ideas and concepts. What goes on
in the mind of the professional high-ranked mathematician is definitely not what
goes on in the mind of the high school teacher or dedicated amateur. The one is
not a “light” version of the other, they do have their proper characteristics and
have their own specific contributions to make.

– Room is created for chance elements to play a part. Crazy ideas get a place
in such networks.The upshot seems to be that all these diverse elements create
a rather special and specific problem-solving context. In this respect, Gowers
has remarked: “Reading the discussion provides some kind of strange random
stimulus that causes your brain to go in to fruitful places where it might not have
gone otherwise” (as quoted in Aron, 2011).

What happened after DHJ? At the time of writing, five more problems have
already been tackled. It is rather striking, although of course the specialties of
Gowers and Tao have to be taken into account, that most of the problems, either
directly or slightly less so, deal with combinatorics and the search for or the
improvement of upper and lower bounds. Polymath 2 deals with Banach spaces and
although that seems sufficiently far away from combinatorics, Gowers on the blog
has remarked: “I have given definition 3 above because I think it has the potential
to ‘combinatorialize’ the problem” (Gowers, 2009b). Polymath 3, the Polynomial
Diameter Conjecture, states that, if G is the graph of a d-polytope with n facets,
then the diameter of G is bounded above by a polynomial of d and n, and needs
no further discussion. The same goes for Polymath 4, the statement that there exists
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a deterministic algorithm which, given an integer k, is guaranteed to find a prime
of at least k digits in length of time polynomial in k. (A proof of the theorem is
under review.) Polymath 5 deals with Erdős’s discrepancy problem, and Polymath
6 with improving bounds in Roth’s theorem, both fitting nicely in the combinatorial
domain. The question remains, as already mentioned above, whether there are
problems not suited for this type of approach.

The case thus being laid out, it is now time to pass to the constructive part
of our chapter, and propose a formalism that can capture instances of essentially
collaborative mathematical research like the one met in this very example.

17.3 Formalising Shared Knowledge

Reasoning about how knowledge and belief can be shared by individuals is what
epistemic logics, extended with operators for group knowledge, do best. Reasoning
about how the distribution of shared knowledge and belief can be altered through
interaction belongs to the domain of dynamic epistemic logic. In the present section
the basic notions and insights from these fields are briefly described. We refer the
reader to the Appendix for further details.

The epistemic and doxastic logics are built up in two steps. We start with the
introduction of operators for single-agent knowledge (or belief) by extending the
propositional language with a modal operator [c] for each individual c we’d like
to reason about. As is standard in the literature, we assume that these individuals
are extremely powerful reasoners by stipulating that (a) they are logically and
deductively omniscient, (b) they are infallible when it comes to their knowledge
(they satisfy positive introspection), and (c) they are infallible when it comes to
their ignorance (they satisfy negative introspection). When complemented with the
standard view that knowledge is factive, this leads to a formalisation of individual
knowledge that is based on the modal logic S5. Analogously, if we assume that
beliefs can be false, but should still be consistent, the same assumptions lead to a
formalisation of individual belief that is based on the modal logic KD45. In the
remainder, we only focus on knowledge.

The operators for individual knowledge are sufficient to define two of the four
main notions of group knowledge, namely particular and general knowledge. By
particular knowledge in a group of individuals G, we mean knowledge by at least
one of the members of G. We write SGϕ to express that ϕ is particular knowledge in
G. By general knowledge in a group of individuals G, we mean knowledge by all of
the members of G. We write EGϕ to express that ϕ is general knowledge in G. As is
clear from the above, SGϕ and EGϕ are equivalent to, respectively, the (generalised)
disjunction and conjunction of the respective knowledge claims for all individuals in
G. No such straightforward reduction to claims about what the respective individuals
know is available for the two remaining notions of group-knowledge. Once more,
we refer the reader to the Appendix for the relevant details, and stick to an informal
description of these notions. By distributed knowledge in G, we mean the knowledge
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Table 17.1 Logical properties of group-knowledge

[c]ϕ [c]ϕ Deductive Pos & neg
for some c ∈ G for all c ∈ G closure introspection

DGϕ � �
SGϕ � (�)
EGϕ � � �
CGϕ � � � �

that can be obtained by pooling together the knowledge of all the members of G. We
write DGϕ to express that ϕ is distributed knowledge in G. To explain what we mean
by common knowledge in G, we need to revert to the notion of general knowledge.
Indeed, when we say that ϕ is common knowledge in G, we mean that ϕ is general
knowledge in G, that it is general knowledge that it is general knowledge that ϕ etc.
Common knowledge in a group not only amounts to general knowledge that cannot
be doubted by any member of that group, but also implies that no member can doubt
the fact that any other member is in such a position.

Every type of group knowledge has different logical properties, and therefore
provides a model for how knowledge can be present in or available to a community
with different strengths. For instance, ϕ being distributed knowledge within G is
compatible with every member being ignorant about ϕ . That is, ϕ can be distributed
knowledge without being particular knowledge. In more common terms: ϕ can be
implicitly known without being explicitly known. Elsewhere (Allo, 2013), the first
author proposed the following interpretation of each type of group knowledge: (a)
distributed knowledge is implicitly available knowledge; (b) particular knowledge
is explicitly available knowledge; (c) general knowledge is readily available (ex-
plicit) knowledge; and (d) common knowledge is transparently available (explicit)
knowledge. This interpretation agrees with the logical properties of each type of
group-knowledge as summarised in Table 17.1.

The static properties of each type of group-knowledge already give us the
ability to discriminate between different ways in which something can be known
or accepted within a community, but do not yet exhaust the possibilities. Consider
for that matter the following principles

(SGϕ ∧SG(ϕ → ψ))→ DGψ

(SGϕ ∧EG(ϕ → ψ))→ SGψ

which express weaker types of deductive closure for particular knowledge. From
the first principle it follows that the consequences of all particular knowledge are
distributed knowledge. In other words, any deductive consequences of what is
explicitly known are implicitly known, and to make merely implicit knowledge
explicit the different agents will have to communicate.

Extensions of the standard epistemic logic known as dynamic epistemic logic
(Baltag and Moss, 2004; Baltag et al., 2008; van Ditmarsch et al., 2007) bring
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in the required resources to express facts about what is known after a certain
announcement. Crucially, different types of announcements will alter the way in
which knowledge is distributed in a different manner. The best known example is
that of so-called public announcements, whose effect is modelled as the removal of
all alternatives that disagree with the content of what is announced. Thus, after the
public announcement of p to a group of agents G, the model will no longer contain
any alternative where p is true, and hence no p-world will be a Gk-alternative (see
Appendix). That is, p will be common knowledge in G.

A first alternative to public announcements that we need to consider are fully
private announcements. These are announcements where one or more agents learn
the content of what is announced, while the remaining agents are not even aware of
the fact that something was announced. When, for instance, p is privately announced
to an agent c while the remaining members of the group G do not notice this, the
resulting model will be one where c knows that p while the remaining members
will be under the false impression that the knowledge available in the group didn’t
change at all. Thus, for instance, if prior to the announcement it was commonly
known that c didn’t know whether p was the case, then after the announcement the
remaining members will falsely believe that c is ignorant with respect to p.

A second alternative are the so-called fair game announcements, where some
agents receive new information while the remaining members of the group do notice
that some information is being shared with others, but remain ignorant with regard
to the specific content that is being learned. That is, after such an announcement of p
it could be the case that c knows that p while the remaining agents only know that c
knows whether p (i.e. they do not know as much as c does, but they do know that the
state of c’s knowledge has changed because they know that either c knows that p or
c knows that ¬p).

Using these ideas, we can start to make further combinations. For instance, we
can take the union of different fully private announcements to model the action
where each member of a group G comes to know that p, and yet falsely believes
that no other member of G comes to know that p. What is distinctive of such
announcements is that after the announcement it is the case that p is generally
known in G, but not commonly known in G. This type of result can be related
to a well-known limitation about our means to achieve common knowledge in a
group, namely the fact that common knowledge can only be attained through public
announcements. That is, for p to become common knowledge in a group G, p
must be publicly announced within G; it must be transparent to all members of
G that p is announced and that all members of G know about this announcement.
If communication is not transparent, as is the case with the other types of
announcements we’ve described (or as is the case with unreliable communication,
as we find it in the coordinated attack problem; see, e.g., Fagin et al., 1995), then
common knowledge is absolutely beyond reach.
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17.4 A Model for Collaborative Mathematics?

The main reason why common knowledge is such a valuable good is that it is a
prerequisite for coordinated action. This feature is traditionally associated with the
coordinated attack problem: To win the battle, two generals need to ensure that they
will attack the enemy at the same moment. The latter can only be achieved when it
is common knowledge between them that, say, the plan is to attack at dawn. As the
problem is traditionally set up, common knowledge and thus agreement can never be
achieved by these generals. Since all their means of communication are unreliable
(e.g. messengers that might be captured by the enemy), the generals can always
doubt that the message was delivered and hence that an agreement was reached. This
situation is analogous to a situation where information is exchanged with (semi-)
private announcements.

Let agree(ψ) be a formula that is true at states in which the players have agreed on ψ .
(. . . ) [W]e expect that if Alice and Bob agree on ψ , then each of them knows that they
have agreed on ψ . This is a key property of agreement: in order for there to be agreement,
every participant in the agreement must know that there is agreement. Thus, we expect
agree(ψ) =⇒ E(agree(ψ)) to be valid. The Induction Rule for Common knowledge tells
us that if this is the case, then agree(ψ) =⇒ C(agree(ψ)) is also valid. Hence, agreement
implies common knowledge (Fagin et al., 1995, 189–90).

Assuming that collaborative mathematics requires coordinated action, one would
presume that common knowledge would be as important for the success of the
Polymath Project as it is for the victory of the two Byzantine generals. And hence,
given the previously established connection with public announcements, one would
expect that all knowledge should be shared in an entirely transparent manner. At
first blush it would seem that this is exactly what is the case in the example from
Sect. 17.2: The totality of what is communicated is publicly available on a website.
And yet, if that were the case the whole case-study would turn out to be a rather
boring example of pooling together resources (both in terms of computational
capacity and in terms of mathematical knowledge). To reveal what makes the
Polymath case an interesting one, we precisely need to focus on how the absence
of common knowledge guarantees that the community remains sufficiently diverse,
while the process of limiting this diversity ensures that the whole enterprise remains
sufficiently goal-oriented to ultimately find a solution and end up with a proof.

When put in terms of announcements, the above description suggests that we
need to look at the whole communication-process on the website as a mixture
of both public and not so public announcements; with the public announcements
enforcing a certain amount of coordination, and with the private and semi-private
announcements to maintain a certain degree of diversity. Our aim in this section
is to show that, first, the structure of the polymath community—with a core of
two agents, and a highly diverse periphery—is indeed well-suited to maintain both
diversity and a goal-oriented enterprise, and, second, to show that the structure of
this type of community can be modelled with the tools described in the previous
section.
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Let us begin with a few methodological remarks about formal modelling. First, to
design a formal model of a given phenomenon we need to decide on which features
we’re interested in, and thus need to be retained by the model, and which features
we would like to abstract away. Here, the upshot is to focus on how information is
distributed, and how that distribution can be altered by means of communication.
This will mean that our model will abstract from many features of the case-study
from Sect. 17.2, and in particular that a fine-grained rendering of the content of the
specific mathematical problem will be absent from our model. As a result, the formal
model that is further developed in this section ignores Feature 1, the fact that the
polymath project dealt with a combinatorial problem. Such abstraction is typical of
formal models of science.

A second type of abstraction follows from the fact that our formal model assumes
all agents to be logically omniscient. This is a common type of idealisation in logical
models. It entails that the model cannot reveal specific features that are related to the
resources that are required to complete certain computations. As a result, the formal
model we use will also ignore aspects that are related to the fact that by delegating
the task of checking a number of limited cases computational resources can be
shared (i.e. if all agents have unlimited resources, there’s no point in delegating
purely computational tasks).

Given these abstractions, the model we’re after is primarily a model of the
structure of a community understood in terms of how information can flow within
that community. How can, given the formalism we’ve settled on, the latter be
modelled? Here, we will need to make a few assumptions that strictly speaking
go beyond the formalism described in Sect. 17.3. This is because the framework
of dynamic epistemic logic lacks the expressive resources to make all the relevant
features of this structure explicit. A first requirement is that we need to tie
announcements to specific agents who make that announcement. To that end, we
follow the standard practice of modelling the announcement of ϕ by some agent c
as the announcement that c knows (or believes) that ϕ . This introduces a first type
of distinction between otherwise similar announcements.

The second and more important requirement is that we need to account for the
structure of a community. This we achieve in two ways. By picking out a number of
distinguished sub-groups of that community, and by listing (or otherwise defining)
the types of announcements that are available. By restricting the number of sub-
groups we can make claims about,12 we settle on a certain level of abstraction.13

In doing so, we put a limit on how finely we can discriminate between different

12Again, this is something that the standard formalism does not allow for since the notions of
general and particular knowledge are simply definable in terms of, respectively, the conjunction
and disjunction of individual knowledge claims for each member of the group. Nevertheless,
such restrictions on the available groups can be introduced syntactically with, what amounts to,
awareness filters. We do not pursue the details of this additional modification, but stick to a rather
informal approach.
13An intuitively plausible way to think about such levels of abstraction is this: Sometimes we like
to consider the (or a) mathematical community as a monolithic bloc (in terms of consensus in that



354 P. Allo et al.

factions in, say, the periphery of the community in terms of what is known and/or
believed in such factions. A second effect of this type of expressive limitation is
that it also precludes us from indiscriminately lumping together the knowledge and
belief of arbitrary agents. For instance, while it obviously makes sense to talk about
the knowledge that is distributed in the community as a whole, it isn’t so obvious
that for any two agents c1 and c2 we should equally likely be able to talk about the
distributed knowledge (or lack thereof) in the two-agent group {c1,c2}.

The latter type of limitation on the types of claims we should be able to make
about different sub-groups finds a natural companion in the restrictions we impose
on the available announcements. For instance, if we are not allowed to make claims
about the distributed knowledge in the group {c1,c2}, we should also not allow
these two agents to privately communicate (for this would mean that they could in
principle privately aggregate their knowledge). This is just one type of limitation on
the available announcements. Another very natural type of limitation is on who is
allowed to make public announcements. Here too, it often makes sense to assume
that not all agents can make such announcements.

Depending on the structure of a community, that is, depending on the types of
announcements that are available and that can alter the distribution of information in
that community, the process of communication will determine the balance between
coordination and diversity. For instance, only those agents who can make public
announcements will be able to enforce the agreement required for coordination
(and then only relative to their own information), while the other agents will at
best be able to bring in new information and thereby enhance the diversity within
the community. In the last part of this section we shall illustrate these processes
by looking at three broad types of interaction. This will not only illustrate the
connection between available actions and the balance between agreements and
diversity, but will also shed a light on some distinctive features of the Polymath
community.

17.4.1 The Inference Network

The main purpose of an inference network, conceived as a model of distributed
computing, is to make the information that is implicitly present in the network
explicit. In our terms, its aim is to move from merely distributed knowledge to (at
least) particular knowledge. This can be achieved in many ways. One way to do
so, is to allow every agent to send his information to a unique designated agent; a
so-called wise man.14 In our terms, this would mean that the only available actions

community), but equally often we prefer to take a more refined look that allows us to focus on
more local phenomena.
14This approach trivialises the idea of distributed computing, but the comments we make equally
apply to more refined protocols for inference networks.
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are announcements that have the wise man among their recipients. Crucially, this
type of network is indifferent with respect to how such announcements are made;
all that matters is that the wise man should come to know every piece of information
in the network. This can equally well be achieved by private announcements as it
can be by public announcements. Coordinated action is, at least in principle, not
required for this network to succeed in its goal; it only has an impact on how efficient
the network is. For instance, if the identity of the wise man is generally known,
each agent will only need to send his information to that wise man. Likewise if the
communication of ϕ between some agent c and the wise-man cw is public within
the sub-group {c,cw}, then c will also know that the message that ϕ has arrived and
thus prevent it from sending it again (though this won’t prevent others from sending
ϕ as well).

17.4.2 Contributing by Solving Predefined Subtasks

While the process of solving a big problem within a group by splitting it up into
smaller tasks and distributing these tasks to different agents or sub-groups shares
many features with an inference network, it also gives rise to further constraints on
the structure of the community. To begin with, while the presence of a wise man
isn’t absolutely required for an inference network, the presence of some agent or
sub-community who coordinates the process by distributing the different pieces is
crucial here. In our terminology, this amounts to saying that we need bi-directional
information-flow: to distribute the predefined tasks, and to send back the results for
aggregation. As before, some types of coordination and common knowledge can be
useful. We could, for instance, require that the overall aim be commonly known,
that it be publicly announced when the final goal is reached, or that the process
whereby tasks are distributed amounts to reaching an agreement that a certain task is
accepted. Yet, other types of common knowledge like knowledge about the different
subtasks, their distribution among the community, and the completion of certain
subtasks need not be present. Given the wide range of situations where problems
are solved in this manner, the question of what exactly needs to be commonly
known cannot and should not be settled in general (e.g. sometimes we might prefer
a situation where some sub-tasks are simultaneously tackled by competing agents,
who may (or may not) suspect that others might have received the same task).

17.4.3 Balancing Between Coordination and Diversity

This is the type of network or community we associate with the Polymath Project.
In Sect. 17.2, this network is described as “a network with two strongly connected
attractors”. Here, we reflect this structure by describing the types of announcements
that can be made, and by listing the types of knowledge claims that can be made.
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First, to capture the fact that we have a core consisting of two agents, we should
be able to refer to each of these agents separately, and indeed we should require that
everyone in the community be aware of their identity. Second, to reflect that these
two agents are strongly connected we should be able to make claims about what they
know as a group (and how they know it). Similarly, to extend these considerations to
the level of available announcements, we should also stipulate that these two agents
can have private interactions, and that they both (as individuals, but perhaps also
as a group) should be able to make public announcements to the community as a
whole. In virtue of the fact that they can interact privately, the distribution of their
knowledge can be altered unbeknownst to the community as a whole; in virtue of
their ability to make public announcements, they have the certainty that when they
address the community as a whole, the others will listen.

Third, to capture the fact that the rest of the community is best seen as a wide
periphery, we may restrict our ability to refer to each agent separately, and we
almost certainly need to limit their awareness of each other. Fourth, to reflect that
all members of the community can contribute, that all information is made publicly
available, and yet that it is by no means certain that all members of the community
actually access each and every piece of available information, we should preclude
that these agents be able to make public announcements. In fact, we should model
the announcements of these agents in such a way that they do not know whether
they actually reach the whole community, or only some subset of that community.
Finally, as already mentioned, we might also want to preclude the agents in the
periphery from interacting privately.

How does such a setting contribute to the intended aim of keeping a balance
between diversity and coordination? This is achieved by the following division
of labour: Agents in the periphery, on the one hand, can launch new ideas, and
introduce new information into the network, but do not have the means to impose
these ideas. This ensures that new ideas can at all time be introduced, and that most
agents cannot decisively reject these new ideas. Agents at the core, by contrast, can
(as they do by introducing the problem, or by giving summaries) set and revise
the agenda, and this agenda can be considered binding. This is done by picking
up and promoting certain ideas that were previously introduced by agents in the
community, while objecting to (or merely ignoring) others. As such, the ability
of the core members to make public announcements lets them, given an already
available rich supply of new information, either stimulate or constrain this diversity.

17.5 Conclusion

In the field of philosophy there is a well-entrenched research tradition on argu-
mentation, both from an informal and a formal point of view. In the latter case,
this tradition has been strongly intertwined with the development of non-classical
logics. Recently, from within the field of computer science, a novel approach to ar-
gumentation has been launched, namely that of argumentation networks. However,
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to date, the models have remained rather abstract: arguments are viewed solely in
relation to others, the basic scheme being that of one-on-one “attacks”. Also, as
far as we are aware, applications to mathematical contexts are as yet unavailable.
Correspondingly, the aim of this chapter has been to demonstrate and develop
the potential of this type of approach for the understanding of the construction
of mathematical proofs. In particular, we have illustrated how epistemic logics
that allow us to reason about the knowledge of individuals and the knowledge
available within communities can be used to model proofs-as-arguments from a
perspective that emphasises interaction and collaboration. In particular cases like
the Polymath Project, the absence of full common knowledge seems to guarantee
that the community remains sufficiently diverse, while limits to this diversity ensure
that the enterprise remains sufficiently goal-oriented.

Acknowledgements The first author is a postdoctoral fellow of the Research Foundation–
Flanders, which through project G.0431.09 also supported research for this chapter by the third
author.

Appendix

Where C is the set of individual agents, we have a modal operator [c] for every c in
C . Thus, we say that

[c]ϕ is true at a state w iff wRcw′ implies that ϕ is true at w′.

If wRcw′ is read as saying that w′ is an epistemic alternative to w for c, and that its
negation ¬wRcw′ means that at w, c can exclude w′, we can say that c knows that ϕ
at w iff

c can exclude at w all states where ϕ is not true,

or, equivalently, iff

ϕ is true at all epistemic alternatives to w for c.

Traditionally, epistemic operators are presumed to satisfy some further conditions.
For present purposes we opt for the strongest possible set of conditions: We
presuppose that knowledge is factive (only truths can be known), that it is positively
introspective (knowing implies knowing that one knows), and that it is negatively
introspective (one always knows about one’s ignorance). It is a standard result in
modal logic that [c] has all these properties iff Rc is a reflexive, transitive and
symmetric relation (see, for instance, van Ditmarsch et al., 2007, 2.2).

In addition to being able to talk about what individual agents know, we also
want to say something about what is known in communities of agents. Crucially,
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knowledge can be available to communities in different guises. Where G ⊆ C is
a community of agents and ϕ is any formula, ϕ can be known at a state w by a
community G because:

1. At w every state w′ where ϕ is not true is excluded by at least one c ∈ G. In that
case, we say that ϕ is distributed knowledge at w in G and write w |= DGϕ to
express this.

2. At w some c ∈ G excludes every state w′ where ϕ is not true. In that case, we
say that ϕ is particular knowledge at w in G (informally, ‘someone knows’) and
write w |= SGϕ to express this.

3. At w every c ∈ G excludes every state w′ where ϕ is not true. In that case, we say
that ϕ is general knowledge at w in G (informally, ‘everybody knows’) and write
w |= EGϕ to express this.

To explain a final way in which ϕ can be known in G, we first define a Gk alternative
with the following inductive clauses:

– A world w is a G1 alternative iff w is an epistemic alternative for some member
of G.

– A world w is a Gk+1 alternative iff at some Gk alternative the world w is an
epistemic alternative for some member of G.

Using this notion, we can now stipulate that ϕ can also be known when

4. At w and for any finite k, no state w′ where ϕ is not true is a Gk alternative.
In that case, we say that ϕ is common knowledge in G and write w |= CGϕ to
express this.
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Chapter 18
The Parallel Structure of Mathematical
Reasoning

Andrew Aberdein

18.1 The Dance of Mathematical Practice

What is mathematics about? A standard answer for philosophers has long been
that mathematics is concerned with the derivation of formal proofs. And yet, as
many mathematicians point out, truly formal proof has little to do with actual
mathematical practice. Here is one such mathematician, David Ruelle:

Human mathematics consists in fact in talking about formal proofs, and not actually
performing them. One argues quite convincingly that certain formal texts exist, and it would
in fact not be impossible to write them down. But it is not done: it would be hard work, and
useless because the human brain is not good at checking that a formal text is error-free.
Human mathematics is a sort of dance around an unwritten formal text, which if written
would be unreadable. This may not seem very promising, but human mathematics has in
fact been prodigiously successful (Ruelle, 2000, 254).

Explaining that success poses a problem for philosophy of mathematics as tradi-
tionally conceived. If mathematical practice were ultimately reducible to formal
proof, which has been analysed in great detail in mathematical logic, then actual
practice would differ only in degree from the elementary and/or foundational work
upon which most philosophers of mathematics concentrate. But if mathematical
practice cannot be understood solely in such terms, then philosophy of mathematics
needs to pay it much closer attention. My goal in this chapter is to address this
shortcoming by taking Ruelle’s metaphor seriously, and seeking to devise, as it were,
a choreographic notation for the dance which he describes.
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18.2 Structures of Mathematical Reasoning

Many mathematicians and philosophers of mathematics have observed the dual
nature of mathematical proof: proofs must be both persuasive and rigorous. The
passage from Ruelle quoted above is one example. Here is another from a more
famous mathematician, G.H. Hardy:

If we were to push it to its extreme we should be led to a rather paradoxical conclusion; that
we can, in the last analysis, do nothing but point; that proofs are what Littlewood and I call
gas, rhetorical flourishes designed to affect psychology, pictures on the board in the lecture,
devices to stimulate the imagination of pupils. . . . On the other hand it is not disputed that
mathematics is full of proofs, of undeniable interest and importance, whose purpose is not
in the least to secure conviction. Our interest in these proofs depends on their formal and
aesthetic properties. Our object is both to exhibit the pattern and to obtain assent. (Hardy,
1928, 18, his emphasis)

It follows from this account that ‘proof’ is ambiguous between two different
activities: ‘exhibiting the pattern’ and ‘obtaining assent’. In most circumstances both
activities must be satisfactorily performed for the proof to be a success. There are
some special cases, such as proofs that have been fully formalized, or have been
reified as mathematical objects, where only the first activity is attempted. But in
the characteristic sense of ‘proof’ we need more than this; we need a dialectical
interaction with the mathematical community.

For Richard Epstein, proofs intended to obtain assent are arguments by means
of which mathematicians convince each other that the corresponding inferences
are valid. He represents this situation schematically (Fig. 18.1). However, proofs
are typically made up of many steps, not all of which are necessarily developed
with the same rigour. So closer examination of proofs will represent them not
as single arguments but as structures of arguments (technically trees, or directed
acyclic graphs). Applying this detail to the broader picture suggested by Epstein
requires the articulation of two parallel structures: an inferential structure of formal
derivations linking formal statement to formal statement, and an argumentational
structure of arguments by which mathematicians attempt to convince each other of
the soundness of the inferential structure, and thereby of the acceptability of the
informal counterparts of those statements. In Hardy’s terms, it is the inferential

A Mathematical Proof
Assumptions about how to reason and communicate.

argument

A Mathematical Inference
Premises

necessity

Conclusion

The mathematical inference is valid.

Fig. 18.1 Epstein’s picture
of mathematical proof
(Epstein, 2013, 267)
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Argumentational Structure: Inferential Structure:
Mathematical Proof, Pk Mathematical Inference, Ik
Endoxa: Data accepted by mathematical
community

Premisses: Axioms or statements formally
derived from axioms

argument derivation

Claim: Ik is sound: that is, an informal
counterpart of Sk should be accepted too

Conclusion: An additional formal state-
ment, Sk

Fig. 18.2 The parallel structure of mathematical reasoning

structure which is responsible for ‘exhibiting the pattern’ while the argumenta-
tional structure is responsible for ‘obtaining assent’. Figure 18.2 summarizes this
picture.

This account both conserves and transcends the conventional view of mathe-
matical proof. The inferential structure is held to strict standards of formal rigour,
without which the proof would not qualify as mathematical. However, the step-by-
step compliance of the proof with these standards is itself a matter of argument, and
susceptible to challenge. Hence much actual mathematical practice takes place in the
argumentational structure. Careful demarcation of these two levels is essential to the
proper understanding of mathematics. If this account is correct, important concepts
in the philosophy of mathematics, such as mathematical rigour and mathematical
explanation, can only properly be addressed when both of the parallel structures
are accounted for. In order to do so, we need to say more about the details of the
individual components of the two structures. The formal nature of the inferential
structure makes its characterization comparatively straightforward. It is a graph of
vertices linked by edges, where the vertices are statements expressed in some formal
system and the edges are derivations admissible in that system. The underlying
formal system might, for example, be a natural deduction presentation of a particular
system of logic, but more characteristically it will be a higher-level language, such
as MIZAR (see Alama and Kahle, 2013, for further details of such systems). The
argumentational structure poses more of a challenge, which I shall turn to in the
next section.

18.3 The Argumentational Structure of Mathematics

Wilfrid Hodges offers a brief analysis of ‘unformalised deductive argument[s]’ that
is of help here (although I shall argue that it is necessary to generalize his account
beyond deductive argumentation). For Hodges, such arguments contain components
of three sorts:

• There are the stated conclusion, the stated or implied starting assumptions, and the
intermediate propositions used in getting from the assumptions to the conclusion. I shall
call these the object sentences.



364 A. Aberdein

• There are stated or implied justifications for putting the object sentences in the places
where they appear. For example if the argument says ‘A, therefore B’, the arguer is
claiming that B follows from A.

• There are instructions to do certain things which are needed for the proof. Thus ‘Suppose
C’, ‘Draw the following picture, and consider the circles D and E’, ‘Define F as follows’
(Hodges, 1998, 6).

The argumentational structure must account for all three of these components.
The object sentences are the vertices of the argumentational structure. They

are informal counterparts to formal statements of the inferential structure. Strictly
speaking, the inferential structure must be grounded in axioms: propositions within
the formal system whose truth must be granted if the system is to be employed.
(As such the truth of the axioms cannot be established by formal proof; it is one
area of mathematics where informal argument is the only option.) But practicing
mathematicians seldom take things back that far. Instead, they begin as informal
arguers do in any domain, with the informal counterpart of formal axioms, endoxa:
‘propositions considered true by everybody, or by the majority, or by the wise’
(Walton et al., 2008, 273). In mathematics, the endoxa comprise what Reuben Hersh
has called ‘established mathematics’:

Established mathematics is the body of mathematics that is accepted as the basis for
mathematicians’ proofs. It includes proved statements ‘in the literature,’ and also some
simpler statements that are so well accepted that no literature reference is expected. The
central core of established mathematics includes not only arithmetic, geometry, linear and
polynomial algebra, and calculus, but also the elements of function theory, group theory,
topology, measure theory, Banach and Hilbert spaces, and differential equations—the usual
first two years of graduate study. And then to create new mathematics, one must also master
major segments of the established knowledge in some special area (Hersh, 2013).

Thus, since informal mathematics need not always start with first principles, the
argumentational structure will typically correspond only to a proper substructure of
its inferential counterpart.

However, the correspondence will not be vertex to vertex: formal mathematics
necessarily proceeds by very fine-grained increments, which the corresponding
informal mathematical proofs typically elide. Thus many formal propositions of the
inferential structure will have no counterpart object sentences in the argumentational
structure. Conversely, some object sentences will have no counterpart formal
propositions, since in some informal proofs there are object sentences representing
intermediate statements which are not strictly needed for the validity of the proof,
but only for its intelligibility (see Alama and Kahle, 2013, 168).

As Hodges observes, the argumentational structure is more complex than the
inferential structure because it contains instructions as well as justifications. The
edges of the argumentational structure must be defined loosely enough to articulate
both components. Hersh has the following to say about the linkages between object
sentences:

Established mathematics is an intricately interconnected web of mutually supporting
concepts, which are connected both by plausible and by deductive reasoning. . . . Deductive
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proof, mutually supporting interconnections, and close interaction with social life (com-
merce, technology, education) all serve to warrant the assertions of established mathematics.
Deductive proof is the principal and most important warrant (Hersh, 2013).

Of course, this is still unformalized deductive proof, so it belongs in the argu-
mentational structure not the inferential structure. Nonetheless, in many cases, the
formalization is fully worked out, or more typically, it is clear how it could be.
In this situation the corresponding steps of the argumentational structure can be
very simple; they need do no more than point (as Hardy puts it) at the steps of
the inferential structure.1 But where the derivation is more complex or contested,
much more of the burden of the proof rests on the argumentational structure.
In those circumstances it becomes critical to track and provide responses to the
objections that may be raised to the gaps in the inferential structure. As we shall
see, exactly how this is to be achieved turns on which steps are admissible in the
argumentational structure. Moreover, Hersh observes what I suggested above: even
within established mathematics, not all the interconnections are deductive. Hence,
some of the admissible steps will need to be framed in more permissive terms.

Further progress requires closer attention to the individual steps of the argumen-
tational structure. One of the most influential attempts to analyze argumentational
steps without appealing to logical form was developed in the 1950s by Stephen
Toulmin. His ‘layout’ can represent deductive inference, but encompasses many
other species of argument besides. In its simplest form, shown in Fig. 18.3a, the
layout represents the derivation of a Claim (C), from Data (D), in accordance with a
Warrant (W ). This DWC pattern may appear to resemble a deductive inference rule,
such as modus ponens, but it can be used to represent looser inferential steps.

The differences between the types of inference which the layout may represent
are made explicit by the additional elements of the full layout shown in Fig. 18.3b.
The warrant is justified by its dependence on Backing (B), possible exceptions or
Rebuttals (R) are allowed for, and the resultant force of the argument is stated

1Such ‘pointing’ may bring to mind Jody Azzouni’s ‘derivation indicator view’ of mathematical
practice (Azzouni, 2004). However, Azzouni’s ‘indicating’ describes a looser correspondence,
closer to that holding in general between the two structures. Moreover, at least on some construals,
such as that in (Dove, 2013, 304), Azzouni’s conception of derivation is broader than mine.
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in the Qualifier (Q). Hence the full layout may be understood as ‘Given that D,
we can Q claim that C, since W (on account of B), unless R’. In a frequently
cited example (derived from Toulmin, 1958, 104), ‘Given that HARRY WAS BORN

IN BERMUDA, we can PRESUMABLY claim that HE IS BRITISH, since ANYONE

BORN IN BERMUDA WILL GENERALLY BE BRITISH (on account of VARIOUS

STATUTES . . . ), unless HIS PARENTS WERE ALIENS, SAY.’ In recent years a number
of authors have demonstrated that informal deductive proofs may be represented
using Toulmin layouts (for example Alcolea Banegas, 1998; Inglis et al., 2007).
Elsewhere I have shown how the layout may be generalized to exhibit arguments of
a greater degree of structural complexity (Aberdein, 2006, 213 ff.).

The Toulmin layout is well-adapted to display the object sentences and justi-
fications of specific steps of the argumentational structure. However, instructions,
the last of Hodges’s three argument components, would in general be difficult to
fit into a Toulmin layout (although it has been argued that the warrant should be
understood as an instruction not a proposition, Hitchcock, 2003, 71). We also need a
means to characterize generic steps, if structures are to be analalyzed in terms of the
admissibility of steps. One way of tackling both issues is in terms of argumentation
schemes: stereotypical reasoning patterns, often accompanied by critical questions,
which itemize possible lines of response. Schemes are framed in generic terms and
there is no obstacle to their inclusion of instructions as well as object sentences
and justifications (see Pease and Aberdein, 2011, 49 f., for an exploration of
how this might be done). Like the Toulmin layout, schemes can be deductive,
although they were devised to describe a more diverse range of arguments, such as
argument from consequences or argument from expert opinion. (Walton et al., 2008,
Chap. 9, catalogues sixty such schemes, many with multiple subvariants.) However,
despite their topic-neutral provenance, many of these schemes are applicable to
mathematical argumentation (as I have argued elsewhere: Aberdein, 2010, 2013).
Indeed, there is at least a family resemblance between argumentation schemes and
Toulmin layouts. Most (instantiations of) schemes could be expressed as layouts:
the data and warrant correspond to premisses, the claim (suitably modified by the
qualifier) to the conclusion, and the backing and rebuttal both comprise possible
answers to critical questions (for further discussion of the relationship of schemes
to layouts, see Pease and Aberdein, 2011, 28 ff.).

We shall divide the schemes which will be needed to describe mathematical
reasoning into three groups, on the basis of how their instantiations are related to
the corresponding steps (if any) of the inferential structure. A-schemes correspond
directly to a derivation rule of the inferential structure. (Equivalently, we could think
in terms of a single A-scheme, the ‘pointing scheme’ which picks out a derivation
whose premisses and conclusion are formal counterparts of its grounds and claim.)
B-schemes are less directly tied to the inferential structure. Their instantiations
correspond to substructures of derivations rather than individual derivations (and
they may appeal to additional formally verified propositions). B-schemes may be
thought of as exclusively mathematical arguments: high-level algorithms or macros
that may in principle be formalized as multiple inferential steps. C-schemes are
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even looser in their relationship to the inferential structure, since the link between
their grounds and claim need not be deductive. However, their instantiations may
still correspond to substructures of the inferential structure, although there will be
no guarantee that this is so and no procedure that will always yield the required
structure even when it exists.

I shall make three initial observations about the relationships between the three
types of scheme. Firstly, the classification is relative to the composition of the
inferential structure. For example, if the inferential structure was a natural deduction
presentation of classical logic, then only schemes corresponding to the rules of that
system, such as modus ponens, would qualify as A-schemes; even fairly elementary
mathematical deductive inferences would comprise B-schemes; and the C-schemes
would cover inference patterns that were not in general deductive. Alternatively, if
the inferential structure was a higher-level but constructive system, such as Nuprl
(MacKenzie, 2001, 285), many of these B-schemes would be A-schemes since they
corresponded to higher-level rules, but some of the A-schemes, the constructively
inadmissible ones, would now be C-schemes. Secondly, in terms of the Toulmin
layout, the difference between the three types of scheme is tracked by their
qualifier. The A-schemes would all be qualified as ‘by an immediate, formally valid
derivation’, whereas the B-schemes would all be qualified as ‘by an in-principle
formalizable valid deduction’. The C-schemes would have different qualifiers in
different cases: typically something like ‘by plausible mathematical reasoning’, but
sometimes weaker or stronger. This is a good reason to explicitly state the qualifier,
at least of C-schemes, as Matthew Inglis has urged (Inglis et al., 2007). Thirdly,
many schemes have subschemes: special cases, all of whose instantiations might
also be seen as instantiations of the general scheme, but where additional constraints
are imposed. But the classification of a scheme as belonging to a specific type need
not transfer to its subschemes, which may well be more rigorous. For instance, the
example mentioned above of a scheme containing instructions is a B-scheme, but a
subscheme of a C-scheme for analogy (Pease and Aberdein, 2011, 49 f.).

18.4 Four Views of Mathematical Practice

Different views about which steps should be admitted to the inferential structure
give rise to different accounts of the foundations of mathematics. Most conspic-
uously, the divergence between classical and constructive mathematics may be
characterized in these terms. Correspondingly, different views about which steps
should be admitted to the argumentational structure give rise to different accounts
of mathematical practice. In this fashion, at least four such accounts may be
distinguished:

0. Only A-schemes are admissible. There is no such thing as ‘informal mathemat-
ical reasoning’: only formalized reasoning can count as mathematical. All that
the argumentational structure can do is ‘point’ at the inferential structure.
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1. Only A- and B-schemes are admissible. Informal mathematical reasoning is
possible, but the argumentational structure must employ exclusively mathemati-
cal steps, albeit ones characterized informally.

2. All three types of scheme are admissible. Informal mathematical reasoning is
possible, and the argumentational structure employs both exclusively mathemat-
ical steps, and steps of more general application.

3. Only topic-neutral A- or C-schemes are admissible. Informal mathematical
reasoning is possible, and must be understandable purely in terms of steps of
general application. No argumentational structure need contain any exclusively
mathematical steps; that is, all such steps must be reducible to instances of
general steps.

Support for each account may be found in mathematical practice. This section
explores their competing merits.

18.4.1 Option 0: No Such Thing as Informal Mathematics

The first question to ask about Option 0, the claim that all mathematics is formal,
and hence that ‘informal mathematics’ is not mathematics, is whether it has ever
been taken seriously. Both formalism and logicism require that mathematics be
formalizable, but neither thesis need insist that mathematics isn’t mathematics
until it has been formalized. This broader claim is more familiar as a polemical
exaggeration, as with Russell’s insistence that the history of (pure) mathematics
began in 1854 (Russell, 1901, 75), or as a straw man erected by critics of such
programmes. Hence Lakatos informs us that ‘according to logical positivism,
informal mathematics, being neither analytical nor empirical, must be meaningless
gibberish’ (Lakatos, 1978b, 59). While this may be a reasonable inference about the
party line of a movement now rather lacking in adherents, specific endorsements
are harder to find. For example, Carnap might seem a plausible candidate, but
closer inspection reveals this is not actually so (Lavers, 2008, 14). Looking beyond
logical positivism, even the arch-formalists of Bourbaki do not consistently practice
what they preach, stressing instead the importance of ‘experience and mathematical
flair’ (Bourbaki, 1968, 8; see also Corry, 2009). As the example of Bourbaki
demonstrates, whether or not this position is credible as a regulative ideal, even
its most single-minded proponents have difficulty living up to it.

A more fundamental defence of Option 0 (or perhaps a narrow interpretation
of Option 1) arises from the wholesale rejection of informal reasoning proposed
by David Miller. He states that ‘It cannot be denied that a complex sequence
of interlocked blind guesses and cruel rejections may look much like directed
thought, just as Darwinian evolution simulates orthogenesis or design. But we
must not be hoodwinked into thinking that it is reasoning, or anything else that
we know, that drives us forward to what is unknown. What reasoning does is pull
us back’ (Miller, 2005, 68). For Miller, the only legitimate task that arguments,
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deductive or otherwise, can perform is critical (and only deductive arguments are
any use for this) (Miller, 2006, 65). He canvasses, but rejects, three other possible
roles: persuasion, discovery, and justification. Justification, he states, must entail
regress or circularity, because an argument can only justify if its premisses are
themselves justified. Persuasion he dismisses as unrelated to the argument: if the
argument is thought persuasive, it can only be because the premisses are themselves
persuasive, but then the argument makes no contribution. His rejection of discovery
as a property of argument is more tendentious: he regards any discoveries arising
from valid inference as trivial, in so much as they would be already known to
us, were we logically omniscient. But this leads to two important concessions: ‘To
be sure, [deductive arguments] can provide new subjective knowledge, in the way
that mathematical proofs uncannily do. Arguments, it may be conceded, do have
an exploratory function, even if what they explore is what is already known, or
conjectured, about the world, and not the world itself’ (Miller, 2005, 66). Already
known, that is, to the logically omniscient. Moreover, ‘inferences . . . that resist
deductive reconstruction,’ while ‘evidently indistinguishable from blind guesses,
. . . can indeed lead to an augmentation of knowledge (provided that knowledge
is recognized, as it must be, to be conjectural through and through and through)’
(Miller, 2005, 67). So, if our concern is with actual mathematical practice, in which
logical omniscience is sadly unavailable, then informal deductive arguments, and
even non-deductive arguments, can have a place in discovery.

In broader terms, we may observe that Miller’s challenge is most effective against
a position dual to his own: that argument only draws us forward and never pulls
us back. This would indeed be a dangerous position, especially if the steps of
such arguments need not be deductive. Even if individual steps carry high levels
of confidence, providing that the doubts are independent and thereby cumulative,
multistep arguments would swiftly grow less convincing as they lengthen. A system
which encouraged us to pursue such arguments without correction could lead us
far astray. But what of systems which permit both the forward propagation of
confidence and the back propagation of doubt? Why must our guesses be blind?
Certainly, prior experience can be a poor guide and even the most confident hunches
can prove wide of the mark. But, if only for purposes of resource management, they
are often the best place to start.

18.4.2 Option 1: All Steps Exclusively Mathematical

B-schemes, the sort of schemes which are admissible at Option 1 but not at Option 0,
comprise mathematical argument patterns of more than purely local application. For
example, diagonalization, or finding the determinant of a matrix or the adjoint of
an operator. In more complicated cases, multiple B-schemes can act in concert as
a transferable technique which may be applied to diverse mathematical problems.
This is what Jody Azzouni calls an inference package:



370 A. Aberdein

a capacity to recognize the implications of several assumptions by means of the repre-
sentations of objects wherein those several assumptions have been knit together (psycho-
logically). I also claim that the employment of inference packages shows up everywhere in
mathematical practice. What an inference package allows a mathematician to do is to reason
about a subject matter compatibly with a formal mechanical proof. His reasoning, however,
is topic-specific and the various assumptions operative in that reasoning function together
in a way that makes them phenomenologically invisible to him (Azzouni, 2009, 20).

B-schemes are in principle formalizable, that is to say any instantiation of a given
scheme in the argumentational structure should correspond to a substructure of the
inferential structure in a predictable fashion. Nonetheless, actually working out what
the latter structure should be in a given case may be forbiddingly laborious. Many
B-schemes are intrinsic to established mathematics, and fluency in their use is a
prerequisite for participation in mathematical practice. (For an attempt to construct
an explicit B-scheme, see Pease and Aberdein, 2011, 49 ff.)

A lot of mathematics can be conducted using A- and B-schemes, so Option 1 is
a much more reasonable characterization of mathematical practice than Option 0.
However, as we shall see, it does have important limitations. To stick at Option
1, and thereby reject the admissibility of C-schemes, is to restrict mathematical
practice to established mathematical techniques. Hence, Option 1 comprises a
defence of the purity of proof method. This defence originates in Aristotle’s
rejection of ‘metabasis’, or ‘kind crossing’, the use of methods proper to one
domain of reasoning within another. Indeed, some proponents of Option 1 appeal
directly to Aristotle’s arguments (for example, Krabbe, 2013, 183; see Cantù, 2010,
for discussion of the significance of metabasis in the history of mathematics).
Thus, although geometrical methods would be permitted in astronomy, which
Aristotle regards as a science subordinate to geometry, they should not be used
in arithmetic (Aristotle, 1947, 75a). Hence mathematics are genuinely plural: for
Aristotle, they comprise several distinct domains whose methods overlap only
by analogy (76a). In this respect he differs from Plato, for whom dialectic,
that is informal reasoning, comprises a highest domain to which all others are
subordinate (Detlefsen, 2008, 179).

As an example of Aristotle’s approach, consider the following:

Bryson’s method of squaring the circle, even if the circle is thereby squared, is still
sophistical because it does not conform to the subject in hand. So, then, any merely
apparent reasoning about these things is a contentious argument, and any reasoning that
merely appears to conform to the subject in hand, even though it be genuine reasoning, is
a contentious argument: for it is merely apparent in its conformity to the subject matter, so
that it is deceptive and plays foul (Aristotle, 1995, 171b).

Some unpacking is required. Sources both ancient and modern disagree as to
precisely what Bryson’s method comprised (Mendell, n.d; Heath, 1949, 47 ff.;
Hankinson, 2005, 35). But there is consensus that it began by both inscribing
and circumscribing the circle with squares, perhaps as in Fig. 18.4. One school of
thought, attributed to Proclus, represents Bryson’s argument as merely an existence
claim: some square with an area between the two must be equal in area to the circle.
Another, questionably attributed to Alexander of Aphrodisias, has Bryson proceed
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Fig. 18.4 Bryson’s method
of squaring the circle

to inscribe and circumscribe pentagons, then hexagons, and so on. With each extra
side the margin of error shrinks, so the method might charitably be interpreted as a
partial anticipation of the method Archimedes used to estimate the area of a circle.
However, in either case Aristotle would reject the result as fallacious. This has the
uncomfortable corollary that, had he lived to see it, Aristotle would apparently have
rejected Archimedes’s method too.

Of course, in one sense, Aristotle would be right: Archimedes’s method is not
purely geometrical, and however far it is taken it does not constitute a solution to
the ancient (and provably insoluble) problem of squaring the circle by a ruler and
compass construction. The difficulty with Aristotle’s approach is whether he can
acknowledge an innovative method as mathematical if it does not fit into any of
the kinds of mathematics which he recognizes. This is exacerbated by his rejection
of a common kind to which all other mathematical kinds would be subordinate.
Later purists have been less reticent: Descartes proposed a mathesis universalis
based on algebra; in the twentieth century set theory and subsequently category
theory have been likewise proposed as common mathematical kinds. However, such
a relationship between a general system and specific mathematical inferences is
easier to reconcile with formal than with informal mathematics.

We may ask whether purity is an appropriate, or even intelligible ideal for
informal mathematics. Methodological innovation often originates in informal
mathematics. When a new method is first proposed, it can be controversial whether it
qualifies as mathematical. Typically, its early use is restricted to the heuristic pursuit
of results subsequently confirmed by more conventional means. Euler’s employment
of alternating series to establish that ∑∞

n=1 1/n2 = π2/6 is one frequently discussed
example (Pólya, 1954); the anticipation of the Laplace transform by Heaviside’s
operator methods another (Hunt, 1991). To insist on purity of method at this point
may be appropriate if the informally derived results are (mis)represented as formally
sound, but can otherwise only be an unnecessary brake on progress.

In conclusion, Aristotle may charitably be read as talking only of (mutatis
mutandis) the inferential structure, and therefore not endorsing Option 1 after all.
Latterday Aristoteleans, in so far as they insist on ‘certain conventions to which an
argument must conform to be an argument within the discipline’ (Krabbe, 2013,
183), beg the question against methodological innovation. Requiring that the new
method be shown to be mathematical before it can be admitted into informal
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mathematical reasoning is to require that it be shown to be either formally valid
or heuristically useful. But the former is inappropriate for informal mathematics
and the latter can only be demonstrated through extensive use.

18.4.3 Option 2: Not All Steps Exclusively Mathematical

The Victorian mathematician J.J. Sylvester, in defending his discipline from the
ill-informed criticism of T.H. Huxley, stressed ‘how much observation, divination,
induction, experimental trial, and verification, causation, too (if that means, as I
suppose it must, mounting from phenomena to their reasons or causes of being2)
have to do with the work of the mathematician’ (Sylvester, 1869, 1762). This
perspective emphasizes the connexions between mathematical practice and ordinary
reasoning, much of it comprising C-schemes, thereby leading to Option 2 or, when
the ordinary reasoning is understood as underpinning the mathematical practice,
Option 3.

One important challenge to Option 2 arises from an ambiguity between two
senses of the phrase ‘mathematical argument’. The ambiguity may be resolved
by applying the terminology of Toulmin layouts. When ‘mathematical argument’
occurs in ordinary, that is non-mathematical, discourse it often serves to indicate
that the argument has a mathematical warrant and/or backing, and thereby a
mathematical qualifier. For example, in a discussion on the prospects of two
competing political candidates it might be argued that one candidate is too far behind
to win, even if all the uncounted ballots had been cast in his favour. The proponent of
such an argument may stress that it was a ‘purely mathematical argument’, thereby
emphasizing its difference from typical political arguments: a more robust warrant
and qualifier. If that were the only context in which ‘mathematical argument’ were
used it would appear that the mathematical nature of the warrant (or qualifier) was
essential, thereby ruling out topic-neutral schemes, and thereby Option 2. But this
would be to ignore the non-mathematical context—the warrant is singled out since
it is what makes the argument different from other arguments to the same claim. In
broader terms, we might also classify this as a political argument, since it derives a
political claim from political data. In this second sense, a mathematical argument
will be one which arises in mathematical discourse. Characteristically, this will
entail the data and claim being mathematical, but not necessarily that the warrant
should be so too.

If warrants in mathematical arguments are not mathematical what are they? The
positive argument in defence of the mathematical use of C-schemes can best be
made by answering this question. As discussed in Sect. 18.3, although argumenta-
tion schemes have been developed primarily for non-mathematical contexts, many

2This would seem to be an attempt to characterize what would later be described as abductive
reasoning, or inference to the best explanation.
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of them lend themselves readily to mathematical application. For example, consider
the following scheme for argument from analogy:

ARGUMENTATION SCHEME FOR ARGUMENT FROM ANALOGY

Similarity Premise Generally, case C1 is similar to case C2.
Base Premise A is true (false) in case C1.
Conclusion A is true (false) in case C2.

Critical Questions:

CQ1. Are there differences between C1 and C2 that would tend to undermine the force of
the similarity cited?

CQ2. Is A true (false) in C1?
CQ3. Is there some other case C3 that is also similar to C1, but in which A is false (true)?

(Walton et al., 2008, 315)

This is a C-scheme because it is topic-neutral and not necessarily deductive.
Whether or not this scheme is deductively valid turns on the interpretation of the
warrant, that is the similarity premise. If ‘similar’ is defined narrowly enough,
providing an equivalence between ostensibly unrelated mathematical structures,
the premise would be categorical, and the scheme valid. This can be a source of
formidable insight. The graph theorist Bill Tutte gives an impressive example in
describing how he and three colleagues came to falsify Lusin’s Conjecture, that
no square can be dissected into smaller squares, all of different sizes: ‘Eventually
we found that a squared rectangle was equivalent to an electrical network of unit
resistances. . . . We now understood that the basic theory of squared rectangles was
that of Kirchoff’s Laws of electrical networks. That was something we could look up
in textbooks’ (Tutte, 1998, 3 ff.). The similarity premiss is the equivalence that Tutte
and his colleagues found, which could be formally demonstrated. Hence the base
premisses, which they looked up in textbooks, were known to have true analogues
in the theory of squared rectangles. This suggests that this specific case of analogy
may also instantiate some B-scheme which is a subscheme of the general C-scheme
for analogy above. One such subscheme is discussed in (Pease and Aberdein, 2011,
49 f.), but a better fit may be found in the account of analogy in (Bartha, 2013),
which may be construed as the articulation of several such subschemes.

But even if the similarity premise is defeasible, the scheme at least character-
izes a versatile pattern-spotting procedure which can be an invaluable source of
mathematical hypotheses. (This is not to prejudge the question whether defeasible
analogies are only useful as heuristics.) A familiar example is the extension of the
number concept, from natural numbers to rational numbers, irrational numbers,
negative numbers, imaginary numbers, transfinite numbers, and so forth. Each of
these steps proceeded by analogy, and was initially controversial. These moves
also gave rise to further analogies, as properties known to apply to one sort of
number were conjectured to apply to other sorts. For example, Wallis conjectured
that np × nq = np+q, known to apply for integers p, q, also held when the indices
were fractional or negative (Stedall, 2002, 158).

Informal analogies can be drawn from areas outside mathematics. For example,
the optimization technique of ‘simulated annealing’ is motivated by an analogy
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with the metallurgical technique of annealing (Michalewicz and Fogel, 2004, 120).
The mathematical problem is that many search procedures designed to find the
global maximum of functions of multiple independent variables will halt at local
optima, that is globally suboptimal solutions. The analogous problem in metallurgy
is that metals (and other crystalline substances) if cooled too quickly from a
molten state will ‘freeze in’ irregularities, producing a structure of higher energy
level, and typically weaker structural integrity. The solution is gradual cooling,
which finds an analogy in the incremental reduction of a control parameter in the
simulated annealing algorithm. Here, the base premiss, that is the data, is drawn
from metallurgy, not mathematics, while the warrant asserts the analogy between
the two fields, and is thus not wholly mathematical either. Nonetheless, the claim is a
substantial contribution to a mathematical problem. While more rigorous arguments
have been made for the effectiveness of simulated annealing, as they must be if it is
to have a permanent place in mathematics, this analogy is independently compelling,
and was crucial to its discovery.

We have seen that the data, the warrant, and thereby the qualifier of a math-
ematical argument may be non-mathematical. However, arguments with non-
mathematical claims would ipso facto not be contributions to mathematics, but
rather mathematical contributions to whatever discourse the claim was drawn
from. What of the other components of the Toulmin layout? The susceptibility of
mathematical argument to what Lakatos describes as ‘heuristic falsifiers’ would
suggest the admissibility of non-mathematical rebuttals (see Lakatos, 1978a, 36).
(If a heuristic falsifier succeeds, the inferential structure is unaffected, since it is
still formally valid, but the argumentational structure would be forced to follow a
different path, bypassing the ‘falsified’ content.) And even ostensibly mathematical
warrants may have non-mathematical backing, as the next section demonstrates.

18.4.4 Option 3: No Steps Exclusively Mathematical

The distinction between Option 2 and Option 3 turns on whether all the instan-
tiations of mathematical schemes in the argumentational structure are reducible
to instantiations of non-mathematical schemes, or more precisely, whether all
instantiations of B-schemes are decomposable into sequences or combinations of
instantiations of A- and C-schemes. Advocates of Option 2 hold that room must
be left for the irreducibly mathematical, even in the argumentational structure;
proponents of Option 3 disagree.

This dispute may be difficult to resolve. On the one hand, there are elementary
topic-neutral A- and C-schemes in mathematics, and many instantiations of more
complex B-schemes can be reduced to instantiations of such schemes in an obvious
enough if tedious fashion. Such, after all, is one of the goals of proof. On the
other hand, there are many B-schemes of formidable complexity, for example
those invoking widely used but hard to prove results. Even if B-schemes of this
character can be understood as ultimately depending on elementary, topic-neutral
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A- or C-schemes, such schemes would seem so remote from the use to which
the B-scheme was put, especially in informal contexts, as to be of no practical
relevance. But notice that this ostensible counterexample to Option 3 makes a crucial
concession: if the arguer is merely using the result, and not reestablishing it on
the fly, then the backing for his argument is not wholly mathematical. Rather he
is ultimately relying, quite properly, on an argument from expert opinion. If the
argument is challenged, the arguer will typically make the backing more explicit to
show how the contentious scheme is supported, thereby answering one of its critical
questions. This may take the form of restating the argument in more elementary
steps, thereby bringing it closer to topic-neutral schemes, or the arguer may be
forced to acknowledge that he is using a result which he is unable to prove, at least
on demand, but has on good authority, at which point he has clearly resorted to a
non-mathematical scheme.

More direct motivation for Option 3 may be found in the widely held thesis
that ‘there are certain basic forms of thought and argument which are prior to
the development of formal Mathematics’ (Robinson, 1964, 237). Such intuitions
have taken a variety of forms. For example, Jody Azzouni once developed (but
subsequently repudiated) a view of informal mathematics as a subdoxastic process
analogous to that governing grammar, from which he infers that ‘all reasoning
is topic-neutral in nature’ (Azzouni, 2009, 18 f.). Keith Devlin reaches a similar
conclusion from the grounds that mathematical ‘thought processes are comprised
of brain activation patterns that are associated with real world stimuli’ (Devlin,
2008, 378). Penelope Maddy proposes basing mathematics on ‘a characterization
of classical logic as grounded in a rudimentary logic that’s both true of the world
and embedded in our most primitive modes of cognition’ (Maddy, 2007, 288). As
Ian Dove concludes, ‘mathematical reasoning is already in accord with principles
and techniques from informal logic—even if this is unnoticed by the practitioners’
(Dove, 2013, 306).

We have seen that all four options have defenders amongst both mathematicians
and philosophers. However, Option 0 relies on either an untenable idealization of
mathematical practice, or an arbitrary restriction of ‘mathematics’ to exclude much
of that practice. And Option 1 is hard to reconcile with methodological innovation.
That leaves Option 2 and Option 3, both of which leave room for informal reasoning
in mathematical practice. Resolving the debate between these positions turns on
whether all inferences of informal mathematics may be reduced to combinations of
topic-neutral inferences. A final answer to this question is beyond the scope of this
chapter, but I would suggest that the onus is on proponents of Option 2 to provide ex-
amples of informal mathematical inferences for which no such reduction is possible.

18.5 Mathematical Reasoning in Context

We have so far observed that the admissibility of schemes in the argumentational
structure gives rise to different views of mathematical practice. However, mathe-
matical practice is itself highly diverse, a diversity which the relationship between
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Table 18.1 Systematic survey of dialogue types

Initial situation

Unsatisfactory spread
Main goal Conflict Open problem of information

Stable agreement/resolution Persuasion Inquiry Information seeking
Practical settlement/decision (not) to act Negotiation Deliberation N/A
Reaching a (provisional) accommodation Eristic N/A N/A

From Walton and Krabbe, 1995, 80, Table 3.2

schemes and structure should reflect. Elsewhere, I have argued that mathematical
discourse is characteristically a dialogue, if only with oneself; that it exhibits
a diversity of dialogue types; and that the analysis of mathematical reasoning
should have regard to the type of dialogue in which the mathematical reasoning
arises (Aberdein, 2007, 144 ff.). This account of mathematical dialogue types
was developed from an account of dialogue types in non-mathematical discourse,
including persuasion, negotiation, inquiry, deliberation, information-seeking, and
quarrel (developed in Walton and Krabbe, 1995; see also Krabbe, 2013). Dialogue
types may be distinguished in terms of their initial situation, and the shared and
individual aims of their participants, as in Table 18.1 (Walton and Krabbe, 1995, 80,
Table 3.2). Since different argumentational practices are legitimate in different types
of dialogue, the evaluation of arguments and argumentation schemes must have
regard to the type of dialogue in which they are advanced. Table 18.2 summarizes
a variety of mathematical dialogue types, some of which are more appropriate for
successful proof than others (cf. Walton and Krabbe, 1995, 66, Table 3.1).

The first three rows of Table 18.2 characterize contexts in which a stable
resolution is sought—a traditional expectation of mathematical proof. But there is
still significant diversity and competing expectations of what a proof should provide.
To see this, observe that a proof of the same result may pass through all three types
of dialogue at different stages in its career. It may originate in the context of open-
minded inquiry, either as a purely internal dialogue conducted within its originator’s
head or in spoken or written communication between collaborators; but it must then
convince a sceptical interlocutor, typically a journal referee; and, if it is sufficiently
important, it may eventually figure in pedagogic dialogues with audiences of
different levels of sophistication: peers in the subfield, the broader professional
community, graduate or undergraduate students and so on. All of these contexts
are consistent with the uncontroversial acceptance of the proof, but they impose
different constraints on the admissibility of schemes in its argumentational structure.
For example, highly specialized mathematical B-schemes might be appropriate in
the inquiry dialogue and in a subsequent pedagogic dialogue with peers who are
well-acquainted with such manoeuvres, but could reasonably be challenged by the
referee, and would be inappropriate for an undergraduate audience.

The last three rows of Table 18.2 represent other forms of mathematical
argumentation, allied to proof, but which fall short of the standards conventionally
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Table 18.2 Some mathematical dialogue types

Dialogue type
Initial
situation Main goal

Goal of
prover

Goal of
interlocutor

Proof as Inquiry Open-
mindedness

Prove or disprove
conjecture

Contribute to
main goal

Obtain
knowledge

Proof as Persuasion Difference of
opinion

Resolve
difference of
opinion with
rigour

Persuade
interlocutor

Persuade
protagonist

Proof as Pedagogical
Information-
Seeking

Interlocutor
lacks in-
formation

Transfer of
knowledge

Disseminate
knowledge of
results and
methods

Obtain
knowledge

‘Proof’ as Oracular
Information-
Seeking (e.g.
Tymoczko, 1979)

‘Prover’ lacks
informa-
tion

Transfer of
knowledge

Obtain
information

Inscrutable

‘Proof’ as
Deliberation (e.g.
Swart, 1980;
Jaffe and Quinn,
1993)

Open-
mindedness

Reach a
provisional
conclusion

Contribute to
main goal

Obtain warranted
belief

‘Proof’ as
Negotiation (e.g.
Zeilberger, 1993)

Difference of
opinion

Exchange
resources for
a provisional
conclusion

Contribute to
main goal

Maximize value
of exchange

Adapted from Aberdein, 2007, 148

expected of proof. Oracular information-seeking describes Thomas Tymoczko’s
hostile characterization of computer-assisted proof (Tymoczko, 1979, 71) as blatant
appeal to authority. But it also describes other contexts in which the standards
of admissibility for the scheme for argument from expert opinion are lower than
might be expected; where, for example, there is no obvious means by which
the prover or interlocutor could replicate the cited result. This context preserves
the goal of a stable resolution, although it allows unorthodox strategies for its
attainment. The next two contexts drop this goal in favour of a more provisional
outcome. Deliberation encompasses the establishment of less rigorous results,
such as Edward Swart’s ‘agnograms’, theorem-like statements about which we are
presently agnostic, and the conjectures or speculations of Arthur Jaffe and Frank
Quinn’s ‘theoretical mathematics’ (Swart, 1980; Jaffe and Quinn, 1993). Lastly,
Doron Zeilberger’s ‘theorems for a price’ combine a high but not absolute level
of certainty with a cost estimate for the computational resources necessary to attain
full certainty (Zeilberger, 1993, 980), a context requiring negotiation over the best
allocation of those resources. It would be highly controversial to substitute such
dialogues for rigorous proof, but they uncontroversially describe other forms of
mathematical practice, including much applied mathematics.
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18.6 Conclusion

This chapter has defended an account of mathematical reasoning as comprised of
two parallel structures. The argumentational structure is composed of arguments
by means of which mathematicians seek to persuade each other of their results
or, more generally, to achieve goals appropriate for whatever dialogue they are
having. The inferential structure is composed of derivations which offer a formal
counterpart to these arguments. The precise relationship between the two structures
may be understood in terms of the range of argumentation schemes which may be
instantiated by steps of the argumentational structure. Just as different views about
the foundations of mathematics may be characterized in terms of the admissibility of
steps in the inferential structure, different views about mathematical practice may be
characterized in terms of the admissibility of steps in the argumentational structure.
I have made the case that a wide range of schemes should be admitted to the
argumentational structure. Two distinct areas emerge for further exploration: firstly,
the investigation of fine-tuned, specifically mathematical B-schemes; and secondly,
the application to mathematics of topic-neutral C-schemes.
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