
Chapter 33
Similarity Measure Design
for Non-Overlapped Data

Sanghyuk Lee

Abstract Study on similarity measure on fuzzy sets (FSs) for the case of non-
overlapped data was proposed, and analyzed. Comparison with similarity measure
on overlapped case was done. Different approach to similarity measure was ana-
lyzed, and adequate similarity measure on non-overlapped data was designed by
considering neighbor information. With artificial data rational calculation results
were obtained.
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33.1 Introduction

Analysis on fuzzy data provides useful information background to data analysis by
way of heuristic point of view, it has been carried out by numerous researchers [1–4].
Specially, study on evaluation of uncertainty and certainty with respect to the cor-
responding fact was carried out by way of fuzzy entropy and similarity measure
design [4–11]. Similarity measure guarantees the similarity degree between com-
paring data sets. Obtained results have been applied to solve pattern recognition and
clustering problem or etc. [12]. Basically, measure is defined on non-empty class C
over whole non-empty set X [14]. That l is called a measure on C iff it is countably
additive and there exists E 2 C such that l Eð Þ\1.

Designing similarity measure was based on its definition. Its characteristics are
commutativity, complementary feature, overlapped characteristics, and triangular
inequality feature. Based on these properties, similarity measure was derived by
two approaches [7–11], fuzzy number [7, 8] and distance measure [9–11].
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Similarity measure design with fuzzy number was seemed to be easier than with
distance measure, because only finite number of membership values were con-
stituted to construct similarity measure [7, 8]. However, this approach has fatal
drawback, measure design should be restricted only triangular or trapezoidal fuzzy
membership function. Whereas similarity measure with distance measure can be
applied to unlimited membership function even its design procedure is rather
complex and tedious.

Whether the similarity measures are proposed by fuzzy number or distance
measure, it provided the degree of similarity between data sets. Similarity with
fuzzy number was used with finite number of data. It means there was no needs to
be overlapped, because it is depend on combination with {a,b,c,d} and {e,f,g,h}
Fig. 33.1.

Whereas similarity measure design with distance measure was considered
distance information between two membership functions. It means that the
obtained similarity measure cannot guarantee the similarity calculation of non-
overlapped singleton distributed data. Hence, in order to design similarity measure
for singleton data it needs different approach. In the similarity measure design with
distance measure, measure structure should be related with the same support of
universe of discourse. Hence, to consider non-overlapped data, we deleted the
assumption about same support of universe of discourse. In this literature, simi-
larity measure for non-overlapped data would be derived by considering neighbor
data. By comparing each data with whole neighbor data information, similarity
measure was completed. The obtained measure was proved and applied to artificial
example. Computation result was also compared with conventional similarity
measure.

In the following chapter, preliminary results on similarity were proposed.
Similarity measure based on fuzzy number and distance measure were introduced,
and it was applied to discrete date. Non-consistency was shown by calculation
results. Similarity measure on non-overlapped data was proposed and proved in
Chap. 3. Similarity measure calculation for non-overlapped data was also proposed
in the same chapter, and it was analyzed. Calculation results were seemed to be
rationale. Finally, conclusions are followed in Chap. 4. Notations of this literature
are used from reference of Liu [4].

33.2 Preliminaries

Similarity measure was proposed by Liu [4]. It was designed by using distance
measure. It satisfies four properties of similarity measure.
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Fig. 33.1 Fuzzy
membership function with
fuzzy number
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Definition 2.1 [4] A real function s : F2 ! Rþ is called a similarity measure, if
S has the following properties:

(S1) s A;Bð Þ ¼ sðB;AÞ; A; B 2 FðXÞ
(S2) sðD;DCÞ ¼ 0; D 2 PðXÞ
(S3) s C;Cð Þ ¼ maxA;B2F sðA;BÞC 2 FðXÞ
(S4) A;B;C 2 FðXÞ; if A � B � C; then sðA;BÞ� sðA;CÞ and sðB;CÞ� sðA;CÞ:

where Rþ ¼ ½0;1Þ;X is total set, F(X) is the class of all fuzzy sets of X, P(X) is
the class of ordinary sets of X, and DC is the complement set of D. By this
definition, numerous similarity measures could be derived.

In order to design the similarity measure via distance, it is needed to introduce
the distance measure [4]. Similarity measure can be represented as explicit
structure with help of distance measure.

Definition 2.2 A real function d : F2 ! Rþ is called a distance measure on F if
d satisfies the following properties:

(D1) d A;Bð Þ ¼ dðB;AÞ; A;B 2 FðXÞ
(D2) d A;Að Þ ¼ 0; A 2 FðXÞ
(D3) d D;DCð Þ ¼ maxA;B2FdðA;BÞ; D 2 FðXÞ
(D4) A;B;C 2 FðXÞ; if A � B � C; then dðA;BÞ� dðA;CÞ anddðB;CÞ

� dðA;CÞ.
Hamming distance was commonly used as distance measure between fuzzy sets

A and B,

d A;Bð Þ ¼ 1
n

Xn

i¼1

jlAðxiÞ � lB xið Þj

where X ¼ fx1; x2; . . .; xng; kj j was the absolute value of k. lA(x) was the
membership function of A 2 FðXÞ. Following theorem satisfied similarity measure.

Theorem 2.1 For any set A;B 2 FðXÞ, if d satisfies Hamming distance measure,
then

s A;Bð Þ ¼ 1� d A \ Bð Þ; A [ Bð Þð Þ ð33:1Þ

is the similarity measure between set A and B.

Proof Commutativity of (S1) is clear from (33.1) itself, that is

s A;Bð Þ ¼ sðB;AÞ:

For (S2),

s D;DC
� �

¼ 1� d D \ DC
� �

; D [ DC
� �� �

¼ 1� d 0½ �X ; 1½ �X
� �

¼ 0

is obtained because of D \ DCð Þ ¼ 0½ �X and D [ DCð Þ ¼ 1½ �X . Where, [0]X and
[1]X denote zero and one over whole universe of discourse of X.
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(S3) is also easy to prove,

s C;Cð Þ ¼ 1� d C \ Cð Þ; C [ Cð Þð Þ
¼ 1� d C;Cð Þ ¼ 1

It is natural that d(C, C) = [0]X, satisfied maximal value.
Finally,

d A \ Bð Þ; A [ Bð Þð Þ ¼ d A;Bð Þ\d A;Cð Þ ¼ d A \ Cð Þ; A [ Cð Þð Þ

guarantees s(A, C) \ s(A, B), and

d B \ Cð Þ; B [ Cð Þð Þ ¼ d B;Cð Þ\d A;Cð Þ ¼ d A \ Cð Þ; A [ Cð Þð Þ

also provides s(A, C) \ s(A, B) therefore triangular inequality is obvious by the
definition, hence (S4) is also satisfied.

Besides Theorem 2.1, numerous similarity measures are possible. Other simi-
larity measure is also illustrated in Theorem 2.2, and its proof is also found in
previous results [9–11].

Theorem 2.2 For any set A;B 2 FðXÞ, if d satisfies Hamming distance measure,
then

s A;Bð Þ ¼ 1� d A;A \ Bð Þ � dðB;A \ BÞ ð33:2Þ

s A;Bð Þ ¼ 2� d A \ Bð Þ; ½1�X
� �

� d A [ Bð Þ; ½0�X
� �

ð33:3Þ

s A;Bð Þ ¼ d A \ Bð Þ; 0½ �X
� �

þ dð A [ Bð Þ; 1½ �XÞ ð33:4Þ

are the similarity measure between set A and set B.

Mentioned similarity measure was verified its usefulness by proof of its defi-
nition. Consider the following example, data are distributed discrete singletons and
non-overlapped. Two data pairs that constitute different distributions are consid-
ered in Fig. 33.2. Twelve data with six diamonds (�) and six circles (�) are
illustrated with different combination in Fig. 33.2a and b. Similarity degree
between circles and diamonds must be different between Fig. 33.2a and Fig. 33.2b
because of different distribution. Two different data in Fig. 33.2a are less dis-
criminate than Fig. 33.2b. It means that similarity measure of Fig. 33.2a has
higher value than Fig. 33.2b. Next, similarity calculations are carried out with
conventional similarity measure such as (33.1), (33.2), (33.3), and (33.4) at first.

First, In order to compare different distributions, six diamonds (�) and six
circles (�) show same magnitude. Not only analytical but also heuristic point of
views, two distribution pair must show different similarity measure. By calculation
of similarity measures (33.2), it is clear that

s �; �ð Þ ¼ 1� d �;� \ �ð Þ � dð�;� \ �Þ
¼ 1� dð�; ½0�XÞ � dð�; ½0�XÞ
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However, calculation of d(�,[0]X) ? d(�,[0]X) represents the summation of
total magnitude of distribution. Then, similarity results of Fig. 33.2 (s) and (b) are
equivalent by the assumption of distribution. It means that similarity measure
calculation with (33.3) for Fig. 33.2a and b are same. Similarity measure with
(33.3) represents as follows

s �; �ð Þ ¼ 2� d �

\
�

� �
; ½1�X

� �
� d �

[
�

� �
; ½0�X

� �

¼ 2� d ½0�X; ½1�X
� �

� d �

[
�

� �
; ½0�X

� �

¼ 2� 1� d �

[
�

� �
; ½0�X

� �

¼ 1� d �

[
�

� �
; ½0�X

� �

ð33:5Þ

Calculation outputs show the same result, because there is no intersection, it is
always satisfied

�\� ¼ ½0�X
Same results are also obtained even similarity measure (33.5) is used. Due to

d �; ½0�X
� �

þ d �; ½0�X
� �

¼ d �

[
�

� �
; ½0�X

� �

is satisfied. Next, different magnitude distribution pair was considered. With slight
change of Fig. 33.2b, following distribution was illustrated. Only slight

Fig. 33.2 a Data
distribution between circle
and diamond, b Data
distribution between circle
and diamond
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modification of magnitude was done in Fig. 33.3. By same procedure, calculation
of (33.1) to (33.4) shows that similarity measure is different from Fig. 33.2b.
However, it is proportional to magnitude.

However, calculation results of Fig 33.2 and 33.3 are different each other. It
means similarity measure based on distance measure was not consistency. It just
provides difference between maximal value, mainly one, and singletons average.
Therefore in order to analyze the degree of similarity between distributed singleton
data, another similarity measure design should be needed.

By comparison with Fig. 33.2a and Fig. 33.2b, former shows more similar than
b. However, the calculation output was not consistency. It means that (33.2), and
(33.3) were only efficient for overlapped data distribution. Due to every operation
was based overlapped data such as A \ B; A [ B; and Hamming distance, sim-
ilarity measures (33.2) and (33.3) were only applicable to overlapped type
membership function. Similarity measure structure for non-overlapped discrete
data distribution is derived in next chapter.

33.3 Non-overlapped Data Analysis

Assume every data are distributed without overlapping. Then, the degree of
similarity must be determined from neighbor data information. Hence, consider-
ation of neighbor information is necessary. In the next theorem, similarity measure
on non-overlapped data was derived.

Theorem 3.1 For singletons or discrete data a; b 2 PðXÞ, if d satisfied Hamming
distance measure, then

sða; bÞ ¼ 1� jsa � sbj ð33:6Þ

is similarity measure between singleton a and b. In (33.6), sa and sb satisfy
d a

T
Rð Þ; ½1�X

� �
and d b

T
Rð Þ; ½1�X

� �
, respectively. Where R is whole data dis-

tribution including a and b.

Proof (S1) is clear by the definition since

Fig. 33.3 Data distribution
with different magnitude
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jsa � sbj ¼ jsb � saj

For (S2),

sðD;DCÞ ¼ 1� jsD � sDc j

¼ 1� d D
\

R
� �

; ½1�X
� �

� d DC
\

R
� �

; ½1�X
� ����

��� ¼ 0

For D satisfies one, d D
T

Rð Þ; ½1�X
� �

¼ 0 and d DC
T

Rð Þ; ½1�X
� �

¼ 1, hence
following result is obtained. Whereas D satisfies zero, opposite results are
obtained.

(S3) is clear from definition,

sðC;CÞ ¼ 1� jsC � sCj

¼ 1� jd C
\

R
� �

; ½1�X
� �

� d C
\

R
� �

; ½1�X
� �

j ¼ 1

Finally, (S4) A;B;C 2 FðXÞ, if A\B\C, then

sðA;BÞ ¼ 1� jsA � sBj

¼ 1� jd A
\

R
� �

; ½1�X
� �

� d B
\

R
� �

; ½1�X
� �

j

� 1� jd A
\

R
� �

; ½1�X
� �

� d C
\

R
� �

; ½1�X
� �

j ¼ sðA;CÞ

because d B
T

Rð Þ; ½1�X
� �

[ d C
T

Rð Þ; ½0�X
� �

is satisfied. Similarly sðB;CÞ�
sðA;CÞ is also satisfied. Hence, (33.6) also satisfies the similarity measure defi-
nition 2.1.

Similarity measure (33.6) is also designed with distance measure such as
Hamming distance. As noted in before, conventional measures were not proper for
non-overlapping continuous data distribution, this property is verified by the
similarity measure calculation of Fig. 33.2a and b.

Next, calculate the similarity measure between circle and diamond with (33.6).
For Fig. 33.2a,

sð�; �Þ ¼ 1� jd �

\
R

� �
; ½1�X

� �
� d �

\
R

� �
; ½1�X

� �
j

¼ 1� 1=6j2:3� 2:4j ¼ 0:983

is satisfied.
For calculation of Fig. 33.2(b),

sð�; �Þ ¼ 1� d �

\
R

� �
; ½1�X

� �
� d �

\
R

� �
; ½1�X

� ����
���

¼ 1� 1=6j2:8� 1:8j ¼ 0:833

is also obtained.
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Calculation result shows that;

• Proposed similarity measure is possible to evaluate degree of similarity for non-
overlapped distributions.

• First distribution pair shows better similarity.

33.4 Conclusions

Similarity measure on non-overlapped and overlapped data was designed. Two
approaches to design similarity measure were introduced. Similarity measure
design based on fuzzy number showed rather easy to formulate. However it has
drawback for limitation of membership function. Whereas distance measure was
not easy to design, however there was no limitation for the membership function.
With the conventional similarity measure, calculation of similarity on non-over-
lapped data was carried out. Calculation results were not acceptable because
conventional similarity measure was designed based on overlapped data charac-
teristic. Hence similarity measure calculation was not compatible.

With the help of neighbor information, similarity measure on non-overlapped
data was obtained. Comparison result on overlapped and non-overlapped data
showed that conventional similarity measure is not useful to calculate non-over-
lapped discrete data. With conventional similarity calculation it was only guaranteed
the distance between maximal value and data average. Hence, if non-overlapped
data shows dame magnitude, always same similarity measure was given.
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