
Chapter 29
Time-Delay Neural Network
with 3 Frequency Bands Based
on Voiced Speech Discrimination in Noise

Jae Seung Choi

Abstract Information on the time variation in a speech signal is significant when
training a neural network for the speech signal input. Therefore, this paper
proposes a time-delay neural network with 3 frequency bands based on voiced
speech discrimination in the condition of background noises. The effectiveness of
the proposed network is experimentally confirmed based on measuring the correct
discrimination rates for speech degraded by various noises.
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29.1 Introduction

Recent developments in speech recognition have resulted in various studies, such
as neural network [1–4], time-delay neural network [5, 6], hidden Markov model
(HMM) [3], and so on.

In the area of speech signal processing, the major application of a neural
network (NN) is the category classification of phoneme recognition, while in the
area of speech enhancement and noise reduction, the major application of the NN
is the extraction of speech sections from a noisy speech signal [7, 8]. Thus, for
speech recognition, the NN needs to be constructed using a time structure, as the
time variation is significant information. Moreover, an amplitude component
contains more information than a phase component when a speech signal is
generated by a fast Fourier transform (FFT). Accordingly, this paper proposes a
time-delay neural network (TDNN) [5, 6] system with 3 frequency bands based on
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voiced speech discrimination in the condition of background noises, which
includes a time structure in the NN.

To evaluate the proposed TDNN system, the performance of the proposed
system is evaluated based on correct discrimination rates at frame-by-frame for
white, car, restaurant, and subway noise.

The remainder of this paper is organized as follows. Section 29.2 describes an
additive noise model, and Sect. 29.3 introduces the construction of the proposed
time-delay neural network. Section 29.4 discusses experimental results when using
the proposed system. Section 29.5 presents some final conclusions.

29.2 Additive Noise Model

The original noisy speech signal is assumed to be sðkÞ, and the speech signal
disturbed by noise is given by

xðkÞ ¼ sðkÞ þ nðkÞ: ð29:1Þ

The fast Fourier transform for Eq. (29.1) is given by Eq. (29.2).

XðejxÞ ¼ SðejxÞ þ NðejxÞ ð29:2Þ

where
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Here, nðkÞ is white, car, subway, and restaurant noise with a sampling frequency of
8 kHz, where the white noise was generated by a computer program with a
sampling frequency of 8 kHz. In addition, car, subway, and restaurant noise
included in the Aurora-2 database were also used in this experiment.

29.3 Construction of Time-Delay Neural Network (TDNN)

This section describes the construction of proposed TDNNs, which are composed
of a low, mid, and high frequency band.

Information on the time variation in a speech signal is significant when training
the NN for the speech signal input. Therefore, this paper proposes the three kinds of
TDNNs to be constructed the low, mid, and high frequency bands. Figure 29.1
shows the construction of the proposed TDNNs for the low, mid, and high frequency
bands used in this experiment. A time series of 32-unit FFT amplitude components is
fed into the input layer with n frames. Thereafter, the four frames in the input layer
are connected to the frame in the first hidden layer. Every 6 frames in the first hidden
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layer with 128 units are connected to the frame in the second hidden layer. Then
every frame in the second hidden layer with 22 units is connected to the output layer.
Accordingly, TDNNs for the low, mid, and high frequency bands are composed of
four layers and the composition of the TDNN is 32-128-22-22. In this experiment,
the input signals for the TDNNs with the low, mid, and high frequency bands are the
0 to 31st samples of the FFT amplitude component, respectively, where the input
signals consist of the target frame, the two previous frames, and the following frame.
The target signals for the TDNNs with the low, mid, and high frequency bands are

Fig. 29.1 Construction of the proposed TDNNs for low, mid, and high frequency bands
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the 0 to 31st samples of the FFT amplitude component with a frame corresponding to
a training signal for a clean speech signal, respectively. In this experiment, ten
simulations for one network were performed to train the proposed TDNNs as the
following input signal-to-noise ratio (SNRin) conditions: (1) SNRin = 20 dB, (2)
SNRin = 15 dB, (3) SNRin = 10 dB, (4) SNRin = 5 dB, and (5) SNRin = 0 dB,
respectively. Thus, a total of fifty simulations using the same network were
performed for each SNRin conditions.

Figure 29.2 shows a schematic diagram using the proposed TDNN system that
is divided into voiced sections, making the TDNN easier to train according to a
somewhat similar pattern. The proposed TDNN system is also constructed for a
low, mid, and high frequency band, allowing more effective correlation of the
added information.

In Fig. 29.2, a noisy speech signal xðkÞ is first detected in the voiced sections,
and divided into FFT amplitude components with the low, mid, and high frequency
bands. Thereafter, the divided FFT amplitude components are added to the voiced
sections of the TDNN, as appropriate. In Fig. 29.2, the FFT amplitude components
obtained from the noisy speech signal xðkÞ are added to the input signals of the
TDNNs, while the FFT amplitude components obtained from a clean speech signal
sðkÞ are added to the target signals of the TDNNs. Thereafter, the TDNNs are

Fig. 29.2 Schematic
diagram of the proposed
TDNN system
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trained using every individual frame (256 samples). However, for every frame, the
two previous frames and following frame are also added to the input signals of
the TDNNs, as such frames provide additional information and correspond to the
frame of the target signal. Therefore, the total number of input frames is four.

In this experiment, since the amplitude components obtained by the FFT have
symmetrical values centered around the 128th component of the FFT, the samples
from 0 to the 128th, except for the redundancy area, are divided between the
TDNNs with the low, mid, and high frequency bands, and the results added to the
TDNNs with the low, mid, and high frequency bands.

Table 29.1 shows the parameters used to implement the training and other
conditions for each TDNN used in this experiment. When the training iterations
exceeded 10,000, there was almost no decrease in the training error curves at the
minimum error points. Therefore, 10,000 was set as the maximum number of
training iteration for the experiment. The reason for using a TDNN in this research
was to enable car, restaurant, and subway noise with an inconstant intensity in the
time domain to be estimated and provide an efficient training algorithm called the
back propagation method [9].

29.4 Experimental Results and Considerations

Using the basic composition conditions described above, experiments confirmed
that the proposed system was effective for speech degraded by white, car, res-
taurant, and subway noise based on measuring the discrimination rates.

29.4.1 Speech and Noise Database

To train the proposed TDNN and test the performance of the proposed TDNN
system, the speech and noise data used in this experiment is presented in this
section.

The speech data used in this experiment was the Aurora-2 database that consists
of English connected digits recorded in clean environments with a sampling
frequency of 8 kHz [10]. All speech data of the Aurora-2 database is distributed by
ETSI committee and is derived from a subset of the TI-Digits database [11], which
consists of English-connected digits spoken by American English speakers. Eight

Table 29.1 Various
conditions for training
of TDNNs

Initial weight Random numbers from
–1.0 to 1.0

Coefficient of training a = 0.2
Coefficient of inertia b = 0.6
Maximum training iteration 10,000 times
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different background noises have been added to the speech data at different signal
to noise ratios (SNRs). The speech data is down sampled from 20 to 8 kHz with a
low-pass filter and filtered with a G712 characteristic [12]. These speech data are
considered as ‘‘clean’’ speech data. These clean speech data are artificially
contaminated by adding eight different types of real-life background noises
(subway (inside a subway), babble (crowd of people), car, exhibition hall,
restaurant, street, airport, and train station noises) to the clean speech data at
several SNR levels (20, 15, 10, 5, 0, -5 dB, clean (no noise added)), where street
and babble noises are non-stationary and other noises are stationary. Since the
major part of the energy in speech signals is concentrated in the lower frequency
areas and the spectra of these noises looks extremely like the spectra of speech
signal data, it is thought that the discrimination of background noise from speech
signal data is not easy.

The Aurora-2 database offers two different training modes: (1) clean training
mode, i.e. training on clean speech data only, (2) multi-conditional training mode,
i.e. training on clean speech and noisy speech data. The clean training mode
includes 8440 clean utterances selected from the training part of the English-
connected digits; which contains the voices of 55 male and 55 female adult
recordings. The same 8440 speech data are also used in the multi-conditional
training mode.

In this experiment, the proposed system was tested using speech data from the
Aurora-2 database in Test Sets A, B, and C and four types of background noise, i.e.
car, subway noise in Test Set A, restaurant noise in Test Set B, and white noise
generated by a computer program. Therefore, the proposed TDNNs are trained
using noisy speech data artificially added at several SNRs (20, 15, 10, 5, and
0 dB). When using the Aurora-2 database, the TDNNs are trained after adding
white, car, restaurant, and subway noise to the clean speech data in the Aurora-2
database. In the experiments, the total time duration of the noise data was about
23 s for white, car, and subway noise, 300 s for restaurant noise, respectively.

29.4.2 Discrimination Test by Proposed TDNN

The performance of the proposed system was tested based on the correct dis-
crimination rate, frame-by-frame, and the definition of the discrimination rate was
the ratio of the number of frames in which the SNR levels were correctly estimated
to the total number of frames given as the input. In this experiment, the total
number of frames was about 100–300 when included silent frames, which were
included as the proportion about 15 % for short utterances and about 20 % for long
utterances.

Figure 29.3 shows the discrimination rates averaged over twenty utterances in
the case of TDNN with the low frequency band when voiced sections, for each
condition of white, car, restaurant, and subway noise in Test Sets A and B. When
the training speech data and the testing data were the same, the average values of
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the discrimination rates were 94 % or more for such noises. However, the average
values of the discrimination rates were approximately 4 % worse for such noises,
in the case of TDNNs with the mid and high frequency bands when voiced
sections, respectively.

29.5 Conclusions

A time-delay neural network with 3 frequency bands based on voiced speech
discrimination was proposed for various noises in case of the voiced sections.
Experimental results confirmed that the proposed system is effective for white, car,
restaurant, and subway noise, as demonstrated by the correct discrimination rates.
In the experiment, the discrimination for the voiced speech signal using the
proposed TDNNs with 3 frequency bands was confirmed for the input SNR levels.
The performance of the proposed system was tested based on the correct
discrimination rate. When the training speech data and the testing data were the
same, the average values of the discrimination rates were 94 % or more for such
noises. However, the effectiveness of the proposed system needs to be evaluated
for non-training speech data and speech degraded by heavy noise, in the future.
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