
Chapter 15
An Efficient Access Control Mechanism
for Application Software Using the Open
Authentication

Seon-Joo Kim, Jin-Mook Kim and In-June Jo

Abstract As the cloud service is developing, technologies such as virtualization/
big data processing is being proposed, but security accidents are occurring con-
stantly. Therefore, companies which are afraid of disclosure of their main data
build their own private cloud service. However, in the virtualization software, it is
difficult to control the execution of application software and there are also other
issues, such as system resource waste, repeated user login execution. Hence, this
paper considers executing application software in accordance with the user priv-
ilege, by using the Open Authentication and the virtualization technology. For this
purpose, a proposed system was designed and implemented, and it was verified by
simulation that the proposed system reduced the system resource usage and could
execute application software on Web according to the user privilege. Our proposed
scheme can support another private cloud service such as SaaS more efficiently.

Keywords Open authentication � OAuth � Private cloud � Virtualization �
Modeling � Cloud service � SaaS

S.-J. Kim
SQEC, TTA 267-2 Seohyun-dong, Bundang-Gu, Seongnam-City,
Gyunggi-do 463824, Korea
e-mail: sunjoo@tta.or.kr

J.-M. Kim (&)
Division of Information Technology, Sunmoon University,
100 Kalsan-ri, Asan-si, Tangjeong-myeon 336708, Korea
e-mail: calf0425@sunmoon.ac.kr

I.-J. Jo
Department of Computer Engineering, Paichai University,
155-40 Baejae-ro, Seo-Gu, Daejeon 302735, Korea
e-mail: injune@pcu.ac.kr

H.-K. Jung et al. (eds.), Future Information Communication Technology and Applications,
Lecture Notes in Electrical Engineering 235, DOI: 10.1007/978-94-007-6516-0_15,
� Springer Science+Business Media Dordrecht 2013

133



15.1 Introduction

Recently, the cloud service for various mobile devices has been developed. To
support diverse mobile devices, several technologies such as virtualization, pro-
visioning and big data processing have been proposed. However, in spite of these
technologies, security accidents are occurring constantly. Therefore, companies
that are afraid of disclosure of their main data build their own private cloud
service. But, this private cloud service structure has several issues. First, it wastes
system resource by installing the Guest OS twice in the server. Second, to use
application software, you have to get through the user login to the Guest OS
repeatedly. Third, connection is possible only through remote desktop software.
Finally, to reduce the repeated user login procedure, some companies build
additionally Single Sign-On (SSO).

This paper suggests an efficient access control mechanism for application
software using the OAuth in the SaaS cloud System (ACMOS). ACMOS is pro-
posed to reduce the system resource and to use application software through Web
with no need to install remote desktop.

15.2 Relevant Researches

15.2.1 Outline of Cloud Service

Cloud service is an internet-based computing technology and Web-based software
service that installs software in a utility data server on internet and supports
bringing into a computer or a mobile device and using the software, whenever
necessary [1]. Although this clouds service is provided by famous IT companies,
such as Google, Amazon, Apple, Daum, KT, Naver, security accidents are
occurring constantly. Therefore, companies build their own private cloud service
using virtualization software. However, this private cloud service structure has
several issues.

First, it wastes system resource by installing the Guest OS twice in the server.
Second, to use application software, you have to get through the user login to the
Guest OS repeatedly. Third, connection is possible only through remote desktop
software.

15.2.2 Outline of OAuth

The open authentication (OAuth) protocol is an authorization protocol that sup-
ports main data sharing between different Web sites without exposing main
information of users, and it enables access to Web site or application software

134 S.-J. Kim et al.



making use of a security token, without repeated procedures of recognition and
authorization. This protocol was published as RFC 5849 in 2010 [2, 3].

The action procedure of the open authentication protocol is shown in the figure
(Fig. 15.1).

(1) Consumer requests for token from service provider using HTTP.
(2) Service provider receives token from consumer, and, after its verification,

replies with the token containing secret information of consumer.
(3) To receive the access authorization from user, service provider redirects to the

authorized URL.
(4) After receiving password put in by user, service provider redirects to the call

back URL.
(5) Consumer requests for consumer_key, token value, signature, timestamp,

access token containing nonce, from service provider.
(6) After inspecting the consumer signature, service provider delivers the access

token.
(7) Consumer requests the protected resource using the received access token. The

following is an example that consumer requests for the protected resource at
service provider.

Fig. 15.1 OAuth action
procedure, in the figure,
service provider means a
Web site, and consumer
means the web site that
approaches the service
provider on behalf of general
users

http://203.250.xxx.xxx/photos?file=vacation.jpg&size=original&oauth_consumer_key=dr32f5w
3t4e2y09&oauth_token=necd744e10el3jjk&oauth_signature_method=HMAC-SHA1&oauth_
signature=tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D&oauth_timestamp=12100920
96&oauth_nonce=kllo9940pd9333jh&oauth_version=1.0

15 An Efficient Access Control Mechanism 135

http://203.250.xxx.xxx/photos?file=vacation.jpg&size=original&oauth_consumer_key=dr32f5w3t4e2y09&oauth_token=necd744e10el3jjk&oauth_signature_method=HMAC-SHA1&oauth_signature=tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D&oauth_timestamp=1210092096&oauth_nonce=kllo9940pd9333jh&oauth_version=1.0
http://203.250.xxx.xxx/photos?file=vacation.jpg&size=original&oauth_consumer_key=dr32f5w3t4e2y09&oauth_token=necd744e10el3jjk&oauth_signature_method=HMAC-SHA1&oauth_signature=tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D&oauth_timestamp=1210092096&oauth_nonce=kllo9940pd9333jh&oauth_version=1.0
http://203.250.xxx.xxx/photos?file=vacation.jpg&size=original&oauth_consumer_key=dr32f5w3t4e2y09&oauth_token=necd744e10el3jjk&oauth_signature_method=HMAC-SHA1&oauth_signature=tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D&oauth_timestamp=1210092096&oauth_nonce=kllo9940pd9333jh&oauth_version=1.0
http://203.250.xxx.xxx/photos?file=vacation.jpg&size=original&oauth_consumer_key=dr32f5w3t4e2y09&oauth_token=necd744e10el3jjk&oauth_signature_method=HMAC-SHA1&oauth_signature=tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D&oauth_timestamp=1210092096&oauth_nonce=kllo9940pd9333jh&oauth_version=1.0


15.3 Proposed Mechanism

15.3.1 Basic Design of ACMOS

The overall architecture of ACMOS is shown below (Fig. 15.2).
A Web server provides web environment to a client, and requests, using a

security token, the execution of Software installed on Guest OS. Host OS and
Guest OS, Token Manager, Application are installed on the server. Host OS
manages the execution of Guest OS and Token Manager, Token Manager verifies
the security token received from the Web server, then the client examines the
execution privilege of Guest OS and Application and performs the function of
calling these. Guest OS receives the call of Token Manager and supports the
execution of Application. Finally, the Application installed on Guest OS is exe-
cuted on the user request.

The following (Fig. 15.3) is the marking of detailed modules of the proposed
system, and the object of Token Manager is composed of SVM, SEM, GEM, SMM
modules. Security Token Verify Module (SVM) is the module that examines the
effectiveness of the security token received from the Web server and manages the
security token. Session Management Module (SMM) is the module that maintains/
manages the software session that is executed on the Client and Guest OS. Guest
OS Execution Module (GEM) is the module that executes or ends Guest OS
according to the request of SVM, and Software Execution Module (SEM) is the
module that executes or ends Application Software according to the request of
SVM.

Web Server is composed of UIM, IAM, SWM, STM, TMM, LMM. User
Information Module (UIM) is the module that manages the user information, and
user Identification and Authentication Module (IAM) is the module that recognizes
and authorizes users according to registered information. Software access control
Module (SWM) is the module that manages the list of Application Software

Fig. 15.2 ACMOS architecture

136 S.-J. Kim et al.



executable for each user, Security Token manager Module (STM) is the module
that creates a security token according to the user execution privilege to Appli-
cation Software, Transaction Management Module (TMM) is the module that
manages the session while users use Application Software, and Log Management
Module (LMM) performs the function of storing and inquiring various log data
occurring on the Web server.

The structure of the security token used in ACMOS is as follows. This token is
an object that contains access privilege to Guest OS and Application, as follows:

ST ¼ UserInfoKey & oauth signature method & oauth signature & oauth timestampf
& oauth nounce & UserPermissiong

UserInfoKey is a 128 bit string that hashed UserInfo.
oauth_signature_method is an algorithm that signs on the security token, and is

fixed to HMAC-SHA1 for use.
oauth_signature is the signed value on the security token.
oauth_timestamp is the time stamp value at the time of creating the security

token.
oatuth_nounce is a series of letters randomly generated to protect from the re-

transmission attacks at the time of requesting the user authorization.
userPermission is a series of letters that contains user information, information

of the access privilege to Guest OS and application software.

15.3.2 The Proposed System Procedure

The following (Fig. 15.4) shows the action procedure of ACMOS.

(1) A Client connects to a Web server and puts in ID/Password.

Fig. 15.3 Detailed modules of the proposed system

15 An Efficient Access Control Mechanism 137



(2) The Web server examines the ID/PW and delivers the result to the Client. At
this moment, the web server’s deliver the list of Application Software to a
right client and deliver an error message to an invalid user.

(3) A right Client requests the execution of Application Software.
(4) The Web server creates a security token, which contains ID, IP Address &

MAC Address, Software Permission, Guest OS Permission, Timestamp,
Nounce, and delivers it to the Client.

(5) The Client requests, in the URL format (ex. http://203.250.143.54/ security
token series of letters), the server to execute Application Software.

(6) To verify the effectiveness of the security token, the server confirms the
security token signature value, time stamp value, Nonce. If the security token
is effective, the server delivers the Application Software list to the Client.

15.4 Verification and Consideration

To verify the effectiveness of ACMOS, two simulations were performed. The first
simulation measured the system response time of the existing system and ACMOS.
The second simulation measured the response time and the system resource change
of the proposed system in accordance with the change of user number (1 user, 5
users, 10 users, 25 users).

In the first scenario, the response time of ACMOS (7.3 s) was 3.5 times longer
than the existing system (2.1 s). The system resource was substantially reduced
from the existing system to CPU use rate in average (3.7 %), memory usage
(2.9 GB), HDD usage (38.9 GB), as shown in (Fig. 15.5). It is considered that the
response time was longer because the TCP/IP-based socket communication was
changed to HTTP and the OAuth-based security token creation/verification

Fig. 15.4 The ACMOS action procedure

138 S.-J. Kim et al.

http://203.250.143.54/


procedure was complicated, and the number of Guest OS decreased from the
existing system (4) to ACMOS (2).

In the second scenario, as the number of users changes (1 user, 5 users, 10 users,
25 users), the response time was measured as 7.0, 6.8, 6.9, 8.0 s, as shown in
(Fig. 15.6), and as for the system resource change, the CPU usage was measured
as (8.6, 14.0, 25.6, 29.2 %), as shown in (Fig. 15.7), but the memory usage
(2.9 GB) and HDD usage (38.8 GB) showed no change.

The above measurement in the proposed system comes from average measured
in each system for each user, which exhibited no difference in the response time
from 1 to 10 users but 1 s difference for users above 25. This shows that the
performance of the proposed system can handle stably only up to ten simultaneous

Fig. 15.5 System resource measurement

Fig. 15.6 Measurement of response time in accordance with the change of user number

15 An Efficient Access Control Mechanism 139



users. And, in the system resource change rate, the CPU use rate increases as the
number of users increases, but the memory/HDD usage showed no change because
of the system resource restriction managed by the virtualization Software.

15.5 Conclusions

This paper proposes ACMOS based on an open protocol, to control the execution
of application software in accordance with the user privilege. ACMOS installs
software in integration on the Guest OS and is designed to execute software
through login once. Comparison of the existing system and the proposed system
confirmed that system resource usages (CPU, RAM, and HDD) are reduced but the
response time becomes slightly longer in the proposed system. And, it was pos-
sible to reduce repeated user login and to use application software through Web.

As a future research work, security verification for using the open authentica-
tion protocol and continuous improvement on the late response with the increasing
number of users will be needed.

References

1. OAuth Administrator manual, http://www.wikipedia.org
2. Getting Started OpenAuth, http://dev.aol.com/
3. OAuth Core 1.0, http://oauth.net/core/1.0

Fig. 15.7 Measurement of system resource in accordance with the change of user number

140 S.-J. Kim et al.

http://www.wikipedia.org
http://dev.aol.com/
http://oauth.net/core/1.0

	15 An Efficient Access Control Mechanism for Application Software Using the Open Authentication
	Abstract
	15.1…Introduction
	15.2…Relevant Researches
	15.2.1 Outline of Cloud Service
	15.2.2 Outline of OAuth

	15.3…Proposed Mechanism
	15.3.1 Basic Design of ACMOS
	15.3.2 The Proposed System Procedure

	15.4…Verification and Consideration
	15.5…Conclusions
	References


